Minimizing Communication while Preserving Parallelism

Wayne Kelly and William Pugh
Department of Computer Science
University of Maryland, College Park, MD 20742
{wak,pugh}@cs.umd.edu

December 1, 1995

Abstract

To compile programs for message passing architectures and
to obtain good performance on NUMA architectures it is nec-
essary to control how computations and data are mapped to
processors. Languages such as High- Performance Fortran use
data distributions supplied by the programmer and the owner
computes rule to specify this. However, the best data and com-
putation decomposition may differ from machine to machine
and require substantial expertise to determine. Therefore, au-
tomated decomposition is desirable.

All ezisting methods for automated data/computation de-
composition share a common failing: they are very sensitive
to the original loop structure of the program. While they find
a good decomposition for that loop structure, it may be pos-
sible to apply transformations (such as loop interchange and
distribution) so that a different decomposition gives even bet-
ter results. We have developed automatic data/computation
decomposition methods that are not sensitive to the origi-
nal program structure. We can model static and dynamic
data decompositions as well as computation decompositions
that cannot be represented by data decompositions and the
owner computes rule. We make use of both parallel loops and
doacross/pipelined loops to exploit parallelism.

We describe an automated translation of the decomposi-
tion problem into a weighted graph that incorporates estimates
of both parallelism and communication for various candidate
computation decompositions. We solve the resulting search
problem exactly in a very short time using a new algorithm
that has shown to be able to prune away a majority of the vast
search space. We assume that the selection of the computa-
tion decomposition is followed by a transformation phase that
reorders the iterations to best match the selected computation
decomposition. Our graph includes constraints to ensure that
a reordering transformation giving the predicted parallelism
exists.

1 Introduction

The task of mapping a program written in a sequential pro-
gramming language onto a multi-processor machine can be
divided into two subproblems: deciding how to distribute the
computation amongst the available processors and deciding
how to order the computations. Finding a close to optimal
solution in a feasible amount of time for either of these prob-
lems in isolation is still an open problem; it is even more
difficult to solve these problems simultaneously. To simplify

the problem, we solve the sub-problems sequentially (that is,
first solve one, and then solve the other based on the solution
found for the first). However, in doing so we must be mindful
of the fact that the two problems are tightly coupled and use
this information when ordering the problems and when de-
vising methods to solve the problems (especially the one we
decide to solve first).

In deciding how to distribute the computations amongst
the available processors, we want to minimize the amount of
communication between processors while at the same time
preserving some degree of parallelism. In deciding how to or-
der the computations, we want to minimize the time proces-
sors spend waiting for messages from other processors and to
access memory locations in an order that exploits the memory
hierarchy.

Minimizing communication between processors can be ac-
complished without regard to the order of the computations.
However, achieving sufficient parallelism does depend on the
execution order. Through a combination of scalar and ar-
ray expansion or privatization, loop distribution, statement
reordering and loop interchange, it is often possible to ex-
pose parallel loops that did not exist in the original program.
Even if parallel loops exist in the original program, distribut-
ing the iterations of the newly exposed parallel loops rather
than the original parallel loops might result in a higher gran-
ularity of parallelism or in lower inter-processor communica-
tion costs. In some cases, there may be no parallel loops to
exploit, but we may be able to transform the program and
use doacross/pipelining techniques to allow computation and
communication to be overlapped.

We assume that the computation distribution phase will
be followed by a transformation phase that will reorder the
computations to obtain good performance. So, in evaluating
how much parallelism could be achieved by distributing the
iterations of a particular loop, we should not be influenced by
the original computation order.

One of the things that makes our work difficult is that pre-
vious work has not developed techniques that, given a data
decomposition, reorders the program so as to exploit paral-
lelism. The only real discussion of this issue is in [HKT91].
While the techniques described there work well for simple
stencil computations, they are not theoretically sound and
make bad or indecisive decisions in a number of cases, includ-
ing some realistic cases such as Gaussian elimination kernels
[KP95]. Our work includes a model of how to reorder com-
putations so as to exploit parallelism.

Most previous work determines a static data distribution

for each array (i.e., a mapping from the elements of that ar-
ray to virtual processors). Together with the owner-computes
rule (where each iteration is performed on the processor that
“owns” the array element being written), the distribution
specifies a mapping from the iterations of each statement to
a set of virtual processors. Virtual processors are folded onto
physical processors in a block, cyclic or block-cyclic manner.

We instead determine a space mapping for each statement
that directly maps each iteration of that statement to a virtual
processor. This allows us to represent not only dynamic data
distributions, but also non-data distributions, (i.e., we can
specify space mappings that cause different iterations of the
same statement that write to the same array elements to be
executed on different processors). The primary places where
non-data decompositions are useful are in the placement of
computations that are performing reductions.

However, the main utility of associating a space mapping
with each statement is that we can specify dynamic data de-
compositions without having to decompose the program into a
sequence of phases between which redistributions are allowed
(a process that is heavily dependent on the order of the com-
putations). We can generate dynamic data decompositions
by adding constraints to force the computation distribution
to be equivalent to a dynamic data distribution.

The problem of automatically distributing computation
has been addressed by a large number of authors [Gup92,
Fea94, AL93, RKU93, GAL95, SSP195]. Our work improves

on most previous work in the following ways:

1. We are not influenced by the order of the computation
in the original program. We use methods to determine
the parallelism inherent in the program rather than the
parallelism that can be obtained using the computation
order in the original program.

2. When analyzing parallelism, we not only examine each
loop to determine whether its iterations can be run en-
tirely independently, but also whether its iterations can
be pipelined so that computation and communication
are overlapped (a lesser but still important form of par-
allelism). Exploiting this parallelism requires that we

use a SPMD rather than a SIMD model.

3. We associate a space mapping with each statement,
which allows us to represent dynamic data distributions
without having to partition the program into phases, as
well as allowing us to represent non-data distributions.

4. We obtain accurate indications of the relative volumes
of different inter-processor communications by com-
puting the dimensionality of value-based flow depen-
dence relations[PW93] (an abstraction that precisely
describes which iterations actually read values written
by which other iterations). Without this, it would be
impossible to analyze the communication costs without
knowing where an array was going to be redistributed.

5. We solve the search problem exactly in a feasible
amount of time by using a number of very effective but
safe pruning strategies. Other approaches use heuristic
or greedy algorithms.

6. We simultaneously optimize for communication and
parallelism, trading one off for the other where nec-
essary to obtain an overall optimal solution.

Throughout this paper, we make a number of simplifying
assumptions, such as the assumption that all loops have n
iterations. We could eliminate some of these assumptions
at the cost of substantial complications to our framework.
However, the point of this paper is not to identify which of
two decompositions is 10% better than the other; our cost
model is not sensitive or accurate enough to answer these
kinds of questions. It is unclear if there 1s any way to answer
those kinds of questions other than by performing time trials
on the target machine. Our methods are designed to find
a distribution such that no significantly better distribution
exists, and could be easily altered to generate a list of all
such decompositions.

The rest of the paper is organized as follows. In Section 2
we describe our methods to determine the parallelism inher-
ent in the programs we analyze. In Section 3 we describe our
communication cost model. In Section 4 we describe our al-
gorithm to simultaneously optimize communication and par-
allelism, together with the pruning strategies that make it
feasible. In Section 5 we describe our alignment algorithm
that selects constant offsets to add to the linear space map-
pings found in Section 4. In Section 6 we give experimental
results to demonstrate the efficiency and effectiveness of our
algorithms. In Section 7 we discuss related work and finally
in Section 8 we state our conclusions.

2 Parallelism Analysis

In this section we describe our methods to determine the par-
allelism inherent in the programs we analyze. Our first obser-
vation is that the most useful form of parallelism is between
different iterations of the same statement, rather than be-
This implies that
we should examine each statement separately to determine
whether any of its iterations can be executed in parallel. In
doing so, however, we want to ignore any constraints on par-
allelism imposed by the original loop order or by other state-
ments in the loop nest. On the other hand, it is clearly not
sufficient to examine each statement in isolation. What we
need to do is consider all direct and transitive self data de-
pendences of each statement. In previous work [KPRS95] we
have described how to compute transitive self dependences
using a very precise abstraction called dependence relations.
That approach gives very accurate information about paral-
lelism; however, we have found that it can be expensive for
very large programs. So, for large programs, we have devel-
oped a more efficient but potentially less accurate approach
to computing transitive self dependences.

We first perform data dependence analysis to produce a
set of extended dependence direction vectorsfWB8&7, Wol91]
between each pair of statements. A dependence direction vec-
tor is a vector (v1,...,v;m) where v; is either ‘-7, “0°, or ‘4,
indicating whether the difference between the level ¢ index
variable at the source of the dependence is less than, equal
to, or greater than the level ¢ index variable at the sink of the
dependence. For a normal direction vector, the length is equal

tween iterations of different statements.

to the maximum common loop depth of the two statements;
an extended direction vector uses the minimum loop depth of
the two statements. For example, the dependence from state-
ment 1 to statement 2 in Figure 1 below is represented by
the direction vector (0) and by the extended direction vector
(0,—1).

for i =1 ton
for j =1ton
1: a(i,jy = ...
for j =1ton
2: oo o= ali,j+1)

Figure 1: Example to illustrate extended direction vectors

In performing this analysis, we ignore reduction depen-
dences (dependences between two updates to the same mem-
ory location), since given certain reasonable assumptions they
do not substantially inhibit parallelism.

We use a modified form of the Floyd-Warshall algorithm
to compute transitive dependences (see Figure 2). The input
to this algorithm is a set of variables d;; representing all di-
rect data dependences from statement ¢ to statement j. The
output is a set of variables ¢;; representing all transitive data
dependences from statement 2 to statement j. When taking
the union of two sets of extended direction vectors, we com-
bine vectors if and only if it will not lead to the loss of infor-
mation. For example, we can combine (0, +) and (0, 0) to pro-
duce (0,0+); however, we can’t combine (0,+) and (+,0) to
produce (0+,04) (as that would imply that (0,0) and (4, +)
are possible direction vectors). When taking the union of sets
of extended direction vectors with different lengths (which oc-
curs when considering transitive dependences through state-
ments which are not as deeply nested as the statement in ques-
tion), we pad the shorter vectors with *’s, indicating that ‘-’,
‘0’ and ‘4’ are all possible. The composition of direction vec-
tors is performed element-wise and is defined in the obvious
manner (i.e. composing ‘+’ and ‘0’ produces ‘+’, composing
‘+” and ‘-’ produces ¥, etc).

for i =11ton
for j=1ton

for k=1ton
for i =1 ton if G#k)
for j=1ton if (J#k)
i :tiJU(tikOtkkOtkj)

Figure 2: Modified form of Floyd-Warshall algorithm to com-
pute transitive closure

In our current implementation, the set of candidate space
mappings consists of each dimension in the original iteration
space plus the zero (which corresponds to not distributing).

We wish to analyze the parallelism that would result from se-
lecting each of these candidate space mappings without being
influenced by the original loop order. We consider all legal
loop permutations of the statement (including all combina-
tions of reversing the loops) and classify the candidate space
mappings according to the amount of synchronization they
will require (and hence how much parallelism they permit)
within each particular permutation. Even if we have to con-
sider all permutations of the loops (which is exponential in the
number of loops), we can do so in a small amount of time!
since we consider each statement separately and statements
are seldom nested within more than 4 or 5 loops. Each candi-
date space mapping is given an overall classification based on
the amount of synchronization it will require using the best
permutation for that particular candidate.

2.1 Synchronization costs

To analyze the amount of synchronization that will be re-
quired if we use a particular candidate with a particular per-
mutation, we need to consider the structure of the loops that
would ultimately be used. We analyze the general case of
using a block-cyclic distribution rather than separately ana-
lyzing both the block and cyclic cases. If the candidate loop is
at level y in the current permutation then a straight forward
implementation of block-cyclic distribution would lead to the
following loop structure:

for 1
for t,_1
for tf
P
for ty
for ty
for tm
stmt

The téD loop iterates over the set of physical processors,
the tf loop iterates over the blocks and the ¢, loop iterates
over the iterations within each block. In a block distribution
the tf loop will be degenerate and in a cyclic distribution
the t, loop will be degenerate. If x is the deepest loop level
that carries a transitive self-dependence with a negative de-
pendence distance in the distributed loop then it is legal to
move the tf loop out to just inside the ¢, loop:

for 1
for ta
for tf
for t$+1
for ty_1
for té:’
for ty
for tm
stmt

To convert this to SPMD code we would:

1Although we have a number of ideas for more efficient algorithms
for doing this analysis, this analysis step has not required significant
time in any of our experiments.

e Replace the téD loop with a conditional statement placed
outside the t; loop.

e Insert a barrier inside the ¢, loop. This will enforce all
dependences carried by loops t1 through ..

e Insert post-and-wait style synchronization to enforce
any dependences carried by loops tf through ¢,_1.

By moving the tf loop out as far as possible, we exe-
cute a minimal number of barriers. The placement of the tf
loop also implies that any dependences carried by loops t;41
through ¢,_; will be from a lower numbered physical proces-
sor to a higher numbered physical processor, so some form of
parallelism (either pure or pipelined) will result within each
iteration of the tf loop.

Dependences carried by the tf loop may go either up or
down in physical processor number and so, going from one
iteration of the tf loop to the next, may cause the pipeline to
be interrupted. Sub-section 2.1.1 explains how we estimate
whether or not the pipeline will be interrupted. If we estimate
that the pipeline will be interrupted, then we pessimistically
assume that the post-and-wait synchronization inserted for
dependences carried by the tf loop has the same effect as
a barrier placed inside the tf loop. Otherwise, we will not
have to wait on these dependences and can ignore them in
our synchronization cost estimates. So, the number of barrier
synchronizations that we perform will be either n* or %,
where n is the number of iterations per loop, B is the block
size and P is the number of physical processors.

We compute D, the maximum amount by which different
processors will be out of lock-step, as follows:

e If any dependences are carried by the distributed loop,
we expect a delay of L 4+ Bn™ ™Y between the time pro-
cessor p can start and the time processor p + 1 can
start, where L is the inter-processor message latency.
The wait from when the first processor reaches a bar-
rier until the last reaches the barrier will be P —1 times
the delay between successive processors. We simplify
this slightly to estimate D = P(L + Bn™7Y).

e If no dependences are carried by the distributed loop,
but there are inter-processor dependences carried by
loops tz41 through t,_1, then those dependences from
processor p to processor p+ 1 may force processor p+ 1
to lag L behind processor p. We again simplify slightly
and estimate D = P1L.

e If no inter-processor dependences are carried by loops
tyz4+1 through ¢,, then the processors should remain syn-
chronized to within D = L.

To perform a barrier synchronization, the processors must
exchange messages (costing L) and synchronize (costing D).
Since > > L, we simplify the barrier cost to).

2.1.1 Pipeline interruption

Consider a dependence carried by the tf loop from the last
processor to the first processor. As we estimated before, the
last processor may be lag behind the first processor by up to
D time. We may therefore have to wait [2 + L units of time

between when a message is sent by a statement instance in
iteration b; of the tf loop on processor p and when a cor-
responding message is received by a statement instance in
iteration b; + 1 of the tf loop on processor p.

However, any dependences carried by the tf loop will be
either forward or loop independent with respect to loops 241
through t,_1. So, during this time, processor p will be able
to execute all of block b; which will require Bn™ "1 units
of times. We therefore predict that the pipeline will be inter-
rupted if and only if D + L > Bn™ %71,

2.2 Load balance

We examine the loop bounds of each statement to determine
whether the amount of work in each iteration will be con-
stant. If any statements have unbalanced loops, then in ad-
dition to considering a block distribution, we also consider a
cyclic distribution. When evaluating block distributions for
candidates with unbalanced workloads, we add an additional
n™~! /2 time to our overhead estimate (intended to represent
the difference between the amount of work in a rectangular
iteration space and a triangular iteration space). In Section
3 we will see how the communication estimates will be higher
for cyclic distributions.

2.3 Compatible candidates

After parallelism analysis has been performed, we will know
the minimum degree of synchronization that will be required
for each candidate. For each candidate there is a set of le-
gal loop permutations that lead to this minimum degree of
synchronization. For example, the candidate space mapping
{[k,t] — [k]} for statement 1 in Figure 3 will produce par-
allel execution at loop depth 2 only if the following legal
loop permutation is used for statement 1: {(¢, k)}. Similarly,
the candidate space mapping {[k,1, j] — [j]} for statement 2
will produce parallel execution at loop depth 2 if any of the
following legal loop permutations are used for statement 2:

{(k’ _ja _i)’ (k’ _ja i)’ (k’ja _i)’ (k’ja Z)}

for k =1 ton
for i = k+1 ton

1 a(i,k) = a(i,k) / a(k,k)
for j = k+1 to i
2 a(i,j) = a(d,j) - a(k,jr*a(i,k)

Figure 3: Gaussian elimination

Unfortunately, in this case, because of data dependences,
the first statement’s permutation can not be used with any
of the second statement’s permutations. In other words, if
we select candidate {[k,i] — [k]} for the first statement and
candidate {[z, j, k] — [j]} for the second statement, then we
will not be able to achieve parallelism at loop depth 2 for both
statements no matter how we reorder the iterations. Thus,
analyzing parallelism for each statement in isolation can lead
to overestimation of parallelism.

To address this problem, we consider all pairs of state-
ments (p,q) and determine which candidates of statement p

are compatible with which candidates of statement ¢. Can-
didate ¢, of statement p is compatible with candidate ¢4 of
statement ¢ if there exists permutations 7, and 74 for state-
ments p and ¢ respectively such that 7, requires the minimum
degree of synchronization to be used for c¢p, 7, requires the
minimum degree of synchronization to be used for ¢4 and 7,
is compatible with 7, (see Subsection 2.4).

This compatibility information will be incorporated into
the graph constructed in Section 4 to try to ensure that par-
allelism is not overestimated in the way described above. The
compatibility tests we have described are only performed on
each pair of statements in isolation. It is theoretically pos-
sible for each pair of selected candidates to be compatible
but for the set of candidates as a whole to be incompatible.
However, since we use transitive dependences in determining
which permutations are compatible (see Subsection 2.4), it
is very unlikely that this will occur. We have analyzed all
of the benchmarks used in this paper and determined in all
cases that there do exist globally compatible permutations
for all statements that produce the degrees of parallelism as
estimated by our system.

2.4 Compatible permutations

To determine whether permutation 7, for statement p is com-
patible with permutation 7, for statement ¢ we use the fol-
lowing test. First, we construct a set of direction vectors
that describe to the order in which the iterations of state-
ment ¢ will be executed if we apply loop permutation =,.
These direction vectors don’t correspond to actual data de-
pendences, but rather to ordering constraints that will be
satisfied if that permutation i1s used. For example, if we were
going to use permutation (k,1,s) for statement 2 in Figure 3
then we would construct the following set of direction vectors

{(0,0,4), (0,4, %), (4, *, *)}. In general, the set will be:

cw=

me{0,...,n—1}

(0, ..., 0,4, %, ..., %)
——
m n—m-—1
where 74(21,...,%,) means apply permutation 7, to the vec-
tor (z1,...,%xs). Applying a permutation to a direction vector
also involves reversing directions as indicated by the permu-
tation. For example, if we were going to use permutation
(k, g, —1) for statement 2 then we would construct the follow-
ing set of direction vectors {(0,+,0), (0,*, —), (+, *, *)}.
Next, we combine these ordering constraints with the
transitive dependences between statements p and ¢ to infer
new ordering constraints on statement p under the assump-
tion that we will use permutation w, for statement ¢. The
new ordering constraints are:

Cpp = tpq 0 Cqq O tgp

Permutation 7, is compatible with permutation 74 if and only
if 7, is legal with respect to the new set of ordering constraints
cpp. For example, if in the example from Figure 3, m =

(k, g, —1) then:

can = {(0,4,0),(0,%,—), (4, %, %)}
tiz = (0,0)

So permutation (7, k) for statement 1 is not compatible with
permutation (k,j, —t) for statement 2 because (1, k) is not
legal with respect to ci1.

3 Communication Analysis

Now that we have analyzed the parallelism available in each
statement, we estimate the communication incurred by each
distribution. Communication analysis requires a finite set of
candidate space mappings for each statement. In this sec-
tion we only consider linear space mappings. In Section 5
we explain how to select constant offsets to add to the linear
mappings.

Our primary assumption is that communication will only
be required between processors if one processor writes a value
to a location and some other processor later reads that value
from that location. We use value-based flow dependence re-
lations [PW93] to obtain accurate indications of the relative
volumes of different inter-processor communications. Value
based dependence relations precisely describes which itera-
tions actually read values written by which other iterations.
For example, there is no value based flow dependence from
statement 1 to statement 3 in Figure 4, since all memory lo-
cations written by statement 1 are overwritten by statement
2 before statement 3 can read them. The value based flow
dependence from statement 2 to statement 3 would be repre-
sented by the dependence relation {[1,1] — [i,1] | 1 <1 < n}.
From this information we can determine that only n values
will be communicated from statement 2 to statement 3, de-
spite the fact that both statements have n® iterations.

for i =1 ton
for j =1ton
1: a(i,jy = ...
: a(i,j) = a(i,j) + ...
3: .. = a(i,i) + ...

Figure 4: Value based dependence example

We simplify matters by assuming that all loops have some
unknown constant number of iterations “n” (even those with
known constant loop bounds). This allows us to associate
with each value based flow dependence a dimensionality (or
rank). This, in turn, allows us to obtain accurate indications
of the relative volumes of different inter-processor communi-
cations without having to resort to complex and expensive
symbolic volume estimation algorithms [Pug94].

For each value-based flow dependence, we consider each
combination of candidate space mappings for the statements
involved in the dependence. By examining the equality con-
straints in the dependence relations we try to determine the
difference between the virtual processor to which the first

for t = 0 to ITERS
for j = 0 , DIM-1
for k = 1, DIN-1

1: X[j, k1 = ...
for j = 0 , DIM-1
2: ... =X[j, DIM-1] + ...

dio s {[t,j, k] = [t,4] | k =DIM — 1 A0 < t < ITERS

A0 < 7 < DIMA 2 < DIM}

Figure 5: Value based dependence example

Stmt 2
t

nc nc

0

t nc Z nc
1 j nc nc | z

k | DIM-1 | nc | nc

not constant

Z : Z€ero, nc:

Table 1: Virtual processor differences

statement 1s mapped and the virtual processor to which the
second statement is mapped. We check for possible differences
of: zero , a constant other than zero, and not constant. Table
1 shows each combination of space mappings for statements
1 and 2 in Figure 5, with information about the difference in
virtual processors for the value based flow dependence shown.

If the difference in virtual processors is zero then we es-
timate that there will be no communication. In the case of
self dependences, this estimate is always exact. In the case of
non self dependences, this constitutes an optimistic assump-
tion that the statements will be assigned identical constants
in Section 5. If the difference in virtual processors is a non-
zero constant, then we assume that nearest neighbor commu-
nication will occur. Again, in the case of self dependences,
this is always true. In the case of non self dependences, this
constitutes an pessimistic assumption that the difference be-
tween the constants assigned to the statements will not be
the same as the non-zero constant difference between the vir-
tual processors (if that were the case then there would be no
communication).

If we are considering a blocked distribution and the com-
munication is nearest neighbor, then many of the dependences
will be between different virtual processors that are mapped
to the same physical processor. So, for a dependence of di-
mension n¢, we estimate the amount of inter-processor com-
munication as n?/B (where B is the number of virtual pro-
cessors in each block). If the communication is not nearest
neighbor; or if we are considering a cyclic distribution, then
a dependence with dimensionality n¢ has a communication
estimate of n¢.

4 The Search Problem

We now represent the space mapping selection problem as a
weighted graph. The graph will contain a node corresponding
to a each candidate space mapping of each statement. The
node weights will be the parallelism overheads as derived in
Section 2 and the edge weights will be the communication
estimates as derived in Section 3.

4.1 Incompatible candidates

If incompatible candidates exist (see Sub-section 2.4), the
parallelism that can be achieved using some candidate space
mapping may depend on which candidates are chosen for
other statements. We therefore use two nodes to represent
such candidates. In one node, we will optimistically assume
that the degree of parallelism that we estimated when con-
sidering the statement in isolation can be achieved and in
the other node will pessimistically assume that choices made
for other statements will force us to use a permutation that
leads to no parallelism for this statement. The communica-
tion costs will be the same for both nodes. If two candidates
are incompatible then we do not want to simultaneously se-
lect the optimistic version of both candidates. To ensure that
does not occur, we add an edge with infinite cost between the
optimistic versions of incompatible candidates.

4.2 The simple search procedure

Many previous approaches to automatically minimizing inter-
processor communication use heuristic or greedy algorithms.
We instead solve the problem exactly. The problem is to select
exactly one node from the weighted graph for each statement
such that the sum of the node costs of selected nodes and sum
of edge costs between selected nodes is minimized. Our basic
approach is simple; we perform an exhaustive search through
all possible selections of nodes and choose the one with the
lowest overall cost. In order to solve the problem in a feasi-
ble amount of time, we have developed a number of effective
but optimality-preserving pruning strategies. Figure 6 shows
a simplified version (without any optimizations) of the recur-
sive depth-first search algorithm. Cj is the list of candidate
space mappings for statement k, N is the number of state-
ments, v;(s) is the parallelism overhead associated with using
mapping s for statement ¢, and e;;(s;, ;) is the total cost of
communication between statements ¢ and j under mappings
s; and s; respectively (or infinity if the nodes correspond to
the optimistic versions of incompatible candidates).

4.3 Pruning Strategies

Once we have determined the cost of at least one solution, we
can use that cost to prune our search space. Suppose we have
a solution with cost ¢ and we are considering a partial solution
defined by a function S from some subset of the statements
to the space mappings currently being considered for those
statements. We define:

P(S)= Y w(Slih+ Y

1€domain(S) jEdomain(S)A;<i

ei; (5[], S[s])

search (statement k)
foreach space mapping s € Oy
Skl = s
if (k< N)
search(k + 1)
else

cost =3 -0 (wi(S[i]) + 2, es; (S, S[D))
if (cost < best_cost)
best_cost = cost

record {S[1],...,S[N]} as best

Start by calling search(1)

Figure 6: Simplified search algorithm

If P(S) > ¢, then we can terminate consideration of the par-
tial solution, since its total cost cannot be better than that
of the solution we already have.

We can perform further pruning if we can determine a
lower bound on the cost that will be contributed by state-
ments for which a candidate has not yet been chosen (i.e.,
without actually considering all combinations of selections
and choosing the best one). The lower bound that we use

b(s)=

igdomain(S)

min (P(5 U {i — s}) = P(5))

That is, {b(S) is the sum of the edge costs from all statements
for which a candidate has been chosen to the best candidates
of each of the statements for which a candidate has not been
chosen, plus the node costs of each of these candidates. If
P(S) 4+ 1b(S) > c then we can terminate consideration of the
partial solution.

Given that complete solutions with low costs allow us to
prune more than complete solutions with high costs, it is ad-
vantageous to find low cost solutions early in the search pro-
cess. We are free to consider the candidate space mappings
for each statement in any order, so we choose an order that
is most likely to lead to a complete low cost solution as early
as possible. For each unselected statement i, we order the
candidates space mappings s according to P(S U {1 — s}).

We are also free to consider the statements in any order.
We will usually have to extensively explore the subtree of the
best candidate for each statement, however we would like to
avoild having to explore the subtrees of the other candidates.
If selecting the second-best candidate of a statement will cause
the total cost to rise substantially then we may only have to
choose mappings for a few more statements (if any) before the
total cost rises to a point where we can prune away the partial
solution. So, when selecting the statement to explore next,
we choose the one whose second best candidate will add the
most to the total cost; that is, the statement ¢ whose second
best candidate s is most expensive according to:

P(SU{i— s})+(SU{i— s})

Note that there is no fixed order in which the statements are
considered. At each stage, the statement that we consider
next will depends on the current context.

According to the above formula, deciding which statement
to consider next would take approximately O(N4M2) time,
where M is the average number of candidates per statement.
By storing partial sums we can reduce this to O(NFM2),
where F'is the average number of statements that have value-
based flow dependences reaching a statement. While this is
still relatively expensive, it more than pays for itself my sub-
stantially increasing the number of pruning opportunities. In
our experiments we have not found the cost prohibitive; in
Section 6 we present results from experiments showing the
efficiency of our pruning strategy.

The above expressions simply add together parallelism
overheads and communication costs. In practice, we first
multiply the parallelism overheads by a machine dependent
constant that represents the ratio of computation speed to
communication speed. By varying this parameter, we can de-
termine whether or not a given solution is likely to be optimal
across a wide variety of machines.

5 Alignment

Adding a constant to the space mappings can eliminate some
nearest-neighbor communications. A constant offset will have
no affect on communication between different iterations of the
For dependences between different state-
ments, however, if the dependent iterations map to virtual
processors separated by a constant distance, then adding ap-
propriate constants to the selected space mappings, can map
them to the same virtual processors. We consider adding con-
stants that are affine functions of the symbolic constants in
the program. For example, for the program in Figure 1, we
might select “DIM-1” as the constant to add to the space
mapping of statement 1.

same statement.

We use a greedy algorithm to decide which dependences
with constant virtual processor distances will be made intra-
processor. We maintain a partitioning of the statements such
that within each partition, we know the relative differences
between their constant parts. Initially all statements are in
separate partitions. We process the dependences in decreas-
ing order based on their dimensionalities. For a dependence
from statement p to statement ¢ where statements p and ¢
are in different partitions, we can make the dependence intra-
processor. In this case, we merge the partitions containing
statements p and ¢ and record the virtual processor differ-
ence between statements p and ¢. When we have processed
all dependences or when we have only one partition, we arbi-
trarily choose a constant for one statement in each partition
and use it to compute constants for the other statements in
the partitions.

6 Experimental Results

We first give experimental results to show that our algorithms
execute in a feasible amount of time. The left half of Table
2 gives a breakdown of our execution times for a variety of
benchmark programs® The times listed are in seconds and are

?These programs together with the results that we obtain for them
are available in ftp://ftp.cs.umd.edu/pub/omega/results_ KP95

| Search time

Program Nr | Max | Parallelism Comm. | Search | Align | Total Unoptimized Optimized

Stmt | Nest Analysis | Analysis Calls Time | Calls | Time
ge 2 3 0.04 0.02 0.00 0.00 0.08 4 0.00 2 0.00
ch 3 3 0.05 0.02 0.00 0.01 0.11 9 0.00 2 0.00
relax 1 3 0.06 0.02 0.00 0.00 0.09 1 0.00 1 0.00
jacobi 3 3 0.10 0.03 0.00 0.01 0.16 6 0.00 3 0.00
across 4 1 0.00 0.01 0.00 0.03 0.03 15 0.00 4 0.00
gosser 5 3 0.08 0.03 0.00 0.10 0.16 112 0.00 5 0.00
choles 6 3 0.03 0.03 0.00 0.01 0.11 201 0.01 6 0.00
burg2 11 2 0.14 0.06 0.01 0.02 0.32 17839 0.99 11 0.01
lczos 23 3 0.14 0.10 0.02 0.06 0.40 7132375 563.93 23 0.02
givens 9 3 0.20 0.08 0.02 0.02 0.41 20776 1.28 10 0.02
cholsky 14 4 0.95 0.18 0.02 0.04 1.34 458656 69.04 14 0.02
intbal 41 2 0.14 0.17 0.03 0.08 0.58 71120230 ~ 1 hour 41 0.03
eflux 27 3 0.43 0.19 0.04 0.08 0.90 2.9 x 1011 ~ 6 months 27 0.04
mxm 2 3 0.01 0.00 0.00 0.00 0.02 4 0.00 2 0.02
nas3 9 4 0.78 0.14 0.01 0.03 1.06 75926 5.86 9 0.01
emit 34 3 1.55 0.48 0.05 0.08 2.68 1.3 x 1012 ~ 2 years 34 0.05
vpenta 53 2 0.82 0.77 0.17 0.18 2.36 || 3.7 x 101¢ ~ 10° years 53 0.17
adi 17 3 1.56 0.32 0.02 0.05 2.28 2.3 x 107 ~ 20 minutes 17 0.02
shallow 65 2 0.38 0.49 0.18 0.15 1.54 4.6 x 1014 ~ 700 years 90 0.18
erle 60 3 0.82 0.76 0.30 0.18 2.56 || 3.6 x 10%! ~ 1010 years 105 0.30

Table 2: Breakdown of compilation

as measured by Quantify® on a SPARCstation 10/51.

The right half of Table 2 shows a comparison between the
unoptimized version of our search algorithm (Figure 6) versus
our fully optimized pruning search algorithm. The Calls col-
umn is the number of recursive calls to the search procedure ,
while the Time column is amount of time in seconds, spent in
the search procedure (times marked with an ~ are projected
times).

6.1 Effectiveness

The first program that we use to demonstrate our effective-
ness is adi (as shown in Figure 7), a program fragment used
in alternating direction implicit integration. Our parallelism
analysis phase produces the results shown in Table 3. If we set
our computation to communication ratio parameter to a low
value such as 0.01, then we obtain the space mappings shown
in Figure 8(a). These space mappings result in all statements
being executed in parallel; however, they also result in 4 n?®
and 12 n? inter-processor communications. If we set our com-
putation to communication ratio parameter to a more realistic
value such as 1.0, then we obtain the space mappings shown
in Figure 8(b). These space mappings result in the first four
statements being parallelized and three of the last four state-
ments being pipelined, but they result in only 4 n® and 4 n?
inter-processor communications. Other researchers|AAL95]
have shown that data distributions analogous to these space
mappings produce close to linear speedups on several shared

3Registered trademark of Pure Software Inc.

times for various benchmark programs

memory machines. If we set our computation to communi-
cation ratio parameter to an even higher value such as 100.0
(as might be the case for a network of workstations), then we
obtain the space mappings shown in Figure 8(c). These space
mappings result in all statements being executed sequentially,
with no inter-processor communication.

for t = 0 to ITERS
for j = 0 to DIM-1
for k = 1 to DIN-1
X[j,kl X[j,k1-X[j,k-11*A[j,k]1/B[j,k-1]
B[j,k] BLj,k1-A[j,k1*A[j,k1/B[j,k-1]
for j = 0 to DIM-1
3 X[j,pIM-1] = X[j,DIM-1]1/B[j,DIM-1]
for j = 0 to DIM-1
for k = DIM-2 to O by -1
4 X[j,k1 = (X[j,k1-AL[j,k+11*X[j,k+11) /B[] k]
for j = 1 to DIM-1
for k = 0 to DIN-1
5 X[j,k] = X[j,k1-X[j-1,k1+A[j,k1/B[j-1,k]
6 B[j,k] BL[j,k1-A[j,k1*A[j,k]1/B[j-1,k]
for k = 0 to DIM
7 X[DIM-1,k] = X[DIM-1,k]/B[DIM-1,k]
for j = DIMN-2 to O by -1
for k = 0 to -1+DIN
8 X[j,k1 = (X[j,k1-A[j+1,k1*X[j+1,k1) /B[] k]

—

[}

Figure 7: Example program: adi

Stmt | Transitive Candidate space mappings
Dependences t] k
1 (+.%7) (0,0,4) | »® (sequential) | nL (parallel depth 2) | nP(L 4+ B) (pipeline depth 2)
2 (+,%) (0,0,4) | »® (sequential) | nL (parallel depth 2) | nP(L 4+ B) (pipeline depth 2)
3 (+.* n? (sequential) | nL (parallel depth 2)
4 (+,%%) (0,0,+4) | »® (sequential) | nL (parallel depth 2) | nP(L 4+ B) (pipeline depth 2)
5 (+,*,%) (0,4,0) | #»® (sequential) | nP(L + B) (pipeline depth 2) | nL (parallel depth 2)
6 (+,*,%) (0,4,0) | #»® (sequential) | nP(L + B) (pipeline depth 2) | nL (parallel depth 2)
7 (+.%) n? (sequential) nlL (parallel depth 2)
8 (+,*,%) (0,4,0) | »® (sequential) | nP(L + B) (pipeline depth 2) | nL (parallel depth 2)
Table 3: Synchronization costs for adi, assuming P(L 4+ B) < Bn
Related work | 1 2 3 4 5 6
1:4{[t, 5, k]— [j 1:{[t, 5, k] — [1:{[t, 5, k]— [0
2. ﬂt? k%—» Bﬁ 2. ﬂt? k% - Bﬁ 2. ﬂt? k%—» %Oﬁ [Gup92] N N
soqtedd —O |3 A S [3edd — o]l [AT.93] v J
PR (T | B R 5 ey) | R R (e R 093] Y 1Y
5:{[t,z,k]—» [&1} 5:{[t,z,k] — [J]} 5:{[t,z,k]—» [o]}
6 :{[t, 5, kl— [k]} | 6:{[t, 4, k] =[]} 6 :{[t, 7, k]— [0]} [Fea94] v oY
7oAl k] — [k]} | 7oAl Rl = [DIM — 1]} | 7 {[t, k] — [O]} [GALYS] VARV
8:{[t, 5, k= [k]} | 8:{[t,4, k] — [jT} 8:{[t, 4, k]— [0]}
559+ @ | v |V
(a) :r =0.01 (b):r=1.0 (¢):r =100.0 Our system \/ \/ \/ \/ \/ \/

Figure 8: Selected space mappings for adi

Many papers have been written about automatic data
decomposition and most contain examples to show the per-
formance of their respective algorithms. Whilst the pa-
pers themselves contain impressive results (and our algo-
rithm /implementation has derived those same data distribu-
tions), we have found that in the few implementations that we
have been able to experiment with, most of these algorithms
are very fragile. That is, the programs as given in these pa-
pers can be compiled very efficiently, but minor, semantic-
preserving changes to these programs (such as performing
loop interchange, loop fusion or statement reordering), of-
ten result in completely different and often far from optimal
distributions.

Our aim is a system that produces the same result (hope-
fully an optimal result) regardless of the form in which the
program is originally presented. In Figure 9, we demonstrate
this aspect of our system by showing the results of applying
our system to all six legal loop permutations for Cholesky
decomposition. We have not found any other system that is
able to reproduce these results. We also derived consistent
data decompositions for all 6 permutations of Gaussian elim-
ination, and for various loop restructurings of adi. In fact,
our system 1s guaranteed to produce the same results if we
are able to correctly calculate the transitive dependences. If
we use dependence relations to do so, we always can. If we
use extended direction vectors, our calculations may not be
exact, although we have observed this only in the case of im-
perfectly nested loops: for some permutations of Cholesky
decomposition, extended direction vectors were insufficient.
It should also be noted that our techniques depend on being
able to accurately analyze the dependences in the program.
If we cannot, perhaps due to the use of an indirection array,
extensions beyond what are described in this paper will be
necessary.

(@) - Starts with a functional language, so not relevant

Table 4: Properties (from Section 1) of related work

7 Related Work

Table 4 shows which of the desirable properties enumer-
ated in Section 1 hold for a number of related works. Our
work is most distinguished from all other related work by the
fact that we are not influenced by the order of the compu-
tation in the original program. Most related works estimate
parallelism and/or partition the program into phases based
on the original loop structure.

Feautrier’s approach [Fea94] is to find a schedule for ex-
ecuting the program with maximum parallelism, ignoring lo-
cality and latency. Then, he uses a greedy algorithm, based
on the dimensionality of value-based dependences, to select a
computation distribution that minimizes the volume of com-
munications but doesn’t place on the same virtual processor
any two computations that could be run in parallel. The
problem with this approach is that it is not possible to sac-
rifice some parallelism in a particular loop in order to reduce
overall communication costs. By making use of pipelining, we
can often obtain parallelism close to that afforded by a doall
loop we decide to ignore.

Although other systems such as [RKU93, GAL95] also
use exact rather than greedy heuristic algorithms, the size of
the problems and the methods used are very different. We
consider a list of candidate distributions for each statement,
whereas these systems consider a list of candidate distribu-
tions for each array in each phase. Our search spaces will
therefore tend to be much larger. These systems use 0-1 in-
teger programming formulations, whereas we have developed
our own graph search algorithm. The performance numbers
given in [GAL95] (which uses a commercial 0-1 integer pro-
gramming system called LINGO) tend to suggest that our
search algorithm is significantly faster.

In Kremer’s system [RKU93], an admittedly arbitrary

fori=1ton
for k = 1 toi-1

fori=1ton
forj=1toi-1
a(l,J) = a(lyJ)/a(JyJ)

1 1

a(ik) = a(ik)/a(kk)

forj=1ton

1 a() = sqrt(a(J,J))
fori=j+1ton

fork =1toj for j = k41 to i 2 a(lyJ) = a(lyJ)/a(Jd)
2 CRGIED) S MG -a(taG4LE) 2 () = (el Gk k= 1t0] -
3 a(ii) = sqrt(a(ii)) 3 a(ii) = sqrt(a(ii)) 3 a(l,J+1) = a(i,j+1)-a(i,k)*a(j+1,k)
Ul] —) Ul] — [i]} L = D
2 : 4[4, 5, k]— [i]} 24, k, 51— [1]} 2: 4[5 — [}
3:4l1 = [l 3:4{l =L} 3:{l, 4, kl— [}

forj=1ton

fork = 1t
1 a())) = sqrt(a(J,J)) O o

1 a(kk) = sqrt(a(k k))

fork =1ton
1 a(kk) = sqrt(a(k k))

for i=j+1 fori=k+1 ton for i = k+1
205 i 25100 = (1) / alkk) 2 200 = i)/t
for i_: j+1Jto n 3 for j = k+1 to1 O%ali k foi‘ i_: j+1ton
3 a(ij+l) = a(ij+l)-a(ik)*a(+1k) alli) = a(ij) - alil)*a(k) 3 a(ij+l) = a(ij+l)-a(ik)*a(+1k)
AL = [Lokl — [l VRl — [
24— [} 48! Pl 2: 4Tk] — [}
3 {li, k,d— [} oI 3 {[k, f,1]— [}

Figure 9: All six legal loop permutations for cholesky decomposition with selected space mappings

scheme is used to identify a sequential loop nest that con-
tains a series of phases, which are executed atomically (i.e.,
without overlap). Parallelism is exploited within each phase
but not between them. Using techniques not described in
[RKU93], a set of candidate distributions are generated for
each phase, and the system determines the cost of executing
each phase in each distribution and the cost of the remap-
ping variables between each transition. The system is very
depended on obtaining a good partitioning of the program
into phases and on having a good method to generate and
evaluate distributions for each phase.

The system described in [GAL95] uses a static data de-
composition for the entire program. They minimize commu-
nication volume and insure that the program can be executed
in parallel simply by making one of the loops in the original
program a doallloop. They do not consider transformations
such as loop distribution or interchange and do not consider
pipelined parallelism nor the differences in synchronization
costs between different candidate loops.

8 Conclusion

We believe that we have succeeded in our goal of building
a system that simultaneously optimizes for communication
and parallelism without resorting to greedy or heuristic algo-
rithms; and without being influenced by the order of the com-
putation in the original program. Our system remains heuris-
tic in one major way: we combine the effects of parallelism
and communication simply by multiplying one by a constant
parameter and then adding them together. This method of
combination will be inaccurate if communication can be sub-
stantially overlapped with computation or with other commu-
nication. This heuristic was forced on us by a “chicken and
egg problem”: it is difficult to distribute the computations
until the final order of the computations is known, but it is
also difficult to order the computations until the distribution
is known. Our heuristic works well in practice because the
largest communications are unlikely to be substantially over-
lapped with computation. In future work, we will look into

10

deriving multi-dimensional space mappings and will continue
our work on determining the best order in which to execute
iterations, given the space mappings determined here.

References

[AAL95] J. Anderson, S. Amarasinghe, and M. Lam. Data
and computation transformations for multiproces-
sors. In Proc. of the 5th ACM SIGPLAN Sympo-

stum on Principles and Practice of Parallel Pro-
grammaeng, July 1995.

[AL93] Saman P. Amarasinghe and Monica S. Lam. Com-
munication optimization and code generation for
distributed memory machines. In ACM ’93 Conf.
on Programming Language Design and Implemen-

tation, June 1993.

Paul Feautrier. Toward automatic distribution.
Parallel Processing Letters, 4(3):233-244, Septem-
ber 1994.

Jordi Garcia, Eduard Ayguade,
Labarta. A novel approach towards automatic
data distribution. In Workshop on Automatic
Data Layout and Performance Predition, April
1995.

M. Gupta.
tributed Memory Multicomputers.
Dept. of Computer Science, U.
Urbana-Champaign, 1992.

[Fea94]

and Jesus

[GAL95]

[Gup92] Automatic Data Partioning on Dis-

PhD thesis,

of Illinois at

[HKT91] Seema Hiranandani, Ken Kennedy, and Chau-Wen
Tseng. Compiler optimizations for FORTRAN D
on MIMD distributed memory machines. In Su-

percomputing '91, November 1991.

Wayne Kelly and William Pugh. Identifying re-
ordering transformations that minimize idle pro-
cessor time. Technical Report CS-TR-3431, Dept.
of Computer Science, University of Maryland, Col-
lege Park, February 1995.

[KP95]

[KPRS95] Wayne Kelly, William Pugh, Evan Rosser, and

[Pug94]

[PW93]

[RKU93]

[SSPT95]

[WBs7]

[Wol91]

Tatiana Shpeisman. Transitive closure of infinite
graphs and its applications. In Fighth Annual
Workshop on Programming Languages and Com-
pilers for Parallel Computing, Columbus, OH, Au-
gust 1995.

William Pugh. Counting solutions to presburger
formulas: How and why. In SIGPLAN Conference
on Programming Language Design and Implemen-
tation, Orlando, FL, June 1994.

Willilam Pugh and David Wonnacott. An exact
method for analysis of value-based array data de-
pendences. In Lecture Notes in Computer Science
768: Sizth Annual Workshop on Programming
Languages and Compilers for Parallel Computing,
Portland, OR, August 1993. Springer-Verlag.

R.Bixby, K.Kennedy, and U.Kremer. Automatic
data layout using 0-1 integer programming. Tech-
nical Report CRPC-TR93349-S, Center for Re-
search on Parallel Computation, Rice University,
November 1993.

T. J. Sheffler; R. Schreiber, W. Pugh, J. R.
Gilbert, and S. Chatterjee. Efficient distribution
analysis via graph contraction. In Eighth Annual
Workshop on Programming Languages and Com-
pilers for Parallel Computing, Columbus, OH, Au-
gust 1995.

Michael Wolfe and Utpal Banerjee. Data depen-
dence and its application to parallel processing.
Internation J. Parallel Programming, 16(2):137-
178, April 1987.

Michael Wolfe. Experiences with data depen-
dence abstractions. In Proc. of the 1991 Interna-
tional Conference on Supercomputing, pages 321—
329, June 1991.

11

