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Abstract

Background: Synthetic genetic interactions have recently been mapped on a genome scale in the budding yeast
Saccharomyces cerevisiae, providing a functional view of the central processes of eukaryotic life. Currently,
comprehensive genetic interaction networks have not been determined for other species, and we therefore sought
to model conserved aspects of genetic interaction networks in order to enable the transfer of knowledge between
species.

Results: Using a combination of physiological and evolutionary properties of genes, we built models that
successfully predicted the genetic interaction degree of S. cerevisiae genes. Importantly, a model trained on S.
cerevisiae gene features and degree also accurately predicted interaction degree in the fission yeast
Schizosaccharomyces pombe, suggesting that many of the predictive relationships discovered in S. cerevisiae also
hold in this evolutionarily distant yeast. In both species, high single mutant fitness defect, protein disorder,
pleiotropy, protein-protein interaction network degree, and low expression variation were significantly predictive of
genetic interaction degree. A comparison of the predicted genetic interaction degrees of S. pombe genes to the
degrees of S. cerevisiae orthologs revealed functional rewiring of specific biological processes that distinguish these
two species. Finally, predicted differences in genetic interaction degree were independently supported by
differences in co-expression relationships of the two species.

Conclusions: Our findings show that there are common relationships between gene properties and genetic
interaction network topology in two evolutionarily distant species. This conservation allows use of the extensively
mapped S. cerevisiae genetic interaction network as an orthology-independent reference to guide the study of
more complex species.

Background
Most genes are not essential for eukaryotic life under
standard laboratory conditions, which may reflect that
organisms are highly buffered from genetic and environ-
mental perturbations [1]. However, rare combinations of
singly benign genetic variation can lead to synergistic
effects, such as synthetic lethality, where mutations in
two genes, neither of which is lethal independently, com-
bine to generate an inviable double-mutant phenotype
[2]. Because natural variations that distinguish two peo-
ple occur relatively frequently [3] and complex genetic
interactions may underlie most individual phenotypes

[1], understanding the general principles that govern
genetic networks may be critical for solving the geno-
type-to-phenotype problem and implementing personal
medicine [4].
Recently, we tested approximately 5.4 million Sacchar-

omyces cerevisiae gene pairs for genetic interactions,
mapping an extensive network of more than 100,000
interactions by synthetic genetic array (SGA) analysis [5].
The study discovered both negative genetic interactions,
instances in which a double mutant exhibits a more
extreme phenotype than the expected combined effect of
the single mutants, as well as positive genetic interac-
tions, instances in which a double mutant exhibits a less-
pronounced phenotype than expected [6]. This study
revealed the distribution of genetic interactions with
respect to gene function, highlighting a central role for
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chromatin-related, transcription, and secretory functions.
Additionally, it identified several fundamental physiologi-
cal and evolutionary gene properties that are significantly
correlated with genetic interaction degree in the S. cerevi-
siae genetic interaction network [5]. For example, we
showed that the genetic interaction degree of a gene is
highly correlated with single mutant fitness, such that
genes with a substantial fitness defect show a large num-
ber of genetic interactions.
While genetic interactions have been the most exten-

sively studied in the yeast S. cerevisiae, there is intense
interest in developing and applying large-scale screening
technologies in other species. For example, large studies
have already been completed in Escherichia coli [7,8],
Schizosaccharomyces pombe [9,10], Caenorhabditis ele-
gans [11,12], Drosophila melanogaster [13,14], and
human cell lines [15-17]. Although definitive comparative
analysis of these networks across species would be pre-
mature given the sparsity of known interactions in spe-
cies other than S. cerevisiae, there have been preliminary
comparative studies. In particular, the yeast S. pombe
provides an attractive setting for this analysis due to the
availability of a genome-wide deletion mutant collection
[18] and scalable technology for automated genetic analy-
sis [2]. Furthermore, S. cerevisiae and S. pombe are esti-
mated to have diverged approximately 500 million years
ago and display markedly different physiological proper-
ties [19] but share 75% of their gene content [19,20]. The
two comparative studies to date estimated approximately
30% conservation of individual negative genetic interac-
tions, but also found substantial differences between the
two species [21,22]. These studies demonstrate the power
and necessity of comparative analysis of genetic interac-
tion networks, but have conducted only limited sampling
of genetic interactions in S. pombe. The properties of
these networks that are conserved across species and the
rules governing their evolution remain largely open ques-
tions, making further characterization of the evolution of
genetic interaction networks important.
In this study, we build predictive models capturing the

relationship between gene properties and genetic inter-
action network connectivity, demonstrating that a small
set of properties can accurately predict degree in the
S. cerevisiae genetic interaction network. We show that
models built from the genome-scale S. cerevisiae genetic
interaction network also successfully predict genetic
interaction degree of S. pombe genes, the vast majority
of which have not previously been screened for interac-
tions. Finally, we use our model to predict differences
between the S. pombe and the S. cerevisiae networks,
some of which may be reflective of functional rewiring
and physiological differences between the species, and
show that these differences are independently supported

by the divergence of co-expression networks based on
comparative analysis of gene expression.

Results and discussion
Modeling interaction degree in the S. cerevisiae genetic
interaction network
Highly connected genes in the S. cerevisiae genetic interac-
tion network are often associated with slow-growing single
mutants, protein products with disordered structure, gene
pleiotropy as indicated by multiple Gene Ontology (GO)
annotations, high connectivity in the physical interaction
network, slower rates of evolution, and low expression var-
iation (Figure 1a; Materials and methods) [5], as well as a
number of other sequence- and experimental-based gene
features (Table 1). We reasoned that these correlations
could serve as the basis for predictive modeling of interac-
tion degree, enabling the prediction of interaction degrees
for genes that have not yet been screened.
To this end, we applied a regression tree approach to

model combinations of 16 gene features that are predic-
tive of negative genetic interaction degree (Figure 1b).
Regression trees are built by repeatedly splitting sets of
training genes, according to the values of gene features,
until genes are sorted into small sets that each contain
genes with similar genetic interaction degrees. The hier-
archy of gene sets produced is visualized as a binary tree
and the final sets of genes are each associated with linear
regression models that assign predictions to query genes
(Figure 1b). Bootstrapped subsets of the training data
were used to build an ensemble of regression trees; this
use of multiple models, bootstrap aggregation, is a typical
method for building a robust predictive model [23]
(Materials and methods).
To validate our approach, we used our model to predict

negative genetic interaction degree for all genes in the S.
cerevisiae genetic interaction network (Figure 1c; Materi-
als and methods). A high correlation (r = 0.80, P < 10-324)
was observed between predicted and actual genetic inter-
action degrees of genes not used in training the models,
indicating that our model accurately reflects topological
features of the S. cerevisiae genetic interaction network
(Figure 1c). A strength of this type of model, in addition
to providing degree predictions for previously unseen
genes, is that the learned tree structures highlight rules
consisting of combinations of gene features that explain
variation in degree (Figure 1b).

Predicting genetic interaction degree in a distantly
related species
If the rules governing genetic network topology are con-
served, then a model based on S. cerevisiae gene features
should be predictive of genetic interaction degree in
other organisms. To test this, we examined the same

Koch et al. Genome Biology 2012, 13:R57
http://genomebiology.com/2012/13/7/R57

Page 2 of 15



C
or

re
la

tio
n 

be
tw

ee
n 

fe
at

ur
e 

an
d 

ne
ga

tiv
e 

ge
ne

tic
 in

te
ra

ct
io

n 
de

gr
ee

SM fit
ne

ss
 de

fec
t

Mult
ifu

nc
tio

na
lity

PPI d
eg

ree

Diso
rde

r

Cop
y n

um
be

r

Exp
res

sio
n v

ari
ati

on
dN

/dS

(a)

Yea
st 

co
ns

erv
ati

on

degree: 

Gene features

Degree predictions

(b)
A

ct
ua

l n
eg

at
iv

e 
ge

ne
tic

 in
te

ra
ct

io
n 

de
gr

ee

Predicted negative genetic interaction degree

(c)

Figure 1 Physiological and evolutionary gene features are predictive of genetic interaction degree. (a) Gene features are significantly
correlated with negative genetic interaction degree. We measured the Pearson correlation coefficients between gene feature values and
negative genetic interaction degree for 3,456 non-essential S. cerevisiae genes. Error bars show 95% confidence intervals. A complete set of
features and their correlations is given in Table 1; see Materials and methods for descriptions of gene features. (b) Overview of the regression
tree model for genetic interaction degree. An ensemble of 100 decision trees was built from bootstrap samples of genes. Combinations of
values of features are represented as paths from the root to the leaves of a tree. Internal nodes each split data (sets of genes) according to
values for a single feature; leaf nodes are associated with predicted genetic interaction degrees. (c) Scatter plot of negative genetic interaction
degree and degrees predicted by the bagged decision tree model on held-out genes shows the significant relationship between predicted and
actual degrees (Pearson’s r = 0.80, P < 10-324). FD, fitness defect; PPI, protein-protein interaction; SM, single mutant.
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gene features of S. pombe genes that we found to be
predictive of S. cerevisiae interaction degree, including a
quantitative measurement of single mutant fitness
defects across the genome (Materials and methods). Sur-
prisingly, comparative analysis of the various features
between pairs of orthologs revealed that a number of
non-sequence-based features are only modestly con-
served between the two yeast species [24] (Figure 2a;
Materials and methods). For example, we found a signif-
icant but relatively weak correlation in single mutant fit-
ness (Pearson’s r = 0.20, P < 10-8) between 1,100 one-
to-one orthologous gene pairs for which we could derive
fitness measurements in both yeasts. The lack of strong
conservation of deletion mutant fitness is somewhat sur-
prising given that approximately 80% of S. pombe ortho-
logs of S. cerevisiae essential genes have conserved
essentiality [18]. Thus, while S. cerevisiae and S. pombe
share a common set of genes that are indispensable for
viability, our findings suggest that the severity of fitness
defects imposed by the deletion of orthologous non-
essential genes for growth under standard laboratory
conditions is not well conserved. Other gene properties,
including protein-protein interaction degree, dN/dS, and
multifunctionality, exhibit a similar lack of conservation
(Figure 2a).
Despite the low conservation of single mutant fitness

and the varying correlations between individual gene prop-
erties for orthologs, we found that relationships between
S. pombe gene features and genetic interaction degree
were strikingly similar to those observed in S. cerevisiae
(Figure 2b, Table 1). Consistent with S. cerevisiae trends
(Figure 1a, Table 1), fitness defect was the strongest pre-
dictor of S. pombe genetic interaction degree. That is,
S. pombe strains with severe fitness defects often exhibit
high numbers of genetic interactions. The observed trends
suggested that in addition to correlation with individual
gene features, higher-level combinations of features that
are predictive of connectivity in the S. cerevisiae genetic
interaction network [5] (Figure 1a) may also be informa-
tive of S. pombe genetic interaction degree.
To test this hypothesis, we built a predictive model

relating the combination of available gene features to
genetic interaction degree in S. cerevisiae and then
applied the resulting model to predict genetic interac-
tion degree in S. pombe (Materials and methods). Inter-
estingly, we observed significant correlation (r = 0.51,
P < 10-36) between interaction degree predicted by our
model and the number of interactions previously deter-
mined [10] for 548 S. pombe genes (Figure 2c, left side,
light blue bar).
Our ability to predict genetic interaction degree from a

small set of gene-specific properties is evidence that rules
governing genetic interaction network topology are con-
served across a large evolutionary distance (Figure 2c).

Table 1 Pearson correlations between features and
negative genetic interaction degree in S. pombe (pom)
and S. cerevisiae (cer) are observed to be significant in
many cases

Pearson’s r P-value 95% CI

SM fitness defect

pom 0.48 9.90E-31 [0.41, 0.54]

cer 0.75 0.00E+00 [0.77, 0.74]

Multifunctionality

pom 0.3 1.01E-12 [0.22, 0.37]

cer 0.26 4.52E-53 [0.29, 0.23]

Conservation

pom 0.07 1.06E-01 [-0.01, 0.15]

cer 0.16 7.11E-21 [0.19, 0.13]

Broad conservation

pom 0 9.30E-01 [-0.09, 0.08]

cer 0.16 9.90E-19 [0.19, 0.12]

PPI degree

pom 0.2 5.84E-03 [0.06, 0.33]

cer 0.15 1.49E-19 [0.19, 0.12]

Expression level

pom -0.05 2.42E-01 [-0.13, 0.03]

cer 0.11 7.40E-10 [0.14, 0.08]

Disorder

pom 0.13 3.05E-03 [0.04, 0.21]

cer 0.11 1.91E-10 [0.14, 0.08]

Codon Adaptation Index

pom -0.02 6.49E-01 [-0.1, 0.06]

cer 0.09 1.91E-07 [0.12, 0.06]

Protein length

pom 0 9.18E-01 [-0.08, 0.09]

cer 0.05 3.57E-03 [0.08, 0.02]

Co-expression degree

pom 0 9.38E-01 [-0.08, 0.09]

cer 0.05 3.75E-03 [0.08, 0.02]

Number of domains

pom -0.01 7.37E-01 [-0.1, 0.07]

cer 0.01 4.54E-01 [0.05, -0.02]

Number of unique domains

pom -0.02 6.86E-01 [-0.1, 0.07]

cer 0.01 6.98E-01 [0.04, -0.03]

Nc

pom -0.01 7.56E-01 [-0.1, 0.07]

cer -0.08 2.95E-06 [-0.05, -0.11]

dN/dS

pom -0.05 2.48E-01 [-0.14, 0.04]

cer -0.11 1.58E-09 [-0.07, -0.14]

Copy number

pom -0.08 5.26E-02 [-0.17, 0]

cer -0.12 1.01E-11 [-0.08, -0.15]

Expression variation

pom -0.15 4.11E-04 [-0.23, -0.07]

cer -0.18 3.87E-27 [-0.15, -0.21]

CI, confidence interval; PPI, protein-protein interaction; SM, single mutant

Koch et al. Genome Biology 2012, 13:R57
http://genomebiology.com/2012/13/7/R57

Page 4 of 15



Cop
y n

um
be

r
CAI

Nc

Mult
ifu

nc
tio

na
lity

Exp
res

sio
n l

ev
el

Num
 of

 do
main

s

Exp
res

sio
n v

ari
ati

on

Coe
xp

res
sio

n d
eg

ree

SM fit
ne

ss
 de

fec
t

dN
/dS

PPI d
eg

ree

C
or

re
la

tio
n 

be
tw

ee
n 

S
. p

om
be

an
d

S
. c

er
ev

is
ia

e 
or

th
ol

og
s

(a)

Predicting S. pombe degree Predicting S. cerevisiae degree 

(c) Cross-species, All genes
Cross-species, Species-specific genes
Within-species, All genes

Ortholog’s degree

C
or

re
la

tio
ns

 b
et

w
ee

n 
fe

at
ur

es
 a

nd
 g

en
et

ic
 in

te
ra

ct
io

n 
de

gr
ee

Mult
ifu

nc
tio

na
lity

PPI d
eg

ree

Diso
rde

r

dN
/dS

Cop
y n

um
be

r

Exp
res

sio
n v

ari
ati

on

Yea
st 

co
ns

erv
ati

on

SM fit
ne

ss
 de

fec
t

(b)
S. pombe
S. cerevisiae

Figure 2 Cross-species analysis of the predictive model for genetic interactions. (a) Pearson correlations between one-to-one S. cerevisiae
and S. pombe orthologs for their values of gene features. Note that a number of features are sequence-based and are thus not independent of
the sequence-based ortholog identification; features that appear to have trivial correlations are not included here. Error bars show 95%
confidence intervals. (b) Pearson correlations between features and degree in S. pombe are observed to be significant in many cases and similar
to those in S. cerevisiae. A complete set of features and their correlations is given in Table 1; see Materials and methods for descriptions of gene
features. Error bars show 95% confidence intervals. (c) Predictive abilities of bagged regression tree models were evaluated by measuring
Pearson correlations between predicted and actual degrees. The left set of bars shows the performance of predictions made for approximately
550 S. pombe genes and the right set of bars shows the performance of predictions made for all non-essential deletion mutants in S. cerevisiae.
For each scenario, models were trained both on data from the same species (red bar) as well as data from the other species (blue bars). The
light blue bars correspond to predicting degrees of all genes in the test species, while the dark blue bars correspond to predicting degrees of
genes in the subset of genes lacking orthologs in the training species. Error bars show standard deviations of bootstrapped predictions. For a
baseline, the dashed line shows the correlation between observed degrees of one-to-one orthologous genes (a simple prediction method that
can be applied to only orthologs). CAI, Codon Adaptation Index; PPI, protein-protein interaction; SM, single mutant.
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Importantly, there is no significant decrease in correla-
tion between predicted and actual interaction degree
when predictions were restricted to genes unique to S.
pombe (Figure 2c, left side, dark blue bar), indicating that
the model performs equally well when applied to genes
lacking orthologs in the species used to learn relation-
ships in the model.
As a baseline comparison for our cross-species predic-

tive model, we built a model from S. pombe gene fea-
tures and genetic interaction degrees instead of from
S. cerevisiae data. Within-species predictions for
S. pombe interaction degrees are not significantly more
accurate than predictions made by the cross-species
model (Figure 2c, left side, compare red and light blue
bars). We also note that although a simplistic predictor
that maps the degree of a S. cerevisiae gene directly to
its S. pombe ortholog provides reasonable performance
(Pearson correlation approximately 0.4), this strategy is
out-performed by our cross-species model and is limited
to conserved genes. Strikingly, the models trained on
S. pombe interactions and features were also able to pre-
dict interaction degree in the S. cerevisiae network with
high accuracy (Figure 2c, right side, compare red and
light blue bars). In general, interaction degree predic-
tions for S. pombe genes were weaker than S. cerevisiae
interaction degree predictions, which may reflect the
limited functional diversity of available S. pombe genetic
interaction studies [9,10]. Nonetheless, the ability to pre-
dict interaction degree using features measured in either
yeast species is evidence that relationships between
genetic interactions and fundamental physiological and
evolutionary properties are generally conserved.
The strong correlation between single mutant fitness

defect and negative genetic interaction degree has the
unsurprising consequence that the models are consider-
ably influenced by this feature. To explore the reliance
of our model on fitness defect, we constructed two
types of bootstrapped regression tree models that were
trained on all features except fitness defect. The first of
these additional models is trained to predict negative
genetic interaction degrees and is able to successfully
make both within- and cross-species predictions (Figure
S1 in Additional file 1). The second model was trained
to predict the residual negative genetic interaction
degree that remained after subtracting degree predic-
tions made from a regression tree model that was
trained on the single feature single mutant fitness defect.
The prediction of these residuals by the remaining fea-
tures was also significant (Figure S2 in Additional file 1).
We therefore consider the inclusion of many other fea-
tures to be a worthwhile part of our model, since they
capture aspects of genetic interaction degree that fitness
defect alone does not.

Validating predictions with S. pombe whole-genome
screens
As an independent validation of our model, we con-
ducted genome-wide S. pombe genetic interaction
screens. Eight query gene-deletion mutants spanning
diverse cellular functions were crossed into an array of
2,907 non-essential S. pombe deletion mutants [2,18],
making approximately 23,000 double mutant strains
(Figure 3a; Materials and methods).
Consistent with our results for a published dataset

[22] (Figure 2c), we observed a significant correlation
(r = 0.40, P < 10-111) between the predicted number of
interactions and the total number of experimentally
derived interactions observed for a given array mutant
in this genome-wide deletion set. Grouping genes with
the same observed degree, we found that the distribu-
tions of our predictions were reflective of actual degrees
(Figure 3b). For example, the median degree percentile
predicted for genes with a degree of one was approxi-
mately 0.72, while the median prediction for genes with
zero interactions was approximately 0.42. Importantly,
the significance of the correlation was robust to the
choice of interaction cutoff and persisted for a higher-
confidence, sparser network (Materials and methods).

Identifying network rewiring suggested by cross-species
predictions
Although many individual genes are conserved, yeast
genetic interaction networks may have undergone sub-
stantial rewiring, as only approximately 30% of the inter-
actions are conserved [9]. Similarly, a low conservation of
genetic interactions has also been observed between
S. cerevisiae and C. elegans [25]. To examine the extent
of network rewiring, we first inferred interaction degrees
for the entire S. pombe genome using our cross-species
model. Because the predictions do not depend on
sequence orthologs (Figure 2a, c), they can be used to
compare the topologies of the S. cerevisiae and S. pombe
networks even though only a small fraction of the
S. pombe network has been screened.
We found several instances where the predicted interac-

tion degree for a given S. pombe gene was quite different
from the observed degree of its S. cerevisiae ortholog, sug-
gesting that the gene acquired or lost interactions differen-
tially as the species diverged. To identify larger functional
modules that were targets of this rewiring, we grouped
functionally related genes according to a catalog of 65
annotated protein complexes [6] and 545 GO biological
process annotations [26] (Materials and methods), and
compared the median interaction degrees determined for
orthologous protein complexes and functional groups
(Figure 4a; Figure S3 in Additional file 1). Many groups of
functionally related genes and several complexes were

Koch et al. Genome Biology 2012, 13:R57
http://genomebiology.com/2012/13/7/R57

Page 6 of 15



statistically indistinguishable in terms of network connec-
tivity, indicating that these modules act either as network
hubs in both species or non-hubs in both species.
However, we also identified many examples of possible

rewiring, in which a significant difference in network
connectivity, observed in S. cerevisiae and inferred in S.
pombe, was found for orthologous modules (Figure 4a;
Figure S3 in Additional file 1; Materials and methods).
These predicted-rewired groups represent complexes or
biological processes that may have evolutionarily
diverged in terms of their importance in the genetic
interaction network, acting as hubs in one species but
not in the other. In particular, we found that 11 of
65 (17%) protein complexes and 44 of 545 (8%) GO bio-
logical processes may have undergone significant rewir-
ing (Figure 4a; Figure S3 in Additional file 1) at a level of
significance expected to identify only 3 and 27 (5%)
rewired modules, respectively. For example, components
of the dynactin complex are hub genes in the S. cerevisiae
genetic interaction network (complex average of 85th
percentile; Figure 4a) whereas the orthologous genes
were predicted to exhibit average connectivity in the
S. pombe genetic interaction network (complex average
of approximately 50th percentile; Figure 4a). Dynactin, a
multi-subunit protein complex known for interacting
with dynein and enabling long-range movement along
microtubules (reviewed in [27]), has been implicated in a
S. cerevisiae cell cycle checkpoint pathway that arrests

cell cycle progression in response to perturbations in cell
wall synthesis [28]. A similar checkpoint has not been
reported in S. pombe, suggesting that the difference in
the number of genetic interactions observed across spe-
cies may reflect a dynactin-specific role in monitoring
S. cerevisiae cell wall integrity.
In addition to S. cerevisiae-specific genetic interaction

hubs, we also identified gene groups predicted to be hubs
in the S. pombe but not observed as such in the S. cerevisiae
genetic network. One such case is the calcineurin-
associated protein complex (Figure 4a). A difference in
network connectivity might reflect a unique role for calci-
neurin in the regulation of bi-polar growth activation in
S. pombe [29]. Unlike an S. cerevisiae cell, which grows pre-
dominantly via an actin-dependent budding mechanism, an
S. pombe cell grows in a highly polarized bi-polar manner
from its two ends. Following cell division, cell growth is
initiated from the old end first, and later, after completion
of S phase, from the newer end that forms at the site of cell
septation (referred to as new end take off, or NETO). Calci-
neurin has been shown to play an important role in the
delay of NETO by directly dephosphorylating critical tar-
gets involved in microtubule dynamics at the site of cell
growth. This mechanism is dependent on activation of
Cds1 kinase, best known for its role in the intra-S phase
DNA replication checkpoint [30]. A connection between
the intra-S phase checkpoint and inhibition of bipolar
growth activation is so far unique to S. pombe and distinct
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Figure 3 Observed genetic interactions between S. pombe genes support degree predictions. (a) Model predictions were validated on a
second, whole-genome set of interaction screens in S. pombe that are independent of the training data. Eight query deletion mutants were
crossed with the entire non-essential deletion collection in S. pombe. In total, genetic interaction (epsilon) scores were measured for
approximately 23,000 gene pairs. Epsilon scores are tightly centered at 0, thus interactions called for scores of ± 0.08 or more extreme are rare.
(b) The collection of non-essential S. pombe genes (n = 2,907) were grouped by the number of interactions each has with the eight query
genes for which full-genome screens were performed. Numbers in parentheses give the number of genes for which this degree was observed.
For each degree, the box plot shows the distribution of predicted degrees, which are expressed as percentiles. There is a strong positive
correlation (Pearson’s r = 0.40, P < 10-111) between predicted and actual degree.

Koch et al. Genome Biology 2012, 13:R57
http://genomebiology.com/2012/13/7/R57

Page 7 of 15



Edges
Gene labels

(b)

Co-expression networks

Genetic interaction networks

S. pombe
S. cerevisiae

S. pombe
S. cerevisiae

Nonrewired-nonrewired

Rewired-rewired

Nonrewired-rewired

S. pombe
S. cerevisiae

Edge types determined from rewiring labels on endpoints

One-to-one orthologs

Rewired orthologs

Non-rewired orthologs

Co-expression

Genetic interaction

Other genes

30 55 80 105

0.12

0.0

0.04

0.08

Degree difference

Nonrewired-nonrewired

Rewired-rewired
Nonrewired-rewired

Background conservation rate

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

10

1

11

8
7

5

9

4

6

3
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.52 genes

30 genes
15 genes

A
ct

ua
l S

. c
er

ev
is

ia
e 

de
gr

ee

Predicted S. pombe degree

R
ew

iri
ng

 p
-v

al
ue

: p
ro

po
rti

on
 o

f b
ac

kg
ro

un
d

 w
ith

 m
or

e 
ex

tre
m

e 
di

ffe
re

nc
e

2 Swr1p complex
3 Rpd3L complex
4 prohibitin complex
5 dynactin complex

10 calcineurin complex

8 cytoplasmic ribosomal
large subunit

9 NuA3 histone acetyltrans-
ferase complex

complex

7 cytoplasmic ribosomal
small subunit

Fr
ac

tio
n 

of
 c

on
se

rv
ed

co
-e

xp
re

ss
io

n 
ed

ge
s

(a)

(c)

Figure 4 Global analysis of rewiring based on whole-genome predictions in S. pombe. (a) Points in the scatter plot each represent groups
of between 2 and 22 genes whose protein products are in the same protein complex (Materials and methods). Darker color represents
complexes that are predicted to have significant rewiring. Generally, genes in complexes that fall on the diagonal are predicted to have
conserved degrees, while those that fall off-diagonal show evidence for large degree differences between the two species. Significantly rewired
complexes (at a threshold of 0.05) are labeled by their names. (b) To validate our predicted rewired genes, we constructed separate networks of
co-expression relationships among genes for each yeast species, then labeled genes according to our rewiring designation. Only one-to-one
orthologs that are non-essential in both species were included in the networks. Edges in the co-expression network were classified by whether
involved genes were both rewired, only one was rewired, or neither was rewired. We then calculated fractions of conserved co-expression
relationships between species within each of these classes. (c) There is a clear relationship between these classes of edges and their
conservation across the two yeast species. For rewiring at four levels of magnitude, we counted the number of conserved edges (among all
edges in the union of the two networks). A conserved edge appears in the networks of both species and a non-conserved edge appears in
exactly one. The magnitude of rewiring increases along the x-axis for the rewired class (differences of > 30, > 55, > 80, > 105 interactions), but
the non-rewired class is defined as the set of ortholog pairs with less than a 30-edge difference in degree. Edges in the two rewired classes
consistently showed significantly lower levels of conservation than edges in the non-rewired class (P < 0.01, Fisher’s exact test). Error bars show
the binomial proportion 95% confidence interval. The dashed line is the expected rate of conservation if edges are randomized in one of the
co-expression networks. There are 12,472 edges among 509 genes in the conserved-conserved network. Numbers of edges and genes at
rewiring thresholds, in bold, are as follows, where the conserved-rewired case is given as the first pair and the rewired-rewired case is given
second: 30: (14532, 832), (4684, 323); 55: (8730, 695), (1659, 186); 80: (5358, 620), (644, 111); 105: (2822, 565), (176, 56).
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from the checkpoint controls operating in S. cerevisiae.
Additionally, calcineurin is dispensable for growth in
S. cerevisiae [31]; in S. pombe, its deletion leads to defects in
cell growth, cytokinesis, cell polarity, mating, and spindle
pole body positioning, which are widespread effects consis-
tent with its hub-like activity [32].
While our method of identifying rewired modules

reports several statistically significant differences, we
note two caveats in interpreting these results. First,
since degrees of genes within functional modules may
be systematically poorly predicted, our procedure may
incorrectly identify modules as significantly rewired in
cases where our test statistic would also have indicated
that the within-species difference between predicted and
observed degree was significant. Therefore, as a control,
a version of this rewiring experiment that compares
observed and predicted S. cerevisiae degrees will enable
identification of cases that do not reflect true cross-spe-
cies rewiring (Figure S4a, b in Additional file 1). Second,
due to variations in the experimental protocol for mea-
suring genetic interactions, there are differences in the
media on which fitness defects were measured in S. cer-
evisiae and S. pombe, which may also contribute to
apparent rewiring [33].
Functional properties of genes can be captured by

many types of biological networks, so we turned to an
independent dataset for confirmation of our rewiring
predictions. To enable a comparative analysis of gene
expression profiles across the two yeasts, we constructed
a species-specific S. pombe co-expression network using
a previously published approach [34] and large collec-
tions of publicly available expression data (Materials and
methods), and obtained a previously published S. cerevi-
siae network [35]. Each species’ network contains 832
genes that are one-to-one orthologs between the two
yeasts and connected genes are those pairs that have
high co-expression values surpassing a threshold of the
95th percentile. At our selected density of 0.05, there
are approximately 17,000 edges in each network. In gen-
eral, we found evidence of conservation between the
S. cerevisiae and S. pombe networks: co-expression
edges between two genes occurred in both networks for
9.2% of the gene pairs that were co-expressed in at least
one network. This is about twice the background con-
servation rate of approximately 4.3%, as determined
through comparison to a randomized network produced
by a degree-preserving procedure.
To explore the connection between genes predicted to

be rewired in the genetic interaction networks and dif-
ferences between the co-expression networks, rewiring
predictions were overlaid on the co-expression net-
works. Specifically, all non-essential one-to-one ortho-
logs were classified as either rewired or non-rewired
based on our prediction of genetic interaction degree

(Figure 4b). Using this rewiring labeling, we measured
the conservation rate of three types of co-expression
edges: co-expression edges connecting two non-rewired
genes, connecting two rewired genes, and connecting
rewired and non-rewired genes.
We found that co-expression edges involving predicted

rewired genes are consistently less conserved than edges
with exclusively non-rewired endpoints (Figure 4c), a
trend that is robust over different co-expression thresholds
used for network sparsification (Figure S5 in Additional
file 1). For example, when genes whose degrees differ by
55 interactions or more are considered rewired, 6.9% of
the co-expression relationships connecting rewired genes
are conserved (107 of 1,659), in contrast to the signifi-
cantly higher 10.1% of co-expression relationships that are
conserved between non-rewired genes (1,238 of 12,472,
Fisher’s exact test P < 10-6). This trend grows stronger
when considering genes that were predicted to have even
larger differences between S. pombe and S. cerevisiae. This
analysis independently confirms predictions of highly
rewired genes between the two species and suggests that
changes at the level of gene expression regulation are at
least one mechanistic factor that contributes to these
differences.

Conclusions
Although individual interactions and gene-specific proper-
ties may not be strongly conserved between species, our
findings suggest that these properties influence genetic
interaction networks in a similar manner. For example,
while the genes important for normal growth may vary,
the relationship between a gene’s fitness contribution and
the genetic interactions it exhibits appears to be con-
served. Indeed, models trained on both S.cerevisiae- and
S. pombe-derived gene properties were significantly
predictive of cross-species genetic interaction degree
(Figure 2c), suggesting that the general principles govern-
ing genetic interaction network structure are retained
through evolution. Thus, a complete genetic interaction
network for an organism such as S. cerevisiae should serve
as a reference network to guide studies to uncover genetic
interactions in more complex systems. Predicting specific
pairwise interactions across species is of course the next
(more difficult) challenge, but models that can accurately
predict the variation in number of interactions across the
genome provide a foundation for cross-species interaction
analysis. Our results also demonstrate that integrative
comparisons leveraging multiple functional genomic data-
sets across species may be one approach to build confi-
dence in differential network analysis. As more data
become available, both the extent and nature of network
conservation should reveal how functional conservation
and divergence can be recognized and utilized in distantly
related species.
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Materials and methods
Gene features
Additional file 2 contains values of gene features for all
S. pombe genes and Additional file 3 contains values of
gene features for all S. cerevisiae genes.

Yeast conservation
Yeast conservation is a count of how many of 23 differ-
ent species of Ascomycota fungi possess an ortholog of
a given gene. This measure was first described in [36],
and ortholog data were downloaded from [37]. The 23
species are an expanded set of the 17 species described
in the study, with the additions of Schizosaccharomyces
octosporus, Schizosaccharomyces japonicus, Loddero-
myces elongosporus, Candida parapsilosis, Candida tro-
picalis, and Candida guilliermondii.

Broad conservation
Similar, though complementary, to yeast conservation,
broad conservation is a count of how many out of a set of
86 non-yeast species possess an ortholog of a given gene.
To count this, we obtained orthogroup designations from
InParanoid [38]. For each gene, we considered it to have
an ortholog in another species only if it appeared in a clus-
ter with the other species and was given a score of 1.0 by
the InParanoid clustering method; that is, we considered a
yeast gene to have an ortholog in species x if it was a seed
gene for a gene cluster that had an orthologous cluster in
species x. Although Ostlund et al. [38] considered 100
species, we disregarded the yeast species, since the yeast
conservation measure already captures information from
these species.

Codon Adaptation Index
The Codon Adaptation Index, a measure of bias in the
usage of synonymous codons, was calculated with the cai
tool in the EMBOSS suite [39]. For each gene, the index is
based on a comparison between codon frequencies in the
gene and frequencies observed in a set of highly expressed
genes; for both S. pombe and S. cerevisiae, EMBOSS
included a default codon usage table that was used.

Copy number
Copy number is a count of the number of paralogs a
gene has. This was determined from clusters identified
by the InParanoid algorithm [40] run on S. cerevisiae
and S. pombe. All genes that appear in the same cluster
were considered copies.

Disorder
The protein disorder measure is the percent of unstruc-
tured residues in a gene’s protein product as predicted
by the Disopred2 software [41].

dN/dS
dN/dS is the ratio between nonsynonymous and synon-
ymous mutations in coding regions of genes. For S. pombe
genes, dN/dS was calculated twice, using S. japonicus,
S. octosporus as out-group species, and averaged to pro-
duce a final dN/dS estimate. Orthologous protein
sequences were globally aligned with EMBOSS [39] using
default parameters. For each S. pombe gene, only the out-
group ortholog that produced the highest alignment score
was used for dN/dS calculations; dN/dS ratios were calcu-
lated with the PAML package’s implementation of the
Yang and Nielsen method for estimating substitution rates
[42,43].
Similarly, we computed the average dN/dS ratio for

S. cerevisiae in comparison to the sensu strictu yeast
species (Saccharomyces paradoxus, Saccharomyces baya-
nus and Saccharomyces mikatae). Protein sequences
were aligned using MUSCLE [44] and dN/dS ratios
were computed using PAML [42].

Number of domains
The number of domains for a gene is the number of
regions that Pfam has identified as domains in the pro-
tein sequence of the gene. Domain matches for each
protein were obtained online from the Pfam database
[45].

Number of unique domains
Since the same domain is often repeated multiple times
in a single protein, this feature modifies number of
domains by counting the number of unique domains
present in each protein.

Nc
This measure is a simple statistic of codon usage bias
and expresses the effective number of codons used in a
gene. The chips tool of EMBOSS [39] was used to cal-
culate this feature.

Protein length
Protein length is simply the number of amino acids in
the corresponding protein.

Co-expression degree
This measure is derived from the co-expression net-
work, the construction of which is described in its own
section. The network contains a level of co-expression
for all pairs of genes. We therefore sparsified the net-
work by considering only edges between gene pairs
whose co-expression levels were above the 95th percen-
tile. The co-expression degree of a gene is the number
of genes with which its co-expression value is retained
in this restricted network.
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Expression level
Expression levels of all S. cerevisiae genes were down-
loaded from [46]. Expression levels of all S. pombe genes
are measured RNAseq abundance that corresponds to
[47] and were downloaded from [48].

Expression variation
We estimated the amount of variability in a gene’s expres-
sion level by measuring the variance of its expression
across a number of different microarray experiments,
which included microarray data from different growth
conditions and replicates. Within each study, we found
each gene’s percentile of variation. The final value assigned
to each gene is its average percentile across all studies.
These datasets were obtained from a number of different
studies that deposited data in the Gene Expression Omni-
bus (GEO) [49]. S. pombe data used in this analysis are the
same as those used in construction of the S. pombe co-
expression network.

Fitness defect
S. pombe fitness defect measurements were obtained by
conducting a series of control SGA experiments as
described elsewhere [2,9,33]. Briefly, a S. pombe SGA
query strain harboring a dominant drug-resistance marker
(natMX4) inserted at a neutral genomic locus (h- leu1Δ::
natMX4 ade6-M210 ura4-Δ18 leu1-32) was crossed
against the S. pombe non-essential deletion mutant collec-
tion (h+ geneXΔ::kanMX4 ade6-M210 ura4-Δ18 leu1-32).
Following mating and sporulation, haploid meiotic pro-
geny harboring both the kanMX4 and natMX4 markers
are selected and colony sizes are measured after applying
standard normalization procedures. We have previously
shown that colony sizes derived from these control screens
reflect fitness defect of the kanMX4-marked single mutant
strains that comprise the deletion mutant array. Fitness
estimates were based on four control screens as described
above and combined with five mutant screens (prz1, res2,
SPAC1687.22c, SPCC1682.08, and SPAC6G9.14), which
contained the dominant drug-resistance marker (natMX4)
[9].
S. cerevisiae fitness defect values, defined quantita-

tively in [6], were published in [5] and experimental
procedures are detailed in [33]. As in the S. pombe pro-
tocol described above, SGA was used to insert a neutral
query marker into mutant strains so that we could
observe colony growth for each mutant in the deletion
collection under the effects of only the single deletion.
Fitness estimates are based on a large number of repli-
cate screens.

Protein-protein interaction degree
The protein-protein interaction degree of each gene’s
protein is the number of physical interactions reported in

BioGRID, version 2.0.58 [50]. Interactions considered
physical were restricted to those identified by the follow-
ing terms: Affinity Capture-MS, Affinity Capture-RNA,
Affinity Capture-Western, Biochemical Activity, Co-
crystal Structure, Co-fractionation, Co-localization, Co-
purification, Far Western, FRET, PCA, Protein-peptide,
Protein-RNA, Reconstituted Complex, and Two-hybrid.

Multifunctionality
Multifunctionality is a measure of the number of GO
terms that are annotated to a gene [26]. From GeneDB
[51] and Saccharomyces Genome Database [52] gene asso-
ciation files (download in November 2009) for S. pombe
and S. cerevisiae, respectively, redundant terms - one term
from pairs of terms that are considered ‘alternative ids’ -
were removed before totaling the number of GO term
annotations for each gene.

Genetic interaction degrees
Negative genetic interaction degrees of S. pombe genes
were derived from interactions reported in [10] (Addi-
tional file 2). Only those interactions with S-scores ≤
-2.5 were considered. This dataset contains 551 genes
that are involved in chromosome function; intentionally
included are approximately 100 genes that participate in
processes present in both S. pombe and human, but
importantly, are not present in S. cerevisiae (for exam-
ple, RNA interference machinery).
Negative genetic interaction degrees of S. cerevisiae

genes (Additional file 3) were collected from the mea-
surements reported in [5], which screened for interac-
tions involving 3,456 array genes, 1,438 of which have
S. pombe orthologs. As suggested by the authors, only
negative interactions with an epsilon value of ≤ -0.08 and
a P-value cutoff < 0.05 were considered. This dataset
includes degree measurements for most non-essential
genes.

Orthologs
Orthology mappings (Additional files 4 and 5) are from
the InParanoid eukaryotic ortholog database [24].
Although the InParanoid algorithm produces clusters,
our analysis depends on ortholog pairs. To calculate cor-
relations between S. cerevisiae and S. pombe for each of
the gene features (Figure 2a), only genes in one-to-one
orthology mappings were used. When holding out ortho-
logs for degree prediction in a set of ‘species-specific’
genes (Figure 2c), all genes that had any number of
orthologs were removed. Since InParanoid may not
report orthologs that other algorithms have detected, we
took a conservative approach by additionally removing
any genes that had an ortholog in the pombe database
GeneDB [53], which includes manually curated
orthologs.
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Models and evaluation
Our models are bagged regression trees that use the 16
features described above (Additional file 6). Breiman [23]
suggests that using an ensemble of only 25 classifiers can
result in nearly all improvement gains that bagging can
produce over a single classifier; however, we used 100
trees because the computation required in training is rela-
tively low and we were interested in analyzing the tree
structures. Individual trees were trained by MATLAB’s
classregtree function, which minimizes node impurity
according to mean squared error. For each tree, a boot-
strap sample was used to select, with replacement, a set of
training genes the same size as the set of total genes
(therefore each tree is trained on approximately 63.2% of
all genes) and held out genes. The final prediction for a
single gene of the species used to train the model (that is,
the within-species prediction) is the median of all predic-
tions from trees for which the gene was not in the training
set (Additional file 7). The final prediction for a gene of
the species not used to train the model (that is, the cross-
species prediction) is the median of predictions from all
trees (Additional file 8).
To assess the performance of the model, we calculated

the Pearson correlation coefficient between predicted
and actual degrees of genes with known degrees. To esti-
mate stability of performance, we repeated the model
construction and evaluation 25 times and reported pre-
dictive ability as the mean Pearson correlation coefficient
and its standard deviation across all 25 repetitions for
within- and cross-species cases (Figure 2c).

S. pombe genetic interaction screens
Eight whole-genome S. pombe genetic interaction
screens were completed using the method described in
[9]. The query strains were deletion mutants for each
of the following genes: SPCC1682.08c, SPBC21D10.12,
SPBC13E7.09, SPAC4G8.13c, SPAC3A11.13, SPAC-
27D7.13c, SPAC22F3.09c, SPAC16A10.07c. The result-
ing double mutant colonies were processed as
described in [6]. Negative interactions were derived
from the scores by applying an interaction cutoff of ≤
-0.08 and a P-value cutoff of < 0.05. Degree measure-
ments were then derived for all non-essential genes by
counting the number of significant interactions across
the set of eight queries (Additional file 9). Significant
correlation with the predicted degrees was also
observed when a stricter cutoff was applied (interac-
tion score ≤ -0.12, P-value < 0.05 yielded a correlation
r = 0.41, P-value < 10-117).

Rewiring groups and significance assessment
To make comparisons between degrees of orthologs in
the genetic interaction networks of the two yeast spe-
cies, we considered genetic interaction degree to be

predicted percentile for all S. pombe genes, while per-
centiles of actual degrees were used for S. cerevisiae.
To search for groups of functionally related genes that

have been rewired since the divergence of S. pombe and
S. cerevisiae, we defined gene groups in two ways. The
first simply grouped genes whose protein products form
a complex in a set of complexes defined in [6] (Addi-
tional file 10). The number of proteins per complex
ranges from 2 to 81, with the vast majority having 6 or
fewer proteins.
The second method for making sets of functionally

related genes grouped genes that share a biological pro-
cess GO term annotation [26] (Additional file 11). We
considered GO terms that are annotated to greater than
3 and fewer than 50 genes in either of the two species.
Additionally, a group of S. cerevisiae genes was required
to have a minimum number of two genes with known
genetic interaction degrees; a group of S. pombe genes
was required to have a minimum of two genes with
known fitness defect. Since GO terms tend to be highly
redundant, we filtered gene groups so that no pair of
groups overlapped by more than 50% of either group’s
genes.
To determine orthologous pairs of groups that have

significantly different average degrees, we calculated the
difference between the median degrees of genes in each
species’ group, and then compared the differences to a
distribution of differences produced from randomly
grouped genes. We generated this background by creat-
ing groups of randomly selected genes in one species,
then identifying orthologous groups in the other species
composed of the selected genes’ orthologs. A query
gene-group pair was compared to a background con-
taining only random gene-group pairs whose group sizes
were identical to the query groups. For example, a pro-
tein complex of five individual S. cerevisiae proteins may
contain four genes that have S. pombe orthologs; this
query gene-group pair would be compared with a back-
ground of groups with five random S. cerevisiae genes
matched with a group of four of their S. pombe
orthologs.

Comparative analysis of co-expression networks
To independently validate genetic interaction degree dif-
ferences across species, we performed a comparative ana-
lysis of co-expression networks of S. cerevisiae and
S. pombe genes. The S. cerevisiae network was previously
published [34] and is based on integration of a large col-
lection of expression datasets. To construct the S. pombe
network (Additional file 12), data from nine expression
studies were collected from the GEO database [54]
(Additional file 13). Genes with missing values for more
than 30% of the samples were removed, and the remain-
ing missing values in each dataset were imputed using
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KNNImpute [55]. Datasets reflecting probe intensities
(rather than relative ratios) were log-transformed. After
processing, the nine S. pombe expression datasets were
integrated as described in [34,56]. The naive Bayes
approach for dataset integration requires a gold standard
set of positives, for which we used direct gene co-annota-
tion to any term in the GO that contained between 2 and
100 genes. S. pombe gene annotations were downloaded
from the GO website [26,57] in May 2011. All analysis
and integration of expression data were completed using
the Sleipnir library [56].
We applied a 95th percentile cutoff to edges in both

the S. cerevisiae and S. pombe co-expression networks,
such that only the highest scoring 5% of edges were
retained.
To estimate the overlap between the S. cerevisiae and

S. pombe networks in the absence of biological conser-
vation, we randomized the edges of the S. cerevisiae net-
work and considered the background conservation to be
the overlap between this randomized network and the S.
pombe network. The randomizing procedure repeatedly
chose two random edges and exchanged an endpoint of
one edge with an endpoint of the other edge, thus main-
taining the degrees of genes in the network. The num-
ber of endpoint swaps performed was 20 times the
number of edges in the network, which is a sufficient
number of swaps to remove the original relationships
between genes.

Additional material

Additional file 1: Supplemental figures. Supplemental figures and
legends are given.

Additional file 2: Gene features of S. pombe genes. Gene features
and observed genetic interaction degrees are given for all S. pombe
genes.

Additional file 3: Gene features of S. cerevisiae genes. Gene features
and observed genetic interaction degrees are given for all S. cerevisiae
genes.

Additional file 4: Orthology mapping from S. pombe genes to S.
cerevisiae genes. Orthologs obtained from InParanoid and GeneDB for
each S. pombe gene are given.

Additional file 5: Orthology mapping from S. cerevisiae genes to S.
pombe genes. Orthologs obtained from InParanoid and GeneDB for
each S. cerevisiae gene are given.

Additional file 6: Regression trees. Regression trees trained on
bootstrap samples of S. cerevisiae gene features and negative genetic
interaction degree are pictured.

Additional file 7: Negative genetic interaction degree predictions
for S. cerevisiae genes. Predictions of negative genetic interaction
degree produced by each of the 100 regression trees that were trained
on S. cerevisiae data are given for each S. cerevisiae gene. For a gene, a
predicted degree is given from each tree for which the gene was held
out from training; otherwise, NaN indicates that the gene was used for
training. Columns correspond to trees pictured and ordered in Additional
file 6.

Additional file 8: Negative genetic interaction degree predictions
for S. pombe genes. Predictions of negative genetic interaction degree

produced by each of the 100 regression trees that were trained on S.
cerevisiae data are given for each S. pombe gene. Columns correspond to
trees pictured and ordered in Additional file 5.

Additional file 9: Genetic interaction degrees of non-essential S.
pombe genes. The number of genes that interact with each non-
essential S. pombe gene are given. The eight queries that were screened
for genetic interactions with non-essential genes are SPCC1682.08c,
SPBC21D10.12, SPBC13E7.09, SPAC4G8.13c, SPAC3A11.13, SPAC27D7.13c,
SPAC22F3.09c, and SPAC16A10.07c.

Additional file 10: Cross-species degree comparisons of protein
complexes. Orthologous sets of genes, the predicted and observed
average degrees of the sets, and the results of our cross-species
comparison are given.

Additional file 11: Cross-species degree comparisons of genes
annotated by GO terms. Orthologous sets of genes, the predicted and
observed average degrees of the set, and the results of our cross-species
comparison are given. GO terms are prefixed by a ‘(p)’ or ‘(c)’ to indicate
that the term originated from S. pombe or S. cerevisiae annotations,
respectively.

Additional file 12: The S. pombe co-expression network. The co-
expression network is symmetric and is represented as a comma-
delimited lower triangle of a matrix.

Additional file 13: S. pombe GEO co-expression studies. The listed
co-expression studies were used to construct a co-expression network.
Citations are for original publications.

Abbreviations
GEO: Gene Expression Omnibus; GO: Gene Ontology; NETO: new end take
off; SGA: Synthetic Genetic Array.
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