
Minimizing Communication while Preserving ParallelismWayne Kelly and William PughDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742fwak,pughg@cs.umd.eduDecember 1, 1995AbstractTo compile programs for message passing architectures andto obtain good performance on NUMA architectures it is nec-essary to control how computations and data are mapped toprocessors. Languages such as High-Performance Fortran usedata distributions supplied by the programmer and the ownercomputes rule to specify this. However, the best data and com-putation decomposition may di�er from machine to machineand require substantial expertise to determine. Therefore, au-tomated decomposition is desirable.All existing methods for automated data/computation de-composition share a common failing: they are very sensitiveto the original loop structure of the program. While they �nda good decomposition for that loop structure, it may be pos-sible to apply transformations (such as loop interchange anddistribution) so that a di�erent decomposition gives even bet-ter results. We have developed automatic data/computationdecomposition methods that are not sensitive to the origi-nal program structure. We can model static and dynamicdata decompositions as well as computation decompositionsthat cannot be represented by data decompositions and theowner computes rule. We make use of both parallel loops anddoacross/pipelined loops to exploit parallelism.We describe an automated translation of the decomposi-tion problem into a weighted graph that incorporates estimatesof both parallelism and communication for various candidatecomputation decompositions. We solve the resulting searchproblem exactly in a very short time using a new algorithmthat has shown to be able to prune away a majority of the vastsearch space. We assume that the selection of the computa-tion decomposition is followed by a transformation phase thatreorders the iterations to best match the selected computationdecomposition. Our graph includes constraints to ensure thata reordering transformation giving the predicted parallelismexists.1 IntroductionThe task of mapping a program written in a sequential pro-gramming language onto a multi-processor machine can bedivided into two subproblems: deciding how to distribute thecomputation amongst the available processors and decidinghow to order the computations. Finding a close to optimalsolution in a feasible amount of time for either of these prob-lems in isolation is still an open problem; it is even moredi�cult to solve these problems simultaneously. To simplify

the problem, we solve the sub-problems sequentially (that is,�rst solve one, and then solve the other based on the solutionfound for the �rst). However, in doing so we must be mindfulof the fact that the two problems are tightly coupled and usethis information when ordering the problems and when de-vising methods to solve the problems (especially the one wedecide to solve �rst).In deciding how to distribute the computations amongstthe available processors, we want to minimize the amount ofcommunication between processors while at the same timepreserving some degree of parallelism. In deciding how to or-der the computations, we want to minimize the time proces-sors spend waiting for messages from other processors and toaccess memory locations in an order that exploits the memoryhierarchy.Minimizing communication between processors can be ac-complished without regard to the order of the computations.However, achieving su�cient parallelism does depend on theexecution order. Through a combination of scalar and ar-ray expansion or privatization, loop distribution, statementreordering and loop interchange, it is often possible to ex-pose parallel loops that did not exist in the original program.Even if parallel loops exist in the original program, distribut-ing the iterations of the newly exposed parallel loops ratherthan the original parallel loops might result in a higher gran-ularity of parallelism or in lower inter-processor communica-tion costs. In some cases, there may be no parallel loops toexploit, but we may be able to transform the program anduse doacross/pipelining techniques to allow computation andcommunication to be overlapped.We assume that the computation distribution phase willbe followed by a transformation phase that will reorder thecomputations to obtain good performance. So, in evaluatinghow much parallelism could be achieved by distributing theiterations of a particular loop, we should not be in
uenced bythe original computation order.One of the things that makes our work di�cult is that pre-vious work has not developed techniques that, given a datadecomposition, reorders the program so as to exploit paral-lelism. The only real discussion of this issue is in [HKT91].While the techniques described there work well for simplestencil computations, they are not theoretically sound andmake bad or indecisive decisions in a number of cases, includ-ing some realistic cases such as Gaussian elimination kernels[KP95]. Our work includes a model of how to reorder com-putations so as to exploit parallelism.Most previous work determines a static data distribution1



for each array (i.e., a mapping from the elements of that ar-ray to virtual processors). Together with the owner-computesrule (where each iteration is performed on the processor that\owns" the array element being written), the distributionspeci�es a mapping from the iterations of each statement toa set of virtual processors. Virtual processors are folded ontophysical processors in a block, cyclic or block-cyclic manner.We instead determine a space mapping for each statementthat directly maps each iteration of that statement to a virtualprocessor. This allows us to represent not only dynamic datadistributions, but also non-data distributions, (i.e., we canspecify space mappings that cause di�erent iterations of thesame statement that write to the same array elements to beexecuted on di�erent processors). The primary places wherenon-data decompositions are useful are in the placement ofcomputations that are performing reductions.However, the main utility of associating a space mappingwith each statement is that we can specify dynamic data de-compositions without having to decompose the program into asequence of phases between which redistributions are allowed(a process that is heavily dependent on the order of the com-putations). We can generate dynamic data decompositionsby adding constraints to force the computation distributionto be equivalent to a dynamic data distribution.The problem of automatically distributing computationhas been addressed by a large number of authors [Gup92,Fea94, AL93, RKU93, GAL95, SSP+95]. Our work improveson most previous work in the following ways:1. We are not in
uenced by the order of the computationin the original program. We use methods to determinethe parallelism inherent in the program rather than theparallelism that can be obtained using the computationorder in the original program.2. When analyzing parallelism, we not only examine eachloop to determine whether its iterations can be run en-tirely independently, but also whether its iterations canbe pipelined so that computation and communicationare overlapped (a lesser but still important form of par-allelism). Exploiting this parallelism requires that weuse a SPMD rather than a SIMD model.3. We associate a space mapping with each statement,which allows us to represent dynamic data distributionswithout having to partition the program into phases, aswell as allowing us to represent non-data distributions.4. We obtain accurate indications of the relative volumesof di�erent inter-processor communications by com-puting the dimensionality of value-based 
ow depen-dence relations[PW93] (an abstraction that preciselydescribes which iterations actually read values writtenby which other iterations). Without this, it would beimpossible to analyze the communication costs withoutknowing where an array was going to be redistributed.5. We solve the search problem exactly in a feasibleamount of time by using a number of very e�ective butsafe pruning strategies. Other approaches use heuristicor greedy algorithms.

6. We simultaneously optimize for communication andparallelism, trading one o� for the other where nec-essary to obtain an overall optimal solution.Throughout this paper, we make a number of simplifyingassumptions, such as the assumption that all loops have niterations. We could eliminate some of these assumptionsat the cost of substantial complications to our framework.However, the point of this paper is not to identify which oftwo decompositions is 10% better than the other; our costmodel is not sensitive or accurate enough to answer thesekinds of questions. It is unclear if there is any way to answerthose kinds of questions other than by performing time trialson the target machine. Our methods are designed to �nda distribution such that no signi�cantly better distributionexists, and could be easily altered to generate a list of allsuch decompositions.The rest of the paper is organized as follows. In Section 2we describe our methods to determine the parallelism inher-ent in the programs we analyze. In Section 3 we describe ourcommunication cost model. In Section 4 we describe our al-gorithm to simultaneously optimize communication and par-allelism, together with the pruning strategies that make itfeasible. In Section 5 we describe our alignment algorithmthat selects constant o�sets to add to the linear space map-pings found in Section 4. In Section 6 we give experimentalresults to demonstrate the e�ciency and e�ectiveness of ouralgorithms. In Section 7 we discuss related work and �nallyin Section 8 we state our conclusions.2 Parallelism AnalysisIn this section we describe our methods to determine the par-allelism inherent in the programs we analyze. Our �rst obser-vation is that the most useful form of parallelism is betweendi�erent iterations of the same statement, rather than be-tween iterations of di�erent statements. This implies thatwe should examine each statement separately to determinewhether any of its iterations can be executed in parallel. Indoing so, however, we want to ignore any constraints on par-allelism imposed by the original loop order or by other state-ments in the loop nest. On the other hand, it is clearly notsu�cient to examine each statement in isolation. What weneed to do is consider all direct and transitive self data de-pendences of each statement. In previous work [KPRS95] wehave described how to compute transitive self dependencesusing a very precise abstraction called dependence relations.That approach gives very accurate information about paral-lelism; however, we have found that it can be expensive forvery large programs. So, for large programs, we have devel-oped a more e�cient but potentially less accurate approachto computing transitive self dependences.We �rst perform data dependence analysis to produce aset of extended dependence direction vectors[WB87, Wol91]between each pair of statements. A dependence direction vec-tor is a vector (v1; : : : ; vm) where vi is either `-', `0', or `+',indicating whether the di�erence between the level i indexvariable at the source of the dependence is less than, equalto, or greater than the level i index variable at the sink of thedependence. For a normal direction vector, the length is equal2



to the maximum common loop depth of the two statements;an extended direction vector uses the minimum loop depth ofthe two statements. For example, the dependence from state-ment 1 to statement 2 in Figure 1 below is represented bythe direction vector (0) and by the extended direction vector(0;�1).for i = 1 to nfor j = 1 to n1: a(i,j) = ...for j = 1 to n2: ... = a(i,j+1)Figure 1: Example to illustrate extended direction vectorsIn performing this analysis, we ignore reduction depen-dences (dependences between two updates to the same mem-ory location), since given certain reasonable assumptions theydo not substantially inhibit parallelism.We use a modi�ed form of the Floyd-Warshall algorithmto compute transitive dependences (see Figure 2). The inputto this algorithm is a set of variables dij representing all di-rect data dependences from statement i to statement j. Theoutput is a set of variables tij representing all transitive datadependences from statement i to statement j. When takingthe union of two sets of extended direction vectors, we com-bine vectors if and only if it will not lead to the loss of infor-mation. For example, we can combine (0;+) and (0; 0) to pro-duce (0; 0+); however, we can't combine (0;+) and (+;0) toproduce (0+; 0+) (as that would imply that (0; 0) and (+;+)are possible direction vectors). When taking the union of setsof extended direction vectors with di�erent lengths (which oc-curs when considering transitive dependences through state-ments which are not as deeply nested as the statement in ques-tion), we pad the shorter vectors with *'s, indicating that `-',`0' and `+' are all possible. The composition of direction vec-tors is performed element-wise and is de�ned in the obviousmanner (i.e. composing `+' and `0' produces `+', composing`+' and `-' produces `*', etc).for i = 1 to nfor j = 1 to ntij = dijfor k = 1 to nfor i = 1 to n if (i 6= k)for j = 1 to n if (j 6= k)tij = tij [ (tik � tkk � tkj)Figure 2: Modi�ed form of Floyd-Warshall algorithm to com-pute transitive closureIn our current implementation, the set of candidate spacemappings consists of each dimension in the original iterationspace plus the zero (which corresponds to not distributing).

We wish to analyze the parallelism that would result from se-lecting each of these candidate space mappings without beingin
uenced by the original loop order. We consider all legalloop permutations of the statement (including all combina-tions of reversing the loops) and classify the candidate spacemappings according to the amount of synchronization theywill require (and hence how much parallelism they permit)within each particular permutation. Even if we have to con-sider all permutations of the loops (which is exponential in thenumber of loops), we can do so in a small amount of time1since we consider each statement separately and statementsare seldom nested within more than 4 or 5 loops. Each candi-date space mapping is given an overall classi�cation based onthe amount of synchronization it will require using the bestpermutation for that particular candidate.2.1 Synchronization costsTo analyze the amount of synchronization that will be re-quired if we use a particular candidate with a particular per-mutation, we need to consider the structure of the loops thatwould ultimately be used. We analyze the general case ofusing a block-cyclic distribution rather than separately ana-lyzing both the block and cyclic cases. If the candidate loop isat level y in the current permutation then a straight forwardimplementation of block-cyclic distribution would lead to thefollowing loop structure:for t1: : : for ty�1for tByfor tPyfor ty: : : for tmstmtThe tPy loop iterates over the set of physical processors,the tBy loop iterates over the blocks and the ty loop iteratesover the iterations within each block. In a block distributionthe tBy loop will be degenerate and in a cyclic distributionthe ty loop will be degenerate. If x is the deepest loop levelthat carries a transitive self-dependence with a negative de-pendence distance in the distributed loop then it is legal tomove the tBy loop out to just inside the tx loop:for t1: : : for txfor tByfor tx+1: : : for ty�1for tPyfor ty: : : for tmstmtTo convert this to SPMD code we would:1Although we have a number of ideas for more e�cient algorithmsfor doing this analysis, this analysis step has not required signi�canttime in any of our experiments.3



� Replace the tPy loop with a conditional statement placedoutside the t1 loop.� Insert a barrier inside the tx loop. This will enforce alldependences carried by loops t1 through tx.� Insert post-and-wait style synchronization to enforceany dependences carried by loops tBy through ty�1.By moving the tBy loop out as far as possible, we exe-cute a minimal number of barriers. The placement of the tByloop also implies that any dependences carried by loops tx+1through ty�1 will be from a lower numbered physical proces-sor to a higher numbered physical processor, so some form ofparallelism (either pure or pipelined) will result within eachiteration of the tBy loop.Dependences carried by the tBy loop may go either up ordown in physical processor number and so, going from oneiteration of the tBy loop to the next, may cause the pipeline tobe interrupted. Sub-section 2.1.1 explains how we estimatewhether or not the pipeline will be interrupted. If we estimatethat the pipeline will be interrupted, then we pessimisticallyassume that the post-and-wait synchronization inserted fordependences carried by the tBy loop has the same e�ect asa barrier placed inside the tBy loop. Otherwise, we will nothave to wait on these dependences and can ignore them inour synchronization cost estimates. So, the number of barriersynchronizations that we perform will be either nx or nx+1BP ,where n is the number of iterations per loop, B is the blocksize and P is the number of physical processors.We compute D, the maximum amount by which di�erentprocessors will be out of lock-step, as follows:� If any dependences are carried by the distributed loop,we expect a delay of L+Bnm�y between the time pro-cessor p can start and the time processor p + 1 canstart, where L is the inter-processor message latency.The wait from when the �rst processor reaches a bar-rier until the last reaches the barrier will be P �1 timesthe delay between successive processors. We simplifythis slightly to estimate D = P (L+ Bnm�y).� If no dependences are carried by the distributed loop,but there are inter-processor dependences carried byloops tx+1 through ty�1, then those dependences fromprocessor p to processor p+1 may force processor p+1to lag L behind processor p. We again simplify slightlyand estimate D = PL.� If no inter-processor dependences are carried by loopstx+1 through ty, then the processors should remain syn-chronized to within D = L.To perform a barrier synchronization, the processors mustexchange messages (costing L) and synchronize (costing D).Since D � L, we simplify the barrier cost to D.2.1.1 Pipeline interruptionConsider a dependence carried by the tBy loop from the lastprocessor to the �rst processor. As we estimated before, thelast processor may be lag behind the �rst processor by up toD time. We may therefore have to wait D + L units of time

between when a message is sent by a statement instance initeration b1 of the tBy loop on processor p and when a cor-responding message is received by a statement instance initeration b1 + 1 of the tBy loop on processor p.However, any dependences carried by the tBy loop will beeither forward or loop independent with respect to loops tx+1through ty�1. So, during this time, processor p will be ableto execute all of block b1 which will require Bnm�x�1 unitsof times. We therefore predict that the pipeline will be inter-rupted if and only if D+ L > Bnm�x�1.2.2 Load balanceWe examine the loop bounds of each statement to determinewhether the amount of work in each iteration will be con-stant. If any statements have unbalanced loops, then in ad-dition to considering a block distribution, we also consider acyclic distribution. When evaluating block distributions forcandidates with unbalanced workloads, we add an additionalnm�1=2 time to our overhead estimate (intended to representthe di�erence between the amount of work in a rectangulariteration space and a triangular iteration space). In Section3 we will see how the communication estimates will be higherfor cyclic distributions.2.3 Compatible candidatesAfter parallelism analysis has been performed, we will knowthe minimum degree of synchronization that will be requiredfor each candidate. For each candidate there is a set of le-gal loop permutations that lead to this minimum degree ofsynchronization. For example, the candidate space mappingf[k; i] ! [k]g for statement 1 in Figure 3 will produce par-allel execution at loop depth 2 only if the following legalloop permutation is used for statement 1: f(i; k)g. Similarly,the candidate space mapping f[k; i; j]! [j]g for statement 2will produce parallel execution at loop depth 2 if any of thefollowing legal loop permutations are used for statement 2:f(k;�j;�i); (k;�j; i); (k; j;�i); (k; j; i)g.for k = 1 to nfor i = k+1 to n1 a(i,k) = a(i,k) / a(k,k)for j = k+1 to i2 a(i,j) = a(i,j) - a(k,j)*a(i,k)Figure 3: Gaussian eliminationUnfortunately, in this case, because of data dependences,the �rst statement's permutation can not be used with anyof the second statement's permutations. In other words, ifwe select candidate f[k; i] ! [k]g for the �rst statement andcandidate f[i; j; k] ! [j]g for the second statement, then wewill not be able to achieve parallelism at loop depth 2 for bothstatements no matter how we reorder the iterations. Thus,analyzing parallelism for each statement in isolation can leadto overestimation of parallelism.To address this problem, we consider all pairs of state-ments (p; q) and determine which candidates of statement p4



are compatible with which candidates of statement q. Can-didate cp of statement p is compatible with candidate cq ofstatement q if there exists permutations �p and �q for state-ments p and q respectively such that �p requires the minimumdegree of synchronization to be used for cp, �q requires theminimum degree of synchronization to be used for cq and �pis compatible with �q (see Subsection 2.4).This compatibility information will be incorporated intothe graph constructed in Section 4 to try to ensure that par-allelism is not overestimated in the way described above. Thecompatibility tests we have described are only performed oneach pair of statements in isolation. It is theoretically pos-sible for each pair of selected candidates to be compatiblebut for the set of candidates as a whole to be incompatible.However, since we use transitive dependences in determiningwhich permutations are compatible (see Subsection 2.4), itis very unlikely that this will occur. We have analyzed allof the benchmarks used in this paper and determined in allcases that there do exist globally compatible permutationsfor all statements that produce the degrees of parallelism asestimated by our system.2.4 Compatible permutationsTo determine whether permutation �p for statement p is com-patible with permutation �q for statement q we use the fol-lowing test. First, we construct a set of direction vectorsthat describe to the order in which the iterations of state-ment q will be executed if we apply loop permutation �q.These direction vectors don't correspond to actual data de-pendences, but rather to ordering constraints that will besatis�ed if that permutation is used. For example, if we weregoing to use permutation (k; i; j) for statement 2 in Figure 3then we would construct the following set of direction vectorsf(0; 0;+); (0;+; �); (+; �; �)g. In general, the set will be:cqq = [m2f0;:::;n�1g8<:�q(0; : : : ; 0| {z }m ;+; �; : : : ; �| {z }n�m�1 )9=;where �q(x1; : : : ; xn) means apply permutation �q to the vec-tor (x1; : : : ; xn). Applying a permutation to a direction vectoralso involves reversing directions as indicated by the permu-tation. For example, if we were going to use permutation(k; j;�i) for statement 2 then we would construct the follow-ing set of direction vectors f(0;+; 0); (0; �;�); (+; �; �)g.Next, we combine these ordering constraints with thetransitive dependences between statements p and q to infernew ordering constraints on statement p under the assump-tion that we will use permutation �q for statement q. Thenew ordering constraints are:cpp = tpq � cqq � tqpPermutation �p is compatible with permutation �q if and onlyif �p is legal with respect to the new set of ordering constraintscpp. For example, if in the example from Figure 3, �2 =(k; j;�i) then:c22 = f(0;+; 0); (0; �;�); (+; �; �)gt12 = (0; 0)

t21 = (+; 0+)c11 = (+; �)So permutation (i; k) for statement 1 is not compatible withpermutation (k; j;�i) for statement 2 because (i; k) is notlegal with respect to c11.3 Communication AnalysisNow that we have analyzed the parallelism available in eachstatement, we estimate the communication incurred by eachdistribution. Communication analysis requires a �nite set ofcandidate space mappings for each statement. In this sec-tion we only consider linear space mappings. In Section 5we explain how to select constant o�sets to add to the linearmappings.Our primary assumption is that communication will onlybe required between processors if one processor writes a valueto a location and some other processor later reads that valuefrom that location. We use value-based 
ow dependence re-lations [PW93] to obtain accurate indications of the relativevolumes of di�erent inter-processor communications. Valuebased dependence relations precisely describes which itera-tions actually read values written by which other iterations.For example, there is no value based 
ow dependence fromstatement 1 to statement 3 in Figure 4, since all memory lo-cations written by statement 1 are overwritten by statement2 before statement 3 can read them. The value based 
owdependence from statement 2 to statement 3 would be repre-sented by the dependence relation f[i; i]! [i; i] j 1 � i � ng.From this information we can determine that only n valueswill be communicated from statement 2 to statement 3, de-spite the fact that both statements have n2 iterations.for i = 1 to nfor j = 1 to n1: a(i,j) = ...2: a(i,j) = a(i,j) + ...3: ... = a(i,i) + ...Figure 4: Value based dependence exampleWe simplify matters by assuming that all loops have someunknown constant number of iterations \n" (even those withknown constant loop bounds). This allows us to associatewith each value based 
ow dependence a dimensionality (orrank). This, in turn, allows us to obtain accurate indicationsof the relative volumes of di�erent inter-processor communi-cations without having to resort to complex and expensivesymbolic volume estimation algorithms [Pug94].For each value-based 
ow dependence, we consider eachcombination of candidate space mappings for the statementsinvolved in the dependence. By examining the equality con-straints in the dependence relations we try to determine thedi�erence between the virtual processor to which the �rst5



for t = 0 to ITERSfor j = 0 , DIM-1for k = 1, DIM-11: X[j, k] = ...for j = 0 , DIM-12: ... = X[j, DIM-1] + ...d12 : f[t; j; k]! [t; j] j k = DIM� 1 ^ 0 � t � ITERS^0 � j < DIM^ 2 � DIMgFigure 5: Value based dependence exampleStmt 20 t j0 z nc ncStmt t nc z nc1 j nc nc zk DIM-1 nc ncz : zero, nc : not constantTable 1: Virtual processor di�erencesstatement is mapped and the virtual processor to which thesecond statement is mapped. We check for possible di�erencesof: zero , a constant other than zero, and not constant. Table1 shows each combination of space mappings for statements1 and 2 in Figure 5, with information about the di�erence invirtual processors for the value based 
ow dependence shown.If the di�erence in virtual processors is zero then we es-timate that there will be no communication. In the case ofself dependences, this estimate is always exact. In the case ofnon self dependences, this constitutes an optimistic assump-tion that the statements will be assigned identical constantsin Section 5. If the di�erence in virtual processors is a non-zero constant, then we assume that nearest neighbor commu-nication will occur. Again, in the case of self dependences,this is always true. In the case of non self dependences, thisconstitutes an pessimistic assumption that the di�erence be-tween the constants assigned to the statements will not bethe same as the non-zero constant di�erence between the vir-tual processors (if that were the case then there would be nocommunication).If we are considering a blocked distribution and the com-munication is nearest neighbor, then many of the dependenceswill be between di�erent virtual processors that are mappedto the same physical processor. So, for a dependence of di-mension nd, we estimate the amount of inter-processor com-munication as nd=B (where B is the number of virtual pro-cessors in each block). If the communication is not nearestneighbor, or if we are considering a cyclic distribution, thena dependence with dimensionality nd has a communicationestimate of nd.

4 The Search ProblemWe now represent the space mapping selection problem as aweighted graph. The graph will contain a node correspondingto a each candidate space mapping of each statement. Thenode weights will be the parallelism overheads as derived inSection 2 and the edge weights will be the communicationestimates as derived in Section 3.4.1 Incompatible candidatesIf incompatible candidates exist (see Sub-section 2.4), theparallelism that can be achieved using some candidate spacemapping may depend on which candidates are chosen forother statements. We therefore use two nodes to representsuch candidates. In one node, we will optimistically assumethat the degree of parallelism that we estimated when con-sidering the statement in isolation can be achieved and inthe other node will pessimistically assume that choices madefor other statements will force us to use a permutation thatleads to no parallelism for this statement. The communica-tion costs will be the same for both nodes. If two candidatesare incompatible then we do not want to simultaneously se-lect the optimistic version of both candidates. To ensure thatdoes not occur, we add an edge with in�nite cost between theoptimistic versions of incompatible candidates.4.2 The simple search procedureMany previous approaches to automatically minimizing inter-processor communication use heuristic or greedy algorithms.We instead solve the problem exactly. The problem is to selectexactly one node from the weighted graph for each statementsuch that the sum of the node costs of selected nodes and sumof edge costs between selected nodes is minimized. Our basicapproach is simple; we perform an exhaustive search throughall possible selections of nodes and choose the one with thelowest overall cost. In order to solve the problem in a feasi-ble amount of time, we have developed a number of e�ectivebut optimality-preserving pruning strategies. Figure 6 showsa simpli�ed version (without any optimizations) of the recur-sive depth-�rst search algorithm. Ck is the list of candidatespace mappings for statement k, N is the number of state-ments, vi(s) is the parallelism overhead associated with usingmapping s for statement i, and eij(si; sj) is the total cost ofcommunication between statements i and j under mappingssi and sj respectively (or in�nity if the nodes correspond tothe optimistic versions of incompatible candidates).4.3 Pruning StrategiesOnce we have determined the cost of at least one solution, wecan use that cost to prune our search space. Suppose we havea solution with cost c and we are considering a partial solutionde�ned by a function S from some subset of the statementsto the space mappings currently being considered for thosestatements. We de�ne:P (S) = Xi2domain(S) vi(S[i]) + Xj2domain(S)^j�i eij(S[i]; S[j])6



search (statement k)foreach space mapping s 2 CkS[k] = sif (k < N)search(k+ 1)else cost =PNi=1(vi(S[i]) +Pij=1 eij(S[i]; S[j]))if (cost < best cost)best cost = costrecord fS[1]; : : : ; S[N ]g as bestStart by calling search(1)Figure 6: Simpli�ed search algorithmIf P (S) � c, then we can terminate consideration of the par-tial solution, since its total cost cannot be better than thatof the solution we already have.We can perform further pruning if we can determine alower bound on the cost that will be contributed by state-ments for which a candidate has not yet been chosen (i.e.,without actually considering all combinations of selectionsand choosing the best one). The lower bound that we useis: lb(S) = Xi62domain(S) mins2Ci(P (S [ fi! sg) � P (S))That is, lb(S) is the sum of the edge costs from all statementsfor which a candidate has been chosen to the best candidatesof each of the statements for which a candidate has not beenchosen, plus the node costs of each of these candidates. IfP (S) + lb(S) � c then we can terminate consideration of thepartial solution.Given that complete solutions with low costs allow us toprune more than complete solutions with high costs, it is ad-vantageous to �nd low cost solutions early in the search pro-cess. We are free to consider the candidate space mappingsfor each statement in any order, so we choose an order thatis most likely to lead to a complete low cost solution as earlyas possible. For each unselected statement i, we order thecandidates space mappings s according to P (S [ fi! sg).We are also free to consider the statements in any order.We will usually have to extensively explore the subtree of thebest candidate for each statement, however we would like toavoid having to explore the subtrees of the other candidates.If selecting the second-best candidate of a statement will causethe total cost to rise substantially then we may only have tochoose mappings for a few more statements (if any) before thetotal cost rises to a point where we can prune away the partialsolution. So, when selecting the statement to explore next,we choose the one whose second best candidate will add themost to the total cost; that is, the statement i whose secondbest candidate s is most expensive according to:P (S [ fi! sg) + lb(S [ fi! sg)Note that there is no �xed order in which the statements areconsidered. At each stage, the statement that we considernext will depends on the current context.

According to the above formula, deciding which statementto consider next would take approximately O(N4M2) time,where M is the average number of candidates per statement.By storing partial sums we can reduce this to O(NFM2),where F is the average number of statements that have value-based 
ow dependences reaching a statement. While this isstill relatively expensive, it more than pays for itself my sub-stantially increasing the number of pruning opportunities. Inour experiments we have not found the cost prohibitive; inSection 6 we present results from experiments showing thee�ciency of our pruning strategy.The above expressions simply add together parallelismoverheads and communication costs. In practice, we �rstmultiply the parallelism overheads by a machine dependentconstant that represents the ratio of computation speed tocommunication speed. By varying this parameter, we can de-termine whether or not a given solution is likely to be optimalacross a wide variety of machines.5 AlignmentAdding a constant to the space mappings can eliminate somenearest-neighbor communications. A constant o�set will haveno a�ect on communication between di�erent iterations of thesame statement. For dependences between di�erent state-ments, however, if the dependent iterations map to virtualprocessors separated by a constant distance, then adding ap-propriate constants to the selected space mappings, can mapthem to the same virtual processors. We consider adding con-stants that are a�ne functions of the symbolic constants inthe program. For example, for the program in Figure 1, wemight select \DIM-1" as the constant to add to the spacemapping of statement 1.We use a greedy algorithm to decide which dependenceswith constant virtual processor distances will be made intra-processor. We maintain a partitioning of the statements suchthat within each partition, we know the relative di�erencesbetween their constant parts. Initially all statements are inseparate partitions. We process the dependences in decreas-ing order based on their dimensionalities. For a dependencefrom statement p to statement q where statements p and qare in di�erent partitions, we can make the dependence intra-processor. In this case, we merge the partitions containingstatements p and q and record the virtual processor di�er-ence between statements p and q. When we have processedall dependences or when we have only one partition, we arbi-trarily choose a constant for one statement in each partitionand use it to compute constants for the other statements inthe partitions.6 Experimental ResultsWe �rst give experimental results to show that our algorithmsexecute in a feasible amount of time. The left half of Table2 gives a breakdown of our execution times for a variety ofbenchmark programs2 The times listed are in seconds and are2These programs together with the results that we obtain for themare available in ftp://ftp.cs.umd.edu/pub/omega/results KP957



Search timeProgram Nr Max Parallelism Comm. Search Align Total Unoptimized OptimizedStmt Nest Analysis Analysis Calls Time Calls Timege 2 3 0.04 0.02 0.00 0.00 0.08 4 0.00 2 0.00ch 3 3 0.05 0.02 0.00 0.01 0.11 9 0.00 2 0.00relax 1 3 0.06 0.02 0.00 0.00 0.09 1 0.00 1 0.00jacobi 3 3 0.10 0.03 0.00 0.01 0.16 6 0.00 3 0.00across 4 1 0.00 0.01 0.00 0.03 0.03 15 0.00 4 0.00gosser 5 3 0.08 0.03 0.00 0.10 0.16 112 0.00 5 0.00choles 6 3 0.03 0.03 0.00 0.01 0.11 201 0.01 6 0.00burg2 11 2 0.14 0.06 0.01 0.02 0.32 17839 0.99 11 0.01lczos 23 3 0.14 0.10 0.02 0.06 0.40 7132375 563.93 23 0.02givens 9 3 0.20 0.08 0.02 0.02 0.41 20776 1.28 10 0.02cholsky 14 4 0.95 0.18 0.02 0.04 1.34 458656 69.04 14 0.02intba1 41 2 0.14 0.17 0.03 0.08 0.58 71120230 � 1 hour 41 0.03e
ux 27 3 0.43 0.19 0.04 0.08 0.90 2:9� 1011 � 6 months 27 0.04mxm 2 3 0.01 0.00 0.00 0.00 0.02 4 0.00 2 0.02nas3 9 4 0.78 0.14 0.01 0.03 1.06 75926 5.86 9 0.01emit 34 3 1.55 0.48 0.05 0.08 2.68 1:3� 1012 � 2 years 34 0.05vpenta 53 2 0.82 0.77 0.17 0.18 2.36 3:7� 1016 � 105 years 53 0.17adi 17 3 1.56 0.32 0.02 0.05 2.28 2:3� 107 � 20 minutes 17 0.02shallow 65 2 0.38 0.49 0.18 0.15 1.54 4:6� 1014 � 700 years 90 0.18erle 60 3 0.82 0.76 0.30 0.18 2.56 3:6� 1021 � 1010 years 105 0.30Table 2: Breakdown of compilation times for various benchmark programsas measured by Quantify3 on a SPARCstation 10/51.The right half of Table 2 shows a comparison between theunoptimized version of our search algorithm (Figure 6) versusour fully optimized pruning search algorithm. The Calls col-umn is the number of recursive calls to the search procedure ,while the Time column is amount of time in seconds, spent inthe search procedure (times marked with an � are projectedtimes).6.1 E�ectivenessThe �rst program that we use to demonstrate our e�ective-ness is adi (as shown in Figure 7), a program fragment usedin alternating direction implicit integration. Our parallelismanalysis phase produces the results shown in Table 3. If we setour computation to communication ratio parameter to a lowvalue such as 0:01, then we obtain the space mappings shownin Figure 8(a). These space mappings result in all statementsbeing executed in parallel; however, they also result in 4 n3and 12 n2 inter-processor communications. If we set our com-putation to communication ratio parameter to a more realisticvalue such as 1:0, then we obtain the space mappings shownin Figure 8(b). These space mappings result in the �rst fourstatements being parallelized and three of the last four state-ments being pipelined, but they result in only 4 n3 and 4 n2inter-processor communications. Other researchers[AAL95]have shown that data distributions analogous to these spacemappings produce close to linear speedups on several shared3Registered trademark of Pure Software Inc.

memory machines. If we set our computation to communi-cation ratio parameter to an even higher value such as 100:0(as might be the case for a network of workstations), then weobtain the space mappings shown in Figure 8(c). These spacemappings result in all statements being executed sequentially,with no inter-processor communication.for t = 0 to ITERSfor j = 0 to DIM-1for k = 1 to DIM-11 X[j,k] = X[j,k]-X[j,k-1]*A[j,k]/B[j,k-1]2 B[j,k] = B[j,k]-A[j,k]*A[j,k]/B[j,k-1]for j = 0 to DIM-13 X[j,DIM-1] = X[j,DIM-1]/B[j,DIM-1]for j = 0 to DIM-1for k = DIM-2 to 0 by -14 X[j,k] = (X[j,k]-A[j,k+1]*X[j,k+1])/B[j,k]for j = 1 to DIM-1for k = 0 to DIM-15 X[j,k] = X[j,k]-X[j-1,k]*A[j,k]/B[j-1,k]6 B[j,k] = B[j,k]-A[j,k]*A[j,k]/B[j-1,k]for k = 0 to DIM7 X[DIM-1,k] = X[DIM-1,k]/B[DIM-1,k]for j = DIM-2 to 0 by -1for k = 0 to -1+DIM8 X[j,k] = (X[j,k]-A[j+1,k]*X[j+1,k])/B[j,k]Figure 7: Example program: adi8



Stmt Transitive Candidate space mappingsDependences t j k1 (+,*,*) (0,0,+) n3 (sequential) nL (parallel depth 2) nP (L+B) (pipeline depth 2)2 (+,*,*) (0,0,+) n3 (sequential) nL (parallel depth 2) nP (L+B) (pipeline depth 2)3 (+,*) n2 (sequential) nL (parallel depth 2)4 (+,*,*) (0,0,+) n3 (sequential) nL (parallel depth 2) nP (L+B) (pipeline depth 2)5 (+,*,*) (0,+,0) n3 (sequential) nP (L+ B) (pipeline depth 2) nL (parallel depth 2)6 (+,*,*) (0,+,0) n3 (sequential) nP (L+ B) (pipeline depth 2) nL (parallel depth 2)7 (+,*) n2 (sequential) nL (parallel depth 2)8 (+,*,*) (0,+,0) n3 (sequential) nP (L+ B) (pipeline depth 2) nL (parallel depth 2)Table 3: Synchronization costs for adi, assuming P (L+B) � Bn1 : f[t; j; k]! [j]g2 : f[t; j; k]! [j]g3 : f[t; j] ! [j]g4 : f[t; j; k]! [j]g5 : f[t; j; k]! [k]g6 : f[t; j; k]! [k]g7 : f[t; k] ! [k]g8 : f[t; j; k]! [k]g(a) : r = 0:01 1 : f[t; j; k] ! [j]g2 : f[t; j; k] ! [j]g3 : f[t; j] ! [j]g4 : f[t; j; k] ! [j]g5 : f[t; j; k] ! [j]g6 : f[t; j; k] ! [j]g7 : f[t; k]![DIM � 1]g8 : f[t; j; k] ! [j]g(b) : r = 1:0 1 : f[t; j; k]! [0]g2 : f[t; j; k]! [0]g3 : f[t; j] ! [0]g4 : f[t; j; k]! [0]g5 : f[t; j; k]! [0]g6 : f[t; j; k]! [0]g7 : f[t; k] ! [0]g8 : f[t; j; k]! [0]g(c) : r = 100:0Figure 8: Selected space mappings for adiMany papers have been written about automatic datadecomposition and most contain examples to show the per-formance of their respective algorithms. Whilst the pa-pers themselves contain impressive results (and our algo-rithm/implementation has derived those same data distribu-tions), we have found that in the few implementations that wehave been able to experiment with, most of these algorithmsare very fragile. That is, the programs as given in these pa-pers can be compiled very e�ciently, but minor, semantic-preserving changes to these programs (such as performingloop interchange, loop fusion or statement reordering), of-ten result in completely di�erent and often far from optimaldistributions.Our aim is a system that produces the same result (hope-fully an optimal result) regardless of the form in which theprogram is originally presented. In Figure 9, we demonstratethis aspect of our system by showing the results of applyingour system to all six legal loop permutations for Choleskydecomposition. We have not found any other system that isable to reproduce these results. We also derived consistentdata decompositions for all 6 permutations of Gaussian elim-ination, and for various loop restructurings of adi. In fact,our system is guaranteed to produce the same results if weare able to correctly calculate the transitive dependences. Ifwe use dependence relations to do so, we always can. If weuse extended direction vectors, our calculations may not beexact, although we have observed this only in the case of im-perfectly nested loops: for some permutations of Choleskydecomposition, extended direction vectors were insu�cient.It should also be noted that our techniques depend on beingable to accurately analyze the dependences in the program.If we cannot, perhaps due to the use of an indirection array,extensions beyond what are described in this paper will benecessary.

Related work 1 2 3 4 5 6[Gup92] p p[AL93] p p[RKU93] p p p[Fea94] p p[GAL95] p p[SSP+95] (a) p pOur system p p p p p p(a) - Starts with a functional language, so not relevantTable 4: Properties (from Section 1) of related work7 Related WorkTable 4 shows which of the desirable properties enumer-ated in Section 1 hold for a number of related works. Ourwork is most distinguished from all other related work by thefact that we are not in
uenced by the order of the compu-tation in the original program. Most related works estimateparallelism and/or partition the program into phases basedon the original loop structure.Feautrier's approach [Fea94] is to �nd a schedule for ex-ecuting the program with maximum parallelism, ignoring lo-cality and latency. Then, he uses a greedy algorithm, basedon the dimensionality of value-based dependences, to select acomputation distribution that minimizes the volume of com-munications but doesn't place on the same virtual processorany two computations that could be run in parallel. Theproblem with this approach is that it is not possible to sac-ri�ce some parallelism in a particular loop in order to reduceoverall communication costs. By making use of pipelining, wecan often obtain parallelism close to that a�orded by a doallloop we decide to ignore.Although other systems such as [RKU93, GAL95] alsouse exact rather than greedy heuristic algorithms, the size ofthe problems and the methods used are very di�erent. Weconsider a list of candidate distributions for each statement,whereas these systems consider a list of candidate distribu-tions for each array in each phase. Our search spaces willtherefore tend to be much larger. These systems use 0-1 in-teger programming formulations, whereas we have developedour own graph search algorithm. The performance numbersgiven in [GAL95] (which uses a commercial 0-1 integer pro-gramming system called LINGO) tend to suggest that oursearch algorithm is signi�cantly faster.In Kremer's system [RKU93], an admittedly arbitrary9



for i = 1 to nfor j = 1 to i-11 a(i,j) = a(i,j)/a(j,j)for k = 1 to j2 a(i,j+1) = a(i,j+1)-a(i,k)*a(j+1,k)3 a(i,i) = sqrt(a(i,i))1 : f[i; j] ! [i]g2 : f[i; j; k]! [i]g3 : f[i] ! [i]g for i = 1 to nfor k = 1 to i-11 a(i,k) = a(i,k)/a(k,k)for j = k+1 to i2 a(i,j) = a(i,j)-a(i,k)*a(j,k)3 a(i,i) = sqrt(a(i,i))1 : f[i; k] ! [i]g2 : f[i; k; j]! [i]g3 : f[i] ! [i]g for j = 1 to n1 a(j,j) = sqrt(a(j,j))for i = j+1 to n2 a(i,j) = a(i,j)/a(j,j)for k = 1 to j3 a(i,j+1) = a(i,j+1)-a(i,k)*a(j+1,k)1 : f[j] ! [j]g2 : f[j; i] ! [i]g3 : f[j; i; k]! [i]gfor j = 1 to n1 a(j,j) = sqrt(a(j,j))for i = j+1 to n2 a(i,j) = a(i,j)/a(j,j)for k = 1 to jfor i = j+1 to n3 a(i,j+1) = a(i,j+1)-a(i,k)*a(j+1,k)1 : f[j] ! [j]g2 : f[j; i] ! [i]g3 : f[j; k; i]! [i]g for k = 1 to n1 a(k,k) = sqrt(a(k,k))for i = k+1 to n2 a(i,k) = a(i,k) / a(k,k)for j = k+1 to i3 a(i,j) = a(i,j) - a(i,k)*a(j,k)1 : f[k] ! [k]g2 : f[k; i] ! [i]g3 : f[k; i; j]! [i]g for k = 1 to n1 a(k,k) = sqrt(a(k,k))for i = k+1 to n2 a(i,k) = a(i,k)/a(k,k)for j = k to nfor i = j+1 to n3 a(i,j+1) = a(i,j+1)-a(i,k)*a(j+1,k)1 : f[k] ! [k]g2 : f[k; i] ! [i]g3 : f[k; j; i]! [i]gFigure 9: All six legal loop permutations for cholesky decomposition with selected space mappingsscheme is used to identify a sequential loop nest that con-tains a series of phases, which are executed atomically (i.e.,without overlap). Parallelism is exploited within each phasebut not between them. Using techniques not described in[RKU93], a set of candidate distributions are generated foreach phase, and the system determines the cost of executingeach phase in each distribution and the cost of the remap-ping variables between each transition. The system is verydepended on obtaining a good partitioning of the programinto phases and on having a good method to generate andevaluate distributions for each phase.The system described in [GAL95] uses a static data de-composition for the entire program. They minimize commu-nication volume and insure that the program can be executedin parallel simply by making one of the loops in the originalprogram a doall loop. They do not consider transformationssuch as loop distribution or interchange and do not considerpipelined parallelism nor the di�erences in synchronizationcosts between di�erent candidate loops.8 ConclusionWe believe that we have succeeded in our goal of buildinga system that simultaneously optimizes for communicationand parallelism without resorting to greedy or heuristic algo-rithms, and without being in
uenced by the order of the com-putation in the original program. Our system remains heuris-tic in one major way: we combine the e�ects of parallelismand communication simply by multiplying one by a constantparameter and then adding them together. This method ofcombination will be inaccurate if communication can be sub-stantially overlapped with computation or with other commu-nication. This heuristic was forced on us by a \chicken andegg problem": it is di�cult to distribute the computationsuntil the �nal order of the computations is known, but it isalso di�cult to order the computations until the distributionis known. Our heuristic works well in practice because thelargest communications are unlikely to be substantially over-lapped with computation. In future work, we will look into
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