
XTOLS: Cross-tier Oracle Label Security

Jong-hoon (David) An
University of Maryland, College Park

davidan@cs.umd.edu

Abstract
SELINKS allows cross-tier security enforcement between
the application tier and the database tier by compiling pol-
icy functions and database queries into user-defined func-
tions (UDFs) and SQL queries. Unfortunately, this kind
of enforcement is restricted to the policies written within
SELINKS framework; and therefore, it does not take into
account the existing policies in the database. Furthermore,
the data in the database may be vulnerable to unauthorized
access because the database does not necessarily enforce
the security policies intended by the application. To support
fine-grained access control over sensitive data, Oracle in-
troduced Oracle Label Security (OLS) technology, starting
from Oracle 8i. However, there has been no previous work to
incorporate this technology into the application framework.
In this paper, we discuss how OLS security policies can be
encoded in SELINKS and enforced between the applica-
tion and the database. We have implemented an extension of
current SELINKS, called Cross-tier Oracle Label Security
(XTOLS), that provides a secure and extensible program-
ming environment to programmers.

1. Introduction
Prior work on SELINKS[4] has shown that some security
policies can be enforced across different tiers of a sys-
tem. This idea of cross-tier enforcement has been addressed
only recently in the database and programming language
communities. Consequently, programmers could not reason
about the security policies once the data has been stored
into the database. SELINKS alleviates this problem by as-
sociating labels with sensitive data and compiling policy
functions into user-defined functions (UDFs) that reside in

Technical Report CS-TR-4934, Department of Computer Science, University of Mary-
land, College Park, April 2009.

the database. This allows SELINKS applications to enforce
security policies when querying data from the database. Fig-
ure 1 explains how the query (written in SELINKS) is pro-
cessed in the DBMS, using user-defined functions.

Unfortunately, this cross-tier policy enforcement is lim-
ited to the policies written within SELINKS framework be-
cause the generated PL/SQL functions are only invoked by
SQL queries generated from SELINKS code. In other words,
other applications (not written in SELINKS) may access the
data in the database directly (not via SELINKS framework)
and violate the security policy. This may not be a problem
and even manageable if the domain of the whole system
is relatively small and administered by a single person or
a small trusted group. However, in the environments where
high security is critical or the domain of the system is large,
this is definitely not desirable—e.g., in the Department of
Defense.

To accommodate such environments in a DBMS, Oracle
supports two exceptional technologies—Virtual Private Data
(VPD)[2] and Oracle Label Security (OLS)[1], starting from
Oracle 8i and Oracle 9i, respectively. Both allow more fine-
grained access control than most DBMSs that offer only a
discretionary access control (DAC), which enforces security
policies based on the ownership of data[6][5]. DAC cannot
enforce user dependent security policies because, for exam-
ple, two owners of a data may disagree on granting a privi-
lege to a third person. Thus, it becomes difficult to manage
security policies among the users, especially as the size of
data and the number of users increase.

In contrast, VPD and OLS technologies provide multi-
level security which is closely associated with mandatory
access control (MAC)[7], meaning that each data is specified
with the least privilege a user needs in order to access the
data. OLS technology, in particular, is implemented on top of
VPD and provides extensive and flexible label based access
control. Therefore, it is suitable for government and defense
applications[8]. We only discuss OLS in this paper due to
the time constraints.

Although SELINKS supports the cross-tier security en-
forcement using UDFs, it is impossible to integrate OLS into
the SELINKS framework without writing the corresponding

Figure 1. Cross-tier, labeled-based security enforcement in
SELINKS

policy functions. It is still possible to enforce identical poli-
cies within the SELINKS framework with the former method
since it is capable of enforcing a superset of OLS policies.
However, using this method, SELINKS cannot take into ac-
count the existing labels (both data and user) and label com-
ponents because it is about compiling SELINKS policy func-
tions into UDFs, not vice versa. Furthermore, there is no se-
curity policy defined in the database itself, and therefore, any
direct access to the database may violate the security policy.
Since OLS already provides a flexible environment for en-
forcing security in the database, it is worthwhile to look at
how application can integrate OLS into its framework.

In this paper, we discuss OLS technology and present an
extension to SELINKS, called XTOLS, which involves with
some modifications to SELINKS language and writing APIs
for SELINKS programmers. We also show the results of our
experiment, comparing with the results from the previous
work and discuss the challenges and future improvements.

2. Overview
We first describe the fundamental idea of OLS, along with
some examples to show how a database administrator would
setup OLS for sensitive data. Next we explain how SELINKS
would incorporate OLS security policies into the framework
and discuss the implementation detail of the library for OLS
in the next section.

2.1 Oracle Label Security
OLS is a transparent access mediation between users and
sensitive data in Oracle Database, meaning that a user obtain
information based on her authorization without the knowl-
edge of the existence of OLS. The database administrator
defines a set of OLS data labels and associates each row of a
table with exactly one label. Note that this causes the table to
have an additional column, which can be hidden or shown to

users depending on the context. The database administrator
also grants appropriate privilege, called a user label, to each
user who has access to that particular table. It is important
to distinguish discretionary access control (DAC) from OLS
multilevel access control, which is closely associated with
mandatory access control (MAC). In this paper, we assume
that the readers are already familiar with these terms for sim-
plicity. To the best of our knowledge, the latter is only sup-
ported by Oracle Database whereas the former has been sup-
ported by most DBMSs including Oracle Database.1 We first
look at the label components and next discuss how each label
is defined. Lastly, we describe some of OLS access control
policies in more detail.

2.1.1 Label Components
An OLS label consists of three components: levels, compart-
ments, and groups. Each component is internally stored as a
tuple of a long form, a short form, a numeric value (and a
parent group in the case of groups). In this section, however,
we simply use the long form to represent each component.
The following bullets describe the three dimensions in more
detail:

• Levels indicate the level of sensitivity of the information
where a greater number implies a greater sensitivity of
the label. For example, typical levels used in a business
environment are HIGHLY SENSITIVE, SENSITIVE, CON-
FIDENTIAL, and PUBLIC.

• Compartments represent the different areas of interest in
the institution such as the departments. Compartments
are also known as categories, as defined in Bell-La
Padula model[3]. Some examples of compartments are
FINANCIAL, MARKETING, and CHEMICAL.

• Groups identify the organizations that own or access the
data, and this set is optional. This is how OLS supports
DAC in a limited manner. Some examples are EASTERN
REGION, ER NEW YORK, and ER DC. Unlike compart-
ments, groups may be structured hierarchical, forming a
forest of directed acyclic graphs. For instance, ER NEW
YORK and ER DC are subordinates of EASTERN RE-
GION.

2.1.2 Data Labels
In OLS, each row of a sensitive database table has a label as-
signed to it as an additional column. Each data label consists
of a level, a set of compartments, and a set of groups. OLS
requires that the level is specified, but it does not require
other components. For example, a label may have a level but
no compartments may have been specified—in which case,

1 There has been a prior work on SEPostgreSQL and SELinux. However,
since this is an ad-hoc system configuration, we do not discuss them here.

any user who has authorization for specified level may ac-
cess the data. We discuss OLS access control policies in Sec-
tion 2.1.4 in more detail.

For convenience, we formalize a data labelLd as a 3-tuple
〈v, C,G〉, where

• v is a level
• C is a set of compartments
• G is a set of groups

2.1.3 User Labels
The database administrator also assigns a set of labels, called
user labels, to each user, specifying the level, the set of
compartments, and the set of groups, for total six different
modes. For the purpose of presentation, however, we con-
sider only two labels—maximum read and minimum write.
Oracle uses the term, dominates, to indicate that the user la-
bel satisfies the components of the data label. As an example,
let us assume that user x has been assigned a label with level
set to CONFIDENTIAL, compartments set to {FINANCIAL},
and groups set to {ER NEW YORK}. The user x can access
any row with level set to CONFIDENTIAL or lower and the
compartments set to any subset of {FINANCIAL} that be-
longs to the group ER NEW YORK or a higher echelon. We
say that user label Lxu dominates data label Lαd if user x can
access the row α. However, he cannot access any data la-
beled with compartments set to {FINANCIAL, CHEMICAL}
even if the level of the data label is set to PUBLIC since the
compartments of the user label is not a superset of the com-
partments of the data label.

Again, we can formalize a user label Lu as a 3-tuple
〈v, C,G〉, where

• v is a maximum (minimum) level user u can read (write)
• C is a set of compartments user u associates with
• G is a set of groups user u belongs or has access to

2.1.4 Access Control Policies
OLS has read and write access control policies based on
the data label and the user label. It also supports special
privileges for users—READ, FULL, COMPACCESS, PRO-
FILE ACCESS, and more. Although we have taken into ac-
count these privileges for our implementation up to some
degree, we do not discuss them here for simplicity. Figure 2
shows two functions ReadAccess and WriteAccess which
determines whether the user label dominates the data label
or not. In other words, the user has read (or write) access to
the row if the corresponding data label Lr is dominated by
a user label Ls (that is, the formula is satisfied). Note that
/ refers to a subgroup relation—i.e., if g1 / g2 then g1 is a
subgroup (inclusive) of g2.

2.1.5 Example
Let us consider the following setting:

ReadAccess(Ld, Lu) =

(Ld[v] ≤ Lu[v]) ∧ (Ld[C] ⊆ Lu[C])∧
(Ld[G] = Ø ∨ ∃g∃g′. g ∈ Lu[G] ∧ g′ ∈ Ld[G] ∧ g′ / g)

WriteAccess(Ld, Lu) =

(Ld[v] ≥ Lu[v]) ∧ (Ld[C] ⊆ Lu[C])∧
(Lu[G] = Ø ∨ ∃g∃g′. g ∈ Lu[G]∧ g′ ∈ Ld[G]∧ g′ / g)

Figure 2. OLS access control policies for read and write

Lαd = 〈PUBLIC, {MARKETING},
{ER NEW YORK, ER BOSTON}〉

Lβd = 〈SENSITIVE, {FINANCIAL,CHEMICAL},
{WESTERN REGION}〉

Lxu = 〈CONFIDENTIAL, {MARKETING}, {ER NEW YORK}〉
Lyu = 〈SENSITIVE, {CHEMICAL}, {ER NEW YORK}〉

where α and β are table rows and x and y are OLS users.
Two examples of access control policy results are as the
following:

ReadAccess(Lαd , L
x
u) = true

WriteAccess(Lαd , L
x
u) = false

ReadAccess(Lβd , L
y
u) = false

2.2 SELinks
This section explains why it is not sufficient to enforce OLS
only in the database for a web-based framework and why
using UDFs cannot suffice in some cases.

2.2.1 OLS without Cross-tier Enforcement
OLS guarantees that no labeled data is accessed by a user
whose user label does not satisfy the OLS policy. It is there-
fore legitimate to use OLS as a security enforcement for
reading (writing) data from (to) the database, but the poli-
cies become useless once the data is read and remain in the
SELINKS framework. For instance, it is possible that an ap-
plication writes some of the retrieved data to an external stor-
age such as a file or sends the data over the network. In this
case, it is inevitable that we encode OLS security policies
into SELINKS policy functions to prohibit any unauthorized
tasks within the framework, which is our main contribution
in this paper.

Of course, it is up to the policy writer (the trusted
SELINKS administrator) whether to extend OLS policy
functions to meet different criteria or not. It is, however, not
desirable to violate the original OLS policy, especially if the
data is written back to the database. For example, consider
the following SELINKS code snippet:

var hdl =
table ”Table1”
with (id : Int , description : String , label : Int)
from (database ” orcl ”);

for (var row ← hdl) { [row] };

This code connects to the database orcl and performs a
select query on Table1. Because the table is labeled using
OLS, only appropriate rows will be returned to the applica-
tion based on the current user profile. The result of executing
this code is a list of rows, which can be accessed without any
policy code since they are not labeled. If a user programmer
maliciously or mistakenly modifies any of the data and store
it to a file, for example, the security policy would be violated
once some other user accesses the data in the file without any
security enforcement. Thus, it is important to detect such in-
formation flow even in the SELINKS framework. Further-
more, if the original user modifies one of the returned rows
to have a level lower than his user label’s minimum write
level, the database will not process the query and send back
an error message. In the latter case, we may assume that it
is permissible to do so, but it is clearly desirable to issue a
warning in the event of such an unauthorized action as early
as possible—e.g., before the query is sent to the database.

2.2.2 Using UDFs
The cross-tier security label enforcement using UDFs, as in-
troduced in [4], already has the capability to encode OLS
policies within the SELINKS framework. This is possible
because SELINKS can theoretically enforce a superset of the
OLS security policies. As we mentioned before, however,
the policy writer still has to provide policy functions that
correspond to the OLS policies. Thus, by defining OLS poli-
cies in SELINKS beforehand, the policy writer can save his
time. Some may argue that we can use the existing SELINKS
code that reflects the OLS security policies. However, it is
not possible to recognize an arbitrary SELINKS code that
correspond to OLS (an undecidable problem). Furthermore,
it is not desirable to use the method without the OLS security
policies enforced in the database because any direct access
to the database may violate the intended security policy.

Recall that we cannot simply prohibit users from access-
ing the table or the database since this kind of protection
mechanism cannot enforce multilevel security. The reason
OLS is used in the first place is that the multilevel secu-
rity is preferred to DAC. For example, the government can

hire a database administrator to dispense some SECRET data,
which suggests that we must not allow him to access TOPSE-
CRET data. However, we cannot enforce such policy using
just DAC because DAC controls data ownership, not data
sensitivity. This clearly explains that the use of OLS is criti-
cal in some environments.

2.3 XTOLS
In this section, we describe the architecture of XTOLS,
which is composed of a library package and an extension
to the SELINKS language. Figure 3 shows the overview
of XTOLS architecture, which also depicts the interactions
with Oracle DBMS and OLS. To assure the safety guaran-
tees in the SELINKS framework, XTOLS first verifies each
table definition—that is, it checks whether or not any labeled
table is defined as if it is not labeled. More detail on this is-
sue is discussed in Section 2.3.1. Once the table definitions
are verified, we must collect the set of label components and
data labels defined in the database for convenience and effi-
ciency. This is explained in Section 2.3.2. Figure 4 illustrates
the execution steps of the XTOLS framework.

Figure 3. OLS security enforcement in SELINKS frame-
work

2.3.1 Table Checker
SELINKS requires that each database table used is statically
defined—that is, the user programmers must annotate each
table with its schema if the table is used in the code. This is
because LINKS cannot infer types for tables. Unfortunately,
this makes our safety guarantee to not hold true since any-
one can maliciously define a table and obtain the rows from
the database as not labeled. Some can argue that this is not
an issue because the data returned from the database is ac-
cessible from that user anyway. However, the purpose of en-
coding OLS policies in SELINKS is to guarantee the same

Figure 4. Execution steps of a XTOLS application after
parsing.

safety for the sensitive data throughout different tiers of the
system, not just between the database and the server appli-
cation. Therefore, it seems inevitable that SELINKS verifies
every table definition to see whether the table rows are la-
beled by OLS or not. Once this is done, no user programmer
can maliciously or mistakenly define a labeled row as not
labeled.

2.3.2 Labels and Label Components
Encoding the OLS policies in SELINKS is a straight-forward
task because the algorithms for various policies are de-
scribed in [9], some of which we conveniently translated
into first order logic in Section 2.1.4 for the purpose of pre-
sentation. In order to write efficient policy functions, we
must first transform actual user labels and data labels into
convenient forms since they are stored as database tables in
unnormalized form. To do this, we initially obtain the set
of label components (levels, compartments, and groups) and
the set of data labels. Recall that the data labels must be
defined prior to their usage, and therefore, an arbitrary data
label cannot be used when inserting or updating a row (we
will explain why it must be defined first in a moment). Be-
cause of this, we assume that no label is created, updated, or
deleted outside SELINKS framework.2 We also assume that
the policy writer always writes correct policy functions—
that is, the policy functions correctly encode the intended
security policies, which is essential to prove the safety guar-
antee in FABLE, the underlying type system for SELINKS
security enforcement[10].

Once the label components are retrieved from the database,
it is up to the policy writer’s design decision whether or not

2 It is possible to verify changes in OLS labels or label components, but it
may be inefficient due to frequent runtime checks. Therefore, this concern
is outside the scope of this paper.

to make that information public to user programmers (or
users). For the purpose of presentation, we always reveal the
label components and data labels in this paper. Notice that
this is not a critical issue because data can labeled and unla-
beled only via policy functions, which are correctly written
exclusively by the policy writers. The label components are
stored as tables, each of which represent one kind of label
component, and in default, can be accessed only by the sys-
tem administrators and the label security administrators. At
this initial stage, SELINKS accesses the database as a label
security administrator, and therefore, can access all the label
information.

The data labels are also retrieved from the database and
maintained throughout the SELINKS framework. The pri-
mary reason for doing so is because the tags used to label
sensitive data in the database are numeric values of the ac-
tual labels rather than pointers to actual labels. Because the
numeric values are pre-defined by a label security adminis-
trator, we cannot use arbitrary label tags in the first place.
Each (actual) data label stores the label information using a
single string where each kind of component is delimited us-
ing ‘:’. For example, “A::B,C::D” would refer to a label that
has the level set to A, the compartments set to {B,C}, and
the groups set to {D}. In order to process labels more effi-
ciently, we converts this attribute into a record type whose
attributes are level, compartments, and groups. The user la-
bel is also retrieved, and the attributes are normalized for ef-
ficient process. Unlike data labels, however, we only retrieve
one user label at a time after an appropriate authentication.

3. Implementation
In this section, we describe our prototype of XTOLS, which
is implemented as library functions and as an extension to
the SELINKS language. First, we explain how we modified
SELINKS preprocessor to extend the language to provide
syntax for OLS-related operations and to verify table defi-
nitions. Next, we present our implementation of OLS API
for SELINKS.

3.1 The Language Extension
As mentioned before, it is necessary to verify table defi-
nitions to see whether any definition violates security pol-
icy or not. To do so, we extend the SELINKS language
so that user programmers (or policy writers) can define ta-
bles accordingly. In other words, they must define a nor-
mal table (not labeled) using the conventional table syn-
tax and define a labeled table using a newly introduced syn-
tax, olsdefine. We also support olsquery to replace for
loop of a table handle (which basically gets converted into a
select query). Instead of modifying SELINKS parser, we
added an additional task in the SELINKS preprocessor to
support these constructs. Although this works perfectly, it

reduces the performance of the application dramatically. At
this point, we have not attempted to modify the actual parser
since it is very tricky to understand LINKS source code. The
table checker is not implemented due to the limitation of the
preprocessing. As it is done in [4], we assume that they are
correctly defined by policy writers and user programmers.

3.2 XOLS APIs
First, we define a set of SELINKS types that XTOLS li-
brary internally uses and provides to user programmers.
Figure 5 shows the actual type declarations for XTOLS
that correspond to various label components and labels.
Type names prefixed with OLS are record types that truly
reflects the schemas used by OLS, and ones with XTOLS
are converted (normalized) forms. For example, the type
XTOLSDataLabel consists of three attributes: policy name,
label, and label tag. Unlike its dual type OLSDataLabel,
it has not only the label tag but also a label, which is
a 3-tuple of label components—level, compartments, and
groups. This helps XTOLS process labels and label compo-
nents efficiently because we do not have to compute the label
based on the tag every time a label needs to be evaluated.

Second, we provide functions to convert OLS types into
some XTOLS internal representation—that is, from OLS
types to XTOLS types. As already discussed in Section 2.3.2,
all of the data labels and the user label are normalized for
convenience. Of course, we assume that SELINKS has full
privileges on the necessary tables that contain OLS infor-
mation. Finally, we provide policy functions for reading and
writing the labeled data. XTOLS library package consists
of many policy functions but user programs can only access
read and write functions whereas policy programs may in-
voke any functions for extended security policies. Of course,
it is the policy writer’s design decision to extend these or
even prohibit user code from invoking these functions di-
rectly.

4. Experimental Results
We ran our implementation on the same test case and query
used in [4] with the same configuration—Intel Quad Core
Xeon 2.66 GHz with 4 GB of RAM running Red Hat En-
terprise Linux AS 4. The DBMS used is Oracle 11g Release
1 with Oracle Label Security component installed. The test
case was automatically generated 1,000 rows, each of which
has an associated label. Since we are using OLS, not the user
defined types, we had to define the seven possible labels used
in the test case in OLS (recall that all labels must be defined
prior to use). We also had to change the actual labels used
in the test case to be numbers, instead, to refer to the actual
label. Figure 6 shows the results of our experiment with the
fourth column showing the results using UDFs.

1 # types used for native OLS and XTOLS
2 typename Level = (policy name:String , level num: Int ,
3 short name:String , long name:String);
4 typename Compart = (policy name:String, comp num:Int,
5 short name:String , long name:String);
6 typename Group = (policy name:String, group num:Int,
7 short name:String , long name:String ,
8 parent num:Int , parent name:String
9);

10
11 # types used for XTOLS
12 typename XTOLSLabel =
13 (level : Level , comparts:[Compart], groups :[Group]);
14 typename XTOLSDataLabel =
15 (policy name: String , label :OSLabel, label tag : Int);
16 typename XTOLSUserLabel = (
17 user name:String ,
18 policy name: String , max read:OSLabel, max write:OSLabel,
19 min write :OSLabel,
20 def read :OSLabel, def write :OSLabel, def row:OSLabel
21);
22 typename XTOLSUserPriv = (
23 user name:String , policy name: String ,
24 read:Bool, full :Bool, comp access:Bool, profile access : Bool,
25 write up :Bool, write down:Bool, write across :Bool
26);
27 typename XTOLSUserInfo =
28 (label :OSUserLabel, privilege :OSUserPriv);
29 typename XTOLSUser = (l<−OSUserInfo, String{l});
30 typename TupleOfComps =
31 (levels :[Level], comparts:[Compart], groups :[Group]);
32
33 # types used for native OLS
34 typename OLSDataLabel =
35 (policy name: String , label : String , label tag : Int);
36 typename OLSUserLabel = (
37 user name:String , policy name: String ,
38 label1 : String , label2 : String , label3 : String ,
39 label4 : String , label5 : String , label6 : String
40);
41 typename OLSUserPriv =
42 (user name:String , policy name: String , user privileges : String);
43 typename OLSLabeledRow(a) = (label col:Int | a);

Figure 5. Types defined in SELINKS for labels and label
components.

Surprisingly, using XTOLS was much slower than using
UDFs. Our preliminary interpretation of the results is that
SELINKS parsing phase is very slow; and therefore, parsing
all the library functions in XTOLS dramatically increases
the execution time. We believe that once SELINKS supports
more advanced modular programming interface, this prob-
lem will eventually disappear. Another interesting observa-
tions is that running the actual XTOLS code turned out to
be a really slow task as well. The last row of the results ta-
ble shows the time it took to retrieve the data and not read
it, which turned out to be approximately four times faster.
This is, however, one of the consequences that XTOLS users
must face in order to satisfy the safety guarantee.

Tiers Operations XTOLS(s) UDFs(s)
Server Query & Unlabel 5.036 0.15
DB & Server Query & Unlabel 2.764 0.04
DB & Server Query 0.726 N/A

Figure 6. Experimental Results (means of 5 runs)

We estimated that most of these performance issues
would go away once the test case is very large. Unfortu-
nately, the second test case used in [4], which consists of
100,000 rows, causes current SELINKS implementation to
crash with a stack overflow exception. We are, however, op-
timistic that the results will be much better in near future as
SELINKS support modular programming and larger mem-
ory space.

5. Conclusion and Future Work
This paper presented XTOLS, an extension of SELINKS
that allows enforcing OLS security policies in multiple tiers.
While the previous approach using UDFs generalizes the
cross-tier security enforcement for all databases, it is not
able to incorporate existing security policies such as OLS.
XTOLS architecture is designed to provide a reasonable
programming interface to SELINKS programmers and to
guarantee the safety property for applications written in
SELINKS that need to interact with OLS. We have shown
that it is not difficult to encode OLS in SELINKS, but it re-
quires some language support such as syntax changes and
table checker. The results also show that the performance
may be an issue, but we believe most of the causes are from
the LINKS parser and its inability to support modular pro-
gramming. Despite the drawbacks, XTOLS guarantees the
safety guarantee across the different tiers of the system. We
believe that, in near future, the performance and reliability
issues will eventually fade away as SELINKS becomes a
more robust framework that supports native modular pro-
gramming and new language constructs for OLS.

It is also worth mentioning that encoding more features
of OLS in SELINKS is an interesting future work on this
topic. For example, it is possible to associate each database
table with a UDF (or predicate) in addition to a label column
(this is how VPD works as well). The UDF will be invoked
as a query that is processed on a particular table, taking into
account the user context of current session. We can encode
such policies in SELINKS as a function that takes the user
profile as an argument and returns a boolean. This is possible
since SELINKS is a functional language—i.e., it supports
first-class functions.

References
[1] Oracle label security. http://www.oracle.com/database/label-

security.html.

[2] Virtual private database. http://www.oracle.com/technology/deploy/security/database-
security/virtual-private-database/index.html.

[3] E. D. Bell and L. J. LaPadula. Secure computer systems:
Unified exposition and multics interpretation, 1976. MITRE
Corporation.

[4] B. J. Corcoran, N. Swamy, and M. Hicks. Cross-tier, label-
based security enforcement for web applications. ACM
SIGMOD, June 2009. To appear.

[5] G. S. Graham and P. J. Denning. Protection—principles
and practices. In Proceedings of the Spring Joint Computer
Conference. AFIPS Press, 1972.

[6] B. W. Lampson. Protection. In Proceedings of the 5th
Princeton Symposium on Information Science and Systems,
volume 8. ACM Operating Systems Review, January 1974.

[7] T. F. Lunt and E. B. Fernandez. Database security. ACM
SIGMOD RECORD, 19(4), December 1990.

[8] Oracle. Oracle label security: Best practices for government
and defense applications. An Oracle White Paper, June 2007.

[9] Oracle Corporation. Oracle Label Security: Administrator’s
Guide, 10g release 1 (10.1) edition. Part No. B10774-01.

[10] N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A language
for enforcing user-defined security policies. In 2008 IEEE
Symposium on Security and Privacy. IEEE Computer Society
Press, 2008.

