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Many neutrino experiments in the last few years have reported their large statistic

data which all converge to the conclusion that the three known neutrinos have masses

and mix among themselves. The mixing angles in the quark sector are known to be very

small, whereas that for neutrinos are large. Understanding this difference between quarks

and leptons is a major challenge of theoretical particle physics. This is especially acute

in the framework of Grand Unified Theories (GUT) which unifies quarks and leptons. In

this thesis, we show that a very simple supersymmetric SO(10) model predicts a large

atmospheric mixing angle (θ23), as well as a large solar angle (θ12) as required to fit

observations and a small but non-vanishing sin θ13 ≡ Ue3 without any extra assumption.

The small neutrino masses are provided by the seesaw mechanism which is also one of the

key ingredients of the model. This is the first extensive analysis that shows this model

can have the correct predictions for the two mixing angles as well as the mass differences

△m2
⊙ and △m2

A required to explain the oscillation data. The prediction of the third angle

“θ13” can be tested in ongoing and planned experiments.

This model has a number of other predictions; in particular, we have deduced the

predictions of the model for proton decay. We find the upper bounds on the partial lifetime

for the modes τ(n → π0ν̄) = 2τ(p → π+ν̄) ≤ (5.7 − 13) × 1032 yrs and τ(n → K0ν̄) ≤



2.97 × 1033 yrs. These results can also be used to test the model.

The specific form of the seesaw mechanism that we need to make our prediction

imply constraints on the physics at the GUT scale. We find that (i) SO(10) must break to

SU(5) before breaking to the standard model; (ii) B−L symmetry must break at the time

of SO(10) breaking and (iii) constraints of unification seem to require that the minimal

model must have a 54 dimensional Higgs field together with the minimal set of {210, 10,

126,126}.
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Chapter 1: Introduction

1.1 Neutrino Oscillations

Neutrino was first introduced in 1930 by Wolfgang Pauli to ensure energy-momentum con-

servation in beta decay. For a long time it was assumed that neutrinos are massless since

there was no evidence to the contrary. However, neutrinos are in many ways similar to

quarks and charged leptons. It is natural to assume that the neutrinos have mass like all

known matter fields. Therefore, experiments have been conducted over the years search-

ing for neutrino masses. An important feature of neutrino mass is oscillations between

different types of neutrinos. In 1958, the possibility of neutrino-antineutrino oscillations

was first suggested by Pontecorvo following the analogy to kaon oscillations and later in

1967, the concept was expanded to flavor oscillations[1] after νµ was discovered in 1962 in

Brookhaven. The observation of such neutrino oscillations was suggested to be an effective

method to search for neutrino masses compared to the usual method of nuclear β decay.

Two kinds of neutrino oscillation searches have been carried out since the 1960’s. One uses

the neutrinos from the atmosphere and the other uses neutrinos from the sun. These ex-

periments have culminated in an abundance of experimental evidence for neutrino masses

in the last five years.

Atmospheric neutrinos are produced by high energy cosmic particles stopped by the

atmosphere through the following processes

p(N..) → π±(K..) → µ± + νµ(ν̄µ) (1.1)

µ± → e± + νe(ν̄e) + ν̄µ(νµ)

The above process predicts that the number ratio of the muon-neutrinos (νµ) and the
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electron-neutrinos (νe) is close to 2 at sub-GeV energy. For higher energy events the ratio

will be different because high energy muons µ± can reach the earth before they decay. The

discrepancy between the observed and the predicted atmospheric neutrino fluxes is called

the atmospheric neutrino anomaly. Atmospheric neutrinos were first detected in 1965 by

F. Reines et al. and H. Achar et al. [2]. Since 1998 when Super-Kamiokande presented

their conclusive evidence of atmospheric neutrino oscillations by measuring the double

ratio (νµ/νe)data

(νµ/νe)predict
which was found to be around 0.6, more data has been accumulated

with very high statistic. Now it is a widely accepted fact that neutrino is massive.

Solar neutrinos are purely νe’s produced by nuclear fusion in the core of the sun. The

flux of νe’s can be predicted by the standard solar model (SSM)[3]. Fig. (1.1) shows the νe

fluxes and energy of solar neutrinos from different nuclear fusions. In 1970, Davis and his

group in Homestake reported a deficit in the detection rate of νe’s from the sun compared

to the expected flux. This was confirmed by Super-Kamiokande in 1998[5], SAGE[6],

GALLEX/GNO[7, 8] and SNO in 2002[9]. This are evidences for oscillations involving

solar neutrino. The oscillations of νe’s from reactors was observed in the KamLAND ex-

periment recently (2003)[10]. Before 2001, the parameter region which is compatible with

experimental data within 3σ confidence level (C.L.) can be divided into four regions. They

are denoted as small mixing angle (SMA), large mixing angle (LMA I and II), low mass

(LOW) and vacuum oscillations (VO). Recent improvements of the solar neutrino data

have reduced the allowed region of the oscillation parameter space . They are summarized

below

• (2001) SNO(CC)+SK(ES) excludes (VO) and (SMA) solutions[11].

• (2002) SNO(NC) phase I (D2O) refines the Boron flux and disfavor the LOW

solution[9].
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Figure 1.1: Solar neutrino spectrum and the theoretical estimated flux and error. The

thresholds of different detector are indicated on the top of the diagram.[4].

• (2003) KamLAND rule out LOW at 5 σ, leave only LMA I (including the best fit

point) and LMA II (at 99% CL)[10].

• (2003) after SNO phase II (salt phase), LMA II is allowed only at 3σ, maximum

angle is allowed only at 5σ[12, 13].

• (2004) LMA II ruled out at 3σ.(766 Ty KamLAND Spectrum)[14]

These results strongly reinforce the neutrino oscillation interpretations of observa-
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Figure 1.2: 90%, 95%, 99% and 99.73% C.L. allowed regions of the neutrino oscilla-

tion parameters from the analysis of the latest solar data (left panel), the 766.3 ton-yr

KamLAND data (middle panel) and from the combined analysis (right panel).[15]

tions and lead to the conclusion that at least two of the three known neutrinos have to be

massive. Recent analysis of the solar and the atmospheric neutrino oscillations is shown

in fig.(1.2) and fig.(1.3).

All of the data from these experiments can be understood in the framework of three

neutrino oscillations, which in turn can be parameterized by three mixing angles θ12, θ23,

θ13 and two mass-squared differences : △2
32 = m2

3−m2
2 and △2

21 = m2
2−m2

1. m1,2,3 are the

masses of the three neutrinos ν1,2,3. In general, ν1,2,3 ( mass eigenstates) do not coincide

with the three neutrinos νe,µ.τ (weak eigenstates) which pair up with e, µ, τ in the isospin

doublets. The mixing angles are defined as the transformation matrix between mass and

weak eigenstates similar to the CKM matrix in quark sector and can be written in the
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conventional form

U =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
iϕ

0 1 0

−s13e−iϕ 0 c13







c12 s12 0

−s12 c12 0

0 0 1







1 0 0

0 eiρ1 0

0 0 eiρ2




(1.2)

with the relation να = Uαiνi. α(i) is the weak(mass) eigenvector index and cij, sij are

the short form of cos θij and sin θij respectively. There are three different complex phases

in the matrix. ρ1,2 are called Majorana phases which appear only when the neutrinos

are Majorana particles and hence correspond to the violation of total lepton number

L = Le + Lµ + Lτ . The ϕ is called the Dirac phase analogous to the phase in the CKM

matrix.

Neutrinos can only be produced and detected through the weak interaction, how-

ever, the energy of neutrinos has to be defined in the mass eigenstates. This results in

the phenomenon of oscillations when the neutrinos travel through space. Under the ap-

proximation of p ≫ m [20], the transition probabilities Pβα of finding νβ in the detector

located at a distance L from the source of να can be written as

Pβα = < νβ|να > =
∑

i,j

U∗
αiUβiUαjU

∗
βjexp(−i

△m2
ijL

2Eν
) (1.3)

Pαα = < να|να > = 1 − 2
∑

i<j

|Uαi|2|Uαj |2 sin2(
△m2

ijL

4Eν
)

By fitting the experimental data, three mixing angles in Uαi and two △m2 can be deter-

mined. It is very easy to see that the two Majorana phases ρ1 and ρ2 in Uαi have no effect

on the transition probabilities Pβα. One nice way to understand this is that oscillations

between να and νβ violate individual lepton number but conserve the total lepton num-

ber. The Majorana phases can not be probed by the L conserving process. We can ignore

these phases safely in our discussion on neutrino oscillations. There is no experimental
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data about ϕ due to the fact that θ13 is small. In the case of two neutrino oscillations,

the survival probability formula is simplified to the form

Pαα = 1 − 1

2
sin2 2θ sin2(

△m2L

4Eν
) (1.4)

We should also note that when the neutrinos travel through matter instead of vacuum,

the interaction with matter will significantly change the transition probabilities. Within

matter, due to the weak interaction, the Hamiltonian is given by

H =
MMT

2E
+

1

2E




A+A′ 0 0

0 A′ 0

0 0 A′




(1.5)

where M is the non-diagonal mass matrix of the neutrinos. The quantities A and A′

are contributions from charged-current and neutral-current scattering with electrons in

matter. Taking into account the matter effect, one has to replace the mixing matrix and

the m2 in the transition probabilities formula by a new mixing matrix that diagonalizes H

and the eigenvalues of H respectively. A′ does not change the mixing angles because this

part itself is just a term proportional to unit matrix. It does shift the m2 by A′. However

as can be seen from the transition probabilities formula, only the difference in m2 makes a

difference. In conclusion, the matter effect on the neutrino oscillations comes solely from

A which is given by

A = ±2
√

2GFY ρE

mn
(1.6)

Other observations involving neutrinos come from cosmology. We now summarize

the results (or constraints ) on the oscillation parameters from these experiments at the 3

σ C.L.
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• sin2 2θ23 > 0.87

• 0.7 < sin2 2θ12 < 0.95

• 1.2 × 10−3eV 2 < △m2
32 < 3.4 × 10−3eV 2 (sign unknown)

• 5.4 × 10−5eV 2 < △m2
21 < 9.5 × 10−5eV 2

• sin θ13 < 0.23

• mee < 0.3 eV (ββ0ν)

•
√∑

i |Uei|2m2
i < 2.2 eV (beta decay)

• ∑mi < 0.7 − 2 eV (WMAP)

• ∑mi < 0.42 eV (SDSS at 90 % CL)

• |mν | ∼ 1 − 2 eV (if neutrino is the most significant dark matter)

• leptonic CP phases - unknown

Evidence of ν̄µ → ν̄e oscillations was claimed by the LSND collaboration in 1994[17].

Their experimental fit of data requires the mass-squared difference to be ∼ 1 eV 2 as com-

pared to 10−5 eV 2 for solar type experiments and 10−3 eV 2 for atmospheric type exper-

iments. Their result, when combined with the result of atmospheric and solar neutrino,

can not be simultaneously explained with only three neutrinos. If LSND is confirmed by

the future experiment MiniBooNE, other extensions of three neutrino oscillations will be

necessary. At this point, we will not include the LSND result into our analysis and work

within the framework of the simple three neutrino oscillations.

8



1.2 Theory of Neutrino Masses and mixings-Grand Unified Theory

The discovery of neutrino oscillations provides the first evidence of “new physics” beyond

the standard model which predicts the existent of three families of neutrinos and they are

all massless. In order to find a way to give neutrino a mass, we have to understand why it

was predicted to be massless in the first place. In the Standard Model (SM), fermion mass

terms are prevented by the chiral SU(2)×U(1) (electroweak) symmetry. The left-handed

particles are SU(2) doublets and the right-handed particles are singlets. Lorentz invariance

requires that the mass terms of the fermions can only be of the form L̄R, R̄L, LTCL or

RTCR where C is the charge conjugation operator and L, R represent left-handed and

right-handed particle. The first two terms are complex conjugate to each other and they

are called the Dirac mass terms and the last two are called Majorana mass terms. The fact

that L and R transform differently under the SU(2) and the SU(2) singlet R in the SM has

non-zero U(1) charge prevents any gauge and Lorentz invariant mass term. Masses can

aries only after the spontaneous breaking of the electroweak (EW)symmetry. The gauge

symmetry after EW symmetry breaking is SU(3)×U(1)EM . The Dirac mass terms can be

written down for L and R because they have the same charge under the SU(3)×U(1EM ).

The Majorana mass terms still require the particle to be singlet. Because the right-handed

neutrinos are absent in the SM, the only possible neutrino mass term consistent with the

symmetry is of Majorana type. However, in the SM where only renormalizable terms

are included, B-L is an anomaly free accidental symmetry. This symmetry prevents the

Majorana masses of neutrinos to aries because the Majorana mass term breaks B-L by 2

units. As a result, the neutrino masses are zero in the SM.

Here we see that the reasons of vanishing neutrino masses in the SM are the con-

servation of B-L and the absence of the right handed neutrino. If the standard model

9



is treated as an effective theory, the left-handed Majorana neutrino masses can arise in

nonrenormalizable lepton number violating terms coming from integrating out the hypo-

thetical heavy particle at UV scale. These terms are suppressed by the heavy mass scale

where new physics become important. If the right-handed neutrino is also added into the

theory, one can write down the general neutrino masses in terms of a 4-component Dirac

spinor ν

L = mDνν +
1

2
mMν

TCν + h.c. (1.7)

where C = iγ0γ2 is charge conjugation operator. In terms of the two-component spinor,

ν =




χα

iφ̄α̇


 where χ is the left-handed neutrino and φ̄ is the right-handed neutrino (and

so φ is the right-handed antineutrino), the mass terms can be rewritten as

L = mD(χφ+ χ̄φ̄) +
1

2
mL(χχ+ χ̄χ̄) +

1

2
mR(φφ+ φ̄φ̄) (1.8)

In general, mR 6= mL in a theory with parity violation. If the neutrinos are a purely

Majorana particle, we have χ = φ. In matrix form, it looks like

1

2




mL mD

mD mR


 (1.9)

If mR >> mD and mL, the light Majorana masses are given by

mν = mL − m2
D

mR
(1.10)

In the special case where mL = 0, this is the well known seesaw mechanism used to explain

the smallness of neutrino mass [18] and is now called type-I seesaw in the literature. The

most general form with mL 6= 0 is called the type-II seesaw[19]. This formula is a simplified

version of the seesaw formula of three neutrinos where mL, mR and mD are 3×3 matrices.

In the full matrix form the equation is

mν = mL −mT
Dm

−1
R mD (1.11)

10



If the seesaw mechanism is the reason why neutrinos are light, we need mR or

the mass of the heavy particle that generate mL to be of order 1015 GeV in order to

have the heaviest neutrino mass be larger than 0.05 eV which is required to explain the

observed △m2
A ∼ 10−3 eV 2. This implies clearly the existence of a new scale beyond

the electroweak scale (∼ 100 GeV). On the other hand, in the Minimal Supersymmetric

Standard Model(MSSM), the three coupling constants, when extrapolated up in energy

scale, intersect at 2 × 1016 GeV which is close to 1015 GeV. This strongly suggests that

the UV theory which gives rise to the seesaw mechanism will probably be some kind of

Grand Unified Theories.

The first task in the Grand Unified Theory is embedding the standard model into

a simple group. This includes finding a simple group that contains SU(3)×SU(2)×U(1)

as a subgroup and representations that contain fields in the SM as submultiplets. Among

all classical simple groups, SU(5) is the smallest group that contains the SM group as a

subgroup. The SM can then be embedded in SU(5) or any larger group that contains

SU(5); for example, SO(10) or E6. Some of the reasons that make SO(10) models so

attractive as grand unification theories of nature are the following: (i) all fermions in

one family can be part of a single spinor representation; (ii) it contains the left-right

symmetric unification group SU(2)L × SU(2)R ×U(1)B−L × SU(3)c[21] which provides a

more satisfactory way to understand the origin of parity violation in Nature; (iii) the single

spinor representation discussed above also contains the right handed neutrino needed in

implementing the seesaw mechanism and (iv) they are automatically anomaly free.

There is one more compelling reason for the SO(10) model: The right-handed(RH)

neutrino has massMR ≤ 1015 GeV which is considerably smaller than the Planck mass and

therefore one is faced with a new hierarchy problem similar to the corresponding problem
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of the standard model. However, it was pointed out long ago[22] that the Majorana mass

of the RH neutrino owes its origin to the breaking of local B-L symmetry which implies

that MR ≃ MB−L. Local B-L symmetry therefore provides a natural way to understand

the smallness of the RH neutrino mass as compared to MPℓ. What is very interesting is

that SO(10) group also contains the local B-L as a subgroup.

1.3 The Minimal SO(10) Model

The results from the neutrino oscillation experiments not only show that the neutrinos

have small masses, they also show the differences between Quarks and leptons: The two

mixing angles in the lepton sector are large while all of the mixing angles in the quark sector

are small. The SO(10) model, despite its attractiveness for understanding the overall scale

of neutrino masses with the seesaw mechanism, runs into a potential trouble in providing

an understanding of the observed mixings. The problem arises from the fact that SO(10)

unifies the quarks and leptons into one single spinor representation as mentioned in the

previous section. In the simplest approximation this type of model leads to equal quark

and lepton mixing angles. Resolving this difference within the framework of GUT is a big

challenge in model building.

One approach is to make further assumptions to get a handle on the mixings[27]. An

obvious conceptual problem is that if one of these models is ruled out by data, one would

not be able to tell whether it is the SO(10) unification which is “at fault” or it is one of

the assumptions used to derive neutrino mixings. A different approach, which we will be

following, to this issue was taken in ref.[28]. The idea is to avoid the use of any symmetries

beyond the gauge symmetry, in this case SO(10), and use the minimal set of Higgs fields

that can break the group down to the standard model and give mass to the fermions. The
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minimal set of Higgs field should contain the following : (i) For SO(10) multiplets not

bigger than 126 dimensions, in order to break the group down to standard model, we need

at least one multiplet from each of the following two sets of Higgs fields : {16,126}[23]

and {45,54,210}. Note that the numbers used to name the different Higgs multiplets are

the number of components in the multiplets. The reason for this requirement is that, in

the language of SU(5)×U(1) (one of the two maximal subgroups of SO(10)), the vacuum

expectation value (vev) of each element in the first set breaks the U(1) (and so it also

breaks B-L) but conserves the full SU(5) and the vev of Higgs in the second set conserves

U(1) but has a component which breaks SU(5) to the standard model (for the branching

rules of SO(10) see [76]). The intersection of the resulting subgroups SU(5) and SM
⊗

U(1)

is the standard model while each one of the Higgs vev’s preserve a bigger gauge group.

And (ii), at the renormalizable level, at lease two of the {10, 126,120} are needed in

order to get sensible mass relations among quarks and charged leptons. The matter field

in one family of the SM can be packed into one spinor representation 16f of SO(10). The

masses of fermions are generated from the Yukawa terms 16f16fH where H can only be

either 10, 126 or 210. With only one of these Higgs fields couple to matter, all of the

mass matrices are proportional to the same Yukawa matrix and this results in the same

mass hierarchy and same mixings, which are actually vanished, in the quark and lepton

sector. This is of course contradicting the observations.

There are reasons why we have picked a certain set of Higgs fields for our minimal

model. It was observed in ref.[28] that in the model with 10 and 126, the neutrino masses

and mixings are completely predicted up to an overall scale, when one uses the seesaw

mechanism which is part of the SO(10) model1. An appealing feature of breaking B-L

1This is to be contrasted with the SU(5) case where the minimal Higgs set needed to break the gauge
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symmetry of SUSY SO(10) by a 126, as opposed to by 16 Higgs, is that it automatically

leaves R-parity as an exact symmetry and thereby explains why the neutralino is stable

and can be a candidate for dark matter[24, 25]. This is because the submultiplet of 126

that breaks B-L carries B-L =2. The R-parity (defined by Rp = (−1)3(B−L)+2S) quantum

number of this field is even and therefore, its vacuum expectation value(vev) leaves R-

parity unbroken. In contrast,in the models where B-L is broken by a 16-plet of Higgs, the

B-L symmetry is broken by one unit and without any additional symmetries (e.g. matter

parity), the neutralino is unstable and cannot therefore serve as a dark matter[26]. Of

course, if a fundamental theory e.g. a superstring theory that led to an SO(10) model

with appropriate additional symmetries that guarantee the stability of the neutralino was

known, then the above objection to an 16 Higgs would not apply. For the above reasons,

we decide to choose {10,126,126} as the minimal set of Higgs to break B-L and give

masses to fermions. Finally, we have to pick one multiplet from the set {45,54,210} to

complete the symmetry breaking. It turns out that at the renormalizable level, if we pick a

45, the supersymmetric vev of 45 vanished and the resulting group becomes SU(5); If we

pick a 54, the supersymmetric vev of 126 vanished and the resulting group is SM×U(1).

Although the combination of 45 and 54 will work, we choose a 210 instead to follow the

criteria of a minimal number of multiplets. Our final choice for the minimal set of Higgs

multiplets is therefore {10, 126, 126,210}.

The question now is whether this minimal model can have large mixing angles in

the neutrino sector and correct fermion masses ? This is the question we want to answer

in the following chapters.

symmetry i.e. 5+24 Higgses lead to the mass relation me/mµ = md/ms that is in contradiction with

observations.
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1.4 Outline of Thesis

In Chap. 2, we present the effective theory of the minimal SUSY SO(10) Model below the

GUT scale. This effective theory is useful in the analysis of fermion masses and mixing

without going into the details of symmetry breaking. We show how the mass formulae of

all the quarks and leptons can be derived from the group structure and how the masses of

leptons can be written purely in terms of the known quark masses and the CKM matrix

plus two effective parameters. These relations show that the model is totally predictive

in the neutrino sector. We then analyze the mass formulae by using both perturbative

methods and numerical scanning to find the predictions of neutrino masses and mixings.

In Chap. 3, we write down the general Higgsino mediated dimension 5 operator

which leads to proton decay. We use the result from the chapter 2 to make the prediction

for proton decay through different modes.

In Chap. 4, we found a specific “minimal” model that satisfies the constraints im-

posed on the effective parameters which were used in chapter 2. In this chapter, we

explicitly calculate the vacuum expectation values and the masses of all heavy Higgs par-

ticles. We argue how this model works consistently with the requirement of coupling

unification even though there are some extra light Higgs multiplets other than the two

doublets in MSSM.

Chapter 5 provides the conclusion to the thesis.

In the appendix, we include some tools for calculating the SUSY SO(10) superpo-

tential in term of SU(5) irreducible representations. Explicit tensor representations are

also given.
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Chapter 2: Predictive SO(10) Model and Understanding Neutrino Masses

and Mixings

The SUSY SO(10) model that we will work with has the following features: It contains

three spinor superfields 16 each contain one whole family of the matter fields; two sets of

Higgs fields, one contains 126 (Σ) and 10 (H) that couple directly to the matter fields.

Another set contains 126 (Σ),210 (Φ) and 54(S) that only couple to the matter fields

through the nonrenormalizable terms. We constraint ourself to include only renormalizable

terms in the general superpotential which is consistent with the symmetry group SO(10).

On the stage of symmetry breaking, both 126,126 and 210 play the role of breaking the

symmetry down to SU(5); 210 can further break the symmetry down to Standard Model.

Because 10 and 126 couple to the matter fields, after symmetry breaking they give rise

to all the fermion masses including neutrinos. 54 is not necessary as far as symmetry

breaking in concerned[35]. The inclusion of 54 is however important for the reason we

will discuss later in chapter 4.

2.1 The Mass Sumrules For Minimal SO(10)

It is the 10⊕126 Higgs which is crucial to our discussion of fermion masses. The first stage

of the symmetry breaking that break SO(10) down to SM at the GUT scale could have

been accomplished by 210,126, 126 and any other Higgs without effecting our results.

We will get back to the detail of the symmetry breaking in chapter 4. For now, we assume

that the symmetry breaking is accomplished and the theory right below the GUT scale

contain only two Higgs doublets as in MSSM. As has been noted earlier[28, 26], the set

10+126 which couple to matter contains two pairs of MSSM Higgs doublets belonging to
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(2,2,1) and (2,2,15) submultiplets (under SU(2)L×SU(2)R×SU(4)c subgroup of SO(10)).

The 210 also have a pair of doublets which has the same quantum number as the MSSM

Higgs pair (hu, hd). In the language of SU(5), 5 of H, Φ, Σ and 45 of Σ have the same

quantum number as hu; 5 of H, Φ, Σ and 45 of Σ has the same quantum number as hd.

At the GUT scale, by some doublet-triplet splitting mechanism the MSSM Higgs pair can

be expressed in terms of linear combination of these fields as follows:

hu = α1
uHu + α2

uΣ̄u + α3
uΦu + α4

uΣ45
u (2.1)

hd = α1
dHd + α2

dΣ̄
45
d + α3

dΦd + α4
dΣd

In order to discuss fermion masses in this model, we start with the SO(10) invariant

superpotential giving the Yukawa couplings of the 16 dimensional matter spinor ψi (where

i, j denote generations) with the Higgs fields H and Σ.

WY = hijψiψjH + fijψiψjΣ̄ (2.2)

SO(10) invariance implies that h and f are symmetric matrices. We ignore the small

effects coming from the higher dimensional operators. Below the GUT scale, we can write

the superpotential terms for the charged fermion Yukawa couplings as:

W0 = YuQhuu
c + YdQhdd

c + YeLhde
c + YνLhdν

c + vB−Lν
cνc +

κ

MT
f(Lhu)(Lhu) (2.3)

As in the case of MSSM, we will assume that the Higgs doublets hu,d have the vevs

< h0
u >= v sinβ and < h0

d >= v cos β, which then leads us to the mass formulae for

quarks and leptons at the GUT scale as:

Mu = h̄+ f̄ (2.4)

Md = h̄r1 + f̄r2

Me = h̄r1 − 3r2f̄
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MνD = h̄− 3f̄

MNR = vB−Lf

Mν = vLf =
κv2 sin2 β

MT
f

where

h̄ = 2hvα1
u sin β (2.5)

f̄ =
1√
6
fvα2

u sin β

r1 =
α1

d

α1
u

cot β

r2 = − 2α2
d√

3α2
u

cot β

In general r1 6= r2 and this difference is responsible for nonzero CKM mixing angles. We

assume here everything are real and the CP violations come from SUSY breaking sector.

To count the number of parameters describing the fermion sector, we choose a basis where

h̄ is diagonal. Since f̄ is symmetric, we have a total of nine parameters from the couplings

and including r1,2 and β gives us a total of twelve parameters. All these parameters can

be determined by fitting the the six quark masses, three lepton masses and three CKM

angles. This enables a complete determination of the neutrino masses up to an overall

scale related to the B-L symmetry breaking and the three mixing angles. The model is

therefore completely predictive in the neutrino sector.

In order to determine the neutrino masses and mixings, one uses the seesaw mech-

anism as noted in the introduction. In this model, we have the left handed Majorana

term induced from SU(2)L triplet vev vT or from higher dimensional terms involving left

doublets which can implement the general seesaw mechanism ( called type II here and in

the literature)[19] :

Mν = fvL −MνDM−1
NR
MT

νD (2.6)
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where MNR
= fvB−L. If the first term is small compare to the second, the analysis is

similar to that of type I which have been studied by many people[28, 29, 30, 31, 32, 33].

The conclusion now appears to be that one needs CP violating phases to achieve this goal,

as noted in [33]. Even though, the ratio
△m2

⊙

△m2

A

is still big compared with experiment. A

way out of this problem is to use the type II seesaw mechanism, as was initially done in

[31]. A very interesting point about this approach has been noted in a recent paper[34],

where it has been shown that if we restrict ourselves to the 2-3 sector of the model and

use the type II seesaw mechanism with only the first term, then the b − τ unification of

supersymmetric grand unified theories leads to a neutrino Majorana mass matrix which

explains the large νµ − ντ mixing angle needed to understand atmospheric neutrino data.

The important point is that no symmetries are needed to get this result. To understand

this, first note that if the first term dominate, as was shown in [31] and can be easily

derived from eq. 2.5, one gets a sumrule

Mν = a(Mℓ −Md) (2.7)

since this relation is valid at the GUT scale, one must use the extrapolated quark and

lepton masses in the formula. The fact that at or near the GUT scale mb/mτ ≃ 1 −

1.2 depending on the value of tanβ, implies that the 3-3 element of the Mν which is

proportional to mb −mτ has value of order o.2. If the off diagonal elements of the Mnu

in the 2-3 subsector has also the same order , this resulting matrix leads to the largeness

of the atmospheric mixing angle without any further assumptions.

It is however essential to do a complete three generation analysis of this model if this

important observation is to lead to a realistic SO(10) model for understanding all neutrino

mixings. In fact, since the model has no free parameters, it is a priori not obvious that

within this framework one would simultaneously get a large solar mixing angle and a small
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sin θ13 ≡ Ue3 as well as the correct value for the ratio ∆m2
⊙/∆m

2
A. It is the goal of this

chapter to analyze this question. We will leave the detail in comparing the first and the

second term in the seesaw formula until chapter 4. and simply assume now for certain

range of parameters, the induced triplet vev term can dominate the neutrino mass matrix.

2.2 Details of Calculation

In this section, we outline our method for determining the neutrino mixing parameters.

For this purpose, we first note that the matrices h̄ and f̄ in Eq. (2.5) can be eliminated

in terms the mass matrices Mu,d so that we have a sumrule involving the three mass

matrices Mu,d,ℓ. Before giving the sum rule, we note that we will work in a basis where

Md is diagonal and Mu is given by Mu = V T ·MD
u · V (where MD

u is the diagonal mass

matrix of up type quark and V is the CKM mixing matrix). This can be done without

any loss of generality. We also introduce a new set of matrices M̃l,u,d where M̃ ≡ M
m3

, m3

being the third family mass for the corresponding flavor. The sumrule for charged lepton

matrices is given by:

kM̃l = rM̃d + M̃u (2.8)

where k and r are functions of r1,2 and fermion masses as follows:

k =
r2 − r1
4r1r2

mτ

mt
(2.9)

r = −r2 + 3r1
4r1r2

mb

mt
(2.10)

and left handed Majorana mass matrix is

Mν ∝ (
mb

mτ
M̃d − M̃l) (2.11)

The proportional constant is not important at this step while we will only be fitting △m2
·

△m2

A

.

This constant will be needed finally to get the correct △m2 and will be discussed in chapter
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4. Note that these relations are valid only at the GUT scale.

The advantage of working with M̃ rather than M is that the 33 elements of all M̃l,u,d

matrices are either one or of order one; so we expect solutions for k and r also of order

one. Furthermore since the formula for Mν involves only Mℓ and Md, b − τ unification

helps to see the cancellation in the 33 element of Mν somewhat more easily. At the same

time the 23 element of Mν receives only one contribution from Mℓ since in our basis Md

is diagonal. These two results lead to atmospheric mixing angle being large[34].

To carry out the calculations, we have to solve for the two unknowns k and r using

the low energy inputs from the quark and charged lepton sectors. To obtain a perturbative

estimation of these parameters, we decompose rM̃d + M̃u as:




x 0 0

0 y ǫ2

0 ǫ2 z




+




0 ǫ1 a

ǫ1 0 0

a 0 0




≡ r




d 0 0

0 s 0

0 0 1




+




u ǫ1 a

ǫ1 c ǫ2

a ǫ2 1




(2.12)

where ǫi, a≪ 1 as are x and y. In this analytical approach, our procedure will be to find

the eigenvalues of (2.12) by perturbation method and match them to the known leptonic

masses at the GUT scale. The advantage of this decomposition is that it allows a nice

perturbative determination of the eigenvalues analytically without having to resort to

immediate numerical analysis. We will compare our results with the numerical evaluation

using Mathematica.

The ith eigenvalue λi = λ
(0)
i + λ

(2)
i is found to be

λ
(0)
1 = x (2.13)

λ
(0)
2 =

y + z −
√

(z − y)2 + 4ǫ22

2

λ
(0)
3 =

y + z +
√

(z − y)2 + 4ǫ22

2
∼ z +

ǫ22
z

+ zO(10−2)
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λ
(2)
2 ≃ (zǫ1 − aǫ2)

2

λ
(0)
2 z2

≃ O(10−2)λ
(0)
2

λ
(2)
3 ≃ a2

λ
(0)
3

≃ O(10−2)λ
(0)
3

λ
(2)
1 = −(λ

(2)
1 + λ

(2)
3 )

We consider only cases where y ≃ 10−2 and z > 0.1. Within this regime, the unperturbed

2nd and 3rd lepton masses are accurate up to a few %. However, the higher order electron

mass correction is big and so the perturbation formula breaks down for this case. We

therefore use the perturbation technique for the second and third generation masses but

use the determinant to find that for the first generation. As mentioned, we will check the

validity of perturbation result using numerical methods.

Taking determinant of the above equation 2.12, we find that the three charged lepton

masses are related as follows:

k3m̃em̃µ = xyz − xǫ22 − ya2 − zǫ21 + 2aǫ1ǫ2 (2.14)

km̃µ = λ2 ≃ λ
(0)
2 (2.15)

k = λ3 ≃ λ
(0)
3 ≃ z +

ǫ22
z

(2.16)

We now solve the above equation by substituting x,y,z,a,ǫ1,ǫ2 with the corresponding

elements in the matrix rMd +Mu. From eq.(2.14), we find

k(1 + m̃µ) = y + z (2.17)

k = z +
ǫ22
z

(2.18)

Since Eq.2.12 tells us that z = 1 + r and y = rs+ c, we can use the above two equations

to determine the parameters k and r, which we can then use to find neutrino masses and

mixings. We find k and r to be

r =
(s+ c− 2m̃µ) ±

√
(s − c)2 − 4(m̃µ − s)(1 + m̃µ)ǫ22

2(m̃µ − s)
(2.19)
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k =
(1 + s)r + 1 + c

1 + m̃µ

and a consistency relation for the d-quark mass

d =
k3m̃em̃µ + zǫ21 + ya2 − 2aǫ1ǫ2 − u(yz − ǫ22)

r(yz − ǫ22)
(2.20)

In order to get a rough feeling for the way the maximal neutrino mixings arise, let us

diagonalize the charged lepton mass matrix given in Eq. 2.8 and write the neutrino mass

matrix in this basis:

Mν = a(
mb

mτ
U †

l M̃dUℓ − M̃D
l ) (2.21)

Where M̃D
l is the diagonal charged lepton mass matrix with τ mass is 1. Ul is the rotation

matrix diagonalize charged lepton mass. Ul can be written approximately as

Ul ≃




1 δ1 δ2

∆1 cosφ sinφ

∆2 − sinφ cosφ



, (2.22)

where

tanφ =
ǫ2

z − λ
(0)
2

. (2.23)

The parameters δi and ∆i are given to lowest order in perturbation theory by

δ1 =
ǫ1 cosφ− a sinφ

km̃µ − x
(2.24)

δ2 =
ǫ1 sinφ+ a cosφ

k − x

∆1 = −δ1 cosφ− δ2 sinφ

∆2 = δ1 sinφ− δ2 cosφ

Using these parameters and neglecting small terms due to δ1 and δ2 multiplying light
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quark masses, we find that

Mν ≃




md −me +ms∆
2
1 +mb∆

2
2 ms∆1 cosφ−mb∆2 sinφ ms∆1 sinφ+mb∆2 cosφ

ms∆1 cosφ−mb∆2 sinφ ms −mµ +mb sin2 φ −mb sinφ

ms∆1 sinφ+mb∆2 cosφ −mb sinφ −mb sin2 φ+mb −mτ




(2.25)

We now find the following analytic expression for the atmospheric mixing angle from Eq.

2.25 to leading order ignoring small terms to be:

tan θA ≃ 2

q +
√
q2 + 4

(2.26)

q =
2mb sin2 φ+ (mτ −mb) + (ms −mµ)

mb sinφ

For |q| ≤ 1, we get sin2 2θA ≥ 0.8. We see that b − τ unification i.e. mb ≃ mτ and

mb sinφ ≃ (mb −mτ ) are important to get a large θA. Also we need to have ms < 0 and

mµ > 0.

2.3 Predictions For Neutrino Masses And Mixings

In order to obtain the predictions for neutrino masses and mixings in our model, we will

need the values of quark masses and mixings at the GUT scale. Experiments determine

these input parameters near the GeV scale and they need to be extrapolated to the GUT

scale which is 2× 1016 GeV where our equations (2.5) are valid. Taking the values for the

quark masses and mixings at the GUT scale we can determine k and r approximately. We

will use this determination of k and r to solve for neutrino masses and mixings using the

relation in Eq.2.11. We will also compare our results with a direct numerical scan of the

Eq. 2.8 i.e. not using perturbation method to obtain k and r. Results obtained by both

methods are in agreement.
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In our model, the theory below the GUT breaking scale is the MSSM whose effect

on fermion mass extrapolation is a well studied problem[48]. We will use the two loop

analysis in the paper by Das and Parida[48] and take the values of the quark masses at

the scale 2× 1016 GeV in our analysis. In Table I, we give the input values of masses and

mixings for values of the MSSM parameter tan β = 10 and 55.

input observable tan β = 10 tan β = 55

mu (MeV) 0.72+0.13
−0.14 0.72+0.12

−0.14

mc(MeV) 210.32+19.00
−21.22 210.50+15.10

−21.15

mt(GeV) 82.43+30.26
−14.76 95.14+69.28

−20.65

md (MeV) 1.50+0.42
−0.23 1.49+0.41

−0.22

ms (MeV) 29.94+4.30
−4.54 29.81+4.17

−4.49

mb (GeV) 1.06+0.14
−0.08 1.41+0.48

−0.19

me (MeV) 0.3585 0.3565

mµ(MeV) 75.6715+0.0578
−0.0501 75.2938+1912

−0.0515

mτ (GeV) 1.2922+0.0013
−0.0012 1.6292+0.0443

−0.0294

Table I: The extrapolated values of quark and lepton masses at the GUT scale from the

last reference in [48]. We have kept the errors to only two significant figures in the quark

masses.

The quark and lepton masses and the uncertainties at the the scale µ = MZ used

in [48] are

mu = 2.33+0.42
−0.45MeV (2.27)

mc = 6.77+56
−61MeV
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mb = 181 ± 13GeV

md = 4.69+0.6
−0.66MeV

ms = 93.4+11.8
−13.0MeV

mb = 3.00 ± 0.11GeV

me = 0.48684727 ± 0.00000014MeV

mµ = 102.75138 ± 0.00033MeV

mτ = 1.74669+0.00030
−0.00027GeV

and the SUSY breaking scale Ms is assumed to be 1 TeV. For the mixing angles at GUT

scale, we take:

VCKM =




0.974836 0.222899 −0.00319129

−0.222638 0.974217 0.0365224

0.0112498 −0.0348928 0.999328




(2.28)

In the first perturbation method, we use the above input values to obtain k and r using

Eq. 2.19 and search for values around them that give a good fit to charged lepton masses

and then use them in Eq.2.11 to derive the neutrino masses and the three mixing angles:

sin2 2θ⊙, sin2 2θA and Ue3. The best fit range for k, r are −.78 ≤ r ≤ −.74 and 0.23 ≤

k ≤ .26. We also do a direct numerical solution. Both the results are in agreement. (We

ignore CP violation in this work.)

Note that the sign of a fermion is not physical, which leads to several choices for the

sign of fermion masses that we have put into our search for solutions. The only choice we

found our solutions correspond to me,µ,τ,b,t > 0 and mc,d,s < 0 up to an overall sign.

Our results are displayed in Fig. 1-3 for the case of the supersymmetry parameter

tan β = 10. In these figures, we have restricted ourselves to the range of quark masses

for which the atmospheric mixing angle sin2 2θA ≥ 0.8. (For presently preferred range of
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values of sin2 2θA from experiments, see [49]). We then present the predictions for sin2 2θ⊙,

∆m2
⊙ and Ue3 for the allowed range sin2 2θA in Fig.1, 2 and 3 respectively. The spread

in the predictions come from uncertainties in the s, c and the b-quark masses. Note two

important predictions: (i) sin2 2θ⊙ ≥ 0.91 and Ue3 ∼ ±0.16. The present allowed range

for the solar mixing angle is 0.7 ≤ sin2 2θ⊙ ≤ 0.95 at 3σ level[49, 50]. The solutions for

the neutrino mixing angles are sensitive to the b quark mass.

It is important to note that this model predicts the Ue3 value very close to the present

experimentally allowed upper limit and can therefore be tested in the planned long base

line experiments which are expected to probe Ue3 down to the level of ∼ 0.05[51, 52].

Our model would also prefer a value of the sin2 2θA below 0.9, which can also be used to

test the model. For instance, the JHF-Kamioka neutrino experiment[52] is projecting a

possible accuracy in the measurement of sin2 2θA down to the level of 0.01 and can provide

a test of this model.

We have also checked that as tan β increases, the allowed values for the neutrino

mixings and masses fall into an even narrower range. The result is disfavored by the

experimental data. Note that, since renormalization played an important role in obtaining

this result, one must ask what happens to the neutrino mixings once they are extrapolated

to the weak scale[36]. It is well known[36] that for the case of normal hierarchy for neutrino

masses as is the case here, the MSSM RGE’s do not change the mixing angles very much

and the GUT scale result persists at the weak scale with only minor changes.

From the result of above, we extract all the Yukawa parameters h̄ij and f̄ij cor-

responding to viable neutrino oscillation prediction. h and f on the other hand can be

obtained if α2
u is known. A typical set of values for h’s and f ’s in this range if the mixing
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Figure 2.1: The figure shows the predictions for sin2 2θ⊙ and sin2 2θA for the range of

quark masses in table I. Note that sin2 2θ⊙ ≥ 0.9 and sin2 2θA ≤ 0.9
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Figure 2.2: The figure shows the predictions for sin2 2θA and ∆m2
⊙/∆m

2
A for the range

of quark masses and mixings that fit charged lepton masses.

angle α2
u is chosen to be 0.7 is:

h =




3.26 × 10−6 1.50 × 10−4 5.51 × 10−3

1.50 × 10−4 −2.40 × 10−4 −0.0178

5.51 × 10−3 −0.0178 0.473




(2.29)

and

f =




−7.04 × 10−5 −2.05 × 10−5 −7.53 × 10−4

−2.05 × 10−5 −1.85 × 10−3 2.43 × 10−3

−7.53 × 10−4 2.43 × 10−3 −1.64 × 10−3



. (2.30)

The typical value r1 and r2 are found to be r1 ∼ 0.014 and r2 ∼ 0.15.
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Figure 2.3: The figure shows the predictions for sin2 2θ⊙ and ∆m2
⊙/∆m

2
A for the range

of quark masses and mixings that fit charged lepton masses.
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Figure 2.4: The figure shows the predictions of the model for sin2 2θA and Ue3 for the

allowed range of parameters in the model. Note that Ue3 is very close to the upper limit

allowed by the existing reactor experiments.
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Chapter 3: Prediction for Proton Decay of The Model

3.1 Effective Operators for Proton Decay

In SUSY SU(5) model, the dominant decay of proton occurs via dimension five operators

involving color triplet Higgsino exchange leading to the dominant decay mode [37] p →

K+ν̄. The predictions of the minimal renormalizable SU(5) model for this mode has

been discussed in many papers[38, 39]1. The present experimental lower limit on this

mode[40] is 1.9 × 1033 yrs, which is an order of magnitude larger than prediction of the

minimal renormalizable SUSY SU(5) model. Therefore this model is ruled out. It has

been shown[39] that if one includes nonrenormalizable terms in the superpotential[41],

one can get somewhat higher lifetimes for this decay mode and the SU(5) model can still

be consistent with experiments2.

In our model, there are four supersymmetric graphs that contribute to ∆B = 1

operator. They are given in Fig. 1 and involve the exchange of 10, 126[43] Higgs multiplets

and two mixed 10 − 126 diagrams. They will lead to both LLLL as well as RRRR type

contributions given by the following effective superpotential:

W∆B=1 = M−1
T [CijklǫαβγQ

α
i Q

β
jQ

γ
kLl + Dijklǫαβγu

c,α
i dc,β

j uc,γ
k ecl ] (3.1)

where MT is the effective mass of color triplet field.

Note that one could in principle, diagonalize the mass matrix involving the color

triplet superfields and write the Feynman diagrams in that basis. It is not hard to convince

one self that the final result in this case will also have four parameters- an effective mass

1By renormalizable, we mean a theory where only renormalizable terms are included in the superpo-

tential.
2For proton decay in string theories with SU(5) GUT, see [42].
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Figure 3.1: Superfield Feynman graphs that give rise to d = 5 effective proton decay

operators.

and three products of mixing angles. So by considering the above parametrization, we

have not lost any information. This supersymmetric operator leads to effective dimension

five operators that involve two quark (or quark-lepton) fields and two superpartner fields.

In order for these operators to lead to a Four Fermi operator for proton decay, they must

be “dressed” via the exchange of gluinos, winos, binos etc. Before we discuss this, let us

first note that these operators must be antisymmetrized in flavor indices and then we get

for the LLLL term

W∆B=1 = ǫαβγM
−1
T [(Cijkl − Ckjil)u

α
i d

β
j u

γ
kel − (Cijkl − Cikjl)u

α
i d

β
j d

γ
kνl (3.2)

There is a similar operator for the RRRR terms. As has been argued by various authors[44,

45], for small to moderate tan β region of the supersymmetry parameter space, these

contributions are smaller than the LLLL contributions. We also find this to be the case

in our model. We will show this later; for the time being therefore, we will focus on the
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Figure 3.2: Generic Feynman graph for dressing of d = 5 effective proton decay operators

via gluino, Wino, Bino and Higgsinos.

LLLL operator.

The effective four fermion operator responsible for proton decay can arise the gluino,

bino and wino dressing of the above operators. The coefficient Cijkl associated with the

LLLL terms is expressible in terms of the products of the Yukawa couplings h and f which

have already been determined by the neutrino and other fermion masses:

Cijkl = hijhkl + xfijfkl + yhijfkl + zfijhkl (3.3)

where x, y, z are the ratios of the color triplet masses and mixings. As already noted,

we do not need to know the detailed form for these parameters (x, y, z) in terms of these

masses and mixings. In the end we will vary these parameters to get the maximum value

for the partial lifetimes for the various decay modes.

We now discuss the dressing of the various terms. The typical diagrams are shown

in Fig.2.

3.1.1 Gluino dressing

It has been pointed out in several papers[46] in the limit of all squark masses being same

as in mSUGRA type models, these contributions to the effective four-Fermi operator for
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proton decay vanishes. It results from the use of Fierz identity for two component spinors

which states

(φ1φ2)(φ3φ4) + (φ1φ3)(φ2φ4) + (φ1φ4)(φ2φ3) = 0 (3.4)

φi are the chiral two component spinors representing quarks and leptons and (AB) =

AαBα ≡ ǫαβAαBβ where α and β are the spinor indices (α, β = 1, 2). Since satisfying the

flavor changing neutral current (FCNC) constraints allow only very small deviations from

universality of squark masses, the gluino diagrams should be small (proportional to δLL,ij

in standard notation[47]) in realistic models. We will therefore ignore these contributions.

The same results hold also for the RRRR operators.

3.1.2 Neutral Wino and Bino Contribution

To analyze the contribution from W̃ o and B̃, we choose the the operator Ωe = Uα
i D

β
j U

γ
kEl

as an example. Note that we can use W̃ o and B̃ in the loop instead of the the superpartners

of Z boson and photon is because they are both mass eigenstates due the the assumption

of the universal mass.

B̃ dressing

There are 6 different dressings of the operator Ωe through B̃. We can split them into two

groups. One group involves the lepton and the other one does not. Within each group,

the product the hypercharges from the two vertices are same. Each of these groups then

gives zero due to the Fierz identity as in the case of gluino dressing. This show that the B̃

dressing is zero by the same Fierzing argument as the gluino case in the limit of universal

squark masses.
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W̃ o Dressing

For the W̃ o case, the vertex involving the lepton is same as that of quarks but different

by a negative sign between up type and down type particles. The dressing of uu and dd

are then different from that of ud by a negative sign. Because the W̃ o are lepton/quark

blind and the dressing does not change anything except from boson to fermion, the two

groups we used in the B̃ analysis are the same. So after dressing, we have

Ωe → 2(−(uα
i d

β
j )(uγ

kel) − (uα
i el)(u

γ
kd

β
j ) + (uα

i u
γ
k)(dβ

j el)) (3.5)

By the Fierz identity, the sum of the first two terms is equal to the third and so we have

Ωe → 4(uα
i u

γ
k)(dβ

j el) (3.6)

Due to the antisymmetry of this expression in the color indices, it is antisymmetric

in the interchange of i and j. This implies that i must be different from k and so the

two up quarks belong to different family. This antisymmetry remains true even after

we pass to the mass eigenstates basis, as is easily checked. The result is simply due to

(uα
i u

γ
k) = −(uα

ku
γ
i ). The conclusion is that there is no K0 + e+l or πo + e+l decay mode

from the W̃ o dressing. For the same analysis, the operator Uα
i D

β
j D

γ
kνl gives 4(dβ

j d
γ
k)(uα

i νl)

and so it only contributes to K+ + ν̄l decay mode.

3.1.3 Wino Contribution

In view of the discussion just given the dominant contribution to proton decay arises from

charged wino exchange converting the two sfermions to fermions. These diagrams have

been evaluated in earlier works[38, 39]; we will assume that all scalar superpartners have

the same mass. This leads to the following effective Hamiltonian:

L∆B=1 = 2Iǫαβγ(Ckjil − Cijkl)[u
α,T
k Cdβ

j d
γ,T
i Cνl + uβ,T

j Cdγ
ku

α,T
i Cel] (3.7)
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where I is given by I = α2

4π

m
W̃

M2

f̃

Using this expression and adding a similar contribution

from W̃ 0 exchange, we can now write down the C coefficients for the different proton decay

operators. Table I lists the total contributions to the different operators in the leading

order:

Table I

Operator C-coefficient

uddνℓ 2I sin θc(C211l −C112l)

usdνℓ 2I(C112l − C121l)

udsνℓ 2I sin θc(C221l −C212l)

udueℓ 2I sin θc(C211l −C112l)

usdeℓ 2I(C112l − C121l)

Table Caption: The coefficients for various ∆B = 1 operators from the GUT

theory. The C’s are products of the Yukawa couplings in the superpotential as in Eq.

(12).

3.1.4 Estimates of The RRRR Operators

In this subsection, we give an estimate of the RRRR operators and confirm that they

are indeed negligible compared to to the LLLL operator contributions for moderate tan β

region that we are interested in. First we note that the gluino dressing graphs are zero in

the limit of all squark and slepton masses being equal, by the same argument as for the

LLLL operators. Secondly, since all superfields in this operator are SU(2)L singlets, there

are no wino contribution to leading order. The only contributions are therefore from the

bino exchange and the Higgsino exchange.
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Bino exchange generates a four Fermi operator of the form ǫαβγu
cβ,T
j Cdcγ

k u
cα,T
i Cel.

(where c in the superscript stands for charge conjugate). This operator in the flavor basis

must be antisymmetric in the exchange of the two flavor indices i and j. Once they are

antisymmetric in the flavor basis, they have to involve charm quark in the mass basis since

uu terms will then be zero. Thus the to leading order the bino contribution also vanishes.

The Higgsino exchange leads to an effective operator of the form:

Iǫαβγ(Dkji′l′)Xi′i,l′l[u
cα,T
k Cdcβ

j (dγ,∗
i Cν∗l ) + uβ,T

j Cdγ
ku

α,T
i Cel] (3.8)

where Xi′i,l′l ≃ 1
16π2v sinβ cos βMu,i′iMℓ,l′l. Since 1/ sin β cos β ∼ tan β for large values of

tan β, this contribution grows with tanβ. It is clear from inspection that the largest

value for this amplitude comes from t̃ intermediate states and we estimate the largest

contribution to be of order C1323
mtVubmτ

v2

wk
16π2

≃ 10−10 as compared to the LLLL contribution

which are of order C1123
α2

4π ∼ 10−9. Therefore, we can ignore the RRRR contribution in

our discussion.

3.2 Predictions for Proton Decay

Let us first note that the operators with s quark lead to p-decay final states with K meson

whereas the ones without s lead to π final states. Also generally speaking the amplitude

for nonstrange final states are down by a factor of Cabibbo angle (∼ 0.22) compared to

the strange final states as in the case of SU(5) model. However, as we will see, we need to

do a fine tuning among the parameters x, y, z to make the p → K+ + ν̄ compatible with

experiments. The same fine tuning however does not simultaneously lower the amplitudes

with nonstrange final states. As a result for some domain of the allowed parameter space,

one can have the p→ π+ + ν̄ mode as the dominant mode. This is very different from the

minimal SU(5) case.
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In order to proceed to the calculation of proton lifetime, we must extrapolate the

above operators defined at the GUT scale first to the MS and then to the one GeV scale.

These extrapolation factor have been calculated in the literature for MSSM and we take

these values. The required factors are: ALAS [44] and are given numerically to be AL = 0.4

(SUSY to one GeV scale) and AS = 0.9 − 1.0 (GUT to MS scale).

The next step in the calculation is to go from three quarks to proton. The parameter

is denoted in the literature by β and has units of (GeV)3. This has been calculated using

lattice as well as other methods and the number appears to be: β ∼ 0.007−0.028[53]. We

find that for our choice of the average superpartner masses, for β ≥ 0.01, there is no range

for the parameters (x, y, z) where all decay modes have lifetimes above the present lower

limits. Of course as the superpartner masses increase, larger β values become acceptable.

For instance, we note that a change δm2
q̃/m

2
q̃ by 10% allows a 20% higher value in β. We

confine ourselves to the domain 0.007 ≤ (β/GeV 3) ≤ 0.01 and find that for all choices

of the free parameters allowed by the present lower limits, lifetimes for the decay modes

p → π+ν̄ and n → π0ν̄ have upper limits, which can therefore be used to test the model

(see below).

Finally, in a detailed evaluation of proton decay rate to different final states, we take

into account the chiral symmetry breaking effects following a chiral Lagrangian model (the

first two papers of Ref.[53]), where the chiral symmetry breaking effects are parameterized

by two parameters D and F . These are usually chosen to be the same as the analogous

parameters in weak semileptonic decays[54].

For this case, we find the rate for proton decay to a particular decay mode Pℓ (P

39



is the meson and ℓ denotes the lepton) to have the form:

Γp(Pℓ) ≃ mp

32πf2
πM

2
T

|β|2

MW̃

M2

f̃




2 (
α2

4π

)2

|ALAS |24|C|2|f(F,D)|2 (3.9)

≃ 2.7 × 10−50|C|2
(

2 × 1016GeV

MT

)2 (
M

W̃

200 GeV

)2(
TeV

M
f̃

)4

|f(F,D)|2 GeV

where f(F,D) is a factor that depends on the hadronic parameters F and D and we

have used β = 0.01 GeV3 in the last expression. We now discuss the evaluation of the

parameter |C|2 which determines the partial proton decay lifetimes for various modes.

The relevant modes are p → K+ν̄, K0µ+, K0e+, πe+, πµ+. The present lower limits

(including n→ πν,Kν modes) on these modes are:

Table II

mode lifetimes (×1032 yrs)

p→ K+ν̄ 19

p→ K0e+ 5.4

p→ K0µ+ 10

p→ π+ν̄ 0.2[55], 0.16[56]

p→ π0e+ 50

p→ π0µ+ 37

n→ π0ν̄ 4.4

n→ K0ν̄ 1.8

Table caption: Present experimental lower limits on the relevant proton decay

modes from Super-Kamiokande and Kamiokande experiments.

To proceed with this discussion, first note that C’s are products of the known Yukawa

coupling parameters h and f and the four GUT scale parameters as already discussed in

Eq.(12). The GUT scale values of h and f are those obtained from neutrino fits in the
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last section.

As far as the GUT scale parameters go, we will keep the overall mass parameter to

be the GUT scale i.e. 2 × 1016 GeV. We have diagonalized the mass matrix of the color

triplet GUT scale Higgs fields in 10, 126 etc and we find that they also lead to the same

parametrization as we have given here. The meaning of the overall mass scale is then

that it represents a product of one of the mass eigenstates with the determinant. We have

checked that for the allowed range of parameters, the value of the determinant, given by

|x − yz| is around 0.25 or so, so that none of the mass eigenstates is too much higher

than the GUT scale. As a result the threshold effects on the gauge coupling unification is

minimal.

We then adopt the strategy that we vary the parameters x, y, z in such a way that

the nucleon decay rate to the p → K+ν̄ mode (summed over all the final neutrino final

states) is consistent with the present experimental lower limit. Since there are three final

states which add incoherently, this narrows the space of the x, y, z to a small domain. In

this domain we pick a point (call it (x0, y0, z0)), where all other modes also satisfy their

present experimental constraints as in Table II. We then vary the (x, y, z) parameters

around (x0, y0, z0) until the lifetime for a mode goes below its present experimental lower

limit. We find that dependence on the parameter z is much stronger than the others. In

Fig. 3 and 4, we give the allowed domain of the parameters (x, y) consistent with the

various experimental lower limits on the partial lifetimes for an optimum value of z. The

boundary of the domain is determined by the lower limit on the the p→ K+ν̄. Inside this

domain the τ(p → K+ν̄) is higher than its present lower limit. The maximum value of the

p→ π+ν̄ and n→ π0ν̄ occurs at the boundary. We find that τ(n→ π0ν̄) = 2τ(p → π+ν̄)

has an upper bound of (5.7−13)×1032 yrs depending on whether β = 0.01−0.007 GeV3.

41



At a different point in the parameter space, τ(n → Kν̄) acquires its maximum value of

2.9×1033 years. The predictions for the partial lifetimes of other modes are given in Table

III for both these cases. These values are accessible to the next round of proton decay

searches.

Table III

mode τ/1032 yrs β = 0.01 τ/1032 yrs: β = 0.007 τ/1032 yrs: β = 0.007

τ(n→ πν̄) maximized τ(n→ πν̄) maximized τ(n→ Kν̄) maximized

p→ K+ν̄ 19 19 19

p→ K0e+ 1793 2848 188

p→ K0µ+ 184 303 28

p→ π+ν̄ 2.87 6.5 2.59

n→ π0ν̄ 5.7 13 5.18

p→ π0e+ 2452 3857 243

p→ π0µ+ 263 430 37

n→ K0ν̄ 1.9 3.1 29.7

Table caption: Predictions for various nucleon decay modes for the case when the lifetime

for the mode n → π0 + ν̄ attains its maximum value. The units for β parameter (i.e.

GeV3) has been omitted in the table. In column 4, we give the lifetimes for the case when

τ(n→ Kν̄) is maximized.

We check the above results adopting an alternative strategy where we express the

three parameters (x, y, z) in terms of three partial life times and plot the other lifetimes

as a function of these partial life times. It turns out that if we pick a certain value for the

partial life time of the p → Kµ mode and use it as an input, the other two input values

get very restricted. This allows us to use only the p → K0µ+ mode as a variable and
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give the others as a prediction. In Fig. 5 and 6 we present the allowed values for various

partial lifetimes as a function of the partial lifetime for the mode p → K0µ+. There is a

slight spread around the various lines. We first find that the lifetime for the mode K+ν̄

can be arbitrarily large as can be seen from Fig. 5. Also, from Fig. 5, we see that modes

n→ π0ν̄ and n→ K0ν̄ have upper bounds which are same as the ones derived previously.

43



Figure 3.3: Allowed Region for (x, y) coming from experimental lower limits on lifetimes

for different decay modes for z = 0.329. The point (∆x,∆y) = (0, 0) corresponds to

(x, y) = (−0.036, 0.387). Note that the region is most constrained by p→ K + ν̄ mode.
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Figure 3.4: Upper limit on the n → π + ν̄ partial lifetime while satisfying bounds on

the lifetimes of all other modes. The point (∆x,∆y) = (0, 0) corresponds to (x, y, z) =

(−0.132, 0.347, 0.306).
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Figure 3.5: This figure gives the values of the lifetimes for different proton decay modes

as a function of the lifetime of the p → K0µ+ mode (represented here by log10
τKµ

τ0
where

τ0 = 14.6 × 1033 years) when τ(p → K+ν̄) mode is at its maximum value. The vertical

and horizontal lines indicate the experimental bound of the various decay modes. This

figure displays the values for one range of (x, y, z) that correspond to positive amplitude

of p→ K0µ+ mode.
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Figure 3.6: The same display as Fig. 3.5 but for a complementary range for the parameters

(x, y, z) which correspond to the negative amplitude.
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Figure 3.7: This figure show the upper limit of the two nucleon decay modes. Again, the

horizontal line indicate the experimental bound and the “+” and “-” are the signs of the

amplitude of p→ K0µ+ decay mode
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Chapter 4: Validity of The Type-II Seesaw Assumption in The Minimal

SO(10) Model

In chapter 2, we have seen that if we assume the type II seesaw formula[19] for neutrino

masses and that the triplet term dominates, then the solar mass squared difference △m2
·

and the two large mixing angles θ12, θ23 are predicted to be in the right range and θ13 is

predicted to be 0.18 which is slightly below the present CHOOZ-Palo-Verde upper limit.

Crucial to the success of the model is the assumption that the triplet term in the seesaw

formula dominates.

In this chapter we discuss the conditions under which the triplet term in the type II

seesaw formula dominates the neutrino mass formula. We find that it imposes constraints

on the way SO(10) symmetry breaks down to the standard model. In particular, we find

that the minimal SO(10) model with the Higgs structure 10, 126 pair and a 210[35] needs

to be extended by the addition of a 54 multiplet.

4.1 The Origin of The Triplet Term and The Conditions of Dominating

The triplet term arises from the higher dimensional operator which are obtained by inte-

grating out the massive SUL(2) triplet in 15 of SU(5). In the minimal model, the only

15 comes from 126 of SO(10). The leading diagram is given in fig.(4.1) and the effective

operator has the form

(5f5Φ)(5f5H,Σ) → κ

MT
f(Lhu)(Lhu) (4.1)

whereκ is combination of some of the parameters that appear in the superpotential, MT

is the mass of the triplet Higgs field and f is the Yukawa coupling constants defined
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15H

Figure 4.1: Superfield Feynman graph that gives rise to the triplet term of type-II seesaw.

in chapter 2. When the physical Higgs get a vev, the left handed neutrinos gain their

Majorana masses which is given by mL ∼ κf 104GeV 2

MT
. The numerical analysis in chapter

2 indicates that f33 ∼ 10−3 if the mixing angle α2
u is order of 1. For the first term to give

the whole
√

∆m2
A ∼ 0.05, the 3-3 element of mL has to be of order 0.05 eV. If κ is of

order 1, the mass of the color singlet, SUL(2) triplet Higgs field MT should be of the order

1013 GeV. On the other hand, the second term (the canonical seesaw term)is controlled

by different parameter, namely the B − L breaking scale vB−L. From this we estimate

that the biggest contribution to neutrino mass from the second term to be about ∼ 106

vB−L

GeV, which for vB−L ≃ MU ≃ 2 × 1016 gives
√

∆m2
A ≃ 0.1 eV which is slightly bigger

than the experimental value. If the first term is to dominate, this must be smaller than

(say) 0.02 eV i.e. it requires a value vB−L ≥ 1017 GeV. This estimation tell us that if the

mixing angle α2
u is of order 0.1, we need the triplet to be much lighter than the GUT scale

and the B-L scale to be at least one order of magnitude bigger than the GUT scale. This
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implies that we need a two-step symmetry breaking.

Clearly the light triplet with mass of 1013 GeV is going to affect unification of

couplings. To reduce the influence on the coupling unification, there are two things we

can do:

(i) Increase the values of the matrix elements f so that the triplet Higgs boson

mass could be larger, thus making unification possible. This would happen if the mixing

angle α2
u are of order 10−4 or less. The reason for this is that the effective parameters we

defined in the mass formula, which we call f in chapter 2, are the combination of f and

the mixing angle α2
u. Reducing the mixing angle and increasing f will not affect the result

of the fermion masses and mixings. If the mixing angle is reduced by factor of 10−4, f33

will increase by the same factor and the triplet mass can be brought up to 1016 GeV.

(ii) There is a whole multiplet of 15 at the 1012 GeV scale so the coupling unification

is not disturbed. The only thing that is affected is the unified coupling constant at the

same unification scale.

The difficulties is that making the triplet of 15 light by finetuning always leave

other components off tuning and heavy. There is no natural reason why the whole SU(5)

multiplet has to have the same mass when SU(5) is broken. On the other hand, due to

the fit that requires r1 ∼ 0.014, r2 ∼ 0.15 and tanβ = 10, we need α2
d ∼ α2

u ∼ 0.0001

and α1
d ∼ 0.1 in order to get the required triplet mass up to GUT scale. This requires

multiple fine tunings within one matrix. As can be seen in detail later, these requirements

can be satisfied by introducing the new 54 Higgs and requiring that SO(10) first break at

the scale of 1018 GeV down to SU(5) and then, to the standard model at the GUT scale,

(2 × 1016GeV).
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4.2 Breaking SO(10) to Standard Model via SU(5)

In order to demonstrate the need for 54, let us start with the minimal Higgs fields H(10),

Φ(210), Σ(126) and Σ(126) and write down the most general renormalizable super-

potential:

W =
mΦ

2 × 4!
Φ2 +

mΣ

5!
ΣΣ +

mH

2
H2 +

λ

4!
Φ3 +

η

4!
ΦΣΣ +

1

4!
ΦH(αΣ + αΣ) (4.2)

We then extract the various SU(5) submultiplets from each of the SO(10) Higgs multiplets

and rewrite the superpotential in terms of these fields. Extensive discussion of the decom-

position of SO(10) multiplets in terms of SU(2)×SU(2)×SU(4) and SU(2)×U(1)×SU(3)

exists in the literature[57, 58, 60, 59]. We have derived the SU(5) decomposition of various

SO(10) invariant couplings and use them in this chapter. For this purpose, note that

210 = 10 ⊕ 5−8 ⊕ 5+8 ⊕ 104 ⊕ 10−4 ⊕ 240 ⊕ 750 ⊕ 40−4 ⊕ 40+4 (4.3)

126 = 1−10 ⊕ 5−2 ⊕ 10−6 ⊕ 15+6 ⊕ 452 ⊕ 50−2 (4.4)

In terms of the properly normalized SU(5) submultiplets we first rewrite the bilinear terms

and then the trilinear terms in the superpotential (See appendix for the details).

LB = mHHaH
a +mΦ{(φ5)a(φ

5)a +
1

3!
(Φ40)abc

d
(Φ40)abc

d (4.5)

+
1

2
(φ10)ab(φ

10)ab +
1

8
(φ75)ab

cd
(φ75)cd

ab
+

1

2
(φ24)a

b
(φ24)b

a
+

1

2
φ2

o}

+ mσ{σoσo +
1

4!
(Σ15)a

bcde
(Σ

15
)abcde +

1

3!
(Σ10)abc(Σ

10
)abc

+
1

12
(Σ50)abc

de
(Σ

50
)abc

de +
1

2
(Σ45)a

bc
(Σ

45
)abc + (Σ5)a(Σ

5
)a}

and the trilinear terms become

LT =
λ√
10
φo{12(φ5)a(φ5)a + 3(φ10)ab(φ

10)ab + (φ24)a
b
(φ24)b

a − 1

2
(φ75)ab

cd
(φ75)cd

ab} (4.6)
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+ ασoH
a(φ5)a + α

√
3

5
φoH

a(Σ5)a + ασoHa(φ
5)a + α

√
3

5
φoHa(Σ

5
)a

+
√

6ησo{(φ5)a(Σ
5
)a +

1

12
ǫabcde(φ

10)ab(Σ
10

)cde} + c.c.

+
η√
10
φo{

2

3
(Σ10)abc(Σ

10
)abc +

1

12
(Σ15)a

bcde
(Σ

15
)abcde −

1

3!
(Σ50)abc

de
(Σ

50
)abc

de + 4(Σ5)a(Σ
5
)a}

+
2λ√
10
φ3

o + η
√

10φoσoσo

4.2.1 Supersymmetric Vacuum without 54

We can now discuss SO(10) breaking to SU(5). There are two SU(5) singlets: one in each

of the 126 pair and one in 210. The SU(5) singlets in the 126 pair have nonzero B-L

and therefore B-L breaking scale is same as the SO(10) scale. Since supersymmetry must

remain unbroken all the way down to the weak scale, we set the F-terms to zero. These

F-term conditions give the following constraints on the parameters of the superpotential

and the vacuum expectation values:

Fφo = mΦφ̃o + 6λφ̃2
o + ησoσo = 0 (4.7)

Fσo = σo(mσ + 10ηφ̃o) = 0

where φ̃o = φo√
10

. The solution is

φ̃o = −mσ

10η
(4.8)

σoσo =
mσ

10η2
(mΦ − 3λmσ

5η
)

4.2.2 Masses of SU(5) Sub-multiplets

From the Lagrangian found above, we can easily write down the masses of the various

SU(5) submultiplets and we list them in Table I.
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40 mφ

75 mφ − 4λφ̃o

24 mφ + 2λφ̃o

15 4
5mσ

50 6
5mσ

45 mσ

Table caption This table gives the masses of the various SU(5) multiplets in the SO(10)

multiplets of the minimal model.

The mass matrix for the SU(5) singlets in the basis (φ0, σ0, σ0) is found to be:




mφ + 12λφ̃o

√
10ησo

√
10ησo

√
10ησo 0 0

√
10ησo 0 0




(4.9)

One of the combination of the singlets has zero mass and is the Goldstone boson corre-

sponding to the breaking of B-L. As can be seen from the above matrix, the corresponding

field is a linear combination of the fields σ0 and σ0. Neglecting the Goldstone bason, we

find the remaining 2 × 2 mass matrix to be:



mφ + 12λφ̃o

√
10η

√
σ2

o + σ2
o

√
10η

√
σ2

o + σ2
o 0


 (4.10)

The mass eigenvalues are given by:

msinglet =
mφ + 12λφ̃o ±

√
(mφ + 12λφ̃o)2 + 40η2(σ2

o + σ2
o)

2
(4.11)

The mass matrix for the 10 is


mφ + 6λφ̃o

√
6ησo

√
6ησo −6ηφ̃o


 (4.12)
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This mass matrix has a zero eigenvalue and the associated eigenstate field is the Goldstone

boson corresponding to the breaking of SO(10) down to SU(5). The massive combination

has a mass of

m10 = − η

φ̃o

(|σoσo| + 6φ̃2
o) (4.13)

The mass matrix for 5-plet Higgs is




mH ασo

√
6αφ̃o

ασo mφ + 12λφ̃o

√
6ησo

√
6αφ̃o

√
6ησo −6ηφ̃o




(4.14)

The first point we note from the Table I is that the three submultiplets 15, 50 and

45 are all proportional to the same parameter mσ in the superpotential. As a result,

when one of them is at a lower scale, all others are. From the table, it is also clear that

by adjusting mφ and λφ̃0, we can keep the 40 and the 75 Higgs field at the SO(10) scale

while the 24 is light.

4.3 Necessity of 54 Higgs Field

It is now clear that in the minimal model with 10, 126 pair and a 210, the masses of

the SU(5) submultiplets 15, 50 and 45 are all of the same scale. Therefore, if we want

to enforce the type II seesaw formula with the triplet vev dominating, we would have to

have 15 and also the 45 pair and the 50 pair at the SU(5) scale (M5). When SU(5)

is broken by some vevs of order M5, the triplet in the 15 can be tuned to below M5.

As have been discussed earlier, we want the whole 15 to be light in order to maintain

unification. In this model with a single 15, the sub-multiplets of 15 are always split by

the vev ∼M5. This means we can not have all of them getting masses of order 1012 GeV by

tuning the parameters. On the other hand, if two-step symmetry breaking through SU(5)
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is assumed, the triplet itself can have mass of 1012 GeV only if some of the parameters

in the superpotential are complex (see the mass formulae given in [58]). Even in this

complex case, it is very likely to have the same difficulty making the whole 15 light. We

will not consider this possibility. Furthermore, there is another reason why we have to

make modifications to this model. We have many high dimensional multiplets like 75, 50

and 45 in the model. The problem of having these high dimensional multiplets is that it

causes the coupling constant to run too fast toward the strong regime (i.e. αU ≥ 1). In

our case, if all of our multiplets have masses of 1016 GeV (GUT scale), the strong coupling

will be reached at the energy scale around 7×1016 GeV which is below the expected string

scale and the Plank scale. Although this is not a compelling reason, we would like to keep

the picture perturbative all the way to 1018 GeV. The only way to do this is, of course, by

making most of the multiplets heavy. However, the light triplet require that the masses

of 50 pair and 45 pair will be less than or equal to 1016 GeV. Of course, we also need 24

to break SU(5) and 5 5 pair to give Higgs doublets to MSSM. This means the coupling

constant will reach the strong regime at about 1017 GeV, which is still below the string

scale. We therefore need a way to split only the 15 dimensional field from the others and

stabilize the 15 at the scale below M5. These are the reasons why we need to add to the

model an additional 54 dimensional Higgs field which contain 15 and 24 as submultiplets.

In the presence of the 54 Higgs field (denoted by S), the superpotential of Eq. (4.2)

has the following additional terms:

W54 =
m15

4
SabSab +

λ1

3!
SabSbcSca +

λ2

2
SabHaHb (4.15)

+
χ

2 × 4!
SabΣacdefΣbcdef +

χ

2 × 4!
SabΣacdefΣbcdef +

ρ

12
SabΦacdeΦbcde

Note that 54 = 154 + 15−4 + 240 under SU(5). Therefore when σ0 = σ̄0 = vB−L,
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the 15 multiplets have a 2 × 2 mass matrix of the form:

M =
m15

2
SabS

ab+
m15

2
Sa

bSb
a+(

√
6

5
ρφo)Sa

b(φ24)b
a
+[(

√
2χσo)

1

2
Sab(Σ15)ab+h.c.] (4.16)

So the mass matrix for the 15 Higgs fields is




4
5mσ

√
2χσo

√
2χσo m15


 (4.17)

Similarly the 24’s in 210 and in 54 mix and we have the following mass matrix for the 24

Higgses: 

mφ + 2λφ̃o

√
6
5ρφo

√
6
5ρφo m15


 (4.18)

There is no effect on the 45 and 50 Higgs masses. We can now finetune the 15 mass

matrix to get one 15+15 lower mass ( at 1013 GeV), while keeping the other pair at the

SO(10) scale. We could not have done this without the 54 field. Furthermore, we finetune

the parameters in 24 mass matrix to keep only one 24 at the SU(5) scale. Since the

parameters in the 24 and 15 mass matrices are different, the two fine tunings can be done

independently.

We thus conclude that in the minimal SO(10) model for the triplet term to dominate

type II seesaw formula, the minimal Higgs set required are: 10, 126-pair, 210 and 54

dimensional. We believe this result is interesting with important implications for SO(10)

model building. We also set the two scales M5 = 2 × 1016 Gev and M10 = 1018 GeV. In

the following section we study the model in more detail when the SU(5) is broken down

to standard model. We will show how the model stabilizes the whole 15 at some lower

scale and how the mixing angles can be reduced.
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4.4 Model with 54 Higgs

4.4.1 Supersymmetric Vacuum with 54

When SU(5) is broken, the F-term equations with broken B-L are

mφS− + 6λS2
o + ησoσo − 2ρSS− = 0 (4.19)

mφS+ + 2λ(S2
+ + 2S2

o ) + ησoσo −
4

3
ρSS+ = 0

mφSo + 2λ(S− + 2S+)So + ησoσo +
1

3
ρSSo = 0

mΣ + η(S− + 3S+ + 6So) = 0

5

6
m15S +

5

36
λ1S

2 + 2ρ(S2
o + S2

− − 2S2
+) = 0

where S(±,o) are the three liner combinations of the three SM singlets in 1, 24 and 75 of

SU(5), and S is the singlet in the new added 54 Higgs. In order for the two-step symmetry

breaking to happen, we need to have Si = φ̃o +mφsi and S =
mφ

ρx s with all si and s much

less than 1 (they are order of 10−2 in our scheme). x is defined by x = φ̃o

mφ
. Up to linear

order in si and s these equations become

x+ 6λx2 + η
σoσo

m2
φ

+ s− + 12λsox+ 2s = 0 (4.20)

s+ − s− + 4λx(s+ − so) −
10

3
s = 0

so − s− + 2λx(s− + 2s+ − 3so) −
5

3
s = 0

s− + 3s+ + 6so = 0

5

6
ms+ 2ρ(So + S− − 2S+) = 0

Where m = m15

mφ

1
(ρx)2 .

The first equation in 4.20 can be satisfied by solving σoσo. In order to have non-

vanishing solution of s’s, we require the condition

58



Det




1 + 4λx −4λx −1 −4

4λx 1 − 6λx −1 + 2λx −2

3 6 1 0

−4 2 2 m




= 0 (4.21)

and this gives xλ = 1
4 or m = 12

1+2λx . In the first case, the 75 Higgs will be light and has a

huge contribution to the RG running above the SU(5) scale. This will bring the coupling

constant to the strong regime below 1018 GeV. We will exclude this and set xλ 6= (−1
2 or

1
4) from now on. The solution of si is given by




s+

so

s−




=
s

3(1 + 2λx)




4

−1

−6




(4.22)

4.4.2 Masses of 15

In the minimal model, there is no mixing between components of 10 and 15 but the

mixing terms appear when we include 54 in the model. As we have already seen, one

linear combination of the 10’s is the Goldstone boson. With the appearance of the mixing

term, the Goldstone boson is now the mixture of 10 and 15 with the mixing angle going

like M5

M10
= 10−2 which we will neglect in the following analysis. With only M10, the masses

of 10 is given in eq. 4.12 and masses of 15 can be written in two parts: M15
(10) +M15

(5).

M15
(10) is induced by vevs at M10 and the correction M15

(5) is due to the breaking of

SU(5). We found

M15
(10) =




4
5mΣ

√
2χσo

√
2χσo m15


 (4.23)

59



In order to have one light 15, we require 4
5mΣm15 = 2χχσoσo. When 24 get a vev < 24 >,

the mass matrix of (Σ15, S15, φ10,Σ10) has the form

M15
(5) =




−3ηφ24 0

0 λ1S
24

m12

m21 m22




(4.24)

one of the 10’s is Goldstone boson and the other has the mass of scale M10. We can

integrate out the heavy 10 and get the effective M15
(5). We go to the light 15 basis and

find

M15
(5) ≃




−3ηφ24 + 2χχλ1σoσo

m2

15

S24 + ǫ11
√

2χ(λ1σoS
24 + 3ησoφ

24) + ǫ12

√
2χ(λ1σoS

24 + 3ησoφ
24) + ǫ21 λ1S

24 − 6χχησoσo

m2

15

φ24 + ǫ22


 (4.25)

where ǫij ∼ 10−2 < 24 >. If we can fine tune the parameters to make the 1-1 element

of the matrix vanish, the determinant of the 15 mass matrix ∼< 24 >2 and therefore

all of the light Higgs components will have masses of order <24>2

mφ
∼ 1014 GeV. This

will approximately satisfy the requirement that the whole 15 is light. This requires the

following condition

< φ24 >

< S24 >
=

2χχλ1σoσo

3ηm2
15

(4.26)

Getting 15 mass to ∼ 1014 GeV is only half the story. To complete the full require-

ments, we still have to have the two mixing angles α2
u,d ∼ 0.01 and α1

d ∼ 0.1. To see how

this can happen we have to analyze the Higgs doublets which come form 5, 5 and 45, 45.
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4.4.3 Masses of 5

In our scenario, 45 is heavy and so its contribution to the fermion masses comes through

higher dimensional operators. The mixing angle α2
d which characterizes this higher di-

mensional contribution can be estimated to be of order M5

M10
∼ 10−2. One of the three

conditions is then satisfied automatically. We now analyze the physical Higgs doublet

from 5’s under the approximation of SU(5) symmetry. The mass matrix is given in eq.

4.14. Again, the determinant of the matrix has to be zero in order to have light doublets.

This requirement gives the the following equation

λ

η
=

2αασoσo

ηmH φ̃o + ααφ̃2
o

(4.27)

The small mixing of Σ5 (α2
u ∼ 10−2) requires

2
√

6αηφ̃

ααφ̃o − ηmH

= 100 (4.28)

and α1
d ∼ 0.1 requires

α

α
= 103 (4.29)

or

αφ̃o

ησo
= 10 (4.30)

To summarize, we collect all conditions from the arguments above.

σoσo = −(x+ 6λx2 + s− + 12λsox+ 2s)
m2

φ

η
(4.31)

m =
12

1 + 2λx
(4.32)

xλ 6= −1

2
,
1

4
(4.33)
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


s+

so

s−




=
s

3(1 + 2λx)




4

−1

−6




(4.34)

4

5
mΣm15 = 2χχσoσo (4.35)

< φ24 >

< S24 >
=

4λ1mΣ

15ηm15
(4.36)

λ

η
=

2αασoσo

ηmH φ̃o + ααφ̃2
o

(4.37)

2
√

6αηφ̃

ααφ̃o − ηmH

= 100 (4.38)

αφ̃o

ησo
= 10 (4.39)

When these conditions are all satisfied, we have the required type-II seesaw and

the triplet term dominates. Because m, λ1 and χ are free parameters, equation (4.32),

(4.35) and (4.36) can be satisfied by assigning the correct value to these three parameters.

Equation (4.34) is just the solution of s±,o. Equation (4.38) can be satisfied by tuning the

denominator. We simply set the denominator of equation (4.38) to zero and find that

αφ̃o

ησo
= 10 (4.40)

ααφ̃o = ηmH

λ

η
=

σoσo

φ̃2
o

σoσo = −x(1 + 6λx)
m2

φ

η

where we have simplified equation (4.31) by including only the leading order terms. Note

that x = φ̃o

mφ
. We found from the equations above that λx = −1

7 . If mH ∼ mφ, we have

also found the relations α
α = 100

7 and α√
|λη|

= 10. There are enough free parameters in

the model to allow the above equations to be satisfied simultaneously. In this model we

have f33 ∼ 0.1, vB−L = 1018 GeV, the triplet mass MT ∼ 1014 GeV and the GUT scale
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remains at 2 × 1016 GeV.

4.5 Gauge Unification and SO(10) Scale

Given the above multiplet structure, we can now check the strength of coupling at the

SO(10) unification scale. For this purpose, let us assume that the theory below the SU(5)

scale is MSSM with an extra 15 pair at 1014 GeV. To see the impact of this on the

unification scale, first note that the a full multiplet does not change the unification scale.

Therefore we still have M5 ≃ 2 × 1016 GeV. However, the coupling constant changes. To

see this we first write the new unification formula in the presence of light 15’s:

α−1
5 = α−1

MSSM − 7

2π
ln

(
M5

MT

)
(4.41)

α−1
MSSM ≈ 23.7 is the unified coupling constant predicted by MSSM. The new unified

coupling constant at M5 is found to be α−1
5 ≃ 17. The RGE of the unified coupling

constant above M5 and below M10 is given by

α−1
10 = α−1

5 − β

2π
ln

(
M10

M5

)
(4.42)

At this energy scale , we have one 15 pair, one or two 24 and up to three 5 pairs. If

only one 24 and one pair of 5 are below the SO(10) scale M10, we found β = 19 and

M10 ≃ 5.5 × 1018 GeV for α10 ≃ 1. If we assume maximal light Higgs : two 24 and three

pairs of 5 below M10, β will be 26 and M10 ≃ 1.2 × 1018. Either case would be sufficient

to make our model work without getting to the strong regime.

4.6 Summary

In this chapter we found a SO(10) model which break into MSSM with an extra pair of

15 Higgs. The GUT scale remain to be 2 × 1016 GeV. The mass of the heaviest right-
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handed neutrino in the model is 1017 GeV which is big enough such that its contribution

to the neutrino masses is negligible. The triplet in the 15 with a mass of order ∼ 1014

GeV can then dominate the type-II seesaw as needed to explain the neutrino masses and

mixings. The explicit RGE calculations show that the model is perturbative all the way

to the SO(10) scale which is 1018 GeV and so our two-step symmetry breaking analysis is

consistent.
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Chapter 5: Conclusion

The main new results of this thesis are that a minimal SO(10) model with single 10 and

126 Higgs coupling to matter is completely predictive for neutrino masses and mixings and

can provide an excellent description of the presently favored data without any additional

assumption except that the SU(2)L triplet vev dominates the neutrino masses. The model

predicts a hierarchical mass pattern for neutrinos and a value of Ue3 ≃ 0.16, both of which

can be tested in the upcoming long baseline neutrino experiments. The atmospheric

mixing angle is found to be around 0.9 which is also a testable prediction of the model.

In our model, the Yukawa matrices have a hierarchical pattern. A rough understanding of

which could come from introducing a local horizontal U(2)H symmetry under which the

first two families transform as a doublet. This result has stimulated many others to look

into different aspects of the model such as the inclusion of a CP phase[68], leptogenesis

[69], the extension of the model with heavy 120 Higgs.[70] and including both terms in

the type-II seesaw [71].

We have also discussed the predictions for nucleon decay in the model. For the range

of the parameters that are allowed by the neutrino data, we vary the GUT scale parameters

(unrelated to the neutrino sector) so as to satisfy the stringent experimental bounds for

the decay mode p → K+ + ν̄. We then predict an upper limit for the lifetimes for the

modes τ(n → π0ν̄) = 2τ(p → π+ν̄) ≤ 5.7 − 13 × 1032 years and τ(n → Kν̄) ≤ 2.9 × 1033

yrs for the wino masses of 200 GeV and squark and slepton masses of 1 TeV. This should

provide motivation for a new search for proton decay, more specifically, for these decay

modes in question.

Finally, we show explicitly that the triplet dominated type-II seesaw, which is a
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crucial ingredient in our work, can actually be realized in a specific SUSY GUT model.

Some finetuning have to be enforced as expected in a minimal model. We find that, SO(10)

must be broken down to SU(5) at the energy scale of 1018 GeV and to the standard model

at the normal SUSY GUT scale which is 2×1016 GeV. The whole 15 multiplet of SU(5) has

a mass of order 1014 GeV and f33 ∼ 0.1 due to small mixing angles among the doublets.

Although it is effectively SU(5) at the GUT scale with 5, 5̄ and 45 coupling to matter

and a new pair of 15, the requirement of SO(10) invariance at the more fundamental level

is still essential. Without SO(10), the mass formulae given in chapter 2. will be totally

different and the triplet dominated type II seesaw term will be a free parameter and

unrelated to any of the Dirac mass matrices. The great predictive power we have shown

due to the SO(10) symmetry cannot be provided by SU(5) alone without introducing extra

symmetry.

The predictions on the neutrino oscillation parameters and the upper limit of the

two neutron partial lifetimes can be used to test the model. Our analysis do not take into

account the radiative corrections, which are expected to be small, to both the oscillation

parameters and dimension five operators. This theoretical uncertainty will become im-

portant at the point when the experiments are probing the limit. Besides the radiative

effect, the uncertainties in the quark masses are also important. When more reliable quark

masses are obtained, this analysis have to be revised in order to provide a more precise

test to this minimal SO(10) model. This thesis is based on a series of papers by the author

and his collaborators[72].
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Appendix A: Group and Representation

A.1 SO(10)and Its Subgroup

SO(10) is rank 5 compact classical group. It belong to the infinite series Dn of the

classification theory with n=5. The Lie Algebra of SO(10) is denoted by the dynkin

diagram as shown below

2

5 − 4 − 3 <

1

(A.1)

Here we use H to be the Cartan sub-Algebra and αi (i=1,2,3,4,5) to be the positive

simple roots in the Cartan basis. The dual vectors wi are defined by

2
(wi, αj)

(αj , αj)
= δij (A.2)

From the knowledge of the inner product between αi we found that wi can be written as

w1 =
1

4
(5α1 + 3α2 + 6α3 + 4α4 + 2α5) (A.3)

w2 =
1

4
(3α1 + 5α2 + 6α3 + 4α4 + 2α5)

w3 =
1

2
(3α1 + 3α2 + 6α3 + 4α4 + 2α5)

w4 = (α1 + α2 + 2α3 + 2α4 + α5)

w5 =
1

2
(α1 + α2 + 2α3 + 2α4 + 2α5)

Taken away α1 will break the group down to SU(5)×U(1) and the U(1) charge is
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given by
−→w 1.

−→
H

|−→w 1|
=
√

8
5
−→w 1.

−→
H . For Example, 16 = 1(−5

√
1
40 ) + 10(

√
1
40 ) + 5(−3

√
1
40 ).

The extended dynkin diagram is given by

5 2

> 4 − 3 <

x 1

(A.4)

where x has root vector equal to − −→w 4

|−→w 4|
= −−→w 4. Taken away α4 will break the

group down to SUL(2)× SUR(2)× SUc(4) with positive roots given by (α5), (αx), (α1,2,3)

respectively. Further taken away α1 break the SUc(4) down to SUc(3) × UB−L(1) with

the U(1) charge given by
√

2
3 (2w1 − w4).

A.1.1 SU(4)

Although taking the roots α1,2,3 from the diagram of SO(10) form the diagram of SU(4),

the dual vectors are different because those dual vector of the full SO(10) root space take

into account α4 which has non-trivial overlap with α3. Using the same index, dual vectors

are given by

w1 =
1

4
(3α1 + α2 + 2α3) (A.5)

w2 =
1

4
(α1 + 3α2 + 2α3)

w3 =
1

2
(α1 + α2 + 2α3)

The subgroup of SU(4) with color is SU(3)×UB−L(1). In the language of weight

and root, UB−L(1) = ŵ1.
−→
H . For example, the irrep 6 which has the highest weight w3

can be decomposed into 3(
√

1
6) and 3(−

√
1
6).
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A.1.2 SU(5)

Using the index of SO(10) diagram, dual vectors of SU(5) are given by

w2 =
1

5
(4α2 + 3α3 + 2α4 + α5) (A.6)

w3 =
1

5
(3α2 + 6α3 + 4α4 + 2α5)

w4 =
1

5
(2α2 + 4α3 + 6α4 + 3α5)

w5 =
1

5
(α2 + 2α3 + 3α4 + 4α5)

A.2 Decomposition

The fundamental 10 can be expressed by φa or ψm with a ∈ {1, 2, .., 10} is index of 10 of

SO(10) and m ∈ {1, .., 5}⋃{1∗, .., 5∗} is index of 5 and 5̄ of SU(5). Their can be transform

from one to another by

φa = Sm
a ψm (A.7)

explicitly, the relation can be written as

φ1,2 =
σ1,2

21√
2

(ψ1 ± ψ1∗) (A.8)

φ3,4 =
σ1,2

21√
2

(ψ2 ± ψ2∗)

φ5,6 =
σ1,2

21√
2

(ψ3 ± ψ3∗)

φ7,8 =
σ1,2

21√
2

(ψ4 ± ψ4∗)

φ9,0 =
σ1,2

21√
2

(ψ5 ± ψ5∗)
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We can use the transformation matrix Sm
i given above to change the index of tensor

representation of SO(10) into index of SU(5). Note that we have
∑

i S
m
i S

n
i = δn,m∗ .

We use the lower index to be 1,2,..,5 and the upper index to be 1∗,..,5∗. The rule of the

transformation is replacing the contracted pair of SO(10) index by SU(5) index with one of

them up and the other down, and sum over all the possible configuration. In the language

of SU(5), the Higgs multiples Φ(210) and Σ (126) can be decomposed in the following

irreducible representation

(Φ40)abc
d

= Φabc
d − 1

6
((Φ10)abδc

d + (abc)) (A.9)

(Φ75)ab
cd

= Φab
cd − 1

3
((Φ24)a

c
δb

d + (ab)(cd)) + (Φoδa
cδb

d + (ab))

(Φ24)a
b

= Φaf
bf − 4(Φoδa

b)

and

0 = Σabcd
e − 1

12
((Σ

10
)abcδd

e + (abcd)) (A.10)

(Σ
50

)abc

de
= Σabc

de − 1

12
((Σ

5
)aδb

dδc
e + (abc))

0 = Σab
cde − 1

4
((Σ

45
)a

cd
δb

e + (ab)(cde))

(Σ
15

)a
bcde

= Σa
bcde

0 = Σabf
df − 1

4
((Σ

5
)aδb

d + (ab))

(Σ
45

)a
cd

= Σaf
cdf

Where we have use the notation

Φabcd = ǫabcde(Φ
5)e (A.11)

Φabf
f = (Φ10)ab
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Φfg
fg = 20Φo

Σ
abcde

= 0

Σabcde = ǫabcdeσo

Σabcf
f

= (Σ
10

)abc

Σafg
fg

= (Σ
5
)a

It can be shown explicitly that all of the irreducible fields above (with the number

of dimension denoted by the number in the parenthesis) are traceless as it should be, i.e.

vanished when contract any one upper index with any lower index. the notation (abc) is

used to include all the permutation of a,b, and c to make the field total anti symmetric.

The decomposition of Σ can be obtained by taking the complex conjugate of Σ given

above. So these are our irreducible representation in SU(5).
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