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ABSTRACT

In this paper we consider discrimination between two possible sources based on observa-
tions of their output. The discrimination problem is modeled by means of a general binary
hypothesis test, the main emphasis being on situations that cannot be modeled as signals in
additive noise. The structure of the discriminator is such that the observations are passed
through a memoryless nonlinearity and summed up to form a test statistic, which is then com-
pared to a threshold. In this paper we consider only fixed sample size tests. Four different
performance measures, which resemble the signal-to-noise ratios encountered in the signal in
additive noise problems, are derived under different problem formulations. The optimal non-
linearities for each of the performance measures are derived as solutions to various integral
equations. For three of the four performance measures, we have successfully obtained robust
nonlinearities for uncertainty in the marginal and the joint probability density functions of the
observations. Computer simulation results which demonstrate the advantage of using our non-
linearities over the i.i.d. nonlinearity under the probability of error criterion are presented.

This research was supported in part by the Naval Research Laboratory/Sysiems Research Center Fellowship Program at the
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I. Introduction

In this paper, we have chosen to use the term “discrimination” to refer to a detection problem
in which the “noise” characteristics under the two hypotheses are substantially different. This is
in contrast to the case of an additive noise channel, where it is assumed that an independent noise
process is added to the signal as it traverses the channel. In our model, we may assume that
all the randomness is in the signal itself, and that transmission through the channel is noiseless.
This model is especially appropriate in the context of radar in problems sometimes referred to as
target discrimination or target identification. In such problems, the output of the signal processing
device must indicate which of several targets is present. This discrimination or identification is
to be performed after the initial decision that some object is present. Thus under each possible
hypothesis, one observes the random output of a particular source and must decide which particular
source is present. For ;:he purposes of our paper, we shall state the problem as a binary hypothesis

testing problem:

Hy: {Xj} has the distribution Fp

(1.1)
Hy: {Xi} has the distribution F).

The observation process {Xy} is assumed to be stationary and strong mixing (which implies er-
godicity) and we denote by f;, ffn) the marginal and nth-order joint densities of the process with
respect to the measure v under H;. Throughout this paper, as in (1.1) above, we use the symbol F;
to denote the distribution of the entire process under H;, which in general will not be iid. We will
be concerned with the asymptotic performance of various discriminators, but we assume that the

process distributions remain fixed, which is in contrast to the ARE performance criterion where
the “distance” between the two distributions converges to zero as the sample size increases.
It is the goal of this paper to present a thorough discussion of the use of memoryless fixed

sample size (FSS) methods to discriminate between two sources which produce correlated outputs.
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These memoryless discriminators are characterized by their use of a test statistic of the form

n
Th(x)= Zg(z,-) (1.2)
i=1
where ¢ is a Borel measurable real-valued function and where x = (z1,...,z,) represents the

observation vector of size n. Qur discriminators have the form
decide H, iff T,(x)e I CR. (1.3)

If Eo g(X1) < E1 g(X;) and n is sufficiently large, then we lose very little in terms of error prob-
abilities if we take T' to be an interval [ny, 00) defined by a threshold nv, for if the processes are
ergodic, then %Tn — E; ¢(X,) almost surely under H; as n — oo.

The most obvious advantage of such a discriminator is the simplicity of its implementation.
Indeed, the structure of the test statistic 7, suggests that it might be suitable for sequential
discrimination. Furthermore, we shall see that asymptotically optimal test statistics of the form
(1.2) can be calculated from only the marginal and bivariate joint densities of the processes, and
thus they provide an alternative to the likelihood ratio in cases where the nth-order densities are
unknown or lack closed form expressions. In the case where iid observations are produced under
both hypotheses, the LRT has the form of a memoryless discriminator with g = log(fi1/fo), and is
therefore optimal under any probability of error criterion. On the other hand, if the situation is
such that there is correlation" of the observations ﬁnder at least one of the hypotmheses, then LRT
will require memory, and consequently, any memoryless discriminator will be suboptimal.

Situations in which the LRT does not have a closed form, such as in many cases involving
nonlinear transformations of Gaussian processes, are commonly encountered. The discriminators
which we present here will provide alternatives in such situations, and show promise of significant
improvement over the iid nonlinearity g = log(f1/fo).

Define the functionals u; and o; > 0 by

ri(g) = Ei g(Xy1) (1.4)



a}(g) = Var; g(X1) + 2 ) _ Covilg(X1), 9(X;41)]. (1.5)

i=1

where E;, Var;, and Cov; denote, respectively, th >xpectation, variance and covariance operators
performed under H;. If nli_'moo %Var.- T, exists, then it is precisely o? as defined above. For our
results, we must assume that the normalized test statistic (T, — nu;)/\/ﬁgg converges in distribu-
tion to a standard normal random variable. Conditions on strong mixing processes which imply
convergence to the normal distribution can be found in the survey papers [19], {20] or in some of
the other papers on memoryless detection methods such as [2]. See also the appendix of this paper.

Since the error probabilities are intractable for a discriminator of the form (1.3), we proceed
in our analysis by considering performance measures which resemble signal-to-noise ratios. A
fundamental difficulty which arises here is determining a quantity which represents the “noise,”
since there is no additive noise involved in our model. Earlier work in the area of memoryless
detection has focused primarly on the detection of a weak signal in noise, where the noise process is
additive and is independent of the signal. In such cases, the “noise” power is determined to be the
variance of the test statistic, and there is no ambiguity in such a definition because in the limit as
the sample size increases, the variances under the two hypotheses are equal. Therefore, the efficacy
performance measure, which resembles a signal-to-noise ratio with the noise power represented in
this way, has been thoroughlyl studied and has led 1l:o useful results ([1}, [2]). For tl:e discrimination
problem, finding a useful measure of the noise power is a nontrivial problem, since the variances of
the test statistic under the two hypotheses cannot be assumed to be equal.

We derive in this paper four different performance measures, including a new performance
measure S3 which has rather nice properties which make it mathematically tractable. Sadowsky and
Bucklew (3] have recently derived a new performance measure similar to the efficacy functional in
their work in nonlocal detection. Their performance measure is precisely the performance measure

which we call 9, in this paper. The performance measure which we call S, has been referred
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to in the literature as the deflection [21], [16]. In all cases, we derive integral equations which
can be solved to yield the optimal nonlinearity for that performance measure. Certain of these
integral equations have been previously derived for the case of m-dependent processes. We show
how to extend these results to the case of p-mixing processes. To conclude our results for this
paper consider the problem of minimax robustness for three of the four performance measures, and
determine the optimal robust nonlinearity for each case.

The paper is organized in the following way. In Section II, we consider performance mea-
sures Sg and Sy, which are derived under asymptotic Neyman-Pearson formulations. The optimal
nonlinearity in either case is shown to solve a linear integral equation when the pocesses are m-
dependent, and a discussion is given concerning the solution of the integral equation. Finally, we
show how to extend the results to the case of p-mixing processes. The organization of Section III
is similar to that of Section II, but the discussion centers on the performance measures 5 and S3,
which are derived from Chernoff bounds. The optimal nonlinearities are also given by the solution
of integral equations, the integral equation for S; being nonlinear. We propose a scheme for solving
the nonlinear integral equation by iteratively solving a series of linear integral equations. By an
argument similar to that in Section II, we show how to extend the results to the case of p-mixing
processes. In Section IV, the problem of robustness is formulated by specifying uncertainty classes
for the two hypotheses. The’ least favorable distributions and the correspondiné optimal robust
nonlinearities are then derived for the performance measures Sp, 53, and S3. Section V contains
numerical results which illustrate in a practical way the usefulness of our results. Receiver operating
characteristic (ROC) curves are presented, and a comparison among the different discriminators is
made based on the simulated error probabilities. The ROC for the optimal iid discriminator, when
the input is correlated, is also given. Section VI is the concluding section and contains a practical

discussion of some matters related to the implementation of such discriminators.



II. The Performance Measures S; and 5,

In this section, we examine the technique of memoryless discrimination under an asymptotic
Neyman-Pearson formulation. We denote by P; the probability of error when H; is true, and we
regard this quantity to be a function of the sample size n. For consistent tests, P, — 0 as n — oc.
We will first consider the problem of maximizing the convergence rate of P, under the constraint
that Py < «a. In the following subsection, we derive a performance measure S; which determines
approximately this convergence rate. If we maximize instead the convergence rate of Py under the
constraint that P, < a then we can derive in a similar way the performance measure S;. We will

state and prove results only for 5.

A. The derivation of the performance measure 5,

The normalized test statistic is assumed to have a distribution which is approximately Gaus-
sian when n is large, as discussed above. Without loss of generality, we may assume that u; > po,
since the direction of the inequality depends on the sign of ¢g. We may also exclude the case of
i1 = po since this occurs only when the marginal densities are identical, and in such cases memo-
ryless discrimination is difficult. For a test of the form (1.3) with I' defined by a single threshold

I' = [nv, ), the error probabilities have the approximate values

Py =@ [_ﬁ'r ;Ouo] :
(2.1)

where

T 2
8(c)= — [ et/
27 Joo

Now in order to have Py = a, we must take v = (0p/y/n)® (@) + po, and substituting for v in

the expression for P; we obtain
P=9 [@qp-l(a) - ﬁu] , (2.2)
N o
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Since ®(z) is an increasing function of z, to minimize Py it is necessary to make the argument of
® in (2.2) as small as possible; that is, to make the argument large in magnitude and negative,
The term —+/n(u; — po)/oy is negative, since we are assuming that uy > po, and it increases in
magnitude as n increases, so that P, — 0. The quantity (g3 — po)/o1 determines approximately
the rate at which P; goes to zero, and we can see that the best asymptotic performance results

when this quantity is maximized. We define the following peformance measure

S = E’-‘l_T“"X (2.3)

o1
If we consider a similar problem with the roles of Py and P; reversed, then we obtain by the

same method as that above the performance measure

So = (—‘“_—Zf“’)i (2.4)

9
Because all the results' for Sy can be applied in a straightforword way to the performance measure
So, we will not consider Sy again until Section V, when numerical examples are presented. One
might notice the similarity of S; (or So) to the efficacy performance measure. Indeed, both are
asymptotic performance measures based on central limit theory. There is an important difference,
however, in that the efficacy is a performance measure for local optimality (as in the case of a
weak signal assumption, for example) whereas 5, is a nonlocal performance measure. Nevertheless,

because of the similarity the results in the next two subsections are quite similar to the results in

(1] and [2].

B. The optimal nonlinearity for 5,

We consider the following optimization problem

" _ [m(e) = mo(9))’
maximize  Si(g) = TP

subject to the constraints that E;g?(X;) < oo for i = 0,1, and where u; and o? are given by (1.4)

(2.5)

and (1.5). In the next subsection conditions are given which guarantee that the opimal nonlinearity
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g1 derived in this section satisfies the constraint Eqg?(X1) < oc. In order to have Egg?(X) < 0,
then, it is sufficient to require that fo(z)/fi(z) be bounded for all z, and we shall make this
assumption. We shall also take this condition to mean that fi{(z) = 0 = fo(z) = 0 as well.
In this subsection we shall require the rather stringent condition that the observed process be m-
dependent under either hypothesis. Observe that for an m-dependent process, the expression for

o?(g) as given by (1.5) becomes

1

ol(g) = Eig*(X1) + Z Eig(X1)g(Xj41) — (2m + 1) [Eig(X1)] . (2.6)

j=1

At the end of this section, we shall discuss the extension of the m-dependent results to the more

general case of strong mixing processes, and show that for all practical purposes, strong mixing
processes can be approximated by m-dependent ones.

The method for solving the optimization problem (2.5) is essentially the same as that in [1],

with minor modifications. This techinique is also used for the optimization of the other performance

measures. The optimal nonlinearity which solves the problem (2.5) is given by the solution of the

following integral equation

2xg(x) = LR s [ (e mhgtupmia) (2.7)

with the kernel K, given by '

m

[f(z,9) + fi(y,2)] - 2m + 1) fu(w). (2.8)

Kl(z7y) = 7;%27_) (

The parameter A determines the scaling (and the sign) of g. This scaling is irrelevant to the
performance of the discriminator; however, A > 0 is a necessary condition for u; > po. In the
analysis that follows, we show that a useful choice is A = -;— We will denote by ¢, the solution of

the integral equation -

o(x) = LR [k e, ppatupwias). 2:9)
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We can put equation (2.9) into a symmetric form by making the substitution g(z) = h(z)/\/fi(2).

This yields the integral equation

fi(z) = fo(z)
hie) = BE R [ Ki@mhman) (2.10)
which has the symmetric kernel
Ki(z.9) = (i@ AW)]F S (2,9)+ fiy,0)] = @m+ D [(2) ). (2.11)
i=1

This form of the integral equation is useful since we may apply the Hilbert-Schmidt theory.

Consider now o#(g;), which we may write in the form
ol = 2(fzud:c-{-m fi(z, +f1j ,z)|v(dz)v(d
(90 = [ @ hi(awda) ;//gl(z)gl(w[ (2,9 + (v, )| (dz)v(dy)

-em+1) [[ a@a@h@a@ndmd)

— ) fi(z 1§ T

—/91( ) fi( )[91($)+/{f1(x); £z, )+ fi(y,z)]
- (2 + DA) par(wla]v(da)

= [a@r@ @+ [ K@ na@iE)d) ", (212)

From this expression it can be seen that if g; solves the integral equation (2.7), then oi(g;) =
u1(g1) — po(g1), and thus S1(g1) = p1(g1) — po(g1) is the optimal value of Sy.

We have the following theorem.

Theorem 1. If the process {X;} is m-dependent under H,, then a necessary and sufficient con-

dition for g, to maximize S is that g; solve the integral equation (2.9). Furthermore, if g, solves

(2.9) then 51(g91) = 11(91) — po(g1).



C. The solution of the integral equation for S

To apply the theory of Fredholm equations we require the following two conditions:

v(dz) <

(a) /fl(w) fo(z)})?

/ |KT(2,9)Pu(dz)u(dy) < oo.

The condition (a) does not hold in many situations where the densities fy, fi have tails to the left or
right, as for example the Gaussian, lognormal, or Rayleigh densities. Therefore it may be necessary,
in practice, to modify the tails of the densities in order to apply the theory. The condition that
fo(z)/ fi(z) be bounded is sufficient but not necessary for condition (a) to hold. The condition (b)
can be further characterized if the densities flj(z, ¥),7 = 1,...,m have the diagonal expansion {5]
oo
fz,9) = file) fi(y) Y a6 (2)8n(y). (2.13)
n=0
where the functions {6,} are orthonormal in the sense that [ 8, (z)8.(z)fi(z)v(dz) = bmn.
Consider the terms in the expansion of |K*|?. We examine only the terms of the form
Fi(z,v) fF(z,y)/[f1(2) f1(y)], the other terms being more obviously integrable. If we introduce

the expansion (2.13) and apply the orthogonality relation, we have

HCENHED Y de (el = S gl gh) .
Jf A (@) = 3 aialt. (2.14)

Condition (b) will follow from the Schwarz inequality and (2.14)if 3 la$F))2 < oo for all k. Condi-
tions (a) and (b) are sufficient to guarantee that the solution hi(z) = \/fi(z)g1(z), if it exists, is
square integrable, and this in turn implies that E;¢3(X;) < oo under our assumption that fo/ f; is
bounded.

In the iid case, the kernel K} reduces to [fi(z)fi(y)]?, and it is easy to verify the solution

) _ ch(@) = fol)
h(z) = NS0 (2.15)
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where ¢ is an arbitrary constant. Note that the absolute term of the integral equation is of this

form when ¢ = 1. We may therefore define hjiq by

fi(z) = folz)
Vhi(e)

hiia(z) =
and write the integral equation as
h(e) = huaa) + [ Kitz, )y,

When the process is not iid, we can still obtain a series expansion of the solution to the
integral equation using the Hilbert-Schmidt theory, provided we can find the eigenvalues and eigen-
vectors of the kernel. According to the theory, a unique solution exists provided the conditions (a)
and (b) above hold and provided +1 is not an eigenvalue of the kernel. If 1 is an eigenvalue, a
(non-unique) solution still exists, provided the absolute term h;;q is orthogonal to every eigenvector
corresponding to the eigenvalue 1. We shall see that 1 is an eigenvalue of the kernel K7}, but that
in most cases a solution still exists.

If we assume that the densities flj, Jj=1,...,m have the expansion (2.13) and we introduce

this expansion into the kernel, we have

K1(e.9) = VARG |(2m+1) -2 Y (3 ) a)en)]. (216)
n=0 “j=1

Usually we will have 8y(x) =1 for such an expansion, and in such cases K T will have eigenvalues

{An} and eigenvectors {¢n} given by

Ao

i
—

z\n=—22a£{) (n21)

én = \/f—lon (" > 0).
Since Ao = 1, we must verify that h;iq is orthogonal to ¢o = v/f1, which is trivial:
/hiid(a:)d)o(z)u(dz) = /fl(z) - fo(z)v(dz) = 0.
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If A\, # 1,n > 1, we have the solution

h(z) = hiale) + 30 225 6(2) + cdo(a)

n>1
= hisa(z) + Z S-tn(@)V (e + oV il
n>1
with
en = [ hia()én(@)ide) = [ [(2) - fo(a)]u(a)v(da)
and ¢ an arbitrary constant. Therefore, the nonlinearity g (with ¢ = —1) is given by

Ancn

g9(z) (2.17)

D. Extension to p-mixing processes
The assumpti(;n of m-dependence in deriving the integral equation (2.9) is necessary to
avoid problems with the interchanging of limits. In many situations, a strong mixing model is
more appropriate. (See Appendix A for the terminology and notation used in relation to mixing
processes). For example, Markov processes are not m-dependent. Realistically, if m is rather large,
it is not possible to distinguish between a strong mixing process for which a, > 0 for all » and the
m-dependent process which has mixing parameters &, given by &, = a, for n < m and &, =0
for n > m. Thus an m-depenaent model might be substituted for a strong mixing model in many
situations. However, it is of interest to investigate the possibility of generaﬁzing the previous results
by letting m — o0o. Define a?,m by
m
0? () = Var; g(X1) + 2 Covi[g(X1), 9(Xj41). (2.18)
i=1

If {X;} is mo-dependent under H;, then o?, = o for m > mo. Define also

2
s~ (#102 Ho)” (2.19)
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The nonlinearity gim) which solves the integral equation (2.9) maximizes the performance measure
5§m). We would like to investigate the behavior of g%m) as m — oo. We shall assume that the
processes are p-mixing with parameters satifying Y p, < oc. The p-mixing condition is some-
what stronger than the strong mixing condition. A useful bound is 4a, < pp, which relates the
parameters for the two conditions.

Actually, the results of [2] will apply here with trivial modification; however, our results
here are easier to grasp intuitively, and generalize easier to the case of the other performance
measures. The key to our result is the continuity of S; as a functional. Define the compact set
Gi = {g : E19(X1) = 0,E; g*(X1) = 1}. Essentially, every nonconstant function g with finite
second moment is represented by an element of G; which is a scaled and shifted version of ¢g. Since
S1 is invariant under shifting and scaling, we may characterize §; by considering its properties on

G1. An important assumption we will have to make is that o?(g) > 0 for every g € G;. Our result

is first stated and then proved.

Theorem 2. Suppose that the observation process {X,} is p-mixing under Hy with 3_ p, < o0,

and that o¥(g) > 0 for all g € G;. Then there exists g, € Gy such that sup S1(g) = S1(g1). Ifgg'")
g

solves the integral equation (2.9), then Sl(ggm)) — S1(g1) as m — oo.

Proof. From the definition of the mixing parameters py, it is a fact that |Covy[g(X1), 9(X;+1)]] <
p; for all g € G;. Therefore the sum in (2.18) converges absolutely and uniformly as m — oo. It is
easy to show that the functional o7, is continuous in the Hilbert space L2(f;), and the uniform
convergence implies that o is continuous. Hence S; is a continuous function in £,(f;) whenever

o2 > 0. The set G, is compact and therefore there exists g; € G; such that sup S1(g) = Si(g1)-
9

Furthermore, S{m)(g) ~ 51(g) uniformly for g € Gy as m — oo. For m > my, Sim) is continuous,

and therefore there exists in Gy a function ¢{™ such that sup S™(g) = S{™(¢{™). We know
g
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also that gﬁ’“) solves the integral equation (2.9). Now let € > 0. There exists an integer M such
that for every m > M and every g € G, we have [Sim)(g) - S1(9)| < €. Let m > M be fixed.
If ${™(g{™) < S1(g1), then we must have 5{mg1) < S g™ < $1(g1). Otherwise, we have
Sl(g§"‘)) < Si(¢1) < 5§m)(g§m)). In either case, |S§m)(g£m)) — 51(g1)| < €. This implies that

|Sl(g§m)) - Si(g1)] <2 0O

Our result here differs from that of [2] in that we work with properties of the performance
measure itself, while Halverson and Wise work with the integral equations (2.9). If g were a
nonconstant eigenvector of the kernel of the integral equation (2.9) corresponding to the eigenvalue
+1, then from (2.12) we have 0?(g) = 0. On the other hand, if ¢ € G; and 0}(g) = 0 then from the
discussion above, we can reason that the optimization problem does not have a solution. Because
the satisfaction of the integral equation (2.9) is both necessary and sufficient for a given nonlinearity
to optimize the performance measure, it is clear that the condition on the eigenvalues of the kernel
and the condition on o? are equivalent.

The case of o}(g) = 0 is a degenerate case, and implies that %Varl T, — 0asn — o0, a
situation which is more favorable for discrimination than otherwise. In this case the normalized
test statistic converges to a constant under either hypothesis. Such a situation is quite unlikely to

be encountered in practical problems, however. - N

III. The Performance Measures S; and S5

The performance measure Sy is conspicuously unequal in its treatment of the two hypotheses,
resulting from the fact that the convergence of P; is optimized while the convergence of Py is
neglected. In this section, we will derive performance measures for which the convergence of both
error probabilities is optimized. Again we must assume that the distribution of the test statistic is

approximately Gaussian for large sample sizes.
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A. The derivation of the performance measure S,

We now derive a performance measure S; which determines approximately the rate at which
Py — 0 with the threshold v chosen so that Py = P;. This is the asymptotic minimax problem:
maximize the minimum of the convergence rates of Py and P;.

The error probabilities for a single threshold test of the form (1.3) are given approximately
by (2.1). Setting Py = P, we obtain v = (ooy + 100)/(01 + 0¢). Then the common value of the

error probabilities is

Po=P =% ["/ﬁH} . (3.1)

Now define the performance measure S, by

_ (b1 — #0]2
509 = @ TP

From (3.1) we see that if the Gaussian approximation is good, then S; determines approximately
the rate at which the error probabilities converge.

This performance measure has been derived in a slightly different way by using Chernoff
bounds for Gaussian processes [3]. In that paper, it was assumed that the Chernoff bounds for
the observation process {X;} can be approximated by the Chernoff bounds for Gaussian processes.
Then S, can be derived by maximizing the minimum of the Chernoff exponents. Qur derivation of

v

the performance measure S3 is a modification of this approach.

B. The optimal nonlinearity for 5,

We consider the optimization problem

(11(g) — polg))?
(00(9) ¥ 01(9))? (32)

maximize S3(g) =
subject to the constraints that E;¢?(X;) < oo for i = 0,1. Sadowsky and Bucklew showed that the
solution to the optimization problem is given by a certain nonlinear integral equation. The deriva-

tion is similar to the derivation of the integral equation (2.9) which gives the optimal nonlinearity
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for §;. If we assume m-dependence, then we may write the integral equation in the form

fi(z) = fo(=)
(T+7)fo(z)+ (1 +771)fi(z

2Xg(z) = -2 / L(z,y)g(y)d (3.3)

where T = (01/00) and the kernel L is given by

(1+ 1) Ko(z,9) + (1 + 771 Ki(z,y)

1+ n)fole) + 1+ 771 fu(z) (3.4)

L(z,y) =

with

Z [fi(e.9) + f(y,2)] = @m+ D fi(2) fily). (3:5)

Again we observe that A determines the scaling of g. Thus the particular value of A is not significant
except that it must have the proper sign so that if g solves the integral equation (3.3), then
p1(g) > po(g). Consider now

[00(9) + o1(9))* = (1 + 7)od(9) + (1 + 771)oi(g)

= [s@ {1+l + 1+ 7 HAE]0E) (3.6)

/[(1 + 1Y Ko(z,y) + (1 + 771 Ky (z, y)]g(y)dy}dz

If g solves the integral equation (3.3) for A = — , then the expression in the braces in (3.6) reduces
to fi(z) — fo(z), and thus [0o(g) + 01(9))* = p1(g) — po(g) > 0. We shall therefore assign to A the

value % and henceforth consider the integral equation

__ A@-hE [ 1s
o(5) = [Tt 511 ) - J s (37

Furthermore, we observe that if g, solves the integral equation (3.7) then S3(g2) = p1(g2) - wo(g2),

a result which is similar to the one obtained in Section II for the optimal value of S;.

We have the following theorem.

Theorem 3. If the process {X;} is m-dependent under both Ho and Hy, then a necessary and
sufficient condition for g, to maximize S, is that g, solve the integral equation (3.7). Furthermore,

if g2 solves (3.7) then S3(g2) = p1(g2) — to(g2)-
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In comparing the integral equation (3.7) with the integral equation (2.9), we note first of
all that (3.7) is nonlinear because of the fact that 7 is a function of g. Let us consider now what
happens when 7 varies. If 7 is very small, then oy is much smaller than g, and thus the value of
performance measure S, is very close to that of the performance measure Sp. In fact, S5 — Sy as
7 — 0. Now observe that the integral equation (3.7), when rescaled, converges as 7 — 0 to the
integral equation (2.9) which maximizes the performance measure S;. This provides us with some
insight to the relation between the performance measures Sp, S7, and S; and the role that 7 plays
in the integral equation (3.7). We observe, for example, that there is a conflict of objectives for
very small 7 in that the value of the performance measure S; is approximately equal to that of Sg,
while the integral equation (3.7) provides a nonlinearity which is close to the one which maximizes
the performance measure S;. A similar conflict occurs if 7 approaches oo, with the roles of Sy and
51 reversed. Of course, there is no conflict of objective if So ~ 5, but this implies that 7 = 1.
Thus we expect that 7 will have a “reasonable” value on the order of one. We find this to be the

case in Section IV where a numerical solution to the integral equation (3.7) is found.

C. The solution of the integral equation for S,

The equation (3.7) is nonlinear because 7 is a function of g, and for this reason, finding a
closed form solution is rather difficult. If, however, we had clairvoyance to know the correct value
of 7, then we could find the solution g, by solving a linear integral equation. In fact, we might try
to guess the value of 7, find the solution of the resulting linear integral equation, and then compute
T to verify if our guess was correct. This suggests an iterative method where the computed value
of T from the previous solution becomes the new value for 7 at the next iteration of the procedure.

This method was used to obtain a numerical solution to (3.7) for the results of Section V.

Although we cannot find a closed form solution to (3.7), we may treat = as a constant whose
value is unknown, and thereby extend the analysis relating to the equation (3.7). If we make the
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substution

h(z) = g(z)v/(1 + 7)folz) + (1 + 7-1) fi(a),

we obtain the integral equation

h(z) = % + [ L@ ohway (3.8)

where the symmetric kernel L* is given by

(L+ 1) Ko(z,y) + (1 + 7~ K1(z,y)
Vur(z)w(y)

(3.9)

L‘(z, y) =
and where w, is defined by
we(t) = (L4 7)fo(t) + (L4 771 fi(D). (3.10)

For a given value of 7, the integral equation (3.8) is a Fredholm equation of the second kind,

provided we have the conditions

/ [f1(2) = fo(2))?

w,(z)

// |L*(z, y)|*dzdy < .

These conditions imply that the solution A is square integrable, and then it follows that that

dz < oo

E; ¢*(X1) < oo for i = 0,1. Note that we do not require the condition that fy(z)/fi(z) be
bounded as we did for the integral equation (2.9). Condition (a) follows from the fact that ‘fl(z) -

fo(z)|/w.(z) is bounded by (1 + 7)~! + (1 4+ 7=1)~1. To show that condition (b) holds, it suffices

I 7mew

since we may then apply the Minkowski inequality. If all the joint densities involved have the

to show that

__Ki(z,y)

2
dzdy < oo (3.11)
Vwr(z)w:(y)

expansion (2.13), then the inequality (3.11) follows from a similar argument for the case of the

kernel K in Section II. For example, consider the terms of the form

£, 0)f8(=.y) . _f3 (= 9) 18z, v)
wo(z)w,(y) (1 + )2 fo(z) foly)
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It was shown in Section II that such terms are integrable. Thus condition (b) holds. Since the
integral equation (3.8) has a symmetric kernel, the Hilbert-Schmidt theory applies as in Section II.
If the eigenvalues and eigenvectors of the kernel (3.9) are denoted by {A.} and {¢n}, then a solution

hs of the integral equation (3.8) has the expansion

ha(e) = () + Y 25 dn(e)
. nee (3.12)
=> 1 jn)\ on(z)
n=0 n
where
. fi(z) = fo(z)
h*(z) = —tmmm—
() —
and

Cpn = /h"(z)q‘)n(z)d:v.
The solution is unique if and only if A, # 1 for all n. Since we do not have clairvoyance to know
the true value of 7, the solution (3.12) is purely academic.

If the process is iid, then the kernel L from (3.4) has the simpler form

() fo(=)fo(y) + (1 + 7 ) fo(z) ily)
A+ folz)+ QA+ 71)fi(z)

and the integral equation (3.7) has the solution

By fo(z) + B1 f1(z)
(1+7)fo(z) + (1 + 77 1) fi(z)

where By = [(1+ 7)po — 1] and By = [(1+ 7~1)uy + 1]. There are three unknown quantities in the

L(:L‘, y) =

y,-.-d(:c) = (3'13)

expression (3.13): 7, uo, and p;. These quantities can be found by solving the following system of

nonlinear equations:

po = /g,-,-d(x)fo(z)dz

p1 = / giia(z) fi(z)dz (3.14)

r= / 0} (giia)
0¢(giia)
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Note that g;;4(z) + C solves (3.7) for an arbitrary constant C. We may therefore take an arbitrary
value for either ug or py. In fact, with 7 fixed the first two equations in (3.14) are linear in pg and

1 and are singular. Therefore the system (3.14) does not have a unique solution.

D. The performance measure S3
As we mentioned, the performance measure S; was derived in [3] by considering the Chernoff

bounds for the error probabilities assuming Gaussian distributions. These bounds are the following:

P[Ty 2 nvy] <exp[-nli(v)]  if i <7y
(3.15)
P[T, < mvy) <exp[-nli(y)]  if pi> 7,

where

Li(v) = (i) (3.16)

)
20

The Chernoff bounds are asymptotically tight in the sense that

lim —%log PlTn 2 nv]=L(y) fp<y

n=-—00

1
lim ——log P[Tn Smy]=Li(y) i s>

n—oco
and hence they can provide good approximations to the error probabilites if n is large. Of course,
if the distribution of T5, is only approximately normal, then the bounds given by (3.15) are only
approximations of the true Chernoff bounds. Nevertheless, we shall proceed under the assumption
that such approximations are acceptable. From (3.15) we see that if ny is the threshold and
po < 7y < 1, then I; determines (approximately) the bound for the error probability P;. Since a
larger value for I; results in a smaller bound for P;, it is desirable to make both I and I; as large
as possible. It is obvious that I; is a convex function of 4 which takes its minimum value at y = y;.
Thus as v increases from g to pq, Iy increases and I; decreases. Sadowsky and Bucklew proceeded

from this point by maximizing min(Iy, ;) and obtained the result that

S2 = max min ().
27 << i=0,1 {(7)
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It is fairly straightforward, however, to show that

[1 = po]®
I I =
uorg'%m[ o(1) + 51(7)] (08 + 0}
and we therefore define the performance measure §3 by
ERY)
Sy = (41 = po) (3.17)

ICEXE
The optimization of S3 leads to the linear integral equation

_ hlz) = folz

)
23g(2) = LR -0 [ bz, u)a(0)ay (3.18)

where the kernel M is given by

I;’()(:L‘, y) + f\’](lﬁ, y)
fo(z) + fi(z)

M(z,y)=

It can easily be shown, by the same method as that used for the other performance measures, that
if g3 solves the integral equation (3.19), then 03(g3) + 0#(g3) = 11(g3) — p0(g3) so that the optimal
value of S3 is S3(g3) = p1(g3) — po(gs). Therefore, we will assign A = } and the integral equation

becomes

_ fi(z) -~ fo(2)

= R T ) /M(Z,y)g(y)dy- " (3.19)

9(z)

Therefore we have the following theorem.

Theorem 4. If the process {X;} is m-dependent under both Hy and H,, then a necessary and

sufficient condition for g3 to maximize S is that g solve the integral equation (3.19). Furthermore,

if g3 solves (3.19) then S3(g3) = p1(93) — po(93)-

The integral equation (3.19) can be transformed into an integral equation with a symmetric

kernel by making the substitution h(z) = g(z)+/fo(z) + fi(z) so that the Hilbert-Schmidt theory
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applies as before. We shall not pursue this further. We shall, however, proceed to find the optimal

nonlinearity for iid processes. If the processes are both iid, then the kernel M has the form

_Jo@)foly) + A(x)A1(y)
Jo(z) + fi(z)

M(z,y)=

and the integral equation gives us immediately the form of the iid solution:

B _ Bofo(z) + By fi(x)
gua(z) = =S (3.20)

where By = po — 1 and By = p1 + 1. To find the unknown constants By, By, we subtitute for g;;4

in the linear equations

o =DBo+1= /gﬁd(x)fo(x)dz
(3.21)

w1 =B -1= /giid(z)fl(z)dx-
The system (3.21) is in fact singular, so that we may take either By or B; to be arbitrary. Therefore

we shall arbitrarilv take By = 0 and this gives us the value

_ fo(z) fi(z) x-l
Bl_[ ——————fo(z)+f1(z)d} | (3.22)

Thus the iid solution has been determined explicitly.

E. Extension to p-mixing processes

I

For p-mixing processes, we may prove results for Sy and S3 which are similar to those proved
for S1. In fact, the proof for S3 is a simple modification for the proof for S3; therefore, we shall
include only the latter. Let w = -;—(fo + f1), let G; = {g9 : E;9(X1) = 0,E; g2(X;) = 1}, and let

G ={g: [9(z)w(z)u(de) =0, [ ¢*(z)w(z)u(dz) = 1}. The result is stated in Theorem 5.

Theorem 5. Suppose that the observation process {X,} is p-mixing under Hy and H, with
3. pn < oo, and that o?(g) > 0 for all ¢ € G;, i = 0,1. Then there exists g € G such that

sup S2(9) = Sa2(g2). Ifgg'") solves the integral equation (3.7), then Sg(ggm)) — S2(g2) as m — oo.
9
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Proof.  The p-mixing condition implies that o} (g) converges uniformly for g € G; and thus o?
is continuous in the Hilbert space L,(f;). If g € G then for either ¢ = 0 or ¢ = 1 there exist @ > 0
and b such that ag + b € G;. Therefore for all g € G, the denominator in 53 is positive. Because
convergence in Lo(w) impljés convergence in L;(f;), we can deduce that ug, 03, py, and o? are
continuous in Ly(w), and hence S, is continuous in £,(w) whenever the denominator is positive.
The set G is compact in Ly(w), so there exists g, € G such that sup S2(¢g) = S2(g2).

g

Now define

(m) _ (1 — ﬂ0)2
Sy = ___(Uo,m e (3.23)

The argument given in the proof of Theorem 2 applies to prove that Sg(ggm)) — S2(g2) if we can
show that Sém)(g) — S2(g) uniformly for ¢ € G as m — co. Let g € G and let the constants a; > 0
and b; be such that g; = a;g + b; € G;. If such constants do not exist, then a; > 0 and b; may be

arbitrary. Then we can write

[Hl(gl)—PO(gl)r_ [ #1(g1) — po(g1) }2

et
52(9) = 5 (g)‘— cao(go) + a1(g1) cloo(go) + €] + [01(91) + 1]

(3.24)

where ¢ = a;/ag, and where ¢ and ¢; converge to 0 uniformly as m — oo. For fixed values of ¢
and €, the right-hand side of (3.24) attains its maximum as a function of ¢, and this maximum
converges to 0 as ¢ and € converge to 0. Hence convergence of Sém) is uniferm on §. This

completes the proof. [I

IV. Minimax Robustness

A. Preliminaries

In this section, we obtain results in robustness for the performance measures S5, §S;, and
S3. An attempt to obtain results for S; leads to intractable expressions due to the nonlinear form
of the corresponding integral equation.
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The problem of minimax robustness is one of finding the least favorable distributions Fy
and Fy in given uncertainty classes Qo and Q;. These least favorable distributions together with

the robust nonlinearity ¢* satisfy the inequalities
S(g, F5, FT) < S(¢7, F5, FY) < S(g7, Fo, Fr) (4.1)

where Fy € Qo, F] € Qq, g is an arbitrary allowable (second order) nonlinearity, and § is a generic
performance measure. Throughout this section, the performance measures are written as functions
of the nonlinearity and the distributions, as in (4.1). We shall also use the notation u(g; f) =
[ 9(z)f(z)dz and o*(g; f) = [ ¢*(z)f(z)dz — 4*(g; f), which indicates clearly the dependence of u
and o on the marginal density f.

We define Qp and @, by restrictions on the marginal and bivariate joint densities, as is
appropriate for our performance measures. Let f; and f; denote the nominal marginal densities
under Ho and H,, respectively. We require that for every distribution F; € @Q;, the marginal
density be of the form f; = (1 - e,-)f~,~ + €;h. This restriction on the marginal densitieé defines
e-contamination classes. Other classes of marginal densities may also be considered, such as the
total-variation classes, the bounded classes, and the p-point classes. (See Lemma 7 and the comment
following it).

The nominal distribution F; for the class Q.- is assumed to be i.i.d. Othe; distributions in
Q;, in addition to satisfying the restriction on the marignal densities, must also satisfy the following

restriction on the bivariate joint densities.

|Covlg(X1), 9(X;41)]]

sup <r; 4.2)
o \/Varg(Xy) Varg(X;41) = (

where g ranges over all measurable functions satisfying E g?(X;) < oc. Since we assume stationarity,
the denominator is Var g(X;). The r parameters are dominated by the p parameters which define
the p-mixing condition; therefore, p-mixing processes will be included in Q;. It will turn out that the
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least favorable distributions are in fact p-mixing with the p parameters equal to the r parameters,
so that there is no need for concern if there are process distributions in the uncertainty classes
defined here which are not p-mixing.

In applications, one may wish to consider a model which involves p-mixing processes, such as
the processes which are assumed in the hypotheses of Theorems 2 and 5. If the r parameters for the
bounds (4.2) are chosen to be equal to or larger than the p parameters, and the nominal marginal
densities are taken to be the marginal densities of the models, then the model densities will be
contained in the uncertainty classes. Often it is difficult to determine the p parameters or the r
parameters from given densities. If the bivariate densities of the distributions have the diagonal
expansion (2.13) with the orthonormal functions {6;} being polynomials, then the following result

is useful for determining the r parameters.

Proposition 6. Suppose the bivariate density f(*) has a diagonal expansion f)(z,y) =

o0
f(x)f(y)z anb,(z)0,(y) where {6,} form a complete orthonormal set of polynomials with the

n=0
weight function f. Then

|Cov[g(X),g(Y)]]
gp Var g(X)

= max(ay, a3) (4.3)

where the supremum is taken over all measurable g such that E ¢*(X) < co.

o0
Proof.  Since [ g¢%(z)f(z)dz < oo, g has a Fourier series g(z) = Z bnbn(z). Tt is easy to verify

n=0

that

b2als)
|Covle(X), sM| _ >
Var g(X) Z b2

n>1

(4.4)

The supremum of the left side of (4.4) is obtained by g = 6; where i is such that |a;| = max{|a,|,n >
1}. If the orthonormal functions {6,} are polynomials then this maximum coefficient occurs as
(9)

either a{) or a{/). To show this, we require a fact from [12] that for any such diagonal expansion
1 2
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in which the orthonormal functions are polynomials, there exists a probability density function h;
having support in the interval [-1, 1] such that a, = f_ll t"h(t)dt. Then for n > 2 it is obvious

that

: 1 1
lan|§/ ‘t|”h(t)dt§/ £ h(t)dt = |ay].
-1 -1

so that the assertion holds. [

As a consequence of Proposition 6, the condition which defines the uncertainty class becomes a
condition on the process {X;} directly, rather than a condition on tranformed processes {g(X;)} as
n (4.2). Two important classes of densities which have diagonal expansions of the form required in
Proposition 6 are the Gaussian and gamma densities. Note that Proposition 6 can be applied in an
indirect way to processes which are memoryless transformations of processes which have a diagonal
expansion (memoryless transformations of Gaussian processes, for example). The calculation of a;
requires knowledge of the first and second order moments (a; is, in fact, the correlation coefficient)
while the calculation of a; requires knowledge of the moments up to order four.

The condition (4.2) is from [9], and we shall adapt some of the results therein. For a
given marginal distribution function F', equality holds in (4.2) for all g if the bivariate distribution

function is

Fi(z,y)= (1 -r;)F(2)F(y)+ r;F(z Ay), j=1,2,... (4.5a)

where z A y is the minimum of z and y. If the distribution function F has a density f, then we

may write for the bivariate densities
fi(z,y) = A=) f@)f(¥) +ri6(z — 9)f(z), §=1,2,.... (4.5b)

In the work that follows, we will show that F and F}* have bivariate distributions of the form (4.5).
The robustness problem therefore reduces to one which involves only the marginal distributions.
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That there exist processes which have bivariate distributions given by (4.5) is shown by two

o0
constructions in [9]. Let {6,} be a sequence of nonnegative real numbers such that 29; =1.

=1

oo .
. m —
Sadowsky’s constructions allow r-sequences of the form r; = 0p8;rm or T = —lOm.
y q J it J
m=0 m=j+1

Note that if the condition (4.2) is satisfied, then o0?(g) = (1 + 2R;)Var; g(X;) where R; = 3 7;.

For this reason, the sum R; is relevant for our work, while the particular sequence {r;} is not.

B. The least favorable processes
We have given the least favorable bivariate densities in (4.5). Now we show that these
densities are, in fact, least favorable. Suppose f; and f; are least favorable univariate densities for

the performance measure 5:

S(.‘]’f(l)‘afl')ss'(g"f(’)‘af;)sS'(g*th,fl) (46)

In this case, § could be [u1(g; f1) — u(g; fo)]?/0*(g; f1), which represents a univariate version of Sy,
or it could be [u(g; f1) — u(g; fo))*/[(1 +2Ro0*(g; fo) + (1 + 2R1)o?(g; f1)] which corresponds to Ss.
We shall assume the latter, though it is simple to modify the argument to accomodate the former.
We now show that the distributions given by (4.5) with the marginal densities f; and f; are least
favorable by showing that (4.6) implies (4.1). The key to the proof is the fact that equality holds
in (4.2) for every g when the bivariate densities ére given by (4.5). Let F? de;ote any process
distribution which has marginal density f; and bivariate densities (4.5). Let f; denote an arbitrary
marginal density from Q;, let F; have marginal density f; and bivariate densities (4.5), and let F;

be any distribution in Q; with marginal f;. Then we have from (4.6)
Sa(g, F5, F7) = 8(9, f5, 17) < 8(¢™, f5, /1) = Sa(9™, F5, FY)
which is the left inequality in (4.1). Furthermore,

Sa(g*, Fy, Fy) = S(g", fo, f) < 8(g%, fo, /1) = Sa(g*, By, F1) < Sa(g”, Fo, Fy)
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which is the right inequality.
The following marginal densities, defined in terms of the nominal densities f and fj, will
be called the Huber-Strassen least favorable densities:
) { (-@h@) it h@lh@ <
o(z) = - y -
(1/e")(1 = @)h(2) if fi(z)/fo(z) 2 "
(1—e)fi(2)
pi(z) =

(4.7)

—

f fi(z)/folz)> ¢
(1 -e)fo(z) if fi(z)/fo(z)< ¢

where the constants ¢/ and ¢ are chosen such that the functions are valid probability densities
(i.e. they integrate to 1). The Huber-Strassen densities have appeared frequently as the solution

to various minimax robustness problems. Lemma 7 is the basis for many such applications.

Lemma 7. For i = 0,1, let P; be the class of all probability density functions of the form
f=(01- e,-)f,- + €;h, where f; is fixed and A is arbitrary, and let ¥ be any convex function. If py and

p1 are the Huber-Strassen least favorable densities corresponding to fo and fi, then the inequality

[o [l mooee< [ o [5i5] e

holds for all marginal densities fo € Py and f; € P;.

Proof. 1t has been shown in [7] that the least favorable densities in terms of risk for the classes

Py and P, are the Huber-Strassen densities. The proof then follows as a corollary to Lemma 1 in

(15]. O

In addition to the e-contamination classes, the Huber-Strassen densities are also least fa-
vorable in terms of risk for at least three other uncertainty classes: the total variation classes [7],
bounded classes {17}, and p-point classes [18]. Thus Lemma 7 holds as well if the classes Pp, P, are
of one of these types.

The main result of this section is stated in the following theorem.
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Theorem 8. For the performance measures Sg, Sy, and S3, the least favorable process distribu-
tions F}, F} in the classes Qo, @1 are such that their marginal densities are the Huber-Strassen

densities (4.7) and their bivariate joint distributions are defined by (4.5).

Proof. See Appendix C.

V. Numerical Results

The nonlinearities which are given as solutions to the integral equations in the preceding
sections are optimal in the sense that they optimize the various performance measures. We justified
the performance measures by showing that under certain conditions, including large sample sizes,
they imply small error probabilities. This final section will present approximations to the error
probabilities which were generated by computer simulations for several examples, and thereby

provide further justification of the use of various nonlinearities we have derived.

A. Descriptions of the examples
The particular marginal densities which we shall assume throughout are Rayleigh and log-

normal, given by
fol T z? (5.1)
o(@) g 2 , '

_ 1 (loga: - /\1)2
f](.’l?)— ;—2\/7r_—,\—2exp{——T/\2-—}, ‘ (52)

respectively. For our simulations, we have taken 8 = 4, A\; = 0.8, and A; = 0.25. These values were

chosen so that Eg X; = E; X; and Eq X? = E; Xlz. The bivariate densities are
2 2
j Ty "ty p;iTyY
fi(z,y) = _ex {_._.__}I{ } 5.3
0= ) = T P\ "o 2 S A T - e (5:3)
. -1
fi(z,y) = [27rwy«\z(1 —pﬁ)*] X

(logz — A1)% — 2p;(logz — A1)(logy — A1) + (logy — Xq)? } 54
exp{— 2A2(1—p3) ( . )
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with Jy being the modified Bessel function of order 0. In general, the n-dimensional Rayleigh
density requires an (n — 1)-fold integration, and thus the LRT for Rayleigh vs. lognormal processes
lacks a closed form expression.

The parameters p; which are in both expressions (5.3) and (5.4) are actually the correlation
coefficients of the underlying Gaussian processes from which the Rayleigh and lognormal processes
are derived. In either case, the densities factor into a product of marginal densities when p; = 0.
We refer to the p,’s as the correlation parameters. For our examples, the correlation parameters will
be given by decaying exponential sequences with time constant 7; under H;. For example, under
Hy the bivariate densities are given by (5.3) with p; = e(=4/70). It can be shown that the processes
we have specified are Markov processes. In the particular examples we present, the correlation
time constants will take different values to illustrate the change in performance which results from

a change in the strength of the correlation.

B. The calculation of the nonlinearities

For each example, we evaluate the performance of five different nonlinearities ¢;,1 =0, ..., 4.
The nonlinearity g4 = log(f1/fo) is the optimal iid nonlinearity derived from the iid LRT. The other
nonlinearities go, ..., g3 are optimal under the respective performance measures Sg, ..., S3, and are

“

determined by the solutions of the integral equati(;ns of the preceding sections.

In obtaining (numerical) solutions to the integral equations, one must.take care in the
selection of two sets of parameters. First, one must decide on the number m of terms in the sums
in the kernels. For a kernel such as (3.4), one may wish to assign separate values my and m; for
the two sums. Our method for determining these values was to set ppmin = 0.1 and then let m;
be the smallest value such that pp,;, < pmin. We found that the same results were obtained when
Pmin = 0.01, which corroborates Theorems 2 and 5.

The second set of parameters is {Zmin, Zmax} Which define the integration region [Zmin, Zmax]-
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In situations where the observations can take on only bounded values, the selection of these param-
eters is trivial. If the marginal densities have unbounded support, however, such as the Rayleigh
and lognormal densities, a finite region must be chosen in order to obtain a numerical solution to
the integral equation. For our example, the integral equations corresponding to Sg and 57 will not
have solutions unless the tails of the densities are modified. We selected Znijn and z,,,4 so that
P{X| < Zmin} < € and P{X; > Tmax} < € under either hypothesis, with ¢ = 5 x 1075, This yields
Zmin = 0.02 and z,.x = 15.7. Thus we have neglected the tail regions of extremely small total
probability.

Figures 1 and 2 show the graphs of the nonlinearities which were computed as numerical
solutions of the integral equations when the time constants had the values 79 = 13.029 and m; =
130.29. The magnitudes of go, g1, and g4 become very large near the endpoints of the integration
region. This is shown more clearly in Figures 3 and 4 which contain logarithmic plots. As could
be expected from observing the form of go, 02(go) is very small while 0?(go) is very large. The
opposite situation is true for g, while for g5 both 02(g4) and o?(g4) are quite large. Since g, does
not take large values anywhere in the interval, 02(g.) and 0#(g;) are both relatively moderate and

of the same order of magnitude. The nonlinearity g is similar to g, is this context.

i

C. Simulation results

Figures 5-8 show the ROCs for each of the nonlinearities for four difféerent examples. The
parameters for the marginal densities are the same for each of the examples, the time constants of
the correlation parameters being the only varying parameters. The sample size for each trial was

n = 1000, and 10,000 trials were performed to generate each ROC.

For the example of Figure 5, the ordering of the nonlinearities from best to worst at the point
of the ROC where the error probabilities are equal is g4, g2, 93, 91, go- The situation here is one
of weak correlation under both hypotheses, the time constants being 79 = 13.029 and ; = 13.029.
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Figure 1.  Linear graphs of the nonlinearities go and g, when 7o = 13.029 and
1 = 130.29.

X10~
1.0

-1.0 | T T T T T
0.0 2.5 5.0 7.5 10.0 12.5_ 15.0 17.85

Figure 2. Linear graphs of the nonlinearities g;, g2, and g3 when 75 = 13.029
and 7 = 130.29.
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Figure 3. Logarithmic graphs of the left tails of the nonlinearities plotted in
Figures 1 and 2.
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Figure 4. Logarithmic graphs of the right tails of the nonlinearities plotted in
Figures 1 and 2.
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That the optimal iid nonlinearity performs best is therefore not alarming.

For the next example shown in Figure 6, the situation is such that the correlation is strong
under H; and weak under Hy, the time constants being 7, = 13.029 and 7, = 130.29. The ordering
here is g1, g2, 93, 94, go- We see a significant improvement over the optimal iid nonlinearity.

Assigning the values 7o = 130.29 and 7, = 13.029, we obtain the ROCs shown in Figure 7.
Although the value of 7y is significantly larger than its value in the first example, the correlation
of the Rayleigh process is still not significantly strong. Comparing the results here with those of
the first example (Figure 5), we see that the ordering of the nonlinearities at the point where the
error probabilities are equal is unchanged; however the performance of each of the nonlinearities is
degraded as a result of the stronger correlation.

In the final example shown in Figure 8, the time constants have values 73 = 130.29 and
71 = 130.29. The situation of the ROCs is similar to that of the second example (Figure 6), in that
the ordering is the same. The performance in this example is degraded from that of the second
example as a result of the increase in the correlation under Hy.

From the results we have examined so far, we might inquire as to the reason why ¢¢ performs
so poorly. To explain this, we must first consider the fact that the correlation which is observed
in the Rayleigh process is much weaker than the correlation observed in the Gaussian processes
which generate them. (Recaﬂ that Z = \/W is Rayleigh when X and Y a‘,‘re iid zero-mean
Gaussian). Therefore, even with the time constants as in Figure 7, the correlation of the Rayleigh
process is not significantly strong. Second, recall the formulation under which gy has been derived,
that of minimizing the rate of convergence of Py when P; is constrained. Therefore, we should
consider the region of the ROC where P, is relatively small and P, relatively large. In Figure 7,
we see that gy performs best in this region. This same phenomenon is observed even more clearly
in g1. In Figures 6 and 8, we see that g; performs significantly better than the others in the region

where P; is small.
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Figure 5. Receiver operating characteristics (ROCs) for 7o = 13.029 and 7y =
13.029 with n = 1000 samples.
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Figure 9. ROCs for 75 = 13.029 and 7, = 130.29 with n = 100.

To ascertain the effects of a smaller sample size, we include also Figure 9, in which the
sample size n has the value 100. The ordering of the nonlinearities remains essentially unchanged,

although the performance is degraded as a result of the decrease in the sample size.

VI. Conclusion

Four different performance measures have been presented in this paper, each giving rise to a
different nonlinearity. A fifth possible nonlinearity is the optimal iid nonlinearity. From our numer-
ical results in Section V, we might conclude that it is difficult to predict which of the nonlinearities
will perform best in a given situation. Based on our numerical results, however, we might suggest
the following heuristics. In a situation of weak correlation, the optimal iid nonlinearity will most
likely perform best, owing to the fact that the other nonlinearities are designed to be optimal with
respect to the various performance measures and not the error probabilities directly. In cases of
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strong correlation under one of the hypotheses, say H;, and weak correlation under Hy, according
to our experience the nonlinearity which maximizes S is likely to perform best. This is especially
true if one is concerned about the region of the ROC where P is small relative to P;. The nonlin-
earities which maximize the performance measures S; and S5 have performed consistently in the
middle relative to the other nonlinearities which we have considered. In cases where the correlation
is strong under both hypotheses, we have observed that g, and g; perform better than the optimal
iid nonlinearity. S, appears to be a slightly better performance measure than S3; however, S3 is
much more mathematically tractable, since it usually leads to linear problems while S, leads to
nonlinear problems. Of all the performance measures, 53 appears to us to be the most intuitively
pleasing.

In the numerical results of Section 5, we chose the parameters of the densities to match
the first and second moments. We did this in order to make the discrimination problem difficult.
When the densities are not closely matched as such, we have found that the iid nonlinearity often
performs better. Thus, although we are not working with a weak signal model, we have found
that our results are best when we are “close” to a weak signal situation. Evidently, performance
measures which resemble signal-to-noise ratios are most useful for problems in which the marginal
densities are not too dissimilar.

A final comment concérns the correlation wé have observed between the thémory, as presented
in the first four sections of this paper, and the numerical results we obtained in applications. The
performance measures are derived as asymptotic performance measures. QOur numerical results, on
the other hand, are obtained for finite sample sizes, and therefore do not illustrate the asymptotic
performance as predicted in the theory. The derivations of the performance measures depended
upon the assumption that the test statistic has a distribution which is approximately Gaussian
when the sample size is large. Because the nonlinearities which optimize the performance measures
So and S exhibit extremely large magnitudes near one of the endpoints of the region of integration,

37



the distribution of T, in such cases is strongly skewed and the assumption of a Gaussian distribution
is nét valid. We have found that this need not be a problem, though, since the outlying values tend
to fall away from the threshold. We have seen, in fact, that the nonlinearity which maximizes )
performs best relative to the other nonlinearities in certain cases. The other performance measures
yield nonlinearities which are more “balanced,” and consequently the distributions of the test
statistics are more closely correlated to that predicted by the theory. According to our analytical
results, it is possible to improve on the performance of the iid nonlinearity asymptotically. Our
numerical results have demonstrated that a significant improvement in performance can be obtained

even for relatively small sample sizes.

Appendix A: Mixing processes

To make mathematically precise the concept of asymptotic independence, we may define
conditions referred to as (strong) mixing conditions. In this appendix, we state definitions and
results which are useful for our work. Proofs of the results are omitted. The recent survey papers,
[19] and [20], are excellent references.

Let {X;,1 € Z} be a stationary stochastic sequence. Our results hold with an obvious
modification for one-sided sided sequences. Let F! be the o-field generated by {X;,a < i < b}
where a may take any finite value or the value —oc;, and similarly, b can take any :'a.lue larger than

or equal to a, including +o0o. Define now the following sequences:
an, = sup{|P(ANB) - P(A)P(B)|: A€ FL,B € FZX.}
reZ
Pn = sug{lCorr(Y, Z)|:Y € L3(FL ), Z € Lo(FR)}
re

@n = sup{|P(B|A) - P(B)|: A € FLoo, B € Fi%o
re

We say that the stochastic process {X,} is

strong mixing (or a-mixing) if a, — 0 as n — 0,
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p-mixing if p, — 0 as n — 00,
¢-mixing if ¢, — 0 as n — oo,

m-dependent if ¢, = 0 for n > m.
The list above is in the order of decreasing generality. Thus we have
m-dependence == ¢-mixing = p-mixing = strong mixing.

The definitions above apply to nonstationary sequences. If the processes are stationary, then
the supremum in each case need not be taken over r.

Any of the above mixing conditions are sufficient to imply that a stationary process is
ergodic.

Because mixing conditions are defined on the o-fields generated by the process {X;}, it
follows that for any measurable function g, the process {Y;} defined by ¥; = g¢(X;) will satisfy
the same mixing conditions as {X;}. Therefore, such conditions are ideal for obtaining results for
memoryless nonlinearities.

A vast variety of central limit theorems have been proved for mixing processes. Generally,
the strength of the auxilary conditions required depends on the relative strength of the mixing
condition involved. For example, weaker auxilary conditions are needed for ¢-mixing processes
than for strong mixing ones.. Two types of CLT’s are possible. One type concludes that the sum
Sy, when centered and normalized, converges in distribution to a standard normal random variable.
A stronger type, which implies the former type, concludes that Sj,s, when centered and normalized,
converges in distribution to standard Brownian motion for 0 < ¢ < 1. The latter type is often called

a functional central limit theorem. The following is such a theorem.

Theorem A Let {X,} be a strictly stationary, zero-mean, strong mixing sequence, and S, =
S k=1 Xk. Let o2 = Var S, and let -] denote the greatest integer function. If o, — oo and one of

the following two conditions hold:
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(1) for some é > 0, E|X;|**® < o and P na(n)é/(2+6) < 00

(2) for some C > 0, |X;| < C and 3, na(n) < 0o

then S[ny/0n converges in distribution to standard Brownian motion on [0, 1].

Appendix B: On the asymptotic normality of the test statistic for lognormal and

Rice densities

We assume that the processes {Y;} and {Z;} are independent, stationary Gaussian random
processes with mean j, variance 2, and covariances given by Cov[Yi, Yj41] = Cov[Z1, Z;41] = p762.

We consider two cases for the observation process {X,}

(1) X = exp(Y;).

(2) Xi= VYT +Z].

In case (1), {X;} has a lognormal distribution. In case (2), {X;} has a Rayleigh distribution if
i = 0, and a Rice distribution otherwise. The particular value of #* is not relevant to our proof,
so without loss of generality we assume #°* = 1. We require that 0 < g < 1. The tildes on the
parameters are necessary to distinguish them from y and o? defined by (1.4) and (1.5) and from

the p parameters which define the p-mixing condition. It can be shown that the Gaussian processes

{Y;} and {Z;} are Markov processes.

We wish to show that the test statistic T}, defined in (1.2) is such that n~'/2[T,, — nu]/o
converges in distribution as n — oo to a standard normal random variable W (which has zero
mean and unit variance). The particular central limit theorem which we will use is Theorem A. In
this appendix, we show that the conditions of the theorem are met for the observation processes
of cases (1) and (2) above. Statements are made without proof. Proofs for all statements may be
found in [19] and [20].
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The spectral density of the processes {Y,} and {Z,} is

—e(1 - p?) . peosw—~p°
ple)? — (1+p2)eiw +1  1-2pcosw + p?

S(w)=

The hypothesis that 0 < p < 1 is sufficient to guarantee that the spectral density is positive
for all w values, and this is sufficient to imply that {Y,,} and {Z,} are p mixing. Furthermore,
the parameters p, converge to 0 exponentially fast, since the processes are Markov. The bound
an < 1pn implies the conditions (1) and (2) of Theorem A for the lognormal case. For the Rice
(or Rayleigh) case, we have also the bound ax < ay + az, which relates the parameters for {X,}
and the parameters for {Y,} and {Z,}. Thus for both the lognormal and the Rice processes, the
conditions on the o parameters in Theorem A are satisfied. The other hypothesis for Theorem A,
that o,, converge to oo, is a condition which we shall not be able to prove even in this very specific
case. The case that.o, does not approach oo is a degenerate case, and implies that ¢ = 0 and
hence that n~1/2[T, — nu] converges in distribution to a constant. Otherwise, n=1/2[T}, — nu]/o

converges to a standard Gaussian.

Appendix C: Proof of Theorem 8

The proof of Theorem 8 for the performance measures Sy and 57 follows from our previous
discussion concerning the performance measure § ksee equation (4.6) and the diséilssion following)
and the result published by Poor [16]. Therefore it remains to show that the theorem holds for
53. We argued in Section IV that the problem reduces to one which involves only the marginal

densities. Define the performance measure

[u(g; f1) = wlg; )]’
o%(yg,; fo) + Act(g; fr)’ (C.1)

5'3(9,fo,f1) =

where A = [(1 + 2R1)/(1 + 2R,)]. We must show that the least favorable marginal distributions
f¢ and f} for the performance measure 53 are given by the Huber-Strassen densities (4.7).
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A simple lemma which will be used is the following, whose proof is given in [13].

Lemma C. Ifv; >0,v;, >0,and 0 < a <1 then

CORSCETA LN O

avy + (1 — a)v, vy vy

The integral equation which yields the optimal nonlinearity for 53 is similar to (3.19) with

m = 0 except for the coefficient A:

_ _N(z) - fo(z) fo(z) fo(y) + Afi(2) f1(y)
0= irani | P rane ] swa (2
We have immediately the form of the solution
g(z) = By fo(z) + By fi(x) (C.3)

fo(z) + Afi(z)
where By = pp — 1 and By = Apy + 1. If we consider the linear system of equations
o=Bg+1= /g(z)fo(a:)dz
1
m =B -1 = [ g@)fi(e)da

with By, B; as the unknowns, then we find that the system is singular, and conséquently we may

assign to By the arbtrary value 0. This implies that

[ _fo@h@) 1
B“[ fo(r)+Af1(z)d] : (¢4

If g is the optimal nonlinearity which is matched to fp, f;, then we know that

$s(g, for f1) = / 9(2)[fi(2) ~ fol2)]dz

= Bl(fo’fl)/ fo(z)f-lf-(fl)fl(x) [fl(-’l?) - fO(-’E)]dIE.

(C.5)
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where we have written B, as a function of f; and f; to remind us of the relation (C.4). Lemma 7
applies to the integral in (C.5) with ¥(z) = z(z —1)/(z+ 1), which is convex, so that the integral in
(C.5) is minimized by the Huber-Strassen densities. Lemma 7 also applies to the integral in (C.4).
In this case ¥(z) = z/(Az + 1), which is concave, so that by applying the lemma to the negative
of the integral (since —¥ is convex) we find that this integral is maximized by the Huber-Strassen
densities. Bi( fo, f1) therefore is minimized. Thus our candidates for the least favorable marginal
densities are the Huber-Strassen densities. The right inequality in (4.1) will now be proved.

The following inequalities, which depend on the fact that o2(g; f) is concave in f and on
Lemma C, demonstrate that S3(g, fo, f1) is convex in fy and f; for fixed g. With 8 = (1-a)we

have

[u(g; 87 + efi) — ulg; Bfo + afo)]’
o¥(g;Bfo+ afo) + Ac?(g; Bf1 + afi)

[ﬁ{u(g; f1) = u(g; o)} + a{pu(g; f1) — u(g; fo)}] ’
= Blo(g; fo) + Act(g; /)] + a[o?(g; fo) + Ac?(g; /)]

< /BSB(Q’f_Oafl) + 053(g,f0,f1)

S3(g,Bfo +afo,BN + afo) =

A

Define the function

J(a; fo, f1) = $3[g%, (1 = @) f5 + afo, (1~ @) ff + afi] 0<a<l
where f§ and f are the Huber-Strassen least favorable densities and g* is the optimal nonlinearity
matched to fy, fi. Certainly J is convex in o if S5 is convex in fy and f;. Now the right inequality

in (4.1) holds if and only if

J(e; fo, f1) 2 J(0; fo, f1) (C.6)

for all a in the interval [0,1], and since J is convex in a, (C.6) holds if and only if we have the
condition

d

EE'](Q; for fi)| g 20 (€.7)
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If we take the derivative of J(a; fo, f1) and set a = 0, then we have

d

el fou 00| =2 [ U= fo- 52+ 1) [ o+ A+ [0V 55 + A5

o [ R) [t - N +2al[ R oh- 1) (e

28, / o fi - / o fr] + / (@5 + A7) - / (") (o + Af2).

We can now show that (C.7) holds by considering the function

_ fi(z)?
T(fo, f1] _/fo(x)+Af1(x)dx (C.9)

which by Lemma 7 is minimized by the Huber-Strassen densities. Define

K(a; fo, i) =T[(1 - a)f5 + afo,(1 — o) ff + afi].

It follows from Lemma C that the integrand in (C.9) is convex in fy, f1, and thus 7" is convex. By
the same reasoning as before, then, we conclude that f§, f; minimize T if and only if

LK@ o )l amg 2 0 (C.10)

We now proceed to show that the inequality (C.10) implies the inequality (C.7).

Define pg) =(l-a)f*+af;fori=0,1and 0 < a < 1, so that we have "

(py2 -
K(a fO, fl) = / (0') .+—A—p_(1) 4 (C.ll)

To show that we can interchange differentiation end integration to obtain an expression for

-f;K(a;fo,fl)laﬂ, we write

4 [_(h) <16 (26"
da | p) + ApLliao = o [p0 4 Apf,l) 0 + Apl!
(C.12)
(M) 5"y’

200 1 40 T 0 0
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The inequalities in (C.12) are justified by the convexity of the integrand in (C.11) as a function
of a. The right quantity in (C.12) is integrable, and the middle quantity converges pointwise
monotonically to the left quantity as o — 0 because of the convexity of the integrand in (C.11).
The monotone convergence theorem then permits the interchange of the differentiation and the

integration, and we have

d
%'K(a;fo,fl)'azo =

fi . 5 Nt ap
/ {2m(f1 -+ (m) (5 +Af) = (fo+Af)] } - (C13)

Now if we compare equations (C.8) and (C.13), then we see that (compare (C.3))

d
@ for )] = B i o, o)

da da =0

and thus conditions (C.7) and (C.10) are equivalent.
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