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Abstract

Consistency algorithms have been proposed for a wide range of applications that include
distributed shared memories (DSM), distributed file systems, and databases. Fundamental
definitions and operational constraints that are specific for each system do not necessarily
translate well to Internet caches. A Web object is consistent if it is identical to the master
document at the origin server, at the time it is served to users, therefore cached objects
become stale immediately after the master is modified. Stale cache copies remain served
to users until the cache is refreshed, subject to the network transmit delays. However,
the performance of Internet consistency algorithms is evaluated through the corresponding
cache hit rate and network traffic load that do not inform on the service of stale data, and
are therefore inadequate, as outlined in numerous studies. To date, neither an analytical
framework nor a suitable measure are available to model the service of stale data to users. In
this paper we seek to remedy this state of affairs by formalizing both a framework and the
novel hit* rate consistency measure, which captures non-stale downloads from the cache. To
demonstrate this new methodology, we analyze and evaluate the consistency performance of
a well studied TTL algorithm, under both zero and non-zero download latency. We conclude
that data consistency can be significantly degraded even when a high hit rate is achieved, by
calculating the incurred hit and hit* rates. The proposed procedure can be used to evaluate
additional TTL and other (e.g., polling and invalidation) Web consistency protocols, as well
as those retained by other applications (e.g., virtual shared memories).
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1 Introduction

Web caching aims to reduce network traffic, server load, and user-perceived retrieval la-

tency by placing document replicas on proxy caches that are strategically placed within the

network. One problem that arises with Internet caches is the staleness of stored objects: In

order for Web caches to be useful, cache consistency must be maintained with respect to

the master document at the origin server. In fact, consistency is critical in certain appli-

cations, such as stock quotes reported to day traders or online auctions, as user decisions

are based on the recency of collected data. Assuring consistency becomes more challeng-

ing when server documents are updated rapidly (e.g., weather updates, sports scores, news

portals), since frequent server-cache communications are required to properly monitor the

freshness at the cache. Since all messages exchanged between the server and the cache are

subject to constraints imposed by the network infrastructure, consistency is impeded by

download delays that are considerably noticeable in wireless and mobile devices, or when

data is transmitted over satellite.

1.1 Enforcing data consistency on the Internet

Consistency algorithms are implemented either at the cache or at the server, for the sole

purpose of increasing the likelihood that documents served to users by the cache are identi-

cal to those offered at the server. The consistency model in use reflects the degree to which

cached replicas are kept consistent. On the Internet, algorithms fall in one of three cate-

gories, namely Time-To-Live (TTL), client polling, and server invalidation, which are now

described. 2

With TTL algorithms, a document is placed in the cache alongside a server-assigned Time-

To-Live, say T . The object is considered valid until T time units elapse from the instance

of cache placement. Each request for a valid object incurs a cache-hit and is served by

the cache, and the first request presented after the TTL expiration is a cache-miss that is

forwarded to the server, which in turn sends a fresh copy to the cache. Algorithms in this

class include the fixed TTL [14] where the Time-To-Live is set to a constant T , and the

adaptive TTL [11] and Squid’s LM-Factor [27] in which the Time-To-Live is determined by

timestamps of past updates to the master. The popularity of these algorithms is a direct

consequence of their simplicity, sufficiently good performance, and the flexibility to assign

a TTL value to a single cached item.

2 Principles of each category are listed. Practical algorithms may vary based on their
implementation: A conditional If-Modified-Since can be sent to the server instead of the
usual GET request, or TTL values can be passed to the cache through one of the Expires,
Max-Age, or Min/Max-TTL parameters of the HTTP [12].
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A client polling consistency algorithm (e.g., Piggyback cache validation [17]) is invoked

according to a schedule dictated by the cache. Each time it runs, the algorithm connects

to the server and initiates an If-Modified-Since request, accompanied by the identifiers (i.e.,

validators [12]) of the cached item. Commonly used validators include the Last-Modified-

Timestamp, document version, and the entity-tag (ETag). If the server finds that the value

of the validators match those of the master (i.e., cached copy is up to date), it sends a 304

Not-Modified reply; otherwise the latest version is sent to the cache.

A server invalidation protocol, such as Piggyback server invalidation [16] or the Invalidation-

report examined in [29] for wireless devices, is launched by the server upon each update to

the master (or shortly thereafter). The server informs the cache of the changes, which then

marks the copy as invalid. The first request that follows the invalidation incurs a miss and

is forwarded to the server, which then loads a new master into the cache. Algorithms in this

class are not very popular since each server must maintain a list of all system caches.

1.2 Web consistency models

A given Web consistency algorithm complies with one of two models, namely weak or strong

consistency, which were defined by Cao and Liu [6] for the case of zero download delay. 3

These definitions are revisited below to include the possibility of non-zero network delays,

preceded by some new terminology that captures the relationship (i.e., equality) of a cached

copy to its master over time.

A cached document is invalidated when the cache detects the expiration of the associated

validators, e.g., expiration of the TTL, or the availability of a new version and ETag in

polling and invalidation algorithms. If a copy is valid, each request presented at the cache

incurs a cache-hit and receives the stored replica; otherwise, requests are forwarded to the

server. A server-fresh document is defined as the latest serviceable document at the server,

whereas a cache-fresh document is defined as a valid cached copy, or equivalently as one

thought to be server-fresh by the cache. In order to accurately capture the state of a cached

copy with respect to the master, define a cache-fresh* document as one that is both cache-

fresh and server-fresh; a document that is not cache-fresh* is termed cache-stale*. Due to

the different schedules used to invoke the various consistency algorithms, as well as the

non-zero server-cache transmit delay ∆, it is possible that a cached item is considered valid

in spite the availability of a later version at the server, resulting in the undesirable download

of cache-stale* (thus inconsistent) documents.

With this new state classification, a cache-hit* is defined as a cache-hit that prompts a

3 Comments regarding consistency models in other applications and their inapplicability
to Web caching are provided in the next section.
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server-fresh download from the cache to the user; its complement is called a cache-miss*.

Each hit* is therefore a hit, but the reverse does not hold. Strong consistency algorithms are

now characterized by users being served strictly server-fresh documents under zero delays

and processing times. A consistency algorithm that is not strong is termed weak, in which

case there is a possibility that users download inconsistent copies (i.e., ones that are cache-

fresh yet not server-fresh), even under zero delays. Causal TTL and polling algorithms are

therefore weakly consistent, whereas invalidation protocols are typically strongly consistent.

1.3 Contributions of the proposed work

With a given consistency algorithm, we can associate two basic quantities, namely the

hit rate and the hit* rate. These quantities are defined as the long-run average download

rate of cache-fresh and cache-fresh* documents from the cache, respectively. Since each

hit* is necessarily a hit, the hit* rate is always less than or equal to the hit rate, and for

strongly consistent algorithms, equality is achieved if and only if ∆ = 0. To the best of the

authors’ knowledge, the hit* rate appears to be the first performance metric proposed to

quantitatively address consistency issues.

Concerns regarding the download of cache-stale* objects are mentioned in numerous studies

(e.g., see [6] [7] [11] [13] [14] [24] [26] and references therein), and the need for an appropriate

measure was duly noted [15]. The new metric serves exactly that purpose. The hit* rate

is most useful when the cache utilizes weak protocols, for then the probability that users

retrieve stale objects is potentially large: Consider the fixed TTL algorithm when T is very

large, and server documents are updated frequently. A large value for T guarantees a high

hit rate and lowered bandwidth utilization [7] [13] [14], but results in poor quality of data

(QoD), 4 even when the communication latency is negligible (e.g., broadband connectiv-

ity). However, measuring consistency is also important for strong consistency mechanisms

deployed in a hierarchy of caches, or when the delay is large (e.g., satellite and wireless [24]

[29]), as previously concluded in [26].

In this paper, we address these issues by formulating a framework where user requests and

master updates are modelled by mutually independent point processes on [0,∞). The focus

is on a single server-cache pair and a single data object, as we attempt to isolate relevant

issues. Then, both the hit* and hit rates of any given consistency algorithm can in principle

be evaluated, and various design parameters could be tuned on the basis of the resulting

performance.

Here, we carry out such an evaluation for the extremely popular fixed TTL algorithm, by

exploiting some of its key properties, for any value of ∆ ≥ 0. The hit rate of the fixed TTL
4 We assimilate freshness and object consistency with the quality of data.
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was already discussed in [14], but only for ∆ = 0. Closed form expressions for the hit and

hit* rates are available in some special cases when the requests are generated according

to a Poisson process. Computable bounds are derived below when the request process is

a renewal process, and are tightened when the inter-request time distribution belongs to

certain subclasses of distributions (e.g., IFR, DFR, NBUE and NWUE). On the basis of

these results, we can now investigate the degradation of the hit and hit* rates as a function

of the key system parameters T and ∆.

While many of the results presented in this paper hold under the assumption that the point

processes are stationary and ergodic, most of the discussion given here is carried out under

renewal assumptions in the interest of brevity and mathematical simplicity. Moreover, the

proposed framework can be easily applied to the study of other algorithms, as was done

for the weak LM-Factor protocol in [3]. It can also be used to investigate consistency issues

associated with invalidation and polling algorithms, as well as techniques employed by other

distributed systems such as virtual shared memories and file sharing systems.

The paper is organized as follows: Consistency issues in various systems and their association

to the Web are discussed in Section 2, and the suggested modeling framework is presented

in Section 3. In Section 4 we define the performance metrics used, as we describe the fixed

TTL algorithm through the nomenclature of the framework. The analysis of the fixed TTL

is executed in Section 5 and Section 6, for zero and non-zero download delays, respectively,

where expressions are obtained for the hit and hit* rates. Relationships and asymptotics of

the hit and hit* rates are presented in Section 7. Results are specialized to Poisson requests

in Section 8 where we also discuss the issue of model validation, followed by performance

bounds for several Internet applications.

2 Relationship to other distributed systems

A review of the literature quickly reveals that consistency protocols have been extensively

studied in computer architectures, distributed shared memories (DSM), network and file

sharing systems, and distributed databases. Problems pertaining to each of these systems,

and the associated consistency models, are summarized below. Additional details regarding

individual system characteristics and (dis)similarities to Internet caches can be found in

references [6] [10] and [15].

In multiprocessor computers and DSM, several processors can write to a single memory cell.

If read and write operations are not coordinated, then a risk arises that the value read by

any processor is other than the one required by the program, so that the execution outcome

may not be as expected. Lamport’s sequential consistency [18] resolves this consistency

issue by requiring all memory operations to execute one at a time, and the operations of
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a single processor to appear in the order described by the program. However, this strict

policy inhibits many advantages of distributed computing. For this reason, other relaxed

solutions are adopted, among which we find the processor consistency whereby writes issued

from a processor are only observed in their issuance order, weak consistency that demands

strict ordering within critical sections of the program, its extension release consistency, and

others.

On the World Wide Web, a single master document is maintained at the server and is

updated by a single writer. 5 A request for a Web object first arrives to the cache. If the

latter contains a valid copy it is sent to the user; otherwise the cache launches a request

to the server that sends the copy to the cache, and from there to the user. The server is

therefore the single source of updatable data, whereas documents are always read from the

cache, prompting potential inconsistencies between the master and read objects. These rules

do not follow the setup of DSM systems, or that of distributed databases described below.

In databases, consistency is satisfied if database entries are identical to those stored in the

cache. Consistency is impeded by transactions that span several databases, by two types of

caching techniques: Intra-transaction in which data is cached within the transaction bound-

aries and removed from the cache upon its completion, and inter-transaction whereby data

cached by one transaction is not purged and remains accessible to others. When programs

execute concurrently, consistency is achieved through some form of serialization, combined

with consistency protocols (see details in [9] and references therein). Solutions proposed in

this context typically answer synchronization problems between multiple writers to a single

cache, and therefore do not apply to the Web.

Coherency problems in hierarchical computer memories and file sharing systems exhibit

most similarities to the consistency issue on the Web. With the first, a local memory is

dedicated to each CPU, a main virtual memory (VM) is shared between all processing

units, and each processor writes to the VM in turn. Each unit first reads the local memory,

and the VM is queried in the absence (or invalidity) of local data. The shared memory, local

memory, and each CPU are therefore synonymous to the Web server, cache, and the user,

respectively. Invalidation algorithms utilized by the VM are nearly identical to those of the

Web [23], with the following key exception: Processors proximity and shared buffers permit

a hardware based synchronization and tight control for the VM, that are neither feasible

nor desired in most Web applications.

In network and distributed file sharing systems, a client-cache copy is consistent if it is

identical to the master at the file server, as on the Internet. If the client does not hold

5 This is also true when multiple users attempt to update the master, as in online reser-
vations applications, since a single process posts the update at the server.
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the requested document, it is sent from the server to the client-cache, and cached files are

accessed for read and write purposes. Heterogeneous consistency solutions are adopted by

different implementations, as some systems support either sequential or concurrent docu-

ment accesses over all users, or both. Overlaps with the Internet object consistency are

expressed not only as noted above, yet also through the use of similar algorithms: A TTL-

based control is exercised in Sun’s NFS to send the client’s validators to the server, in order

to achieve both freshness control and crash recovery. Other systems (e.g., AFS, Sprite, Coda,

Zebra, Harp) employ customized invalidation and polling procedures, which are similar to

those on the Web.

A general framework for consistency analysis and performance measurement under a given

algorithm is not yet available in the literature, for either shared memories or file sharing

systems (to our knowledge). The need for such a framework therefore remains [15] [26], in

spite of the outlined analogies.

3 A simple framework

We now develop a simple framework to address consistency issues in the context of Web

caching, as outlined earlier: The system is made up of a site called the origin where the

current authoritative version of the data is maintained, and of requestors. Each requestor

is identified with a cache that is used either by users or by client-caches. Thus, the origin

and requestors are synonymous with server and caches, respectively.

Caches are assumed to be of infinite size, reflecting the fact that storage is ample. The need

to specify a replacement policy is moot, and only the operational rules of the consistency

algorithms matter. In particular, once a document has been placed in the cache, a copy is

always available at the requesting cache, although said copy may be either fresh or stale at

any given time. Under these circumstances, there is no loss of generality in abstracting a

caching system into a single cache-server pair, and in considering a single cacheable data

item, say D, in isolation, as we do hereunder.

3.1 Modeling requests

User requests for the document D arrive according to a point process {T r
n, n = 0, 1, . . .}

with the understanding that the nth request occurs at time T r
n . Thus, T r

n ≤ T r
n+1 for each

n = 0, 1, . . . with T r
0 = 0. Let {Rn+1, n = 0, 1, . . .} denote the sequence of inter-request

times with Rn+1 = T r
n+1 − T r

n for each n = 0, 1, . . .. The point process {T r
n , n = 0, 1, . . .} is

assumed to be simple in that Rn+1 > 0 a.s. for n = 0, 1, . . . , so multiple requests cannot

occur simultaneously.
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As customary, the counting process {R(t), t ≥ 0} associated with the point process {T r
n, n =

0, 1, . . .} is given by

R(t) = sup{n = 0, 1, . . . : T r
n ≤ t}, t ≥ 0 (1)

so that R(t) counts the number of requests in the interval (0, t]. The corresponding residual

lifetime process {Re(t), t ≥ 0} is defined by

Re(t) = T r
R(t)+1 − t, t ≥ 0. (2)

If T r
n ≤ t < T r

n+1 for some n = 0, 1, . . ., then R(t) = n and Re(t) = T r
n+1 − t, i.e., Re(t)

represents the amount of time that will elapse until the occurrence of the next request after

time t. We assume at minimum that the point process {T r
n, n = 0, 1, . . .} admits a request

rate in the sense that there exists a finite constant λR > 0 given by the limit

λR = lim
t→∞

R(t)
t

a.s. (3)

3.2 Modeling document updates

The document D changes over time, and is updated according to the second point process

{T u
m, m = 0, 1, . . .} where T u

m is the epoch at which the mth update takes place. We denote

by {Um+1, m = 0, 1, . . .} the sequence of inter-update times with Um+1 = T u
m+1 − T u

m for

each m = 0, 1, . . .. Here as well, T u
m ≤ T u

m+1 for each m = 0, 1, . . . with T u
0 = 0. The point

process {T u
m, m = 0, 1, . . .} is assumed to be simple so that multiple updates are ruled out.

In analogy with (1), the counting process {U(t), t ≥ 0} associated with the point process

{T u
m, m = 0, 1, . . .} is given by

U(t) = sup{m = 0, 1, . . . : T u
m ≤ t}, t ≥ 0 (4)

with U(t) counting the number of updates in the interval (0, t]. The corresponding residual

lifetime process {Ue(t), t ≥ 0} is defined by

Ue(t) = T u
U(t)+1 − t, t ≥ 0 (5)

so that Ue(t) represents the amount of time that will elapse until the next update after t.

As before, the process {T u
m, m = 0, 1, . . .} admits a rate, referred to as the update rate, in

the sense that there exists a finite constant λU > 0 given by

λU = lim
t→∞

U(t)
t

a.s. (6)
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3.3 Basic assumptions

Throughout, the point processes {T r
n, n = 0, 1, . . .} and {T u

m, m = 0, 1, . . .} are assumed to

be mutually independent. This reflects the lack of correlation between user behavior and the

evolution of data content.

For reasons of brevity and mathematical simplicity, these point processes are assumed to

be renewal processes. For the requests, this means that the inter-request times {Rn+1, n =

0, 1, . . .} form a sequence of i.i.d. rvs distributed according to the common cdf FR. Let R

denote any rv distributed according to FR. Similarly, when the update process is a renewal

process, the inter-update times {Um+1, m = 0, 1, . . .} form a sequence of i.i.d. rvs distributed

according to the cdf FU . We denote by U any rv distributed according to FU . The cdfs FR

and FU are assumed to have finite mean m(FR) and m(FU ), in which case it is well known

[25] that λR = m(FR)−1 and λU = m(FU )−1.

Let ∆ ≥ 0 denote the fixed download delay of D over the network, i.e., if a document is

sent from the server at time t, it is received by the cache at time t + ∆, at which point it is

ready for access by the users. In the other direction, communication from the cache to the

server is deemed instantaneous as it entails the transmission of very short control messages.

Before embarking in earnest on the discussion, we stress that many of the developments of

the paper could be carried out under the weaker assumptions of stationarity and ergodicity

on the point processes of interest.

4 The fixed TTL algorithm and its performance measures

With the nomenclature introduced above, the fixed TTL can be described as follows: When-

ever the server receives a request for D, say at time T r
n for some n = 0, 1, . . ., it returns the

current version together with the TTL field T > 0. The first miss request for D arrives to

the cache at T r
0 = 0, and the cache places the returned version at T r

0 + ∆. Any subsequent

request for D at the cache in the time interval (T r
0 + ∆, T r

0 +∆+ T ) is served directly from

the cache without contacting the server.

If a request at time T r
n for some n = 1, 2, . . . is the first one presented after the TTL

has expired, then it is forwarded to the server, in which case requests arriving during

(T r
n + ∆, T r

n + ∆ + T ) are all hits. The discussion is carried out under the assumption that

the requests presented in (T r
n , T r

n + ∆) are sent to the server as well. However, the copies

of D received in response to these requests are neither placed nor do they reset the TTL,

as assumed in [6] for the empirical evaluation of various TTL algorithms. 6 Results are

6 We restrict the analysis to the case T ≥ ∆, as customary on the Web.
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also available when each download resets the TTL [3], yet are omitted here due to space

limitations.

With the fixed TTL algorithm, we can associate the two performance measures mentioned

earlier, namely the hit and hit* rates. These metrics reflect the quality (or freshness) of D

from different viewpoints, namely cache freshness and server freshness. Under the network

delay ∆, a validator process {L∆(t), t ≥ 0} is introduced to track the cache freshness of

the cached copy of D, in that a hit occurs at request time T r
n if and only if L∆(T r

n−) > 0.

The hit rate is then simply defined by

H(T, ∆) = lim
N→∞

1
N

N∑
n=1

1 [L∆(T r
n−) > 0] . (7)

Similarly, the server freshness of the cached version of D is characterized through another

process {L�
∆(t), t ≥ 0}, so that a hit* occurs at request time T r

n if and only if L�
∆(T r

n−) > 0,

and the hit* rate is defined as

H�(T, ∆) = lim
N→∞

1
N

N∑
n=1

1 [L�
∆(T r

n−) > 0] . (8)

The limits in both (7) and (8) are taken in the a.s. sense and are assumed to exist with

H(T, ∆) and H�(T, ∆) constants. In that case, the a.s. limit

lim
N→∞

∑N
n=1 1 [L∗

∆(T r
n−) > 0]∑N

n=1 1 [L∆(T r
n−) > 0]

=
H�(T, ∆)
H(T, ∆)

(9)

also exists as a constant. This ratio represents the fraction of server-fresh hits out of all

hits, and therefore measures the QoD produced by a given algorithm.

The remainder of the paper is devoted to evaluating these rates for the fixed TTL algorithm,

and to understand how they are affected by the values T and ∆, and by the statistics of

request and update patterns. The result on the hit rate when ∆ = 0 is presented in Section

5, where it is followed by the calculation for the hit* rate for ∆ = 0 as well. These results

can be easily recovered from the more general findings provided in Section 6, for the case of

non-zero delays, and their proofs are therefore omitted. Properties of the hit and hit* rates

under the fixed TTL are reported in Section 7.

5 Zero delays

Cache freshness of the object D is completely described 7 by the validator process {L(t), t ≥
0}, which continuously tracks the TTL value at the cache. The process has right-continuous

sample paths with left limits, and is defined by

L(t) = (L(T r
n) − (t − T r

n))+ , T r
n ≤ t < T r

n+1 (10)
7 In this section, we drop ∆ from earlier notation as it is now set to zero.
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for each n = 0, 1, . . ., with the update rule

L(T r
n) =




T if L(T r
n−) = 0

L(T r
n−) if L(T r

n−) > 0
. (11)

Operational assumptions made earlier lead to the initial condition L(0−) = 0 so that

L(0) = T by (11). The timer will have expired at time t > 0 if and only if L(t−) = 0. Thus,

the nth request at time T r
n produces a hit if L(T r

n−) > 0; otherwise it will be a miss. The

hit rate H(T ) for the fixed TTL is now as defined in (7). Its evaluation has been carried

out already by Jung et al. [14].

Proposition 1 If the point process {T r
n+1, n = 0, 1, . . .} is a renewal process, then it holds

that

H(T ) =
E [R(T−)]

1 + E [R(T−)]
.

Note that E [R(T−)] = E [R(T )] for all T > 0 as soon as FR admits a density, a common

occurrence in applications.

As we now turn to the hit* rate, we note that even in the absence of transmission delays

between the server and the cache, there is a possibility that a request incurs a hit for a stale

copy. The consistency of the cached object with that offered by the server is captured by

the process {L∗(t), t ≥ 0} which tracks the time until the expiration of the cache-fresh*

copy. This process has right-continuous sample paths with left limits, and is defined by

L�(t) = (L�(T r
n) − (t − T r

n))+ , T r
n ≤ t < T r

n+1 (12)

for each n = 0, 1, . . ., with the update rule

L�(T r
n) =




min(L(T r
n), Ue(T r

n)) if L�(T r
n−) = 0

L�(T r
n−) if L�(T r

n−) > 0
. (13)

The initial condition is taken to be L�(0−) = 0 so that L�(0) = min(T, Ue(0)). The hit*

rate H�(T ) is given by (8) with {L∗(t), t ≥ 0} as defined above.

Proposition 2 Under the assumptions of Proposition 1, it holds that

H�(T ) =
E [R(min(T, Ue)−)]

1 + E [R(T−)]
(14)

provided the point process {T u
m+1, m = 0, 1, . . .} is also a renewal process.

In this last expression the stationary forward recurrence time Ue is taken to be independent

of the counting process {R(t), t ≥ 0}; its distribution is given by
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Fig. 1. A time line diagram of requests, updates, and the freshness tracking processes for the fixed

TTL with ∆ > 0.

P [Ue ≤ t] = λU

t∫

0

P [U > u] du, t ≥ 0.

An alternative expression for H�(T ) follows by specializing (21) with ∆ = 0, and is given

by

H�(T ) = H(T ) − λU

T∫

0

E [R(T−)] − E [R(u)]
E [R(T−)] + 1

P [U > u] du. (15)

6 Non-zero delays

In the presence of a network delay ∆ > 0, cache freshness is monitored through the validator

process {L∆(t), t ≥ 0}, which continuously tracks the TTL value at the cache (see Figure

1). This process has right-continuous sample paths with left limits, and is defined as follows:

First, define the IN-valued rvs {µk, k = 0, 1, . . .} recursively by

µk+1 = inf
{
n > µk : T r

µk
+ ∆ + T ≤ T r

n

}
(16)

for each k = 0, 1, . . . with µ0 = 0. The rv µk identifies the kth request forwarded to the server

that resets the TTL value to T , as we recall that requests in (T r
µk

, T r
µk

+ ∆) are forwarded

as well, but do not affect the TTL at the cache in that interval. For each k = 0, 1, . . . we

can then write

L∆(t) =
(
L∆(T r

µk
+ ∆) − (t − (T r

µk
+ ∆))

)+ (17)

on the interval [T r
µk

+ ∆, T r
µk+1

+ ∆), with the update rule L∆(T r
µk

+ ∆) = T . We initially

take L∆(t) = 0 for 0 ≤ t < ∆, and the hit rate H(T, ∆) can be written as in (7) with

{L∆(t), t ≥ 0}.
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Proposition 3 If the point process {T r
n+1, n = 0, 1, . . .} is a renewal process, then we have

H(T, ∆) =
E [R((T + ∆)−)] − E [R(∆)]

1 + E [R((T + ∆)−)]
(18)

for each ∆ ≥ 0.

As expected, this result specializes for ∆ = 0 to the one stated in Proposition 1 and in [14].

A proof of Proposition 3 is available in Appendix 1.

Next, the evaluation of the hit* rate is made possible through the server-freshness tracking

process {L�
∆(t), t ≥ 0} at the cache. This process has right-continuous sample paths with

left limits, and is defined as follows: For each n = 0, 1, . . . we set

L�
∆(t) = (L�

∆(T r
n + ∆) − (t − (T r

n + ∆)))+ (19)

whenever T r
n + ∆ ≤ t < T r

n+1 + ∆ with the reinitialization rule

L�
∆(T r

n + ∆) =




min(L∆(T r
n + ∆), (Ue(T r

n) − ∆)+) if L�
∆((T r

n + ∆)−) = 0

L�
∆((T r

n + ∆)−) if L�
∆((T r

n + ∆)−) > 0
.

The initial conditions are taken to be L∗
∆(t) = 0 for 0 ≤ t < ∆, as illustrated in Figure 1.

The hit* rate H�(T, ∆) is given by (8), this time with {L∗
∆(t), t ≥ 0}, and is evaluated in

the following proposition.

Proposition 4 Under the assumptions of Proposition 2, we have

H�(T, ∆) =
E [R(min(∆ + T, Ue)−)] − E [R(min(∆, Ue))]

1 + E [R((T + ∆)−)]
(20)

for each ∆ ≥ 0.

As before, Ue in (20) is taken to be independent of the counting process {R(t), t ≥ 0},
which allows us to rewrite the hit* rate as

H�(T, ∆) = H(T, ∆)P [Ue > T + ∆] + λU

T+∆∫

∆

E [R(u)] − E [R(∆)]
1 + E [R((T + ∆)−)]

P [U > u] du (21)

= H(T, ∆)P [Ue > ∆] − λU

T+∆∫

∆

E [R((T + ∆)−)] − E [R(u)]
1 + E [R((T + ∆)−)]

P [U > u] du.

The result (20) reduces to Proposition 2 for the case of ∆ = 0, and a proof for it is available

in Appendix 2.
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7 Bounds and comparisons

Relationships between the derived rates are readily obtained from (21) for any value of

∆ ≥ 0, under the assumptions of Proposition 2. The ratio (9) that captures the fraction of

non-stale hits satisfies the bounds 8

P [Ue > T + ∆] ≤ H∗(T, ∆)
H(T, ∆)

≤ P [Ue > ∆] , (22)

which shows clearly the interplay between network delays and update statistics. The ability

of the fixed TTL to ensure consistency is degraded as the delay increases, as is the case

for most algorithms in practice. Better performance can be achieved by lowering the value

of T , yet it is possible that frequent updates prevent users from ever being served with

server-fresh data. 9

If documents are rarely updated, i.e., λU � 0, then H∗(T, ∆) � H(T, ∆) as expected. On

the other hand, it is a simple matter to check that

lim
T→∞

H(T, ∆) = 1 but lim
T→∞

H�(T, ∆) = 0. (23)

These asymptotics follow from the expressions for the quantities H(T, ∆) and H�(T, ∆), and

are simple consequences of the Basic Renewal Theorem according to which limt→∞
E[R(t)]

t =

λR and of the fact limu→∞ uP [U > u] = 0 (implied by the integrability of FU ). By similar

arguments we conclude that

lim
∆→∞

H(T, ∆) = lim
∆→∞

H�(T, ∆) = 0. (24)

Additional properties, such as conditions for the monotonicity of the calculated rates as

∆ and T vary, can be extracted from the above propositions. These attributes allow us

to identify the impact on data consistency under several interesting scenarios, however are

omitted from the paper due to limited space.

8 The hit* rate in applications: Bounds and model validation

Interestingly enough, the experimental validation of the suggested model has already been

carried out in numerous studies (e.g., see [4] [8] [21] [22] [24] [28] and their references). The

selection of FR and FU that best fits the model dynamics are specific to each application:

Inter-request times in HTTP and FTP caches follow the Weibull and Pareto heavy tailed

distributions, as reported in [8] [22] and emphasized by Bestavros et al. in [4]. Locality
8 In view of a natural probabilsitic impression, we expect that the upper bound at (22)
holds for a large class of consistency algorithms.
9 e.g., when the master is updated every ∆ time units in which case P [Ue > ∆] = 0.
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Fig. 2. Hit and hit* rates for Poisson requests and fixed inter-updates ∆u = 1. (a) Hit* rate, T = 1;

(b) Hit* rate, T = 0.5; (c) Hit rate, T = 1; (d) Hit rate, T = 0.5.

of reference whereby recently accessed documents are likely to be shortly requested again

can be expressed through an appropriate selection of FR. For the updates, Web pages that

contain stocks and weather information on the Yahoo portal are updated periodically every

few seconds [24]. Logs collected from news servers [21] and Harvest caches [6] suggest the

bimodal inter-update time distribution.

It is rather difficult (if at all possible) to calculate the hit and hit* rates for general dis-

tributions. Indeed, the (non-delayed) renewal function t → E [R(t)] is not known in closed

form, except in some special cases (e.g., when R is lattice or uniformly distributed, or for a

class of matrix-exponential distributions [1]). Consequently, in order to apply the results of

this paper in general applications, we derive distribution-free bounds on the obtained rates.

These bounds can be tightened when FR belongs to several subclasses of distributions of

interest.

8.1 Poisson requests

Poisson requests correspond to the generic inter-request rv R being exponentially dis-

tributed, say with rate λR, i.e., FR(t) = 1− e−λRt (t ≥ 0), in which case E [R(t)] = λRt for

15



all t ≥ 0. The hit rate for the fixed TTL algorithm becomes

HPois(T, ∆) =
λRT

λR(T + ∆) + 1

and the corresponding hit* rate is given by

H�
Pois(T, ∆) = P [Ue > T + ∆] HPois(T, ∆) +

λUλR

λR(T + ∆) + 1

T∫

0

uP [U > u + ∆] du.

While a simple closed-form expression is available for the hit rate, the hit* rate can be

evaluated in principle once the distribution FU is specified. For instance, consider the case

when updates occur periodically every ∆u time units. It is plain that H�(T, ∆) = 0 whenever

∆u ≤ ∆ (as would be expected). However if ∆u > ∆, a simple calculation shows that

H�
Pois(T, ∆) =

1 [∆u > T + ∆] (∆u − (T + ∆)) · λRT + λR

2 min2(T, ∆u − ∆)
∆u(λR(∆ + T ) + 1)

.

This expression allows the comparison between the hit and hit* rates incurred by the fixed

TTL under the practical systems examined in [24], as delineated in Figure 2 for several

values of T and ∆.

8.2 Distribution-free results

Bounds are available for the renewal function associated with any distribution FR. First, re-

call that the forward recurrence time rv Re associated with the rv R is distributed according

to P [Re ≤ t] = λR

∫ t

0
P [R > u] du, (t ≥ 0). Lorden [19] has shown the upper bound

E [R(t)] ≤ λRt + λ2
RE

[
R2

] − 1, t ≥ 0 (25)

while Marshall [20] proved the lower bound

E [R(t)] ≥ λRt − P [Re ≤ t] , t ≥ 0. (26)

10 These bounds can be used to get rough estimates of the hit rate under the fixed TTL,

namely

λRT + P [Re > T + ∆] − λ2
RE

[
R2

]
λR(T + ∆) + λ2

RE [R2]
≤ H(T, ∆) ≤ λRT + λ2

RE
[
R2

] − P [Re > ∆]
λR(T + ∆) + P [Re > T + ∆]

.

These bounds may not be useful when λ2
RE

[
R2

]
is large for then there is a risk that

the upper bound is too loose and the lower bound negative (hence useless). 11 Similar
10 Additional bounds can be found in [20].
11 λ2

RE
[
R2

] ≥ 1 always since this is equivalent to var(R) ≥ 0.
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Fig. 3. Upper bound, lower bound, and simulated hit* rate with fixed inter-updates ∆u = 1 and

T = 0.5: (a) Weibull inter-request times, ∆ = 0, α = 1.3; (b) Pareto inter-request times, ∆ = 1/3,

α = 2.1.

bounding arguments can be invoked for the hit* rate H�(∆, T ), in the process yielding the

upper bound

λR(T + ∆) + 1
λR(T + ∆) + P [Re > T + ∆]

H�
Pois(∆, T ) +

P [Ue > ∆] (λ2
RE

[
R2

] − P [Re > ∆])
λR(T + ∆) + P [Re > T + ∆]

and the associated lower bound

λR(T + ∆) + 1
λR(T + ∆) + λ2

RE [R2]
H�

Pois(∆, T ) − P [Ue > ∆]
(
λ2

RE
[
R2

] − P [Re > T + ∆]
)

λR(T + ∆) + λ2
RE [R2]

.

8.3 NBUE and NWUE Requests

A distribution FR on [0,∞) is said to be Increasing (resp. Decreasing) Failure Rate, denoted

IFR (resp. DFR), if the mapping t → P[R>t+r]
P[R>t] is non-increasing (resp. non-decreasing) in

t for each r ≥ 0. 12

The Weibull distribution often used in request modeling is characterized by FR(t) = 1 −
e−(βt)α

(t ≥ 0) with α, β > 0, with the two first moments given by

E [R] =
1
β

Γ(α−1 + 1) and E
[
R2

]
=

1
β

Γ(2α−1 + 1).

The Weilbull distribution is IFR (DFR) for α ≥ (≤)1.

A second distribution often encountered in network traffic modeling is the Pareto distribu-

tion defined as FR(t) = 1 −
(

k
k+t

)α

(t ≥ 0), with α, k > 0. This distribution is DFR, and

we restrict the discussion to α > 2, in which case the first two moments

E [R] =
k

α − 1
and E

[
R2

]
=

2k2

(α − 2)(α − 1)
12 Much of this material can be found in the monograph by Barlow [5].
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are finite.

A distribution FR on [0,∞) is said to be New Better (Worse) Than Used in Expectation,

in short NBUE (NWUE), if P [Re > t] ≤ (≥)P [R > t] for all t ≥ 0, respectively. It is well

known [5] that if FR is IFR (resp. DFR), then it is also NBUE (resp. NWUE), in which

case the associated renewal function is bounded by

E [R(t)] ≤ (resp. ≥) λRt, t ≥ 0. (27)

We now demonstrate the use of these bounds, in combination with the Lorden and Marshall

bounds, for the hit* rate in (20). For FR NBUE, we have

H�(T, ∆) ≤ (λR(T + ∆) + 1)H�
Pois(T, ∆)

λR(T + ∆) + P [Re > T + ∆]
+

P [Ue > ∆]P [Re ≤ ∆]
λR(T + ∆) + P [Re > T + ∆]

and H�(T, ∆) ≥ H�
Pois(T, ∆) − P [Ue > ∆]P [Re ≤ T + ∆]

λR(T + ∆) + 1
.

On the other hand, with FR NWUE, we have

H�(T, ∆) ≤ H�
Pois(T, ∆) +

P [Ue > ∆] (λ2
RE

[
R2

] − 1)
λR(T + ∆) + 1

,

and H�(T, ∆) ≥ (λR(T + ∆) + 1)H�
Pois(T, ∆)

λR(T + ∆) + λ2
RE [R2]

− P [Ue > ∆] (λ2
RE

[
R2

] − 1)
λR(T + ∆) + λ2

RE [R2]
.

The use of these bounds is exhibited in Figure 3, when inter-request times are modeled

by the Weibull and Pareto distributions under fixed inter-update times. Bounds for the

obtained hit rate, as well as results for other distribution classes are omitted from the paper

but can be found in [3].

9 Appendices

In the next appendices 1 and 2, we make use of the IN-valued rvs {µk, k = 0, 1, . . .} defined

recursively through (16). Note that R(T r
µk

) = µk for all k = 0, 1, . . ., and that under the

renewal assumptions on the request process, the rvs {R(T r
µ�+1

) − R(T r
µ�

), � = 0, 1, . . .} are

i.i.d., each distributed according to R(T r
µ1

). Therefore, by the Strong Law of Large Numbers

we find

lim
k→∞

µk

k
= lim

k→∞
1
k

k−1∑
�=0

(
R(T r

µ�+1
) − R(T r

µ�
)
)

= E
[
R(T r

µ1
)
]

a.s. (.1)

By the very definition of T r
µ1

, we have that

E
[
R(T r

µ1
)
]

= 1 + E [R((T + ∆)−)] , (.2)

as explained through arguments below.

18



1 Proof of proposition 3

Since the rvs {µk, k = 0, 1, . . .} monotonically exhaust IN a.s., it is plain that

H(T, ∆) = lim
k→∞

1
µk

µk∑
n=1

1 [L∆(T r
n−) > 0] . (1)

In order to make use of this fact, fix k = 0, 1, . . . and consider the dynamics of the freshness

tracking process on the interval (T r
µk

, T r
µk+1

]: With T r
µk

< t ≤ T r
µk

+∆, we have L∆(t−) = 0

since L∆(T r
µk

) = 0. The validator process is reinitialized at time T r
µk

+ ∆ to the value

L∆(T r
µk

+ ∆) = T , returning to zero with the expiration of the TTL at time T r
µk

+ ∆ + T ,

i.e., L∆((T r
µk

+ ∆ + T )−) = 0.

Thus, the requests made at the cache in the interval (T r
µk

, T r
µk

+ ∆] incur misses, while

those occurring in (T r
µk

+ ∆, T r
µk

+ ∆ + T ) are necessarily hits. Also, there is exactly one

request made in the interval [T r
µk

+ ∆ + T, T r
µk+1

], and it is necessarily a miss. In summary,

we see that there are exactly 1+
(
R(T r

µk
+ ∆) − R(T r

µk
)
)

misses in the interval (T r
µk

, T r
µk+1

].

Therefore, for each k = 1, 2, . . ., we get

µk∑
n=1

1 [L∆(T r
n−) = 0] =

k−1∑
�=0

∑
µ�<n≤µ�+1

1 [L∆(T r
n−) = 0]

=
k−1∑
�=0

(
1 +

(
R(T r

µ�
+ ∆) − R(T r

µ�
)
))

. (2)

Again, under the renewal assumption on the request process, the rvs {R(T r
µ�

+ ∆) −
R(T r

µ�
), � = 0, 1, . . .} are i.i.d. rvs, each distributed according to R(∆), and the Strong

Law of Large Numbers now gives

lim
k→∞

1
k

k−1∑
�=0

(
R(T r

µk
+ ∆) − R(T r

µk
)
)

= E [R(∆)] a.s. (3)

Since

1 − H(T, ∆) = lim
k→∞

1
µk

µk∑
n=1

1 [L∆(T r
n−) = 0] ,

it is plain from (2) and (3) that

1 − H(T, ∆) =
1 + E [R(∆)]

1 + E [R((T + ∆)−)]
(4)

by the usual arguments, as we recall (.1) with (.2). The desired expression (18) is finally

obtained. �
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2 Proof of Proposition 4

The arguments are similar to those given in the proof of Proposition 3. We

begin by noting that H�(T, ∆) = lim
k→∞

1
µk

µk∑
n=1

1 [L∗
∆(T r

n−) > 0] . (1)

In order to use (1), fix k = 0, 1, . . . and consider the cache-fresh* tracking process on the

interval (T r
µk

, T r
µk+1

]: A download is requested at time T r
µk

, resulting in a cache placement at

time T r
µk

+ ∆. If no update occurs before this cache placement, then the validation process

is reinitialized at time T r
µk

+ ∆ to the value min(T, Ue(T r
µk

) −∆), and returns to zero with

the expiration of this TTL. In other words, L∗
∆((T r

µk
+∆+min(T, Ue(T r

µk
)−∆))−) = 0. On

the other hand, if an update occurs before placement, i.e., Ue(T r
µk

) ≤ ∆, 13 then L∗
∆(t) = 0

on the entire interval (T r
µk

+ ∆, T r
µk+1

].

As already discussed in the proof of Proposition 3, the hits on the interval (T r
µk

, T r
µk+1

]

can occur only in the subinterval (T r
µk

+ ∆, T r
µk

+ ∆ + T ). If Ue(T r
µk

) ≤ ∆, none of these

requests can be hits*. However, if ∆ < Ue(T r
µk

), then all the requests made in the interval

(T r
µk

+∆, T r
µk

+min(∆+T, Ue(T r
µk

))) are hits*, while none of those made in the interval [T r
µk

+

min(∆+T, Ue(T r
µk

)), T r
µk

+∆+T ] are as they are all hit but miss* requests. Summarizing we

conclude that the number H∗
k of hits* in the interval (T r

µk
, T r

µk+1
] is given by the difference

H∗
k = R((T r

µk
+ min(∆ + T, Ue(T r

µk
)))−) − R(T r

µk
+ min(∆, Ue(T r

µk
))). (2)

Consequently, for each k = 0, 1, . . ., we can write
µk∑

n=1

1 [L∗
∆(T r

n−) > 0] =
k−1∑
�=0

∑
µ�<n≤µ�+1

1 [L∗
∆(T r

n−) > 0] =
k−1∑
�=0

H�
� . (3)

Under the renewal assumptions on the independent processes {T r
n , n = 0, 1, . . .} and

{T u
m, m = 0, 1, . . .}, we can easily verify the following (with details available in [3]): First,

we have the equalities

lim
k→∞

1
k

k−1∑
�=0

(
R((T r

µ�
+ min(∆ + T, Ue(T r

µ�
)))−) − R(T r

µ�
)
)

= E [R(min(∆ + T, Ue)−)] , a.s.

and lim
k→∞

1
k

k−1∑
�=0

(
R(T r

µ�
+ min(∆, Ue(T r

µ�
))) − R(T r

µ�
)
)

= E [R(min(∆, Ue))] a.s.

In both cases the rv Ue is taken to be independent of the counting process {R(t), t ≥ 0}.
Combining, we get

lim
k→∞

1
k

k−1∑
�=0

H�
� = E [R(min(∆ + T, Ue)−)] − E [R(min(∆, Ue))] a.s. (4)

13 Only applies when ∆ > 0.
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To conclude, we report (3) and (4) into (1), and this yields (20) as we recall (.1) with (.2).

�
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