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Electronic tagging permits movement and distribution studies of sea turtles as they 

traverse large distances through a dynamic ocean environment. However, little is 

known about the movements of early life stages at sea, a period termed the 'lost 

years'. I developed and tested a method for attaching an acoustic tag suitable for use 

on leatherback turtles that was then applied to hatchlings in Costa Rica to obtain 

measures of speed and directionality. This was compared with ocean currents and 

revealed that the hatchlings actively swam against nearshore currents, although they 

were still advected by them. Finally, a Poisson generalized linear model in a 

continuous-time Markov chain model framework was used to predict adult, post-

nesting Eastern Pacific leatherback movement based on environmental drivers, such 

as sea surface temperature. Monthly, near real-time predictions of leatherback 



  

movement were estimated using the most recent satellite-derived environmental 

information to help inform conservation management strategies. 
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Chapter 1: Introduction 

 
Movement is fundamentally a change in location over time, a process altered 

by an organism’s internal factors and interactions with its environment (Nathan et al. 

2008). Many factors influence the movements of individuals. Organisms move to 

forage, reproduce, avoid predation, reduce competition, find suitable habitats for 

exploitation of new resources, or gain benefits of genetic dispersal and increased 

fitness (see Dingle and Drake 2007). A conceptual framework for understanding the 

processes of movement is defined by Nathan et al. (2008), including external drivers 

(e.g. population density, abiotic conditions, and food availability) and internal 

motivations such as maturation and physiology (Secor 2015). Given this complexity 

of processes underlying movement at many levels, movement ecology, which focuses 

on the individual’s ability to move (Secor 2015), is often interpreted to define 

population movements.  

Insight into ecological and biological conditions encountered by the 

organisms can reveal complex relationships between individual, population, and 

species-wide movements. The rapid rise of technology, such as acoustic and satellite 

tags, is increasing our understanding of the movement and behaviour of previously 

unknown and difficult to study highly migratory species (e.g. Block et al. 2011). 

Acoustic telemetry provides further-reaching observations than traditional, resource-

intensive visual techniques, and larger satellite tags expand upon the capabilities of 

acoustic tags, providing ocean-wide, extensive monitoring (Cooke et al. 2004, Hussey 

et al. 2015). These data can be combined with environmental data to identify habitat 



 

 

2 
 

preferences and developed into decision support tools for management as illustrated 

with blue whales (Hazen et al. 2016), bluefin tuna (Hobday & Hartmann 2006, 

Hartog et al. 2011, Hobday et al. 2011), and sea turtles (Howell et al. 2008, 2015). 

Appropriate conservation efforts for species rely on understanding their distribution 

and movement to effectively prevent negative consequences of anthropogenic and 

other disturbances (Bauer et al. 2009). The need for such tools is likely to increase as 

the consequences of climate change materializes (Hamann et al. 2010, Lewison et al. 

2015, Willis-Norton et al. 2015). Since many migratory species move seasonally in 

response to dynamic changes in the ocean conditions, telemetry technology and 

habitat-based models can be used in the development of dynamic management for 

highly migratory species, such as sea turtles capable of traversing ocean basins, 

producing management schemes that change through space and time with conditions 

(Hays & Scott 2013).  

Conservation planning and management can be strengthened through 

resolution of unknown movements across size, age classes, and species of sea turtles 

(Scott et al. 2012a, Hays & Scott 2013, Lascelles et al. 2016). The large distances 

over ocean basins and the unknown movements of the youngest stages of sea turtles 

present challenges to both current and future management of these vulnerable species 

(Lascelles et al. 2014). Juvenile sea turtles can migrate long distances (~12,000 km) 

exceeding those of marine mammals and fishes of the same size class (Hays & Scott 

2013), while distances and movement patterns of recently hatched sea turtles remain 

unknown.  
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Sea turtle movements 

Sea turtles are reptiles that have undergone 110 million years of evolution 

(Hirayama 1998), and their spatiotemporal movements throughout life stages are 

influenced by many factors. They are air breathers, are constrained spatially by the 

water temperature due to their inability to produce metabolic heat, and are internal 

fertilizers, requiring a land nesting stage for final egg development (Eckert et al. 

2012). These changing spatial demands, temperatures, and energy requirements 

throughout life have different roles in growth and development, which can result in 

ontogenetic habitat shifts across thousands of kilometres of open ocean and 

international boundaries (Bolten 2003a). Sea turtles are part of the superfamily 

Chelonioidea with late-maturing, long-lived life histories that make them vulnerable 

to a range of predators and anthropogenic impacts on land and sea.  

Little is known about sea turtles between the time they leave the nesting beach 

as hatchlings until the time reproductively active females return to the beach to nest. 

This cryptic period is often termed the 'lost years' (Carr 1986). Although much 

research has gone into tracking the movements throughout life stages of sea turtles, 

there are many gaps remaining in their ontogenetic habitat use, such as moving from 

oceanic to nearshore foraging grounds, which varies among species (Fig. 1.1) 

(Musick & Limpus 1997, Meylan et al. 2011). Sea turtles spend the majority of their 

life at sea, generally only on land to hatch or nest, and undertake ontogenetic and 

reproductive migrations to diverse habitats. Life at sea begins with the dispersal of 

hatchlings from the nesting beach to oceanic waters. This dispersal is the start of the 

‘lost years’ of sea turtles, more recently termed the ‘epipelagic stage’ (Meylan et al. 
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2011). This highly individualized, less directed movement (Liedvogel et al. 2011) 

towards the epipelagic zone leads them to nursery habitats that are poorly known, 

rendering sea turtle populations during their early life stages problematic to predict 

and manage.   

The ‘lost years’ 

Developmental stages of sea turtles differ among families and species, 

complicating our understanding of sea turtle population dynamics and management 

abilities. There is a general process after egg growth, hatching, and natal beach 

departure. This process includes juvenile movement into little-known oceanic, 

epipelagic waters for years, succeeded by a subadult benthic phase before maturation 

(Fig. 1.2) (Carr 1986, Bolten 2003a, Bowen & Karl 2007, Godley et al. 2010, Meylan 

et al. 2011).  

Besides the Australian flatback (Natator depressus) (Bolten 2003a) and at 

least partially, Pacific hawksbills (Eretmochelys imbricata) (Van Houtan et al. 2016), 

juveniles spend time in oceanic surface waters foraging far from shore (Meylan et al. 

2011). These early epipelagic years can include long migrations (Bolten 2003b, 

Shillinger et al. 2012a, Hays & Scott 2013). For example, Bowen and Karl (2007) 

review the use of the Kuroshio Current by juvenile Western Pacific loggerheads 

(Caretta caretta) to travel from Japan to foraging grounds in Baja California (Bowen 

et al. 1995, Polovina et al. 2000) and then actively migrate back to Japan as adults 

(Nichols et al. 2000). Western Atlantic juvenile loggerheads that forage in the distant 

Mediterranean Sea (Laurent et al. 1998) return to the western basin before the 

subadult phase (Maffucci et al. 2006).  
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At the larger subadult stage, most Cheloniids show juvenile homing (e.g. 

Avens et al. 2003, Bowen et al. 2004) by shifting to neritic waters near their natal 

beach to forage on benthic algae, macroinvertebrates, and sea grasses (Meylan et al. 

2011). This return may be a result of reduced nearshore, size-related predation risks 

and increased access to food resources (Luschi et al. 2003, Wyneken et al. 2013). 

This separate juvenile period of benthic habitat use prior to maturation is most 

evident in greens (Chelonia mydas), Kemp’s ridleys (Lepidochelys kempii), and 

hawksbills (Meylan et al. 2011).  

The onset of maturation likely causes a migration from developmental habitat 

to adult foraging grounds (Meylan et al. 2011). In comparison to the other species of 

sea turtles, leatherbacks (Dermochelys coriacea), the only surviving species in the 

family Dermochelyidae, have largely unknown movements during these young life 

stages (Bowen & Karl 2007). The divergent habitat preferences of sea turtles, as well 

as separations in thermal tolerances between size classes and species, result in 

differing geographical and ecological niches. These factors minimize overlap of 

habitats and resource utilization of sea turtles, but also complicate management 

strategies (Bowen & Karl 2007).  

All mature Cheloniids, with the exception of olive ridleys, spend their lives in 

coastal foraging habitats, while leatherbacks mainly forage in pelagic waters (Fig. 

1.2) (Bolten 2003a). Periodic migrations are undertaken from feeding grounds to the 

neritic zone to reproduce in the internesting and breeding habitat (Wyneken et al. 

2013). Returning to nest near the beach sea turtles departed as hatchlings is called 

natal homing or philopatry (Wyneken et al. 2013).  
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Long migrations undertaken throughout life stages and natal homing are two 

reasons why the navigational ability of sea turtles is well known. However, as sea 

turtle research advances, this generalized model of sea turtle movement and habitat 

utilization has shifted to adult habitat “polymorphism” (Wyneken et al. 2013), where 

subsets of populations exhibit opposing foraging strategies. This is similar to the 

notion of partial migrations, which are exhibited by many species (Chapman et al. 

2011). Meylan et al. (2011) further reviewed the complexities of ontogenetic shifts 

and the developmental habitat hypothesis, as overlap or partial overlap may occur 

across life stages for different populations of sea turtles. The developmental habitat 

hypothesis posits that some species have a geographically separate developmental 

habitat from that of the pelagic ‘lost years’ habitat and the adult foraging and 

breeding areas (Carr et al. 1978, Meylan et al. 2011). However, this assumption of 

exclusive developmental habitat phases has been challenged and still presents 

unknown questions (Meylan et al. 2011). Understanding these complex movements of 

different age classes will improve our ability to describe how sea turtles are utilizing 

their environment, which will inform management efforts for these threatened highly 

migratory species (see Bowen and Karl 2007).  

Habitat utilization and movement throughout life must be understood to 

properly manage highly migratory marine species, particularly those that are 

threatened and endangered (Hays & Scott 2013). Sea turtles represent the most 

vulnerable group of migratory marine species according to the International Union for 

the Conservation of Nature (IUCN) (Lascelles et al. 2014). The poorly understood 

‘lost years’ of sea turtles hinder management efforts as habitats cannot be predicted or 
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protected. Research has begun to confirm the oceanic to neritic ontogenetic shift for 

juvenile Cheloniids (Reich et al. 2007), but large knowledge gaps remain (Hamann et 

al. 2010), especially for leatherback turtles. Resilient management and conservation 

strategies to prevent declines in sea turtle populations require this missing ‘lost years’ 

information, which is beginning emerge through such technology as biologging 

advancements (Rutz & Hays 2009, Hazen et al. 2012, Shillinger et al. 2012a).  

Sea Turtles of Costa Rica 

Costa Rica, with nesting beaches along both the Caribbean and Pacific basins, 

is an important nesting area for many sea turtle species. Guanacaste, Costa Rica 

includes the nesting beaches of Playa Grande, Playa Cabuyal, and Playa Ostional. 

Playa Grande is a critical nesting area for Eastern Pacific leatherback turtles, one of 

the last remaining nesting sites contributing to the continuation of this population 

(Fig. 1.3) (Shillinger et al. 2012b), but the secondary leatherback nesting beaches of 

Playa Cabuyal and Playa Ostional are also important nesting areas for olive ridley and 

green sea turtles. However, small numbers of nesting female leatherbacks have been 

recorded in Playa Grande in recent years (< 30 per year) (G. Shillinger, personal 

communication).  

The Pacific Costa Rican breeding population of olive ridley sea turtles is 

classified as threatened by IUCN (Abreu-Grobois & Plotkin 2008), and there is still 

limited knowledge on their hatchling dispersal and survivorship. The green sea turtle 

population is endangered (Seminoff 2004), and the leatherback population is critically 

endangered (Wallace et al. 2013). These listings signify the need for proper 

management of Costa Rican sea turtles. Guanacaste is managed under two 
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conservation zones by the Ministry of Environment and Energy, the Tempisque 

Conservation Area and the Guanacaste Conservation Area, with varying protection 

levels at each beach. Playa Cabuyal lacks official protection (Santidrián Tomillo et al. 

2015), and Playa Ostional is designated protected as a national wildlife refuge 

(Alvarado et al. 2012). The main marine conservation area is the no-take Parque 

Nacional Marino Las Baulas (PNMB) that Playa Grande falls within, but these static 

zones do not protect internesting and migrating turtles outside their borders, reducing 

their efficacy at minimizing human interactions (Shillinger et al. 2010, Roe et al. 

2014).  

The Caribbean coast of Costa Rica is a continuous stretch of nesting beaches 

that extends north into Nicaragua and south into Panama. This extended stretch of 

nesting beach has been estimated at approximately 1,000 - 2,500 nesting leatherback 

females each year, making it an important rookery (Troëng et al. 2004). Pacuare 

Nature Reserve in the Limón Province is a small stretch of beach near the middle of 

this international rookery and has approximately 100 to 250 nesting females per year 

(estimation of 5 clutches per female as in Spotila et al. 1996) (Troëng et al. 2004), 

much higher than those nesting in Guanacaste. This same area is also well-known for 

green sea turtles as one of the largest worldwide rookeries (Troëng & Rankin 2005), 

as well as the critically endangered hawksbill (Troëng et al. 2005, Mortimer et al. 

2008). The regular utilization of this beach by multiple species, similar to the beaches 

of Guanacaste, highlights the need for scientific data to inform management and 

policy along this international nesting beach and its accompanying waters.  
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Leatherback turtles 

With a carapace of skin and flesh over small, bony plates, leatherback turtles 

are the only extant member of the family Dermochelyidae, separate from the other six 

sea turtle species (Cheloniidae) (Dutton et al. 1999). At 1.2 - 2.4 m, leatherbacks can 

range in weight from 250 - 1000 kg (Paladino et al. 1990, Tiwari et al. 2013), reach 

estimated maturity around 9 - 15 years (Zug & Parham 1996, Jones et al. 2011), and 

are distributed from breeding grounds in the tropics nearly into the Arctic Circle 

(Goff and Lien 1988, Hays et al. 2004, Benson et al. 2007, 2011). Their lifespan is 

not known, with the oldest female aged estimated at 43 through skeletochronology 

(Avens et al. 2009, Eckert et al. 2012). 

 Leatherbacks are separated into seven populations throughout the ocean 

defined by their migratory movements (Dingle & Drake 2007, Wallace et al. 2013) 

based on natal homing behaviours, which have created genetically distinct nesting 

populations (Dutton et al. 1999). Major worldwide population declines have been 

estimated in the past 30 years due to cumulative effects of adult and egg harvest, 

incidental fisheries catch, coastal development, pollution, and changes in prey 

abundance (Chan & Liew 1996, Sarti et al. 1996, Spotila et al. 2000, Alfaro-Shigueto 

et al. 2007, 2011, Lewison & Crowder 2007, Sarti Martínez et al. 2007, Troëng et al. 

2007, Santidrián Tomillo et al. 2008, Žydelis et al. 2009).  

The Northwest Atlantic population has begun to rebound and is classified as 

least concern under IUCN (Tiwari et al. 2013), but there are declining trends in 

leatherback nesting abundance from the Costa Rican rookery (Troëng et al. 2004, 

2007). The Caribbean nesting beaches, which include Pacuare Nature Reserve, 
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contributing to the Northwest Atlantic population are not experiencing the recovery 

evident in the overall population (Troëng et al. 2007). Fisheries bycatch of these 

Costa Rican-origin leatherbacks in the Gulf of Mexico may be preventing recovery of 

this rookery (Stewart et al. 2016), but unknown habitat utilization throughout life 

stages has complicated the understanding of this rookery’s population dynamics.  

The Eastern Pacific leatherback has declined nearly 98% since the 1980s with 

unknown numbers prior (Sarti et al. 1997, Spotila et al. 2000). The population is at 

risk of regional extinction (Wallace et al. 2013) and is susceptible to threats with this 

greatly reduced population size (Saba et al. 2008b, Wallace and Saba 2009). They 

historically nested in Mexico and Costa Rica, and losses from fisheries bycatch and 

egg poaching are the major reasons for their decline (Sarti et al. 1996, Spotila et al. 

2000, Sarti Martínez et al. 2007, Santidrián Tomillo et al. 2008, Wallace et al. 2010). 

Despite conservation efforts and a large reduction in egg poaching, the population has 

neither recovered nor stabilized due to high levels of at-sea mortality, particularly 

affecting older age classes (Kaplan 2005, Lewison & Crowder 2007, Santidrián 

Tomillo et al. 2007, 2008). Their limited foraging grounds may be less 

consistently productive than foraging habitats of other populations (Saba et al. 

2008b, Bailey et al. 2012a, 2012b), especially during El Niño years (Saba et al. 

2008a), prioritizing the need to reduce negative anthropogenic impacts.  

Current beach conservation efforts must expand beyond the terrestrial stage to 

oceanic waters to reduce turtle mortality from bycatch, as adults of long-lived species 

can be sensitive to losses at older ages (Heppell et al. 1996). In addition, management 

requires national and international regulations as political boundaries are crossed by 
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the highly mobile species capable of traveling 35 km/day and 10,000 km a year (Hays 

et al. 2006, Shillinger et al. 2008, Hays & Scott 2013, Lascelles et al. 2014). Unlike 

other sea turtles, leatherbacks can keep their body temperature above the water 

temperature, extending seasonal horizontal and vertical movements into colder waters 

and thus, expanding their range beyond other species’ (Paladino et al. 1990, 

Southwood et al. 2005, Shillinger et al. 2011). Focusing on the habitat utilized by this 

Eastern Pacific leatherback population and expanding to include habitat changes from 

climate shifts are instrumental steps in reducing fisheries bycatch and managing the 

population in the oceanic zone (Sarti et al. 1997, Spotila et al. 2000, Roe et al. 2014, 

Willis-Norton et al. 2015).   

Objectives 

The primary purpose of my thesis research is to develop techniques to 

understand the distribution and movements of hatchling and adult leatherback turtles. 

In Chapter 2, I examined the effects of acoustic tag attachment on the speed of young 

sea turtles to comprehend how the use of tag nanotechnology may influence scientific 

results. In the third chapter of my thesis, I examined dispersal of hatchling 

leatherback turtles to begin to resolve some of the unknown movements of this 

species to better inform management efforts. The final chapter of my thesis is the 

creation of a habitat-based model using satellite telemetry data to dynamically predict 

adult leatherback turtle distribution to inform managers and other stakeholders to help 

reduce fisheries bycatch for the Eastern Pacific leatherback subpopulation.  
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Objective 1 (Chapter 2) 

 To examine whether miniature acoustic tags alter the speed of young sea 

turtles, I ran trials on post-hatchling green sea turtles because captive young 

leatherback turtles were not readily available, and green turtles were most similar in 

size. Vemco V5 acoustic tags were used because they were the smallest acoustic tags 

available at the time and likely to be used by scientists worldwide. Individuals were 

separately placed in a tank under each of three treatments for 25 minutes apiece. The 

three treatments were a control with no alteration to the turtle, a Velcro® attachment 

using Vetbond on the carapace, and a harness attachment wrapping around their 

shoulder girdle. Attachments consisted of a braided monofilament line with 2 floats in 

parallel with the acoustic tag hanging at the end to provide visual and acoustic points 

of contact (Gearheart et al. 2011). Cameras overhead and underwater recorded 

behaviour. Trials were run over a two-week period. Video analysis was completed 

with the Tracker Video Analysis and Modeling Tool program (Brown 2014). I ran a 

within-subjects repeated measures ANOVA to test the hypothesis that the speed of 

post-hatchling green sea turtles would not be altered by an attachment method 

compared to the control.   

Objective 2 (Chapter 3) 

 After testing methods of acoustic tagging in Chapter 2, I implemented the 

procedures in field trials in Guanacaste and Limón Provinces, Costa Rica to obtain 

estimates on hatchling sea turtle speed and directionality. Hatchling turtles were 

obtained from nesting beaches after emerging from nests. Acoustic tag attachments 

were attached via Vetbond. Hatchlings were released outside the surf zone with these 
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attachments and followed in a boat using both visual tracking and a Vemco 

directional hydrophone. In Guanacaste, olive ridley hatchlings (n = 2) were tagged 

with Vemco V5 acoustic tags because no leatherback hatchlings were available as a 

result of the strong El Niño conditions. This provided field-testing and refining of the 

methodology, as well as the applicability of the tracking methods to smaller 

Cheloniid hatchlings. On the Caribbean coast of Costa Rica, leatherback hatchlings (n 

= 43) from the Northwest Atlantic nesting population were tagged and followed using 

the same methods. Surface drifters were released to obtain surface current estimates 

and to test the hypothesis that hatchlings are passive drifters in the ocean currents. 

Over-ground and in-water swimming speed estimates were determined from positions 

obtained from the surface drifter positions and hatchling turtle trajectories obtained 

via the acoustic receiver.  

Objective 3 (Chapter 4) 

 To create monthly predictive estimates of Eastern Pacific leatherback turtle 

distribution, I obtained satellite telemetry and fisheries observations positions of these 

leatherbacks between 1992 and 2015. A Bayesian switching state-space model was 

applied to the raw satellite tracks to obtain daily positions. Environmental covariates 

throughout this time period were obtained for both the individual positions of 

leatherbacks and as monthly rasters. Multiple models, including a Random Forest and 

Generalized Additive Mixed Model were explored to describe habitat-use throughout 

the South Pacific. However, in order to account for the spatiotemporally auto-

correlated, unbalanced, and presence-only telemetry observations of leatherbacks, a 

novel modeling approach was applied in this analysis. We used a Poisson generalized 
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linear model in a continuous-time discrete-space Markov chain Monte Carlo model 

framework (Hooten et al. 2010, 2016, Hanks et al. 2015) for the telemetry data to 

predict individual, post-nesting leatherback movement throughout the South Pacific 

based on environmental drivers. Sea surface temperature and bathymetry were the 

environmental covariates included in the model as they span the time period. A 

generalized linear model with Poisson regression provided estimates for use in a 

population-level hierarchical Bayesian model. Posterior distributions from the 

population-level approach provided predictions for monthly leatherback distribution 

estimates.  
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Figures 

 

 
Figure 3.1. Generalized life history model from Musick and Limpus (1997) depicting 
sea turtle habitat utilization and movements.  
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Figure 1.4. Sea turtle ontogenetic habitat utilization by species during developmental 
migrations adapted from Bowen and Karl (2007) (Bolten 2003a, Meylan et al. 2011). 
The heterogeneous spatiotemporal distribution and individualized responses to a 
dynamic ocean environment increase the challenge of isolating and defining habitat 
utilization across both age classes and species (Hamann et al. 2010).  
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Figure 1.3. Map of study locations. These include Playa Grande and Playa Cabuyal 
on Costa Rica’s Pacific Coast, Pacuare Nature Reserve on the Atlantic Coast, and the 
Cayman Turtle Farm in the Caribbean. Playa Grande serves as the only remaining 
nesting beach for the Eastern Pacific leatherback, and the nesting beach at Pacuare 
contributes to the Northwest Atlantic population. Map was generated using ‘ggmap’ 
in R (Kahle & Wickham 2013). 
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Chapter 2: Identification of acoustic tag attachments suitable for 
mobile tracking of hatchling leatherback turtles 
 

Introduction 

Effective conservation efforts for marine species are hindered by a lack of 

knowledge regarding movements and habitat utilization (Bowen & Karl 2007). 

Highly migratory marine species, such as sea turtles, pose additional complexities for 

management as they traverse large distances and cross international boundaries 

throughout their life history (Hays & Scott 2013). Early life stages, notoriously 

difficult to track, can even undergo these long migrations (Bolten 2003b, Hazen et al. 

2012, Shillinger et al. 2012a). The ‘lost years’ of sea turtles are an enigmatic period 

of unknown distribution and developmental habitat after hatchlings leave natal 

beaches. This period has been increasingly studied as conservation efforts expand 

beyond terrestrial zones and investigations of at-sea movements during early stages 

are made possible by advances in biologging technology (e.g. Mansfield et al. 2014, 

Scott et al. 2014a, Thums et al. 2016). Threatened and endangered species with 

unknown life history patterns, including highly vulnerable sea turtles (Lascelles et al. 

2014), have been a research focus to advance management strategies under such 

legislation as the Endangered Species Act (Hays & Scott 2013).  

Information about sea turtle dispersal and behaviour during the ‘lost years’ 

has been gained through modelling approaches (Hays et al. 2010, Shillinger et al. 

2012b, Putman et al. 2013, Casale & Mariani 2014), telemetry (Nagelkerken et al. 

2003, Witherington et al. 2012, Mansfield et al. 2014, Scott et al. 2014a), and other 

emerging technologies, such as stable isotopes (Bowen & Karl 2007, Reich et al. 
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2007, Snover et al. 2010, López-Castro et al. 2014). Due to a lack of information on 

active dispersal capacity, modelling efforts heavily rely on classifying young turtles 

as “passive drifters”, with little influence on their movement and surroundings (Hays 

et al. 2010, Shillinger et al. 2012b, Gaspar et al. 2012, Putman & Mansfield 2015). 

Biophysical models can be strengthened and verified by incorporating behavioural 

data, such as swim speed and orientation (Putman et al. 2012a, 2013, Kobayashi et al. 

2014, Briscoe et al. 2016), as both swim behaviour and ocean currents control young 

sea turtles’ directionality and influence dispersal outcomes (Gaspar et al. 2012, 

Putman & Mansfield 2015, Briscoe et al. 2016). Behavioural data can be collected by 

deploying instruments to track turtle movements (Putman et al. 2012a, Thums et al. 

2013, Mansfield et al. 2014, Scott et al. 2014a). 

Reduction or elimination of tag effects when examining sea turtle early life 

stages is of high importance in order to maximize field data integrity and minimize 

negative impacts on tagged individuals (Jones et al. 2013). Acoustic tags are lighter 

and smaller than satellite tags, but appropriate methods of attaching these tags to turtle 

hatchlings are still under development and lacking for many species (Hazen et al. 

2012, Shillinger et al. 2012a). Small turtles experience a higher drag ratio compared 

to larger, more frequently tracked adult turtles, resulting in higher bioenergetic 

transport costs of attachments. Impacts on turtle movements and behaviour are often 

presumed to be negligible when below the colloquial 2-3% tag-to-body-weight 

threshold (e.g. Murphy et al. 1996, Vandenabeele et al. 2012). Hatchling sea turtles 

tagged with miniature acoustic tags generally meet this requirement (Thums et al. 

2013, 2016, Scott et al. 2014a), but the influence of tag attachments on animal 
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behaviour should still be carefully considered prior to field studies on threatened and 

endangered species (Jepsen et al. 2005, Vandenabeele et al. 2012). An examination of 

movement metrics, such as speed and diving depth, should be undertaken prior to 

deploying transmitters on wild turtles to ensure that the tracking process is unlikely to 

decrease fitness or survival, whilst providing biologically representative information 

(Casper 2009, Mansfield et al. 2012, Jones et al. 2013).  

A direct attachment method on the plastron has been developed for flatback, 

green, and loggerhead hatchlings (Thums et al. 2013, 2016, Scott et al. 2014a). 

However, we sought a design that would be suitable for leatherback turtles, which 

have a unique oily skin, and that would detach easily during recovery to ensure the 

tags were guaranteed to be recovered and removed from a critically endangered sea 

turtle population in field studies. The direct attachment method would also make it 

difficult to maintain visual contact with the small, dark bodies of hatchling turtles 

during mobile active tracking in the open ocean. The existing direct plastron 

attachment method utilized in other studies (Thums et al. 2013, 2016, Scott et al. 

2014a) was therefore not suitable and an alternative attachment design required. 

In this study, we examined methods for monitoring in-water movements of 

post-hatchling sea turtles and tested the assumption that attaching Vemco V5 acoustic 

tags would not affect post-hatchling movements. We sought an attachment design to 

allow for multiple means of observation to increase the likelihood of maintaining 

contact in field studies using mobile tracking and detach easily during recovery from 

these at-risk species. To evaluate potential effects, this study was undertaken with 

hatchery-reared post-hatchling stage green sea turtles in Grand Cayman serving as a 
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conservative proxy for leatherbacks. Due to a low drag coefficient combined with a 

small frontal area, young green sea turtles (Chelonia mydas) may encounter greater 

drag costs than other sea turtle species (Jones et al. 2013). The objectives of this study 

were to 1) develop a protocol for attaching miniature acoustic transmitters to 

hatchling sea turtles suitable for mobile tracking of hatchling leatherbacks in the open 

ocean and 2) quantify the effects of tag and attachment materials on young sea turtle 

swim speed and dive behaviour. 

Methods 

Tag attachment protocol 

 We conducted experiments with twelve 8-week-old hatchery-reared green sea 

turtles (Chelonia mydas) at the Cayman Turtle Farm on Grand Cayman in December 

2014. The sample size (n = 12) reflects the number of post-hatchlings available from 

the hatchery at the time of the study. The turtles remained out of public view prior to 

experiments. The mean weight of the turtles was 59.9 g (range = 38.3 - 74.3 g), and the 

mean straight carapace length notch-to-tip was 73.5 mm (range = 64.0 - 78.5 mm). 

All weights were recorded in-air.  

We tested two alternative methods for attaching Vemco V5-180 kHz acoustic 

transmitters (0.65 g) (Vemco Ltd, Halifax, Canada) to hatchling turtles. For both 

turtle attachment methods, tags were affixed to a tether in a similar arrangement to 

Gearheart et al. (2011). Attachments had braided monofilament line (1.75 m) 

suspending two painted floats (4.4 cm by 1.9 cm) behind the turtles (Fig. 2.1). The 

monofilament line was doubled onto itself to mimic the weight of an anticipated longer 
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fieldwork attachment due to restrictions encountered by the size of the tank. The 

acoustic tag was suspended 0.25 m from the second float, and the combined weight of 

the line, floats, and tag was 7.5 g. There were two attachment mechanisms tested in this 

experiment. The line-float-transmitter assembly was affixed to the turtles’ carapace by one 

of two methods. For the Velcro® treatment, a 1 cm2 Velcro® square (1.71 g) was directly 

bonded to the carapace with several drops of Vetbond™ (Jones et al. 2000, Salmon et 

al. 2004, Thums et al. 2013, Scott et al. 2014a) and linked to a sister piece of Velcro® 

on the line-float-transmitter assembly. Initial testing of Vetbond™ used for the 

Velcro® treatment was conducted with naturally deceased hatchlings to ensure the 

bonding agent would dissolve and separate from hatchlings. The Velcro® attachment 

could be removed easily with a slight pull within a few days, suggesting the 

attachment material would be shed easily under natural conditions. For the harness 

treatment, the line-float-transmitter assembly was linked to a harness (0.47 g) made from 

3M™ Coban™, a self-sticking latex/spandex/polyethylene compound. The harness 

attachment consisted of the same braided monofilament line and float setup, slipped 

over the head, and wrapped around the widest part of the turtle (Fig. 2.2). Trials with 

the Velcro® treatment, harness treatment, and a control treatment with no attachment 

were conducted with each turtle in a randomized fashion. 

We conducted trials to monitor for behavioural responses of turtles to each 

treatment in a 12.25 m2 hexagonal tank filled with seawater to 0.6 m depth with a 

flow rate of 60 litres per minute (Fig. 2.3). A 25 cm by 25 cm grid was placed over the 

tank to track distance travelled by each turtle for speed calculations. Vertical distance 

was labelled by a pole with centimetre intervals in the middle of the tank. Every turtle 
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was observed individually for 25 minutes under each of three treatment scenarios: 

control, Velcro®, and harness. Turtles were randomly selected for each treatment and 

given a minimum period of two days between treatments over the two week study period. 

Movements were recorded using two GoPro HERO 4 cameras (GoPro, Inc., San 

Mateo, CA), one placed underwater near a corner of the tank and one hoisted 5.1 m 

centred overhead.  

Our aim was to choose the least intrusive methods of attachment to address 

potential concerns for animal welfare. Initial testing of the bonding agent was 

completed on naturally deceased turtles to minimize handling of live turtles. To 

ensure the bonding agent would dissolve and separate from neonate turtles, we 

monitored the attachment point dissolution time. Attachments removed with a slight 

pull within a few days, suggesting a short duration in the absence of removal. There 

were no evident injuries from the Velcro® or harness attachments. Permission for all 

procedures was obtained prior to the experiment from the University of Maryland 

Center for Environmental Science’s Institutional Animal Care and Use Committee 

(Research Protocol No. S-CBL-14-14). The research was conducted under approval 

of scientific study from the Cayman Islands’ Department of Environment. 

Horizontal movement analysis 

Video was compiled with Adobe Creative Premiere Pro CC (Adobe Systems, 

Inc., San Jose, CA), and turtle movements were analysed using the Tracker Video 

Analysis and Modeling Tool program, an Open Source Physics Java framework 

(Brown 2014). Horizontal swim speed was calculated within the program as a 

function of movement in the x- and y-directions. Speed was estimated every second 



 

 

33 
 

and averaged at 10 second intervals for each 25 minute trial. This 10 second interval 

provided a fine-scale measure of the variability in speed without oversampling. Time 

was then split into 5 minute blocks, producing five time periods over each 25 minute 

trial to allow us to investigate changes in the response across a time scale more 

appropriate to field conditions. Analyses were run in the R statistical software 

environment (R Core Team 2016).  

A within-subjects repeated measures ANOVA with a block on each post-

hatchling was conducted to test differences in speed using the R package ‘nlme’ 

(Pinheiro et al. 2016). The response variable of speed was square-root transformed 

based on results of a Box-Cox transformation to meet model assumptions (package 

‘MASS’) (Venables & Ripley 2002). Variation in turtles’ speed was investigated 

using explanatory categorical factors of treatment (control, harness, and Velcro®), 

time period (five minute blocks), and the interaction of these variables. The best error 

structure fit with restricted maximum likelihood was a lag 1 autoregressive structure 

combined with a nested random effects structure of random intercepts among 

treatments for individual turtles. The autoregressive process of order 1 error structure 

suggests there is a dependency in the errors between the current value and the 

previous value, adjusting for correlations among repeated measures. The appropriate 

fixed effects structure was determined to be the interaction of treatment with time 

using maximum likelihood. The final model was refit using restricted maximum 

likelihood. The appropriate ANOVA model was chosen by the Akaike information 

criterion at each step (e.g. “drop1” in R software). The Tukey’s honest significant 
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difference test from the package ‘multcomp’ was used in post-hoc analysis (Hothorn 

et al. 2008). 

Vertical movement analysis 

To determine if diving behaviour was affected by transmitter attachments, an 

underwater camera captured each turtle’s movement over time for each treatment. 

The camera was physically moved side to side as turtles moved throughout the tank to 

ensure all turtle movements were captured. A depth threshold of 15 cm was set to 

delineate time spent at the surface versus time spent diving. For these trials, this 

resulted in the surface classified as the upper quarter of the water column where 

swimming was underneath the air-water interface in contrast to definitive diving 

behaviour. Diving behaviour was measured this way because a true dive depth could 

not be measured within the available tank. Only a field experiment with a depth 

recorder could provide this level of estimation without potential tank interference. 

This classification was a compromise to generically categorize whether having an 

attachment altered vertical movements through the water column. Water column 

depth was estimated every second, and these counts of being at the surface or below 

were compiled every 10 seconds. This provided a proportion interval similar to the 

horizontal analysis. Time spent below 15 cm versus time spent at the surface could 

then be compared amongst treatments. In a similar manner to speed, data were 

separated into five minute blocks across the 25 minute recording time. A generalized 

linear mixed model with a binomial error distribution and logit link function was 

applied to the response variable of the proportion of time below 15 cm within each 10 

second period (package ‘lme4’) (Bates et al. 2015). The categorical explanatory 
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variables were treatment, time in the form of five minute periods, and their 

interaction. Using Akaike information criterion, the best random effects structure was 

initially found to be a random intercept varying among turtles and among treatments 

for each turtle (Zuur et al. 2009). To account for model overdispersion, one random 

effect level for each observation (e.g. record number) was included in the model 

(Browne et al. 2005). The interaction of treatment and time was significant for the 

best fixed effects structure. Therefore, the final model was the interaction of treatment 

and time with 3 random effects: among turtles, among treatments for individuals, and 

an unstructured error. Model contrasts against the control treatment were completed 

for each time period to provide a post-hoc test for appropriate significance values 

across these levels and treatments of the linear model.  

Results 

Horizontal movement analysis 

There was a statistically significant interaction between treatment and time on 

turtle speed (Table 2.1, Fig. 2.4A). Swim speed was not significantly different for the 

Velcro® treatment compared to the control for any time periods (Tukey’s; α = 0.05). 

Swim speed was significantly reduced with the harness attachment compared to the 

control during the middle 5-20 minutes of the trial, time-steps 2-4 (Tukey’s; p < 0.01; 

p = 0.026; p < 0.01, respectively).  

Vertical movement analysis 

Turtles spent 36% of trial time below the surface 15 cm of the tank (Figs. 

2.4B and 2.5). The generalized linear mixed model (GLMM) did not find significant 
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differences in the proportion of time at the surface amongst treatments at each of the 

five minute time periods (α = 0.05; Table 2.2). There is no evidence to suggest diving 

behaviour was different between treatments. 

Discussion 

We tested miniature acoustic transmitter attachment protocols for efficient 

tagging of leatherback turtles, using green turtles as a proxy, to minimize impediment 

of swimming and diving of small sea turtles, while still providing a means of visual 

contact with diving turtles. Our study suggests outfitting young sea turtles with 

Vemco V5 acoustic tags will not significantly alter their swim speed or dive 

behaviour with a Velcro® attachment configuration to the carapace, at least in 

controlled lab conditions. The Velcro® attachment approach did not result in a 

significant change in the swim speed or dive behaviour of the turtles at any point 

during the trials. The Velcro® attachment was ultimately more suitable than the 

harness attachment, which significantly decreased swim speeds during the middle 15 

minutes of the trial.  

Our visual observations suggest that the harness disrupted turtle behaviour 

compared to the control, possibly from constriction of the shoulder girdle, thus 

reducing swimming speed. We observed that turtles with harness attachments initially 

spent time at the surface attempting to remove the harness, then conducted a series of 

rapid dives, whereas the control treatments generally had smooth transitions between 

the surface and depth separations within the water column. Irritation caused by the 

harness attachments make this approach less desirable for field experiments and could 

alter interpretations of past studies that utilized harness methodologies on young sea 
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turtles over short time frames. Based on our results, an experiment utilizing harness 

attachments should allow for an acclimation period of at least 20 minutes, while the 

Velcro® attachment method does not require acclimation. This study can help inform 

tagging procedures for field studies examining movement of free-ranging hatchling 

sea turtles. 

There are limitations to studies such as this because gaining access to 

endangered species is difficult. The inability to access at-risk sea turtles resulted in a 

low sample size. Mansfield et al. (2012) utilized an ANOVA framework with smaller 

sample sizes on sea turtles, and our sample size is within the generally accepted size 

for this statistical test. While a larger sample size could theoretically increase 

statistical robustness, this was not feasible given available turtles at the time, and data 

corrections were applied to meet all model assumptions. Speed is highly variable and 

individualistic, inconsequential of sample size. Therefore, the sample size may be 

low, but a larger sample size would not guarantee more power in the statistical tests 

given the high variability inherent in the measured parameter.  

Our approach of using a line-float-transmitter attachment was chosen over a 

direct tag attachment to the plastron at the cost of increased drag because it allows for 

visual tracking in the water during mobile tracking and should prevent signal 

dampening or distortion during future field experiments (Thums et al. 2013). This 

will also help field studies better interpret sources of signal loss at a given location, 

from occurrences such as predation, tag malfunction, wave interference, or departure 

from the study site (Thums et al. 2013). Mobile acoustic tracking is very difficult 

when trying to obtain fine-scale movements through an area. Visual contact with the 
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tracked organism provides the means of fully tracking an organism during a given 

time period. Although the tag to body weight ratio increases with the Velcro® 

attachment, there were no significant differences from the control in the metrics we 

measured. Overall, both attachments allow for a safe, full removal from actively 

tracked turtles, reducing experimental exposure time for wild turtles.  

Organisms are adapted to live in particular environments; thus, any object 

placed on an organism may affect its natural behaviours and increase its energetic 

costs. Consequently, an objective of this methodology was to provide appropriate 

consideration to the development of tag attachments for leatherback turtles that 

minimize these negative effects and extend beyond controlled tank environments 

(Mansfield et al. 2012, Jones et al. 2013). Given the oily, rubbery skin of 

leatherbacks, which could reduce adherence, we wanted multiple modes of 

attachment in field trials. A vertically attached tag to the plastron, as used by Thums 

et al. (2016), would not allow for maintained visual contact with deep-diving 

leatherback hatchlings, and it would only provide a very small attachment site on oily 

skin that has the potential to react differently to VetbondTM. Therefore, methods that 

would allow for both visual and acoustic contact to be maintained were considered 

most effective for actively tracking critically endangered leatherback turtles. 

Although there was no significant difference between the control and harness 

for the proportion of time spent below the surface, this may have resulted from 

individuals generally spending greater amounts of time at the surface during the 

control because behavioural reactions to the attachment generally occurred within the 

surface layer. Any tag attached to an organism should theoretically increase drag, and 
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it is possible the turtles increased power output (e.g. swam harder) to overcome this 

additional drag, something a longer temporal study might determine (Jones et al. 

2013). Limitations in both vertical and horizontal movements may have resulted from 

the experimental tank design. However, visual observation indicated the turtles 

moved vertically throughout the tank in a similar manner across all treatments, which 

was supported by the results of the GLMM. Edge effects of the tank could alter turtle 

behaviour through more frequent changes in direction or by seeking shelter, for 

example, and the depth of the tank may have changed diving patterns. Although the 

tank was shallower than the length of the attachment, time spent at depth was usually 

sustained swimming around the circumference of the tank. Therefore, it adequately 

provides information on whether the attachment changed their vertical movements.  

We did not provide direct estimates of swimming speed as we recognize that 

the tank will potentially limit the speed capacity of the turtles, and it would be an 

inappropriate comparison to other studies of this species. The repeated measures 

ANOVA appropriately examined changes in speed within individuals, which was the 

goal of the analysis. Given these turtles generally swam in continuous circles during 

the study period, we believe any changes in drag which turtles experienced as they 

moved throughout the tank (e.g. if the line went slack upon changing course) was 

properly accounted for in our models. A few turtles became entangled in the gear, and 

untangled themselves. This was an artefact of multiple factors: the size and shape of 

the tank, as well as the age and behaviour of the turtles. In the open ocean, for which 

this method was developed, this is not an anticipated concern if turtles are in a 

frenzied state where swimming will be directed and continuous (Wyneken & Salmon 
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1992). Further, the short duration and controlled design did not consider wind drift 

effects, which have the potential to impact movement during longer studies utilizing 

these methods (Jones et al. 2013).  

Sea turtle early life histories are poorly understood, and lack of knowledge 

regarding movements and developmental habitat may impede conservation efforts. 

Advancement of appropriate management strategies requires an understanding of 

movement and dispersal beyond the adult stage. The ‘lost years’ paradigm begins 

upon denatant dispersal of hatchlings in a neritic-to-oceanic migration to unknown or 

unclearly defined nursery habitats. Combining miniaturized electronic tag technology 

and physical modelling efforts enables much-needed characterization of movement, 

habitat utilization, behaviour, and life strategies of young sea turtles throughout these 

cryptic years (Briscoe et al. 2016). As habitats are drastically changed by 

anthropogenic forces, migrations of many species may be shorter or migratory routes 

may shift from recorded patterns (Brower & Malcolm 1991, Wilcove & Wikelski 

2008). Understanding the mechanisms underlying these movements will improve our 

ability to describe sea turtle environmental utilization, predict population dynamics, 

and manage species internationally under changing conditions (Nathan et al. 2008, 

Bauer et al. 2009). The challenge thus remains to decipher movements among 

ontogenetic habitats within and across species and understand how to manage these 

highly migratory species throughout multiple life stages. 
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Tables 

Table 2.1. Repeated measures ANOVA results examining square-root transformed 
speed (cm s-1) as a function of the interaction of treatment and time as five minute 
periods. numDF represents the degrees of freedom of the numerator for the F statistic, 
and denDF is the degrees of freedom of the denominator. Statistical significance is 
denoted by an asterisk at p < 0.05. 
 
     Factors numDF denDF F-value  p-value 
Intercept 
 
 

1 4727 512.416 <0.001* 
     
Treatment 2 22 9.440 0.001* 
     
Time  4 4727 3.185 0.013* 
     
Treatment:Time 8 4727 5.949 <0.001* 
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Table 2.2. The generalized linear mixed model with a binomial error and logit link 
function results for the proportion of time spent below 15 cm in relation to the 
interaction of treatment and time. Model contrasts were completed at each five 
minute period. The estimate, standard error, and p-value are reported. Minutes 
comprising each period in the stepwise comparison are 1 = (0-5 min), 2 = (5-10 min), 
3 = (10-15 min), 4 = (15-20 min), 5 = (20-25 min). Statistical significance is denoted 
by an asterisk at p < 0.05. 
 
     Estimate; SE; p-value 
Factors Intercept Velcro® Harness 
Time 1 (0-5 min) -1.82; 1.06; 0.085 0.63; 1.07; 0.56 -0.71; 1.08; 0.51 

Time 2 (5-10 min) -2.57; 1.06; 0.015* 0.41; 1.08; 0.71 -0.82; 1.08; 0.45 

Time 3 (10-15 min) -2.38; 1.06; 0.025* 0.20; 1.08; 0.86 -0.15; 1.08; 0.89 

Time 4 (15-20 min) -2.46; 1.07; 0.17 -1.95; 1.08; 0.072 -2.10; 1.09; 0.31 

Time 5 (20-25 min) -1.97; 1.06; 0.064 -1.01; 1.09; 0.35 -0.73; 1.09; 0.50 

note: the control treatment is the reference level. 
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Figures 

 

 

 

Figure 2.1. Acoustic transmitter Velcro® attachment method modified from 
Gearheart et al. (2011). Symbols are courtesy of the Integration and Application 
Network, University of Maryland Center for Environmental Science 
(ian.umces.edu/symbols/).  
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Figure 2.2. Images of the harness design and application on Chelonia mydas 
hatchlings. Footage from an underwater GoPro camera.  
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Figure 2.3. Scale of the tank experiment at the Cayman Turtle Farm. The GoPro 
camera hoisted 5.1 m above the hexagonal tank filmed each turtle for 25 minutes per 
treatment. Each square is 25 cm by 25 cm to serve as a distance reference. 
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Figure 2.4. A) Interaction plot of the square-root transformed speed (cm s-1) as a 
function of time for each treatment. B) Interaction plot of the proportion of time spent 
below 15 cm as a function of time for each treatment. Minutes comprising the time 
periods are 1 = (0-5 min), 2 = (5-10 min), 3 = (10-15 min), 4 = (15-20 min), 5 = (20-
25 min). 
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Figure 2.5. Barplots of time spent below 15 cm (“Depth”) and at the surface 
(“Surface”) by subject and treatment over the study period. Water column depth was 
measured every second over the 25 minute study period. Each subject is indicated by 
the number in the grey box.  
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Chapter 3: Neonate dispersal of Atlantic Leatherback turtles 
(Dermochelys coriacea) from a non-recovering subpopulation 

 

Introduction 
 

Highly migratory marine species have complex conservation needs and pose 

management challenges (Hays & Scott 2013, Lascelles et al. 2014). The large area of 

the ocean, dynamic ocean conditions, and observational challenges of this three-

dimensional environment result in the unknown spatiotemporal distributions of many 

species (Cooke et al. 2004), including sea turtles that undergo long distance oceanic 

migrations (Hamann et al. 2010, Hazen et al. 2012, Shillinger et al. 2012a). 

Management is complicated by their little known ‘lost years’, the time after which 

hatchlings depart from the nesting beaches, develop in undetermined habitats, and 

eventually return at maturation to breed (Carr 1986, Bolten 2003a, Shillinger et al. 

2012a). Adult leatherback turtles (Dermochelys coriacea) have the widest reptilian 

distribution (Goff & Lien 1988, Hays et al. 2004, Benson et al. 2007b, 2011) but have 

largely unknown movements and nursery habitats during young life stages (Bowen & 

Karl 2007).  

Leatherbacks are the largest and oldest lineage of the marine turtles, and some 

populations have experienced dramatic declines in the last decades (Troëng et al. 

2007, Tiwari et al. 2013). These substantial losses are often attributed to fisheries 

bycatch, pollution, climate change, nesting beach degradation, and poaching of eggs 

and adults (Sarti et al. 1996, Sarti Martínez et al. 2007, Santidrián Tomillo et al. 

2008). To prevent extirpation of declining populations and ensure the future of stable 
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populations, modelling efforts on the dispersal and habitat utilization throughout life 

stages aim to increase understanding of population distributions. These biophysical 

models are based on the historical premise of denatant dispersal, where the young of 

species passively drift with winds and currents from hatching to nursery areas (Jeffers 

1939, Harden Jones 1968) and regularly do not include behavioural information, such 

as orientation and speed of hatchling turtles (Shillinger et al. 2012b, Scott et al. 

2014a, Thums et al. 2016). However, both swimming and currents influence the 

ultimate dispersal outcome of hatchlings (Putman et al. 2012a, 2013, Gaspar et al. 

2012, Putman & Mansfield 2015, Briscoe et al. 2016), and research has recently taken 

place to understand the active movements of sea turtles during the ‘lost years’ period 

(e.g. Mansfield et al. 2014, Briscoe et al. 2016, Christiansen et al. 2016).  

It is becoming apparent that dispersal outcomes for hatchlings can be greatly 

influenced by even slight active movement in strong currents, and these outcomes 

influence population dynamics (Putman et al. 2012a, 2012b, Scott et al. 2012b, 

2014b). While the surface current plays a role in the dispersal of hatchlings, their 

speed and direction will give greater insight into predictive model parameters 

(Shillinger et al. 2012b, Scott et al. 2014a, Putman & Mansfield 2015). Knowledge 

gaps on this role of active movement still persist, especially for leatherback turtles 

during their most vulnerable hatchling stage (Hazen et al. 2012).  

Dispersal during the hatchling frenzy period, a period of continuous 

swimming (Deraniygala 1930), must be efficient and directed to prevent predation 

and entrainment in coastal waters (Wyneken & Salmon 1992, Okuyama et al. 2009), 

and dispersal outcomes can be influenced by minor alterations of position within 
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moving water masses (Putman et al. 2012a, Scott et al. 2012b, Christiansen et al. 

2016). Hatchlings’ active movements can change the distance and direction 

ultimately travelled to developmental habitats (Hein et al. 2012, Scott et al. 2014a, 

Christiansen et al. 2016). The inherent small size of hatchling turtles increases the 

difficulty of obtaining long-term observations because technology commonly 

deployed in movement studies, such as satellite tags, are still too large for these small 

individuals to carry. Therefore, direct field observations and short-term experiments 

remain the best method for attaining these data.  

In this chapter, I focus on the distinct leatherback turtle population of the 

Northwest Atlantic, which is classified as endangered on the U.S. Endangered 

Species Act and of least concern on the IUCN Red List (Tiwari et al. 2013). The 

Costa Rican rookery of this population has not experienced the recovery documented 

in other nesting locations (Troëng et al. 2007), and disproportionately high fisheries 

bycatch in the Gulf of Mexico may be one source of this downward trend (Stewart et 

al. 2016). This chapter assesses hatchling dispersal of the nesting population of 

leatherback turtles at Pacuare Reserve, Costa Rica using active acoustic tracking to 

determine their transport from the natal beach. I undertook field experiments to obtain 

in-situ observations of individual hatchling Atlantic leatherback movements using 

acoustic tracking to improve our knowledge of their behaviour and dispersal. 

Acoustic telemetry has been successfully employed to track other hatchling sea turtle 

species (Thums et al. 2013, 2016, Scott et al. 2014a), but only short trials have been 

attempted on leatherback turtles (Gearheart et al. 2011).  
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The goal of this chapter is to characterize the directionality of leatherback 

hatchling movements leaving Costa Rica to test the hypothesis that hatchlings 

passively drift in the ocean currents. The specific objectives were to 1) test whether 

the attachment protocol and acoustic tracking methods could be used for tracking 

hatchling leatherbacks at sea, 2) acoustically track individual hatchling leatherbacks 

for insight into initial movements after natal beach departure, a novel approach for 

leatherbacks, and 3) deploy drifters throughout the study to provide a short-term 

understanding of local oceanic conditions encountered by this nesting population and 

how it influences the dispersal of leatherback turtle hatchlings.  

Methods 

Fieldwork 

Hatchling tracking 

To examine in-situ factors of turtle dispersal into the offshore environment, I 

tagged hatchlings with coded acoustic transmitters after emergence. The first part of 

this research was undertaken at Playa Cabuyal in Guanacaste, Costa Rica, in March 

2016 to test the attachment and tracking method in the field (Fig. 3.1). Turtles were 

taken from the nesting beach following a morning emergence. Attachments were 

joined to the carapace with Vetbond™. The Vemco V5-180kHz transmitter was 

tethered to the turtle via line and Vetbond™ in a similar method to Gearheart et al. 

(2011) (Fig. 3.2) and based on the results of Chapter 2 (Fig. 2.1). The line was sewn 

to a 1 cm2 piece of Velcro® with its sister piece bonded to the carapace (Jones et al. 

2000). This small attachment area reduced the likelihood of damage or interference 
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on the swimming hatchling. The brightly coloured floats allowed for visual tracking 

in the water (Fig. 3.3). Tracking was completed using a portable acoustic receiver and 

directional hydrophone. Each turtle was followed at a distance of 10 - 20 meters in a 

small boat using a Vemco VR100 acoustic receiver and VH180-D-10M directional 

hydrophone (Thums et al. 2013). The VR100 detected the signal emitted by the V5 

tag, and the directional hydrophone was used to determine the direction of the turtle 

for tracking. The V5 tag detections extended to approximately 200 m. The VR100 

receiver stored the detections, and the data were downloaded to reconstruct hatchling 

movement paths. The mobile acoustic receiver allowed tracking of the turtles’ 

movements for a longer period and over a broader area than visual tracking alone 

because there is a limited ability to visually track hatchlings in open waters. 

Hatchlings were tracked only during daylight hours. Although hatchlings generally 

emerge during cooler, evening hours of the day in Costa Rica, no effect on movement 

is anticipated (Frick 1976, Okuyama et al. 2009). Turtles were tracked for 

approximately 90 minutes, with a minimal track length of 30 minutes required for 

inclusion in my analyses.  

The second portion of fieldwork was undertaken in August and September 

2016 in Pacuare Nature Reserve, Limón Province, Costa Rica. This area has a much 

larger number of nesting females (n > 200 nesting leatherbacks per season) on the 

Caribbean coast of Costa Rica. Hatchlings were obtained from hatchery-reared (n = 

22), incubator-reared (n = 15), or relocated (n = 6) nests, for a total of (n = 43). The 

hatchery nests were reburied in protected areas along the nesting beach to secure and 

monitor the nests. Incubator-reared turtles were raised under experimental protocol of 
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doctoral student Sean Williamson, and his methods can be obtained from Monash 

University’s Protocol No. BSCI/2016/13. Turtles held overnight post-emergence were 

kept in moistened, sand-lined incubators at approximately 30°C to reduce energy 

expenditure prior to trial release and prevent potential decreases in swimming 

performance (Pilcher & Enderby 2001). To minimize the influence of genetic 

relatedness, hatchlings were taken from all available nests (n = 9) at the time of the 

study. Turtles were weighed and measured prior to trials. To prevent overheating on 

the boat, turtles were transported in a bucket covered by a wet towel with a moistened 

cloth inside.  

Turtles were tracked in the same manner as in Guanacaste, Costa Rica. 

Tracking began outside the surf zone along the nesting beach, approximately 0.4 km 

from shore. The experimental release location was the designated midpoint of the two 

hatcheries where hatchlings were collected. Turtles were tracked individually from a 

small boat. Tracking occurred during daylight hours over the course of 3 weeks given 

hatchling and boat availability. Track duration was a trade-off between obtaining a 

large sample of tracks to account for individual variability, while providing robust 

speed and orientation information. Turtles were tracked for approximately 90 

minutes, but some hatchlings were tracked for 120 minutes when time and conditions 

permitted longer tracks. Compass headings were taken for each hatchling using both a 

compass and a phone application. Deviation from true heading cannot be determined 

for this experiment, and differences should be insignificant as the boat was fibreglass. 

Hatchlings were expected to be within their frenzy state during this study. This frenzy 

state is a period of continuous, active swimming that results in a rapid retreat away 
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from nearshore waters (Deraniygala 1930, Carr 1962). Given the different 

developmental conditions encountered by turtles reared in incubators, this could not 

be conclusively determined. At the end of each track, the turtle was recovered, the 

attachment was completely removed, and the turtle was released at the recovery 

location. The Velcro® piece easily removed from the carapace, and there were no 

evident damages, marks, or lesions from this attachment method on the leatherback 

hatchlings.  

Handling was kept to a minimum to reduce any unnecessary stress on the 

turtles. All procedures for fieldwork in Pacuare Nature Reserve followed approved 

protocol under Monash University’s School of Biological Sciences Animal Ethics 

Committee (Protocol No. BSCI/2016/13), the University of Maryland Center for 

Environmental Sciences’ Institutional Animal Care and Use Committee (IACUC) 

(Research Protocol No. S-CBL-16-11), and the Costa Rican Ministerio Del Ambiente 

y Energia, Sistema Nacional de Áreas de Conservación (SINAC), Área de 

Conservación La Amistad Caribe (ACLAC) (RESOLUCIÓN SINAC-ACLAC-

PIME-VS-R-022-2016; RESOLUCIÓN SINAC-ACLAC-PIME-VS-R-025-2016). 

Permission for the procedures for the fieldwork in Guanacaste, Costa Rica was also 

provided by UMCES IACUC (Research Protocol No. S-CBL-16-01) and SINAC, 

ACLAC (RESOLUCIÓN SINAC-ACT-OR-DR-015-16). 

Surface current trajectories 

Two drifters were used during the study at Pacuare Nature Reserve to obtain 

data on sea surface currents. By estimating the surface currents, a better 

understanding of actual hatchling behaviour and trajectory can be estimated (Putman 
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et al. 2016). A Pacific Gyre MicrostarTM drifter was deployed at the beginning of the 

turtle tracking (Fig. 3.4A). The drifter’s surface float was equipped with a GPS unit 

that used the iridium short burst data service to broadcast location coordinates every 

five minutes. A flag was attached to the surface float for increased visibility. To 

provide estimates of surface flow, the drifter’s drogue was composed of a radar 

reflector with its centre at a depth of 1 m in the water column. Sea surface 

temperature was also recorded by the drifter with a Pacific Gyre probe of 0.1°C 

accuracy. The position and temperature data of each drifter release were retrieved 

from the Pacific Gyre website (www.pacificgyre.com). One of these drifter tracks 

was removed from analysis because it entered the surf zone and did not represent 

nearshore surface currents.  

A second drifter was launched when feasible at the approximate halfway point 

during tracking of a turtle. This was done to estimate shifts in the nearshore currents 

as the turtles headed offshore compared to the initial hatchling and MicrostarTM 

drifter release site. The MicrostarTM drifter launched at the start of each track and 

each turtle’s path seemingly diverged quickly near the beginning of the study, and 

this secondary drifter was a means of obtaining current information closer to the 

hatchling. If the starting surface flow was different than the flow near the end of the 

90 minute tracking period, this midpoint release was a compromise to obtain a mean 

estimate given available equipment. This second drifter was constructed using a 

Davis Instruments aluminium radar reflector with 80 cm of parachute cord attached to 

a 20.3 cm diameter Panther Plast trawl float (Fig. 3.4B). The centre of the drogue sat 

1 m from the water’s surface, similar to the MicrostarTM drifter. A piece of wood 

http://www.pacificgyre.com/
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affixed to the top of the float had a Samsung Galaxy Core Prime mobile phone 

attached in a waterproof bag. A GPS application was started with each drifter release 

to provide locations. This did not require an internet connection, making it an 

inexpensive, practicable drifter option as currents moved it offshore, away from 

cellular networks. Foam tubing zip-tied around the middle of the trawl float prevented 

the float from flipping and submerging the GPS unit. The float also had a flag 

attached for visibility on the water. Positions were stored on the phone and 

downloaded upon retrieval of the drifter. Both drifters were recovered at the 

completion of every trial. 

Analyses 

Intervals greater than 5 minutes between recorded hatchling positions were 

removed to prevent erroneous calculations, 0.03% of recorded positions. These time 

lapses occurred when the boat actively searched for lost turtles, and the GPS location 

obtained after relocating a turtle may not accurately reflect its position relative to the 

previously recorded location due to a major repositioning of the boat. Maintaining 

visual and acoustic contact with turtles was difficult even in calm waters with the 

combination of surface floats and the directional hydrophone. Distances resulting in 

speeds greater than 0.75 m/s (0.02% of positions) were removed as spurious positions 

because they were extreme outliers and inconsistent with adjacent values. These 

values were greater than all but the largest recorded hatchling sea turtle speeds 

(Ireland et al. 1978, Salmon & Wyneken 1987, Wyneken 1997, Thums et al. 2016). 

To correct for boat movement as it changed position relative to the hatchling in order 

to maintain a 10 - 20 m distance, mean latitude and longitude values were calculated 
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for 5-minute time periods. This provided a regularized track representative of 

hatchling movement throughout the study period from which distances and speeds 

were calculated. Drifter distances were calculated using the GPS locations from the 

MicrostarTM surface float GPS and the mobile phone GPS. The phone GPS was 

averaged into 5 minute intervals to match both the averaged hatchling locations and 

the GPS output of the MicrostarTM GPS. After converting these distances to speed, 

seven values exceeding 1.0 m/s were removed as it represented the majority of the 

outliers. The ‘argosfilter’ package in the R statistical software was used in all distance 

and bearing calculations (Freitas 2012). Over-ground speed of hatchlings was 

calculated based on the total distance over the recorded time period of each hatchling 

trial. This over-ground speed is the apparent speed of the turtle moving through the 

water, which includes the turtle’s movements and the drift of the surface water. The 

speed of the drifter was calculated in the same manner.  

To obtain a value for the true swimming speed component of a hatchling 

turtle, the surface water flow in which they are swimming must be removed from the 

measured speed of the turtle (Gaspar et al. 2006). In-water swimming speed accounts 

for the velocity of the current in which the turtle is swimming and estimates the 

turtle’s true speed (Fossette et al. 2010). This is the difference of the over-ground 

velocity and the velocity of the surface currents, estimated by the drifters. Over-

ground speed of hatchlings and drifters was broken into velocity components using 

equations similar to that in Bailey et al. (2010), which accounted for each turtle’s 

speed and bearing to obtain east-west (u) and north-south (v) components. The 

nearest five-minute intervals of each hatchling were matched with the corresponding 
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drifter released. Some hatchlings did not have drifters deployed with them due to 

equipment issues. For turtles with two drifters launched during the trial, one in the 

beginning and one in the middle, the second drifter data were used once the record 

started because this provided surface current values closer to that directly experienced 

by the hatchlings at each given time period. The drifter’s u and v-velocity components 

were differenced from each hatchling’s corresponding over-ground speed 

components. The in-water speed of the hatchlings was then defined as the square-root 

of the summed squared u- and squared v-components of speed. All analyses were 

done in the R environment (R Core Team 2016). 

Results 

In the first part of the study at Playa Cabuyal, I was only able to track two 

hatchling olive ridley turtles because egg development and hatching success of sea 

turtles were extremely poor due to high temperatures associated with strong El Niño 

conditions, and no leatherback turtle hatchlings were available for the project (Figs. 

3.3 and 3.5) (Saba et al. 2007, 2008b, Santidrián Tomillo et al. 2012). Olive ridleys 

are much smaller than leatherback hatchlings and may be a third of the size (Jones et 

al. 2007). However, the olive ridley hatchlings successfully carried the tracking 

attachment, even given their small body size. They travelled 0.84 km over 105 min 

and 0.39 km over 75 min, producing over-ground swimming speeds of 0.13 m/s and 

0.09 m/s, respectively (mean = 0.11 m/s; Fig. 3.5). The mean bearings for each turtle 

were 29.62° (± 22.02 SD), a northeast trajectory and 240.98° (± 39.42 SD), an 

approximately southwest trajectory, respectively. The second turtle was released after 

south-southwesterly winds increased within the bay. While the turtle oriented 
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northward along the shoreline, it was unable to overcome the current as seen in its 

movement path (Fig. 3.5).  

In the second part of the study at the Pacuare Nature Reserve, the mean 

weight of the leatherback turtles tagged was 42.5 g (± 3.5 g SD) with a mean standard 

carapace width of 41.8 mm (± 1.6 mm SD), mean standard carapace length of 60.4 

mm (± 3.6 mm SD), and 17.8 mm (± 0.6 mm SD) head width. I had an approximately 

98% success rate for my tracking study, with only one track out of 43 interrupted 

within the starting 30 minute window set for inclusion in the analysis. The tag 

attachment always remained behind swimming hatchlings. Tracking required both a 

combination of visual and acoustic, as it was difficult to pinpoint the exact location 

solely using the directional hydrophone given the wide swath created by a 200 m 

detection radius and reflections from the boat hull. The hydrophone provided a 

reduced search area, but it was not suitable alone as a comprehensive tracking 

mechanism. Periodically, spotting of a lost turtle would occur via the head surfacing, 

but in the great majority of instances, visual recovery relied on the trailing painted 

floats. The floats were particularly necessary on rougher days (Beaufort sea state 4 or 

higher) when it was difficult to maintain the boat position relative to hatchling 

movement, although the low platform height in the small boat also made visual 

tracking challenging. 

Predation was of high concern given previous hatchling studies (Thums et al. 

2013, Scott et al. 2014a). However, only one hatchling was predated by a tarpon at 85 

minutes. The attachment on this predated turtle was rejected by the tarpon and 

recovered. Another turtle was attacked by a frigate bird prior to reaching the 30 
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minute minimum track length, excluding it from all analyses. The turtle was 

recovered, the attachment was removed, and it was released without apparent injuries. 

A total of 42 turtle tracks were obtained during this trial, with only 3 of these tracks 

under 90 minutes (minimum: 80 min). 

Overall, hatchlings were actively tracked for a mean of 94 minutes. An 

average hatchling compass heading of 45.8° was recorded, a north-east trajectory. 

Distances travelled were 0.75 - 3.85 km for hatchlings, 0.11 - 2.76 km for the 

MicrostarTM drifter, and 0.40 - 2.01 km for the mobile phone drifter (Table 3.1). 

Mean over-ground swimming speed of hatchlings was 0.39 m/s (± 0.14 m/s SD) (Fig. 

3.6). This is equivalent to approximately 6.46 body lengths per second. The mean 

hatchling bearing was 108.17° (± 18.95° SD) (Fig. 3.7A). Mean current speeds were 

determined from the drifters and used to compare hatchling movements from tracks 

during the lowest, middle, and highest flow periods from the study. The mean current 

speed was 0.114 m/s during the low flow period, 0.275 m/s during the medium flow 

period, and 0.469 m/s during the high flow period (Table 3.2). The u and v 

components of over-ground swimming speed and in-water swimming speed were 

calculated for these low, medium, and high surface current flow periods, as 

determined by the speed and distance travelled by the drifters (Table 3.2). Percent 

differences for in-water swimming speed of 131% and 147% in the u and v 

components, respectively, were found when comparing the high and low surface 

current days.  

The Pacific Gyre MicrostarTM drifter was deployed at the beginning of 

tracking 31 of the turtles. The mean MicrostarTM drifter bearing was 147.16° (± 
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39.05° SD) with an average speed of 0.27 m/s (± 0.17 m/s SD), and the mean phone 

drifter bearing of 152.91° (± 16.58° SD) with a mean speed of 0.33 m/s (± 0.21 m/s 

SD) (Table 3.1; Fig. 3.7B). Over-ground swimming speed for the subsample of turtles 

(n = 31) that had drifters deployed during their trials was similarly 0.39 m/s (± 0.15 

m/s SD) (Fig. 3.8). The mean in-water swimming speed of these leatherback 

hatchlings was 0.48 m/s (± 0.20 m/s SD). The mean water temperature recorded from 

the MicrostarTM drifter was 29.8°C (± 0.8°C SD). 

Discussion 

Estimates of leatherback hatchling speed are rare, making estimating the 

active component of turtle swimming in biophysical models difficult. This study 

allowed us to assess the effectiveness of the mobile acoustic tracking technique on 

hatchling leatherback turtles, as well as provide speed estimates that will serve as a 

foundation for other models. Our mean measured over-ground swimming speed and 

estimated in-water speed of leatherbacks were higher compared to the previous 

estimate of 0.91 km/h (0.25 m/s) (Wyneken 1997). The observed mean over-ground 

swimming speed was 0.39 m/s, whereas the mean in-water swimming speed was 0.48 

m/s. The faster in-water speed suggests the hatchlings were actively swimming 

against the currents in the nearshore zone, although their overall movements were 

strongly influenced by the currents.  

This active swimming will be more energetically costly to the hatchlings than 

passive drifting. The hatchlings ultimately had insufficient in-water swimming speed 

to move in their north-easterly compass heading and fully overcome advection by the 

nearshore currents. This swimming to overcome stronger currents could have 
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implications for the distance from shore while within the frenzy state and the amount 

of time hatchlings can swim on their yolk reserves, the critical energy source for 

initial dispersal, before obtaining an external energy source (Jones et al. 2007). The 

amount of energy required to avoid entrapment in strong nearshore currents could 

have implications on reaching productive offshore eddies. Hatchlings in high currents 

had higher in-water swimming speeds and greater differences between over-ground 

and in-water speeds than hatchlings in lower currents, suggesting hatchlings in high-

flow surface waters were swimming harder and exerting more energy (Table 3.2).  

In previous studies, a small sample of unharnessed loggerhead hatchlings 

were recorded at 1.1 - 1.4 km/h (0.31 - 0.39 m/s) (Salmon & Wyneken 1987), and 

green turtle hatchlings were recorded at 0.8 - 3.2 km/h (0.22 - 0.88 m/s) (Ireland et al. 

1978). The mean mass of the leatherback hatchlings (42.5 g) was within the higher 

range recorded in prior studies of Atlantic and Pacific hatchlings (Jones et al. 2000, 

2007). This increased size could potentially result in greater speed during the frenzy 

period as size may influence the locomotive capabilities of turtles (Sim et al. 2015), 

although this is confounded by many factors with smaller animals swimming faster in 

some trials (Burgess et al. 2006). As reptiles, water temperature will affect the body 

temperature of hatchlings turtles, which also plays a role in their movement 

performance (Booth & Evans 2011). The mean recorded water temperature was 

within a relatively small range (29.8 ± 0.8°C) and should not have affected hatchlings 

differentially. However, factors I did not measure, such as incubation temperature, 

can also influence swimming capabilities (e.g. Burgess et al. 2006).  
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The stronger the nearshore currents, as indicated by the distance and speed the 

drifters travelled and the strength of the u- and v- components, the greater the surface 

water influenced hatchling movement, such as during tracking on August 25th and 

September 2nd (high surface current flow; 0.506 m/s and 0.469 m/s, respectively) 

(Table 3.2; Fig. 3.8). The hatchlings generally moved the farthest when the nearshore 

current was strong, but they moved in a more southerly direction due to its influence. 

When the current was weaker, the turtles moved more easterly and farther offshore, 

and travelled a greater distance compared to the drifters. During tracking in slower 

currents, the components of over-ground swimming speed and in-water swimming 

speed were similar. As the currents increased, changes in the components between the 

two swimming speeds increased. This suggests that the hatchlings could detect the 

currents and/or that they were being advected and would swim more vigorously to 

compensate.  

The active movement of the hatchlings can have an important role in their 

dispersal patterns (Fig. 3.8). Over large distances, small changes in directionality 

influenced by the strength of the currents could have large influences on the ultimate 

destination of the hatchlings. The strength of the currents will be affected by the tidal 

cycle and lunar cycle. As in Putman et al.’s (2016) models, release of young turtles 

only a day apart could have major impacts on the environment encountered and 

dispersal of individuals. Hatchlings emerging on different days and different times of 

the day could result in different dispersal outcomes and final developmental habitat if 

suitable areas are reached. Under normal swimming conditions, leatherback 

hatchlings have sufficient yolk reserves to sustain continuous swimming for nearly 
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three weeks before foraging is necessary (Jones et al. 2007). Therefore, while actively 

swimming and orienting themselves to prevent nearshore entrainment, timing of 

departure from the natal beach could be a critical determinant of hatchling dispersal 

outcomes and entrance into optimal developmental habitat.     

Hatchlings were able to dive deeper than 1.5 meters and pulled the attached 

floats underwater. Some turtles dove well below 2 meters throughout the trial, and a 

longer attachment would be suggested to allow full dives to occur. However, while 

young leatherbacks have the capability of diving deeply (Salmon et al. 2004), there is 

a trade-off in increased drag and difficulty in personnel handling the excess line 

compared to the advantage of decreased inhibition on diving and forward underwater 

movement. Given younger leatherback hatchlings have been observed making few U-

dives compared to larger, older conspecifics that are foraging for prey, it seems 

unlikely a short tether greatly reduced their forward progress during dives (Salmon et 

al. 2004).  

Some hatchlings did not dive and steadily surface swam with a persistent 

heading, consistent with previous observations of hatchlings (Salmon et al. 2004). 

Therefore, we observed behaviour seen in previous studies, where individuals exhibit 

different swimming strategies regardless of the presence of the attachment. Compass 

headings taken during the trials suggested nearly all turtles targeted a north-easterly 

offshore retreat from the nesting beach. When they veered from this north-eastward 

trajectory after surfacing from a dive, they redirected themselves. Overall, the 

tracking method performed effectively for leatherback hatchlings, and attachment 

removal was easy, immediate, and non-damaging.  
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Fine-scale, nearshore current data is difficult to obtain from satellites. 

Therefore, I utilized drifters during this experiment to account for the influence of 

currents on hatchling movement. The drifters generally moved south-southeasterly, 

suggesting a dominant along-shore current. Further work would benefit from more 

detailed measurements of the coastal currents, for example, using an acoustic Doppler 

current profiler to provide current flow data within the precise area of the hatchlings. 

While the mobile phone drifter did not have a temperature sensor or live GPS feed, 

additional components could be easily and inexpensively added. The overall cost was 

very low (~$120), and I did not observe any difference in movement between the two 

drifters.  

The small size and lack of defences of hatchling sea turtles increase predator 

vulnerability, producing low survival likelihoods (Mazaris et al. 2005), particularly 

until they enter deeper oceanic waters (Bolten 2003a). Whether our method actually 

deterred predation or not (given only a single observed predation event), I was able to 

witness near attacks that did not ultimately result in predation. I observed what 

seemed to be typical predators, e.g. seabirds and large piscivorous fishes, avoid an 

attack when, seemingly, the line of the attachment was detected on the approach. The 

floats appeared to deter predators as they veered from the attack on many occasions, 

both in our Atlantic and Pacific trials. In Limón Province, there is heavy sportsfishing 

in the area; tarpon, the target of fishers, and seabirds that follow these fishing boats 

for scraps, may be accustomed to avoiding fishing line and bobbers. Prior to the 

experiment, there was concern that the attachment and tracking method could 

increase their vulnerability to predation. The methods may have functioned as a very 
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short-term head-start, potentially increasing the survival likelihood by avoiding the 

high nearshore predation (Bolten 2003a, Nagelkerken et al. 2003, Wyneken et al. 

2008, Santidrián Tomillo et al. 2010). Observations of hatchlings avoiding nearby 

fishes suggests they were still able to overcome possible predation with their 

attachment. Whether predation was prevented due to these evasive behaviours or the 

deterrent of the attachment is unclear, but the tracking method did not appear to 

increase the predation risk or mortality rate. 

Hatchlings were difficult to obtain during the first part of the study for a 

number of reasons. In Guanacaste, 2015/early 2016 was a very strong El Niño year, 

which created poor hatching conditions along nesting beaches (Saba et al. 2007, 

2008b, Santidrián Tomillo et al. 2012). In the Eastern Pacific population, El Niño 

conditions reduce the remigration probability of females, reducing the overall number 

of nests laid along beaches in this critically endangered population (Saba et al. 

2008b). For those females that do remigrate, El Niño creates dry, hot conditions 

resulting in egg mortality and reduced emergence success (Santidrián Tomillo et al. 

2012, 2014). The reproductive output (eggs laid per clutch) of Eastern Pacific 

leatherbacks is already low relative to other populations, worsening the impacts of El 

Niño on the availability of hatchlings for scientific study (Saba et al. 2008b). Further, 

we also witnessed the highest tides seen in 10 years at Cabuyal, Guanacaste, which 

destroyed nests relocated to “safe” areas along the beach (P. Santidrián Tomillo, 

personal communication). Bacterial or fungal pathogens within nests on Pacuare on 

the Caribbean side resulted in egg mortality and loss of entire nests prior to our 

arrival (Rosado-Rodríguez & Maldonado-Ramírez 2016). All these factors 
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compounded to limit the number of nests available for our study, reducing hatchling 

availability. The effects of El Niño not only challenged our attempt to understand 

dispersal of hatchlings, but these effects could have implications on population 

dynamics in subsequent years given reduced hatchling production.        

This study applied methods on short-term tracking techniques for hatchling 

leatherback turtles, as well as provided speed estimates and movements relative to 

ocean currents that serve as a foundation for dispersal models for this and other 

populations. These data will be incorporated into a biophysical model to understand 

early dispersal movements, behaviour, and survival of D. coriacea hatchlings for the 

Northwest Atlantic population. The information collected can help predict entrance 

into offshore eddies of advantageous foraging habitats and temperature ranges, and 

ultimately, estimate adult habitat selection, survivorship, and overall population 

dynamics (Putman et al. 2012a, Scott et al. 2012b, 2014a, 2014b, Shillinger et al. 

2012b). The data characterize the directionality of the hatchlings' movement as they 

leave the beach and swim offshore, which can be used in determining the influence of 

environmental factors on behaviour, and can be included in dispersal models for both 

the Caribbean and Pacific Costa Rican populations. Longer tracking of hatchlings in 

different surface current conditions would provide valuable data on the degree of 

influence of these nearshore currents. Future tracking studies at other rookeries could 

utilize these methods to understand implications of natal beach dispersal on 

leatherback population dynamics. Furthermore, this study can inform the design of 

fixed acoustic arrays near the nesting beaches.  
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 Comprehension of dispersal components, both active and passive, of young 

sea turtles extends the understanding of all sea turtle life stages, from developmental 

habitats to adult foraging ground selection and ultimate survivorship of a population 

(Hays et al. 2010, Scott et al. 2014a, Stewart et al. 2016). These data are pivotal in 

developing knowledge of this threatened species during their most vulnerable time, 

providing key data for accurate development of biophysical dispersal models and 

quantifying natural and anthropogenic forces acting on swimming behaviour and 

orientation of hatchlings. Data from the towed attachment method used in our study 

can inform dispersal models to provide critical information on the spatial distribution 

of the earliest life stages of vulnerable marine turtles. Further, the modelled data can 

be coordinated with future head-starting efforts to understand appropriate oceanic 

release locations throughout early life development of leatherbacks and incorporated 

into multiple studies in both the Atlantic and Pacific basins. Neritic swimming speeds 

can provide an estimate of where these hatchlings will be relative to the nesting beach 

when the dispersal swimming frenzy and yolk reserves run out, an important aspect to 

understand with transforming ocean conditions under a changing climate. 

Leatherback turtles are facing unprecedented population declines, and this 

information can be used to build knowledge and strengthen conservation efforts vital 

to preventing extirpation and, ultimately, extinction of this species. 
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Tables 

Table 3.1. Distances travelled (km) and speed (m/s) of leatherback hatchlings and 
drifters deployed from Pacuare Nature Reserve, Costa Rica. Mean times are provided 
in minutes, along with the mean, standard deviation, and median distances travelled. 
Dist stands for distance, Min for minimum, Max for maximum, and SD stands for 
standard deviation.  
 
 Min 

Dist 
(km) 

Max 
Dist 
(km) 

Mean 
Dist 
(km) 

Dist 
SD 

(km) 

Median 
Dist 
(km) 

Mean 
Time 

(s) 

Mean 
Speed 
(m/s) 

Speed 
SD 

(m/s) 
Leatherback 
Hatchling 0.75 3.85 2.17 0.77 2.08 5621 0.39 0.14 

MicrostarTM 
Drifter 0.11 2.76 1.29 0.77 1.27 4870 0.27 0.17 

Phone 
Drifter 0.40 2.01 1.00 0.61 0.91 3324 0.33 0.22 
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Table 3.2. East-west (u) and north-south (v) components of both over-ground and in-
water hatchling speed (m/s) in low, medium, and high surface current flows during 
the study period. Absolute values are given. Daily mean distance (m) per day of 
hatchlings and drifters are provided, as well as mean daily speed of drifters (m/s).  
 

 Low Middle High 

Date of release 8/23/2016 9/03/2016 9/02/2016 
East-west (u) 
over-ground 0.199 0.195 0.378 

North-south (v) 
over-ground 0.198 0.214 0.326 

East-west (u) 
in-water 0.224 0.226 0.494 

North-south (v) 
in-water 0.213 0.277 0.425 

In-water u and over-ground 
u difference 0.025 0.031 0.115 

In-water v and over-ground 
v difference 0.015 0.062 0.099 

Mean distance (m) 
hatchlings 1651.28 1714.15 2854.14 

Mean distance (m)  
drifter 634.13 1593.28 2534.38 

Mean daily speed of drifter 
(m/s) 0.114 0.275 0.469 
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Figures 

 

Figure 3.1. Map of hatchling acoustic tracking studies from Costa Rica. These 
include Playa Cabuyal on Costa Rica’s Pacific Coast and Pacuare Nature Reserve on 
the Atlantic Coast. Pacuare Nature Reserve is part of a continuous string of nesting 
beaches for Northwest Atlantic leatherbacks. Playa Cabuyal is a subsidiary nesting 
beach to Playa Grande for Eastern Pacific leatherbacks. Map was generated using 
‘ggmap’ in R (Kahle & Wickham 2013). 
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Figure 3.2. Acoustic transmitter attachment method on a leatherback hatchling 
modified from Gearheart et al. (2011). The main predators visible in Pacuare Nature 
Reserve, Costa Rica were tarpon and frigate birds. Symbols courtesy of the 
Integration and Application Network, University of Maryland Center for 
Environmental Science (ian.umces.edu/symbols/). 
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Figure 3.3. Tracking of an olive ridley turtle in March 2016 in Cabuyal, Costa Rica. 
A) The turtle (i.) was tracked using floats (ii.) and acoustically with a hydrophone and 
receiver detecting the Vemco V5 tag (iii.) seen underwater and B) visually at the 
surface with these floats. Photos courtesy of Lauren Cruz.  
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Figure 3.4. A) The Pacific Gyre MicrostarTM drifter launched nearshore Pacuare 
Nature Reserve, Costa Rica prior to starting a hatchling track. B) The surface drifter 
design with a mobile phone to record GPS locations launched at the midpoint of 
hatchling tracks.  
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Figure 3.5. Tracks of two frenzied hatchling olive ridley turtles at Playa Cabuyal, 
Costa Rica in March 2016. The first turtle was released at approximately 1230, and 
the second turtle was released at approximately 1500. The start of each track is 
marked with a yellow asterisk. South-southwesterly winds were much stronger during 
the second release, likely altering the movement path of the second olive ridley. Both 
oriented in the same direction (northward coastally) during the tracking period. Map 
was generated using ‘ggmap’ in R (Kahle & Wickham 2013). 
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Figure 3.6. Histogram of speed values averaged for five minute periods for the 
hatchling leatherbacks and MicrostarTM and phone drifters.  
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Figure 3.7. Trajectories of A) hatchlings and B) surface drifters released outside the 
surf zone near Pacuare Nature Reserve, Costa Rica in August and September 2016. 
Maps were generated using ‘ggmap’ in R (Kahle & Wickham 2013). 
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Figure 3.8. Tracks of drifters and hatchlings by the date of release near Pacuare 
Nature Reserve, Costa Rica. The movement of the drifters represented the nearshore 
surface drift encountered by the hatchlings. Maps were generated using ‘ggmap’ in R 
(Kahle & Wickham 2013). 
  



 

 

89 
 

Chapter 4: South Pacific TurtleWatch: Development of a novel 
approach for modelling the movement of Eastern Pacific 
leatherback turtles for use as a dynamic management tool 
 

Introduction 

Highly migratory marine species cross jurisdictional boundaries as they 

traverse thousands of kilometres of ocean. Traditional management methods, such as 

static area closures (e.g. Marine Protected Areas) and global legislation like the 

Convention on Fishing and Conservation of Living Resources, are valuable 

management tools, but do not always meet the needs to appropriately protect these 

species (Crowder & Norse 2008, Brown et al. 2015). Management of highly 

migratory marine species requires national and international cooperation, sound, 

consistent scientific data on movement and behaviour, and a clear understanding of 

the shared water resources of humans and animals. Dynamic ocean management is 

defined as management that changes spatiotemporally based on the incorporation of 

near real-time data to manage commercial and environmental resource utilization 

(Lewison et al. 2015). It is therefore capable of responding to a changing ocean by 

adapting across space and time given near-real time data integration (Hobday et al. 

2014, Lewison et al. 2015, Maxwell et al. 2015). This can serve as the necessary 

flexible approach to meet different objectives, while maintaining ecosystem functions 

(see Lewison et al. 2015).  

Focused management areas can be planned, implemented, and evaluated with 

knowledge gained from tagging studies, allowing for dynamic, real-time changes to 

be employed to reduce bycatch of protected species (Howell et al. 2008, 2015, Block 
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et al. 2011, Scott et al. 2012a). Dynamic spatial management can be compulsory, as 

with the southern bluefin tuna limits in the eastern Australian longline fishery 

(Hobday & Hartmann 2006, Hobday et al. 2011) or voluntary, as with loggerhead sea 

turtles in the Hawaiian longline fisheries (Howell et al. 2008, 2015). However, lack of 

incentives may present a challenge to implementation (Senko et al. 2011), and 

mandatory requirements can have unintended political pushback and economic 

consequences, creating international disincentives to implementation (Senko et al. 

2017). Variability in the environment drives the movement and behaviour of 

leatherback turtles (Dermochelys coriacea) (e.g. Bailey et al. 2012a), requiring a 

management scheme that follows these changing conditions. In addition to these 

dynamic oceanic conditions already present, changes in global climate have the 

potential to increase interactions outside of static protected areas as both the highly 

mobile fisheries and sea turtles move to new areas (Fuentes and Cinner 2010, Hazen 

et al. 2013, Willis-Norton et al. 2015).  

Leatherback populations have faced great declines in recent decades (Spotila 

et al. 1996, 2000, Tapilatu et al. 2013). Bycatch is one of the threats preventing 

leatherback populations from recovering (Chan & Liew 1996, Spotila et al. 1996, 

2000, Lewison et al. 2004, Kaplan 2005, Santidrián Tomillo et al. 2008, Stewart et al. 

2016). The IUCN Red List places ‘fishing and harvesting of aquatic resources’ as the 

top threat encountered by sea turtles (Lascelles et al. 2014) and has listed the Eastern 

Pacific leatherback as critically endangered (Wallace et al. 2013). Preventing regional 

extinction of the Eastern Pacific leatherback by reducing fisheries bycatch both 

nearshore and offshore (Kaplan 2005, Lewison & Crowder 2007, Wallace et al. 
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2010) is a global effort as they migrate long distances across transboundary waters 

and provide vital ecosystem services (Shillinger et al. 2008). Long distance 

movements of leatherbacks may increase the potential for interactions with 

international fisheries both nearshore and offshore (e.g. Hays et al. 2003, Benson et 

al. 2011, Bailey et al. 2012b). Population stability and growth should be achievable 

through reduction in adult mortality due to fisheries bycatch because current land 

conservation efforts have failed to stop their decline (Spotila et al. 2000, Hays et al. 

2003, Lewison et al. 2004, Santidrián Tomillo et al. 2007, Wallace et al. 2010).  

The large size of adult leatherbacks enables them to tolerate larger satellite 

tags that provide greater spatial coverage than acoustic tags. Satellite telemetry 

allows for remote tracking of individuals for an extended period, providing tracking 

data to relate movement and behaviour to satellite-derived environmental data such as 

ocean currents and sea surface temperature to identify key habitats (Godley et al. 

2008, Hazen et al. 2013, Mansfield et al. 2014, Howell et al. 2015). Temperature is a 

driver of leatherback movement across age classes, with the minimum temperature 

threshold of leatherback decreasing with size, which results in changing movements 

based on the ability to withstand low temperatures. While adult leatherbacks are able 

to maintain their body temperature over 8°C warmer in cold waters (James & 

Mrosovsky 2004) and subcarapace temperatures 4°C warmer in warm waters 

(Southwood et al. 2005), they actively move away from areas of temperature stress 

(Shillinger et al. 2010). Leatherbacks with a curved carapace length (CCL) of <1 m 

generally stay in waters warmer than 26°C (Eckert 2002).  
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During internesting periods, which generally occurs during October-March in 

the Eastern Pacific, leatherbacks are in surface waters of approximately 27.5°C and 

below 31°C (Shillinger et al. 2011). They will target cooler waters during the 

internesting period if the water temperatures near the nesting beach are too warm 

(Shillinger et al. 2011). Post-nesting adults have been recorded in temperatures 

ranging from 3.6 - 34.4°C (Shillinger et al. 2011), with an estimated lower 

temperature threshold of surface waters between 10 - 15°C (McMahon & Hays 2006, 

Witt et al. 2007, Shillinger et al. 2011, Gaspar et al. 2012). As they migrate from 

nesting beaches, Eastern Pacific leatherback turtles tend to occupy waters of 

approximately 26°C until they reach the foraging grounds with average temperatures 

of about 19°C (Shillinger et al. 2011). These differences in temperature zones 

occupied across movement phases are important to understand how temperature can 

influence the movements of Eastern Pacific leatherbacks. 

In this chapter, satellite tracking data and satellite-derived environmental data 

are integrated to develop a habitat-based model of leatherback turtle occurrence in the 

Eastern Tropical and South Pacific Ocean. Temperature has been implemented as a 

single proxy for physical oceanographic processes that shapes sea turtle distribution, 

based on its past use in habitat models (Howell et al. 2008, 2015, Shillinger et al. 

2010, 2011). Both juvenile and adult Eastern Pacific leatherbacks interact with 

fisheries (IATTC sightings; Alfaro-Shigueto et al. 2007, 2011, Donoso & Dutton 

2010). Bycatch assessment and mitigation is a major challenge encountered 

worldwide, and this near real-time product will predict the habitat of these 

leatherbacks, suggesting dynamic areas to avoid throughout the year to minimize 
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interactions threatening the population. This dynamic management tool can assist 

with efforts to decrease adult mortality on Eastern Pacific leatherbacks. 

Methods 

Leatherback turtle data 

The satellite telemetry data included multiple tagging locations over a 20 year 

period (Fig. 4.1). Adult females were tagged with Argos satellite transmitters 

throughout nesting beaches of Mexico (1993 - 2003) and Costa Rica (1992 - 1995; 

2004 - 2008) (n=80; Shillinger et al. 2008, 2010, Bailey et al. 2012b). Four 

leatherbacks caught in the Peruvian driftnet fishery were released with Argos tags 

(2014 - 2015). Sightings were also provided by the Inter-American Tropical Tuna 

Commission’s (IATTC, courtesy of Martin Hall) fisheries observers (1990-2012) 

(Table 4.1). The telemetry data were all from adult leatherbacks (up to 165 cm CCL), 

whereas the fishery observations included a range of sizes from 10 cm to 180 cm 

CCL. 

Mean daily location and behavioural mode estimates (classified as foraging or 

transiting) were obtained for satellite telemetry positions of leatherback tracks from 

those in Bailey et al. (2012a), and those not previously analysed similarly had a 

Bayesian switching state-space model (SSSM) applied using the R package ‘bsam’ 

(Jonsen et al. 2005, 2013, Jonsen 2016). The SSSM is composed of an observation 

process and a movement model. The observation process is the tracking location plus 

its error. The movement model utilized a first order correlated random walk model, 

which describes the mean turning angle and autocorrelation in speed and direction of 
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the leatherback’s movement that is used to estimate the behavioural mode. The 

inclusion of the observation process plus the movement model results in improved 

location estimates with behavioural mode predictions. For each position, the SSSM 

uses the last location as a prior and the current observation with a known error 

distribution, to provide a best estimate of location. Two Monte-Carlo Markov Chains 

(MCMC) were run with 30,000 samples, a burn-in of 20,000 burn-in, and thinning of 

10. SSSM-derived position estimates on land were corrected to the nearest plausible 

location at sea. All analysis was conducted using the R statistical computing 

environment (R Core Team 2016). 

Environmental data 

Environmental data corresponding to the time and location of each 

leatherback turtle position were extracted from the ERDDAP server at the 

NOAA/NMFS Southwest Fisheries Science Center, Environmental Research Division 

(Simons 2016). These data were extracted within an area corresponding to the 95% 

credible limits around each turtle position estimated by the SSSM (with a maximum 

radius set as the upper quartile of these limits). Multiple sensors were required for 

some of the environmental variables extracted due to the long time period of the turtle 

data. Sea surface temperature (SST) data were obtained from NOAA’s Advanced 

Resolution Radiometer Pathfinder (AVHRR) and NASA’s Moderate Resolution 

Imaging Spectroradiometer (MODIS) (Table 4.2). The SST values for the period 

when the sensors overlapped (2003 - 2007) were compared and analysed in a linear 

regression model to determine if a correction factor was needed for transitioning from 

Pathfinder to MODIS data. Frontal probability index, Ekman upwelling, sea surface 



 

 

95 
 

height anomaly (SSHa), and bathymetry were also extracted for each turtle position. 

Bathymetry values were obtained from NASA’s Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER). NASA’s SeaWinds scatterometer and 

NOAA/NESDIS’s Advanced Scatterometer (ASCAT) provided Ekman upwelling 

data. Sea surface height anomaly was available from merged radar altimetry products. 

NOAA’s Geostationary-orbiting Operational Environmental Spacecraft (GOES) 

Imager provided frontal probability index values. 

Continuous-time Markov chain models 

Model description 

Previous studies to analyse species distributions and create near real-time 

tools, for example, used kernel density approaches (Howell et al. 2008, 2015) and 

generalized additive mixed models (e.g. Hazen et al. 2016) based on the movements 

of a relatively small number of individuals to create population-level predictions. 

Preliminary analyses of our data set using these previous methods did not adequately 

describe or predict seasonal movements of leatherback turtles (see Appendix for 

details). In this study, we sought a model with the power to make robust population 

predictions given the available data. In order to account for the spatiotemporally auto-

correlated, unbalanced, and presence-only telemetry observations of leatherbacks, a 

novel modelling approach was therefore applied. To quantitatively describe how 

these individuals move (or do not move) throughout their heterogeneous oceanic 

environment, we used a continuous-time Markov chain (CTMC) model proposed in 

Hanks et al. (2015) and Hooten et al. (2016) built upon the individual continuous-
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time discrete-space (CTDS) movement model from Hooten et al. (2010). Only post-

nesting portions of the leatherback tracks were used because these models are unable 

to run with missing values, and the nearshore satellite-derived environmental data in 

the inter-nesting region had many missing values. Post-nesting was determined for 

the animals tagged on the nesting beaches by removing the initial part of the track 

that was indicative of inter-nesting behaviour as in Bailey et al. (2008, 2012a). One 

turtle was removed from the analysis because the track only had one post-nesting 

location. Tracks with gaps too large for the SSSM to accurately interpolate across 

(≥ 20 days) were split into track sections. Overall, there were 88 post-nesting tracks 

from 74 individual turtles, totalling 12338 daily positions and spanning January 1992 

through January 2015 (Table 4.1). 

 Our model aimed to understand resource selection given the environmental 

covariates presented to the individual, as well as account for uncertainty in the 

movement path (Hooten et al. 2010), and scale that to describe the population 

(Hanks et al. 2015, Hooten et al. 2016). The Lagrangian, or individual-based, 

model describes whether an individual stays or moves and the direction it proceeds 

given environmental drivers (Schick et al. 2013). Telemetry data provide 

continuous, high-resolution information, while environmental covariates are 

gridded over a discrete resolution. Individual resource selection and movement 

must therefore be studied at a resolution of the environmental variables available. 

This model framework utilized here has the capability to account for the temporal 

dependence of the data (Hooten et al. 2016). A Bayesian approach was utilized 

because it better quantifies and accounts for uncertainty given observations of a 
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particular system through its use of a prior distribution that is updated with the data 

using Bayes’ theorem to obtain a posterior distribution. Bayesian analysis allows 

utilization of a classic frequentist model, for example, a generalized linear model, and 

incorporates a Bayesian framework to account for uncertainties and create a more 

accurate model. The ability to use both frequentist and Bayesian approaches can lead 

to more informative data interpretation, and this approach was favoured in our 

analysis. 

A two-stage procedure was applied to create our model following Hooten et 

al. (2016) (Lunn et al. 2013). The CTMC was represented as a generalized linear 

model (GLM) with a Poisson regression, which is simpler for a computer to 

process given the large quantities of data input (Hanks et al. 2015). GLMs are 

commonly used in telemetry analyses (e.g. Bailey et al. 2012a, Scott et al. 2012a, 

Thums et al. 2016), and this method provides a more cohesive approach across 

studies. Understanding the drivers of these behaviours is an important component 

to describing population movement. The CTMC model framework accounts for 

environmental parameters that may be driving such behaviour.  

Environmental covariates 

Environmental covariates with potential to include in this model were sea 

surface temperature, bathymetry, sea surface height anomaly, frontal probability 

index, and Ekman upwelling (Table 4.2). Monthly values of environmental (spatial) 

covariates were obtained from the NOAA/NMFS ERDDAP server within a latitudinal 

range of -30˚ to 30˚N and longitude from -175˚ to -75˚E (Table 4.2). These were 

downloaded in netcdf format for all available periods at their given resolution. All 
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covariates were aligned to these coordinates by reformatting those in a different 

coordinate system. We chose a 0.5° grid cell over which to build the model to provide 

a cell size which leatherbacks have the potential to move through within one day 

given transiting speed estimates (Bailey et al. 2012b), but as large as possible to 

reduce computational intensity given the large prediction area. To create these lower 

resolution monthly rasters, we applied a median filter to the data with missing values 

removed from calculations. The number of cells contributing to the median values 

was dependent on the resolution of the original data. To equalize extents across all 

covariates, a fine-scale bilinear resampling was applied. This was chosen over 

nearest-neighbour sampling to create higher spatial accuracy within the resampling 

area, though extreme values may have been smoothed. Resampling put all variables 

and months to the same resolution for calculations to be completed across rasters. 

Erroneous land values were removed at 0.5° using the R ‘mask’ function (Hijmans 

2015). 

 Environmental variables that did not cover the entire time period from 

January 1992 - January 2015 had empty rasters created to fill any gaps for the model 

to run. 277 rasters per environmental condition were stacked together to form a total 

of 554 snapshots of environmental conditions. This created a large set of data files for 

every step of the model. High computational power was necessary to handle this 

amount of data to create the baseline model. Rasters were scaled to reduce variability 

within and across the different covariates that prevented the model iterations from 

converging. The mean and standard deviation of SST were the centre and standard 

deviation used for scaling, respectively. This is similar to creating z-scores for each 
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variable. When scaling the environmental covariates, all rasters for each 

environmental covariate, including the raster over which predictions were to be made, 

had to be scaled to avoid bias. For example, to obtain estimates for December 2016, 

the scaled SST rasters were monthly values during January 1992 through January 

2015, in addition to December 2016 from -175˚ to -75˚E longitude and -30˚ to 30˚N 

latitude. Bathymetry was only scaled on one raster, as it is invariant through time. 

Model application 

This first phase of the CTMC model provides the response of the leatherback 

to each environmental condition. Code derived from the R package ‘ctmcmove’ was 

primarily used in this analysis (Hooten et al. 2010, Hanks et al. 2011, 2015, Hanks 

2016). We input the monthly environmental conditions as raster layers along with the 

latitude and longitude of each leatherback position at its given time. We fit a quasi-

continuous path model to the telemetry data through space and time to provide a 

joint model for drivers of leatherback movement (Hanks et al. 2015). We used the 

daily SSSM-derived leatherback positions as the quasi-continuous path model 

within this analysis. This provided a regular temporal resolution for the track 

observations. A discrete-space path was created from these tracks (code written by 

Dong Liang). The model then derived parameters from each environmental layer 

corresponding to every location’s time. The R package ‘ctmcmove’ used the 

continuous-time Markov chain to produce the output (Hanks 2016). The continuous-

time Markov chain framework (CTMC) takes environmental covariates stacked as 

rasters representing monthly data for our model and describes movement based on 

these environmental conditions during each month. It outputs a binary response with 
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1 representing each cell occupied by every track location and 0 for each of the 

surrounding grid cells, along with predictor variables and the Poisson GLM log-link 

offset, tau. These conditional response variables of movement can then be utilized to 

build a discretized path throughout the environment using a Poisson regression. This 

model phase couples movement and environmental conditions to allow for fitting of a 

Poisson GLM. It was repeated for every monthly layer and environmental condition 

within each leatherback’s track. Grid cells containing “0” or missing values were 

removed from analysis. We did not create multiple paths for all tracks because we 

used the posterior mean from the SSSM, and no false-absences were created because 

they are unnecessary in the CTMC approach. Instead, we used the posterior means 

from this first stage. The benefits of this are that it reduces the computational power 

needed to run the model and reduces possible loss of accuracy at the population-level. 

Poisson GLM 

Parallel processing was used to independently fit the individual-level 

models to spatial covariates (Hooten et al. 2016) using the ‘parallel’ package (R 

Core Team 2016). This model is only computationally feasible through the use of 

parallel processing given the vast amounts of input. An automated MCMC 

algorithm (Gelfand & Smith 1990) was used with the package ‘RStan’ (Stan 

Development Team 2016) and function ‘poisson.stan’ (Carpenter et al. 2016). The 

model is fit independently using an adaptive MCMC with a Gibbs sampler (Hooten 

et al. 2016). The stacked binary response, correlated random walk component, 

imputed path and its offset, tau, and the covariates were input into a Poisson GLM. 

The correlated random walk component takes into account the persistence of animal 
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motion, where the next movement is dependent upon the previous movement. This 

ability to model auto-correlated, presence-only data is advantageous over the classical 

method. Gradual movement changes occur in organisms, not random motion, and this 

parameter describes the autocorrelation between movements. Parallel processing was 

used to complete the Poisson GLM (R package 'doParallel'; Revolution Analytics & 

Weston 2015). The covariates were run as ‘location-based’ or ‘static’ drivers of 

movement (Hanks et al. 2015, Hooten et al. 2016), which explain movement given 

the environmental conditions alone and does not explain biases possible within this 

movement (e.g. predator-prey interactions or directional seasonal migrations, 

termed ‘directional drivers’). All tracks included the environmental variables sea 

surface temperature and bathymetry (Dodge et al. 2014). SST was a primary 

covariate to incorporate as it spans the entire time period of the tracks, and 

bathymetry remained constant. This ensured all steps of the model would process 

without missing data throughout months. Some environmental covariates did not 

span the entire period of the tracks, making them a challenge to incorporate into 

this framework.  

The response was run as a Poisson distribution with log-link function. The 

response variable was the binomial response of a leatherback entering or not entering 

a grid cell surrounding the actual location. The predictor variables were the sum of 

SST, bathymetry, and the correlated random walk (CRW) component. Therefore, it is 

a prediction of leatherback movement as a function of three factors. This was run 

over subsets of individuals to reduce computer processing, which is an additional 

benefit of this approach and not feasible in some other model frameworks. An offset 
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of (tau + 0.001) was applied to obtain the proper response variance from 

parameterizing the CTMC model as a Poisson GLM. This is used in Poisson 

regression because the regression requires a predictor variable with a coefficient of 1 

to obtain a rate of events. No additional weighted values were included. Because the 

Poisson GLM can be run independently for each leatherback, individual iterations on 

tracks were run given the covariates available during each track’s time period. The 

GLM output provides a separate regression coefficient, beta, associated with each 

predictor. This resulted in two Betas: SST and bathymetry. These regression 

coefficients are the estimates for the change in the log odds for a unit change in the 

predictor variable adjusted for other environmental factors, which is the motility of an 

individual. Motility can also be described as the transition of a leatherback per unit 

time or a description of whether a leatherback will ‘stay or move’ within a given grid 

cell. These data represent a reciprocal resource selection, where the resources input 

are more likely to be utilized when negative values are obtained and less likely to be 

utilized when positive values are present. However, we sought to understand the 

movements of the population, not individuals. Therefore, a hierarchical Bayesian 

model was utilized.  

To account for satellite tag attrition that results in more leatherback 

locations recorded in warmer temperatures as they leave tropical nesting beaches, a 

second GLM was run with an additional variable of distance from release site 

determined using the ‘argosfilter’ package (Freitas 2012). A subset with leatherback 

locations only below the equator, to better represent the foraging period, was run as a 

third GLM with predictor variables of SST, bathymetry, and CRW. This was tested to 
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examine whether these positions in the southern hemisphere better predicted 

temperature as a driver of leatherback movement during other life phases, which are 

difficult to obtain from satellite tagging adult females on the nesting beaches. Models 

were compared using AIC. 

Hierarchical model and predictions 

The second phase of the movement model proposed in Hooten et al. (2016) 

was completed to obtain population-level predictions of leatherback movements 

given environmental conditions specified within the model. Estimated coefficients 

can be used within predictions with future environmental conditions to create a near 

real-time tool to inform managers and other stakeholders. A hierarchical Bayesian 

model provides a method of describing movement in addition to obtaining the 

importance of environmental covariates to the individuals. Population-level 

inference is then possible using this approach (Hooten et al. 2016). This MCMC 

had 20,000 iterations with a burn-in of 10,000 and a thinning of 2. We defined a 

multivariate Normal prior of N(0,100) for population level motility coefficients 

(Hanks et al. 2015). We used a Wishart prior for the corresponding population level 

precision matrix. The individual-level model was resampled in parallel in this 

second MCMC model to obtain estimates on the population (Hooten et al. 2016). 

The resulting posterior predictive distribution describes the probability of an 

individual using a particular area, upon which environmental selection can be 

determined (Hooten et al. 2010, 2016). The further from 0 in either direction the 

posterior distribution is, the greater the influence an environmental covariate has 

on movement, either positive or negative. A positive coefficient is indicative of a 
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leatherback quickly moving away from the given space, and a negative coefficient 

is the opposite, with leatherbacks more likely to stay in a space. The posterior 

distribution was then used to obtain the predictive values given regridded, scaled 

rasters of SST and bathymetry using the scaling method described previously to 

prevent biased estimates. As the log-link function is used in binary regressions to 

quantify log odds, the prediction of leatherback movement was made on the 

exponential values of the posterior distribution. We did not include a correlated 

random walk component into the predictive phase because we assumed the 

previous direction of movement was perpendicular to the current direction, 

eliminating the beta coefficient describing directional persistence. 

Results 

Leatherback turtle positions 

The daily SSSM-derived leatherback turtle positions spanned from the nesting 

beaches in Mexico and Costa Rica to the South Pacific Ocean, and fisheries sightings 

were recorded along the coasts of Central and South America (Fig. 4.1). We analysed 

the monthly distributions of leatherback turtles and the associated SST (Fig. 4.2). 

Based on the linear regression model between Pathfinder and MODIS SST, the 

intercept value as a correction factor of 0.32°C was added to the Pathfinder SST 

values for the regression models and GAMMs (see Appendix).  

CTMC movement models 

The model framework is described in Fig. 4.3. The best GLM was chosen 

through AIC. This was determined to be the initial model of SST, bathymetry, and 
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CRW as predictor variables with all post-nesting leatherback locations. Motility 

estimates were obtained from the response binary variable of ‘stay or move’, and 

predictions were calculated for June and December 2016 (Table 4.3; Fig. 4.4). The 

population-level 95% confidence interval for each environmental covariate predicted 

spanned 0 indicating a strong linear association between SST, bathymetry, and 

motility was not predicted given these results. The maps in Fig. 4.4 describe the SST 

temperature recorded and the motility estimates or reciprocal resource selection by 

Eastern Pacific leatherbacks based on the model. In general, high values indicate 

leatherbacks do not stay in a given area and move quickly away. Low values mean 

they move slowly in the area because there are desirable landscape characteristics, 

and these areas can be considered potential leatherback hot-spots. June (Fig. 4.4A) 

has a wider distribution of warmer water temperatures than December (Fig. 4.4C), 

particularly extending from the nesting beaches westward across the equatorial 

region. Given this large warm water mass throughout most of the South Pacific in 

June, the expectation would be leatherback movement to the south and southeast 

portion of the study area. This would create a higher expected likelihood of 

movement to cooler areas off the western coasts of South America. A comparison 

between the two monthly predictive outputs, indicates leatherback movements in 

December 2016 were more likely to be away from the shore compared to the June 

2016 estimates. Leatherbacks in June and December 2016 were likely to move more 

slowly through the waters west of Peru and Chile as expected given the distribution of 

observations.  
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Discussion 

Turtles tagged during nesting in January and February began their post-

nesting migration southwards through the eastern tropical Pacific in February to May. 

In the South Pacific Ocean there is a seasonal pattern with turtles moving south to the 

South Pacific Subtropical Convergence (Saba et al. 2008a) in the austral summer 

(December to April) when temperatures are higher at these temperate latitudes 

(approximately 30-40°S) and returning north to warmer, tropical waters 

(approximately 0-20°S) in the winter (May to November). There are also movements 

along the coast of South America, which are emphasized by the inclusion of fisheries 

observations from IATTC and leatherback interactions with the Peruvian driftnet 

fishery. The bimodal SST distribution observed in our dataset is due to nesting 

leatherbacks entering warmer waters in the tropics to breed when all available 

leatherback data is included, while those not breeding, post-nesting leatherbacks, 

were within cooler temperate waters.  

Using the CTMC modelling framework, I aimed to predict the probability of 

leatherback turtle movement during two months in 2016 (Fig. 4.4). The warm water 

present west of the nesting beaches during June and December should cause 

leatherbacks to move away from shore if they are not breeding. We would expect 

higher nearshore values near nesting areas in December, as expected given 

leatherbacks are breeding at the nesting beaches during this time (October-March; 

Piedra et al. 2007). Overall, movement estimates should predict leatherbacks leaving 

warm coastal waters as only post-nesting behaviour was included in the analysis. We 

would also expect a larger area outside of the immediate coastline with high values 
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indicating movement from this warmer area based on the distribution of observations. 

While some females quickly depart these coastal areas post-nesting, other females 

may remain while they complete their nesting cycle. Further, as high temperatures off 

the nesting beaches were recorded in December (Fig. 4.4A), we would expect large 

areas of offshore movement. Additionally, December had very warm waters in the 

southwest part of the study area, and leatherbacks would be predicted to transition 

quickly away from that area (Shillinger et al. 2011). These results may be due to the 

scaling parameter used, which may be reducing seasonal variability. Higher latitudes 

in the South Pacific are more productive, but temperature is ultimately expected to be 

a proxy for predicting prey abundance (gelatinous zooplankton), the driver of 

leatherback movement (Heaslip et al. 2012, Jones et al. 2012). Leatherbacks avoid 

cooler water farther south where they forage around 19°C and generally avoid 

warmer water (> 31°C) when breeding (Shillinger et al. 2010, 2011). This provides 

the expectation of a higher probability in the north during austral winter months and a 

higher probability in the south during these summer months, completing a north-south 

seasonal cycle throughout the South Pacific.  

We assumed within the GLM that the association between the leatherback 

movement and environmental variables was linear. However, this assumption was 

found to be inappropriate (Table 4.3), and a GAMM may be a more suitable model to 

include in the framework in this case. This is supported by the high adjusted r-

squared value obtained (0.723) in the non-Bayesian utilization of a GAMM (see 

Appendix). The model framework can easily be modified to include a GAMM, and a 

time-varying component could be added to improve the representation of seasonal 
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movements. This would be a similar model to that of Willis-Norton et al. (2015), with 

a Bayesian CTMC framework and incorporation of hierarchical analysis to create 

population-level inference of leatherback movement as our response variable. 

Weighted values may need to be incorporated into the framework to account for the 

changes in the availability of tracking information as leatherbacks move from tropical 

nesting areas into the South Pacific Gyre. There are challenges in completing this due 

to missing values that need to be incorporated into the predictive component of the 

model, as well as computational power necessary to complete the Poisson GLMs (or 

GAMMs) and MCMCs for each track. While the movement model is much more 

computationally efficient than prior models (Hanks et al. 2015), there is still a large 

demand from the model.  

Benefits of applying the Hooten et al. (2010, 2016) approaches are that they 

are robust, applicable across situations, automated, parallelizable, incorporates 

multiple types of data (e.g. locational and environmental satellite data), can be 

extended to population-level inference, provide information on resource selection, 

and are relatively easy to interpret compared to solely relying upon GAMMs 

(Hooten et al. 2010). Data can be irregularly spaced to start, and the model will 

modify it appropriately. Organismal movement is often highly complex, not simply 

a straight path from a beginning point to an end, and this framework is able to 

accommodate environmental selection by individuals. Hanks et al. (2015) expand 

upon this framework to create a much more computationally efficient model. 

Further, the individual model allows for separation of individuals when run in 

parallel, as had to be completed for our model. While the separation indicates the 
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necessity of high computing power, the ability of the model to run separately or 

independently of one another is advantageous to this type of telemetry modelling 

(Hooten et al. 2016). A Gibbs Sampler method was utilized, which is automatic and 

easy for users to implement within the MCMC framework (Hooten et al. 2016). This 

is an iterative approach used for simulation-based inference. By doing this, repeated 

models can be run quickly, even as the complexity of the model increases. The 

dependence structures within the data can be determined without over-simplifying the 

model for a computer to execute it. MCMC approaches also allow the same samples 

to be used repeatedly to draw inferences on different parameters of interest. Joint 

inferences can be made among parameters as well (Hooten et al. 2016).  

The hierarchical modelling approach is a higher-level estimation of 

persistent, predictable behaviour across a population, which is particularly relevant 

to understanding the movements given environmental cues encountered by Eastern 

Pacific leatherbacks. The CTMC model framework does not require the creation of 

false-absences of pseudo-tracks commonly used in GAMM analyses of telemetry 

data (e.g. Willis-Norton et al. 2015, Hazen et al. 2016). CTMC models are capable 

of efficiently modelling auto-correlated presence-only data with environmental 

covariates. Different data sources are key to robust dynamic management models, 

but they are difficult to incorporate given inherent differences in errors, among 

other things. These models provide a means of including multiple data sources, 

which strengthens their capabilities for modelling available data and maximizing 

sample sizes. Bayesian analyses have been shown to have stronger predictive power, 

especially as model complexity increases because all known sources of variation can 
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be incorporated. The Bayesian approach is flexible, particularly in that it is can be 

adapted around the same framework indeterminate of the model used. There is also 

the ability to change the prior distribution to include additional known information at 

any time to strengthen the model as new information becomes available. This CTMC 

approach provides population-level inference estimates that are rigorous through 

MCMC resampling.  

Our approach had a number of benefits, but there are also limitations and 

complexities to the modelling. Issues with our scaling parameter may be causing 

unexpected occurrences in warmer waters, or the grid-cell of 0.5° may be 

detrimentally smoothing data. Overall, the model may be relying too greatly on 

bathymetry values and not predicting the behavioural response to the degree expected 

as the estimates of leatherback motility visually mimic bathymetry contours. If the 

regression coefficients, beta, are small at the individual-level predictions, consistent 

patterns across population-level inferences will not be observed. The lack of linear 

association between leatherback movements and the environmental covariates 

included in this model resulted in the low variation in the prediction maps. Low 

individual level variation can propagate into the model and result in even smaller 

variation seen in the population-level prediction maps (Figs. 4.6B and 4.6D). This 

further suggests it is important to appropriately propagate errors to the population 

level within a model framework.  

Minor adjustments in the model may strengthen the distribution predictions, 

such as altering this scaling parameter, changing the offset, or adding a weighting 

scheme. Estimating the appropriate prior distribution can be difficult, and there is a 
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level of subjective interpretation in doing this. True model testing of the prior is not 

possible, enhancing the difficulty inherent in choosing a prior. Vague priors were 

used to drive inference given the data available to prevent negatively influencing the 

model. Priors could be modified with additional information to try to increase 

predictive power, another benefit of using this Bayesian approach. No model 

selection tool is readily available for the population-level models, making it difficult 

to evaluate the predictive power given different predictor variables. MCMCs can have 

approximation errors, and they must converge, although we do not believe this was an 

issue in our model. Samples obtained through MCMCs are also not independent of 

each other and must be handled appropriately. We thinned the samples to reduce the 

autocorrelation inherent in the MCMC method. The Gibbs Sampler can slow 

computing speeds if there are dependent covariates, and we aimed to create a model 

that was computationally feasible. Within a MCMC, the early samples drawn are 

strongly influenced by the initial distribution of the model. To remove these values 

unrepresentative of the steady state of the MCMC, we discarded a burn-in. Overall, 

we addressed many of the challenges of this approach and believe the Bayesian 

framework provides more robust, population-level inferences than other approaches 

commonly utilized.  

Different sex and age classes were represented within our data, with telemetry 

predominantly representing mature females, whilst the fisheries sightings included 

adults and juveniles. The distribution of immature leatherback turtles is therefore 

likely under-represented and is generally unknown. Each data source also has 

different errors associated with it that had to be considered and accounted for in 
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modelling habitat utilization. The location errors in the satellite telemetry were 

accounted for through the use of the switching state-space model. Given the differing 

lengths of leatherback tracks, there is inherent bias at the tagging location because 

there are a greater number of observations. Also, mainly mature females were tagged 

and the track durations were not sufficient (Table 4.1) to encompass the entire 

remigration interval of approximately 4 years (Reina et al. 2002). It is unknown 

whether males may be responding differently in this population. Block et al. (2011) 

used an inverse weighting of track length to account for tag loss. To account for fewer 

track positions in the South Pacific, where leatherbacks are estimated to be foraging 

on gelatinous zooplankton along fronts (Saba et al. 2008a), we included a distance 

from release site parameter. Distance from release site and locations only below the 

equator were included as parameters in separate models to attempt to overcome this 

bias, but they did not perform better based on AIC values.  

The satellite telemetry data covered a long time period, resulting in the need to 

use separate environmental products for SST. Further, the availability of remote 

sensing products, such as the time period covered, the frequency of coverage, and 

access to the data, is a limitation to model building and predictions. Sea surface 

height altimetry and derived products, such as frontal probability index, may assist in 

predicting prey distribution and, therefore, leatherback movement. However, some of 

these products have a lag until they are available, making it more challenging to use 

in near real-time tools. Further, we had to scale the environmental covariates in order 

to be able to obtain model convergence. Issues can arise if this step is not completed 

properly, with bias introduced and seasonal variability removed. Finding the 



 

 

113 
 

appropriate scaling method proved difficult and still remains a challenge.    

Leatherbacks undergo seasonal movements, but predicting all the drivers of 

these movements is challenging (Schick et al. 2013). SST is a proxy and will likely 

not sufficiently capture leatherback movement alone because of other processes 

involved (Schick et al. 2013), We did not incorporate chlorophyll-a measurements 

because it can be a poor indicator with an inverse relationship to Eastern Pacific 

leatherback distribution (Shillinger et al. 2008, 2011), issues with missing values due 

to cloud cover, and lack of information relating net primary production to gelatinous 

zooplankton abundance (Lilley et al. 2011). Other environmental variables, such as 

upwelling indices, effects of the El Niño Southern Oscillation, as well as frontal 

systems and convergence zones where gelatinous zooplankton may aggregate may 

help to improve the explanatory power and predictive capability of the model 

(Polovina et al. 2000, Lambardi et al. 2008).  

Fisheries sightings and data from the inter-nesting period were not 

incorporated in the model. The irregular sampling of fisheries sightings means that 

these data would need to be run as a spatial point process model that may potentially 

be overlain on the CTMC model due to the differences in data types (Hooten et al. 

2016). This may require complex pattern analysis if a grid overlay with spatial point 

process is completed for the fisheries sightings because a point process model would 

output sightings per unit area, while the CTMC model outputs transition per unit 

time. Different types of inference on the distribution of the leatherback population 

result from fisheries sightings and telemetry data, and incorporation of both data 

types is complex.   
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 The amount of telemetry data becoming available is ever-expanding, as are 

the complex models relating animal behaviour to environmental cues, but the 

computational power required of these models may be high. Therefore, it is essential 

to use a predictive model capable of incorporating robust model estimates of 

movement over large tracking datasets and vast amounts of environmental 

information. We used a novel technique to address the needs for more advanced 

observation techniques without super-computing computational requirements. 

Previous studies have conveyed the complex relationship between satellite-derived 

environmental variables and leatherback distribution (e.g. Shillinger et al. 2008, 2011, 

Bailey et al. 2012a), particularly resulting from the lack of understanding of prey 

distribution (Schick et al. 2013, Wallace et al. 2015). The inability to measure and 

predict gelatinous zooplankton abundance via extracted environmental characteristics 

increases the difficulty of predicting leatherback turtle distribution. Leatherbacks 

move from convergence zones to frontal zones with aggregations of gelatinous 

zooplankton in the South Pacific (Saba et al. 2008a), but predicting movement and 

distribution within and between these areas is challenging. The resulting prediction 

map from our model can eventually be used to help understand Eastern Pacific 

leatherback movements and provides a tool that can be used internationally with 

managers and local groups on efforts such as mandatory or voluntary fishing 

restrictions and awareness of the critically endangered status of leatherbacks to 

prevent extirpation of this Eastern Pacific population. Dynamic management of 

highly migratory marine species relies on understanding their movement and 

distribution under shifting oceanic conditions and resource demands.  
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Tables 

Table 4.1. Eastern Pacific leatherback positional information modified from Bailey et 
al. (2012a). All tracks were included in initial analyses (see Appendix), which 
included Argos satellite tag data from starting locations in Costa Rica, Mexico, Peru, 
as well as fisheries sightings from the IAATC. Post-nesting tracks represent Argos 
satellite tag data included in the movement model for motility estimate predictions. 
Obs stands for observations and Min for minimum.  
 

Location Data Type Years 
Total 

Point Obs 
No. 

Tags 

Track Duration 
(Days) 

Mean    Min    Max 
Playa 
Grande, 
Costa Rica 

Argos Satellite 
Tag 

1992-1995; 
2004-2008 11600 54 215 4 568 

Mexiquillo, 
Cauhitan, 
and Agua 
Blanco 
Mexico 

Argos Satellite 
Tag 

1993-1994; 
1997-2003 3710 25 148 10 481 

Peruvian 
Driftnet 
Fisheries 

Argos Satellite 
Tag 2014-2015 251 4 63 6 112 

Fisheries 
Sightings GPS coordinates 1990-2012 209 NA NA NA NA 

Post-nesting 
Tracks 

Argos Satellite 
Tag; 

Geolocation Tag 
1992-1995 12338 74    
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Table 4.2. Environmental products used throughout the modelling efforts. Netcdf 
files were downloaded at a monthly temporal resolution. All data were downloaded 
from coastwatch.pfeg.noaa.gov/erddap/. 
 

Variable ERDDAP Name Resolution 
Years 

Extracted Satellite 

Sea Surface 
Temperature 

erdPHsstamday_ 
LonPM180 0.042 1990-2002 

Global High 
Resolution 
AVHRR 

Pathfinder V5.1 

erdMH1sstdmday 0.042 2003-2015 MODIS/Aqua 

Bathymetry usgsCeSrtm30v1 0.0083 NA ASTER/Terra 

Ekman 
Upwelling 

erdQAstressmday 0.125 Aug 1998-
2009 

SeaWinds/ 
QuikSCAT 

erdQAstressmday* 0.25 Oct 2009-
2015 ASCAT 

Sea Surface 
Height 

Anomaly 
erdTAsshmday* 0.25 1993-Jan 2010 

Merged (TOPEX/ 
Poseidon, ERS-1/-

2, Geosat FO, 
Envisat,  
Jason-1) 

Frontal 
Probability 

Index 
erdGAtfntmday 0.05 2001-2015 Imager/GOES 

*Notes: Ekman upwelling has not been downloaded beyond 2009. Sea surface height 
anomaly is available from AVISO on a daily time-step for all dates. 
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Table 4.3. Estimates of predicted individual-level beta coefficients for June and 
December 2016. Mean, median, standard deviation, and upper and lower quantiles for 
each beta regression coefficient used in motility predictions are presented. Data are 
log transformed as a result of the log-link Poisson GLM.     
 

Parameter Mean 
Standard 
Deviation 

2.5th 

Quantile Median 
97.5th 

Quantile 

SST 
June 2016 -0.0000078 0.0057 -0.011 -0.000016 0.011 

Bathymetry 
June 2016 -.000016 0.0056 -0.011 0.0000092 0.011 

SST 
December 

2016 
-0.000034 0.0056 -0.011 0.0000010 0.011 

Bathymetry 
December 

2016 
0.00015 0.0057 -0.019 0.000063 0.012 
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Figures 

 

Figure 4.1. Median monthly sea surface temperature (°C) for each leatherback 
observation from Advanced Very High Resolution Radiometer (AVHRR) Pathfinder 
Version 5.0 and Moderate Resolution Imaging Spectroradiometer (MODIS) based 
on the estimated mean daily positions from the switching state-space model. 
Fisheries sightings are represented by a plus symbol, and tracks from Argos tags 
are represented by circles. Maps were generated using ‘ggmap’ in R (Kahle & 
Wickham 2013).  
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Figure 4.2. Median monthly sea surface temperature (°C) for each leatherback 
observation by each month. Observations span 1990 through 2015. Fisheries 
sightings are represented by a plus symbol, and tracks from Argos tags are 
represented by circles. Maps were generated using ‘ggmap’ in R (Kahle & 
Wickham 2013). 
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Figure 4.3. Model workflow for obtaining monthly predicted motility estimates of 
Eastern Pacific leatherbacks. This relatively new approach is based off methods used 
in Hooten et al. (2010, 2016) and Hanks et al. (2015) and expanded upon to provide 
population-level estimates of leatherback motility.  

Step 1: Switching State-Space Model
• Quasi-continuous path model for telemetry data

Step 2: Continuous-Time Markov Chain
• Impute continuous path from fitted model

Step 3: Poisson Generalized Linear Model 
with MCMC
• Provides motility coefficients for predictions, 

repeated for monthly environmental covariates

Step 4: Hierarchical Analysis -
Fit the Poisson GLM results with MCMC
• Fit the results of the Poisson GLMs  
• Population-level inferences

Step 5: Model Output
• Use results of final MCMC model to create motility 

predictions
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Figure 4.4. Sea surface temperature (°C) for A) June and C) December 2016. 
Leatherback predicted posterior motility estimates for B) June and D) December are 
based on sea surface temperature and bathymetry. The lower the predicted values, the 
more likely leatherbacks will stay in the area. Black dots represent each month’s 
leatherback location outputs from the switching state-space model that were input as 
location estimates. 
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Appendix 
 
Modeling the movement of Eastern Pacific leatherbacks 
 

Methods 

Kernel densities 

Monthly kernel densities of SST were estimated and used to determine 

relative use, in an approach similar to that by Howell et al. (2008, 2015). The SST 

data were integrated with the leatherback turtle location data, and each temperature 

degree (in ˚C) was assigned a scaled density value obtained from the ‘density’ 

function (R Core Team 2016). In the example month chosen, the nearest January 

2016 SST was matched with the SST from January tracking data, and the scaled 

density estimate for this month was extracted. This estimate was used as a prediction 

of leatherback relative use in development of a thermal habitat model. 

Regression models and generalized additive mixed models 

Models of increasing complexity were explored to determine the approach 

most effective at accounting for the complexities of the dataset and most effectively 

predicting leatherback turtle distribution. Data, which included all leatherback 

locations, were separated into training and testing (20% of data) sets to predict the 

latitude of leatherback turtles based on SST values within a regression tree 

framework. This is useful to break data into small regions to fit models. Trees had a 

response variable of latitude and combinations of predictor variables that included 

SST, longitude, group (i.e. Mexico, fisheries sightings, Peru, CR), and season (R 

package 'rpart'; Therneau et al. 2015). Season was defined as quarterly intervals 
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throughout the year, with January through March as the first of the four seasons. 

Regression trees are a common approach to create predictions when there are multiple 

influential variables, but the initial trials were unable to capture the variability in 

leatherback latitudinal movement. The Random Forest algorithm was also applied in 

an attempt to improve the regression tree results because this technique considers 

many scenarios and averages a ‘forest’ of trees to create the best predictive model. 

The Random Forest model combines regression tree models that may not predict well 

individually and combines them to create a better overall model. Two thousand trees 

were run for each model. Errors were calculated via jackknife estimation. The same 

response and predictor variables were attempted as in the regression tree models (R 

package “randomForest”; Liaw & Wiener 2002). Thirdly, a comparable generalized 

additive mixed model (GAMM) was used as in previous telemetry studies predicting 

distributions (e.g. Willis-Norton et al. 2015, Hazen et al. 2016). GAMMs are used to 

aid in explaining complex datasets. Some benefits of GAMMs include flexibility to 

allow fits with relaxed assumptions on the relationship between the response and 

predictor, the potential for better fits to data than purely parametric models, and a 

quick means of analysis and prediction. The response variable in each GAMM was 

again latitude, with predictor variables different combinations of SST, longitude, 

month, group, and season. A random intercept of leatherback identity was included in 

all model runs. The best GAMM was chosen through Akaike Information Criterion 

(AIC). However, all of the model types seemed to have flaws given they had poor 

predictive power. GAMMs, although commonly used, are a general means of analysis 

and can encounter interpretability issues. GAMMs also have limitations of 
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computationally intensive false-absence estimations required for telemetry data (e.g. 

Willis-Norton et al. 2015, Hazen et al. 2016).  

Results 

Kernel densities 

Kernel density plots of SST were created for each month from the 

corresponding temperature for each leatherback location (Fig. A.1). There was a 

unimodal SST distribution only in June - August as tagged leatherbacks were outside 

warmer nesting areas in waters of a similar temperature range. Bimodal SST 

distributions during other months resulted from the leatherbacks being present both at 

nesting beaches (warmer temperatures) and throughout the foraging ground in the 

South Pacific Ocean (cooler temperatures) for those not remigrating to breed. Kernel 

density estimates were extracted and incorporated with January 2016 SST to create a 

leatherback relative use thermal habitat model (Fig. A.2). 

Regression models 

The regression trees described the influence of SST on latitude with 61% of 

the leatherback locations in waters greater than 25°C, and 22% were less than 23°C. 

Therefore, 17% of leatherback latitudinal positions were between 23°C and 25°C 

(Fig. A.3). This included inter-nesting tracks, as well as fisheries sighting positions. 

Nearly one-third of the tracks in waters warmer than 25°C occurred in January 

through mid-April, likely inter-nesting leatherbacks in tropical waters. Predictions 

were estimated from the 20% testing set, and some of the leaves on the tree suggested 

30 degree latitude variability in the confidence intervals across the regression tree 
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components. The median predicted latitude was lower than the median latitude from 

the training data, and the confidence intervals for the prediction set were much greater 

than those of the training set. Overall, the regression tree models could not adequately 

predict the seasonal movements of leatherbacks.  

The Random Forest analysis provided the amount of influence of each 

variable on the latitude leatherbacks, but the models were unable to capture known 

seasonal north-south movements. The error within Random Forest models increased 

as the number of trees increased, and large confidence values were obtained, limiting 

model performance (Fig. A.4). For example, coverage of the 95% confidence interval 

was only 23.9% for a Random Forest model of latitude as a function of SST, group, 

and month, whereas a model meeting all assumptions would be near 95% (Dodge & 

Marriott 2003). The predicted best fit and the associated standard error did not result 

in a linear relationship with the observed latitudinal positions (Fig. A.4). 

Generalized additive mixed models 

To determine the relationship between the latitudinal movement of the turtles 

and SST using a GAMM, a Gaussian distribution with identity link was run given 

residual and Q-Q plots. The best GAMM was chosen using AIC, which predicted 

latitude as the response as a function of SST, longitude, month, and group with a 

random effect for each individual leatherback. The adjusted r-squared value for this 

model was 0.723. However, the model did not meet the goal of a robust population-

level prediction, nor did the seasonal prediction of leatherback movement match the 

distribution of the tracking data. 
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Figures 

 

Figure A.1. Median monthly sea surface temperature (°C) density by month based on 
observed leatherback positions between 1990 and 2015. 
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Figure A.2. Relative use map by Eastern Pacific leatherback turtles based on January 
2016 SST and kernel density estimates of SST. Maps were generated using ‘ggmap’ 
in R (Kahle & Wickham 2013). 
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Figure A.3. Regression tree output for leatherbacks for latitude based on SST, month, 
and group (release site) of each leatherback. 
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Figure A.4. Leatherback predicted latitudinal positions versus known leatherback 
latitudes. Error bars surrounding the estimate indicate the standard error. A linear 
relationship would suggest a good model fit. Wide errors bars are present at many 
predicted latitudes.  
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