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The fraction of absorbed photosynthetically active radiation (FAPAR) is a critical 

input parameter in many climate and ecological models. The accuracy of satellite 

FAPAR products directly influences estimates of ecosystem productivity and carbon 

stocks. The targeted accuracy of FAPAR products is 10%, or 0.05, for many 

applications. This study evaluates satellite FAPAR products, presents a new FAPAR 

estimation model and develops data fusion schemes to improve the FAPAR accuracy. 

Five global FAPAR products, namely MODIS, MISR, MERIS, SeaWiFS, and 

GEOV1 were intercompared over different land covers and directly validated with 

ground measurements at VAlidation of Land European Remote sensing Instruments 

(VALERI) and AmeriFlux sites. Intercomparison results show that MODIS, MISR, 

and GEOV1 agree well with each other and so do MERIS and SeaWiFS, but the 

difference between these two groups can be as large as 0.1. The differences between 

the products are consistent throughout the year over most of the land cover types, 

except over the forests, because of the different assumptions in the retrieval 



 
 

algorithms and the differences between green and total FAPAR products over forests. 

Direct validation results show that the five FAPAR products have an uncertainty of 

0.14 when validating with total FAPAR measurements, and 0.09 when validating 

with green FAPAR measurements. Overall, current FAPAR products are close to, but 

have not fulfilled, the accuracy requirement, and further improvements are still 

needed. 

A new FAPAR estimation model was developed based on the radiative transfer for 

horizontally homogeneous continuous canopy to improve the FAPAR accuracy. A 

spatially explicit parameterization of leaf canopy and soil background reflectance was 

derived from a thirteen years of MODIS albedo database. The new algorithm requires 

the input of leaf area index (LAI), which was estimated by a hybrid geometric optic-

radiative transfer model suitable for both continuous and discrete vegetation canopies 

in this study. The FAPAR estimates by the new model was intercompared with 

reference satellite FAPAR products and validated with field measurements at the 

VALERI and AmeriFlux experimental sites. The validation results showed that the 

FAPAR estimates by the new method had slightly better performance than the 

MODIS and the MISR FAPAR products when using corresponding satellite LAI 

product values as input. The FAPAR estimates can be further improved with the LAI 

estimates from the presented model as input. The improvements are apparent at 

grasslands and forests with an 8% reduction of uncertainty. The new model can 

successfully identify the growing seasons and produce smooth time series curves of 

estimated FAPAR over years. The root mean square error (RMSE) was reduced from 

0.16 to 0.11 for MODIS and from 0.18 to 0.1 for MISR overall. Application of the 



 
 

presented model at a regional scale generated consistent FAPAR maps at 30 m, 500 

m, and 1100 m spatial resolutions from the Landsat, MODIS, and MISR data. 

As an alternative method to improve FAPAR accuracy, in addition to developing 

FAPAR estimation models, two data fusion schemes were applied to integrate 

multiple satellite FAPAR products at two scales: optimal interpolation at the site scale 

and multiple resolution tree at the regional scale. These two fusion schemes removed 

the bias and resulted in a 20% increase in the R
2
 and a 3% reduction in the RMSE as 

compared with the average of the individual FAPAR products. The regional scale 

fusion filled in the missing values and provided spatially consistent FAPAR 

distributions at different resolutions. 

The original contribution of this study is that multiple FAPAR products have been 

assessed with a comprehensive set of measurements from two field experiments at the 

global scale. This study improved the accuracy of FAPAR using a new model and 

local pixel based soil background and leaf canopy albedos. High FAPAR accuracy 

was achieved through integration at both the temporal and spatial domains. The 

improved accuracy of FAPAR values from this study by 5% would help to decrease 

an equal amount of uncertainty in the estimation of gross and net primary production 

and carbon fluxes. 
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Chapter 1 Introduction 
 

Vegetation plays a key role in the global energy balance, carbon cycle, and water 

budget of the Earth by controlling the exchanges between the lower atmosphere and 

the continental biosphere. For example, photosynthesis is responsible for the 

conversion of about 50 PgC yr
-1

 of atmospheric CO2 into biomass, which represents 

about 10% of the atmospheric carbon (Carrer et al., 2013). Land use changes, mainly 

due to deforestation, lead to the emission of 1.7 PgC yr
-1

 in the tropics, offsetting by a 

small amount of uptake (about 0.1 PgC) in temperate and boreal areas—thereby 

producing a net source of around 1.6 PgC yr
-1

 (Houghton, 1995). One of the most 

important factors to monitor vegetation status is the distribution of the fraction of 

absorbed photosynthetically active radiation (FAPAR, or FPAR) within vegetation as 

it constrains the photosynthesis rate. The FAPAR is the fraction of incoming solar 

radiation in the spectral range from 400 nm to 700 nm that is absorbed by plants 

(Liang et al., 2012). FAPAR is one of the 50 Essential Climate Variables (ECVs) 

recognized by the UN Global Climate Observing System (GCOS, 2011). FAPAR is a 

critical input parameter in the biogeophysical and biogeochemical processes 

described by many climate and ecological models (e.g., Community Land Model, 

Community Earth System Model, and crop growth models) (Bonan et al., 2002; 

Kaminski et al., 2012; Maselli et al., 2008; Tian et al., 2004). The MODIS FAPAR 

product (MOD15) is a critical input for MODIS evapotranspiration (MOD16) and 

gross primary production (GPP) and net primary production (NPP) products (MOD17) 

(Liang et al., 2012). A 10% increase in FAPAR would result in an equal amount 
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increase of gross and net primary production and carbon sink. Hall et al. (2006) 

conducted sensitivity analysis and found that NPP is largely driven by FAPAR in the 

Carnegie Ames Stanford Approach (CASA) model, with weaker effects from the 

lower variability of PAR and lower sensitivity to temperature and precipitation.  

Despite the fact the aforementioned numbers exist, the spatial distributions of carbon 

sources and sinks still remain a core question, being a debate for a broad scientific 

community. In this regard, a better representation of vegetation status in the 

ecological modeling is desirable. The reliable estimates of gross and net primary 

production and carbon flux depend on a high accuracy of FAPAR as an input. An 

accuracy of ±0.05 or relative accuracy of 10% in FAPAR is considered acceptable to 

describe the vegetation attribute exactly and be effectively applied in agronomical 

and other applications (GCOS, 2011). 

The remainder of this chapter is organized as follows. Section 1.1 introduces the 

FAPAR estimation methods from optical remote sensing. Section 1.2 briefly 

summarizes the accuracy of the FAPAR products used in this study. Possible 

solutions to improve the FAPAR accuracy are presented in Section 1.3. The 

objectives and the flowcharts of this study are presented in Section 1.4. 

1.1. FAPAR Estimation Methods 

FAPAR can be collected from field measurements at a point scale, but the monitoring 

network of ground measurements is not sufficient for global coverage (Li et al., 1995). 

Satellite sensors acquire land surface information at regional and global scales 

efficiently, and they represent new opportunities for monitoring biophysical 
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parameters (Asner et al., 1998). The remote sensing retrievals of FAPAR are often 

validated by the in situ measured FAPAR in order to improve the FAPAR estimates. 

Estimating FAPAR from optical remote sensing can be based on physical models or 

empirical relationships (Liang, 2007). Statistical models build empirical relationships 

between FAPAR and observations or derivatives from observations without 

knowledge of the underlying physical mechanism in the radiative transfer process, 

and therefore simplicity is its primary advantage (Gobron et al., 1999). However, no 

unique relation between FAPAR and vegetation index is generally applicable 

everywhere, as canopy reflectance also depends on other factors, such as 

measurement geometry, spatial resolution, and land cover types (Asrar et al., 1992; 

Friedl, 1997). Moreover, the relation between FAPAR and vegetation index such as 

normalized difference vegetation index (NDVI) is quite sensitive to the reflectance of 

background material (Asrar et al., 1992). The relation may also suffer the saturation 

problem for dense vegetation. With regard to the sensitivity of the empirical 

relationships to the aforementioned factors, this study mainly focuses on FAPAR 

retrieval using physical models instead. 

Physical models analyze the interactions between solar radiation and vegetation 

canopy and reveal cause-effect relations (Pinty et al., 2011; Widlowski et al., 2007). 

Canopy reflectance models for retrieving biophysical characteristics from reflected 

radiation can be divided into four classes (Liang, 2004): radiative transfer (RT), 

geometric-optical, hybrid, and Monte Carlo and other computer simulations. 

Radiative transfer models consider single and multiple scattering, and are especially 

applicable to continuous vegetation canopy, such as grass and tropical forests, which 
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are prevalent in moderate to high resolution images. Considering the characteristic of 

moderate spatial resolution of the MODIS, the Multi-angle Imaging 

SpectroRadiometer (MISR) and the Landsat data used in this study, a RT model is 

developed to calculate FAPAR. As an input for FAPAR, Leaf area index (LAI) is 

calculated using a hybrid geometric-optic radiative transfer model. The results are 

validated at the site scale and the method is applied at the regional scale. 

1.2. The Accuracy of Existing FAPAR Products 

The accuracy of the satellite FAPAR products directly influences estimates of 

ecosystem productivity and carbon stocks. A relative accuracy of 10%, or absolute 

accuracy of ±0.05, in FAPAR is considered acceptable in agronomical and other 

applications (GCOS, 2011). MODIS Collection 4 FAPAR product is validated with 

ground-based measurements in early studies (Baret et al., 2007; Fensholt et al., 2004; 

Huemmrich et al., 2005; Olofsson and Eklundh, 2007; Steinberg et al., 2006; Turner 

et al., 2005; Weiss et al., 2007; Yang et al., 2006). The improved performance of 

Collection 5 over Collection 4 LAI/FAPAR products is demonstrated before the 

public release by Shabanov et al. (2005). Recently, the MODIS Collection 5 FAPAR 

product is assessed or compared with other products and has been shown to improve 

accuracy over Collection 4 from 0.2 to 0.1 (Baret et al., 2013; Camacho et al., 2013; 

Martinez et al., 2013; McCallum et al., 2010; Pickett-Heaps et al., 2014). An 

intermediate MODIS FAPAR Collection 4.1 product fixes the bug that existed in 

Collection 4, and its performance is assessed to have improved over Collection 4 but 

not as good as Collection 5 (Seixas et al., 2009; Serbin et al., 2013). The MERIS 

FAPAR product has been assessed or compared with other FAPAR products and 
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validated to show an accuracy of 0.1 to 0.12 (D'Odorico et al., 2014; Gobron et al., 

2008; Martinez et al., 2013; Pickett-Heaps et al., 2014; Seixas et al., 2009). The Sea-

Viewing Wide Field-of-View Sensor (SeaWiFS) FAPAR product has been compared 

with other FAPAR products and evaluated to have an accuracy of 0.1 to 0.23 in the 

studies by Wang et al. (2001), Gobron et al. (2006), McCallum et al. (2010), 

Camacho et al. (2013), and Pickett-Heaps et al. (2014). The GEOV1 FAPAR is 

intercompared against MODIS Collection 5 and SeaWiFS products and validated to 

have the best performance with an accuracy of 0.08 (Baret et al., 2013; Camacho et 

al., 2013). However, few studies have evaluated the MISR FAPAR product (Hu et al., 

2007). Currently, no intercomparison studies of MISR FAPAR product and other 

FAPAR products exist. The intercomparison of the products at various scales would 

help to understand and reduce large systematic biases among the magnitudes of 

existing products. In consideration of the need to evaluate current FAPAR products, 

Chapter 2 focuses on a comprehensive evaluation of the performances of MISR, 

MODIS, SeaWiFS, MERIS, and GEOV1 FAPAR products at the global scale.  

1.3. Need for Improved FAPAR Estimates 

Direct validation of satellite FAPAR products with ground measurements generates 

some encouraging results, especially when compared with previous versions of 

FAPAR products. The improvement could be a result of a new stochastic RT model, 

which captures well the 3D effects of foliage clumping and species mixtures of 

natural ecosystems (Kanniah et al., 2009). The MISR FAPAR product has a similar 

performance as the MODIS C5 FAPAR product. However, the MODIS and the MISR 

FAPAR products might overestimate at some sites. For example, Martinez et al. 
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(2013) point out that MODIS shows a tendency to provide high values in cultivated 

areas and the Mediterranean forest, such as Puechabon. The MODIS FAPAR product 

may also have a positive bias for very low FAPAR values. A similar overestimation 

problem is found in MISR FAPAR data, with a positive bias as large as 0.16 in 

broadleaf forests (Hu et al., 2007).  

The determinants of FAPAR accuracy can be traced to the performance of retrieval 

models and the accuracy of input parameters, such as leaf area index (LAI), soil 

background reflectance, or fractional canopy cover. LAI is one of the most important 

parameters to determine FAPAR, and its accuracy directly influences the accuracy of 

FAPAR. A 10% change in tree LAI could account for a 55% change in FAPAR 

(Asner et al., 1998). The collection of soil background reflectance is important in 

guaranteeing that the simulated reflectance could cover the whole set of observed 

surface reflectance data (Fang et al., 2012; Knyazikhin et al., 1998b; Shabanov et al., 

2005). Otherwise, a saturation problem may occur and very high FAPAR values are 

not reliable (Weiss et al., 2007). The correct estimation of FAPAR also relies on the 

correct estimation of fractional canopy cover, the underestimation of which might 

cause unrealistically high FAPAR values calculated from the observations of surface 

reflectance (Kanniah et al., 2009). Possible solutions to improve the FAPAR accuracy 

may include (1) developing new FAPAR retrieval models suitable for different land 

cover types, and (2) simultaneous improvement of the accuracy of model parameters 

such as LAI and soil background and leaf canopy albedos. 

An alternative to developing new models to improve the accuracy of FAPAR 

estimation is to integrate multiple data products considering their characteristics and 
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accuracy. Data fusion could overcome the problems of single satellite products, such 

as the missing data problem when clouds contaminate the scene or the instrument 

malfunctions, and can combine the advantages of difference data sources. MODIS 

provides a long time-period coverage of moderate resolution data (from 2000 to 

present). MISR has its distinctive multi-angular information, and MERIS data have 

good smooth seasonality curves and are close to in situ measurements (Gobron et al., 

2006). The fusion results from multiple data sets can provide continuous spatial and 

temporal coverage. The uncertainty of integrated data is expected to be lower than the 

uncertainties of individual products if the correct model is used and the statistics of 

the errors reflects the level of actual noise in the data accurately.  

Various data fusion methods have been developed, such as optimal interpolation (OI), 

Markov random field method, multiple-resolution tree (MRT), empirical orthogonal 

function, and hierarchical Bayesian model (Chou, 1991; Gandin, 1965; He et al., 

2014; Preisendorfer, 1988; Wang and Liang, 2011). OI estimates the observation-to-

background error variance for the noise. It takes irregular inputs and employs 

spatiotemporal covariance to interpolate variables at non-measured points and reduce 

errors at measured points. The method is called “optimal”, because it yields a linear 

estimate with the least expected error when the estimated noise accurately reflects the 

level of actual noise in the data (Zubko et al., 2010). The disadvantage of OI is that it 

does not handle large volumes of data well. OI requires the inversion of the 

covariance matrix to consider the contributions from adjacent spatiotemporal 

observations, which can be very time consuming when applying it at the regional to 

global scales. One possible solution to improve computational efficiency at the 
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regional to global scales is to calculate the weights of the observations empirically 

instead of optimally inverting the covariance matrix (Fang et al., 2008). Because of its 

advantage of simplicity and optimal nature, OI is chosen to integrate FAPAR values 

from different sources at the site scale (Gu et al., 2006). 

Another popular method for image analysis is the Markov random field method, 

which provides a rich structure for multidimensional modeling; however, it is still 

computationally intensive. Chou et al. (1994) and Fieguth et al. (1995) introduced a 

recursive estimator consisting of a multiscale Kalman filter and a smoother over a 

Markov tree data structure that accommodates multiple observations with differing 

resolutions. At each node in the tree, the multiple resolution tree method optimally 

blends the available observations with respect to the least mean squared error 

according to the Kalman gain and the error characteristics of each sensor type (Jhee et 

al., 2013). The two step Kalman filtering and smoothing method is referred as 

multiple-resolution tree (MRT), which considers data continuity at multiple scales 

and generates multi-scale data simultaneously and efficiently. The original MRT fills 

the void regions with the nearest estimated values from a coarser scale, resulting in a 

blocky effect. An overlapping multiple-resolution tree method is utilized in the 

Kalman smoothing process in this study to reduce the blocky effect.  

1.4. Objectives and Flowcharts of the Study 

Regarding the importance of FAPAR and its possible improvement methods, the 

questions to be addressed in this research are: What are the spatial and temporal 

patterns of existing individual FAPAR products? How accurate are they when 
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validated with field measurements? Can we improve the FAPAR accuracy by using a 

new algorithm or better input of parameters? Is it possible to obtain an integrated 

FAPAR from the original FAPAR values with highest accuracy and continuous 

spatial and temporal coverage? Correspondingly, the overall objective of this study is 

to assess and improve the estimation of FAPAR from multiple satellite data products 

to reduce its uncertainty as an input in ecosystem models. In particular, there are three 

specific objectives: 

Objective 1: Assessing existing FAPAR products 

Current FAPAR satellite products, including MODIS, MISR, SeaWiFS, GEOV1, and 

MERIS FAPAR will be assessed in the study considering their availability and close 

resolutions to each other. There are only a few studies attempting to intercompare 

results among available FAPAR datasets, and even fewer validation studies with field 

measurements. An intercomparison among all of these products will generate an 

extensive evaluation of their accuracy for better usage. The in situ measurements 

from some experiments, e.g. Ameriflux and VAlidation of Land European Remote 

sensing Instruments Sites (VALERI), are used as validation data for product 

evaluation. 

Objective 2: Developing a new RT model for FAPAR estimation 

The accuracy of satellite FAPAR products directly influences the estimation of 

ecosystem productivity and carbon stocks. The targeted accuracy of FAPAR products 

is 10%, or 0.05, for many applications; however, most of the current FAPAR 

products have not yet fulfilled the accuracy requirement, and further improvements 



10 
 

are needed. This study improves FAPAR accuracy through developing new FAPAR 

retrieval models suitable for different land cover types, and through simultaneous 

improvement of the accuracy of model parameters such as LAI and soil background 

and leaf canopy albedos. 

Objective 3: Developing FAPAR fusion schemes 

Data fusion could overcome the problem of single satellite products, e.g., the missing 

data when the scene is contaminated by clouds or the malfunctioning instruments. It 

will combine the advantages of difference sources of data. MODIS promises long 

time coverage from 2000 to present. MISR has its distinctive multi-angular 

information, and MERIS data have a good seasonality curve and are close to field 

measurement (Gobron et al., 2008). The fusion results from these data are expected to 

have continuous spatial and temporal coverage. The precision of integrated data is the 

sum of the precisions of individual products if the statistics of the errors reflects 

exactly the level of actual noise in the data. The optimal interpolation (OI) method is 

chosen to integrate FAPAR values at the site scale. The overlapping multiple-

resolution tree (MRT) is used to integrate data across multiple scales. Although the 

two methods have been applied to remote sensing, they have not been applied to 

integrate FAPAR products. This study focuses on application of the data fusion 

methods on FAPAR products at both the temporal and spatial domains. 

The flowcharts to achieve the three objectives are summarized in Fig. 1-1. Chapter 2 

intercompares MODIS, MISR, MERIS, SeaWiFS, and GEOV1 FAPAR products and 

validates them with in situ measurements (a). Chapter 3 presents an RT model to 
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retrieve FAPAR from multiple surface reflectance data including MODIS, Landsat, 

and MISR reflectance data (b). Finally, the FAPAR values from MODIS, MISR, and 

MERIS products are integrated temporally together using OI technique. The 

estimated FAPAR from Landsat, MODIS, and MISR data at several scales are 

integrated spatially through overlapping MRT algorithm (c). The quality controlled 

FAPAR from objective 1 and the estimated FAPAR from objective 2 serve as input 

data for objective 3 (d). The study domain for all three objectives contains 28 sites 

distributed globally as indicated in (a). The FAPAR products, estimations and 

integrations are intercompared and validated with field measurements at these sites.  
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Fig. 1-1 Flowcharts of the study. (a) Objective 1: Assessment of existing products; 

(b) Objective 2: Developing a new RT model for FAPAR estimation; (c) 

Objective 3: Developing data fusion schemes; (d) The relationships among the 

three objectives. 
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Chapter 2 Assessment of five global satellite products of 

FAPAR 
 

In this chapter, five global FAPAR products, namely MODIS, MISR, MERIS, 

SeaWiFS, and GEOV1 were intercompared over different land covers and directly 

validated with ground measurements at VAlidation of Land European Remote 

sensing Instruments (VALERI) and AmeriFlux sites. The remainder of this chapter is 

organized as follows. Section 2.1 presents the satellite FAPAR products and the 

validation data as well as the data processing and measurement methods. Section 2.2 

intercompares FAPAR products globally and over different land cover types. Section 

2.3 directly validates the FAPAR products with ground measurements. The findings 

are discussed Section 2.4. 

2.1. Data and Methods 

The data used in this chapter include satellite and in-situ FAPAR measurements. 

Satellite products include MISR, MODIS, SeaWiFS, MERIS, and GEOV1 FAPAR 

products. The FAPAR validation data are collected from two groups of experimental 

sites: VAlidation of Land European Remote sensing Instruments (VALERI, WWW1) 

and AmeriFlux (WWW2). The VALERI sites are widely distributed around the world 

and useful for spatial validation over different land covers (Camacho et al., 2013; 

Weiss et al., 2007). Three years of measurements at AmeriFlux sites are intended for 

validating FAPAR products for a long period of time in consideration of their 

continuous measurements of FAPAR. The land covers of the 27 VALERI and 

AmeriFlux sites include 9 forests (1 of Ameriflux and 8 of VALERI), 11 crops (3 of 
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Ameriflux and 8 of VALERI), 6 grass sites (of VALERI), and 1 shrubland site (of 

VALERI). Their distributions are shown in Fig. 2-1. The geolocation and land cover 

information of the AmeriFlux and the VALERI sites are listed in Table 2-1 for 

reference.  

Four components are measured to compute FAPAR at AmeriFlux sites, including 

incoming and outgoing solar flux and flux from and to the ground. Incoming 

(outgoing) solar flux is measured with Li-Cor point quantum sensors aimed upward 

(downward), and placed at approximately 6 m above the ground. Flux transmitted 

through the canopy to the ground is measured with Li-Cor line quantum sensors 

placed at approximately 2 cm above the ground, pointing upward. Flux reflected by 

the ground is measured with Li-Cor line quantum sensors placed approximately 12 

cm above the ground, pointing downward (Hanan et al., 2002). Hourly FAPAR is 

calculated as the ratio of absorbed photosynthetically active radiation and incoming 

solar flux. All the daytime radiation values are computed by integrating the hourly 

measurements during a day when incoming solar flux exceeded 1μmol/m
2
/s, and 

daily FAPAR is then calculated. Digital hemispherical photos are used to calculate 

FAPAR at VALERI sites, which corresponds to the fraction of intercepted PAR. High 

spatial resolution remote sensing data are used as a bridge to obtain the FAPAR 

values in the medium resolution pixels. The differences in the interception and the 

absorptions are small (less than 5%), which are taken into account by adding error bar 

on the in-situ data in this study considering the limited FAPAR ground-based data 

(Serbin et al., 2013).  
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Satellite FAPAR products have some differences in the definition of their products in 

terms of the whole canopy or green leaves, direct radiation only or not, and the 

imaging time. The MISR FAPAR product is the total FAPAR at 10:30 am, 

considering both direct and diffuse radiation absorbed by the whole canopy. The 

MODIS FAPAR considers only direct radiation, which may result in a smaller value 

than the MISR FAPAR product. The imaging time of the SeaWiFS sensor is 

approximately 12:05 pm local time, and its FAPAR product corresponds to the black 

sky FAPAR (direct radiation only) by green elements. Similarly, the MERIS FAPAR 

product corresponds to the black sky FAPAR by green elements at 10 am local time. 

The GEOV1 FAPAR product corresponds to the instantaneous black-sky FAPAR by 

green parts around 10:15 am local time. The SeaWiFS, MERIS, and GEOV1 FAPAR 

products take into account only the absorption by green elements, which may result in 

lower FAPAR values than the MISR and MODIS FAPAR products, which include 

the absorption of both green and non-green elements. Overall, most of the satellite 

FAPAR products correspond to the instantaneous black-sky FAPAR around 10:15 am 

which is a close approximation of the daily integrated FAPAR value collected at 

AmeriFlux and VALERI sites so that the validation of satellite FAPAR products 

using these ground-based measurements would be reasonable. 

The spatial and temporal resolutions and the temporal coverage information of the 

satellite FAPAR products used in this paper, as well as their retrieval algorithms, are 

listed in Table 2-2.  The spatial resolutions of the FAPAR products vary from 1 km to 

0.5°, and the temporal resolutions vary from daily to 1 month. Spatial aggregation 

and temporal interpolation are necessary to intercompare the values across multiple 
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scales. The MODIS and GEOV1 FAPAR products are preprocessed to be at the same 

temporal and spatial resolution than other products. The four 8-day MODIS FAPAR 

images are composited to monthly product from the average value of the highest 

quality data, in consideration of the quality of the output data and the small number of 

8-day input data in a month. Average value is used because of the small number of 8-

day valid observations in a month (maximum of 4). In consideration of the quality of 

the output, we generate the average value from the highest quality data in a month. 

The monthly 1km product is resampled to 1∕112° using nearest neighbor technique 

and then aggregated to 0.5° spatial resolution using spatial average. Similarly, the 30-

day composite GEOV1 FAPAR product with the highest quality is spatially 

aggregated to 0.5° spatial resolution. 

The different spatial scales between the FAPAR product pixels and the in-situ 

measurements can induce the scaling effect of FAPAR, which happens when the 

surface is heterogeneous and the retrieval algorithm is nonlinear (Tao et al., 2009; Xu 

et al., 2009). Because of the scale difference, the validation results at more 

homogeneous sites are expected to have a higher FAPAR accuracy. We evaluate the 

heterogeneity around the validation sites by calculating the standard deviation divided 

by the mean of the simple ratio between near infrared and red bands of the Landsat 

data in the 1 × 1 km extent around the sites corresponding to the most common 

resolution of the satellite FAPAR products used for direct validation. The FAPAR 

accuracy at different sites is analyzed and the impact of site heterogeneity on the 

FAPAR product accuracy is explored.  
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Table 2-1 The AmeriFlux and VALERI experimental sites used in this study. 

Site 

State, 

Country 

Latitude 

(°) 

Longitude 

(°) 

Land Cover 

Mead 

Irrigated 

Nebraska, US   41.1651 −96.4766 crops 

Mead 

Irrigated 

Rotation 

Nebraska, US   41.1649 −96.4701 crops 

Mead 

Rainfed 

Nebraska, US   41.1797 −96.4396 crops 

Bartlett New 

Hampshire, 

US 

  44.0646 −71.2881 deciduous broadleaf 

forests 

Laprida Argentina −36.9904 −60.5527 grass 

Camerons Australia −32.5983 116.2542 evergreen broadleaf 

forests 

Gnangara Australia −31.5339 115.8824 deciduous broadleaf 

forests 

Sonian forest Belgium   50.7682     4.4111 needleleaf forests 

Donga Benin     9.7701 1.7784 grass 

Turco Bolivia −18.2395 −68.1933 shrubland 

Larose Canada   45.3805 −75.2170 needleleaf forests 

Concepción Chile −37.4672 −73.4704 deciduous needleleaf 
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forests 

Zhang Bei China   41.2787 114.6878 grass 

Les Alpilles France   43.8104     4.7146 crops 

Larzac France   43.9375     3.1230 grass 

Nezer France   44.5680   −1.0382 needleleaf forests 

Plan-de-Dieu France   44.1987     4.9481 crops 

Puéchabon France   43.7246     3.6519 mediterranean forests 

Sud-Ouest France   43.5063     1.2375 crops 

Counami French 

Guiana 

    5.3471 −53.2378 evergreen broadleaf 

forests 

Demmin Germany   53.8921   13.2072 crops 

Gilching Germany   48.0819   11.3205 crops  

Hombori Mali   15.3310   −1.4751 grass 

Haouz Morocco   31.6592   −7.6003 crops 

Wankama Niger   13.6450     2.6353 grass 

Fundulea Romania   44.4061   26.5831 crops 

Barrax Spain   39.0570   −2.1042 crops 

The first four sites are AmeriFlux sites, others are VALERI sites.  
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Table 2-2 The characteristics of the satellite FAPAR products used in this study. 

FAPAR 

Product 

Temporal 

coverage 

Temporal 

resolution 

Spatial 

resolution 

Projection Algorithm 

MODIS 

MOD15 

(C5) 

(WWW3

)  

Feb 2000– 8 days 1 km Sinusoidal 

Look up table method 

built on 3D stochastic 

radiative transfer model 

for different biomes 

(Myneni et al., 2002). 

MISR 

(L3/L2) 

(WWW4

) 

Feb 2000– 

1 month / 

Equator: 9 

days, Polar: 

2 days 

0.5°/1 km 

Plate-carrée 

(geographic

) / Space 

Oblique 

Mercator 

Radiative transfer (RT) 

model with inputs of LAI 

and soil reflectance 

without assumptions on 

biomes (Knyazikhin et 

al., 1998a). 

GEOV1 

(WWW5

) 

Dec 1998– 10 days 1∕112° Plate-carrée 

Neural network to relate 

the fused products to the 

top of canopy 

SPOT/VEGETATION 

reflectance (Baret et al., 

2013). 

MERIS 

(L3/L2) 

(WWW6

Apr 2002– 

1 month / 

daily 

0.5°/1 km 

Plate-carrée 

/ sinusoidal 

Polynomial formula 

based on 1D RT model 

(Gobron et al., 1999). 
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) 

SeaWiFS 

(L3/L2) 

(WWW7

) 

Sep 1997– 

1 month / 

daily 

0.5°/1 km 

Plate-carrée 

/ sinusoidal 

Polynomial formula 

based on 1D RT model 

(Gobron et al., 2006; 

Gobron et al., 2000). 

 

 

Fig. 2-1 The distribution of the 27 VALERI and AmeriFlux sites. There are 3 

AmeriFlux and 3 VALERI sites close to each other, which may not be 

distinguishable from each other at a global scale here. 

2.2. Intercomparison of Satellite FAPAR Products 

The MODIS, MERIS, MISR, SeaWiFS, and GEOV1 satellite FAPAR products are 

intercompared globally and over different land cover types in a one year period. 

Specifically, the spatial and seasonal distributions of the five satellite FAPAR 

products are intercompared globally in Section 2.2.1. The performances of the five 
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satellite FAPAR products over different land cover types are intercompared in 

Section 2.2.2. 

2.2.1. Intercomparisons over the globe 

The spatial distribution of the five global FAPAR products during the period July 

2005–June 2006 is depicted in Fig. 2-2. The MODIS global FAPAR product 

generally agrees well with the MISR and GEOV1 FAPAR product, while the MERIS 

and SeaWiFS FAPAR products agree well with each other. However, the difference 

between the group of MODIS, MISR, and GEOV1 FAPAR products and the group of 

MERIS and SeaWiFS FAPAR products is large (>0.1). The results are expected and 

the primary reason is that both the SeaWiFS and the MERIS FAPAR products 

correspond to absorbed fluxes for green leaf single scattering whereas the MODIS 

and MISR FAPAR products are based on a priori knowledge of leaf single scattering 

for each biome. The GEOV1 FAPAR correspond to a fused products which includes 

MODIS ones.  

The seasonal distribution of the five preprocessed 0.5° spatial resolution FAPAR 

products over the entire globe and the Northern and Southern Hemispheres with the 

same number of pixels are depicted in the panels of Fig. 2-3. The MODIS FAPAR 

values remain relatively stable globally from December to March, then increase at an 

accelerating rate from April to July, and finally decrease from August to the lowest 

values in December. The trend in the Northern Hemisphere is slightly different, 

where FAPAR remains relatively stable from January (instead of December globally) 

to March, then increases from April to July, and finally decreases from August to 
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January (instead of December globally, 1 month longer). The reason is an increase in 

vegetation FAPAR values from December in the Southern Hemisphere, so that global 

FAPAR would drop to the lowest value in December even if northern hemispheric 

FAPAR drops to the lowest value in January. The MERIS, MISR, SeaWiFS, and 

GEOV1 global FAPAR values have similar trends as the MODIS global FAPAR 

values. Therefore, satellite FAPAR products agree well both globally and in the 

Northern Hemisphere in terms of trends. The differences of the mean values of the 

MODIS, MISR, and GEOV1 FAPAR products at the global scale are very small 

(<0.05 generally). The difference of the standard deviations of MODIS and MISR are 

less than 0.02. The mean values of the MERIS and SeaWiFS FAPAR products differ 

within 0.05 and the standard deviations differ within 0.015. However, the MODIS, 

MISR, and GEOV1 global FAPAR values are 0.05–0.1 higher than the average of the 

five products; whereas the MERIS and SeaWiFS global FAPAR values are 0.05–0.1 

lower than the average in terms of magnitudes. Absolute FAPAR values are on 

average in decreasing order from MISR to MODIS to GEOV1 to SeaWiFS and 

MERIS (McCallum et al., 2010).  

The difference between the MODIS, MISR, and GEOV1 FAPAR products become 

greater in other seasons than in the vegetation growing season, with the mean values 

differing by approximately 0.05. The differences between the mean of the MERIS 

and SeaWiFS FAPAR products remain stable and do not depend on the vegetation 

growing season. The difference between the group of MODIS, MISR, and GEOV1 

FAPAR products and the group of MERIS and SeaWiFS FAPAR products becomes 

greater in other seasons (~0.16). The differences in the standard deviations between 2 
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months were within 0.02 for any of the five global FAPAR products. Therefore, the 

standard deviation of global FAPAR is almost independent of the month for these 

FAPAR products. 

Compared with the FAPAR trends in the Northern Hemisphere, opposite situations 

are found in the FAPAR trends in the Southern Hemisphere. The MODIS and 

GEOV1 southern hemispheric FAPAR remain relatively stable from August to 

November, then increase to the highest values in May, and finally drop to the lowest 

values in November. The MISR southern hemispheric FAPAR has similar trend as 

the MODIS and GEOV1 southern hemispheric one, except that it drops to the lowest 

values near September instead of November. The MERIS southern hemispheric 

FAPAR is slightly different from the MODIS and MISR one. It remains relatively 

stable from July to September, then increases to the highest values in February, and 

finally drops to the lowest values near August (3 months variation from MODIS). The 

SeaWiFS southern hemispheric FAPAR remains relatively stable from July to 

September, then increases to the highest values in April, and finally drops to the 

lowest values in September (same as MISR). Overall, southern hemispheric FAPAR 

remains relatively stable from August to November, then increases to the highest 

values in April or May, and finally drops to the lowest values between September and 

November. The increased disparity among products in the Southern Hemisphere is 

likely a result of fewer vegetation samples there, which is explored in detail for 

different land covers in Section 2.2.2. 

The quality flags of MODIS FAPAR with non-fill values are analyzed to select maps 

in high quality month for further comparisons. The statistics of MODIS Collection 5 
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FAPAR quality control flags are depicted globally and in the Northern and Southern 

Hemispheres (Fig. 2-4). The percentage of the main algorithm retrievals increases in 

the middle of the growing season and reaches the highest value in September. The 

percentage of backup retrievals due to bad geometry increases in the winter as 

expected because of the larger solar zenith angle. This kind of backup retrieval related 

to bad geometry lasts 6 months, from October to March, both globally and in the 

Northern Hemisphere and approximately 3 months, from May to July, in the Southern 

Hemisphere. Overall, the analysis on the MODIS quality flags shows that the quality 

of satellite FAPAR products is better in the vegetation growing season than other 

season. 

The difference maps between products in July was generated considering the good 

quality of FAPAR products in the vegetation growing season, and the results are 

shown in Fig. 2-5. The sea/land mask is applied and only pixels with high quality 

values from all of the five satellite FAPAR products are included in the difference 

maps. The MISR FAPAR product exhibits some higher FAPAR values than the 

MERIS and SeaWiFS FAPAR products at high latitudes, and some slightly lower 

FAPAR values in the tropical forests near the equator. The difference between the 

MERIS and SeaWiFS FAPAR products is very small, with a few pixels located along 

the boundaries of continents. The difference between the MISR and MODIS FAPAR 

products is quite small as well, with only a few scatters in the boreal forests of Asia 

and North America. The MISR and MODIS FAPAR products are close to the 

GEOV1 FAPAR product, except some boundary regions. However, the MODIS 

FAPAR values are apparently higher than the MERIS and SeaWiFS FAPAR values 
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over the boreal forests and savannahs. The GEOV1 FAPAR product is consistently 

higher than the MERIS and SeaWiFS FAPAR products over the tropical and boreal 

forests. 

The five global FAPAR datasets were averaged per grid cell and then subtracted from 

each dataset to obtain the difference to the mean maps (Fig. 2-6). The MODIS, MISR, 

and GEOV1 FAPAR products have larger values than the average in the boreal and 

tropical forests and grasslands in the Northern Hemisphere. The GEOV1 FAPAR 

product is closest to the average of all the products. The MERIS and SeaWiFS 

FAPAR products have apparently lower than the average values in the forests, 

savannahs and grasslands. The differences to the mean maps are averaged across 

different latitudes (Fig. 2-7). Their differences are smaller at low and high latitudes 

but are larger at middle latitudes, especially in the southern hemisphere. The possible 

reason is the saturation of FAPAR values in the tropical forests and the scarcity of 

vegetation in the high latitudes so that the differences are smaller in these regions. 
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Fig. 2-2 The MODIS, MERIS, MISR, SeaWiFS, and GEOV1 global FAPAR distributions in Plate-carrée projection 

during the period July 2005–June 2006 (every 3 months). Note the agreements among the MODIS, MISR, and 

GEOV1 FAPAR products and between the MERIS and SeaWiFS FAPAR products. However, the MODIS, MISR, 

and GEOV1 FAPAR values were consistently higher than the MERIS and SeaWiFS FAPAR values. 
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Fig. 2-3 The global, northern hemispheric, and southern hemispheric mean of 

quality controlled MODIS, MISR, MERIS, SeaWiFS, and GEOV1 FAPAR 

products during the period July 2005–June 2006. The black curve is all five 

products mean. The dashed curves correspond to the mean ± standard deviation 

of each product. 
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Fig. 2-4 MODIS collection 5 FAPAR QC statistics globally, in the Northern 

Hemisphere, and the Southern Hemisphere: the percentage of main algorithm 

retrievals (blue), the percentage of main algorithm under conditions of 

saturation (red), the percentage of backup (i.e. NDVI-based) retrievals 

associated with bad geometry (green), the percentage of pixels using the backup 

algorithm due to reasons other than geometry (purple). Note the overall increase 

in high quality (main algorithm) retrievals during the middle of the growing 

season. 
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Fig. 2-5 Global FAPAR difference maps between the MODIS, MISR, GEOV1, 

MERIS and SeaWiFS products in July 2005 (MIS: MISR, MER: MERIS, MOD: 

MODIS, Sea: SeaWiFS, Geo: GEOV1). 
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Fig. 2-6 Maps of the five global FAPAR datasets in July 2005, with the mean of 

all five products per grid-cell subtracted from each dataset. 
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Fig. 2-7 The average of the difference to the mean of the five products at 

different latitudes in July 2005. The black line is for reference. 

2.2.2. Intercomparisons over different land cover types 

The MODIS global land cover map (MCD12) during the period July 2005–June 2006 

is depicted in Fig. 2-8. The vegetated areas are classified by use of the MODIS-

derived LAI/FAPAR scheme into eight land cover types: broadleaf evergreen forest, 

broadleaf deciduous forest, needleleaf evergreen forest, needleleaf deciduous forest, 

crop, grass, savannah, and shrubland (Myneni et al., 2002). The MCD12 land cover 

classification product was resampled into 0.5° using the mode resampling method by 

selecting the value which appears most often of all the sampled points. Most of the 
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vegetated areas are located in the Northern Hemisphere. The only exception is the 

broadleaf evergreen forests, the majority of which are located in the Southern 

Hemisphere, including the northwest part of South America, part of Central Africa, 

and the southern part of Southeast Asia. 

The histograms of the MODIS, MERIS, MISR, SeaWiFS, and GEOV1 FAPAR 

products over the entire globe, the Northern Hemisphere, and the Southern 

Hemisphere are depicted in Fig. 2-9, where the blue bars denote the number of pixels 

in the Northern Hemisphere, and the red bars denote the number of pixels in the 

Southern Hemisphere. The MODIS, the MISR, and the GEOV1 FAPAR agree well 

with each other over different land cover types, and so do the MERIS and the 

SeaWiFS FAPAR. The MODIS, MISR, and GEOV1 FAPAR are consistently higher 

than the MERIS and SeaWiFS FAPAR because the former ones detect much more 

pixels with FAPAR values over 0.8 than the latter, especially over tropical forests. 

The differences in the magnitudes could be attributed to the different composite 

algorithms. Both global MERIS and SeaWiFS monthly products correspond to 

median values in a month instead of average values as the MODIS, MISR, and 

GEOV1 FAPAR products. Consequently, there are fewer high FAPAR values in the 

MERIS and SeaWiFS FAPAR products than in other products. Absolute FAPAR 

values are on average in decreasing order from MISR to MODIS to GEOV1 to 

SeaWiFS and MERIS over almost all land cover types except needleleaf forests. The 

MODIS FAPAR is higher than the MISR FAPAR over needleleaf forests, because 

more pixels with high FAPAR values are detected over needleleaf forests in the 

MODIS FAPAR product than in the MISR FAPAR product. The GEOV1 FAPAR 
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product is very close to the MODIS FAPAR product, with slight deviations over 

broadleaf evergreen forests. Regarding the differences of the mean of the products 

over the Northern and Southern Hemispheres, the mean FAPAR is higher in the 

Northern Hemisphere than in the Southern Hemisphere over most of the land cover 

types except broadleaf evergreen forest for the five products during the northern 

hemispheric vegetation growing season. The mean FAPAR over broadleaf evergreen 

forest in the Southern Hemisphere is slightly higher (~0.02) than in the Northern 

Hemisphere. The mean of all five products is averaged globally and in the Northern 

and Southern Hemispheres during the period July 2005–June 2006 to show their 

seasonal patterns at the three scales (Fig. 2-10). The southern hemispheric FAPAR is 

constantly higher than the northern hemispheric FAPAR over broadleaf evergreen 

forests, regardless of season. 

The trend of northern hemispheric FAPAR was similar to that of global FAPAR, with 

slight difference in the magnitudes (Fig. 2-10). The explanation is that the majority of 

the land cover is located in the Northern Hemisphere, resulting in the dominant 

influence of northern hemispheric FAPAR on global FAPAR. The exceptions are the 

FAPAR over savannah and broadleaf evergreen forest land covers. The global 

FAPAR mean over savannah remains almost constant throughout the year, but the 

northern hemispheric FAPAR mean is a sine curve, with the highest value in 

September and the lowest value between February and March. There is an opposite 

trend in the Southern Hemisphere, and the two trends cancel each other out globally. 

The global FAPAR mean over broadleaf evergreen forest is stabilized throughout the 

year, but the northern hemispheric FAPAR is a sine curve. In this case, the curve of 
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the global FAPAR mean is similar to the curve in the Southern Hemisphere, because 

the majority of broadleaf evergreen forests are located in the Southern Hemisphere as 

noted. 

Compared with the trends of the northern hemispheric FAPAR mean, opposite trends 

are found in the southern hemispheric FAPAR mean. The opposite relations are very 

apparent globally, over crop, savannah, grass, broadleaf deciduous forest, and 

needleleaf evergreen forest. The opposite relations are not apparent over shrubland 

and broadleaf evergreen forest, where the southern hemispheric FAPAR is stable 

throughout the year, but the northern hemispheric FAPAR mean has a parabolic 

shape over shrubland and a sine curve over broadleaf evergreen forest. The global 

FAPAR curve overlaps with the northern hemispheric FAPAR curve over needleleaf 

evergreen forests, provided that only a few needleleaf evergreen forests are in the 

Southern Hemisphere. Barely any needleleaf deciduous forests are in the Southern 

Hemisphere. Both the northern hemispheric and the global FAPAR mean have bowl-

like shapes over needleleaf deciduous forests throughout the year. 

The time series of the mean of the MISR, MODIS, GEOV1, SeaWiFS, and MERIS 

FAPAR products over different land cover types during the period July 2005–June 

2006 are depicted in Fig. 2-11, with the mean of all five products subtracted from 

each dataset. The MODIS and MISR FAPAR products are approximately 0.05–0.1 

higher than the average of the five products, and the MERIS and SeaWiFS FAPAR 

products are approximately 0.05–0.1 lower than the average of the five products. The 

GEOV1 FAPAR product has very small difference (< 0.05) to the mean over grass, 

shrubland, crop and savannah. The deviations to the mean for the five products 
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remain stable over grass, shrubland, crops, savannah, and broadleaf evergreen forests 

throughout the year. However, a different situation occurs over broadleaf deciduous 

forests, where the deviations are largest in October and smallest in June and July. The 

deviations of the five products from the average over needleleaf evergreen and 

needleleaf deciduous forests are largest in September and October, and gradually 

decrease to the lowest values in March. The GEOV1 FAPAR product has large 

fluctuations over needleleaf evergreen and needleleaf deciduous forests because of its 

strong seasonal pattern over the needleleaf forests with a standard deviation of 0.21, 

compared with standard deviations around 0.11 for other FAPAR products. In such 

case, it fluctuates both above and below the average line, although it has similar 

seasonality as other products as shown in Fig. 2-3. The MISR FAPAR product has a 

drop in the value over needleleaf deciduous forest in December because of no data. 

Overall, the differences between the products are consistent throughout the year over 

most of the land cover types, except over the forests. The possible reason can be 

traced to the different assumptions in the retrieval algorithms over forests and the 

large differences between green and total FAPAR products due to tree trunks and 

branches absorption (Pickett-Heaps et al., 2014). Interestingly, the differences 

between the products do not fluctuate much in broadleaf evergreen forests over time, 

because FAPAR values remain relatively stable all year long and therefore the 

differences between the products are small and consistent over broadleaf evergreen 

forests.  
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Fig. 2-8 The resampled MODIS global land cover map (MCD12) at 0.5° during 

the period July 2005–June 2006. The vegetated areas are classified by use of the 

MODIS-derived LAI/FAPAR scheme into eight land cover types: broadleaf 

evergreen forest, broadleaf deciduous forest, needleleaf evergreen forest, 

needleleaf deciduous forest, crop, grass, savannah and shrubland. The map also 

includes the unvegetated, water, and urban area. 
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Fig. 2-9 Histograms of the quality controlled MODIS, the MERIS, the MISR, the 

SeaWiFS, and the GEOV1 FAPAR products over all or individual land cover 

types in the entire globe (black), the Northern Hemisphere (blue), and the 

Southern Hemisphere (red) in July 2005. The numbers are the mean and the 

standard deviations of FAPAR over the entire globe (black), the Northern 

Hemisphere (blue), and the Southern Hemisphere (red). 
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Fig. 2-10 The global (black), northern hemispheric (blue), and southern 

hemispheric (red) FAPAR mean of all five products over different land cover 

types during the period July 2005–June 2006. 



40 
 

 

Fig. 2-11 The time series of the mean of quality controlled MODIS, MISR, 

MERIS, SeaWiFS, and GEOV1 FAPAR products over different land cover types 

during the period July 2005–June 2006, with the mean of all five products 

subtracted from each dataset. The black line is for reference. 

2.3. Direct Validation of Satellite FAPAR Products 

Satellite FAPAR products at 1 km are used for direct validation against 3 years of 

ground-based continuous measurements of FAPAR at 4 AmeriFlux sites. The 

validation results of the MERIS, MODIS, MISR, and GEOV1 FAPAR products with 

in-situ measurements at the AmeriFlux sites are shown in Fig. 2-12. The curves of the 

SeaWiFS FAPAR product are similar to those of the MERIS FAPAR product, so not 
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shown here for clarity. The MISR FAPAR values are higher than the MODIS, 

MERIS, and GEOV1 FAPAR values, especially in the middle of the vegetation 

growing season. The in-situ FAPAR proxy at Mead Irrigated, Mead Irrigated 

Rotation, and Mead Rainfed sites reach zero before early April and after middle 

November, which is the result of harvesting the crops there. Most satellite FAPAR 

product values around the two sites approach, but are not exactly, zero at the 

beginning and end of the year, which is caused by the contribution from 

inhomogeneous land cover, in addition to crops near the sites, or the limited soil 

reflectance database used by the algorithm (Tao et al., In review). The statistics of 

comparisons between ground-based and satellite FAPAR products are listed in Table 

2-3. The MISR FAPAR product has the highest accuracy over the Mead Rainfed crop 

site. The GEOV1 FAPAR product has the best accuracy over other crop and forest 

sites. The MODIS, MISR, and GEOV1 FAPAR products agree better with in-situ 

measurements at the Bartlett experimental deciduous broadleaf forest site in 

magnitude than the MERIS FAPAR product does. The MERIS product has a good 

seasonality profile and little variation of random error caused by cloud contamination, 

but underestimates FAPAR by 0.12 overall. The underestimation is caused by the 

green leaf FAPAR estimated by MERIS versus the total FAPAR by ground-based 

measurements which include the absorptions of both leaf and non-leaf elements.  

The validation results are improved when green FAPAR measurements are used as 

reference data, shown as a magenta line for the year 2006 in the first panel of Fig. 

2-12. The improvement is significant for green FAPAR products, with the root mean 

square error (RMSE) reduced from an average of 0.15 to 0.08. Therefore, the 
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accuracy of satellite green FAPAR products is improved when validated using green 

FAPAR instead of total FAPAR measurements. The main reason is the senescence 

and yellow turning of the leaves at the end of the growing season, and the green 

FAPAR, estimated by a multispectral optical remote sensing approach, would 

naturally agree better with in-situ measured green FAPAR than a higher value of total 

FAPAR (Vina and Gitelson, 2005; Zhang et al., 2005). However, the RMSE error for 

the MISR total FAPAR product is increased from 0.14 to 0.15. This is understandable 

as the MISR FAPAR product is total FAPAR and would naturally agree better with 

total FAPAR measurements. The MODIS FAPAR product has a slightly increased 

accuracy validated with green FAPAR measurements because its inclusion of direct 

radiation absorption only, which has an offset from the ground-based FAPAR 

including both direct and diffuse radiation. Overall, the RMSE of all FAPAR 

products have been reduced from an average of 0.14 to 0.09. However, the 

calculation of green FAPAR requires additional simultaneous measurements of green 

LAI and total LAI to distinguish between green leaves and yellow leaves. The process 

is labor extensive, and thus green FAPAR measurements are not collected for all the 

years. Therefore, total FAPAR measurements are used as the main validation data in 

this study, considering its temporal continuity.  

We evaluated the site homogeneity during the vegetation growing season and other 

seasons using Landsat images at 30 m high resolution. The satellite images within an 

extent of 1440 m by 1440 m around the sites are depicted in Fig. 2-13. We calculated 

the standard deviation divided by the mean of the simple ratio between near infrared 

and red bands in the three regions (the first region contains two sites: Mead Irrigated 
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and Mead Irrigated Rotation). The values for the Mead Irrigated region are 0.586 and 

0.573 during the vegetation growing season and other seasons, respectively. The 

values for the Mead Rainfed region are 0.747 and 0.381, and the values for the Barlett 

region are 0.162 and 0.147, respectively. With a smaller ratio between the standard 

deviation and the mean of the simple ratio, the vegetation in the Barlett region is more 

homogeneous than in the two Mead regions, and therefore FAPAR is expected to 

have higher validation accuracy and lower RMSE than that in the other two regions 

(Table 2-3). The averages of the homogeneity index of the two Mead regions are very 

close, but the homogeneity index of the Mead Irrigated region remains relatively 

stable. Therefore, higher validation accuracy is expected in the Mead Irrigated region 

than in the Mead Rainfed region. 

The MODIS, MERIS, MISR, and GEOV1 FAPAR products are compared with the 

ground-based measurements at the VALERI experimental sites, as shown in Fig. 2-14. 

Generally speaking, the MERIS, SeaWiFS, and GEOV1 FAPAR have higher 

accuracy than the MODIS and MISR FAPAR regarding R
2
 and RMSE at these sites. 

There are missing or invalid MERIS FAPAR values at five sites, GEOV1 FAPAR 

values at four sites, and MISR FAPAR values at three sites; thus, the retrieval rates of 

the MERIS, GEOV1, and MISR FAPAR products are lower than that of the MODIS 

and SeaWiFS FAPAR products. The MERIS, SeaWiFS, and GEOV1 FAPAR 

products perform well at all of the four land cover types, although the MERIS and 

SeaWiFS FAPAR products slightly underestimate FAPAR compared with in-situ 

measurements. The MODIS FAPAR product performs well at crop sites. The MISR 

FAPAR product has better performance than the MODIS FAPAR product at grass 
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and forest sites. The MODIS and MISR FAPAR products do not rank high in terms of 

R
2
 and RMSE, but has satisfactory biases close to zero values. 

Table 2-3 Statistics of comparisons between ground-based and space products. 

Site Product RMSE Bias R
2
 

Mead Irrigated 

MERIS 0.182 −0.092 0.777 

MODIS 0.145   0.009 0.667 

MISR 

GEOV1 

0.142 

0.114 

  0.072 

  0.067 

0.761 

0.773 

Mead Irrigated 

Rotation 

MERIS 0.161 −0.036 0.751 

MODIS 0.159   0.098 0.546 

MISR 

GEOV1 

0.124 

0.113 

  0.104 

  0.106 

0.733 

0.752 

Mead Rainfed 

MERIS 0.186 −0.060 0.668 

MODIS 0.143   0.070 0.626 

MISR 

GEOV1 

0.125 

0.149 

  0.043 

  0.113 

0.638 

0.577 

Bartlett 

MERIS 0.127 −0.290 0.749 

MODIS 0.167 −0.085 0.642 

MISR 0.103 −0.086 0.842 

GEOV1 0.075 −0.039 0.800 
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Fig. 2-12 The time series of in-situ FAPAR measurements and satellite products 

at four AmeriFlux sites. Green FAPAR measurements are depicted in blue line 

in the top left panel, and total FAPAR measurements are depicted in black line 

in all panels. The shaded area is the 10% accuracy requirement. The monthly 

MERIS, 8-day MODIS, 2–9 day MISR, and 10-day GEOV1 FAPAR products 

are depicted in asterisks, crosses, diamond, and circles, respectively. 

 

 

Fig. 2-13 Landsat images with an extent of 1440 m by 1440 m around Mead 

Irrigated and Mead Irrigated Rotation sites (a–b), Mead Rainfed site (c–d), and 

Bartlett site (e–f) during the vegetation growing season (a, c, e) and other seasons 

(b, d, f). 

 

(a) (c) (e) 

(f) (d) (b) 
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Fig. 2-14 The MODIS, MERIS, MISR, SeaWiFS, and GEOV1 FAPAR products 

validated with in-situ measurements of VALERI. The land cover of shrubland is 

represented by a pentagram (), grass by triangle (∆), forest by square (□), and 

crops by circle (○). Horizontal and vertical bars correspond to the uncertainties 

(±σ). The middle green line is y = x. The two other green lines are y = x ± 0.1, 

respectively.  

2.4. Discussion 

The intercomparison studies on the five satellite FAPAR products revealed some 

discrepancy among them. The FAPAR products have some general relations, in 

which the MISR FAPAR product often has the highest value, followed by the 
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MODIS, GEOV1, and SeaWiFS FAPAR products, and the MERIS FAPAR product 

provides the lowest value. The difference could be partly explained by the differences 

in the definitions of FAPAR among products. The SeaWiFS, MERIS, and GEOV1 

FAPAR products take into account only the absorption by green elements, resulting 

in lower FAPAR values than the MISR and MODIS FAPAR products, which include 

the absorption of both green and non-green elements. The difference between the 

SeaWiFS and MERIS FAPAR products is small, and it can be attributed to the 

differences in the satellite overpass time and cloud masks (Gobron et al., 2008). 

The intercomparison results of global FAPAR products over different land covers 

show that no noticeable global trend over savannah is observed, which is caused by 

the cancelling trends of the northern and southern hemispheric FAPAR. Therefore, 

the difference in the trends of the global FAPAR products over savannah is not 

significant and is likely to be caused by some random error because of the small 

magnitude of the trends. The Amazon broadleaf evergreen forests exhibit slightly 

different seasonal pattern in the Northern Hemisphere from that in the Southern 

Hemisphere, but the seasonality is weak compared with that over other land cover 

types. There is a debate on whether a seasonal pattern exists in the Amazon forests. 

Myneni et al. (2007) have observed a seasonal pattern in the southern hemispheric 

Amazon rainforest from MODIS data. However, Morton et al. (2014) find consistent 

canopy structure and greenness during the dry season in the Amazon forests using 

observations from LiDAR and MODIS (its bidirectional reflectance effect is further 

corrected). As shown in this study, there could be a weak seasonal pattern over 

broadleaf evergreen forests in the Southern Hemisphere. The different findings in the 
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two studies might be explained by the weak seasonal pattern and the large random 

error caused by the saturation problem of optical remote sensing over heavily leaved 

Amazon forests.         

Regarding the performance of individual FAPAR products, the MERIS has high 

accuracy and a good seasonality profile, but might underestimate the FAPAR values 

by 0.05–0.15. Some other studies also find that the MERIS FAPAR product has an 

uncertainty or negative bias of 0.1(Pickett-Heaps et al., 2014). Martinez et al. (2013) 

calculate their FAPAR based on the MERIS MGVI algorithm, which turns out to be 

very low compared with hemispherical pictures based ground measurements, 

especially in some cultivated sites with bias around 0.16. Because the MERIS and 

SeaWiFS FAPAR products are very close to each other based on the difference map 

of the two products in Fig. 2-5 in Section 2.2, similar problems would exist in the 

SeaWiFS FAPAR product as well. Camacho et al. (2013) evaluate the performance of 

SeaWiFS FAPAR products at some VALERI sites, and find the bias of SeaWiFS to 

be 0.16 and RMSE to be 0.23, even higher than MERIS FAPAR product. The 

negative bias of the MERIS and SeaWiFS FAPAR products could be a result of their 

retrieval of green FAPAR value. Therefore, this study show that the validation 

accuracy of the MERIS and SeaWiFS FAPAR products is significantly improved 

from 0.15 to 0.08 when using in-situ green FAPAR instead of total FAPAR 

measurements. 

The general performances of the MODIS, MISR, and GEOV1 FAPAR products are 

good when compared with in-situ measurements. The bias is generally less than 0.05. 

The RMSE is approximately 0.14 when validating with total FAPAR measurements. 



51 
 

However, the MODIS and MISR FAPAR products might overestimate at some sites. 

For example, Martinez et al. (2013) point out that MODIS shows a tendency to 

provide high values in cultivated areas and Mediterranean forest, such as Puechabon. 

The MODIS FAPAR product may also have positive bias for very low FAPAR 

values. A similar overestimation problem is found in MISR FAPAR data as well, 

with a positive bias as large as 0.16 in broadleaf forests (Hu et al., 2007). In addition, 

unrealistically strong temporal variations are found in MODIS data, possibly because 

of severe cloud contamination during the wet season (Camacho et al., 2013). The 

MODIS FAPAR product tends to be more consistent with in-situ measurements in the 

dry season, linked to the absence of significant understory green vegetation, leaving 

the overlying evergreen woody vegetation as the sole vegetation layer (Pickett-Heaps 

et al., 2014). Regardless, the latest versions of the FAPAR products have higher 

levels of consistency than their previous versions, thanks to the continuously 

improved pre-processing of the products, including better calibration, clouds masks, 

etc. (Serbin et al., 2013). 
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Chapter 3 New estimation of FAPAR from multiple satellite 

data 
 

The targeted accuracy of FAPAR products is 10%, or 0.05, for many applications.  

However, most of the current FAPAR products have not fulfilled the accuracy 

requirement yet and thus further improvements are needed. In this chapter, a new 

FAPAR estimation model was developed based on the radiative transfer for 

horizontally homogeneous continuous canopy. A spatially explicit parameterization 

of leaf canopy and soil background reflectance was derived from a thirteen years of 

MODIS albedo database. The new algorithm requires the input of leaf area index 

(LAI), which was estimated by a hybrid geometric optic-radiative transfer model 

suitable for both continuous and discrete vegetation canopies in this study. The 

FAPAR estimates by the new model was intercompared with reference satellite 

FAPAR products and validated with field measurements at the VAlidation of Land 

European Remote sensing Instruments (VALERI) and AmeriFlux experimental sites. 

The remainder of the chapter is organized as follows. Section 3.1 introduces data for 

FAPAR estimation and validation. Section 3.2 describes a new model for FAPAR 

retrieval. Section 3.3 compares the performance of this new model with those of 

FAPAR products by direct validation using in situ measurements at the site scale. The 

model was applied in multiple resolution images at the regional scale in Section 3.4. 

Section 3.5 discussed and concluded the findings. 

3.1. Data 
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The data used in this chapter include satellite surface reflectance data, satellite 

FAPAR products including MODIS and MISR ones, and FAPAR in situ 

measurements from two groups of experimental sites.  

3.1.1. Satellite surface reflectance  

The MODIS, MISR, Landsat Thematic Mapper (TM), and Enhanced Thematic 

Mapper Plus (ETM+) reflectance data were used for FAPAR estimation. Satellite 

surface reflectance products for FAPAR retrieval are listed in Table 3-1. Different 

spatial resolutions of FAPAR estimates could induce the scaling effect of FAPAR, 

which happens when the surface is heterogeneous and the retrieval algorithm is 

nonlinear (Tao et al., 2009; Xu et al., 2009). Because of the scale difference, the 

validation results at more homogeneous sites are expected to have a higher FAPAR 

accuracy. We evaluate the heterogeneity around the validation sites in Chapter 2. The 

FAPAR accuracy at different sites is analyzed and the impact of site heterogeneity on 

the FAPAR accuracy is explored. 

3.1.2. Satellite FAPAR products 

The FAPAR estimates were compared with the MODIS and the MISR FAPAR 

products (Hu et al., 2003; Knyazikhin et al., 1998a; Myneni et al., 2002). Satellite 

FAPAR products have some differences in the definition of their products in terms of 

inclusion of diffuse radiation or not. The MISR FAPAR product is the total FAPAR 

at 10:30 am, considering both direct and diffuse radiation absorbed by the whole 

canopy. The MODIS FAPAR considers only direct radiation, which may result in a 

smaller value than the MISR FAPAR product (Hu et al., 2003; Tao et al.). Regardless 
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of the different definitions, differences among FAPAR products vary over different 

land covers and are larger than as expected by the differences in definitions. Poorest 

agreement in the magnitude of FAPAR among the datasets occurs within mixed and 

needleleaf forests. Agreement among datasets does not imply accuracy; however the 

more datasets agree over a particular area, the greater the likelihood that those 

datasets are capturing the variable correctly (McCallum et al., 2010). 

Spatial and temporal resolutions and temporal coverage information of satellite 

FAPAR products, as well as their retrieval algorithms, are listed in Table 3-2. Spatial 

resolutions of satellite FAPAR products vary from 1 km to 9 km, and temporal 

resolutions vary from 8 days to 1 month. Spatial aggregation and temporal 

interpolation are necessary to intercompare their values across multiple scales. 

Considering the availability of continuous measurements of FAPAR, temporal values 

of FAPAR products were linearly interpolated to the highest temporal resolution to 

ensure enough data points validated with in situ measurements.  

3.1.3. FAPAR in situ measurements 

The FAPAR validation data were collected from two groups of experimental sites: 

VAlidation of Land European Remote sensing Instruments (VALERI, WWW1) and 

AmeriFlux (WWW2). The VALERI sites are widely distributed around the world and 

useful for spatial validation over different land covers (Camacho et al., 2013; Weiss 

et al., 2007). The AmeriFlux sites are intended for temporal validation of FAPAR 

estimates and products, in consideration of their continuous measurements of FAPAR. 

The land covers of the 27 VALERI and AmeriFlux sites include 9 forests (1 of 
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Ameriflux and 8 of VALERI), 11 crops (3 of Ameriflux and 8 of VALERI), 6 grass 

sites (of VALERI), and 1 shrubland site (of VALERI). Their distributions are shown 

in Fig. 2-1. The geolocation and land cover information of the AmeriFlux and the 

VALERI sites are listed in Table 2-1 for reference.  

Table 3-1 The characteristics of satellite surface reflectance products used in this 

study. 

Reflectance 

product 

Temporal 

coverage 

Temporal 

resolution 

Spatial 

resolution 

Projection 

MODIS 

MOD09 

(C5) 

(WWW3) 

Feb 18, 2000– 8 days 500 m Sinusoidal 

MISR (L2) 

(WWW4) 

Feb 24, 2000– 

Equator: 9 

days, Polar: 2 

days 

1100 m 

Space Oblique 

Mercator 

TM 

(WWW8) 

Mar 1, 1984 – 16 days 30 m 

Universal Transverse 

Mercator (UTM) 

ETM+ 

(WWW8) 

Apr 15, 1999– 16 days 30 m UTM 
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Table 3-2 The characteristics of moderate-resolution satellite FAPAR products 

used in this study. 

FAPAR 

product 

Temporal 

coverage 

Temporal 

resolution 

Spatial 

resolution 

Projection Algorithm 

MODIS 

MOD15 

(C5) 

(WWW3) 

Feb 18, 

2000– 

8 days 1000 m Sinusoidal 

Look up table 

method built on 3D 

stochastic radiative 

transfer model for 

different biomes 

(Myneni et al., 

2002). 

MISR 

(L2) 

(WWW4) 

Feb 24, 

2000– 

Equator: 9 

days, 

Polar: 2 

days 

1100 m 

Space 

Oblique 

Mercator 

Radiative transfer 

(RT) model with 

inputs of LAI and 

soil reflectance 

without assumptions 

on biomes 

(Knyazikhin et al., 

1998a). 

 

3.2. Methodology 
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In moderate resolution images, vegetation pixels are almost continuously distributed 

across large regions in the imagery. Therefore, we assumed the land cover was 

horizontally homogeneous within the targeted surface and developed a four-stream 

radiative transfer model of continuous canopy for FAPAR retrieval. Canopy 

absorptance along the direct and diffuse light penetrating paths were calculated 

separately and summed up using a ratio of scattering light. We denote T0, Tf, and Tv 

as the canopy transmittance along the direct light penetrating, the diffuse light 

penetrating, and the observing paths, respectively; and denote ρv,λ, ρg,λ, and ρc,λ as the 

hemispherical albedos of vegetation, soil background, and leaf canopy, respectively. 

FAPAR was calculated as the integral of canopy absorptance in the upper hemisphere 

from 400 to 700 nm, as follows: 
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where canopy transmittance along the direct light penetrating, the diffuse light 

penetrating, and the observing paths can be expressed as:  

s,f,v

0,f,v 0

s,f,v

exp( )
G

T LAI


       (2) 

and hemispherical albedo of vegetation is: 
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  (3) 

In (2) and (3), λ0 is a Nilson parameter accounting for vegetation clumping effect, μs 

and μv(θ) are cosine values of solar (θs) and the viewing (θ) zenith angles, β is a ratio 

of scattering light, and Gs and Gv are the mean projection of a unit foliage area along 

the solar and viewing directions, respectively (Liang, 2004; Ross, 1981): 

 s,v L L L s,v L
2

1

2
G g d


         (4) 

where  L L1 2 g    is the probability density of a distribution of leaf normals with 

respect to the upper hemisphere, i.e., leaf angle distribution. An empirical function 

   describes hot-spot phenomenon, where a symbol   accounts for sun-target-

sensor position and depends on the angle between solar and viewing directions and 

leaf angle distribution of the canopy. 

  exp
180






 
   

 
     (5)  

Assume LAI is known for FAPAR estimation. A hybrid geometric optic-radiative 

transfer model for LAI retrieval has been developed earlier and is included in the 

Appendix for convenience (Tao et al., 2009; Xu et al., 2009).  

Other important inputs for FAPAR estimation proposed in this study are soil 

background and leaf canopy albedos. Some typical soil background and leaf canopy 
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albedos could be used for simplicity, but they may deviate from local conditions. 

Taking into account the applicability of surface albedos at local conditions, we 

derived a database of soil background and leaf canopy albedos upon thirteen years of 

surface albedo time series (He et al., 2015). The multiyear mean soil background and 

leaf canopy albedo was generated using the 500 m spatial resolution MODIS surface 

anisotropy products (MCD43A) during the period 2000–2012. The “soil line” 

characteristics were used to separate vegetation and bare soil on a pixel basis over the 

United States. The leaf canopy albedo was generated from the vegetation albedo at 

the peak of the growing season. Therefore, the database provides locally pixel basis 

soil background and leaf canopy albedos as input for FAPAR estimation models. Fig. 

3-1shows an example of the derived albedos of soil background and leaf canopy.  

Overall, the FAPAR estimation model (1) – (5) includes reflective anisotropic 

characteristics caused by sun-target-sensor geometry, vegetation clumping effect, and 

hot-spot effect. In consideration of model simplicity and computational efficiency, it 

neglects reflective anisotropic characteristics caused by soil background and leaf 

canopy while retaining a high accuracy by using locally applicable soil background 

and leaf canopy albedos. The model is referred as “4S” model for simplicity in the 

remaining of this study. 
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Fig. 3-1 The distributions of soil background (left) and leaf canopy (right) 

albedos on clear days in a thirteen-year surface albedo database within the 

extent of MODIS tile H10V04 (NIR-Red-Green false color composition). 

3.3. Validation and Comparison with Some Reference FAPAR Products 

The FAPAR estimated by the presented model were validated using in situ 

measurements at the site scale and the results were compared with some reference 

FAPAR products. Specifically, the FAPAR was estimated from MODIS surface 

reflectance data and the results were validated and compared with the MODIS 

reference FAPAR product in Section 3.3.1. The FAPAR was estimated from MISR 

surface directional reflectance data and the results were validated and compared with 

the MISR reference FAPAR product in Section 3.3.2.  The FAPAR was estimated 

from Landsat reflectance data and the results were validated using in situ 

measurements in Section 3.3.3. 
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3.3.1. Validation and comparison with the MODIS official FAPAR product 

The NASA MODIS surface reflectance data (MOD09) and land cover information 

were combined to estimate vegetation LAI and FAPAR values using the presented 

model, with input parameters of soil background and leaf canopy albedo from a 

database introduced in Section 3.2. The LAI was estimated first and then used as a 

parameter for FAPAR estimation. The LAI/FAPAR estimates were compared with 

the MODIS LAI/FAPAR products. The QA flags were used to select the high quality 

MODIS data with main algorithm retrievals. As control experiments, the FAPAR was 

estimated from the MODIS surface reflectance data directly (referred as MOD_4SH 

based FAPAR) or from the MODIS Official LAI product (referred as MOD_4SO 

based FAPAR). Fig. 3-2 shows scatterplots of both of the MODIS LAI and FAPAR 

products (d and e) and the LAI and the FAPAR estimates from this study (a and c) 

validated with field measurements of VALERI. Overall, the MODIS LAI product 

underestimated slightly at these sites. The MODIS FAPAR product performed better 

than the LAI product regarding bias, R
2
, and RMSE (d and e). The MODIS LAI 

estimates from this study decreased the negative bias compared with in situ-measured 

LAI, but the correlation with field data was greatly improved compared with the 

MODIS LAI product (a). The MOD_4SO based FAPAR had slightly increased R
2
 

and decreased RMSE compared with the MODIS FAPAR product (b). Both of the 

MODIS FAPAR product and MOD_4SH based FAPAR had little or no bias, but the 

FAPAR estimates from this study had better correlation with in situ data and smaller 

RMSE than the MODIS FAPAR product did (c and e). The improvement of 

MOD_4SH based FAPAR over MOD_4SO based FAPAR infers that the 



62 
 

improvement of the FAPAR estimate was also a result of an improved LAI value as 

input. The MODIS FAPAR product performed well at shrubland and crop sites, but 

the deviations from in situ values were large at forest and grass sites. The FAPAR 

estimates from this study reduced the uncertainty at forest and grass sites from 0.155 

to 0.094. The FAPAR estimates and products were lower than field measurements at 

some forest sites, which is understandable because field measured FAPAR included 

the absorption of tree trunks and branches (Fang et al., 2005). 

The FAPAR estimates by the presented model were compared with the MODIS 

FAPAR product and validated at 4 AmeriFlux sites for 3 years (Fig. 3-3). Compared 

with the MODIS FAPAR product, the FAPAR estimates by the presented model 

increased R
2
 for all of the four sites (Table 3-3). The improvement was most apparent 

at the Mead Irrigated Rotation and Bartlett experimental deciduous broadleaf forest 

site, where the R
2
 were improved by around 20%. The MOD_4SH based FAPAR had 

similar RMSE as the MOD_4SO based FAPAR, but the R
2
 was improved by about 8% 

on average. The FAPAR measurements at Mead Irrigated, Mead Irrigated Rotation, 

and Mead Rainfed sites reached zero before early April and after middle November, 

which was a result of harvesting the crops there. The values of the MODIS FAPAR 

product around the three Mead sites approached but were not exactly zero at the 

beginning and the end of the year, which could be caused by the contribution from 

inhomogeneous land cover inside the 1 × 1 km extent of the MODIS FAPAR pixel, 

or the limitations of the models and the inputs. The presented model estimated 

FAPAR (MOD_4SH based) from surface reflectance data at 500 m spatial resolution, 

so that the crops were homogeneous within this extent. Combined with locally 
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applicable soil background albedo data, the model detected vegetation growing 

season well and reduced the FAPAR uncertainty by 5%. Meanwhile, the FAPAR 

estimates from the MODIS Official LAI product (MOD_4SO based FAPAR) was 

very similar to the MODIS FAPAR product, but had a smoother curve over years. 

The improvement of the MOD_4SH based FAPAR over the MOD_4SO based 

FAPAR infers that the improvement of FAPAR estimate was also a result of an 

improved LAI value as input. The presented model had comparable performance as 

the MODIS FAPAR model when using the same LAI value as input.  

The MOD_4SH based FAPAR agreed well with in situ measurements in the first half 

of the years. However, some underestimation occurred in the FAPAR estimates from 

this study in the three crop sites in the latter half of the years, or at the end of the 

growing season specifically, which was caused by the senescence and yellow turning 

of the leaves, and thus the FAPAR from remote sensing (green FAPAR) is different 

from measurements (total FAPAR) (Vina and Gitelson, 2005; Zhang et al., 2005). In 

this case, the accuracy of the MODIS FAPAR product was improved from 0.140 to 

0.082 and the accuracy of MOD_4SH based FAPAR was improved from 0.139 to 

0.069 when using green FAPAR measurements as validation data. The FAPAR 

estimates from this study and the MODIS FAPAR products were lower than field 

measurements at the end of the growing season at the Bartlett forest site. This is 

understandable because field measured FAPAR included the absorption of tree trunks 

and branches (Fang et al., 2005).  
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Table 3-3 The errors of the FAPAR products and the FAPAR estimates 

validated using in situ measurements. 

Site FAPAR RMSE Bias R
2
 

Mead Irrigated 

MOD_4SH based  0.139 −0.083 0.773 

MIS_4SH based  0.132 −0.012 0.889 

MOD_4SO based  0.116   0.024 0.687 

MIS_4SO based  0.136   0.135 0.789 

MODIS Official product 0.140   0.009 0.667 

MISR Official product 0.153   0.072 0.756 

Landsat_4SH based 0.224 −0.087 0.692 

Mead Irrigated Rotation 

MOD_4SH based 0.141 −0.051 0.809 

MIS_4SH based 0.181   0.034 0.774 

MOD_4SO based 0.136   0.116 0.569 

MIS_4SO based 0.139   0.083 0.736 

MODIS Official product 0.161   0.098 0.546 

MISR Official product 0.157   0.104 0.732 

Landsat_4SH based 0.170 −0.053   0.823 

Mead Rainfed 

MOD_4SH based 0.107 −0.069 0.632 

MIS_4SH based 0.157   0.063 0.778 

MOD_4SO based 0.127   0.086 0.625 

MIS_4SO based 0.149   0.107 0.637 

MODIS Official product 0.143   0.070 0.626 
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MISR Official product 0.163   0.047 0.622 

Landsat_4SH based 0.217 −0.053 0.731 

Bartlett 

MOD_4SH based 0.124 −0.089 0.709 

MIS_4SH based 0.075 −0.083 0.898 

MOD_4SO based 0.106   0.031 0.708 

MIS_4SO based 0.097 −0.076 0.858 

MODIS Official product 0.203 −0.089 0.566 

MISR Official product 0.125 −0.086 0.842 

Landsat_4SH based 0.133 −0.078 0.790 

MOD_4SH based FAPAR: the FAPAR estimates from the MODIS surface 

reflectance data from this study. 

MIS_4SH based FAPAR: the FAPAR estimates from the MISR surface reflectance 

data from this study. 

MOD_4SO based FAPAR: the FAPAR estimates using the MODIS Official LAI 

product. 

MIS_4SO based FAPAR: the FAPAR estimates using the MISR Official LAI product.  
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Fig. 3-2 Validation of the estimated LAI and the FAPAR estimates from this 

study (a‒c) and the MODIS official products (d, e) using in situ measurements at 

VALERI sites. The land cover of shrubland is represented by a pentagram (), 

grass by triangle (∆), forest by square (□), and crops by circle (○). Vertical bars 

correspond to the uncertainties (±σ). The middle green line is y = x. The other 

green lines are y = x ± 1.0 (a, d) and y = x ± 0.1 (b, c, e), respectively. 

 

 

 

 

   (a)              (b)                                       (c) 

   (d)               (e)  
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Fig. 3-3 The time series of the in situ measurements and the MODIS FAPAR 

estimates from this study at four AmeriFlux sites. Green FAPAR measurements 

are depicted in blue line in the first panel, and total FAPAR measurements are 

depicted in black line in all panels. The shaded area is the 10% accuracy 

requirement. The “MODIS” represents the MODIS official FAPAR product, the 

MOD_4SH is the FAPAR estimate from the newly estimated LAI from this 

study, and MOD_4SO is the FAPAR estimate from the MODIS official LAI 

product. 

3.3.2. Validation and comparison with the MISR official FAPAR product 

The MISR surface directional reflectance data and land cover information were 

combined to estimate vegetation LAI and FAPAR values using the presented model. 

The LAI was estimated and then used as a parameter for FAPAR estimation. The 

LAI/FAPAR estimates were compared with the MISR LAI/FAPAR products. As 

control experiments, the FAPAR was estimated from the MISR surface directional 

reflectance data directly (referred as MIS_4SH based FAPAR) or from the MISR 

Official LAI product (referred as MIS_4SO based FAPAR). The MISR LAI and 

FAPAR products (d and e) and the LAI and the FAPAR estimates from MISR 

reflectance data by the presented model (a and c) were validated around VALERI 

sites, as shown in Fig. 3-4. The MISR LAI product underestimated at some forest and 

crop sites. The MISR FAPAR product performed better than the LAI product 

regarding bias, R
2
, and RMSE (d and e). The MISR LAI estimates from this study 

overestimated slightly compared with in situ measured LAI, but its RMSE was 

slightly smaller than that of the MISR LAI product (a). The MIS_4SO based FAPAR 
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had improved R
2
 and reduced RMSE values compared with the MISR FAPAR 

product (b). Both of the MISR FAPAR product and the MIS_4SH based FAPAR had 

little to almost no bias, but the latter had better correlation with in situ data and 

smaller RSME than the former (c and e). The improvement of the MIS_4SH over the 

MIS_4SO infers that the improvement of the FAPAR estimates was also a result of 

improved LAI values as input. Note that the RMSE of the MISR FAPAR estimates 

was slightly smaller than that of the MODIS FAPAR estimates from this study (0.105 

compared with 0.112). Both of the MODIS and the MISR FAPAR estimates from this 

study performed well at grass and forest sites with an average accuracy of 0.104 (Fig. 

3-2 c and Fig. 3-4 c). The MISR FAPAR estimates were improved at crop sites 

compared with the MODIS FAPAR estimates. 

The FAPAR estimates were validated with 3 years continuous measurements at 4 

AmeriFlux sites (Fig. 3-5). Because of only a few valid satellite observations over 

years, the MISR FAPAR product, the MIS_4SO based FAPAR, and MIS_4SH based 

FAPAR are depicted as green asterisks, black circles, and magenta triangles, 

respectively. Compared with the MODIS FAPAR product in Fig. 3-3, the MISR 

FAPAR product and the FAPAR estimates from this study had larger values, 

especially in the middle of vegetation growing season. The MIS_4SO based FAPAR 

was very similar to the MISR FAPAR product, but had a smoother trend over years. 

Compared with the MISR FAPAR product, the FAPAR estimates by the presented 

model increased R
2
 for all of the four sites (Table 3-3). The improvement was most 

apparent at the Bartlett Experimental forest site, with a reduction of RMSE by 0.05. 

The improvement of the MIS_4SH based FAPAR over the MIS_4SO based FAPAR 
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infers that the improvement of FAPAR estimate was primarily a result of an 

improved LAI value as input. The presented model had comparable performance with 

the MISR FAPAR model when using the same LAI value as input.  

 

Fig. 3-4 Validation of the estimated LAI and the FAPAR estimates from this 

study (a‒c) and the MISR official products (d-e) using in situ measurements at 

VALERI sites. The land cover of shrubland is represented by a pentagram (), 

grass by triangle (∆), forest by square (□), and crops by circle (○).Vertical bars 

correspond to the uncertainties (±σ). The middle green line is y = x. The other 

green lines are y = x ± 1.0 (a, d) and y = x ± 0.1 (b, c, e), respectively. 

 

   (a)             (b)                                       (c) 

   (d)              (e)  
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Fig. 3-5 The time series of in situ measurements and the MISR FAPAR estimates 

from this study at four AmeriFlux sites. Green FAPAR measurements are 

depicted in blue line in the first panel, and total FAPAR measurements are 

depicted in black line in all panels. The shaded area is the 10% accuracy 

requirement. The “MISR” represents the MISR official FAPAR product, the 

MIS_4SH is the FAPAR estimate from the newly estimated LAI from this study, 

and MIS_4SO is the FAPAR estimate from the MISR official LAI product. 

3.3.3. Validation of the FAPAR estimates from Landsat data 

The Landsat surface reflectance data and land cover information were combined to 

estimate vegetation LAI and FAPAR values using the presented model. The LAI was 

estimated and then used as a parameter for FAPAR estimation. The LAI and the 

FAPAR estimates from the Landsat reflectance data by the presented model were 

validated at VALERI sites, as shown in Fig. 3-6. The Landsat LAI estimates from this 

study overestimated slightly compared with in situ measured LAI. The FAPAR 

estimates from this study had little to almost no bias and the RMSE was very low. 

Additionally, they had very high correlation with in situ data. It is worth to note that 

there were missing or invalid Landsat FAPAR values at 5 sites and MISR FAPAR 

values at 2 sites; thus, the retrieval rates of the Landsat FAPAR estimates was lower 

than that of MISR and much lower than that of MODIS with no missing values. 

Regarding the performances at different land covers, the Landsat FAPAR estimates 

performed well at grass, forest, and shrubland land cover types. However, the Landsat 

FAPAR estimates were not as good as the MODIS and the MISR FAPAR estimates 

at crop sites from this study. 
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The FAPAR estimates from the Landsat data were compared with the in situ 

measured FAPAR at four AmeriFlux sites, as shown in Fig. 3-7. The errors of the 

FAPAR estimates from the Landsat data validated with in situ measurements are 

listed in the last row of each site in Table 3-3. The Landsat FAPAR estimates had 

good performances at the Mead Irrigated Rotation and the Bartlett site, and 

comparable performance as the MODIS and MISR FAPAR products and the MODIS 

and MISR FAPAR estimates from this study at the Mead Irrigated and Mead Rainfed 

sites. The overall R
2
 at these sites is 0.76 and the bias is small, proving the feasibility 

of the proposed method on the high resolution data. 

 

Fig. 3-6 Validation of the Landsat LAI and the FAPAR estimates from this study 

using in situ measurements at VALERI sites. The land cover of shrubland is 

represented by a pentagram (), grass by triangle (∆), forest by square (□), and 

crop by circle (○).Vertical bars correspond to the uncertainties (±σ). The middle 

green line is y = x. The other green lines are y = x ± 1.0 (left) and y = x ± 0.1 

(right), respectively. 
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Fig. 3-7 The time series of in situ measurements and the FAPAR estimates from 

Landsat at four AmeriFlux sites. Green FAPAR measurements are depicted in 

blue line in the first panel, and total FAPAR measurements are depicted in black 

line in all panels. The shaded area is the 10% accuracy requirement. The 

FAPAR_TM represents the FAPAR estimates from the Landsat TM sensor, and 

the FAPAR_ETM+ represents the FAPAR estimates from the Landsat ETM+ 

sensor. 

3.4. Application at the regional scale 

Section 3.3 assessed the FAPAR estimates from this study with some reference 

FAPAR prodcuts and in situ measured FAPAR at the site scale. This section applied 

the model to estimate FAPAR values from multiple satellite data with different 

spatial-resolutions, and compared the results with official FAPAR products at the 

regional scale to make a comprehensive analysis. Two study regions covering four 

AmeriFlux sites were selected and their geographic locations are shown in Fig. 3-8 

(a). The specific MODIS tiles and MISR and Landsat orbits containing the two study 

regions are listed in Table 3-4. The temporal resolutions of the MISR, the MODIS, 

and the Landsat TM/ETM+ reflectance or FAPAR products are 2‒9 days, 8 days, and 

16 days, respectively. The MISR, the MODIS, and the Landsat scenes around the four 

AmeriFlux sites in the vegetation growing season were carefully selected so that they 

had closest imaging dates as well as high quality data without cloud contamination. It 

turned out that the imaging dates of the products in each case differed within 4 days 

(Table 3-4). We assumed that the vegetation remained almost unchanged within this 
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short period so that the intercomparison of FAPAR among different sensors was 

reliable.  

The Landsat reflectance data were atmospherically corrected using Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) preprocessing code. 

Missing scan lines in the ETM+ image were filled with values of nearest pixels. The 

30 m spatial resolution Landsat TM and ETM+ surface reflectance scenes are 

illustrated in Fig. 3-8 (b) and (c), respectively. They were used for FAPAR estimation 

at 30 m spatial resolution. The MISR and MODIS surface reflectance products 

(MISR L2 and MOD09) were directly used for FAPAR estimation at 1100 m and 500 

m spatial resolutions. The MISR and the MODIS FAPAR products (MISR L2 and 

MOD15) were intended for intercomparison with the FAPAR estimates from this 

study. 

The MODIS FAPAR product uses MCD12 land cover product to distinguish among 

13 land covers globally. The National Land Cover Database 2006 (NLCD 2006) uses 

a 16-class land cover classification scheme for Landsat images. A combined land 

cover classification scheme of the two was used considering the existing land covers 

in the two study regions. The MISR, MODIS, and Lansat images were classified into 

evergreen forest, deciduous forest, urban, grass, crops, barren soil, and water body. 

The classified images and surface reflectance images were combined to estimate 

vegetation LAI and FAPAR values using the presented model, with input parameters 

of soil background and leaf canopy albedo from a database introduced in Section 3.2. 

The LAI was estimated first and then used as a parameter for FAPAR estimation. 

Distributions of the LAI and the FAPAR estimates in the MISR, MODIS, and 
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Landsat images in Case 1 are shown in Fig. 3-9 (a–c) and Fig. 3-10 (a–c), 

respectively. As comparisons, the MISR and the MODIS LAI and FAPAR products 

are shown in Fig. 3-9 (d–e) and Fig. 3-10 (d–e), respectively. Distributions of the LAI 

and the FAPAR estimates in Cases 2 are shown in Fig. 3-12 (a–c) and Fig. 3-13 (a–c), 

respectively. As comparisons, the MISR and the MODIS LAI and FAPAR products 

are shown in Fig. 3-12 (d–e) and Fig. 3-13 (d–e), respectively. On the one hand, the 

MISR LAI and FAPAR products are consistently higher (> 2) than the MODIS in 

Case 1. The MODIS and the MISR LAI and FAPAR products agree well with each 

other in Case 2. On the other hand, the LAI and the FAPAR estimates from this study 

are consistent across different scales in both cases. They have similar distribution 

patterns across scales, where highest values are observed in evergreen forests, higher 

values in deciduous forests, and smaller values in crops, and close to zero values in 

rivers and central urban areas.  

The frequency histograms of the MISR and the MODIS LAI and FAPAR products 

are shown in blue and red bars in Fig. 3-11 (c and d) and Fig. 3-14 (c and d) for Cases 

1 and 2, respectively. The mean and the standard deviation of the MISR LAI product 

were approximately twice as large as those of the MODIS LAI product in Case 1, 

because of more pixels in the MISR image with values greater than 4. The MISR 

FAPAR product had a larger mean (> 0.15) and standard deviation than the MODIS 

FAPAR product in Case 1, but the relative difference between the MODIS and the 

MISR FAPAR products (19%) were smaller than the relative difference between the 

MODIS and the MISR LAI products (53%). The frequency histograms of the MISR 

and the MODIS LAI and FAPAR products agree well in Case 2. The difference 
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between the mean values of the MISR and the MODIS LAI products was slighter 

larger than 0.3. There is a difference of about 0.05 between the mean values of the 

MISR and the MODIS FAPAR products, although more pixels (> 50%) have values 

greater than 0.9 in the MISR FAPAR imagery than in the MODIS FAPAR imagery. 

The relative difference between the MISR and the MODIS FAPAR products (6%) 

was slightly smaller than the relative difference between the MODIS and the MISR 

LAI products (5%). The comparison results between the MISR and the MODIS LAI 

and FAPAR products in Cases 1 and 2 demonstrate that the MISR and MODIS 

FAPAR products agreed better with each other than the MISR and MODIS LAI 

products, regardless of the agreements between the MODIS and the MISR products 

were poor or good. 

The frequency histograms of the LAI and the FAPAR estimates from the MODIS, the 

MISR, and the Landsat reflectance images are shown in blue, red, and green bars in 

Fig. 3-11 (a and b) and Fig. 3-14 (a and b) for Cases 1 and 2, respectively. Generally, 

the agreements among the MISR, the MODIS, and the Landsat LAI and FAPAR 

estimates were reasonably well. The mean values of the LAI estimates differed within 

1, and corresponding standard deviations differed within 0.05 for both cases. The 

mean values of the FAPAR estimates differed within 0.1 and the standard deviations 

differed within 0.03 in both cases. Therefore, the LAI and the FAPAR estimates by 

the presented retrieval method had better performance than the MODIS and MISR 

products regarding consistency across scales. The comparable results between the 

estimates from this study and the products infer that the retrieval algorithms of LAI 

and FAPAR products could partially justify the differences in their data distributions, 



82 
 

so that the LAI and FAPAR values from different satellites would agree better with 

each other when using the same algorithm for retrieval (Seixas et al., 2009). The LAI 

and the FAPAR estimates from this study had comparable performance as the 

MODIS and the MISR FAPAR products in the study region of Case 2, where the two 

products had good agreements with each other. However, this study provided FAPAR 

estimates at multiple resolutions of 30 m, 500 m, and 1100 m, whereas the available 

MODIS and MISR FAPAR products are 1000 m and 1100 m, respectively.  

Table 3-4 The spatial coverage and imaging date information of the MODIS, the 

MISR and the Landsat data used in the two cases. 

Case 

MODIS 

tile 

MISR 

orbit 

Landsat 

orbit 

MODIS 

date 

MISR date 

Landsat 

date 

Case 1 H10V04 P27B58 P28R31 

Aug 5‒12, 

2006 

Aug 4, 2006 Aug 3, 2006 

Case 2 H12V04 P12B55 P12R29 

Aug 5‒12, 

2005 

Aug 8, 2005 Aug 8, 2005 

Case 1 covers three sites: Mead Irrigated, Mead Irrigated Rotation, and Mead Rainfed. 

Case 2 covers Bartlett site. The “H” and “V” of MODIS tile means horizontal and 

vertical, respectively. The “P” and “B” of MISR orbit means path and block, 

respectively. The “P” and “R” of Landsat orbit means path and row, respectively. 

  



83 
 

 

             

Fig. 3-8 (a) Geographic locations of the two study regions in Cases 1 and 2. The 

study region of Case 1 is the lower left red rectangle, and the study region of 

Case 2 is the upper right red rectangle. (b) The high resolution Landsat TM 

surface reflectance scene in Case 1 in NIR-Red-Green false color composition. (c) 

The high resolution Landsat ETM+ surface reflectance scene in Case 2 in NIR-

Red-Green false color composition. 

  

(a) 

(b) (c) 
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Fig. 3-9 The LAI distributions in the MISR, the MODIS, and the TM scenes in 

the Mead study region in Case 1. (a–c) show the TM, the MODIS, and the MISR 

LAI estimates from this study and (d, e) show the MODIS and the MISR LAI 

products. 

  

(a) (b) (c) 

(d) (e) 
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Fig. 3-10 The FAPAR distributions in the MISR, the MODIS, and the TM scenes 

in the Mead study region in Case 1. (a–c) show the TM, the MODIS, and the 

MISR FAPAR estimates from this study and (d, e) show the MODIS and the 

MISR FAPAR products. 

  

(a) (b) (c) 

(d) (e) 
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Fig. 3-11 The LAI and the FAPAR frequency histograms in the MISR, the 

MODIS, and the TM scenes in the Mead study region in Case 1. (a) The MISR, 

the MODIS, and the TM LAI estimates from this study. (b) The MISR and the 

MODIS LAI products. (c) The MISR, the MODIS, and the TM FAPAR 

estimates from this study. (d) The MISR and the MODIS FAPAR products. The 

numbers are the regional mean and standard deviation. 
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Fig. 3-12 The LAI distributions in the MISR, MODIS, and ETM+ scenes in the 

Bartlett region in Case 2. (a–c) show the ETM+, the MODIS, and the MISR LAI 

estimates from this study and (d, e) show the MODIS and the MISR LAI 

products. 

  

(a) (b) (c) 

(d) (e) 
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Fig. 3-13 The FAPAR distributions in the MISR, MODIS, and ETM+ scenes in 

the Bartlett region in Case 2. (a–c) show the ETM+, the MODIS, and the MISR 

FAPAR estimates from this study and (d, e) show the MODIS and the MISR 

FAPAR products. 

  

(a) (b) (c) 

(d) (e) 
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Fig. 3-14 The LAI and the FAPAR frequency histograms of the MISR, the 

MODIS, and the ETM+ scenes in the Mead study region in Case 1. (a) The 

MISR, the MODIS, and the ETM+ LAI estimates from this study. (b) The MISR 

and the MODIS LAI products. (c) The MISR, the MODIS, and the ETM+ 

FAPAR estimates from this study. (d) The MISR and the MODIS FAPAR 

products. The numbers are the regional mean and standard deviation. 

3.5. Discussion and Conclusions 

This study focuses on developing a new FAPAR model and its parameterizations to 

achieve an improved accuracy toward the requirement of 0.05. The FAPAR estimates 

by this model were compared with some reference satellite FAPAR products and 

validated with a comprehensive set of measurements from two field experiments, a 

requirement for Stage 2 of the validation (Morisette et al., 2006). Intercomparisons 
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4.005 / 1.874 

4.499 / 2.153 

  

5.492 / 1.387 

5.189 / 1.348 

0.801 / 0.233 

0.707 / 0.208 

0.743 / 0.237 

  

0.931 / 0.072 

0.882 / 0.104 

(a) (b) 

(c) (d) 
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and validations were conducted at site and regional scales. The site scale 

intercomparison and validation results demonstrated that the performances of the 

MODIS and MISR products varied over different land covers. Generally, the MODIS 

and the MISR FAPAR products performed well in shrubland and crop sites but were 

not that good over grass and forest land covers. This outcome was partially caused by 

the smaller range of in situ measured FAPAR values over crops and shrubland (a 

range between 0.22 and 0.74 for VALERI sites) compared with larger ranges of 

FAPAR values over grass (a range between 0.07 and 0.84) and forest (a range 

between 0.26 and 0.92). Larger ranges of FAPAR values allowed the FAPAR 

products to deviate greatly from the measured values used as truth data here. 

Additionally, the forests had a structure with the understory, the tree trunks, branches, 

and the leaves, resulting in complex interactions with the photons. Satellite FAPAR 

products had different assumptions when retrieving FAPAR over forests and thus 

their differences are large over forests. The finding resembles the conclusion from 

Pickett-Heaps et al. (2014) that FAPAR products disagree significantly with in situ 

values at forest sites, but have relatively high agreements at shrubland and crop sites. 

The MISR and the MODIS FAPAR estimates by the new model in this study 

improved the performance at forest and grass sites. The growing season was 

successfully identified at crop sites and the time series of the FAPAR estimates was 

smooth over the year. The improvements were apparent at grass and forests. The 

RMSE was reduced from 0.16 to 0.11 for MODIS and from 0.18 to 0.1 for MISR. 

The improvements were attributed to both of a new model and improved inputs. The 

model presented is this study uses a Nilson parameter λ0 to account for vegetation 
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clumping effect, but the empirical values of λ0 had some uncertainty and could lead to 

inaccuracy. Forest and grass sites were generally more homogenous than the 

shrubland and crop sites, the latter of which may be covered by scattered natural 

vegetation and row crops. The Nilson parameter λ0 for forests and grasses had lower 

uncertainty due to its homogeneity. Thus, the improvement on FAPAR accuracy by 

this model occurs generally at grass and forest land covers. As discussed, current 

FAPAR products did not performed well at grass and forest land covers and further 

improvements are needed. The model presented in this study satisfies the need to 

improve the performance at grass and forest land covers, and the overall accuracy was 

improved.  

The presented model could achieve slightly better performances than the MODIS and 

the MISR FAPAR models when using their corresponding satellite LAI product as 

input, as shown in the control experiments. This study used a hybrid geometric-optic 

and radiative transfer model suitable for both continuous and discrete vegetation 

canopies to improve the LAI accuracy. The FAPAR accuracy was further improved 

when using these higher accuracy LAI values as input. Therefore, it is equally 

essential to develop new FAPAR models and improve the accuracy of model 

parameters, especially LAI, for improving the FAPAR accuracy.  

The retrieval rate of the MODIS FAPAR estimates from this study was higher than 

the retrieval rate of the MISR FAPAR estimates, which was a result of more valid 

observations in MODIS than in MISR surface reflectance data for FAPAR retrieval. 

Therefore, it would be necessary to include the MODIS FAPAR estimates for a 

longer temporally continuous FAPAR time series analysis. However, taking into 
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account of multi-angular information, the accuracy of the MISR FAPAR estimates 

was generally better than the accuracy of the MODIS FAPAR estimates. A data 

fusion method could be a good solution to combine the temporal continuous 

advantage of the MODIS FAPAR estimates and the high accuracy advantage of the 

MISR FAPAR estimates given the multi-angular information. 

Application of the presented model at a regional scale generated consistent FAPAR 

maps across multiple scales from the MODIS, the MISR and the Landsat data, with a 

mean difference within 0.1 and a standard deviation difference within 0.03. The 

MODIS and the MISR FAPAR estimates from this study had higher agreements with 

each other than the MODIS and the MISR FAPAR products in some study region. In 

addition, this study provided FAPAR estimates at three scales: 30 m, 500 m, and 

1100 m, as a complement to the MODIS and the MISR FAPAR products at 1000 m 

and 1100 m, respectively. 
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Chapter 4 Integration of satellite FAPAR products 
 

An alternative to developing new models to improve the accuracy of FAPAR 

estimation is to integrate multiple data products considering their characteristics and 

accuracy. In this chapter, two data fusion schemes were applied to integrate multiple 

satellite FAPAR products at two scales: optimal interpolation at the site scale and 

multiple resolution tree at the regional scale. The remainder of this chapter is 

organized as follows. Section 4.1 introduces the satellite FAPAR products and in situ 

measured FAPAR validation data. The principles of OI and overlapping MRT 

methods are briefly introduced in Section 4.2. Section 4.3 presents site-scale data 

fusion results using OI and regional-scale data fusion results using overlapping MRT. 

The discussion is presented in Section 4.4. 

4.1. Data 

The data used in this study include satellite FAPAR products including MODIS, 

MERIS, and MISR ones, satellite surface reflectance data, and in situ measured 

FAPAR.  

4.1.1. Satellite FAPAR products 

Satellite FAPAR products used include the MODIS, MISR, and MERIS FAPAR 

products in this study. Spatial and temporal resolutions and temporal coverage 

information of satellite FAPAR products, as well as their retrieval algorithms, are 

listed in Table 4-1. Spatial resolutions of satellite FAPAR products vary from 1 km to 

9 km, and the temporal resolutions vary from 8 days to 1 month. Spatial aggregation 



94 
 

and temporal interpolation are necessary to compare and integrate their values across 

multiple scales. Considering the availability of continuous FAPAR measurements, 

temporal values of FAPAR products were linearly interpolated to the highest 

temporal resolution to ensure sufficient data points were validated with in situ 

measurements.  

4.1.2. Satellite surface reflectance 

The MODIS, MISR, Landsat Thematic Mapper (TM), and Enhanced Thematic 

Mapper Plus (ETM+) reflectance data were used for FAPAR estimation using the 

algorithm presented and validated in Tao et al. (In review). The satellite surface 

reflectance data for FAPAR retrieval listed in Table 3-1 were used to generate 

multiple-scale FAPAR maps. Different spatial resolutions of FAPAR estimates could 

induce the scaling effect of FAPAR, which happens when the surface is 

heterogeneous and the retrieval algorithm is nonlinear (Tao et al., 2009; Xu et al., 

2009). Because of the scale difference, the validation results at more homogeneous 

sites are expected to have a higher FAPAR accuracy. We evaluate the heterogeneity 

around the validation sites in Chapter 2. The FAPAR accuracy at different sites is 

analyzed and the impact of site heterogeneity on the FAPAR accuracy is explored. 

4.1.3. In situ measured FAPAR 

The FAPAR validation data were collected from two groups of experimental sites: 

validation of land European remote sensing instruments (VALERI, WWW1) and 

AmeriFlux (WWW2) (Morisette et al., 2006). The VALERI sites are widely 

distributed around the world and are useful for spatial validation over different land 
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covers. The AmeriFlux sites are intended for temporal validation of FAPAR products 

and integrations, in view of their continuous measurements of FAPAR. The land 

covers of the 28 VALERI and AmeriFlux sites include 9 forests (1 of Ameriflux and 

8 of VALERI), 12 crops (3 of Ameriflux and 9 of VALERI), 6 grass sites (of 

VALERI), and 1 shrubland site (of VALERI). Their distributions are shown in Fig. 

2-1. The geolocation and land cover information of the AmeriFlux and the VALERI 

sites are listed in Table 2-1.  

Table 4-1 The characteristics of moderate-resolution satellite FAPAR products 

used in this study. 

FAPAR 

product 

Temporal 

coverage 

Temporal 

resolution 

Spatial 

resolution 

Projection Algorithm 

MODIS 

(MOD15 

C5) 

(WWW3) 

Feb 18, 

2000– 

8 days 1000 m Sinusoidal 

Look up table 

method built on 3D 

stochastic radiative 

transfer model for 

different biomes 

(Myneni et al., 

2002). 

MISR 

(L2) 

(WWW4) 

Feb 24, 

2000– 

Equator: 9 

days, 

Polar: 2 

days 

1100 m 

Space 

Oblique 

Mercator 

Radiative transfer 

(RT) model with 

inputs of LAI and 

soil reflectance 
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without assumptions 

on biomes 

(Knyazikhin et al., 

1998a). 

MERIS 

(L3) 

(WWW6) 

Apr 1, 

2002– 

1 month 9000 m Sinusoidal 

Polynomial formula 

based on 1D RT 

model (Gobron et al., 

1999). 

 

4.2. Methods 

The satellite FAPAR products and the generated FAPAR estimates in Section 4.1 

were integrated using two schemes to improve the FAPAR accuracy. Optimal 

interpolation was used to integrate the FAPAR products at the site scale, and the 

multiple resolution tree was used to integrate the FAPAR estimates at the regional 

scale. These two methods are introduced in Subsections 4.2.1 and 4.2.2, respectively. 

4.2.1. Optimal Interpolation 

The OI was chosen to integrate the FAPAR values from different sources because of 

its simplicity and ability to generate optimal estimates when the estimated noise 

accurately reflects the level of actual noise in the data (Gu et al., 2006). Denoting the 

individual satellite FAPAR product as Fi (i = 1,2,3) with error σi (i = 1,2,3) and the 

integrated FAPAR as Fa with error a , the optimal integration was estimated from a 

linear combination of the individual products: 
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a 1 1 2 2 3 3F a F a F a F    , 
1 2 3 1a a a        (1) 

Assuming the integration is unbiased: a tF F . Fa is the best estimate of Ft, if the 

coefficients 1a , 2a , and 3a  are chosen to minimize the mean squared error of Fa:  

      
22 2

a a t 1 1 t 2 2 t 1 2 3 t( ) 1F F a F F a F F a a F F              (2) 

The minimization of 2

a  with respect to 
1a  gives: 
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(3) 

Similarly,  2 2

2 2 1 2 31 0a a a     , combining with (3), we get 
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Replacing 1a  and 2a  back into (2), we get 

 
2 2 2
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  (5) 
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The error of individual satellite FAPAR products can be determined from the root 

mean square error (RMSE) when comparing products with in situ measurements. The 

precision of the integrated FAPAR is the sum of the precisions of individual products 

if the statistics of the errors reflects the level of actual noise in the data accurately.  

4.2.2. Multiple Resolution Tree 

The MRT was used to integrate the data at the regional scale because of its 

computational efficiency compared with other fusion methods such as OI. MRT 

considers data continuity at multiple scales and generates multi-scale data 

simultaneously. It is useful for predicting optimally at multiple resolutions (Huang et 

al., 2002). Suppose that we want to predict y from observation z. y has several layers 

that have a hierarchical relation, such as parents, self, and children layers. The 

relation between self and parent layers and the relation between observation zu and 

prediction yu at node u of a directed tree are:  

pa( )u u u u

u u u u

 

 

y A y w

z C y ε
      (6) 

where Au is the state conversion matrix that estimates the variable at node u from its 

parent layer, and Cu is the observation matrix that coverts the variable of interest to 

the satellite data. Both the variable and the satellite data are FAPAR, and hence, the 

observation matrix Cu is set to be identity matrix. wu and εu are independent, zero-

mean Gaussian vectors with covariance matrices Wu and Φu. Covariance between any 

two nodes uy  and uy  on the tree can be computed recursively along the paths from 

their common ancestor,  an ,u u :  
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     
1 2 1 2an ,

cov ,   varu u u u u u u uu u   


y y A A A y A A A    (7) 

where   1 2an , , , , ,u u u u u  and   1 2an , , , ,u u u u u     are two paths from 

 an ,u u  to u and u , respectively. The variance of yu is: 

pa(u)var( )u u u u u
  V y A V A W     (8) 

Note that the variance of yu can be calculated recursively as well. Generally, MRT 

involves two steps: leaf-to-root Kalman filtering and root-to-leaf Kalman smoothing. 

In the leaf-to-root filtering step, using Bayes’ theorem for multivariate Gaussian prior 

and data processes, we have: 

 

 

1

1

 

 

u u u u u u uu u

u u u u u u u u uu u





  
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y V C C V C Φ z
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The root-to-leaf smoothing step moves from the root to the leaves in the direction of 

the edges. Finally, the prediction y is calculated as: 

 1

pa( )pa( ) pa( )

1

pa( )

u u uu u u u u u u u

u u u u




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   (10) 

The concept of overlapping trees is applied on the Kalman smoothing process to 

generate smooth estimates (Irving et al., 1997). The overlapping regions have 

averaged values of the neighboring pixels with gradually changed weights. Suppose 

there are two layers P and Q at two adjacent scales, and it is desired to interpolate 

pixel values from layer P to layer Q. The overlapping regions for two pixels P (m,n) 
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and P (m,n+1) in layer P correspond to an extent of, e.g., 4 pixels in layer Q, which 

are expected to a take on a transitional role. The values of the transitional pixels are 

associated with the gradually decreased contribution weight of the left pixel P (m,n), 

e.g., from 0.8, 0.6, 0.4, to 0.2, and the gradually increased weight of the right pixel P 

(m,n+1), e.g., from 0.2, 0.4, 0.6, to 0.8. Therefore, the pixel values in the vertically 

overlapping region in layer Q for pixels P (m,n) and P (m+1,n) in layer P can be 

calculated from its parent layer P as: 

     Q P ,   1 P , 1j j js m n s m n       (11) 

where sj has a decreasing trend of values when j increases. The pixel values in the 

horizontally overlapping regions, e.g. for pixels P (m,n) and P (m+1,n), can be 

determined similarly. For the pixels in both the horizontal and vertical overlapping 

regions, such as the grids in layer Q in Fig. 4-1, their values are calculated as the 

weighted average of four pixels, P (m,n), P (m,n+1), P (m+1,n) and P (m+1,n+1), in 

its parent layer P. The weights are decided by multiplying the horizontal and vertical 

weights. Suppose the horizontal weight is denoted as sj and the vertical weight is 

denoted as li, the value of pixel Q (i,j) is calculated as: 

              Q P ,   1 P , 1  1 P , 1  1 1 P 1, 1ij j i j i j i j is l m n s l m n s l m n s l m n           

(12) 

where sj has a decreasing trend with j, as does li with i.  
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Fig. 4-1 Overlapping regions when interpolating values from layer P to layer Q 

at two adjacent scales. 

4.3. Results 

This section presents the application of the data fusion methods presented in Section 

4.2 to the satellite FAPAR products and the generated FAPAR estimates in Section 

4.1. First, satellite FAPAR values around the field experimental sites were extracted 

from satellite FAPAR products and validated with in situ measurements from 

VALERI and AmeriFlux sites to evaluate their accuracy. The quality controlled 

FAPAR values were then integrated using the presented fusion methods and validated 

with in situ measurements. Satellite FAPAR products were assessed with in situ 

measurements and the results are presented in Subsection 4.3.1. The integration 

results at the site and regional scale are presented in Subsections 4.3.2 and 4.3.3, 

respectively. 
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4.3.1. Assessment of FAPAR products 

The quality control flags of FAPAR products if any were analyzed before validation 

with the in situ measured FAPAR over the VALERI and the four AmeriFlux sites. 

The statistics of the MODIS Collection 5 FAPAR quality control flags over the four 

sites are shown in Fig. 4-2. The MODIS FAPAR product had similar qualities over 

the three Mead sites as a result of the sites’ proximity. There were more main 

algorithm FAPAR retrievals over the three Mead sites than over the Bartlett site. 

There were about 20% main algorithm retrievals under conditions of saturation over 

the Bartlett site and 8.7% over the VALERI sites, but no such problem existed over 

the Mead sites. The reason is the smaller FAPAR values over the crop sites than the 

forest sites.  

The MODIS, MERIS and MISR FAPAR products were validated at the VALERI 

experimental sites, as shown in Fig. 4-3. The MERIS FAPAR product had a higher 

accuracy than the MODIS and MISR FAPAR products, with respect to the R
2
 and 

RMSE at these sites. There were missing or invalid MERIS FAPAR values at five 

sites and MISR FAPAR values at three sites; thus, the retrieval rates of the MERIS 

(78.3%) and MISR FAPAR products (87.0%) were lower than that of the MODIS 

FAPAR product (100.0%). The MERIS FAPAR product performed well around all of 

the four land cover types, although it underestimated the values slightly as compared 

with the in situ measurements. The MODIS FAPAR products performed well at the 

3crop sites. The MISR FAPAR product improved the performance at the grass and 

forest sites as compared with the MODIS FAPAR product. The MODIS and the 
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MISR FAPAR products did not rank high in terms of R
2
 and RMSE, but had 

satisfactory biases close to zero. 

The MERIS, MISR, and MODIS FAPAR products with the highest quality were used 

for validation with the in situ measurements at the four AmeriFlux sites (Fig. 4-4). 

The MISR FAPAR values were higher than the MODIS and MERIS FAPAR values, 

especially in the middle of the vegetation growth season. The FAPAR at the Mead 

Irrigated, Mead Irrigated Rotation, and Mead Rainfed sites reached zero before early 

April and after middle November, as a result of crop harvesting at these sites. Most 

satellite product values of FAPAR around the two sites approached, but were not 

exactly, zero at the beginning and end of the year, which may have been caused by 

the contribution from inhomogeneous land cover, in addition to crops near the sites, 

or the limited soil reflectance database used by the algorithm (Tao et al., In review). 

The statistics of comparisons between ground-based and space products are listed in 

Table 4-2. The MISR FAPAR product had the highest accuracy at the three crop sites. 

The MODIS and the MISR FAPAR products agreed better with the in situ 

measurements at the Bartlett experimental deciduous broadleaf forest site with respect 

to the magnitude than the MERIS FAPAR product. The MODIS FAPAR product had 

the lowest mean error at this site. The MERIS product has a good seasonality profile 

and little variation of random error caused by cloud contamination, but 

underestimates FAPAR by 0.12 overall. The underestimation is caused by the green 

leaf FAPAR estimated by MERIS versus the total FAPAR by ground-based 

measurements which include the absorptions of both leaf and non-leaf elements. 
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Table 4-2 Statistics of comparisons between ground-based and space FAPAR 

products at the four AmeriFlux sites. 

Site Product RMSE Bias R
2
 

Mead Irrigated 

MERIS 0.182 −0.092 0.777 

MODIS 0.145   0.009 0.667 

MISR 0.142   0.072 0.761 

Mead Irrigated 

Rotation 

MERIS 0.161 −0.036 0.751 

MODIS 0.159   0.098 0.546 

MISR 0.124   0.104 0.733 

Mead Rainfed 

MERIS 0.186 −0.060 0.668 

MODIS 0.143   0.070 0.626 

MISR 0.125   0.043 0.638 

Bartlett 

MERIS 0.127 −0.290 0.749 

MODIS 0.167 −0.085 0.642 

MISR 0.103 −0.086 0.842 
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Fig. 4-2 MODIS collection 5 FAPAR QC statistics over the VALERI and the 4 

AmeriFlux sites in 3 years: the percentage of main algorithm retrievals (blue), 

the percentage of main algorithm under conditions of saturation (red), the 

percentage of backup (i.e. NDVI-based) retrievals associated with bad geometry 

(green), the percentage of pixels using the backup algorithm due to reasons other 

than geometry (purple). 

  



106 
 

 

Fig. 4-3 The MODIS, the MERIS, and the MISR FAPAR products validated 

with in situ measurements of VALERI. The land cover of shrubland is 

represented by a pentagram (), grass by triangle (∆), forest by square (□), and 

crops by circle (○). Vertical bars correspond to the uncertainties (±σ). The 

middle black line is y = x. Two other black lines are y = x ± 0.1, respectively. 
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Fig. 4-4 The time series of in-situ FAPAR measurements and satellite products 

at four AmeriFlux sites. Green FAPAR measurements are depicted in blue line 

in the first panel, and total FAPAR measurements are depicted in black line in 

all panels. The shaded area is the 10% accuracy requirement. The monthly 

MERIS, 8-day MODIS, and 2–9 day MISR FAPAR products are depicted in 

asterisks, crosses, and diamonds, respectively. 

4.3.2. Site scale fusion 

The intercomparison and validation experiments discussed in Subsection 4.3.1 

demonstrate that the FAPAR products performed differently for different land covers, 

and it is hard to draw a simple conclusion about which product was the best overall. 
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A fusion of various products is expected to improve the result if the statistics of the 

errors reflects the level of actual noise in the data accurately as noted in Section 4.2.1. 

The FAPAR products were integrated at the site scale using the OI method and the 

results are discussed in this subsection. The integration at the regional scale is 

presented in Subsection 4.3.3. 

The values of the MODIS FAPAR product were valid at all VALERI sites, while the 

MERIS or the MISR FAPAR products had missing values. The valid FAPAR values 

of products at each site were used for integration. The biases of individual products 

were removed before integration. Fig. 4-5 shows a scatterplot between the integrated 

FAPAR using the OI method and the in situ measured FAPAR. The integrated 

FAPAR have no bias. The R
2
 improved to around 0.9, and the RMSE was lower than 

those of the individual FAPAR products. The integrated FAPAR improved the 

accuracy of the MODIS and the MISR FAPAR products at the forest sites, overcame 

the underestimation problem of the MERIS FAPAR product, and had the highest 

accuracy among all the products as compared with the in situ measurements.  

The MODIS, MISR, and MERIS FAPAR products were integrated at the four 

AmeriFlux sites and the integrated FAPAR was validated using the in situ 

measurements. The integration coefficients of the individual products were obtained 

from the data for the first year and then applied to other years. The comparisons of 

the time series curves of the integrated FAPAR and in situ measurements at the four 

sites are shown in Fig. 4-6. The curves of the integrated FAPAR maintained a good 

seasonal profile, similar to the MERIS FAPAR product, and showed the ability to 

detect high FAPAR values during the vegetation growing season, similar to the MISR 
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FAPAR product. The mean error was reduced to around 0.1 for all the four sites. The 

biases were reduced to less than 0.05 for the three crop sites and were removed for 

the Bartlett site (Table 4-3). The R
2
 was improved to around 0.8 for all the four sites. 

It is evident that the integrated FAPAR agreed best with the in situ measurements, 

especially for the first half of the year. 

Table 4-3 Statistics of comparisons between ground-based and integrated 

FAPAR at the four AmeriFlux sites. 

Site RMSE Bias R
2
 

Mead Irrigated 0.149 −0.056 0.846 

Mead Irrigated Rotation 0.134 −0.053 0.860 

Mead Rainfed 0.146   0.002 0.828 

Bartlett 0.075   0.000 0.887 
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Fig. 4-5 The integrated FAPAR validated with in situ measurements of VALERI. 

The land cover of shrubland is represented by a pentagram (), grass by triangle 

(∆), forest by square (□), and crops by circle (○). Vertical bars correspond to the 

uncertainties (±σ). The middle green line is y = x. The two other green lines are y 

= x ± 0.1, respectively.  
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Fig. 4-6 The time series of in-situ FAPAR measurements and integrated FAPAR 

at four AmeriFlux sites. The shaded area is the 10% accuracy requirement. 

4.3.3. Regional scale fusion 

The estimation of the FAPAR in multiple-resolution remotely sensed scenes, and the 

subsequent integration at the regional scale using the MRT method is presented in 

this subsection. Two study regions covering the four AmeriFlux sites were selected 

and their geographic locations are shown in Fig. 4-7 (a). The specific MODIS tiles 

and the MISR and Landsat orbits covering the two study regions are listed in Table 

4-4. The temporal resolutions of the MISR, MODIS, and Landsat TM/ETM+ 

reflectance or FAPAR products are 2‒9 days, 8 days, and 16 days, respectively. The 

MISR, MODIS, and Landsat scenes around the four AmeriFlux sites in the vegetation 

growing season were carefully selected in Cases 1 and 2 so that they had the closest 

imaging dates in all the three cases. The image qualities in Cases 1 and 2 were strictly 

controlled so that the scenes had little or no cloud contamination. Case 3 is a control 

experiment without quality control of the scene to determine the performance of the 

MRT on cloud contaminated scenes with gaps in the data. The imaging dates of the 

products differed within 4 days in Cases 1 and 2, and within 15 days in Case 3. The 

vegetation is assumed to have remained relatively stable within this short period and 

therefore, the integration of FAPAR from these different sensors is reliable.  

The Landsat reflectance data were atmospherically corrected using the Landsat 

ecosystem disturbance adaptive processing system (LEDAPS) preprocessing code. 

Missing scan lines in the ETM+ image were filled with the values of the nearest 
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pixels. The 30 m spatial resolution Landsat TM and two ETM+ surface reflectance 

scenes are illustrated in Fig. 4-7 (b–d), respectively. The MSIR data were resampled 

into a spatial resolution of 960 m, and the MODIS 500 m and 250 m data were 

resampled into 480 m and 240 m, respectively, to construct a multi-scale tree-

structured model. In this case, a 1 × 1 MISR pixel corresponds to 2 × 2 MODIS 480 

m pixels, 4 × 4 MODIS 240 m pixels, and 32 × 32 TM/ETM+ 30 m pixels.  

Table 4-4 The spatial coverage and imaging date information of the MODIS, the 

MISR and the Landsat data used in the three cases.  

Case 

MODIS 

tile 

MISR 

orbit 

Landsat 

orbit 

MODIS date 

MISR 

date 

Landsat 

date 

Case 1 H10V04 P27B58 P28R31 

Aug 5‒12, 

2006 

Aug 4, 

2006 

Aug 3, 

2006 

Case 2 H12V04 P12B55 P12R29 

Aug 5‒12, 

2005 

Aug 8, 

2005 

Aug 8, 

2005 

Case 3 H12V04 P11B55 P12R29 

Sep 6‒13, 

2006 

Sep 21, 

2006 

Sep 12, 

2006 

Case 1 covers three sites: Mead Irrigated, Mead Irrigated Rotation, and Mead Rainfed. 

Cases 2 and 3 cover Bartlett site. The “H” and “V” of MODIS tile means horizontal 

and vertical, respectively. The “P” and “B” of MISR orbit means path and block, 

respectively. The “P” and “R” of Landsat orbit means path and row, respectively. 
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Fig. 4-7 (a) Geographic locations of the two study regions in Cases 1, 2 and 3. 

The study region of Case 1 is the lower left red rectangle, and the study region of 

Cases 2 and 3 are the upper right red rectangle. (b) The Landsat TM surface 

reflectance scene in Case 1 in NIR-Red-Green false color composition, which 

covers three sites: Mead Irrigated, Mead Irrigated Rotation, and Mead Rainfed. 

(c, d) The Landsat ETM+ surface reflectance scenes in Cases 2 and 3 in NIR-

Red-Green false color composition, both of which cover the Bartlett site. 

The MODIS FAPAR product uses the MCD12 land cover product to distinguish 

among 13 land covers globally. The National Land Cover Database 2006 (NLCD 

2006) uses a 16-class land cover classification scheme for Landsat images. A land 

cover classification scheme combining these two classifications was used considering 

(a) 

(b) (c) (d) 
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the existing land covers in the two study regions. The MISR, MODIS, and Landsat 

images were classified into evergreen forest, deciduous forest, urban, grass, crops, 

barren soil, and water body. The classified images and surface reflectance images 

were combined to estimate vegetation FAPAR values using the model in Tao et al. 

(In review). Distributions of the FAPAR estimates in the MISR, MODIS, TM, and 

ETM+ images for the three cases are shown Fig. 4-8 (a–d), Fig. 4-11 (a–d) and Fig. 

4-14 (a–d), respectively. The FAPAR estimates are consistent across different scales. 

They have similar distribution patterns across scales, with the highest values observed 

in evergreen forests, higher values in deciduous forests, and smaller values in crops, 

and close-to-zero values in rivers and central urban areas. Some gaps exist in the 

MISR scene in Case 3 caused by the missing values in the surface reflectance data. 

This is because that the MISR surface reflectance products have strict data control, 

including radiance angle-to-angle smoothness and image angle-to-angle correlation 

tests, so that there could be large gaps in the MISR level 2 surface reflectance product 

(Hu et al., 2007).  

The MRT method was implemented to integrate the FAPAR data across different 

scales. Overlapping trees were utilized so that the resulting images were smooth, 

mitigating the blocky effect. The integration results are shown in Fig. 4-8 (e–h), Fig. 

4-11 (e–h), and Fig. 4-14 (e–h) for Cases 1, 2, and 3, respectively. The MRT method 

filled the gaps in the original FAPAR estimates in the MISR data in Case 3. Therefore, 

image quality was greatly improved in terms of spatial continuity in this case. The 

FAPAR distribution became more homogeneous and continuous after data fusion in 

all the three cases, which is desirable in terms of continuity among multiple-scale data. 
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Some pixels with low values of FAPAR depicted as blue exist along the boundary 

between the vegetation and non-vegetation regions in the map after applying MRT. 

They were caused by the sparse vegetation observed near the river or urban area at 

higher resolution. The actual values of these blue pixels are very small (less than 0.1). 

Difference maps between other scales and the finest Landsat scale are shown in Fig. 

4-9, Fig. 4-12, and Fig. 4-15 for the three cases, and they clearly demonstrate that 

differences became much smaller after applying the MRT method across scales.  

The frequency histograms for all pixels in the maps across different scales are shown 

in Fig. 4-10 (a, b) and Fig. 4-13 (a, b) for Cases 1 and 2, respectively. The statistics of 

the FAPAR values agreed better with each other across scales after fusion. More 

vegetation pixels were detected in coarse resolution images after fusion due to the 

integration of the high-resolution Landsat data into the coarse-resolution images. The 

improvements were even greater when there were gaps in the original FAPAR 

estimates, as demonstrated in the frequency histograms in Fig. 4-16 (a, b) for Case 3. 

The regional mean of the MISR FAPAR estimates was significantly lower than the 

regional mean of the other products before fusion, but agreed well with the other 

products after fusion. 

The frequency histograms of the difference maps between other scales and the finest 

Landsat scale are shown in Fig. 4-10 (c, d), Fig. 4-13 (c, d), and Fig. 4-16 (c, d) for 

the three cases, which verify that the differences among scales became, generally, 

sufficiently small (< 0.05) in both regions. Therefore, the FAPAR distributions at 

coarse-resolutions (960 m, 480 m, and 240 m) were closer to the distribution at the 

finest resolutions after data fusion. Because more details are available in higher-
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resolution images, the results at the finer-scale were considered to be close to the 

truth. Therefore, FAPAR distributions at coarse-scales were improved after data 

fusion in terms of image quality and accuracy.  

 

  

 

 

 

  

 

 

 

 

Fig. 4-8 FAPAR distributions before and after fusion in MISR, MODIS, and TM 

scenes in Case 1. (a-d) show MISR, MODIS 480 m, MODIS 240 m, and TM 

FAPAR estimates before fusion, and (e-h) show the FAPAR distributions after 

fusion. The white colors are non-vegetation or sparse vegetation with FAPAR 

values smaller than 0.01. 
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Fig. 4-9 Top panels show the differences between other scales FAPAR and TM 

FAPAR before fusion: MISR, MODIS 480 m, and MODIS 240 m from left to 

right.  Bottom panels show the differences after fusion: MISR, MODIS 480 m, 

and MODIS 240 m from left to right. 
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Fig. 4-10 The FAPAR frequency histograms in the MISR, MODIS, and TM 

scenes before (a) and after (b) data fusion in Case 1. Frequency histograms of 

the FAPAR differences between other scales FAPAR and TM FAPAR before (c) 

and after (d) fusion. The numbers are the regional mean and standard 

deviations. 
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Fig. 4-11 FAPAR distributions before and after fusion in MISR, MODIS, and 

ETM+ scenes in Case 2. (a-d) show MISR, MODIS 480 m, MODIS 240 m, and 

ETM+ FAPAR estimates before fusion, and (e-h) show the FAPAR distributions 

after fusion. 
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Fig. 4-12 Top panels show the differences between other scales FAPAR and 

ETM+ FAPAR before fusion: MISR, MODIS 480 m, and MODIS 240 m from 

left to right.  Bottom panels show the differences after fusion: MISR, MODIS 

480 m, and MODIS 240 m from left to right. 
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Fig. 4-13 The FAPAR frequency histograms in the MISR, MODIS, and ETM+ 

scenes before (a) and after (b) data fusion in Case 2. Frequency histograms of 

the FAPAR differences between other scales FAPAR and ETM+ FAPAR before 

(c) and after (d) fusion. The numbers are the regional mean and standard 

deviation. 
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Fig. 4-14 FAPAR distributions before and after fusion in MISR, MODIS, and 

ETM+ scenes in Case 3. (a-d) show MISR, MODIS 480 m, MODIS 240 m, and 

ETM+ FAPAR estimates before fusion, and (e-h) show the FAPAR distributions 

after fusion. 
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Fig. 4-15 Top panels show the differences between other scales FAPAR and TM 

FAPAR before fusion: MISR, MODIS 480 m, and MODIS 240 m from left to 

right.  Bottom panels show the differences after fusion: MISR, MODIS 480 m, 

and MODIS 240 m from left to right. 
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Fig. 4-16 The FAPAR frequency histograms in the MISR, MODIS, and ETM+ 

scenes before (a) and after (b) data fusion in Case 3. Frequency histograms of 

the FAPAR differences between other scales FAPAR and ETM+ FAPAR before 

(c) and after (d) fusion. The numbers are the regional mean and standard 

deviations. 

4.4. Discussion 

Satellite FAPAR products perform differently across different land covers. It is 

difficult to obtain a universal integration coefficient applicable to all land cover types 

due to their varied accuracy over different land cover types. The seasonal curves of 

individual FAPAR products are similar annually over one specific land cover type, 
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which makes feasible the integration over longer than one year time period once the 

integration coefficients are determined annually for the specific land cover. The 

prerequisite of a reliable integration is one year of in situ FAPAR measurements to 

determine the coefficients of individual FAPAR products. The validation of the 

integration results at the AmeriFlux sites showed that the coefficients were relatively 

reliable during years, with satisfactory integration results.  

Individual FAPAR products and the integrated FAPAR perform better during the 

middle of the growing season than the beginning and end of the growing season. 

There exist some underestimations in the latter half of the year, and specifically at the 

end of the growing season. The discrepancy between FAPAR products and in situ 

measurements at the beginning and end of the growing season can be attributed to 

two reasons. One reason could be the time difference between the MODIS and 

MERIS FAPAR data imaging and the in situ measurements. The temporal resolution 

of MODIS and MERIS FAPAR products are 8 days or monthly without actual date-of 

acquisition information, and thus the imaging time may not overlap perfectly with 

that of in situ measurements. Therefore, the resultant FAPAR difference between 

satellite products and in situ measurements is large at the beginning and end of the 

vegetation growing season when the vegetation changes quickly. However, the time 

shift issue is not a serious issue during the middle of the vegetation growing season 

when the vegetation remains relatively stable. Another reason for the discrepancy is 

the senescence and leaves turning yellow at the end of growing season. This results in 

the difference between green FAPAR and the ground-based total FAPAR 

measurements which includes the absorptions of both green and yellow leaves during 
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this period. The MERIS FAPAR product corresponds to green FAPAR among the 

three satellite FAPAR products. This study removes the bias between green FAPAR 

and total FAPAR for the MERIS FAPAR product during the whole growing season. 

Further improvements may need to divide the growing season into two parts and 

remove the biases separately. 

In the regional scale fusion experiments, the FAPAR distributions before the fusion 

vary significantly across scales. This could be a result of the differences between the 

surface reflectance data arising from the differences in the calibration and 

atmospheric correction processes. Needless to say, the differences in the FAPAR 

distributions are larger when there are missing values in the images at some scales. 

The differences become even greater when the MISR and MODIS FAPAR products 

are used, which is one of the reasons they were not directly used in the regional study. 

Another reason of not using the MISR and MODIS FAPAR products directly was 

that the spatial resolutions of the MISR and MODIS FAPAR products are 1.1 km and 

1 km, respectively, which renders the generation of multiscale images difficult or the 

corresponding statistical analysis much more complex (Huang et al., 2002; Zhu et al., 

2004). However, the differences of the FAPAR values for vegetation pixels across 

scales are smaller than as demonstrated in the frequency histograms of Fig. 4-10, Fig. 

4-13, and Fig. 4-16, which show the FAPAR distributions in the whole image, 

regardless of whether the pixel is classified as vegetation or not. The histograms agree 

better across scales if the distributions of FAPAR for only vegetation pixels are 

displayed (histograms shown in Tao et al. (In review)). 
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Chapter 5 Conclusions 
 

This study focuses on improving the estimation of FAPAR from multiple satellite 

data products. The accuracy of the existing FAPAR products was evaluated by 

intercomparison with each other at the global scale and validation with ground 

measurements. A new FAPAR model was developed and its parameterizations were 

designed to achieve an improved accuracy toward the requirement of 0.05. Multiple 

FAPAR data integration was implemented considering their characteristics and 

accuracy as an alternative to developing new models to improve the accuracy of 

FAPAR estimations. The major findings, major contributions, and future study are 

concluded in the following individual sections. 

5.1. Major Findings 

Five existing global FAPAR products, namely, MODIS, MERIS, MISR, SeaWiFS, 

and GEOV1 are intercompared and directly validated over different land cover types 

at the global, hemispheric and local scales. Absolute FAPAR values are on average in 

decreasing order of MISR, MODIS, GEOV1, SeaWiFS, and MERIS. The MISR and 

MODIS FAPAR products tend to agree well with each other and so do the MERIS 

and SeaWiFS FAPAR products, but the difference between the two groups could be 

as large as 0.1. The seasonality of the products agrees better with each other in the 

Northern Hemisphere and globally than in the Southern Hemisphere. The seasonality 

of northern hemispheric FAPAR is close to those of global FAPAR over most of the 

land cover types, including grass, crop, shrubland, and broadleaf deciduous, 
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needleleaf evergreen, and needleleaf deciduous forests. However, the conclusions 

from the northern hemispheric scale cannot be extended to the global scale for land 

covers such as savannahs and broadleaf evergreen forests, where seasonal patterns are 

obvious in the Northern Hemisphere but unnoticeable globally, because of the large 

contribution from the Southern Hemisphere over these two land covers. The 

differences between the products are consistent throughout the year over most of the 

land cover types, except over the forests. The possible reason could be traced to the 

different assumptions in the retrieval algorithms over forests and the differences 

between green and total FAPAR products due to tree trunk and branch absorption. 

The MERIS, MODIS, MISR, and GEOV1 FAPAR products have an uncertainty of 

0.14 validating with total FAPAR measurements, and 0.09 validating with green 

FAPAR measurements. The uncertainties of current satellite FAPAR products (within 

±0.1) are still unable to meet the threshold accuracy requirements stipulated by 

GCOS (±0.05).  

The FAPAR estimates by the new model were intercompared with reference satellite 

FAPAR products and validated with field measurements at the VAlidation of Land 

European Remote sensing Instruments (VALERI) and AmeriFlux experimental sites. 

The validation results showed that the FAPAR estimates by our method had slightly 

better performance than the MODIS and the MISR FAPAR products when using 

corresponding satellite LAI product values as input. The FAPAR estimates can be 

further improved with the improved LAI estimates from the presented model as input. 

The improvements are apparent at grasslands and forests with an 8% reduction of 

uncertainty. The new model can successfully identify the growing seasons and 



132 
 

produce smooth time series curves of estimated FAPAR over years. The root mean 

square error (RMSE) was reduced from 0.16 to 0.11 for MODIS and from 0.18 to 0.1 

for MISR overall. Application of the presented model at a regional scale generated 

consistent FAPAR maps at 30 m, 500 m, and 1100 m spatial resolutions from the 

Landsat, MODIS, and MISR data.  

As an alternative method to improving FAPAR accuracy in addition to developing 

new models, satellite FAPAR values were integrated using two data fusion schemes. 

The OI scheme was applied at the site scale to integrate the MODIS, MERIS and 

MISR FAPAR products. The MRT scheme was applied at the regional scale to 

integrate the MISR, MODIS, and TM/ETM+ FAPAR values at multiple resolutions. 

The integrated FAPAR using OI reduced the biases from the MISR (0.032), MODIS 

(0.015), and MERIS (-0.130) to -0.013. The R
2
 improved close to 0.85, a 20% 

increase over the average R
2
 of the individual products. The integrated FAPAR had 

an average accuracy of 0.09, which is on the path to the accuracy requirement of 0.05. 

The MRT algorithm filled the cloud contaminated regions and other gaps and 

therefore improved the image quality. Moreover, the FAPAR values became more 

consistent at multiple resolutions.  

5.2. Major Contributions 

This study assessed the FAPAR products in Chapter 2, improved FAPAR accuracy 

through a new model in Chapter 3 and applied the FAPAR fusion methods in Chapter 

4. The major contributions are: 
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 No global inter-comparisons between MODIS, MISR, MERIS, GEOV1, and 

SeaWiFS FAPAR products have been made previously.  

 Multiple FAPAR products have been assessed together with a comprehensive 

set of measurements from at least two field experiments, so that the validation 

efforts fulfilled the requirement of stage 2 of the validation: Product accuracy 

has been assessed over a widely distributed set of locations and time periods. 

 A new FAPAR estimation algorithm has been developed with local pixel 

based soil background and leaf canopy albedos. 

 The new algorithm uses just satellite data as input, and not being bound by a 

specific sensor. 

 It is the first study on integrating FAPAR products at both the temporal and 

spatial domains for continuity and high accuracy. 

 The reduced uncertainty in FAPAR values from this study by 5% would help 

to decrease an equal amount of uncertainty in the estimation of gross and net 

primary production and carbon fluxes. 

5.3. Future Study 

This study has some limitations, and corresponding future work could investigate the 

following: 

 Significant efforts have to be accomplished to reach stage 3 of the validation: 

Product accuracy has been assessed, and the uncertainties in the product well-

established via independent measurements made in a systematic and 

statistically robust way that represents global conditions.  
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 The presented FAPAR model is suitable for homogeneous landscape and has 

better performance over homogeneous land cover. Future study could develop 

an advanced FAPAR model suitable for heterogeneous landscape. 

 Time shifts among FAPAR products may induce some error in the integration 

results. Further improvements could be increased temporal resolutions of 

individual FAPAR products to enhance time match.  

 Further improvements of FAPAR accuracy include combining multiple 

observations with reduced uncertainty and addressing the scale difference 

between in situ measurements and moderate resolution pixels. 
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Appendix:  The parameters for FAPAR estimation 

 

The calculation of FAPAR requires the knowledge of LAI and  , which can be 

solved using the following equations:  

1 m             (A1) 

where 1  means the contribution of single scattering, and m  represents the 

contribution of multiple scattering.  
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where Ed is the diffuse irradiance from sky scattering; and μ0F0 is the direct irradiance 

from solar illumination. The meanings of other symbols are described in Section 3.2. 

The contribution of multi-scattering can be expressed by the Hapke model: 
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where ω is single scattering albedo of single leaf, v2   
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When solar and viewing directions overlap each other, 
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   (A6) 

Therefore, Eqs. (A1), (A2), and (A3) express observed reflectance as a function of 

LAI and  , which can be solved with observations at two or more wavelengths. The 

equation group is nonlinear and has to be solved with an iterative method, an 

optimization algorithm, or a LUT, the last of which is adopted here, considering its 

robustness.  
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Glossary 

 

ETM+ Landsat Enhanced 

Thematic Mapper Plus 

FAPAR Fraction of absorbed 

PAR 

GCOS  Global Climate 

Observing System 

GPP gross primary 

production 

LAI  leaf area index 

MGVI MERIS Global 

Vegetation Index 

MISR Multi-angle Imaging 

SpectroRadiometer 

MODIS Moderate Resolution 

Imaging 

Spectroradiometer 

MRT  Multiple resolution tree 

NDVI normalized difference 

vegetation index 

NIR  near infrared 

NPP  net primary production 

OI  optimal interpolation 

PAR photosynthetically 

active radiation 

RMSE root mean square error 

RT radiative transfer 

TM  Landsat Thematic 

Mapper 

VALERI VAlidation of Land 

European Remote 

sensing Instruments 

4S four stream 

T0 canopy transmittance 

along direct light 

penetrating path 
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Tf canopy transmittance 

along diffuse light 

penetrating path 

Tv canopy transmittance 

along viewing direction 

Au state conversion matrix 

that estimates the 

variable at node u from 

its parent layer 

Cu  observation matrix that 

coverts the variable of 

interest to the satellite 

data 

β ratio of scattering light 

λ0 Nilson parameter 

ρg,λ ground reflectance at 

wavelength λ 

ρv,λ vegetation reflectance 

at wavelength λ 

σ
2 

variance of the error 
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WWW Sites 

WWW1: The VALERI validation data. 

http://w3.avignon.inra.fr/valeri/fic_htm/database/main.php 

WWW2: The AmeriFlux validation data. http://ameriflux.ornl.gov/ 

WWW3: The MODIS Collection 5 data. 

http://ladsweb.nascom.nasa.gov/data/search.html 

WWW4: The MISR data. http://l0dup05.larc.nasa.gov/MISR/cgi-bin/MISR/main.cgi 

WWW5: The geoland2 GEOV1 product. 

http://land.copernicus.eu/global/products/FAPAR 

WWW6: The MERIS data. https://earth.esa.int/web/guest/data-access/browse-data-

products 

WWW7: The SeaWiFS data. 

http://fapar.jrc.ec.europa.eu/WWW/Data/Pages/FAPAR_Download/FAPAR_Downlo

ad.php#a_dataTable 

WWW8: The Landsat TM and ETM+ data. http://espa.cr.usgs.gov/ 

 

 


