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This dissertation consists of three chapters that analyze issues relating to auto-

mobile fuel economy. Chapter 1 discusses automobile fuel economy regulations in the

United States. The new U.S. Corporate Average Fuel Economy (CAFE) standards

not only tighten the target fuel economy to be achieved by automakers, but also

make significant changes to the design/structure of CAFE standards by introducing

three policy instruments (footprint-based targets, intra-firm transferring of fuel effi-

ciency credits between passenger cars and light trucks, and inter-firm trading of fuel

efficiency credits). While there are a number of previous studies on the impact of

tightening CAFE standards, economists have paid little attention to the design of

CAFE standards. I use policy simulation to evaluate these policy instruments relat-

ing to the design of CAFE standards. First, I model and estimate the demand- and

supply-sides of the U.S. vehicle market using various data sets. Then, based on the

estimation results, I simulate the vehicle market and the demand for driving under

four counterfactual CAFE policies with different designs, and examine the impacts of



the three policy instruments. Simulation results suggest: (1) footprint-based targets

have little impact on market shares, producer profits, consumer surplus, and gasoline

use; (2) inter-firm credit trading lowers overall compliance costs by about $110-$140

million, and thus increases social welfare; and (3) allowing intra-firm credit transfer-

ring (but not inter-firm credit trading) reduces aggregate gasoline consumption by

0.1-0.25%.

Chapter 2 proposes a new approach to analyzing how automobile fuel economy

is valued in the market, using a hedonic regression framework. A distinctive feature

of my approach is the use of each vehicle’s miles traveled: a consumer’s marginal

willingness to pay (MWTP) for fuel economy is inferred with her vehicle’s miles trav-

eled. With the inferred MWTP, we apply the steps of the standard hedonic method

backward and estimate each vehicle’s marginal and total price of fuel economy, and

consumers’ discount rate for future fuel cost savings. We find that the standard

hedonic method may not provide a stable and reasonable estimate of the value of

fuel economy, likely due to the omitted variable bias from vehicle attributes such as

safety features, interior equipment and reliability. This method makes it possible to

separate the portion of vehicle price that is attributable to fuel economy, and signif-

icantly alleviates the omitted variable bias. Applying the procedure to model year

2001 vehicles in the U.S. market, we estimate that consumers discount future fuel

cost savings at the annual rate of 26-43%, that for the middle case of the discount

rate of 34%, the price of a 0.1 gallon per 100 miles improvement in fuel efficiency is

on average $75 (in 2000 U.S. dollars), and that for the same case, the average total

price of fuel economy is $1,950. We also find that larger, less fuel efficient vehicles



tend to have higher marginal and total prices of fuel economy.

Chapter 3 examines whether Japanese fuel economy regulations established

in the 1990s induced technological progress in Japanese automakers’ technology for

providing fuel economy. By observing how fuel economy of automobiles has improved

after controlling for changes in vehicle characteristics such as weight and power, I

find that fuel economy improvement accelerated after regulations were introduced,

implying induced innovation in fuel efficiency technology.
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Chapter 1: Evaluating New Policy Instruments of the Corporate Av-

erage Fuel Economy Standards: Footprint, Credit Trans-

ferring, and Credit Trading

1.1 Introduction

Reducing automotive fuel consumption has been an important policy issue in the

United States. Vehicle fuel combustion is a large source of greenhouse gas emissions

and local air pollutants.1 In addition, large demand for gasoline increases imports of

foreign oil and makes the U.S. economy more sensitive to oil supply disruptions and

price shocks.2 Different types of policies have been implemented to cut automotive

fuel use, including gasoline taxes, Corporate Average Fuel Economy (CAFE) stan-

dards, and the gas guzzler tax. Among these policies, this paper focuses on CAFE

standards, a set of federal regulations that are believed to have played a key role in

curbing automotive fuel consumption. CAFE standards have been administered by

the National Highway Traffic Safety Administration (NHTSA) and, roughly speak-

ing, require an automaker to achieve a certain level of average fuel economy in its

1For example, in 2010 carbon dioxide emissions from vehicle fuel combustion accounted for
25.6% of total U.S. greenhouse gas emissions (Environmental Protection Agency, 2012, Table 2-
12).

2Imported crude oil accounts for about 50% of U.S. consumption.
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fleet.

Recently, CAFE standards have been radically reformed in terms of stringency

and structure.3 With the Energy Independence and Security Act of 2007 and the

initiative of the Obama Administration, CAFE standards have been aggressively

tightened. The current goal is to improve the average fuel economy of new passenger

cars and light-duty trucks to 34.1 miles per gallon (mpg) in model year (MY) 2016,

and to 40.3-41.0 mpg in MY 2021, as compared to 29.3 mpg achieved in MY 2010.

NHTSA expects large economic benefits of the reformed fuel economy regulations:

The net benefits over the useful lives of MY 2012-2016 vehicles is estimated to be

$130.7 billion (at a 3% discount rate) or $94.5 billion (at a 7% discount rate), in

2007 dollars (Environmental Protection Agency and Department of Transportation,

2010, Table I.C.1-1).

In addition to increased stringency, CAFE standards have also experienced

significant structural/design changes. From the 1970s until recently, the standards

had required each automaker’s (sales-weighted) average fuel economy in each vehicle

category to exceed the category’s target value, which is common to all automakers.4

The new CAFE standards have completely reformed this structure. The three most

important instruments introduced in the standards are footprint-based targets, intra-

firm credit transferring and inter-firm credit trading.

Footprint-based targets make an automaker’s target value dependent on the size

3Beginning in model year 2012, automobile fuel economy is additionally regulated by the Envi-
ronmental Protection Agency’s national greenhouse gas (GHG) emissions standards as well. These
two sets of federal regulations form a consistent, harmonized national program for improving auto-
mobile fuel economy.

4The three vehicle categories are domestic passenger cars, import passenger cars, and light-duty
trucks.
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of vehicles it sells. In each vehicle category, a firm that on average produces smaller

vehicles needs to attain better average fuel economy than another firm that on aver-

age produces larger vehicles. As compared to conventional standards, footprint-based

standards are intended to reduce the incentive for automakers to downsize vehicles in

order to improve fuel economy and comply with the standards. Downsizing vehicles

is the easiest way to improve fuel economy, but smaller vehicles are considered to

have higher fatality risks than larger vehicles if involved in a traffic accident.

The other two instruments provide flexibility in how automakers meet the tar-

gets, and they are expected to reduce the overall costs for automakers to comply with

the standards. Intra-firm credit transferring allows an automaker to over-comply in

a category and earn credits, then use the credits to offset under-compliance in an-

other category. With inter-firm credit trading, an automaker can sell extra credits

from over-compliance to other automakers; conversely, it can buy credits from other

automakers to offset under-compliance.5 These new instruments have structurally

changed CAFE standards, and may have various impacts on the vehicle market and

gasoline consumption.

A number of previous studies have analyzed how CAFE standards and other

policies affect consumers, producers and gasoline consumption. For this purpose,

these studies model consumer demand for automobiles and producer behavior in an

imperfectly competitive auto market. Then, the demand and supply models predict

how consumers and producers react to a given policy, allowing them to compare the

5For a complete description of these instruments, see Environmental Protection Agency and
Department of Transportation (2010).
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impacts of different policies through counterfactual policy simulations. For example,

Goldberg (1998), Kleit (2004), Klier and Linn (2012), Jacobsen (forthcoming) and

Whitefoot et al. (2012) analyze a tightening of CAFE standards (i.e., an increase in

target fuel economy that automakers need to achieve). Bento et al. (2009) examine

an increase in U.S. gasoline taxes. Austin and Dinan (2005) compare the effects of

tightening CAFE standards and increasing gasoline taxes.

I also analyze CAFE standards based on a similar framework, but I focus on

a different aspect of CAFE standards than most of the above-mentioned studies.

Specifically, this paper aims to examine the structure/design of CAFE standards,

rather than the stringency of the standards as in most previous studies. I do this

by simulating the impact of counterfactual policies that differ in structure, but not

in stringency. These counterfactual policies can feature one or more of the three

instruments above.

Among studies that use counterfactual simulations to analyze CAFE standards,

very few have looked at these instruments. Coleman and Harrington (2010) analyze

footprint-based targets and intra-firm credit transferring between categories, but not

inter-firm credit trading. Austin and Dinan (2005) look at inter-firm credit trading

without considering footprint-based targets and intra-firm credit transferring.6

This paper differs from these previous studies on the design of CAFE standards

in several ways. First, I consider all of the three instruments introduced in the

reformed CAFE standards. As discussed above, the literature has not simulated

6Although Whitefoot et al. (2012) also consider footprint-based targets and intra-firm credit
transferring, their focus is on tightening of CAFE standards, but not on footprint-based targets and
credit transferring. As an extension to his analysis, Jacobsen (forthcoming) simulates a simplified
version of footprint-based targets.
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a case where the three instruments are in effect simultaneously. Since the actual

reformed CAFE standards include all of these, it is important to examine how they

altogether affect consumers, producers and gasoline consumption.

Second, I make use of recent developments in the economic modeling and es-

timation of the vehicle market, which would lead to a more accurate evaluation of

the instruments of interest. In particular, following the approach of Bento et al.

(2009), I simultaneously estimate consumers’ vehicle purchase and use decisions.7

This approach can analyze the two connected decisions in a unified framework that

is consistent with economic theory. For example, it can account for the tendency that

households with high driving demand consider fuel economy an important attribute

in making a vehicle purchase decision, as compared to households with low driving

demand. Previous studies on the structure of CAFE standards model vehicle choice

decisions only. Since the value of fuel economy to consumers crucially depends on

how much the vehicle is driven, incorporating a model of VMT demand is essential

in analyzing policies relating to fuel economy and gasoline consumption. Indeed,

my simulations suggest the fact that light-duty trucks are typically driven longer

distance than passenger cars greatly influences the impacts of policy instruments on

aggregate gasoline consumption.

Third, I carefully set parameters of counterfactual standards, which determine

target fuel economy levels of each automaker, so that the market average fuel ef-

ficiency at the simulated equilibrium is almost the same across all policies.8 This

7Vehicle use is measured by vehicle miles traveled, or VMT.
8Roughly speaking, by adjusting the stringency of the standards, I (as the policymaker) can

control the fuel economy level achieved by automakers that are marginally complying with the
standards. Thus, I can also affect the market average fuel economy realized in the equilibrium.
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ensures that different policies are essentially at the same level of stringency as mea-

sured by the market average fuel efficiency. The difference is less than 0.1% between

any counterfactual policies in this paper, while in Coleman and Harrington (2010)

it is in some cases larger than 1%. Since I want to evaluate the effectiveness of dif-

ferent policy instruments, it is important that counterfactual policies featuring these

instruments are at the same level of stringency. Otherwise, it is unclear whether

differences in simulation outcomes are attributable to differences in structure or in

stringency. Setting counterfactual policies at the same level of stringency makes it

possible to directly compare the effectiveness of different policy instruments.

My simulations overall provide the following policy implications. First, footprint-

based targets do not have significant impacts on producer profits, consumer surplus,

gasoline use, and market shares of different vehicle models. How targets are set does

not matter so much compared to other policy instruments.

Second, allowing intra-firm credit transferring but not inter-firm credit trad-

ing is effective in reducing aggregate gasoline consumption. This policy induces

automakers to improve light-duty trucks’ fuel economy and worsen passenger cars’.

Because light-duty trucks are typically driven longer distance, this leads to a re-

duction in aggregate gasoline use (by about 0.1-0.25%). Under the circumstances in

which gasoline is expensive and/or externalities from gasoline use are taken seriously,

this policy option would become more attractive for the regulator and the society.

Third, introducing inter-firm credit trading lowers compliance costs to achieve

a given level of market average fuel economy by about $110-140 million. This is

because inter-firm trading shifts the role of improving fuel economy at additional

6



production costs to automakers that can do so more cheaply. Due to this production

cost reduction, inter-firm credit trading increases social welfare. Indeed, I find that

the policy with inter-firm trading gives the highest social welfare among the counter-

factual policies considered. However, allowing inter-firm credit trading in addition

to intra-firm credit transferring nullifies the effect of the latter on cutting aggregate

gasoline consumption.

The rest of the paper is organized as follows. Section 2.6 describes the datasets

used in the study. Section 1.3 focuses on the demand side of the new vehicle mar-

ket, and estimates a model of consumers’ vehicle choice and VMT demand. The

estimates from Section 1.3 are called on repeatedly in later sections. Section 1.4

considers automakers’ profit maximization in an imperfectly competitive U.S. new

vehicle market and under the actual CAFE standards. From first order conditions,

I derive estimates of how improving fuel efficiency changes the production costs of

vehicles. Based on the results of Sections 1.3 and 1.4, Section 1.5 simulates four coun-

terfactual CAFE standards to evaluate and compare the effects of footprint-based

targets, credit transferring and credit trading. Section 1.6 concludes.

1.2 Data

I use household and vehicle data from 2001 to evaluate the impacts of different

mechanisms of CAFE standards. I estimate households’ vehicle and VMT choices

by using 2001 National Household Travel Survey, and data from various sources

on gasoline prices and vehicle sales/prices/attributes in 2001. Then, I analyze the
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supply side of the year 2001 vehicle market, with taking into account actual CAFE

standards and each automaker’s compliance status at that time. Counterfactual

policies are simulated based on year 2001 data and estimates from the demand- and

supply-side models. Below I first describe the datasets used in this study, and then

discuss why I choose to focus on year 2001.

1.2.1 Description of the Datasets

The data used for this study come from various sources. First, household data are

from 2001 National Household Travel Survey (NHTS), a national survey conducted

by the Department of Transportation. This survey contains information on the

vehicle(s) each surveyed household owns (such as make, model and model year) and

the estimated annual VMT of the vehicle(s), as well as household characteristics

(such as income and household size). Additionally, gasoline prices that households

face come from state level data from the Energy Information Administration.

Second, the data on vehicle models (such as sales, price, fuel economy, horse

power, weight and footprint) are obtained from several sources. They are Wards Au-

tomotive Yearbook, the Environmental Protection Agency’s (EPA) “Fuel Economy

Test Car List Data”, MSN Autos (http://home.autos.msn.com/) and manufac-

turers’ automotive fuel economy reports submitted to the National Highway Traffic

Safety Administration.

Among these datasets, EPA’s “Fuel Economy Test Car List Data” and man-

ufacturers’ automotive fuel economy reports contain detailed, disaggregate informa-

8
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tion on vehicle attributes and market sales.9 In particular, manufacturers’ automo-

tive fuel economy reports have not been used in previous studies, and while other

sources include U.S. market sales data only up to the nameplate level (e.g., Chevrolet

Malibu, Ford Explorer, Toyota Camry), manufacturers’ reports provide it at a more

disaggregate level. Specifically, they distinguish vehicle configurations that are un-

der the same nameplate but with different specifications (in terms of such attributes

as engine size, weight class, horsepower and transmission), and have information

on each configuration’s model year sales in the entire U.S. market. This detailed

information allows me to distinguish different models (e.g., Toyota Camry CE and

Toyota Camry LE) within the same nameplate in the following estimation and simu-

lation, while other studies at the U.S. market level generally cannot do so, and they

analyze only up to the nameplate level. In practice, different models under the same

nameplate are often equipped with very different attributes (e.g., engine size, weight

class, horsepower and transmission), and consumers choose to buy, and automakers

set the price and attributes of, each model, but not each nameplate. Thus, using

these datasets makes estimation and simulation closer to the choices faced by actual

consumers and producers.

On the other hand, the NHTS identifies vehicles only up to the nameplate level,

so the model level information on households’ vehicle choice is unavailable. That is,

9Fuel economy values contained in these sources are unadjusted values used for CAFE stan-
dards. Fuel economy ratings that consumers see are adjusted by the EPA to account for actual
driving conditions. Roughly, adjusted values are 15% less fuel efficient. Throughout this paper, I
take account of the difference between unadjusted and adjusted fuel economy: I use adjusted fuel
economy when dealing with the consumer side (e.g., the price of driving, gasoline consumption),
and unadjusted fuel economy when calculating the (corporate or market) average fuel economy, and
calculating credits.
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in the data, we observe only the nameplate purchased by each household, but not the

model under the nameplate. Below I construct an estimation method that enables

analysis of vehicle choice at the model level, even when choice data at that level is

unavailable.

Table 1.1 reports summary statistics of the sample of households and vehicles

used in this study. The sample consists of 5884 households who purchased new model

year (MY) 2001 vehicles, and 457 MY 2001 vehicle models under 185 nameplates.

1.2.2 Reasons for Using Year 2001 Data

The National Household Travel Survey (NHTS), which contains information on

households’ vehicle and VMT choices, is conducted between mid-2001 and mid-2002

(2001 NHTS), and between mid-2008 and mid-2009 (2009 NHTS). Since I analyze

households’ purchase and use of new vehicles, these survey periods imply that focus-

ing on model year (MY) 2001 vehicles or MY 2008 vehicles is most appropriate for

my analysis.10

I choose to concentrate on 2001 rather than 2008 because gasoline prices were

relatively stable since the 1990s until around 2002, but highly volatile around 2008.

The model used in my estimation and simulation (as well as in many previous studies

discussed above) is an equilibrium model, in which, roughly speaking, manufacturers

10The NHTS does not tell us whether a vehicle in the sample is purchased new or used. Yet,
MY 2001 vehicles in the 2001 NHTS and MY 2008 vehicles in the 2009 NHTS are mostly purchased
new. A vehicle from a prior model year (i.e., MY 2000 and earlier for the 2001 NHTS, and MY
2007 and earlier for the 2009 NHTS) is more likely to be purchased used, and in such a case we
cannot obtain the desired information about the household who purchased it new. The 2001 NHTS
also includes MY 2002 vehicles, and the 2009 NHTS includes MY 2009 vehicles, but the number of
observations is much smaller than that for MY 2001 or 2008 vehicles.
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determine fuel economy of vehicles to respond to consumers’ demand (willingness

to pay) for it. The price of gasoline is a crucial factor affecting consumers’ demand

for fuel economy: The higher the price, the more consumers are willing to pay for

better fuel economy. In the actual market, consumers’ demand for fuel economy

can respond quickly to gasoline price changes, while automakers cannot adjust fuel

economy very frequently to respond to the demand changes. Thus, in the actual

vehicle market, gasoline price changes disturb the “market” for fuel economy in a

way that demand and supply do not balance. Therefore, applying the equilibrium

model to analyze a situation in which gasoline prices are changing significantly may

lead to inaccurate results. Gasoline prices in the U.S. had been very stable since the

1990s until around 2002, and then started to increase sharply and became volatile.

Gasoline prices were extremely volatile around 2008.11 For this reason, I analyze the

vehicle market in year 2001, whose conditions are more appropriate for the structure

of my model than year 2008’s.

Simulations based on the 2001 data can provide useful insights for understand-

ing and predicting manufacturer behavior under the current CAFE standards as

well. This is because automakers in 2001 were overall under the circumstances that

are qualitatively similar with respect to fuel economy and CAFE standards to those

faced by automakers in more recent years, and my simulations reproduce these cir-

cumstances. Table 1.2 shows selected automakers’ standard (target) to be achieved,

average fuel economy (in mpg) and sales volume in 2001 and 2012 (or 2011).12 The

11In 2008, the highest price is over $4.10, and the lowest is around $1.60 (weekly U.S. regular
gasoline prices per gallon).

12The data are taken from National Highway Traffic Safety Administration (2012). Model year
(MY) 2012 data are projected values. Sales data for 2012 are still unavailable, so 2011 data are
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firms shown in the table are the six largest automakers in the U.S. market in 2001,

and continue to be so in the current market as well. Both in 2001 and 2012, the

U.S. Big Three usually achieve lower fuel economy, and seem more constrained by

CAFE standards than Japanese automakers.13 My simulations reproduce similar

situations, and thus can provide helpful policy implications for analyzing the current

CAFE standards.

1.3 Demand Side of the New Vehicle Market

This section considers the demand side of of the new vehicle market. I set up and

estimate a model of household vehicle and VMT choice with data from model year

2001, and discuss estimation results. Fundamentally, the following model resembles

the discrete-continuous model of consumer demand pioneered by Dubin and McFad-

den (1984) and also used in the vehicle literature to analyze the discrete choice of

vehicle purchase and the continuous choice of VMT (e.g., Mannering and Winston,

1985; West, 2004). As in other papers based on Dubin and McFadden (1984), my

model is a structural model of consumer demand for vehicle purchase and utilization,

and the discrete and continuous choices are connected by Roy’s identity. Unlike the

sequential estimation approach of Dubin and McFadden (1984), I employ a variant

of the more recent approach developed by Bento et al. (2009) that simultaneously es-

shown instead. Honda’s MY 2012 standards are strangely low in all vehicle categories; they are
most likely wrong and obtained because targets were calculated with a formula for MY 2011 by
mistake.

13Footprint-based targeting makes MY 2012 targets differ across automakers even within the
same category. In 2012, intra-firm credit transferring is available as well as inter-firm credit trad-
ing. With intra-firm transferring, Ford’s under-compliance import passenger cars can be offset
by its over-compliance in other categories, and so is General Motors, Toyota and Nissan’s under-
compliance light duty trucks.
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timates the two choices in a full information maximum likelihood framework. Other

papers using a similar approach include Gillingham (2011) and Spiller and Stephens

(2012).

1.3.1 Econometric Model

Suppose that consumer i is choosing a new vehicle to purchase. The household’s

decision making process can be modeled as follows. Given a utility function and

vehicle models available in the market, the household predicts the utility level that

will be attained from owning each vehicle. Comparing all vehicles, it decides to

buy the one that is predicted to give the highest utility. In calculating the utility

from owning vehicle model jk (model k of nameplate j), household i considers the

following utility maximization problem.14

V (rijk, wijk;Ωijk) = max
q̃,m̃

U(q̃, m̃;Ωijk) s.t. q̃ + rijkm̃ ≤ wijk, (1.1)

where m̃ is vehicle miles traveled (VMT) measured in 100 miles; q̃ is the amount of

the numéraire good (the composite of all goods/services other than VMT) consumed;

rijk is the price of household i driving model jk for 100 miles (per-gallon price for

model jk’s fuel at household i’s location times model jk’s fuel consumption rate in

gallons per 100 miles); wijk is household i’s budget available after purchasing model

14A “nameplate” refers to, for example, Toyota Camry, and a “model” refers to Toyota Camry CE
or Toyota Camry LE. A nameplate may include several models, which typically differ in powertrain
specifications.
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jk; and Ωijk is a vector of variables that are predetermined for this problem, but

shift the utility function, such as household characteristics and vehicle attributes.

V (rijk, wijk;Ωijk) is the indirect utility function resulting from the maximization

problem, which is interpreted as the maximum achievable utility if household i pur-

chases model jk. For the sake of econometric tractability, this problem explicitly

considers only one period, while vehicles are likely used over years. I will discuss

below (in subsection 1.3.2) how to incorporate the multi-period nature of vehicle

ownership into this framework.

For the purpose of estimation, I parameterize the indirect utility function

V (rijk, wijk;Ωijk) as follows.

Vijk ≡ V (rijk, wijk;Ωijk) = Ṽijk + εijk, (1.2)

Ṽijk = α1iwijk − α2ijkr
α3
ijk +

∑
h

ηhidhjk + ξjk, (1.3)

α1i = exp(β1xxxi + δ1i), (1.4)

α2ijk = exp(β2xxxi + γ2zzzjk + δ2i), (1.5)

0 < α3 < 1, (1.6)

where εijk is an iid error drawn from the standard type I extreme value distribution

for each i-jk combination; dhjk is a dummy variable that takes 1 if model jk is of

vehicle type h and 0 otherwise;15 ξjk is model jk’s fixed effect; xxxi is a vector of

household i’s (observed) characteristics; zzzjk is a vector of model jk’s attributes; δ1i,

15I consider four categories: a = 1 for passenger cars, 2 for vans, 3 for SUVs, and 4 for pickup
trucks.
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δ2i and ηhi’s represent household i’s unobserved characteristics and are randomly and

independently drawn from different normal distributions.16

Note that Vijk is the (maximum) utility level household i can achieve from

purchasing model jk, and that εijk is drawn independently from the standard type I

extreme value distribution. Therefore, conditional on household i’s unobserved het-

erogeneity Δi ≡ (δ1i, δ2i, η1i, η2i, η3i, η4i) (as well as other household characteristics,

and vehicle prices/attributes), the probability that household i purchases model jk

is

Pri(jk|Δi) =
exp
[
Ṽijk

]∑
j′
∑

k′ exp
[
Ṽij′k′

] , (1.8)

where Ṽijk is as defined in (1.3)-(1.6). I explicitly write the left hand side as the con-

ditional probability given Δi in order to explain the method of maximum simulated

likelihood below.

Applying Roy’s identity to the indirect utility function (1.2) and taking the

logarithm of both sides yields

log(m̃ijk) = log(− ∂Vijk/∂rijk
∂Vijk/∂wijk

)

= − log(α1i) + log(α2ijk) + log(α3) + (α3 − 1) log(rijk)

= −δ1i + δ2i + log(α3) + (−β1 + β2)xxxi + γ2zzzjk + (α3 − 1) log(rijk), (1.9)

16It can be shown that this indirect utility function is associated with the following quasi-linear
utility function:

U(q̃, m̃;Ωijk) = α1iq̃ − (1 − α3)
(α1i

α3

) α3
α3−1

α
1

1−α3

2ijk m̃
α3

α3−1 +
∑
h

ηhidhjk + ξjk + εijk. (1.7)

Note that if 0 < α3 < 1, U(q̃, m̃;Ωijk) is concave in m̃.
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where m̃ijk is VMT planned by household i at the time of purchase given that

household i decides on model jk. The logarithm of planned VMT is expressed as a

linear function of household characteristics, vehicle attributes and (the logarithm of)

the price of driving rijk. In particular, note that α3−1 is interpreted as the elasticity

of VMT with respect to the price of driving, conditional on vehicle choice.

In practice, the household’s planned VMT is unobservable to the econometri-

cian. What he observes is VMT reported in the NHTS. Therefore, in order to work

with observed VMT, I add to (1.9) an (independently, identically and normally dis-

tributed) error term μijk, which corresponds to the difference between observed and

planned VMT:

log(mijk) = log(m̃ijk) + μijk

= −δ1i + δ2i + log(α3) + (−β1 + β2)xxxi + γ2zzzjk + (α3 − 1) log(rijk) + μijk,

(1.10)

where mijk is observed VMT (in 100 miles) reported in the NHTS for household i

who purchased model jk.17

Conditional on household i purchasing model jk and planning to drive it

m̃ijk(×100 miles), (1.10) implies that the probability that we observe household i

17For the sample of vehicles analyzed in this study (model year 2001 vehicles), the NHTS reports
annual VMT estimates for the first year after vehicle purchase, while at the time of purchase
consumers might consider VMT and fuel spending over a period longer than a year. Later in this
section I will consider how to account for this difference.
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drive the vehicle mijk(×100) miles is

Pri(mijk|jk,Δi) = f
[
log(mijk)− log(m̃ijk)

]
, (1.11)

where f
[·] is the probability density function for the error μijk. As in (1.8), I ex-

plicitly write the left hand side conditional on Δi in order to explain the method of

maximum simulated likelihood below.

Then, the probability that household i purchases model jk and we observe the

vehicle driven for mijk(×100) miles is

Pri(jk,mijk|Δi) = Pri(jk|Δi)× Pri(mijk|jk,Δi), (1.12)

where Pri(jk|Δi) and Pri(mijk|jk,Δi) are as defined in (1.8) and (1.11), respectively.

One change is required in the indirect utility function (1.2)-(1.6) to make es-

timation possible. In (1.3), wijk is household i’s budget after purchasing model jk.

That is, wijk = yi − pjk, where yi is household i’s pre-purchase budget and pjk is

model jk’s price. The problem is that yi is unobservable in the data set. However,

plugging wijk = yi − pjk into (1.3), and noting that any term not varying over al-

ternatives (jk) does not affect the probability in (1.8), we can drop the term α1iyi,

which involves unobservable pre-purchase budget, from (1.3). Making this change, I
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re-define the indirect utility function as follows, with a slight abuse of notation:

Vijk = Ṽijk + εijk, (1.13)

Ṽijk = −α1ipjk − α2ijkr
α3
ijk +

∑
h

ηhidhjk + ξjk, (1.14)

α1i = exp(β1xxxi + δ1i), (1.15)

α2ijk = exp(β2xxxi + γ2zzzjk + δ2i), (1.16)

0 < α3 < 1. (1.17)

The only change from (1.2)-(1.6) is that (1.3) is replaced by (1.14). Demand estima-

tion that follows will be based on (1.13)-(1.17) for the part of discrete vehicle choice.

That is, vehicle choice probabilities defined in (1.8) and used in (1.12) are calculated

by (1.14)-(1.17). Since wijk does not appear in the VMT demand equation (1.9),

estimation can be based on (1.10) for the part of continuous VMT choice.

Parameters and variables that appear in both (1.13)-(1.17) and (1.10) affect

both vehicle and VMT choices in a way that is consistent with Roy’s identity. In

other words, they introduce correlation between the two choices. For example, if

there is a household characteristic (e.g., large household size, or commuting by car)

that, other things equal, tends to increase the household’s driving demand, then

conditional on purchasing a particular model, households with this characteristic

likely show higher VMT than households that are without the characteristic, but

are otherwise equal. In addition, since higher driving demand means larger benefits

from fuel efficiency, households with this characteristic tend to purchase more fuel
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efficient vehicles. Therefore, there is correlation between vehicle and VMT choices

that households with high driving demand likely buy a fuel efficient vehicle and drive

it long distance. This kind of correlation between the two choices is taken care of in

the economic model by parameters and variables appearing in both (1.13)-(1.17) and

(1.10). Among them, xxxi and zzzjk are, respectively, nrobserved household characteris-

tics and vehicle attributes that affect both choices. In the following estimations, xxxi

includes i’s household size, population density at i’s location, the number of vehicles

owned by i, and i’s annual income, while zzzjk includes vehicle footprint, acceleration

capacity, and vehicle class dummies. On the other hand, δ1i and δ1i are unobserved

(to the econometrician) household tastes affecting both choices. For example, δ1i and

δ1i may include whether or not household i plans to use the vehicle for commuting.

Terms ξjk, εijk and
∑

h ηhidhjk all appear in (1.13)-(1.14), but not in the VMT

equation (1.10). That is, they are assumed to affect discrete vehicle choice, but not

continuous VMT choice. Fixed effect ξjk represents the portion of utility of jk that

does not vary across households. As explained below, it is set to equate jk’s share

predicted by the econometric model to its observed market share.

The sum of unobserved terms εijk +
∑

h ηhidhjk captures the random (unob-

served) portion of utility from jk that varies over i, and results from factors not

explained in the econometric model (Train, 2009). As explained above, εijk is the

random portion of utility that varies over both i and jk. Random parameter ηhi,

which varies over i but not over jk, represents i’s unobserved preference on vehicle

type h that is common to all models in type h. Thus,
∑

h ηhidhjk induces correlation

among different models in each type. That is, the household’s unobserved hetero-
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geneous preference (εijk +
∑

h ηhidhjk) is correlated among two models of the same

vehicle type, but uncorrelated among two alternatives in different categories. With

these terms, this econometric model is analogous to a nested logit model. The magni-

tude of the correlation within type h is controlled by the variance of the distribution

of ηhi.

The error term in (1.10), μijk, consists of unobserved (to the econometrician)

factors that affect reported VMT, but not the vehicle choice. For example, μijk may

include various factors affecting realized VMT but not considered by the consumer at

the time of vehicle purchase, such as unpredicted changes in the household’s driving

demand that occur after the purchase.

1.3.2 Automobiles as Durable Goods

In practice, automobiles are a durable good and consumers most likely plan to use

them over years. In the utility maximization problem (1.1) and the following argu-

ment so far, I have considered only one period in order to make the model econo-

metrically tractable. However, I can incorporate the multi-period nature of vehicle

ownership into this modeling framework as follows. First, q̃ in (1.1) is interpreted

as the present value sum of spending on the numéraire good (the composite of all

goods/services other than VMT) over multiple years, and wijk is interpreted sim-

ilarly. If we consider multiple periods, the present value sum of fuel spending is

calculated as
T∑
t=1

d
(t−1)
f rijktm̃t, (1.18)
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where T is the length (in years) of the household’s planning horizon, rijkt and m̃t

are, respectively, the anticipated price of driving and planned VMT in year t, and df

is a discount factor for future fuel spending, which may be lower than one for other

spending or income, so that future fuel spending is discounted faster than other

spending or income (the energy paradox).

Assuming that the household expects the price of driving to change over years

based on rijkt = d
(t−1)
r rijk1 (due to fuel price changes or fuel efficiency deterioration

over time), and also that VMT changes based on m̃t = d
(t−1)
m m̃1, we can write the

present value sum of fuel spending anticipated at the time of vehicle purchase as

T∑
t=1

d
(t−1)
f rijktm̃t = rijk1

1− (dfdrdm)
T

1− dfdrdm
m̃1. (1.19)

Therefore, we may take account of the multi-period nature of vehicle use by inter-

preting rijk and m̃ in (1.1) as

rijk = rijk1, (1.20)

m̃ =
1− (dfdrdm)

T

1− dfdrdm
m̃1. (1.21)

The 2001 NHTS includes an estimate of realized annual VMT of each surveyed

vehicle. For a model year 2001 vehicle, we can interpret that the survey shows an

estimate of the first year’s actual VMT, which is the sum of the first year’s planned

VMT, m̃1 in (1.21), and an error. Therefore, to account for durability of vehicle

use, we need a constant equal to the average household’s (1 − (dfdrdm)
T )/(1 −
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dfdrdm)(≡ K) that scales up the first year’s observed VMT.1819 Unfortunately, this

K is unobservable, so I instead choose a few reasonable values (e.g., 1, 4 and 7) for

K and report results for each case. The larger K, the more valuable fuel economy

is for the household because improved fuel economy is expected to provide greater

savings in household fuel spending.

1.3.3 Estimation Procedure

In the National Household Travel Survey, vehicles are identified only up to the name-

plate (i.e., j) level, so the model (i.e., k) level information is unavailable. That is,

in the data, we observe only the nameplate purchased by household i and its VMT

(denoted respectively by ji and miji).

With this structure of the data set as well as (1.8), (1.11) and (1.12) considered,

conditional on household i’s unobserved heterogeneity, the probability that we ob-

serve household i purchase any model under nameplate ji and drive it for miji(×100)

miles is

Pri(ji, miji|Δi) =
∑
k

{
Pri(jik|Δi)× Pri(miji |jik,Δi)

}
, (1.22)

where Pri(jik|Δi) and Pri(mijik|jiki,Δi) are defined by (1.8) and (1.11), respectively.

Integrating (1.22) over Δi gives the unconditional (on Δi) probability:

Pri(ji, miji) =

∫
Pri(ji, miji |Δi)dΦ(Δi), (1.23)

18As an illustration, if T = 2, df = 0.8, dr = 1 and dm = 0.95, then K = 1.76. If T = 8,
df = 0.95, dr = 1 and dm = 0.98, then K = 6.313.

19The constant to scale up the first year’s VMT is likely to be different across households. This
heterogeneity is absorbed into household-specific random parameters, so we can assume that K is
common to all households.

22



where Φ(·) is the joint distribution function of Δi. The above integral does not have

a closed form solution, so needs to be approximated by simulation:

P̃ri(ji, miji) =
1

A

A∑
a=1

Pri(ji, miji|Δa
i ), (1.24)

where Δa
i is the ath set of simulated independent Halton draws from Φ(·), and A is

the number of sets (A = 200 in the following estimation). Since choice probability

clearly depends on parameters to be estimated, in the following I will denote the

probability on the left hand side of (1.24) by P̃r(ji, miji |ξ, θ) to make this dependence

explicit, where ξ is a vector of ξjk’s, and θ is a vector of other parameters to be

estimated.20

I estimate parameters by the maximum simulated likelihood (MSL) estimator.21

The MSL estimator maximizes the following simulated likelihood with respect to

parameters.

ln L̃(ξ, θ) =
∑
i

Wi ln P̃r(ji, miji|ξ, θ), (1.25)

where Wi is the sample weight of household i, calculated from the NHTS data set.

Vehicle fixed effects ξ are estimated with the contraction mapping method used

in Berry et al. (1995). With this method, ξjk is set to equate the predicted market

share of jk from the econometric model with the observed market share of jk. jk’s

predicted market share is calculated with each household’s probability of choosing

20θ = [β1,β2,γ2, α3, δ̄1, σδ1 , δ̄2, σδ2 , ση1 , ση2 , ση3 , ση4 ], where N (δ̄g, σδg ) is the distribution of δgi
(g = 1, 2), and N (0, σηh

) is the distribution of ηhi (h = 1, 2, 3, 4).
21Bento et al. (2009) uses a Markov Chain Monte Carlo framework rather than maximum like-

lihood.
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jk and sample weight. Note that though each household’s choice information at the

vehicle model (k) level is unavailable in the NHTS as mentioned above, the aggregate

sales information in the U.S. market can be obtained at this level, making it possible

to set ξjk for each model.

Specifically, given parameter values θ̌ obtained at each iteration of the numeri-

cal maximization of (1.25) and some initial vector ξ0, I use the following contraction

mapping to find ξ(θ̌, s) that equates the predicted and observed market shares for

all jk’s.

ξtjk(θ̌, s) = ξt−1
jk (θ̌, s) + ln sjk − ln ŝjk

(
ξt−1(θ̌, s), θ̌

)
, (1.26)

where sjk (an element of s) is jk’s observed market share, and ŝjk is jk’s predicted

share from the econometric model. With ξ(θ̌, s) now at hand, we update θ̌ based

on the numerical maximization algorithm, and then repeat the above process until

obtaining MSL estimates θ̂. MSL estimate ξ̂jk is obtained by using the contraction

mapping at θ̂.

1.3.4 Estimation Results

Table 1.3 summarizes the results of maximum simulated likelihood estimation de-

scribed above. Point estimates and standard errors of selected parameters are re-

ported. Each column corresponds to a specific value of K, the multiplier for annual

VMT, which is shown in the last row. Household characteristics included are the

logarithm of the following variables: household size, population density, the number

of vehicles owned and household annual income. As for annual income, I fit a linear
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spline with two knots (knot1 = log(46, 715) and knot2 = log(73, 580)).22 Vehicle at-

tributes included are dummy variables for vans, SUVs and pickup trucks (passenger

cars as the base type) and the logarithm of the following variables: footprint (the

area bounded by the four wheels) and horsepower (hp) divided by weight (lb), which

is a measure of acceleration capacity.

First, I explain the implications of the estimates in relation to the discrete

vehicle choice. I interpret estimates of β1 and β2 here, and results on γ2 and α3 will

be discussed in analyzing the estimated VMT demand equation (1.10) below. Note

that with the utility function in consideration, α1i is the marginal utility of money,

and each element of β1 is the elasticity of α1i with respect to the corresponding

household characteristic. A negative element of β1 means that the marginal utility

of money decreases with the corresponding characteristic, so that a household with

a larger value of the characteristic is less sensitive to vehicle prices. A positive

element of β1 means the opposite. Notably, the elasticity of the marginal utility of

money with respect to annual household income is estimated -0.31 to -0.35 if annual

household income is less than $46,715; -0.66 to -0.71 if it is between $46,715 and

$73,580; -2.05 to -2.59 if it is greater than $73,580.23 The marginal utility of money

decreases with income, and does so faster (in terms of elasticity) for households with

higher income.

A positive element of β2 means that the effect of the price of driving (rijk) on

22Roughly, a third of the households in my data set have annual income less than $46,715,
another third between $46,715 and $73,580, and the other third above $73,580.

23The elasticity for households with income between $46,715 and $73,580 is given by summing the
coefficients of log(income) and max[log(income/46,715),0]. Similarly, the elasticity for households
with income between greater than $73,580 is given by summing the coefficients of log(income),
max[log(income/46,715),0] and max[log(income/73,580),0].
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utility from model jk increases with the corresponding household characteristic, so

that a household with a larger value of the characteristic is more sensitive to rijk.

A negative element means the opposite. The estimates suggest that, other things

equal, households of larger size or in a more populated area are more sensitive to

rijk, and households owning more vehicles or earning higher income are less sensitive

to it.

Next, let us focus on the VMT demand equation (1.10). β2 − β1 is the co-

efficients of household characteristics xxxi. Table 1.4 reports point estimates and

standard errors of β2 − β1 for the three cases of Table 1.3. Other things equal,

households of larger size, in a less populated area, with less vehicles owned, or

with higher income plan to drive the vehicle longer distance. Since coefficients of

max[log(income/46,715),0] and max[log(income/73,580),0] are not significant, the

elasticity of VMT with respect to household income does not differ significantly

across different income groups.

In Table 1.4, results on γ2 suggest that consumers expect to drive SUVs and

pickup trucks (in comparison to passenger cars) or relatively large (i.e., large foot-

print) vehicles (within each vehicle type) for longer distance. In terms of Table 1.3

(that is, the indirect utility function (1.2)-(1.6)), this means that if model jk is an

SUV or a pickup truck, and/or it is relatively large within its type, then household

i’s indirect utility conditional on buying model jk (Vijk) is more sensitive to the price

of driving (rijk), as it is expected to be used more intensively.

In equation (1.10), α3 − 1 is the elasticity of VMT with respect to the price of
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driving (rijk) conditional on vehicle choice.24 In Table 1.4, the point estimate of α3−1

ranges from -0.17 to -0.27.25 This range is overall consistent with previous studies.

Bento et al. (2009) find the long-run VMT elasticities for different classes of new

vehicles to be around -0.2 to -0.3. Reviewing the literature, Small and Van Dender

(2007) also regard the range of -0.2 to -0.3 as compatible with previous studies.

We now look at the overall performance of the econometric model. First, using

parameter estimates of cases [1]-[3] of Table 1.3, Table 1.5 shows predicted choice

probabilities of two selected vehicle models (the economical Toyota Corolla 1.8 liter

engine model and the luxurious Cadillac DeVille 4.6 liter engine model) for three

hypothetical households. The three households’ annual income is set at the 5th,

50th or 95th percentile of the sample, and other household characteristics are set at

the sample average. Predictions in Table 1.5 confirms a reasonable tendency that,

relatively speaking, lower income households prefer smaller, cheaper vehicles, while

wealthier households prefer larger, more luxurious vehicles.

With the estimates in Table 1.3, we can calculate each vehicle model’s elasticity

of sales with respect to its own price and fuel efficiency (e.g., gallons per 100 miles) by

aggregating the change in each household’s choice probability of the vehicle model.

Based on parameter estimates of cases [1]-[3] of Table 1.3, Table 1.6 reports the

mean and standard deviation of elasticities of sales thus calculated. The average

elasticity with respect to vehicle price is estimated around -2 to -2.5, which is similar

in magnitude to findings from other studies that use micro cross-sectional data (e.g.,

24As in Bento et al. (2009), my estimation is based on cross-sectional data, so elasticity estimates
should be interpreted as long-run elasticities.

25Equivalently, the point estimate of α3 ranges from 0.73 to 0.83, which is consistent with
assumption (1.6) that requires 0 < α3 < 1 to ensure the concavity of the utility function (1.7).

27



Berry et al., 2004; Bento et al., 2009; Train and Winston, 2007).

The average elasticity with respect to fuel efficiency is around -0.1 to -0.5 and

changes with K. The larger K, the more valuable consumers view fuel economy,

hence the larger (in magnitude) the impact of a fuel efficiency change on vehicle

sales. We also notice that, for all of the three cases, the fuel efficiency elasticity is

much smaller (in magnitude) than the price elasticity.

1.4 Supply Side of the New Vehicle Market

This section considers the supply side of the U.S. new vehicle market in model year

2001. I first discuss the CAFE standards at that time, then consider an economic

model to analyze each automaker’s behavior in the market.

1.4.1 CAFE Standards for Model Year 2001

Under the CAFE standards for model year 2001, an automaker’s sales-weighted

harmonic average miles per gallon (mpg) in each of the three vehicle categories

(domestic passenger cars, import passenger cars, and light-duty trucks) needs to

exceed the corresponding standard (27.5 mpg for domestic and import passenger

cars, and 20.5 for light-duty trucks).26 If the automaker does not meet the standard

in a category, it must pay a fine of $5 for each 0.1 mile per gallon below the standard,

for each vehicle sold in the category.

Table 1.7 shows the sales-weighted harmonic average mpg by automaker and

26Equivalently, the sales-weighted arithmetic average gphm (gallons per 100 miles) in each cate-
gory needs to be below 100/27.5 ≈ 3.64 gphm for domestic and import passenger cars, and 100/20.7
≈ 4.83 gphm for light-duty trucks.
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category for model years 1999-2003.27 A red entry implies that the average is under

the target for the automaker-category. Since the CAFE standards allowed banking

and borrowing of credits within each automaker-category, up to three years, falling

short of the standard in one year does not immediately mean that the automaker is

in violation and needs to pay fines.

Table 1.7 suggests three types of responses from automakers to the CAFE

standards. First, the automaker’s category average mpg is consistently above the

standard (e.g., Toyota in all categories). Second, the average mpg is consistently

below the standard over time (BMW, DaimlerChrysler and Porsche’s import pas-

senger cars). In this case, automakers choose to pay fines rather than meeting the

standard. In the third situation, the average mpg is above the standard for some

years and below for other years, but the automaker uses banking and borrowing to

meet the target and avoid fines (e.g., Ford’s light-duty trucks).

1.4.2 A Model of Automakers’ Profit Maximization

I set up an economic model of automakers in an imperfectly competitive market

and under CAFE standards. It is based on the models used in previous studies to

analyze the supply side of the vehicle market and related issues such as fuel economy

regulations and gasoline taxes (e.g., Berry et al., 1995; Bento et al., 2009; Jacobsen,

forthcoming; Coleman and Harrington, 2010; Klier and Linn, 2012; Whitefoot et al.,

2012).

27For automakers that sell flex-fuel vehicles, the corporate average values for domestic passenger
cars and light-duty trucks in Table 1.7 include bonus mpg credits from selling flex-fuel vehicles.
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I consider a Nash equilibrium in which automaker n maximizes its profits by

optimally setting the price and fuel efficiency of the vehicle models it produces,

given other vehicle attributes of n’s models, and prices and all attributes of other

automakers’ models. In the maximization problem, automakers also take account of

CAFE standards of model year 2001.

The goal of this section is to derive an estimate of the marginal production cost

of improving fuel efficiency for each vehicle model. This is done by exploiting the

first order conditions of the maximization problem and using the results from the

demand side. The marginal cost estimates thus obtained will be used for simulating

counterfactual CAFE standards in Section 1.5.

In considering automakers’ maximization under fuel economy regulations, it

is important to distinguish their responses to the CAFE standards because differ-

ent responses lead to different formulations of the maximization problem (Jacobsen,

forthcoming; Whitefoot et al., 2012). As discussed above, there are three possibilities

regarding how automakers respond to the CAFE standards: unconstrained, violating

and constrained. Below I model an automaker’s profit maximization in each case.

For simplicity, I do not explicitly consider banking and borrowing of credits over

years, so the following problems are for a single period.

1.4.2.1 Automakers Unconstrained by CAFE Standards

An automaker is unconstrained in a category if the (sales-weighted harmonic) av-

erage mpg of the category consistently exceeds the corresponding target. Suppose
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automaker n is not constrained by CAFE standards in any category. Profit maxi-

mization can be formulated as

max
{pjk ,ejk}jk∈Jn

∑
jk∈Jn

(pjk − cjk)sjk, (1.27)

where Jn is the set of vehicle models produced by automaker n; cjk is the unit

production cost of model jk, sjk is the sales volume of jk.

The first order conditions with respect to the price of vehicles produced by

automaker n are:

∀jk ∈ Jn,

sjk +
∑

j′k′∈Jn

(pj′k′ − cj′k′)
∂sj′k′

∂pjk
= 0. (1.28)

Note that we have data on market sales (sjk) and vehicle price (pjk) of each model.

From the demand side model estimated before,

sjk =
∑
i

WiP̃ri(jk). (1.29)

In (1.29), Wi is the sample weight of household i in the NHTS data set, and P̃ri(jk)

is the simulated probability of household i choosing model jk:

P̃ri(jk) =
1

A

A∑
a=1

Pri(jk|Δa
i ), (1.30)

31



where Pri(jk|Δa
i ) is as given in (1.8). So, ∂sj′k′/∂pjk is calculated as

∂sj′k′

∂pjk
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

i WiP̃ri(jk){1− P̃ri(jk)}∂Vijk

∂pjk
, if j′k′ = jk;

−∑i WiP̃ri(jk)P̃ri(j
′k′)∂Vijk

∂pjk
, if jk �= j′k′.

(1.31)

Thus, the system of equations (1.28) can be solved for cjk ∀jk ∈ Jn.

Similarly, the first order conditions with respect to fuel consumption of vehicle

models produced by automaker n are:

∀jk ∈ Jn,

−∂cjk
∂ejk

sjk +
∑

j′k′∈Jn

(pj′k′ − cj′k′)
∂sj′k′

∂ejk
= 0. (1.32)

We have data on market sales sjk and vehicle price pjk of each model, and cjk is

obtained as described above for all jk produced by automaker n. ∂sj′k′/∂ejk is

estimated from the demand side model as

∂sj′k′

∂ejk
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

i WiP̃ri(jk){1− P̃ri(jk)}∂Vijk

∂ejk
, if j′k′ = jk;

−∑i WiP̃ri(jk)P̃ri(j
′k′)∂Vijk

∂ejk
, if jk �= j′k′.

(1.33)

Thus, the system of equations (1.32) can be solved for −∂cjk/∂ejk, the marginal cost

of fuel efficiency improvement, for all jk ∈ Jn.
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1.4.2.2 Automakers Violating CAFE Standards

An automaker is violating the CAFE standards in a category if the average mpg

of the category is consistently below the corresponding target and the automaker is

paying a fine of $5 for each 0.1 mile per gallon below the standard, for each vehicle

sold in the category. Violating automakers choose not to meet the standard, but

instead choose to pay fines.

Suppose automaker n is violating the standards and paying the fines in category

g (but unconstrained in other categories). The automaker’s total fine payment in

this case is

50×
(100

ēg
− 100

(
∑

jk∈J g
n
ejksjk)/(

∑
jk∈J g

n
sjk)

)
×
( ∑
jk∈J g

n

sjk

)
, (1.34)

where ēg is the standard for category g (in gphm) (for example, about 4.83 for the

light-duty truck category) and J g
n is the set of vehicle models produced by automaker

n and belonging to category g. In (1.34), 100/ēg is the category g target in terms of

mpg, and 100/{(∑jk∈J g
n
ejksjk)/(

∑
jk∈J g

n
sjk)} is the sales-weighted harmonic aver-

age fuel economy (in mpg) of models by automaker n and in category g.

So profit maximization can be formulated as

max
∑
jk∈Jn

(pjk−cjk)sjk−
{
50×

(100
ēg

− 100

(
∑

jk∈J g
n
ejksjk)/(

∑
jk∈J g

n
sjk)

)
×
( ∑
jk∈J g

n

sjk

)}
.

(1.35)

In this case, the first order conditions becomes more complicated as we need to
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consider the CAFE fine term. But we can still obtain cjk and −∂cjk/∂ejk in the

same way as above.

1.4.2.3 Automakers Constrained by CAFE Standards

An automaker is constrained by the CAFE standards in a category if the average

mpg of the category marginally exceeds the corresponding target.28 In this case, the

automaker chooses vehicle prices and attributes to marginally satisfy the target.

Suppose automaker n is constrained in category g (but unconstrained in other

categories). The profit maximization problem can be written as

max
{pjk ,ejk}jk∈Jn

∑
jk∈Jn

(pjk − cjk)sjk s.t.
∑

jk∈J g
n

(ēgn − ejk)sjk ≥ 0, (1.36)

where ēgn is the sales-weighted average gphm of automaker n’s category g fleet.

Dividing the constraint by
∑

jk∈J g
n
sjk and rearranging terms, we can see that it is

equivalent to requiring the sales-weighted arithmetic average gphm (or sales-weighted

harmonic average mpg) of automaker n’s category g fleet to be at least as fuel efficient

as the value it actually achieved in the market.29 The constraint is written as in (1.36)

in order to be consistent with the notation in Section 1.5 below, which explains more

about how to interpret the CAFE constraint.

28Since the actual CAFE regulations allow banking and borrowing of credits over time, it may
be the case that the category average mpg is well above or below the target for one year, and the
automaker is still constrained in the category.

29With banking and borrowing allowed in the actual CAFE standards, the constrained fleet’s
observed average fuel efficiency in each year does not generally equal the target value. Because I am
not considering banking and borrowing in modeling profit maximization for the sake of simplicity,
I assume that the automaker is required to set the constrained fleet’s average fuel efficiency at least
at the level actually observed in the market. This makes ēgn different across n.
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The first order conditions with respect to the price of vehicles produced by

automaker n are:

∀jk ∈ Jn,

sjk +
∑

j′k′∈Jn

{pj′k′ − cj′k′ + Igjkλ
g
n(ē

gn − ejk)} = 0,
(1.37)

where Igjk takes 1 if jk is in category g vehicles and 0 otherwise, and λg
n is the

Lagrange multipliers for the constraints. Similarly, the first order conditions with

respect to gphm for the constrained case are:

∀jk ∈ Jn,

{−∂cjk
∂ejk

− Ijkλ
g
n}sjk +

∑
j′k′∈Jn

{pj′k′ − cj′k′ + Igjkλ
g
n(ē

gn − ejk)} = 0.
(1.38)

Once λg
n is given, we can solve the above system of first order conditions (1.37)

and (1.38) for cjk and −∂cjk/∂ejk in the same way as in the unconstrained case.

Estimates of λg
n are constructed from the results of Anderson and Sallee (2011) who

estimated the shadow cost of CAFE constraints.

1.4.2.4 More Details

In practice, automakers may be in violation and/or constrained in more than one

category simultaneously. The profit maximization problem for these cases can be

easily formulated as a combination of the above cases.

Investigating the time trend of automakers’ corporate average fuel economy

and following previous studies (Jacobsen, forthcoming; Anderson and Sallee, 2011),
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I assume that categories in violation are import passenger cars of DaimlerChrysler,

BMW and Porsche, and light-duty trucks of BMW. Likewise, constrained categories

are domestic passenger cars and light-duty trucks of General Motors, Ford and Daim-

lerChrysler. All other categories are assumed unconstrained.

Previous studies that endogenize the choice of fuel efficiency (e.g., Bento et al.,

2009; Coleman and Harrington, 2010; Klier and Linn, 2012) use the same approach

as above to infer the marginal cost of fuel efficiency improvement for each vehicle

model. In these studies, like mine, the inferred marginal costs are essential for

counterfactual simulations. That is, when an automaker changes fuel efficiency of

its vehicles to maximize profits in a counterfactual simulation, model jk’s inferred

marginal cost is used to calculate the change in its production cost. More specifically,

based on engineering studies (as summarized in National Research Council, 2002)

and Coleman and Harrington (2010), the change in model jk’s production cost due

to a fuel efficiency adjustment from e0jk to e1jk is given by:

Tjk(ejk) = −∂cjk
∂ejk

∣∣∣
ejk=e0jk

⎧⎨⎩
(
e0jk
e1jk

)2

− 1

⎫⎬⎭ , (1.39)

where e0jk is the actual gphm observed in the market, and −∂cjk/∂ejk
∣∣
ejk=e0jk

is the

marginal cost obtained above from a system of first order conditions. Thus, Tjk(ejk)

expresses the change in model jk’s technology cost due to adjusting fuel efficiency

from the actual value observed in the market. This model fits the engineering esti-

mates of incremental technology costs of fuel efficiency improvement very well (Cole-

man and Harrington, 2010).
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1.5 Simulating the Impacts of Counterfactual CAFE Standards

Based on the above analysis of the demand and supply sides, I compare the effec-

tiveness of different features of CAFE standards by simulating a new vehicle market

under counterfactual regulations. Specifically, I evaluate the impacts of three policy

instruments recently introduced into CAFE standards:

• Instrument A: “footprint-based” functions that assign target values based on

vehicle size

• Instrument B: intra-firm transferring of fuel efficiency credits across vehicle

categories

• Instrument C: inter-firm trading of fuel efficiency credits

Combining these instruments, I construct four counterfactual policies to be

simulated. These policies are summarized as follows.

• Policy 1 mimics the actual CAFE standards for model year 2001

• Policy 2 replaces Policy 1’s “flat” functions with Instrument A

• Policy 3 adds Instrument B to Policy 2

• Policy 4 adds Instrument C to Policy 3, mimicking the design of the actual

CAFE standards for model years 2012-2016

The next subsection explains the four policies in detail.
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The overall framework of the simulation is as follows. Given a counterfactual

policy, I find a Nash equilibrium in which each automaker sets vehicle prices and fuel

efficiency values of its vehicles to maximize profits under the regulatory constraint.

Consumers’ demand for different vehicle models changes according to the demand

side model estimated above. I obtain various measures (such as fuel efficiency, profits,

fuel savings) at the equilibrium, and then compare the four policies in terms of these

measures to evaluate the impacts of the three policy instruments.

1.5.1 Counterfactual CAFE Standards

This subsection discusses four counterfactual CAFE standards to be simulated, and

how these standards are set.

First, we express the CAFE constraint for category g in a more general form

than in (1.36): ∑
jk∈J g

n

(ējk − ejk)sjk ≥ 0, (1.40)

where summation is over all vehicle models that are produced by automaker n and

belong to category g (denoted by J g
n ); ējk and ejk are target and achieved gphm

of model jk, respectively; sjk is U.S. market sales of jk. Note that (1.40) is more

general than (1.36) because in (1.40), target value ējk may differ across jk, while in

(1.36) it is constant for all jk in automaker n’s category g fleet.

The constraint can be explained as follows. If model jk of category g is more

fuel efficient than its target value (i.e., ējk > ejk), then for each unit of model jk

sold, automaker n earns a positive entry (“credit”) of ējk − ejk in category g. On
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the other hand, if model jk is less fuel efficient than its target value (i.e., ējk < ejk),

then for each unit of model jk sold, it earns a negative entry (“debit”) of ējk − ejk

in category g. Automaker n satisfies the standard for category g if the total balance

is non-negative after summing all entries in category g.

To focus on primary aspects of the regulations (namely, Instruments A-C

above), counterfactual CAFE standards considered below ignore or simplify some

features of actual CAFE standards. First, I do not distinguish domestic passenger

cars and import passenger cars, so all passenger cars are grouped into a single cat-

egory. Likewise, I do not consider banking and borrowing of credits over different

model years, and bonus credits for selling flex-fuel vehicles.

1.5.1.1 Policy 1: Flat Targets / No Transferring / No Trading

Policy 1 mimics the actual CAFE standards for model year 2001 except for the

points explained above. Automakers face two CAFE constraints, one for passenger

cars (PCs) and the other for light-duty trucks (LDTs). The constraints are given by

letting ējk = 100/27.5 ≈ 3.64 ∀jk for passenger cars, and ējk = 100/20.7 ≈ 4.83 ∀jk

for light-duty trucks. Note that within each category, the target value is common to

all vehicles, regardless of vehicle size (”flat standards”). Figure 1.1 plots the target

values along with actual gphm of all models in model year 2001. Credits earned in one

category may not be used to offset in the other category (”no transferring” of credits),

and credits may not be sold to or bought from other automakers (”no trading” of

credits). If an automaker does not comply with the standard in a category, it must
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pay a fine of $5 for each 0.1 mpg short of the standard, for each vehicle sold in the

category.

In a simulation under Policy 1, automaker n that chooses to comply with the

CAFE standards solve the following profit maximization problem:

max
{pjk ,ejk}jk∈Jn

∑
jk∈Jn

(pjk − cjk)sjk s.t.
∑
jk∈J c

n

(100/27.5− ejk)sjk ≥ 0,

∑
jk∈J t

n

(100/20.7− ejk)sjk ≥ 0.

(1.41)

There are two CAFE constraints, one for passenger car models (denoted by J c
n) and

the other for light-duty truck models (denoted by J t
n).

1.5.1.2 Policy 2: Footprint-based Targets / No Transferring / No

Trading

Policy 2 sets target values based on vehicle size (footprint). Roughly speaking,

compared to Policy 1, Policy 2 gives smaller vehicles more stringent targets, and

larger vehicles less stringent targets.

Target value ējk varies across jk and is determined as a function of jk’s foot-

print. Specifically, ējk for passenger car jk with footprint xjk (square feet) is given

by:
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ējk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ac if xjk < 41,

ccxjk + dc if 41 ≤ xjk ≤ 56,

bc if 56 < xjk,

(1.42)

where ac = 3.44, bc = 4.2362, cc = 0.05308, dc = 1.2638 (Figure 1.2). Except for very

small or large cars, whose target (ac or bc, respectively) is independent of footprint,

ējk is given by a linear function of footprint xjk.

Similarly, the target value for light-duty truck jk with footprint xjk is given

by:

ējk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

at if xjk < 41,

ctxjk + dt if 41 ≤ xjk ≤ 66,

bt if 66 < xjk,

(1.43)

where at = 4.3412, bt = 5.4777, ct = 0.0455, dt = 2.4773 (Figure 1.2).

Figure 1.2 plots these footprint-based target functions. Comparing Policy 2

to Policy 1, we note that the target is tightened for passenger cars with footprint

smaller than 44.70 sq.ft., and relaxed for passenger cars with footprint larger than

44.70 sq.ft. For light-duty trucks, the target is tightened if footprint is smaller than

51.73 sq.ft., and relaxed if footprint is larger than 51.73 sq.ft.

This means that, under Policy 2, selling small (large) cars or trucks does not

generate as many positive (negative, respectively) credits as under Policy 1. There-

fore, for the purpose of meeting the CAFE standards, selling small (large) cars or

trucks is not as advantageous (disadvantageous) under Policy 2 as under Policy 1.
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In other words, the required level of corporate average fuel efficiency in each

category differs across automakers, and depends on the footprint distribution of their

fleet. In order to comply with the standards, automakers focusing on smaller cars

or trucks need to achieve higher category average efficiency than those focusing on

large cars or trucks.

In (1.42) and (1.43), the slope parameters of the linear part (cc andct) and

the threshold footprint values (41, 56 and 66 sq. ft.) are the same as in the actual

footprint-based CAFE standards for model years 2012-2016. Based on these, other

parameters in each category are determined so that the sales-weighted average gphm

of those automakers that are constrained in that category under Policy 2 will be

the same both under Policies 1 and 2.30 As can be seen below, setting parameters

this way makes the two policies comparable to each other in the sense that various

measures are compared given that the policies achieve (almost) the same market

average fuel efficiency.

As in Policy 1, credit transferring between a producer’s PC and LDT fleets and

credit trading across producers are not allowed. The same fine payment rule applies

as under Policy 1 above.

In the simulation under Policy 2, automaker n that chooses to comply with the

30In the actual CAFE standards for model years 2012-2016, slope parameters (cc and ct) and
threshold footprint values remain constant over time, while dc and dt become smaller every year,
leading to more stringent standards.
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CAFE standards solve the following profit maximization problem:

max
{pjk,ejk}jk∈Jn

∑
jk∈Jn

(pjk − cjk)sjk s.t.
∑
jk∈J c

n

(ējk − ejk)sjk ≥ 0,

∑
jk∈J t

n

(ējk − ejk)sjk ≥ 0,

(1.44)

where ējk is defined by (1.42) for PCs and by (1.43) for LDTs. This problem is

identical to (1.41) except that target value ējk varies over jk.

1.5.1.3 Policy 3: Footprint-based Targets / Transferring / No Trading

Policy 3 adds intra-firm credit transferring between PCs and LDTs to Policy 2, so

positive credits from one category can be used to offset negative credits in the other

category.31 Except for that, Policies 2 and 3 are the same. Credit transferring

provides flexibility to how an automaker achieves required average efficiency.

In the simulation under Policy 3, automaker n that chooses to comply with

CAFE standards solve the following profit maximization problem:

max
{pjk ,ejk}jk∈Jn

∑
jk∈Jn

(pjk − cjk)sjk s.t.
∑
jk∈Jn

(ējk − ejk)sjk ≥ 0, (1.45)

where ējk is given by (1.42) for PCs, and by (1.43) for LDTs. Credit transferring

means that an automaker faces just one unified CAFE constraint that covers both

PCs and LDTs.

31I have also considered a counterfactual policy that adds intra-firm credit transferring to Pol-
icy 1. Thus, this policy is with flat targets and credit transferring, and without credit trading.
Simulation results under this policy are very similar to those under Policy 3.
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1.5.1.4 Policy 4: Footprint-based Targets / Transferring / Trading

Policy 4 adds inter-firm credit trading to Policy 3. Credit trading between au-

tomakers is another flexibility in the standards that might reduce the social cost of

achieving a given regulatory goal. This policy includes all three new features of the

actual reformed CAFE standards.

In the simulation under Policy 4, automaker n solves the following profit max-

imization problem:

max
{pjk,ejk}jk∈Jn

∑
jk∈Jn

{
pjk − cjk + z

(
ējk − ejk

)}
sjk, (1.46)

where z is the price of one unit (gphm) of fuel efficiency credit and determined in

the simulation to clear the credit trading market. If an automaker does not meet

its target alone, it is required to purchase credits from other automakers and offset

the shortage. Note that there is no explicit CAFE constraint in (1.46) because it

is replaced by trading of fuel efficiency credits. Automakers are required to offset a

negative balance, if any, by purchasing credits from other automakers.

Target values ējk for Policy 4 are lower (that is, more stringent) than those set

by (1.42) and (1.43), and used for Policies 2-3 (about 0.086 gphm lower for PCs, and

0.039 gphm for LDTs). These adjustments are necessary because using (1.42) and

(1.43) for Policy 4 would result in market average fuel efficiency much worse than

under Policies 1-3.32 Remember that I want to set the market average fuel efficiency

32An intuitive explanation is as follows. Under Policies 2 and 3 with functions (1.42) and (1.43),
CAFE constraints are far from binding for a number of automakers, but positive credits of these
firms cannot be used and have no value. If the same functions (1.42) and (1.43) were used under
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to be almost the same under all counterfactual policies in order to make meaningful

comparisons of them. The functions are adjusted for this purpose.

1.5.2 Simulation Procedure

Simulations consider 11 automakers (General Motors, Ford, DaimlerChrysler, Toy-

ota, Honda, Nissan, Volkswagen, Hyundai, BMW, Kia, Subaru, Suzuki, Porsche).33

Under Policies 1-3, automakers choose if they comply with the standards (either

constrained or unconstrained), or if they violate the standards and pay fines. I assume

that automakers complying with the actual CAFE standards choose to comply under

counterfactual policies as well, and those paying fines choose to do so. Therefore,

under Policies 1-3 BMW and Porsche are the only manufacturers that violate the

standards, and all other manufacturers comply.34

Except for BMW and Porsche under Policies 1-3, all automakers in the following

simulations solve a profit maximization problem (1.41), (1.44), (1.45), or (1.46) under

a given policy. BMW and Porsche under Policies 1-3 face a profit maximization

problem with fine payment, one similar to (1.35) but modified accordingly for each

policy.

Under Policies 1-3, I take the following steps to find a Nash equilibrium.

Policy 4, positive credits owned by these automakers could be sold to automakers constrained under
Policies 2 or 3, and lower their average fuel efficiency (increase their average gphm). As a result,
market average fuel efficiency would be worsened.

33Actual CAFE standards consider ownership relations to group manufacturers. My simulations
follow this grouping, so General Motors includes Isuzu and Saab; Ford includes Jaguar, Mazda and
Volvo; DaimlerChrysler includes Mitsubishi.

34Under actual standards, DaimlerChrysler’s import passenger car category (mainly, Mercedes-
Benz) consistently pays fines. Since the counterfactual standards I consider do not distinguish
domestic and import passenger cars, and DaimlerChrysler’s import PC sales are much smaller than
domestic PC sales, I assume DaimlerChrysler’s passenger car category complies with Policies 1-3.
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1. Set vectors p and e that contain initial values for prices and fuel efficiency

values of all vehicle models in the sample (regardless of the manufacturer).

2. Solve automaker 1’s maximization problem with initial values taken from au-

tomaker 1’s entries of p and e.

3. Update p and e by replacing automaker 1’s entries in p and e with the solution

to step 2.

4. Repeat steps 2 and 3 for automaker 2, then automaker 3, and so on.

5. After solving profit maximization of all automakers, go back to automaker 1

and repeat steps 2, 3 and 4.

6. Continue step 5 until p and e converge.

Because convergence means that each automaker is optimizing given all other

automakers’ choices, p and e found at the end of this updating process is a Nash

equilibrium under the counterfactual CAFE standards.

Under Policy 4, I set an initial value for the price of fuel efficiency credits (z).

Then, follow the above steps to find a Nash equilibrium under that price. If there is

excess demand for credits in the equilibrium, I increase the credit price, and repeat

the above steps to find a Nash equilibrium under the new price. Conversely, if there

is excess supply of credits, I lower the credit price and repeat the above steps. This

process continues until I find the credit price that clears the market for fuel efficiency

credits.
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As discussed before, I consider three different possibilities regarding the cost

of improving fuel efficiency (each corresponding to K =1, 4 or 7). For each of these

cost scenarios, I compare the above counterfactual policies through simulation.

Because a very large number of vehicle models are considered in the simulation

and many of them do not sell enough to have a significant impact on the producer’s

profits (the objective of the optimization problem), different initial vectors p and

e lead to slightly different Nash equilibria even under the same cost scenario and

policy. Therefore, in order to have a more comprehensive picture, I obtain three Nash

equilibria for each cost scenario and policy, starting from different initial vectors.

1.5.3 Simulation Results

This subsection discusses findings from my simulations of the U.S. new vehicle mar-

ket. Tables 1.8-1.13 and Figures 1.3-1.5 summarize the findings. As I simulate three

Nash equilibria for each combination of a cost scenario and a policy, the tables and

figures report the average values from the three (slightly different) equilibria. First, I

explain what each table and figure shows, then evaluate and compare the four coun-

terfactual CAFE standards in terms of various market-level and automaker-level

measures.

To show how footprint-based standards typically work, Table 1.8 reports seven

largest automakers’ target and achieved (average) fuel efficiency under Policies 1

and 2.35 For each category (passenger cars, PCs, or light-duty trucks, LDTs) and

35Table 1.8 is based on a Nash equilibrium with K = 4. I obtain essentially the same values in
other equilibria as well.

47



policy, the columns “Footprint”, “Standard” and “gphm” respectively show each

manufacturer’s sales-weighted average footprint, standard and fuel efficiency. The

column “Bind” indicates that the constraint for the corresponding category is binding

in the automaker’s maximization problem.

Under footprint-based standards, standards vary across automakers depending

on the footprint distribution of each automaker’s fleet. Roughly speaking, Policy

2 relaxes the standards (compared to Policy 1) for firms that on average sell large

cars or trucks, and tightens the standards for those that on average sell small cars

or trucks. Table 1.8 shows that General Motors (GM) and Ford, who produce rel-

atively large cars and trucks, face less stringent standards under Policy 2, while

other automakers who produce relatively small cars and trucks face more stringent

standards.

For selected automakers, Table 1.9 shows Lagrange multipliers (λc, λt and λ)

from profit maximization under Policies 1-3 (see problems (1.41), (1.44) and (1.45)),

along with the price of credits (z) and net revenue from credit trading (
∑

jk∈Jn
z
(
ējk−

ejk
)
sjk) under Policy 4 (see problem (1.46)). If there are two constraints (under

Policies 1 and 2), λc is the Lagrange multiplier for the PC constraint, and λt is that

for the LDT constraint. Under Policy 3, λ is the Lagrange multiplier for the single

constraint on the entire fleet of PCs and LDTs. A positive multiplier implies that

the corresponding CAFE constraint is binding, and its value is the shadow price of

the constraint. We can interpret the Lagrange multipliers as follows: For example,

λ = a means that if every model’s target is increased (i.e., relaxed) by 0.1 gphm,

and consequently the automaker’s standard, which is obtained as the sales-weighted
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average of individual targets, is increased by the same amount, then the automaker’s

profits per vehicle sold goes up by $a/10. The larger the Lagrange multiplier, the

more costly the constraint is for the automaker. Note that, if a constraint is relaxed

by the introduction of footprint-based targets (GM and Ford), the corresponding

Lagrange multiplier under Policy 2 becomes smaller than that under Policy 1. On

the other hand, for DaimlerChrysler whose constraints are tightened under Policy 2

as compared to Policy 1, the multipliers are larger under Policy 2.

Tables 1.10-1.12 summarize various market-level, aggregate outcomes from the

simulations. They first report the sales-weighted average gphm of PCs, of LDTs,

and of the entire fleet (PCs and LDTs); sales-weighted average footprint of PCs

and LDTs; and share of PCs in the entire fleet (PCs and LDTs). Tables 1.10-1.12

also show aggregate outcomes relating to the sale/purchase and use of all PCs and

LDTs of the model year 2001 fleet, including [1] automakers’ profits; [2] consumer

surplus;36 [3] technology costs for fuel efficiency adjustment;37 [4] estimated fuel use

external costs over the vehicles’ lifetime;38 and [5] social welfare (=[1]+[2]-[4]).Values

per new vehicle sold are shown in the lower part of the tables. Values for Policies

36Consumer surplus is calculated with the method of Small and Rosen (1981).
37All counterfactual policies are designed to achieve the market average fuel efficiency of ap-

proximately 4.10 gphm, which is about 0.05 gphm more efficient than the actual average in model
year 2001. Under a counterfactual policy, automakers adjust each (vehicle) model’s fuel efficiency
by changing the technology level applied. This adjustment increases or decreases its production
cost. I call this a change in the technology cost for fuel efficiency. Tables 1.10-1.12 report the
sales-weighted average of these technology cost changes due to fuel efficiency adjustment.

38Fuel use external costs over the vehicles’ lifetime are calculated with an estimated lifetime
VMT schedule and survival probability of the average car and truck (Table 4-3 of Environmental
Protection Agency and National Highway Traffic Safety Administration, 2010). A 5% discount rate
is applied to future external costs. Fuel use externality is evaluated at $0.42 per gallon, based on
an estimate by Parry et al. (2007). With these assumptions, I estimate fuel use external costs over
a vehicle’s lifetime by multiplying first year’s fuel use external costs obtained from a simulation by
8.457 for passenger cars and by 8.389 for light-duty trucks.
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2-4 are given as changes from Policy 1. Based on Tables 1.10-1.12, Figures 1.3-1.5

graphically show changes in [1]-[5] from Policy 1.

Policies 1 and 2 are compared below to see the effects of making each vehicle’s

target value depend on its footprint. Then, I discuss the impacts of intra-firm credit

transferring between PCs and LDTs (Policy 3), and inter-firm credit trading (Policy

4)

1.5.3.1 Effects of Footprint-based Targets

First, I compare outcomes under Policies 1 and 2. Policy 1 is essentially equivalent to

the actual CAFE standards for model year 2001. Particularly, each vehicle’s target

value under Policy 1 depends only on its category (PCs or LDTs), but not on vehicle

size. Policy 2 differs from Policy 1 only in how each vehicle’s target is set. Target

values depend on vehicle size (footprint) and larger vehicles receive less stringent

(i.e., larger in terms of gphm) targets.

Comparing Policies 1 and 2 in Tables 1.10-1.12 and Figures 1.3-1.5 suggests that

introducing footprint-based targets alone makes little difference at the market level,

as long as the two policies realize the (almost) same market average fuel efficiency.

Vehicle size (footprint) and the share of passenger cars in the market change only

slightly. Changes in measures [1]-[5] are relatively small in magnitude and the same

measure sometimes takes opposite signs under different simulations (even under the

same K). Coleman and Harrington (2010) also obtain similar results that the impact

of footprint-based targets is generally small.
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As for changes in profits from under Policy 1 to under Policy 2 at the indi-

vidual automaker level, the results are not very robust across different simulations

(even under the same K). For many automakers, individual profits may increase or

decrease under Policy 2 depending on the equilibrium realized. In other words, just

making each vehicle’s target footprint-dependent does not have an impact that is

large enough to bring consistent changes across different equilibria.

1.5.3.2 Effects of Credit Transferring within an Automaker

Policy 3 adds to Policy 2 credit transferring between a firm’s PC and LDT fleets, but

not credit trading across firms. So automakers face a single, combined constraint,

and can use positive credits in one category to offset negative credits in the other.

Overall, simulations find that Policy 3 is effective in reducing gasoline consumption.

Tables 1.10-1.12 show that, compared to Policies 1 and 2, Policy 3 makes PCs

less fuel efficient (about 2-5%), and LDTs more efficient (about 2-4%), although fuel

efficiency of the entire fleet (PCs and LDTs) remains almost the same (as desired).

Fuel efficiency improves in the LDT fleet and worsens in the PC fleet because au-

tomakers that are constrained in both categories (PCs and LDTs) under Policy 2

(GM, Ford and DaimlerChrysler) choose to earn credits in the LDT category to offset

the shortages in the PC category under Policy 3. Since my estimates suggest that

it is typically more costly to improve LDTs’ fuel efficiency than PCs’, the aggregate

technology cost to achieve the targeted market average efficiency increases by about

$12 million-$97 million (compared to Policy 1).
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Since improving LDTs’ fuel efficiency is more costly (in terms of technology

costs), it is counter-intuitive that the Big Three choose to do so to cancel out wors-

ened fuel efficiency of PCs. One reason is that LDT buyers are willing to pay more

for gphm improvement than PC buyers. LDTs are generally driven longer distance

than PCs, so that LDTs owners receive greater fuel savings from marginal gphm

improvement, thus have higher willingness to pay for it. Producers respond to this

demand and improve LDTs’ fuel efficiency.

More influential is the difference in price sensitivity of demand between PCs

and LDTs. PC buyers generally earn lower income, so that demand for PCs are

more sensitive to vehicle prices. This demand structure makes it more profitable for

automakers to increase gphm of PCs to lower their technology costs and prices, and

to decrease gphm of LDTs to raise their technology costs and prices. Note that the

share of PCs in the market increases as a result.

In spite of the increase in the aggregate technology cost mentioned above,

these changes in fuel efficiency make Policy 3 effective in reducing aggregate fuel

consumption (about 0.1%-0.25% compared to Policies 1 and 2). Indeed, among the

four counterfactual policies, Policy 3 is most useful for the purpose of curbing gasoline

consumption. The lower the production cost (technology cost) for improving fuel

efficiency, the more gasoline consumption is reduced because of larger fuel efficiency

adjustments in each category. Despite almost no change in market average fuel

efficiency, aggregate gasoline consumption decreases drastically because LDTs are

on average driven longer distance than PCs both annually and over the vehicle’s

life, so that gphm changes of LDTs influence aggregate fuel consumption more than
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those of PCs. Shrinking the fuel efficiency differences between PCs and LDTs is

very effective in cutting fuel consumption, and Policy 3 generates this substitution

through producers’ and consumers’ choices in the market.

In terms of social welfare, Policy 3 is clearly superior to Policies 1 and 2 under

the low and middle valuation/cost scenarios (K = 1, 4), but not under the high cost

scenario because Policy 3 is not as effective under the high valuation/cost scenario

(K = 7) in reducing gasoline consumption. We also note that reduced fuel use

externalities account for a significant portion of a change in social welfare (especially

for K = 1, 4).

1.5.3.3 Effects of Credit Trading across Automakers

Policy 4 adds to Policy 3 inter-firm trading of fuel efficiency credits. Policy 4 mirrors

the new CAFE standards because it features all three instruments recently introduced

into the standards (footprint-based targets, intra-firm credit transferring and inter-

firm credit trading).

Of the four counterfactual policies, Policy 4 achieves the required market av-

erage fuel efficiency (approximately 4.10 gphm) at the lowest aggregate technology

cost for fuel efficiency adjustment.39 The aggregate technology cost is reduced by

$109 million-$136 million, compared to Policy 1. It goes down because automakers

that face higher marginal costs of improving their vehicles’ fuel efficiency choose not

to meet the standards independently, but they instead choose to purchase credits

from other automakers that can improve fuel efficiency at lower costs. In one of

39Refer to footnote 37 for an explanation of the technology cost for fuel efficiency adjustment.
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their simulations, Austin and Dinan (2005) find similar effects of inter-firm trading

of fuel efficiency credits on the aggregate technology cost, although their counterfac-

tual policies do not seem to be at the same level of stringency, so their results likely

show the total effects of design differences (i.e., with or without credit trading) and

stringency differences.

My simulations suggest that a 0.35-0.9% tightening of CAFE standards would

increase the aggregate technology cost by about a similar amount. Thus, introducing

inter-firm credit trading can offset an increase in the aggregate technology cost due to

a 0.35-0.9% tightening of standards annually. This size of tightening lowers aggregate

gasoline consumption over the lifetime of a particular year’s entire fleet (PCs and

LDTs) by about 0.2-0.65%.

To better understand the effects of credit trading, Tables 1.9 and 1.13 report

simulation results for individual automakers. Table 1.9 shows the price of fuel effi-

ciency credits (z), and net revenue from sale or purchase of credits (
∑

jk∈Jn
z
(
ējk −

ejk
)
sjk). Table 1.13 compares each automaker’s standard and average fuel efficiency

under Policies 3 and 4.

Under Policy 4, the average efficiency (in gphm) of each of the Big Three is

greater than the corresponding standard (Table 1.13), meaning that they are pur-

chasers of credits (Table 1.9). On the contrary, other manufactures in the tables

keep the average efficiency (in gphm) smaller than the corresponding standard (Ta-

ble 1.13), and sell the credits thus earned to other automakers (Table 1.9).

Compared to Policy 3 (and Policies 1-2 as well), the Big Three’s average effi-

ciency worsens under Policy 4, while other firms’ average efficiency improves. This
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explains why the aggregate technology costs for fuel efficiency adjustment is low-

ered under Policy 4. Vehicles from the Big Three on average face higher marginal

costs for improving fuel efficiency than vehicles from other automakers. Therefore,

offsetting the Big Three’s worsened fuel efficiency by improving other automakers’

fuel efficiency significantly reduces the aggregate technology cost for fuel efficiency

adjustment, compared to the case in which the Big Three achieve their targets by

themselves.

This reduction in the aggregate technology cost leads to an increase in social

welfare (Tables 1.10-1.12 and Figures 1.3-1.5). The result is consistent across different

equilibria I simulated. Indeed, Policy 4 attains the highest social welfare under all

equilibria I simulated. Comparing the magnitude of the changes in the aggregate

technology cost and social welfare under each scenario implies that a reduction in

the technology cost due to inter-firm credit trading can account for a large portion

of a social welfare increase.

On the other hand, inter-firm credit trading is not as helpful for reducing gaso-

line consumption as intra-firm credit transferring. Under Policy 3 that features intra-

firm transferring but not inter-firm trading, fuel consumption is reduced through fuel

efficiency improvement in the Big Three’s LDT fleet. Under Policy 4, buying cred-

its from other firms is a better option for the Big Three, so that their LDTs’ fuel

efficiency does not improve as much as under Policy 3, and Policy 4 does not attain

large fuel savings.

On the other hand, at the individual automaker level, some firms lose and

others gain under Policy 4. Although this is partially due to payment or revenue
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from credit trading, more crucial are changes in market shares. As in Table 1.13,

credit trading worsens fuel efficiency of the Big Three’s models, and improves that of

other firms’ models. With these changes, consumers’ demand shifts away from the

Big Three, decreasing the Big Three’s sales and increasing others’ sales. The sales

changes are large enough that the Big Three’s profits fall and other firms’ profits

increase consistently across different simulations.

1.6 Conclusion

This paper has examined the impacts of three major policy instruments recently

introduced into the reformed Corporate Average Fuel Economy (CAFE) standards,

namely, footprint-based targets, intra-firm credit transferring and inter-firm credit

trading. Previous studies have paid little attention to the design of CAFE standards,

as compared to the stringency (i.e., target fuel economy values). This paper has

particularly focused on the design and is the first study to compare all of the three

instruments simultaneously. I have modeled household vehicle and VMT (vehicle

miles traveled) choices, and automakers’ decisions in the vehicle market regulated by

CAFE standards, then estimated the model with year 2001 U.S. data. Modeling and

estimating the VMT choice along with the vehicle choice is important in economic

studies of fuel economy, as the value of fuel economy for households (i.e., savings in

household fuel spending) crucially depends on VMT. Based on estimation results, I

have simulated market equilibria under various counterfactual CAFE policies to see

the impacts of the three instruments. Unlike previous studies on the design of CAFE
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standards, I carefully set these counterfactual standards so that they achieve almost

the same market average fuel economy, and thus are at essentially the same level of

stringency. This makes it possible to examine the impacts of design differences in

the counterfactual standards, without being confounded by the impacts of stringency

differences as in previous studies.

Counterfactual simulations provide the following key policy implications. First,

simply replacing “flat” targets with “footprint-based” targets (Policy 2) have little

impact on the vehicle market and aggregate gasoline consumption.

Second, allowing intra-firm credit transferring across vehicle categories, but not

inter-firm credit trading (as in Policy 3) is effective in curbing aggregate gasoline con-

sumption. When credit transferring is allowed, the Big Three make their light-duty

trucks (LDTs) more fuel efficient and their passenger cars (PCs) less fuel efficient.

Since LDTs are on average driven more miles than PCs, this shift in fuel efficiency re-

duces gasoline consumption from the fleet of (about 0.1%-0.25%). Shrinking the fuel

efficiency differences between PCs and LDTs is useful for reducing fuel consump-

tion, and Policy 3 generates this substitution through producers’ and consumers’

voluntary choices in the market.

The value of reduced gasoline consumption depends on the price of gasoline

(about $1.40 in the simulations) and an estimate of the external costs of gasoline

use ($0.42 in the simulations). The more expensive gasoline is (as in 2012, when

the price is at around $3.60) or the more serious the regulator considers gasoline use

externalities to be, the more valuable reducing gasoline consumption becomes for the

society. Under these circumstances, allowing intra-firm credit transferring, but not
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inter-firm credit trading, would become more attractive to policymakers.

Third, further allowing inter-firm credit trading in addition to intra-firm credit

transferring (as in Policy 4) attains a given market average fuel efficiency at the lowest

aggregate technology costs for fuel efficiency adjustment. Credit trading shifts the

role of improving fuel efficiency at additional technology costs to automakers that can

do so relatively cheaply, thus significantly lowering the aggregate technology costs

for fuel efficiency adjustment. This makes Policy 4 the most effective among the

four simulated policies in terms of social welfare. Since Policy 4 mimics the actual

new CAFE standards, simulation results are overall in favor of the shifts to the new

standards.

Yet, there may be a few drawbacks to Policy 4. By adding inter-firm credit

trading to intra-firm credit transferring, Policy 4 nullifies the impact of intra-firm

credit transferring on gasoline use reduction. In addition, it seems to affect negatively

on the profits of some automakers, notably the Big Three.

This paper has several limitations and possible extensions. First, this paper

focused on new vehicles, so the possibility of substitution between new vehicles and

used vehicles is ignored. In practice, used cars account for a large part of the vehicle

market, and Bento et al. (2009) point out the importance of considering used cars

in analyzing the vehicle market. Because the National Household Travel Survey has

data on used car purchases, it would be possible in future work to include used cars

in the vehicle choice model (not as individual used cars but as bundles of used cars

based on age, vehicle type, make, etc). Second, in my framework automakers choose

only the price and fuel economy of vehicles. Studies such as Klier and Linn (2012) and
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Whitefoot et al. (2012) additionally endogenize the choice of other vehicle attributes

such as weight and horsepower, and consider trade-offs between these attributes and

fuel economy. Incorporating their approach into my framework would enrich the

analysis of this paper. Adding used cars and endogenizing other vehicle attributes

are especially important when we focus on significant stringency changes, as these

changes have larger impacts on decisions by consumers and producers, and market

outcomes. Since I compare policies that are essentially at the same level of stringency,

the effects of overlooking these features would be relatively small. Lastly, while this

paper examined CAFE standards, other types of policies can be used to improve

fuel economy and reduce fuel consumption, such as gasoline taxes and feebates. In

future work, I plan to simulate these policies with the framework of this paper and

compare the effectiveness of various policies in achieving a given target.
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Mean Std. dev. Min Max

Household Characteristics

Vehicle miles traveled (100 miles) 153.78 120.83 0.32 2,000

Household size (persons) 2.78 1.29 1 14

Population density persons / square mile 3,000 4,762 50 30,000

# of vehicles owned 2.50 1.17 1 12

Household income ($) 70,715 38,342 6,950 131,150

Regular gasoline price ($/gallon) 1.50 0.07 1.29 1.67

Vehicle Attributes

Vehicle price ($) 28,234 13,906 9,045 114,645

Fuel efficiency (miles/gallon) 24.38 5.02 14.42 57.57

Fuel efficiency (gallons/100 miles) 4.27 0.85 1.74 6.94

Footprint (sq ft) 46.67 6.79 34.50 66.60

Curb weight (lb) 4,015 762 2,375 6,000

Horsepower (hp) 199 54 70 415

Horsepower/weight (hp/lb) 0.050 0.011 0.022 0.111

Passenger car dummy 0.538 0.499 0 1

Van dummy 0.096 0.295 0 1

SUV dummy 0.234 0.424 0 1

Pickup truck dummy 0.131 0.338 0 1

The number of households is 5884. The number of vehicle models is 457. Fuel
efficiency in the table is unadjusted fuel efficiency used for CAFE standards. Fuel
eoonomy ratings consumers see are adjusted by the EPA to account for actual driving
conditions. Roughly, adjusted values are 15% less fuel efficient. All dollars are in
2001 U.S. dollars.

Table 1.1: Summary Statistics
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2001 2012 2011

Target CAFE Sales Target CAFE Sales

(mpg) (mpg) (vehicles) (mpg) (mpg) (vehicles)

Domestic Passenger Cars

General Motors 27.5 28.3 2,184,214 32.3 33.0 1,238,428

Ford 27.5 27.7 1,309,834 33.2 35.4 829,957

DaimlerChrysler (Chrysler) 27.5 27.9 739,681 32.2 31.7 415,841

Toyota - - - 33.4 36.7 628,512

Honda 27.5 32.7 794,448 30.4 36.2 437,065

Nissan 27.5 27.9 137,253 32.9 35.2 340,309

Import Passenger Cars

General Motors 27.5 28.4 71,503 - - 92,404

Ford 27.5 27.9 236,797 31.7 31.0 -

DaimlerChrysler (Chrysler) 27.5 26.5 215,072 - - -

Toyota 27.5 30.6 986,390 34.1 50.0 1,103,744

Honda 27.5 29.8 42,271 31.1 43.1 86,021

Nissan 27.5 28.7 257,247 34.1 37.5 327,542

Light Duty Trucks

General Motors 20.7 20.7 1,902,731 23.8 23.5 1,089,179

Ford 20.7 20.4 1,988,290 24.1 24.4 831,846

DaimlerChrysler (Chrysler) 20.7 20.8 1,812,945 25.7 24.6 846,202

Toyota 20.7 22.1 652,229 25.6 25.3 287,882

Honda 20.7 25.0 281,606 25.3 27.9 486,255

Nissan 20.7 20.7 356,816 26.1 24.7 302,394

The table compares selected automakers’ target to be achieved, average fuel economy and sales
volume in model years 2001 and 2012 (or 2011). The data are taken from National Highway
Traffic Safety Administration (2012). Model year 2012 data are projected values. Honda’s
MY 2012 standards are strangely low in all vehicle categories and most likely wrong.

Table 1.2: Comparison of Model Years 2001 and 2012 (or 2011)
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[1] [2] [3]

β1 log(hh size) 0.011 -0.023 -0.040
(0.045) (0.047) (0.046)

log(pop den) 0.065*** 0.090*** 0.100***
(0.021) (0.017) (0.018)

log(# vehicles) 0.008 -0.018 -0.024
(0.053) (0.055) (0.054)

log(income) -0.308*** -0.343*** -0.350***
(0.065) (0.056) (0.057)

max[log(income/46,715),0] -0.391* -0.365* -0.310
(0.204) (0.199) (0.195)

max[log(income/73,580),0] -1.353 -1.877** -1.710**
(1.038) (0.860) (0.805)

δ1 (mean) -6.045*** -5.983*** -6.017***
(0.527) (0.538) (0.526)

(std. dev.) 0.068** 0.064** 0.061**
(0.027) (0.028) (0.028)

β2 log(hh size) 0.138*** 0.101** 0.080
(0.049) (0.051) (0.049)

log(pop den) 0.001 0.027 0.038**
(0.021) (0.017) (0.018)

log(# vehicles) -0.147** -0.177*** -0.185***
(0.057) (0.058) (0.057)

log(income) -0.150** -0.190*** -0.200***
(0.072) (0.063) (0.062)

max[log(income/46,715),0] -0.313 -0.269 -0.202
(0.223) (0.216) (0.210)

max[log(income/73,580),0] -1.401 -1.941** -1.783**
(1.042) (0.863) (0.807)

γ2 log(footprint) 0.420*** 0.374*** 0.337***
(0.118) (0.116) (0.114)

log(hp/lb) -0.089 -0.094 -0.095
(0.089) (0.088) (0.088)

Van 0.049 0.048 0.048
(0.041) (0.041) (0.040)

SUV 0.153*** 0.135*** 0.118***
(0.033) (0.032) (0.031)

Pickup 0.148*** 0.140*** 0.132***
(0.040) (0.040) (0.039)

δ2 (mean) -3.582*** -2.104*** -1.560**
(0.826) (0.814) (0.790)

(std. dev.) 0.019 0.016 0.015
(0.031) (0.031) (0.030)

α3 0.728*** 0.784*** 0.829***
(0.079) (0.074) (0.072)

K 1 4 7

Estimation results in relation to the indirect utility function, i.e.,
equations (1.13)-(1.17). Standard errors in parentheses.
*** indicates significance at the 1% level, ** at the 5% level, * at
the 10% level. Standard errors in parentheses.

Table 1.3: Estimation Results: Indirect Utility Function
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[1] [2] [3]

β2 − β1 log(hh size) 0.127*** 0.124*** 0.121***
(0.022) (0.022) (0.022)

log(pop. den.) -0.064*** -0.063*** -0.062***
(0.006) (0.006) (0.006)

log(# vehicles) -0.155*** -0.159*** -0.162***
(0.024) (0.024) (0.024)

log(income) 0.158*** 0.152*** 0.150***
(0.033) (0.033) (0.033)

max[log(income/46,715),0] 0.079 0.096 0.108
(0.092) (0.092) (0.092)

max[log(income/73,580),0] -0.048 -0.064 -0.073
(0.109) (0.109) (0.109)

γ2 log(footprint) 0.420*** 0.374*** 0.337***
(0.118) (0.116) (0.114)

log(hp/lb) -0.089 -0.094 -0.095
(0.089) (0.088) (0.088)

Van 0.049 0.048 0.048
(0.041) (0.041) (0.040)

SUV 0.153*** 0.135*** 0.118***
(0.033) (0.032) (0.031)

Pickup 0.148*** 0.140*** 0.132***
(0.040) (0.040) (0.039)

α3 − 1 -0.272*** -0.216*** -0.171**
(0.079) (0.074) (0.072)

μ (std. dev.) 0.674*** 0.675*** 0.675***
(0.007) (0.007) (0.007)

K 1 4 7

Estimation results in relation to the continuous VMT choice equation :
log(mijk) = −δ1i+δ2i+log(α3)+(β2−β1)xxxi+γ2zzzjk+(α3−1) log(rij)+
μijk , with mijk = K ×mijk1, where mijk1 is first year’s annual VMT.
*** indicates significance at the 1% level, ** at the 5% level, * at the
10% level. Standard errors in parentheses.

Table 1.4: Estimation Results: VMT Demand Equation
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Annual income

K $22,360 $59,020 $131,150

Toyota Corolla, 1.8L, $13,395 [1] 1 2.11% 1.37% 0.61%

[2] 4 2.06% 1.35% 0.58%

[3] 7 2.02% 1.33% 0.58%

Cadillac DeVille, 4.6L, $44,101 [1] 1 0.23% 0.27% 1.35%

[2] 4 0.26% 0.32% 1.32%

[3] 7 0.29% 0.37% 1.24%

Predicted choice probabilities of two selected vehicle models (the economical
Toyota Corolla 1.8 liter engine model and the luxurious Cadillac DeVille 4.6
liter engine model) for three hypothetical households. The three households’
annual income is set at the 5th, 50th or 95th percentile of the sample, and
other household characteristics are set at the sample average.

Table 1.5: Predicted Probabilities of Choosing Selected Models

[1] [2] [3]

K 1 4 7

Own-price elast. of sales (mean) -2.47 -1.99 -1.94

(std. dev.) 0.27 0.19 0.20

Own-gphm elast. of sales (mean) -0.09 -0.29 -0.49

(std. dev.) 0.03 0.08 0.13

The mean and standard deviation of elasticities of sales with
respect to each vehicle’s own price and fuel efficiency (gphm).

Table 1.6: Predicted Elasticities
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1999 2000 2001 2002 2003

Domestic Passenger Cars

DaimlerChrysler 27.2 27.9 27.9 27.7 29.7

Ford 27.6 28.3 27.7 27.9 27.9

General Motors 27.7 27.9 28.3 28.8 28.9

Honda 33.5 31.4 32.7 32.4 34.4

Nissan 29.9 28.1 27.9 28.9 28.9

Toyota 28.3 33.3 - 33.6 28.1

Standard 27.5 27.5 27.5 27.5 27.5

Import Passenger Cars

BMW 25.4 24.8 25.0 26.2 26.8

Daewoo - 28.6 28.6 28.2 29.1

DaimlerChrysler 26.5 25.3 26.5 26.6 26.3

Ford 28.5 27.4 27.9 28.1 28.2

General Motors 25.5 25.4 28.4 27.8 28.3

Honda 29.4 29.3 29.3 29.8 31.9

Hyundai 30.8 30.7 31.3 31.2 30.4

Kia 30.9 30.0 30.5 29.7 30.4

Nissan 29.9 28.3 28.7 29.5 27.4

Porsche 24.1 24.3 23.7 23.9 24.1

Subaru 27.5 28.0 27.8 27.6 27.6

Suzuki 35.5 35.0 35.1 33.8 33.0

Toyota 29.9 28.9 30.6 29.3 32.4

Volkswagen 28.6 28.8 28.5 29.5 29.8

Standard 27.5 27.5 27.5 27.5 27.5

Light Duty Trucks

BMW - 17.5 19.2 20.1 20.0

DaimlerChrysler 20.8 21.4 20.8 21.5 22.2

Ford 20.8 21.0 20.4 20.7 21.3

General Motors 20.3 21.0 20.7 21.2 21.3

Honda 26.1 25.4 25.0 25.4 24.7

Hyundai - - 25.0 24.5 24.4

Isuzu 21.1 20.9 21.1 21.0 22.3

Kia 24.4 23.5 23.0 21.4 19.7

Nissan 21.2 20.8 20.7 20.7 21.9

Suzuki 23.8 23.0 22.1 21.9 21.8

Toyota 22.9 21.8 22.1 22.1 21.9

Volkswagen 19.1 18.9 20.4 20.6 21.3

Standard 20.7 20.7 20.7 20.7 20.7

The table shows the sales-weighted harmonic average mpg by automaker
and category, as well as the target for each category. A red entry means
that the average is under the target for the automaker-category, though it
does not necessarily imply a violation because of banking and borrowing of
credits.

Table 1.7: Corporate Average Fuel Economy (in mpg) (1999-2003)

65



2
3

4
5

6
7

G
al

lo
ns

 p
er

 1
00

 m
ile

s

30 40 50 60 70
Footprint (sq. ft.)

PC LDT
Target (PC) Target (LDT)

Figure 1.1: Target Values under Flat Standards (Policy 1) and Actual Fuel Efficiency
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Figure 1.2: Target Values under Footprint-based Standards (Policies 2 and 3)
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Passenger Cars

Policy 1 Policy 2

Footpr. Target Fuel eff. Bind Footpr. Target Fuel eff. Bind

(sq. ft.) (gphm) (gphm) (sq. ft.) (gphm) (gphm)

General Motors 44.95 3.64 3.64 × 44.95 3.66 3.66 ×
Ford 44.85 3.64 3.64 × 44.86 3.66 3.66 ×
DaimlerChrysler 44.23 3.64 3.64 × 44.23 3.62 3.62 ×
Toyota 42.78 3.64 3.29 42.78 3.57 3.29

Honda 43.66 3.64 3.16 43.66 3.58 3.16

Nissan 43.00 3.64 3.56 43.00 3.55 3.55

Volkswagen 41.77 3.64 3.63 41.77 3.49 3.49 ×
All 11 automakers 43.87 - 3.52 43.87 - 3.52

Light Duty Trucks

Policy 1 Policy 2

Footpr. Target Fuel eff. Bind Footpr. Target Fuel eff. Bind

(sq. ft.) (gphm) (gphm) (sq. ft.) (gphm) (gphm)

General Motors 52.61 4.83 4.83 × 52.61 4.87 4.87 ×
Ford 52.69 4.83 4.83 × 52.71 4.87 4.87 ×
DaimlerChrysler 50.37 4.83 4.83 × 50.40 4.77 4.77 ×
Toyota 48.30 4.83 4.57 48.30 4.68 4.57

Honda 48.85 4.83 4.01 48.85 4.70 4.01

Nissan 45.19 4.83 4.74 45.20 4.53 4.53 ×
Volkswagen - - - - - -

All 11 automakers 50.91 - 4.76 50.92 - 4.76

The table reports selected automakers’ three sales-weighted averages (footprint, target and fuel
efficiency) under Policies 1 and 2. In each of the two vehicle categories (passenger cars and light-
duty trucks), CAFE standards require an automaker’s average fuel efficiency (gphm) to be below
its target.

Table 1.8: Target and Achieved Fuel Efficiency under Policies 1 and 2 (by Automaker)
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K = 1

Policy: 1 2 3 4

Flat (FL)/Ftprnt (FP): FL FP FP FP

Intra-firm transferring: No No Yes Yes

Inter-firm trading: No No No Yes

Credit
λc λt λc λt λ z sales
($) ($) ($) ($) ($) ($) (mil.$)

General Motors 76.0 49.8 75.7 49.3 52.3 - -20.8

Ford 64.8 54.7 64.4 54.2 57.4 - -47.9

DaimlerChrysler 82.5 62.5 82.8 63.1 64.9 - -58.1

Toyota - - - - - - 48.9

Honda - - - - - - 51.0

Nissan - - 0.1 1.9 0.9 - 9.5

Volkswagen - - 1.4 - 1.4 - 3.0

All 11 automakers - - - - - 59.3 0.0

K = 4

1 2 3 4

General Motors 74.2 53.2 72.8 50.8 61.0 - -39.8

Ford 66.8 56.7 65.7 55.1 59.1 - -30.3

DaimlerChrysler 88.0 66.1 88.9 67.6 71.2 - -37.5

Toyota - - - - - - 41.5

Honda - - - - - - 43.3

Nissan - - - 6.0 2.4 - 8.0

Volkswagen - - 5.9 - 5.9 - 2.5

All 11 automakers - - - - - 49.6 0.0

K = 7

1 2 3 4

General Motors 72.7 54.8 71.6 52.0 62.8 - -29.5

Ford 68.5 58.2 66.1 55.6 60.8 - -21.1

DaimlerChrysler 92.2 68.5 93.5 71.0 75.0 - -22.9

Toyota - - - - - - 28.1

Honda - - - - - - 33.2

Nissan - - - 9.7 3.6 - 4.3

Volkswagen - - 10.0 - 9.1 - 1.2

All 11 automakers - - - - - 44.2 0.0

Under Policies 1-3, λc, λt or λ is the Lagrange multiplier (i.e., shadow price) of the
corresponding constraint in an automaker’s profit maximization (λc for passenger
cars (PCs), λt for light-duty trucks (LDTs), and λ for the entire fleet of PCs and
LDTs). For Policy 4, the price of credits (z) and net revenue from credit trading
are shown. All dollars are in 2001 U.S. dollars.

Table 1.9: The (Shadow) Price of CAFE Constraints and Fuel Efficiency Credits
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Change from Policy 1

Policy 1 Policy 2 Policy 3 Policy 4

Flat (FL)/Footprint (FP): FL FP FP FP

Intra-firm transferring: No No Yes Yes

Inter-firm trading: No No No Yes

Fuel efficiency (PC) (gphm) 3.52 0.0001 0.1691 0.0154

Fuel efficiency (LDT) (gphm) 4.76 0.0005 -0.1898 -0.0175

Fuel efficiency (PC + LDT) (gphm) 4.10 0.0002 0.0010 0.0001

Footprint (PC) (sq. ft.) 43.87 0.0015 0.0024 -0.0059

Footprint (LDT) (sq. ft.) 50.91 0.0120 0.0142 0.0073

Market share (PC) (%) 53.22 0.0072 0.0223 -0.0094

Automakers’ profits (million $) [1] - -26.12 -14.39 28.29

Consumer surplus (mil. $) [2] - 20.23 11.82 88.43

Technology costs for fuel eff. adjust. (mil. $) [3] - -8.66 12.44 -113.16

Lifetime fuel use externalities (mil. $) [4] 42,632 7.30 -96.86 -36.08

Social welfare (= [1] + [2]− [4]) (mil. $) [5] - -13.19 94.29 152.80

Automakers’ profits / vehicle ($) - -1.73 -0.95 1.87

Consumer surplus / vehicle ($) - 1.34 0.78 5.84

Technology costs for fuel eff. adjust. / vehicle ($) - -0.57 0.82 -7.48

Lifetime fuel use externalities / vehicle ($) 2,818 0.48 -6.40 -2.38

Social welfare / vehicle ($) - -0.87 6.23 10.10

The table shows simulation results at the market level for the case of K = 1. All dollars are in
2001 U.S. dollars.
K = 1: low valuation of fuel efficiency by consumers at the time of vehicle purchase, and low
marginal production costs for improving fuel efficiency.

Table 1.10: Market Level Outcomes (K = 1)
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Change from Policy 1

Policy 1 Policy 2 Policy 3 Policy 4

Flat (FL)/Footprint (FP): FL FP FP FP

Intra-firm transferring: No No Yes Yes

Inter-firm trading: No No No Yes

Fuel efficiency (PC) (gphm) 3.52 -0.0005 0.1184 -0.0005

Fuel efficiency (LDT) (gphm) 4.76 0.0004 -0.1325 -0.0009

Fuel efficiency (PC + LDT) (gphm) 4.10 -0.0002 0.0007 -0.0008

Footprint (PC) (sq. ft.) 43.87 0.0012 0.0029 -0.0218

Footprint (LDT) (sq. ft.) 50.91 0.0128 0.0163 -0.0091

Market share (PC) (%) 53.23 0.0138 0.0347 0.0106

Automakers’ profits (million $) [1] - 55.96 63.42 -120.75

Consumer surplus (mil. $) [2] - -32.73 -63.18 271.06

Technology costs for fuel eff. adjust. (mil. $) [3] - -7.44 93.09 -109.23

Lifetime fuel use externalities (mil. $) [4] 42,618 4.04 -67.93 -18.07

Social welfare (= [1] + [2]− [4]) (mil. $) [5] - 19.19 68.18 168.39

Automakers’ profits / vehicle ($) - 3.70 4.19 -7.98

Consumer surplus / vehicle ($) - -2.16 -4.18 17.92

Technology costs for fuel eff. adjust. / vehicle ($) - -0.49 6.15 -7.22

Lifetime fuel use externalities / vehicle ($) 2,817 0.27 -4.49 -1.19

Social welfare / vehicle ($) - 1.27 4.51 11.13

The table shows simulation results at the market level for the case of K = 4. All dollars are in
2001 U.S. dollars.
K = 4: medium valuation of fuel efficiency by consumers at the time of vehicle purchase, and
medium marginal production costs for improving fuel efficiency.

Table 1.11: Market Level Outcomes (K = 4)
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Change from Policy 1

Policy 1 Policy 2 Policy 3 Policy 4

Flat (FL)/Footprint (FP): FL FP FP FP

Intra-firm transferring: No No Yes Yes

Inter-firm trading: No No No Yes

Fuel efficiency (PC) (gphm) 3.52 -0.0006 0.0778 -0.0170

Fuel efficiency (LDT) (gphm) 4.76 0.0006 -0.0853 0.0178

Fuel efficiency (PC + LDT) (gphm) 4.10 -0.0001 0.0013 -0.0021

Footprint (PC) (sq. ft.) 43.87 0.0015 0.0033 -0.0242

Footprint (LDT) (sq. ft.) 50.90 0.0140 0.0161 -0.0098

Market share (PC) (%) 53.25 0.0086 0.0230 0.1064

Automakers’ profits (million $) [1] - 8.45 -6.07 -274.05

Consumer surplus (mil. $) [2] - 9.48 -37.86 310.68

Technology costs for fuel eff. adjust. (mil. $) [3] - -5.93 97.15 -136.12

Lifetime fuel use externalities (mil. $) [4] 42,605 5.29 -36.42 -11.36

Social welfare (= [1] + [2]− [4]) (mil. $) [5] - 12.64 -7.51 47.99

Automakers’ profits / vehicle ($) - 0.56 -0.40 -18.11

Consumer surplus / vehicle ($) - 0.63 -2.50 20.53

Technology costs for fuel eff. adjust. / vehicle ($) - -0.39 6.42 -9.00

Lifetime fuel use externalities / vehicle ($) 2,816 0.35 -2.41 -0.75

Social welfare / vehicle ($) - 0.84 -0.50 3.17

The table shows simulation results at the market level for the case of K = 7. All dollars are in
2001 U.S. dollars.
K = 7: high valuation of fuel efficiency by consumers at the time of vehicle purchase, and high
marginal production costs for improving fuel efficiency.

Table 1.12: Market Level Outcomes (K = 7)
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Figure 1.3: Changes from Policy 1 as reported in Table 1.10 (K = 1)
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Figure 1.4: Changes from Policy 1 as reported in Table 1.11 (K = 4)
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Figure 1.5: Changes from Policy 1 as reported in Table 1.12 (K = 7)
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K = 1

Target Fuel eff. Diff.
(gphm) (gphm)

Policy: 3 4 3 4 4

[1] [2] [3] [4] [2]-[4]

General Motors 4.22 4.16 4.22 4.25 -0.08

Ford 4.33 4.27 4.33 4.51 -0.23

DaimlerChrysler 4.41 4.35 4.41 4.73 -0.38

Toyota 3.99 3.92 3.77 3.40 0.52

Honda 3.83 3.75 3.35 3.02 0.74

Nissan 3.97 3.90 3.97 3.65 0.25

Volkswagen 3.49 3.41 3.49 3.29 0.12

All 11 automakers 4.16 4.10 4.10 4.10 0.00

K = 4

Target Fuel eff. Diff.
(gphm) (gphm)

Policy: 3 4 3 4 4

[1] [2] [3] [4] [2]-[4]

General Motors 4.22 4.17 4.22 4.36 -0.19

Ford 4.33 4.28 4.33 4.45 -0.17

DaimlerChrysler 4.41 4.35 4.41 4.65 -0.30

Toyota 3.99 3.92 3.77 3.40 0.52

Honda 3.83 3.75 3.35 3.02 0.74

Nissan 3.97 3.90 3.97 3.65 0.25

Volkswagen 3.49 3.41 3.49 3.29 0.12

All 11 automakers 4.16 4.10 4.10 4.10 0.00

K = 7

Target Fuel eff. Diff.
(gphm) (gphm)

Policy: 3 4 3 4 4

[1] [2] [3] [4] [2]-[4]

General Motors 4.22 4.16 4.22 4.32 -0.16

Ford 4.33 4.28 4.33 4.41 -0.14

DaimlerChrysler 4.41 4.35 4.41 4.56 -0.20

Toyota 3.99 3.92 3.77 3.53 0.39

Honda 3.83 3.75 3.35 3.12 0.63

Nissan 3.97 3.90 3.97 3.75 0.15

Volkswagen 3.49 3.41 3.49 3.35 0.06

All 11 automakers 4.16 4.10 4.10 4.10 0.00

The table reports selected automakers’ (sales-weighted) av-
erage target and fuel efficiency under Policies 3 and 4.

Table 1.13: Automaker Level Outcomes
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Chapter 2: Pricing Automobile Fuel Economy: A New Hedonic Ap-

proach

2.1 Introduction

A number of papers have used the hedonic method to estimate the relationship be-

tween vehicle price and attributes (e.g., Atkinson and Halvorsen, 1984; Ohta and

Griliches, 1986; Dreyfus and Viscusi, 1995). Some of these studies include fuel econ-

omy as a regressor and analyze the marginal price of fuel economy, i.e., how changes

in fuel economy affect vehicle prices, with other attributes held constant. In the

standard hedonic approach, the marginal price of fuel economy, or equivalently con-

sumers’ marginal willingness to pay (MWTP) for fuel economy is estimated in two

steps. First, assuming a reasonable functional form, we regress vehicle price on var-

ious vehicle attributes (e.g., weight, horsepower and fuel economy) and obtain the

hedonic price function that describes the relationship between vehicle price and at-

tributes. Then, the marginal price of fuel economy is given as the partial derivative

of the hedonic price function with respect to fuel economy.

A common problem many previous studies have encountered is that the marginal

price of fuel economy (miles per gallon) is often estimated to be only insignificantly
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positive, or sometimes even negative (e.g., Knittel, 2009; Arguea and Hsiao, 1993;

Goodman, 1983; Deaton and Muellbauer, 1980; Hogarty, 1975). This is counter-

intuitive because other things equal, a vehicle with better fuel economy, which re-

duces the owner’s fuel cost spending, will be valued more highly and thus should

be more expensive. Some studies (e.g. Matas and Raymond, 2009; Espey and Nair,

2005; Murray and Sarantis, 1999) have obtained a statistically significant and correct

sign on fuel economy. However, the frequency of obtaining insignificant or wrongly

signed estimates casts doubt on the robustness of the standard hedonic approach in

analyzing the value of fuel economy.

Previous studies argue that unreasonable estimates result from multicollinearity

and/or omitted variables. First, fuel economy is very highly correlated with some

vehicle attributes, such as weight and horsepower. Thus, including fuel economy and

these variables simultaneously on the of right-hand side of the hedonic price regression

may result in multicollinearity and give unstable estimates on fuel economy. Second,

there are many vehicle attributes that are difficult to observe and not well represented

in the hedonic regression (e.g., interior quality, safety features, reliability). Though

these attributes would be technologically independent of fuel economy, we will see in

Section 2.2 that they are very likely correlated with fuel economy (and other included

variables) through consumer preferences, thus causing omitted variable bias. The

results in Section 2.2 imply that omitted variable bias is a more serious problem

than multicollinearity.

This paper proposes an alternative approach to estimating how fuel economy

is priced in the market and how consumers discount future fuel cost savings. A
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distinctive aspect of our approach is the use of each vehicle’s miles traveled, or how

much the vehicle is driven. Based on an optimization problem for consumers’ vehi-

cle purchase, we derive an equation relating vehicle miles traveled (VMT) and the

marginal price of fuel economy. We use this equation and estimate each vehicle’s

marginal price of fuel economy and the discount rate for future fuel cost savings. An

advantage of our approach is that it can significantly alleviate the omitted variable

bias from the attributes unrelated with fuel economy, such as interior quality, safety

features, and reliability. This is possible because the equation relating fuel econ-

omy and the marginal price of fuel economy is only slightly, if any, affected by the

unrelated attributes.

Our approach additionally estimates something previous studies have not es-

timated: the total price of fuel economy. This is the portion of each vehicle’s retail

price attributable to fuel economy, or how much consumers pay in total for each vehi-

cle’s fuel economy (consumers’ total willingness to pay for fuel economy). This price

is not observed explicitly in the market, although it surely exists. The difference

in the total price of fuel economy across vehicles mainly comes from the difference

in the cost of achieving different combinations of fuel economy and other attributes

that affect fuel economy, such as weight and horsepower.

Theoretically, the key feature of our approach is that we take the steps of the

standard hedonic method backward. In the standard approach, using data on vehicle

price and attributes, we first estimate the hedonic price function for automobiles

by regressing vehicle price on various attributes. Then, the marginal price of an

attribute is obtained as the first derivative of the estimated hedonic price function
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with respect to that attribute. In our approach, we first construct a proxy for each

vehicle’s marginal price of fuel economy by using data on gasoline prices and the

vehicle’s estimated annual miles traveled. The logic behind this is as follows. With

Rosen’s (1974) argument that at a point in the space of product attributes where

a transaction occurs, the hedonic price function is tangent to the consumer’s bid

function, each vehicle’s marginal price of fuel economy equals its buyer’s MWTP for

fuel economy. In turn, his MWTP should equal the present value of expected fuel cost

savings over the life of the vehicle due to a marginal fuel economy change. And the

present-value expected fuel cost savings depend on gasoline prices and vehicle miles

traveled (VMT). Therefore, we can obtain a proxy for each vehicle’s marginal price

of fuel economy based on gasoline prices and its VMT. We thus observe a proxy for

each vehicle’s marginal price of fuel economy, in addition to its attributes. Second,

we recover the hedonic price function for fuel economy, the function relating the total

price of fuel economy with vehicle attributes such as fuel economy and weight, as an

envelope of d8ffereht vehicles’ (proxied) marginal prices of fuel economy. Therefore,

compared to the standard hedonic approach, we are essentially taking the procedure

backward. From the estimated hedonic price function, we obtain an estimate of each

vehicle’s marginal price of fuel economy (which would be more accurate than the

proxy variable originally used).

We apply our approach to model year 2001 vehicles sold in the U.S. Information

on vehicle attributes such as vehicle weight, horsepower and fuel economy is taken

from the U.S. Environmental Protection Agency’s fuel economy test data. The Na-

tional Household Travel Survey provides the make, model, year, and estimated VMT
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of each vehicle. We match these two data sets and take them to estimation.

Estimation results suggest that our approach works. We estimate that con-

sumers discount future fuel cost savings at the annual rate of 26-43%, much higher

than usual rates of return on investment. As for the marginal price of fuel economy

or MWTP for fuel economy, a fuel efficiency improvement of 0.1 gallon per 100 miles

on average increases vehicle price by $74.7 in 2000 U.S. dollars (for the middle case of

the discount rate of 34%). Larger vehicles tend to have higher marginal prices of fuel

economy, basically because these vehicles are driven more miles, so buyers of these

vehicles are more willing to pay for fuel economy. The average total price of fuel

economy is $1,950 (for the case of the discount rate of 34%). Larger vehicles tend to

have higher total prices of fuel economy as well, which implies that the cost spent for

fuel economy is higher in these vehicles than in smaller vehicles. The estimated total

prices of fuel economy suggest that for most vehicles around 5-10% of their retail

price is attributable to fuel economy.

The paper is organized as follows. Section 2 applies the standard hedonic

approach to our data and analyzes potential problems of the approach. Sections 3

and 4 discuss the theoretical background and framework of the new approach we

propose. Section 5 describes the estimation procedure, and Section 6 explains the

data sets used. Section 7 reports the results of our estimation. Section 8 checks the

robustness of the results. Section 9 concludes.
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2.2 Applying the Standard Hedonic Approach to Our Data

To see if the standard hedonic approach works, we run a simple hedonic regression

using the data from model year (MY) 2001 vehicles sold in the U.S. (We later apply

our new approach to MY 2001 as well.) We estimate a hedonic price function by

regressing the retail price (H) of each vehicle on its attributes including fuel economy.

The function is estimated with the log-log form:

ln(Hi) =β1 + β2 ln(ei) + β3 ln(wi) + β4 ln(ai) + δ · (other controls) + εi, (2.1)

where the subscript i indicates vehicle trim i, ei is fuel economy (measured in gallons

per 100 miles), wi is vehicle weight and ai is acceleration capacity (horsepower divided

by weight). Some other controls are included as discussed below.

Vehicle price (manufacturer’s suggested retail price) data is taken fromWARDS

Automotive Yearbook. Vehicle attributes data is from the Environmental Protection

Agency’s “fuel economy test car list data.” We use gasoline-engine vehicles only, so

diesel-engine or hybrid-engine vehicles are excluded from the sample. The unit of

analysis is at the vehicle trim level (1177 observations).1 Table 2.1 gives summary

statistics. Section 2.6 explains more about the data sources.

Table 2.2 reports estimation results. Columns (1) and (2) are estimated with or-

dinary least squares (OLS), and columns (3) and (4) are with weighted least squares

(WLS), where weights are given by the sales volume of each trim. Dummy vari-

1A trim is a subcategory of a model. For example, Toyota Camry CE is one of the trims under
the model Toyota Camry.
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Variable Mean Std. Dev. Min Max

Retail price ($) (H) 26,555 12,797 9,045 129,595

Fuel economy (gallons/100 miles) (e) 5.24 1.04 2.56 8.16

Weight (lb) (w) 4,156 783 2,250 6,000

Horsepower/Weight (hp/lb) (a) 0.049 0.011 0.031 0.120

Light duty trucks (LDT) 0.625 0.484 0 1

Manual transmission (MT) 0.449 0.498 0 1

All wheel drive (AWD) 0.286 0.452 0 1

Rear wheel drive (RWD) 0.409 0.492 0 1

The number of observations is 1177.

Table 2.1: Summary Statistics

ables are included to control for the vehicle’s drive system (FWD/RWD/AWD),2

transmission type (AT/MT),3 and light duty truck status (LDT).4 Columns (2) and

(4) additionally include a dummy variable for luxury vehicles (Luxury) and another

variable (ABS/TC) that controls for the level of safety features.5

Most regressors have significant coefficients with a reasonable sign in all columns.

The results suggest that other things equal, increasing weight (w) or acceleration ca-

pacity (a) raises vehicle price. Additionally, other things equal, light duty trucks and

manual transmission trims are less expensive, while all or rear wheel-drive, the luxury

status, and safety features represented by the anti-lock brake system and traction

control increase vehicle price. These results are consistent across all columns (and

2Front-Wheel-Drive/Rear-Wheel-Drive/All-Wheel-Drive. FWD is treated as the base category.
3Automatic Transmission/Manual Transmission. AT is treated as the base category.
4Vehicles included in the regression (light duty vehicles) fall into two large categories: passenger

cars and light duty trucks. Pickup trucks, sport utility vehicles and vans are in the light duty truck
(LDT) category. Other vehicles are in the passenger car category.

5The variable “Luxury” takes 1 if the trim is classified as a luxury model in WARDS Automotive
Yearbook, and 0 otherwise. The variable “ABS/TC” is the sum of two dummy variables: it takes 2
if the trim has the anti-lock brake system and traction control as standard features, 1 if either of
them is a standard feature, 0 otherwise.
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(1) (2) (3) (4)
Estimator: OLS OLS WLS WLS

ln(e) -0.20* 0.17** -0.44*** -0.15**
(0.10) (0.082) (0.083) (0.069)

ln(w) 1.00*** 0.52*** 1.38*** 0.96***
(0.095) (0.077) (0.080) (0.068)

ln(a) 0.89*** 0.55*** 0.78*** 0.46***
(0.048) (0.040) (0.045) (0.039)

LDT -0.27*** -0.11*** -0.12*** -0.056***
(0.025) (0.021) (0.019) (0.016)

MT -0.12*** -0.11*** -0.14*** -0.12***
(0.016) (0.013) (0.015) (0.012)

AWD 0.23*** 0.13*** 0.16*** 0.13***
(0.025) (0.020) (0.021) (0.017)

RWD 0.14*** 0.053*** 0.100*** 0.058***
(0.022) (0.018) (0.019) (0.016)

Luxury 0.39*** 0.28***
(0.019) (0.016)

ABS/TC 0.079*** 0.076***
(0.0099) (0.0075)

Constant 4.96*** 7.11*** 1.78*** 3.71***
(0.66) (0.53) (0.58) (0.48)

Observations 1177 1177 1177 1177
R2 0.635 0.777 0.687 0.792

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2.2: Results of Estimating Equation (2.1)
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with most previous studies).

The coefficient on fuel economy (fuel consumption) e is of our primary inter-

est. We expect its coefficient, or the elasticity of retail price with respect to fuel

consumption, to be negative, as consumers are less willing to pay for a less fuel ef-

ficient vehicle (with a larger e), everything else equal. Comparing columns (1)-(4),

we discuss two findings regarding the estimated coefficient of ln(e).

First, while the estimate has a reasonable negative sign in columns (1), (3)

and (4), it is positive and significantly so at the 5% level in column (2). That is,

only OLS with Luxury and ABS/TC gives a counter-intuitive sign for the coefficient

of fuel consumption. The unreasonable sign in column (2) may be a result of using

OLS. With OLS, trims with relatively small sales, which are more likely to be outliers

in the sample, have a larger impact on the estimates than with sales-weighted least

squares. They may be the main force causing the unreasonable coefficient on ln(e).

Indeed, WLS with the same regressors (column (4)) provides a reasonable coefficient

(-0.15). This implies the advantage and importance of sales-weighting in obtaining

a reasonable parameter estimate on fuel efficiency, as sales-weighted least squares

can prevent the estimation to be driven too much by vehicles with small sales and

outlying attributes. Previous hedonic studies of the automobile market mostly use

OLS. Table 2.2 suggests that those studies obtaining an unreasonable estimate on

fuel efficiency by OLS could have avoided it by applying WLS.

Second and more importantly, including variables for the luxury status and

safety features changes the estimates drastically. There are various vehicle attributes

that are desirable for consumers and affect the retail price, but are not well repre-
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sented in columns (1) and (3), such as interior equipment, safety features, comfort

and reliability. The variables Luxury and ABS/TC control for these attributes (at

least to some extent). Regardless of the estimator used (OLS or WLS), the inclusion

of Luxury and ABS/TC significantly reduces the magnitude of most of the other

coefficients, and changes the sign of the OLS estimate on ln(e). This clearly implies

strong correlations between attributes in columns (1) or (3) such as fuel economy,

weight and horsepower (divided by weight) and attributes represented by Luxury and

ABS/TC (e.g., interior equipment, safety features, comfort and reliability). Thus,

regressions without variables to control for the latter attributes are most likely bi-

ased, and inferring MWTP for fuel economy (or other attributes) based on these

regressions is misleading, as it cannot estimate the effect of changing fuel economy

(or another attribute) only. Some previous studies (e.g., Arguea, Hsiao, and Taylor,

1994; McManus, 2007) discuss the marginal price of fuel economy based on regres-

sions without these variables, but the results in Table 2.2 imply the possibility of

omitted variable bias in the estimates from these studies.

In connection with later sections, it is very important to note that correlation

between fuel economy and attributes like interior equipment and safety features

does not necessarily mean that production of fuel economy is technologically related

with production of these attributes. Indeed, it would make more sense to consider

that they are technologically independent (if the effect of weight increase from these

attributes is accounted for by including weight as a regressor). Even though two

attributes are technologically independent, consumer preferences may make them

correlated in marketed vehicles. For example, fuel economy and safety features such
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as the anti-lock brake system and traction control seem technologically independent

(once weight is included in the regression). On the other hand, everything else equal,

consumers with higher demand for driving would prefer more fuel efficient vehicles,

and they may also want more safety features because more driving increases the

risk of involving in an accident. If this is the case, other attributes equal, more fuel

efficient vehicles will be equipped with more safety features, and we will observe

partial correlation between fuel economy and safety attributes. Section discusses

technological independence of attributes in more detail.

In addition, Luxury and ABS/TC (and similar variables) may not be able to

remove the omitted variable bias well enough. Our Luxury and ABS/TC are simple

discrete variables that take 0 or 1 (Luxury) or 0, 1 or 2 (ABS/TC). Indeed, data for

attributes like interior equipment, safety features, comfort and reliability is mostly

given, if any, in the form of dummy variables, in contrast to those attributes that can

be expressed as continuous variables, such as fuel economy, weight and horsepower.

These simple discrete variables may not be effective enough to take away the bias due

to the strong correlations between attributes like interior equipment, safety features,

comfort and reliability, and fuel economy (and others). Thus, the result in columns

(2) or (4) may still contain substantial omitted variable bias, and the estimated

marginal price of fuel economy may still be misleading as well.

These arguments show the difficulty of separating the effect on retail price of

fuel economy from that of such attributes as interior equipment, safety features,

comfort and reliability.
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2.3 Background: Hedonic Cost Function

For understanding our approach, it will be useful to start from the vehicle production

process. Thus, this section briefly considers the hedonic cost function of automobile

production and discusses how vehicle attributes are related in the cost function.

A hedonic cost function is the supply-side counterpart of a hedonic price func-

tion. It describes the cost of producing a heterogeneous good as a function of its

attributes. Consider the following hedonic cost function of producing a vehicle.

c = h(e,q), (2.2)

where c is the total cost of producing the vehicle, e is fuel economy (measured in

gallons per 100 miles) and q is a vector of other vehicle attributes.6

We decompose the hedonic cost function h(e,q) into the sum of a function that

involves e and another function that does not:

h(e,q) = f(e,q1) + g(q1,q2), (2.3)

where q = [q1,q2].
7

f(e,q1) represents the part of c that is technologically related with fuel econ-

omy, and we call f the (total) cost of fuel economy. A vector of its arguments q1

6As in most studies using the hedonic cost function approach, we assume constant returns to
scale (i.e., production volume) in vehicle production, so that c does not depend on how many
vehicles are produced by the firm, plant or production line.

7There is no loss of generality in this decomposition because it is possible to set q = q1 and
g(·) = 0 if none of the elements in q is additively separable from e.
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are not (completely) additively separable from e in the cost function, so that the

marginal cost of fuel economy improvement (−∂f
∂e
) depends on q1.

g(q1,q2) represents the other part of c that is technologically independent of

e and thus does not vary with e. It has two types of arguments: q1 and q2. q2

does not show up in f , so it is completely additively separable from e. On the other

hand, q1 is also observed in f , so g captures the part of the effect of q1 on c that is

additively separable from e.

An example of attributes in q2 would be safety devices such as air bags. The

cost of marginally improving fuel economy is unlikely affected by whether or not the

vehicle is equipped with air bags (once vehicle weight is included in q1 and thus the

possible effect of the weight increase from the air bags is accounted for). Thus, air

bags do not enter f . On the other hand, the cost of installing a safety device is

unlikely related with the level of fuel economy, once the effect of other attributes in

q is controlled for. Thus, e does not enter g.

Vehicle weight would be a good example of attributes in q1. Marginally im-

proving fuel economy would be more costly with a vehicle of 4,000 lb and 20 miles per

gallon than with a vehicle with 3,500 lb and 20 miles per gallon, as weight negatively

affects fuel efficiency. This illustrates the dependence of f on vehicle weight. On

the other hand, vehicle weight would also affect g because it simultaneously repre-

sents other attributes than weight itself. In virtually all studies (hedonic or discrete

choice) that use vehicle weight as a regressor (including the regression in Section

2.2), this variable implicitly represents other attributes as well, such as vehicle size

(and sometimes even the level of optional equipment). This multiple representation
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is necessary because in practice it is impossible to include all vehicle attributes as

regressors. If we take vehicle size as an example, heavier vehicles are generally larger,

so that they need more materials for producing the body, and have higher material

costs. These material costs should be included in g, not f , because fuel economy

is affected by weight itself, and what it comes from does not matter. For instance,

a weight increase from loading rocks (found somewhere on the road) into the vehi-

cle’s trunk has essentially the same effect on fuel economy as an equivalent weight

increase due to an increase in vehicle size and material use (if the potential effect of

a change in aerodynamic drag is ignored). Thus, it is possible that an attribute in

q1 appears both in f and g. f accounts only for how the attribute changes the cost

of providing fuel economy, while g accounts for how it changes the production cost

in ways unrelated with fuel economy.

Other than vehicle weight, q1 would include such attributes as horsepower,

torque, body styles, drive systems (front-wheel drive, rear-wheel drive or four-wheel

drive) and transmission types (manual or automatic). For each of the elements in

q1, it is possible to give an engineering explanation as to how it is related with fuel

efficiency. What is important to note in connection with later sections is that these

attributes affects the marginal cost of fuel economy improvement.

2.4 Theoretical Framework

This section discusses the theoretical framework of our approach to estimating the

hedonic price function for fuel economy.
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Let us consider a consumer who is buying a new automobile. The consumer’s

choice problem is formulated as:

max
z,q,m,e

u(z,q, m;ω) s.t. y = z +H(e,q) + p ·m · e. (2.4)

In the utility function u(·), z is consumption of the numéraire good. q is a vector of

vehicle attributes. m is the distance (measured in 100 miles) the consumer expects

to travel with the vehicle (expected vehicle miles traveled (VMT)), and ω is a vector

of her characteristics. In the budget constraint, y is her income; H(·) is the hedonic

price function for automobiles, one of whose arguments is e, fuel economy measured in

gallons per 100 miles; and p is expected gasoline price per gallon. Thus, the term p·m·

e is the total fuel cost the consumer expects to pay ($/gallon ×miles × gallons/mile).

For the moment, we consider only a single period in the problem. We will later

introduce multiple periods to reflect the fact that consumers own vehicles over years

and likely consider total fuel cost over the lifetime of their vehicles. Exogenous to the

choice problem are ω, y, p, and the shape of u(·) and H(·). The consumer chooses

z, q, m and e.

Note that m enters u(·), but not H(·). That is, how much the consumer will

drive the vehicle after purchase affects her utility, but not its price. On the other

hand, I assume that e enters H(·), but not u(·): The level of fuel economy influences

vehicle prices, but good fuel economy does not directly increase her utility on its

own. Consumers prefer better fuel economy only because it lowers fuel costs p ·m · e.

Although some consumers who are environmentally conscious may obtain utility
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directly from owning fuel efficient vehicles, this assumption will be valid for most

consumers. It is this property of e that enables the estimation approach we propose.

First order conditions of the consumer’s choice problem are:

uz(z,q, m;ω) = λ,

uqk(z,q, m;ω) = λHqk(e,q) ∀k,

um(z,q, m;ω) = λpe,

pm = −He(e,q), (2.5)

y = z +H(e,q) + p ·m · e,

where λ is the Lagrange multiplier for the budget constraint. The rational consumer’s

vehicle choice should satisfy these equations in equilibrium.

Among these conditions, this study focuses on equation (2.5), which is the

first order condition with respect to e. pm is the fuel cost savings from a marginal

improvement in fuel economy (i.e., MWTP for fuel economy). Similarly, −He(q, e)

is the price increase from a marginal improvement in fuel economy (i.e., marginal

price of fuel economy). The equality implies that the marginal willingness to pay

and the marginal price are equalized at the optimum.

As in the case of the hedonic cost function h(e,q) above, the hedonic price

function H(e,q) can be decomposed into the sum of a function that involves e and
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another function that does not:

H(e,q) = F (e,q) +G(q).8 (2.6)

How are F and f (or G and g) related with each other? If the automobile

market is perfectly competitive, the hedonic price function matches the hedonic cost

function, so that F (e,q) = F (e, [q1,q2]) = f(e,q1) and G(q) = G([q1,q2]) =

g(q1,q2). In reality, the auto market is oligopolistic, so F and f (or G and g) will

differ in accordance with automakers’ markup-setting strategies. Therefore, it may

be possible that F is affected not only by e and q1, but also by q2. Still, it would be

the case that e and q1 affect F much more significantly than q2, because e and q1

affect F directly through the production technology f(e,q1), while q2 does not affect

F technologically, but only indirectly through the automaker’s pricing strategy.

In the empirics below, we will analyze the effect of q2 on f by first estimating

f without variables representing q2, and then including them. We will see that

including these variables changes the result only slightly, implying small effects of q2

on f .

With the decomposition of H , equation (2.5) now becomes,

pm = −Fe(e,q). (2.7)

Up to this point we have assumed that the consumer uses the vehicle in a single

8There is no loss of generality in this decomposition because we can set G(q) = 0 if none of the
elements in q is additively separable from e.

91



period. In reality, each vehicle is used over years, so the consumer’s willingness to

pay for a marginal fuel economy improvement will depend on the present value of

fuel cost savings over the life of the vehicle. With this consideration, the left-hand

side of equation (2.7) is replaced with the the present value of fuel cost savings from

a marginal fuel economy improvement, which we model as

L∑
t=0

dt · pt · stm, (2.8)

where L + 1 is the length of the vehicle’s life (in years), d is the annual discount

factor, pt is the expected gasoline price at time t, m is the expected VMT for the

first year and s is one minus the annual rate of VMT reduction. We assume that

consumers expect future gasoline prices to stay at the current level.9 Then, equation

(2.7) is replaced with

1− (ds)L+1

1− ds
pm = −Fe(e,q). (2.9)

pm is multiplied by a factor (A ≡ 1−(ds)L+1

1−ds
) that accounts for the vehicle’s lifetime

and the consumer’s discounting of future fuel cost savings. We assume that d and s,

and thus A, are common to all consumers.

2.5 Estimation Procedure

We will use equation (2.9) to estimate the marginal and total price of fuel economy

(−∂F
∂e

and F ) as a function of fuel economy and other vehicle attributes.

9The current price is the best predictor if gasoline prices follow a random walk.
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Suppose that we have data on q, e and Apm for each vehicle in the data

set.Then, we can estimate Fe(e,q) by making reasonable assumptions on its func-

tional form and finding parameter values that best fit the observed market outcomes

(q, e and Apm) to equation (2.9).10 Using the estimated parameters, we calculate

the fitted value of the marginal price of fuel economy of each model, or the average of

marginal willingness to pay for fuel economy among consumers choosing the model.

After estimating Fe(e,q), we use the parameter estimates to recover F (e,q), which

gives us the total price of fuel economy, or the portion of the vehicle price attributable

to fuel economy, as a function of fuel economy e and other vehicle attributes q.

This procedure contrasts with the standard hedonic approach. In the standard

approach, using data on vehicle price and attributes, we first estimate the hedonic

price function for automobiles, H(e,q), by regressing vehicle price on various at-

tributes. Then, the marginal price of fuel economy is obtained as the first derivative

of the estimated hedonic price function with respect to fuel economy. We have al-

ready argued that this approach does not work very well in evaluating the value of

fuel economy.

Our approach discussed above proceeds in the opposite order. Fuel economy

price, F (e,q), is not explicitly observed. Instead, marginal willingness to pay for

fuel economy Apm is observed. Thus, we start from using the first order condition

with respect to e (equation (2.9)), and then recover the information on the hedonic

price function for fuel economy, F (e,q). Essentially, F is recovered as an envelope of

10You might be concerned about the fact that q, e and Apm are endogenous in the sense that
consumers choose these values simultaneously. But the hedonic price function (and hence the
marginal hedonic price function) is a locus of equilibrium points and not a behavioral function, so
simultaneity is not a problem here. See Bockstael and McConnell (2006, p.175) for more details.
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numerous consumers’ observed marginal willingness to pay for fuel economy. Note

that this is possible because the left-hand side of equation (2.9) does not depend on

(the derivative of) the utility function u(·) because e does not enter u but appears

only in the budget constraint. Likewise, the left-hand side is independent of z(=

y − H − pme) and ω, so we need not include individual (or household) income

and characteristics in the estimation. In usual hedonic models, the attribute we

are interested in (e.g., environmental quality) directly enters the utility function, so

that first order condition with respect to that attribute involves (the derivative of)

u(·), z and ω. As is widely known, this dependence on u(·), z and ω significantly

complicates the estimation procedure. In this study, we exploit an unusual situation

that equation (2.9) is independent of u(·), z and ω and estimate the unobserved total

price of fuel economy F (e,q).

With this method of starting from the first order condition with respect to e,

we can extract information only on F (·), the part of vehicle price associated with

fuel economy, because G(·) drops off through differentiation and does not show up in

equation (2.9). This is impossible with the standard approach, since attributes other

than e, especially q1, affect both F and G, and there is no way separating their effect

on F from that on G. If our focus is on fuel economy related issues, F (e,q) includes

sufficient information. And information on G is not only redundant but possibly

even confusing. Our approach makes it possible to separate F from unwanted G.

In the following estimation, I assume that the hedonic (total) price function
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for fuel economy F (·) takes the translog form as follows:

ln(Fi) =β1 + β2 ln(ei) + β3 ln(wi) + β4 ln(ai) +
1

2
β5[ln(ei)]

2 +
1

2
β6[ln(wi)]

2 +
1

2
β7[ln(ai)]

2

+ β8 ln(ei) ln(wi) + β9 ln(ei) ln(ai) + β10 ln(wi) ln(ai) + δ · (other controls),

(2.10)

where the subscript i indexes vehicle model i, ei is fuel economy (gallons per mile),

wi is vehicle weight and ai is acceleration capacity (horsepower divided by weight).

Other controls include dummy variables for drive systems (FWD/RWD/AWD),

transmission types (AT/SAT/MT), and vehicle categories (passenger car/light duty

truck).

With this specification, equation (2.9) becomes,

Apimi = −{β2 + β5 ln(ei) + β8 ln(wi) + β9 ln(ai)}Fi

ei
.11 (2.11)

Eliminating Fi in equation (2.11) by using equation (2.10), rearranging terms and

adding the error εi, we have the following equation to be estimated by nonlinear least

11Gasoline prices depend on i because different vehicles require different types of gasoline.
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squares:

Apimi = − {β2 + β5 ln(ei) + β8 ln(wi) + β9 ln(ai)}

× exp{β1 + (β2 − 1) ln(ei) + β3 ln(wi) + β4 ln(ai) +
1

2
β5[ln(ei)]

2 +
1

2
β6[ln(wi)]

2

+
1

2
β7[ln(ai)]

2 + β8 ln(ei) ln(wi) + β9 ln(ei) ln(ai) + β10 ln(wi) ln(ai)

+ δ · (other controls)}+ εi.

(2.12)

As explained in detail below, we construct (a proxy for) mi from a survey data

set. That is, mi is the sample average VMT of all model i vehicles in the data set.

The frequency observed in the survey differs across i. For example, a model with a

relatively large market share will be observed more frequently in the survey. mi is

likely to be more accurate (i.e., close to the population average VMT of model i) if it

is based on more observations. Therefore, the difference in frequency across i should

be reflected in the heteroskedasticity of the error term εi. To take account of this, we

estimate equation (2.12) with weighted nonlinear least squares, where weight comes

from each model’s frequency of observations in the sample.

The multiplicative factor A, which accounts for the length of vehicle life and the

consumer’s discounting of future fuel cost savings, affects only β1 and does not change

the relative magnitude of the marginal price of fuel economy across different vehicle

models. At first, we ignore A and estimate the relative marginal price (−F̃e(e,q) ≡
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−Fe(e,q)/A) by regressing just pm on e and q. That is, we estimate

pimi =− {β2 + β5 ln(ei) + β8 ln(wi) + β9 ln(ai)}

× exp{β̃1 + (β2 − 1) ln(ei) + β3 ln(wi) + β4 ln(ai) +
1

2
β5[ln(ei)]

2 +
1

2
β6[ln(wi)]

2

+
1

2
β7[ln(ai)]

2 + β8 ln(ei) ln(wi) + β9 ln(ei) ln(ai) + β10 ln(wi) ln(ai)

+ δ · (other controls)}+ ε̃i,

(2.13)

where β̃1 = β1 − ln(A) and ε̃i = εi/A. In other words, estimating (2.13) gives the

marginal value of fuel economy in case consumers take only the fuel costs of the first

year into account.

After estimating equation (2.13), we estimate the multiplicative factor A and

the discount factor d by combining the predicted relative marginal price of fuel econ-

omy and findings from National Research Council [NRC] (2002) and Environmental

Protection Agency [EPA] (2009). Based on engineering estimates of benefits and

costs of various fuel efficient technologies summarized in NRC (2002), and market

penetration rates of different technologies given in EPA (2009), we estimate the

marginal price of fuel economy for the average vehicle. Then, we estimate A, by

dividing this engineering-based estimate of the average vehicle’s marginal price of

fuel economy by the average vehicle’s predicted relative marginal price of fuel econ-

omy (− ˆ̃Fe(ē, q̄), where ē and q̄ are sales-weighted average values). Plugging this Â,

along with parameter values of s and L, into the relation A = 1−(ds)L+1

1−ds
, we obtain

an estimate of the discount factor d.
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Finally, we estimate the absolute magnitude of model i’s marginal price of fuel

economy by

− F̂e(ei,qi) = − ˆ̃Fe(ei,qi)Â. (2.14)

Similarly, using Â and estimates from equation (2.13), we can estimate the absolute

magnitude of model i’s total price of fuel economy, F̂ (ei,qi).

2.6 Data

We apply the above model to model year (MY) 2001 gasoline-engine passenger cars

and light duty trucks marketed in the United States.12 We need data on vehicle

attributes (e and q), vehicle owners’ expectation on vehicle use (m, s and L) and

gasoline prices (p). Lastly, in order to estimate A, we will use engineering-based

estimates of the marginal price of fuel economy.

Though in the theoretical modelm is the distance each vehicle is expected to be

driven for the first year, no data is available on the owner’s expected VMT. Therefore,

we use a surveyed vehicle’s estimated VMT as a proxy for m, which is obtained from

the 2001 National Household Travel Survey (NHTS), a national survey conducted

by the Federal Highway Administration. This survey contains information on the

vehicle(s) each surveyed household owns (such as make, model and model year) and

the estimated annual VMT of the vehicle(s). We will look at only MY 2001 vehicles.

Two types of VMT estimates will be used in the estimation. The first is self-reported

12Non-gasoline engine vehicles such as hybrid vehicles, which were introduced to the U.S. market
at around that time, and diesel engine vehicles are excluded from the sample. Flex fuel vehicles are
included.
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Variable Mean Std. Dev. Min Max

Self-reported VMT 14,942 9,493 500 76,000

Odometer-based VMT 14,660 8,805 45 73,452

Fuel economy (gallons/100 miles) 4.97 1.02 2.85 7.55

Weight (lb) 4,056 781 2,375 6,000

Horsepower/Weight (hp/lb) 0.048 0.006 0.033 0.099

LDT 0.518 0.499 0 1

MT 0.086 0.138 0 1

SAT 0.003 0.031 0 0.483

AWD 0.237 0.294 0 1

RWD 0.238 0.319 0 1

The number of observations is 1616.

Table 2.3: Summary Statistics

VMT (SVMT) (Table 2.3, row 1), which is based on the owner’s recollection on his

vehicle’s annual VMT. The second is odometer-based VMT (OVMT) (Table 2.3,

row 2), which is derived from two odometer readings of the same vehicle on two

different dates (usually a few months apart from each other). Like the approach

taken in the NHTS, we exclude from the sample 78 observations (passenger cars or

light trucks) whose two VMT measures are extremely different. This leaves us 1,616

observations.13 Since vehicles are identified only up to the vehicle model level in

the 2001 NHTS and equation (2.13) is estimated at the this level, we calculate the

average VMT by vehicle model.

For vehicle attributes (e and q), we will use the Environmental Protection

Agency (EPA)’s “Fuel Economy Test Car List Data” for MY 2001. This is the origi-

nal fuel economy test data administered by the EPA and is used to determine the fuel

13Observations are excluded if |SVMT-OVMT| > 10, 000 miles and (SVMT> 4×OVMT or
SVMT< 0.25×OVMT).
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economy label values available to consumers. The data set covers more than 1,000

vehicle configurations and provides information on vehicle attributes associated with

fuel economy or vehicle emissions (e.g., vehicle weight, engine characteristics, trans-

missions, drive systems, emission control systems), and test results (fuel economy

values and pollutant emissions). Table 1 summarizes variables from this data set

(rows 3-8). In the following regressions, the data is aggregated to the vehicle model

level, as vehicles are identified only up to this level in the 2001 NHTS. Model level

average values are calculated by using sales at the configuration level as weights.

Gasoline price data are are obtained from the Energy Information Adminis-

tration. The annual average price for year 2000 is used as a proxy for the expected

future gasoline price p that consumers held when purchasing a MY 2001 vehicle.14

We assume homogeneous consumers, so that all consumers are assumed to have the

same expectation about future gasoline prices. For vehicles requiring premium gaso-

line, its annual average price ($1.639) is used. For others, the average regular gasoline

price ($1.462) is used.

An engineering estimate of the marginal price of fuel economy for the average

vehicle (this estimate is denoted by K) is constructed with findings from National

Research Council [NRC] (2002) and Environmental Protection Agency [EPA] (2009).

Based on meetings and interviews with representatives of automotive manufacturers

and component and subsystem suppliers, and through published engineering studies,

NRC (2002) estimates the rate of fuel economy improvement and the incremental

retail price from (separately) applying various fuel efficient technologies. EPA (2009)

14Generally, MY 2001 vehicles began to be in the market in late (calendar year) 2000.
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gives statistics on market penetration rates of these technologies over time. As

explained in detail in Appendix A, based on these studies we estimate that K is

$35-$45.

In order to estimate the discount factor d, we need to assume parameter values

of s, one minus the annual rate of VMT reduction, and L+ 1, the length of vehicle

life. Following NRC (2002), we take r = 0.955. We use three values of L+ 1: 10, 15

and 20. We will see that for L large enough (e.g., L ≥ 9), changing L affects d only

slightly.

2.7 Results

2.7.1 Estimating the Relative Magnitude of Marginal Prices of Fuel

Economy

Table 2.4 reports the result of weighted nonlinear least squares estimation of equation

(2.13) for different dependent variables and specifications. Regression (1) is our base

model, and regressions (2)-(4) will be discussed later for robustness checks.

Regression (1) uses self-reported VMT (SVMT) to construct the dependent

variable. It includes dummy variables that seem technologically related with fuel

economy as discussed in Section 2.3: the light duty truck status, transmission types

and drive systems. Several coefficients are statistically significant (although with the

translog specification, coefficients are often jointly significant even when they are not

individually). In particular, most coefficients of variables related with fuel economy

(e) and vehicle weight (w) are statistically significant at the 5 or 10% level (β2, β3,
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β5, β6, β8 and β9).

Rather than analyzing the relative marginal price implied by Table 2.4 in detail,

we will first estimate the multiplicative factor A and the discount factor d. Using

Â, we will estimate the absolute marginal price of fuel economy and analyze how it

differs across vehicles.

2.7.2 Estimating the Multiplicative Factor and Discount Rate

For the (hypothetical) vehicle with the sales-weighted average attributes, we have

two estimates of the incremental price of a 1% fuel economy improvement. Our

model, using VMT and vehicle attributes, gives A[− ˆ̃Fe(ē, q̄)]
ē

100
, where − ˆ̃Fe(·) is the

predicted relative marginal price of fuel economy and ē and q̄ are sales-weighted

average values. The engineering estimate (K) based on NRC (2002) and EPA (2009)

is $35-$45, as explained in detail in Appendix A. We estimate the multiplicative

factor A by equating these two estimates and solving for A. With the engineering-

based estimate of $35-$45, we obtain A for three different values of K (35, 40 and

45). The discount factor d is then estimated using the relationship A = 1−(ds)L+1

1−ds
,

and the discount rate r is given by r = 1
d
− 1.

Table 2.5 shows the estimates of A, d and r for different values of the average

vehicle’s marginal price of fuel economy (K) and the length of vehicle life (L + 1),

with s = 0.955. Table 2.5 also shows WP, the ratio of willingness to pay (WTP) for

a marginal fuel economy improvement (or the marginal price of fuel economy) to the

expected present value (PV) of fuel cost savings from the same improvement. WTP
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is given by 1−(ds)L+1

1−ds
pm, and PV by 1−(vs)L+1

1−vs
pm, where v is the real interest rate,

which we assume to be 7%. Thus,

WP ≡ WTP/PV =
1− (ds)L+1

1− ds

/1− (vs)L+1

1− vs
. (2.15)

WTP/PV< 1 implies consumers’ undervaluation of fuel economy, while WTP/PV>

1 implies overvaluation. The lower WTP/PV(< 1), the larger the degree of con-

sumers’ undervaluation is.

The multiplicative factor A is estimated around 3-4, so for a marginal fuel

economy improvement, consumers are on average willing to pay three to four times

more than the fuel cost savings from that improvement rewarded in the first year.

The estimates of the discount rate r and the WTP/PV ratio imply that con-

sumers discount future fuel cost savings very fast. The discount rate r is estimated

to be 26-43%, depending on K and L. This range is much higher than the real

interest rate we use (7%). We also find that the choice of L (the length of vehicle

life) has almost no effect on r (or d). Future fuel cost savings are discounted so fast

that savings realized after 10 years or later have little value. The WTP/PV ratio is

around 0.35-0.60. Consumers are willing to pay for only 35-60% of the present value

of total fuel cost savings over the life of the vehicle. These numbers are consistent

with the so-called Energy Paradox that consumers significantly undervalue long-term

energy cost savings from energy efficiency improvements.
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2.7.3 Estimating the Absolute Magnitude of Marginal Prices of Fuel

Economy
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Figure 2.1: Marginal Willingness to Pay for Fuel Economy and Fuel Economy
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Figure 2.2: Total Price of Fuel Economy and Fuel Economy

With the predicted relative marginal price of fuel economy (− ˆ̃Fe(e,q)) derived

from column (1) of Table 2.4 and an estimate of the multiplicative factor Â at

104



10
00

20
00

30
00

40
00

T
ot

al
 P

ric
e 

of
 F

ue
l E

co
no

m
y 

($
)

0 20000 40000 60000 80000
Retail Price ($)

Passenger cars Light duty trucks

Figure 2.3: Total Price of Fuel Economy and Retail Price

hand, we now estimate the absolute magnitude of each model’s marginal price of fuel

economy by multiplying them together. In the following we show the results based

on Â from the middle case of K = 40 (Â = 3.46). The (model-level, unweighted)

average price of fuel economy improvement of 0.1 gallon per 100 miles is estimated

to be $74.7 (in 2000 U.S. dollars), and the standard deviation of $7.8. In other

words, on average, consumers are willing to pay $74.7 for an improvement of 0.1

gallon per 100 miles. Figure 2.1 plots the estimated marginal price (−F̂e) against

fuel economy (gallons per 100 miles) to roughly see what models tend to face larger

marginal willingness to pay for fuel economy and thus have larger marginal prices of

fuel economy due to higher VMT or the use of premium gasoline. Figure 2.1 shows

that less fuel efficient (≈ larger and heavier) vehicles tend to have higher marginal

prices. The average marginal price for passenger cars only is $71.5, while that for

light duty trucks is $79.8.

The total price of fuel economy (F ) can be recovered using equation (2.10), the
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estimated coefficients in column (1) of Table 2.4 and Â = 3.46. Column (1) of Table

2.6 reports selected percentiles, the mean and standard deviation of the total price of

fuel economy (F ) predicted by the base regression (column (1) of Table 2.4), treating

a vehicle model (e.g., Toyota Camry) as one observation. The values in parentheses

are the standard errors of F̂ for the corresponding vehicle models that result from

randomness in the estimated coefficients of Table 2.4. The (model-level, unweighted)

average is estimated to be $1,942 (in 2000 U.S. dollars), and the standard deviation is

$642. As in the case of −F̂e above, Figure 2.2 plots F̂ against fuel economy (gallons

per 100 miles) to roughly see what vehicles likely have larger F . Generally, less fuel

efficient (≈ larger and heavier) vehicles tend to have larger F . That is, they tend be

priced higher for fuel economy.

Figure 2.3 plots the relationship between the estimated total price of fuel econ-

omy F̂ and the retail price. It shows a strong positive correlation between the two

prices. This is interesting because we do not use any information on retail prices in

estimating F̂ . Generally, 5-10% of the retail price is estimated to be attributable

to fuel economy. Moreover, while light duty trucks show a relatively proportional

relationship between the two prices, passenger cars present a nonlinear relationship

in the sense that expensive luxury cars do not have proportionally high total prices

of fuel economy. This suggests that luxury and non-luxury cars do not differ so

much in terms of F , so that retail price differences between them mostly come from

differences in the portion unrelated with fuel economy, G.
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2.8 Robustness

We check the robustness of the above results in two respects. First, we estimate the

same regression by using a different VMT measure. Second, we check whether the

inclusion of variables that are technologically unrelated with fuel economy drastically

changes the results.

2.8.1 Using Odometer-based VMT

We construct the dependent variable from odometer-based, rather than self-reported,

VMT and do the same procedure as in the last section. Figure 2.4 compares self-

reported VMT (SVMT) and odometer-based VMT (OVMT) for the 1,616 vehicles

in our sample. Clearly, the two measures are positively correlated (the correlation

coefficient is 0.66), but for many observations there is a wide disparity between them.

Therefore, estimating with OVMT will provide a robustness check of the above results

with SVMT.

Column (3) of Table 2.4 shows the result of estimating equation (2.13) with

using OVMT to construct the dependent variable. This regression is comparable

to column (1). Obviously, OVMT gives less precise estimates than SVMT. None

of the coefficients of regressors associated with e or w, which are mostly significant

with SVMT, are significant at the 10% level. (Their p-values are mostly between 0.1

and 0.2.) This difference implies that SVMT is a better proxy for (the first year’s)

expected VMT at the time of purchase (i.e., m in the theoretical model of Section

2.4).
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Though less precise, OVMT-based predicted values and estimates are in many

cases very close to SVMT-based predicted values and estimates. First, OVMT esti-

mates Â = 3.56 and d̂ = 0.76 for K = 40 and L+1 = 14, while SVMT gives Â = 3.46

and d̂ = 0.75. Using these estimates of A, Figure 2.5 compares the OVMT-based
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Figure 2.6: Total Price of Fuel Economy with SVMT and OVMT (2000 U.S. $)

predicted marginal price of fuel economy and the SVMT-based marginal price. It

shows that for most vehicles these two predictions are similar. The (model-level,

unweighted) average from OVMT is $74.6, while that from SVMT is $74.7. We also

compare the total price of fuel economy predicted by OVMT and SVMT in Table 2.6

and Figure 2.6. Each column of Table 2.6 reports selected percentiles, the mean and

standard deviation of the total price of fuel economy (F ) calculated from the esti-

mates in the corresponding column of Table 2.4. OVMT gives larger F̂ than SVMT,

as well as larger standard errors (given in parentheses). Yet, Figure 2.6, which plots

OVMT-based F̂ against SVMT-based F̂ , shows that they are very highly correlated.

These comparisons of OVMT-based and SVMT-based estimates confirm the

robustness of the results discussed in the last section, and also suggest that SVMT

is a better measure to use in estimating how fuel economy is valued in the market.
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2.8.2 Including Variables Technologically Unrelated with Fuel Econ-

omy

For the standard approach discussed in Section 2.2, we see that the result is very

sensitive to the inclusion of those variables that seem to be technologically unrelated

with fuel economy, such as the luxury status and safety features. Table 2.2 shows

that including these regressors drastically changes the coefficients of ln(e), ln(w) and

ln(a).

For our approach, the theoretical model suggests that the variables technolog-

ically independent of fuel economy (q2) unlikely have a large effect on the results

based on equation (2.9). This is because q2 does not affect F through production

technology, but only indirectly, if any, through the automaker’s pricing strategy.

We test whether our approach is also sensitive to attributes in q2 by additionally

including variables for the luxury status (Luxury) and safety features (ABS/TC).

Columns (2) and (4) of Table 2.4 show the result of estimating equation (2.13)

with Luxury and ABS/TC. Column (2) uses SVMT and column (4) uses OVMT for

constructing the dependent variable. While Luxury is estimated to have a signifi-

cantly negative effect,15 other coefficients do not change significantly from columns

(1) or (3). This makes a clear contrast with the standard approach in Table 2.2.

Figure 2.7 plots the predicted total price of fuel economy F̂ calculated from

column (1) of Table 2.4 against F̂ from column (2). Also, columns (2) and (4) of

15The negative coefficient of Luxury implies that other things equal, a buyer of a luxury vehicle
is on average less willing to pay for a marginal improvement of the vehicle’s fuel economy basically
because it is (on average) driven less than a non-luxury vehicle.
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Table 2.6 show some statistics of F̂ obtained from the corresponding columns of

Table 2.4. From Figure 2.7 and Table 2.6, we find that F̂ is robust to including

Luxury and ABS/TC.
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Figure 2.7: Total Price of Fuel Economy with and without Luxury and ABS/TC
(2000 U.S. $)

These observations provide support for the validity of our approach. Unlike the

estimates from the standard approach, the results in Section 2.7 are insensitive to

including Luxury and ABS/TC, representatives of attributes that are technologically

independent of fuel economy (i.e., q2). This insensitivity is consistent with our

theoretical framework and suggests that our approach has succeeded in separately

analyzing the value of fuel economy (the “F” part) without the complication from

the price of other attributes (the “G” part).
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2.9 Conclusion

This paper has proposed an alternative hedonic approach to estimating how fuel

economy is valued in the market. The basic idea is that we can observe a proxy for

a consumer’s marginal willingness to pay for her vehicle’s fuel economy by using its

VMT (and gasoline prices). With the theoretical prediction that marginal willingness

to pay equals marginal price at an optimum, this is equivalent to observing each

vehicle’s marginal price of fuel economy with error. By taking the steps of the

standard hedonic method backward, we estimate the marginal and total price of fuel

economy as a function of vehicle attributes such as fuel economy and weight.

An important advantage of our approach over the standard hedonic approach

is that ours is much less likely affected by omitted variables bias from attributes

technologically unrelated with fuel economy such as interior quality and safety fea-

tures (i.e., attributes denoted by q2). As discussed in Section 2.2, fuel economy is

strongly correlated with q2, largely due to consumer preferences (though not due

to production technology). Thus, omitting these attributes in the standard hedonic

regression of vehicle price on vehicle attributes, which usually happens because it

is difficult to represent these attributes well enough in regressions, results in a bi-

ased estimate of marginal price of fuel economy. Our approach makes it possible

to separate the portion of vehicle price that varies with fuel economy (F ) from the

portion that does not (G). This is because in our approach we first estimate ∂F
∂e
,

and then recover F using information on ∂F
∂e
. The effect of a vehicle attribute on the

fuel-economy-unrelated portion of vehicle price (G) can be separated because it does
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not affect ∂F
∂e
. We have shown in Section 2.8 that the estimates and predictions from

our approach are robust to including variables that represent q2.

We have applied this procedure to MY 2001 new vehicles sold in the U.S.

With additionally using engineering-based estimates of the average MY 2001 vehicle’s

marginal price of fuel economy, we estimate that consumers discount future fuel cost

savings at the annual rate of 26-43%, much higher than usual rates of return on

investment. A fuel efficiency improvement of 0.1 gallon per 100 miles is estimated to

increase vehicle price by, on average, $74.7 in 2000 U.S. dollars (for the middle case

of the discount rate of 34%). Larger vehicles tend to have higher marginal prices

of fuel economy, basically because these vehicles are driven more miles, so buyers of

these vehicles are more willing to pay for fuel economy. The average total price of

fuel economy is estimated at $1,950 (for the case of the discount rate of 34%). Larger

vehicles tend to have higher total prices of fuel economy as well, which implies that

the cost spent for fuel economy is higher in these vehicles than in smaller vehicles.

The estimated total prices of fuel economy suggest that for most vehicles around

5-10% of their retail price is attributable to fuel economy.
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.1 Appendix on Engineering Estimates of the Marginal Price of Fuel

Economy

Here we analyze two reports on automobile fuel economy (National Research Council,

2002; Environmental Protection Agency, 2009) and estimate the marginal price of

fuel economy for the average vehicle from an engineering, rather than economic,

point of view. We will consider a number of fuel efficient technologies that were

available or expected to be available in 2001. Among these technologies we want

to identify “marginal” technologies at that time which automakers chose to or not

to use in their models for a marginal fuel economy adjustment. Then, engineering

estimates of the benefit and cost of the “marginal” technologies allow us to estimate

the marginal price of fuel economy for the average vehicle.

Various technologies are available to improve fuel economy. For example, NRC

(2002) gives a comprehensive list of new technologies, and also engineering estimates

of fuel economy gains and retail price increases from applying each technology.16

These estimates are based on engineering, rather than economics, in the sense that

they are constructed through meetings and interviews with representatives of auto-

motive manufacturers and component and subsystem suppliers, and through pub-

lished engineering studies. Also, EPA (2009) provides data on market penetration

16NRC’s (2002) list of fuel efficient technologies includes: engine friction reduction; low friction
lubricants; multi-valve, overhead camshafts; variable valve timing; variable valve timing and lift;
cylinder deactivation;engine accessory improvement; supercharging and downsizing; five-speed (or
six-speed) automatic transmissions; continuously variable transmissions; aerodynamic drag reduc-
tion; improved rolling resistance; intake valve throttling; camless valve actuation; variable compres-
sion ratio; automated shift manual transmissions; integrated starter generators; 42 volt electrical
systems; electric power steering.
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trends of a number of old and new fuel efficient technologies.

Among these technologies, we want to identify “marginal” technologies for

model year (MY) 2001 vehicles. Automakers can adjust the level of fuel economy of

a vehicle by choosing a combination of fuel efficient technologies used in the vehicle.

Marginal technologies are those that automakers likely add to or remove from the

combination when they marginally adjust the vehicle’s fuel economy. Efficiency gains

and price increases from these marginal technologies determine the marginal price of

fuel economy.

What kind of technologies are marginal? Relatively old technologies (e.g. front-

wheel-drive, port fuel injection and lockup transmissions) are so mature and common

that their penetration rates have been very high and stable since the mid-1990s at

the latest (EPA, 2009). They have become the default settings and it is unlikely

that these technologies are added to or removed from a vehicle for the purpose of

marginal fuel economy adjustment. On the other hand, new technologies that were

rarely observed in the market in 2001 could not be marginal technologies, either.

New technologies will still be more costly or unstable. It is unlikely that these

new technologies were applied to a wide variety of vehicles for marginally improving

fuel economy. Thus, marginal technologies are those that were used in not a few

vehicles in 2001, but not so commonly that they had become default settings. For

vehicles with these technologies, they were one of the last fuel efficient technologies

applied. For vehicles without these technologies, they would be used if a marginal

fuel economy improvement was needed.

Based on EPA (2009), we consider three technologies (multi-valve, overhead
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camshaft valve trains; variable valve timing; and five-speed automatic transmissions)

as “marginal” in MY 2001. Statistics from EPA (2009) shows that 49% of new cars

and trucks in MY 2001 were equipped with a multi-valve, overhead camshaft valve

train; 20% were with a variable valve timing system, which is generally added to

models with a multi-valve, overhead camshaft valve train; 11% (of MY 2001 new

cars and trucks with an automatic transmission) were with a five-speed automatic

transmission. Other technologies discussed in NRC (2002) were rarely observed in

the market at that time, or we do not have data to show how widely they were

used. Therefore, at the time of MY 2001, multi-valve, overhead camshaft valve

trains, variable valve timing, and five-speed automatic transmissions were likely to

be among those technologies that were applied to or removed from each model for

marginally adjusting fuel economy.

Table 7 shows engineering estimates of efficiency gains and price increases from

the marginal technologies, provided by NRC (2002). The first two columns give esti-

mated ranges of the rate of fuel economy improvement and of the incremental retail

price from applying each of the three marginal technologies. Remember that these

estimates are based on engineering, rather than economics, in the sense that they

are constructed through meetings and interviews with representatives of automo-

tive manufacturers and component and subsystem suppliers, and through published

engineering studies. NRC (2002) gives estimated ranges because the effect of each

technology differs across vehicle models, depending on various factors, especially ve-

hicle attributes. For example, it may be the case that variable valve timing is more

effective and less costly for smaller cars. Unfortunately, further information is not
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available on how the rate of fuel economy improvement and the incremental retail

price are related with vehicle attributes, so we cannot observe engineering estimates

for each model. Alternatively, we assume that the effect of each technology on the

(hypothetical) vehicle with the average attributes is well approximated by the mid-

points of the ranges.17 Dividing the average incremental price by the average rate of

fuel economy improvement, column (3) of Table 7 gives our engineering estimate of

the price of a 1% fuel economy improvement for the average vehicle. The marginal

price estimates from the three technologies should not be so different from one an-

other. Indeed, column (3) shows that they stay in a $10 range ($35-$45), providing

support for our approach. Based on these results, we use $35-$45 as our (interval)

estimate of the marginal price of fuel economy for the average MY 2001 vehicle.

17NRC (2002) also uses the midpoints of the ranges in deriving its estimates.

117



(1) (2) (3) (4)

VMT type: SVMT SVMT OVMT OVMT

β̃1 -128.7 -122.2 -81.0 -69.0
(89.0) (90.9) (88.0) (90.0)

β2 -39.5** -37.5* -26.3 -23.3
(19.4) (19.7) (18.6) (18.7)

β3 41.5* 40.3* 26.2 24.0
(23.3) (23.7) (22.5) (22.9)

β4 11.4 13.4 6.27 9.50
(11.6) (11.5) (12.5) (12.2)

β5 -6.29** -6.02** -4.26 -3.85
(2.75) (2.78) (2.64) (2.63)

β6 -6.41* -6.21* -4.16 -3.83
(3.29) (3.34) (3.16) (3.18)

β7 -0.042 0.53 -1.34 -0.42
(1.63) (1.57) (1.89) (1.77)

β8 6.32** 6.01** 4.24 3.76
(2.86) (2.88) (2.73) (2.73)

β9 1.61* 1.52* 1.20 1.06
(0.82) (0.84) (0.81) (0.82)

β10 -1.64 -1.65 -1.42 -1.45
(1.33) (1.34) (1.34) (1.34)

δLDT 0.0019 -0.014 0.065 0.045
(0.063) (0.063) (0.061) (0.061)

δRWD -0.023 -0.034 0.042 0.027
(0.076) (0.077) (0.075) (0.074)

δAWD 0.0021 0.012 -0.022 -0.010
(0.089) (0.089) (0.088) (0.088)

δMT 0.16 0.17 0.0024 0.013
(0.17) (0.17) (0.17) (0.17)

δSAT 0.17 0.15 -0.74 -0.78
(0.50) (0.50) (0.74) (0.74)

δLuxury -0.12* -0.16**
(0.068) (0.068)

δABS/TC 0.015 0.015
(0.040) (0.039)

Observations 158 158 158 158
Standard errors in parentheses. *** p<0.01, **
p<0.05, * p<0.1.
Weighted nonlinear least squares estimation of equa-
tion (2.12). The dependent variable is based on
self-reported VMT in regressions (1) and (2), and
odometer-based VMT in regressions (3) and (4).

Table 2.4: Estimation of Equation (2.13)
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K: 35 40 45

L+ 1 A d r WP A d r WP A d r WP

10 3.03 0.71 0.41 0.48 3.46 0.76 0.32 0.55 3.89 0.80 0.26 0.62

15 3.03 0.70 0.42 0.40 3.46 0.75 0.34 0.45 3.89 0.78 0.28 0.51

20 3.03 0.70 0.43 0.36 3.46 0.74 0.34 0.41 3.89 0.78 0.28 0.47

K: engineering estimate of marginal price of fuel economy, L+1: length of vehicle life, A:
multiplicative factor, d: discount factor, r: discount rate, WP: WTP/PV

Table 2.5: Estimates of A, d, r and WTP/PV

(1) (2) (3) (4)

5% 1069 1091 1405 1521
(362) (366) (616) (772)

25% 1485 1537 1893 2000
(587) (635) (726) (847)

50% 1887 1904 2342 2408
(745) (646) (939) (1167)

75% 2251 2289 2812 2886
(640) (755) (1063) (1285)

95% 3281 3167 3922 3816
(967) (1031) (1583) (1817)

Mean 1942 1951 2407 2474
Std. dev. 641 620 726 701
Observations 158 158 158 158
The total price of fuel economy (F ) is esti-
mated using equation (2.10), the estimated
coefficients in the corresponding column of
Table 2.4 and the corresponding Â. The ta-
ble reports the mean, standard deviation and
selected percentiles of F̂ , treating a vehicle
model as one observation. In parentheses are
the standard errors of F̂ for the correspond-
ing vehicle models that result from random-
ness in the estimated coefficients of Table 2.4.

Table 2.6: Statistics of Estimated Total Price of Fuel Economy (F̂ )
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(1) (2) (3)
Efficiency Price Mean $
gain (%) increase ($) /Mean %

Multi-valve, overhead camshaft 2-5 105-140 35.0

Variable valve timing 2-3 35-140 35.0

Five-speed automatic transmission 2-3 70-154 44.8

Table 7: “Marginal” Fuel Efficient Technologies
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Chapter 3: Environmental Policy and Induced Innovation: Evidence

from Automobile Fuel Economy Regulations

3.1 Introduction

With oil price hikes in recent years and the need to reduce carbon dioxide emissions,

developing fuel efficient vehicles has become an important issue worldwide. A com-

mon tool used in many countries to take this challenge is fuel economy standards

that require automakers to achieve a certain level of average fuel efficiency in their

fleet. Many countries have been tightening fuel economy regulations lately. For ex-

ample, in 2009 the Obama administration established new automobile fuel economy

standards that require each automaker to achieve the average fuel economy of 39

miles per gallon (mpg) for passenger cars, and 30 mpg for light trucks by 2016. The

new rule will bring a significant improvement in fuel economy, considering the 2009

Corporate Average Fuel Economy (CAFE) standards of 27.5 mpg for passenger cars

and 23.1 mpg for light trucks.

These regulations will bring huge changes in many aspects of automobiles and

the auto industry. Average fuel economy will be improved, of course. Smaller cars

may become more common because they are more fuel efficient. Vehicle prices are
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likely to increase as well, as evidenced by a U.S. government estimate that the new

U.S. standards will raise the production cost of the average vehicle by $1,300. Lastly,

new technologies may be developed for automakers to comply with the regulations.

This paper focuses on this last point.

In environmental economics, government regulations, along with resource prices,

are considered to be a possible source of technological progress (the “induced in-

novation hypothesis”).1 According to the hypothesis, firms that are required to

comply with environmental standards will allocate more R&D activities to develop

technologies useful for meeting the standards. This leads to technological progress

in environmental technologies. In other words, environmental regulations “induce”

technological progress. The hypothesis indicates that the tightening of fuel economy

regulations in recent and coming years may induce innovations in automakers’ tech-

nology for providing fuel efficiency, which will in turn lower the cost of achieving the

regulatory targets.

There are studies finding empirical evidence of induced innovation from en-

vironmental regulations.2 For instance, Newell et al. (1999) analyze technological

progress in energy efficiency of air conditioners and water heaters, finding that the

direction of innovation is responsive to energy price changes for some products, and

that government energy efficiency standards also have a significant impact on the

average energy efficiency of the product menu. Popp (2002) uses patent data to

study the impact of energy prices on innovations in energy-saving technology, find-

1Jaffe et al. (2003) survey the theoretical and empirical literature on induced innovation.
2Vollebergh (2007) gives a thorough survey of the recent empirical literature on induced inno-

vation.
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ing that a strong, positive impact of energy prices on new innovations. Popp (2006)

uses patent data from the United States, Japan and Germany and examines both

innovation and diffusion of air pollution control equipment. He finds evidence that

innovations respond to environmental regulatory pressure.

There are only few studies on induced innovation in the auto industry. Berry

et al. (1996) analyze automakers’ production cost function during 1972–1982, when

gasoline prices increased rapidly and emissions and fuel economy standards were

tightened. They find that after controlling for changes in vehicle characteristics,

vehicle production costs increased over time during the period. They also find that

patent applications related to combustion engines increased significantly, implying

fast technological progress. An important implication of Berry et al. (1996) is that

with rapidly changing gasoline prices and regulations, production cost increase and

technological progress happen simultaneously, both contributing to fuel economy

improvement. Knittel (2009) examines how fuel efficiency technology has developed

over time using an estimation model similar to the one of this paper. He finds

evidence of technological progress in fuel efficiency taking place in the U.S. in the

early 1980s, his estimate for this period might be overestimated because an increase

in production costs as suggested by Berry et al. (1996) is not considered.

This paper investigates the possibility of innovation induced by fuel economy

regulations. Specifically, I estimate how Japanese automakers’ technology has im-

proved since the 1990s. Unlike the U.S. CAFE standards which had not received

a significant revision since the late 1980s until after 2005, Japanese fuel economy

regulations started to be tightened in the 1990s. I estimate technological progress
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in fuel efficiency achieved by Japanese automakers before and after regulations were

introduced, and see whether technological progress is accelerated under regulations.

An issue in examining innovation in fuel efficiency is how to distinguish tech-

nological progress from the effect of an increase in production costs on various fuel-

economy-improving systems or devices. The findings of Berry et al. (1996) imply

that it is likely that both technological progress and cost increase occurred simulta-

neously after fuel economy regulations were introduced in Japan. However, it is very

difficult to observe the production cost spent on fuel-economy-improving systems or

devices used in each vehicle model. This paper intends to avoid this problem by

analyzing cars and trucks produced by Japanese automakers and sold in the United

States. For these vehicles, the production costs pertaining to fuel efficiency likely

remained stable during the 1990s and early 2000s. This is, firstly, because U.S. fuel

economy regulations were not binding for Japanese automakers during the period.

Secondly, gasoline prices in the U.S. were very stable in this period, and so is con-

sumer demand on fuel economy. This stability of fuel efficiency related production

costs allows us to observe the effect of technological progress.

The estimation result provides strong evidence on induced innovation in fuel

efficiency technology. I regress fuel economy of automobiles on vehicle characteristics

such as weight and acceleration (or horsepower) and time. The coefficient on the time

variable is interpreted as the rate of technological progress for the sample period. I

run this regression for different periods, and observe how the rate has changed over

time. I find that the rate of technological progress accelerated significantly after

2000, implying inducement from fuel economy regulations established in Japan in
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the 1990s.

This paper is organized as follows. Section 2 provides a simple model to under-

stand how automobile fuel economy is determined. Section 3 discusses fuel economy

regulations and the trend of average fuel economy in Japan. Section 4 explains the

empirical framework of the paper, and section 5 defines estimation equation and ex-

plains the data. Section 6 shows estimation results. Section 7 concludes and discusses

future work.

3.2 Defining Fuel Efficiency Technology

Let us consider the following simple model of automaker i’s “fuel efficiency cost”

function at time t:

cj = F i
t (Xj, ej). (3.1)

Here, j and t represent vehicle j and time t, respectively. ej is fuel efficiency

of the vehicle, expressed in miles per gallon. Xj is (a vector of) vehicle characteris-

tics that affect fuel economy, such as vehicle weight, engine size/type, horsepower,

acceleration, body style, drivetrain and transmission. cj is the (minimum) cost of pro-

ducing a vehicle with a characteristics bundle of (Xj, ej). Given Xj , improving fuel

economy ej requires installing more or better efficiency-improving systems/devices,

which increase the fuel efficiency cost cj (i.e., ∂F i
t (Xj, ej)/∂ej > 0).3 For example,

3Specifically, National Research Council (2002) lists three categories of fuel economy improving
devices/systems. The first category improves the energy efficiency of engines by reducing friction
and other mechanical losses or by improving the processing and combustion of fuel and air (e.g.,
variable valve timing, cylinder deactivation and direct injection engines). The second category
improves the efficiency of the transmission system where power is transmitted from the engine to the
drive shaft or axle (e.g., six-speed automatic transmission and continuously variable transmission).
The third category relates to other ways of improving fuel economy such as aerodynamic drag
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a vehicle with a six-speed transmission would achieve higher fuel efficiency than a

vehicle of the same characteristics except for carrying a five-speed transmission. But

installing more or better efficiency-improving systems will incur additional costs.

Solving equation (3.1) for ej (assuming it is solvable), we obtain:

ej = Gi
t(Xj, cj). (3.2)

F i
t (·, ·) and Gi

t(·, ·) of course contain equivalent information. Below I will mainly

work with Gi
t(·, ·).

Gi
t(·, ·) (or F i

t (·, ·)) is a function that represents the level of automaker i’s fuel

efficiency technology at time t, and is of our primary interest. It describes how

fuel efficiency ej relates to vehicle characteristics such as weight and horsepower,

and efficiency-improving systems as summarized in cj .
4 In other words, Gi

t(·) rep-

resents automaker i’s production possibility frontier (PPF) related to fuel economy.

In this framework, technological change is equivalent to a shift of Gi
t(·) over time.

The induced innovation hypothesis claims that there are two sources of technological

change: One is “autonomous” technological change that occurs even without any

changes in the conditions producers are facing, and the other is “induced” techno-

logical change that results from changes in market conditions such as resource prices

and regulations. Therefore, induced technological change is represented as a faster

shift of Gi
t(·) after fuel economy regulations are tightened or gasoline prices go up.

reduction, rolling resistance reduction and integrated starter/generator systems. The Council also
includes novel vehicle concepts such as hybrid electric vehicles in the third category.

4The theoretical background on including cost cj in the technology function can be found in,
for example, Alexander and Mitchell (1985), Triplett (1985) and Newell (1997).
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This model indicates that automobile fuel economy is determined by three fac-

tors: vehicle characteristics affecting fuel economy (Xj), the cost spent on improving

fuel economy (cj), and the level of the producer’s fuel efficiency technology (the shape

and location of Gi
t(·)). Fuel economy that we observe is a combined outcome of these

three different factors. It is important to distinguish the first two factors from the

last: A change in ej (Δej) due to a change in Xj or cj (ΔXj or Δcj) is a shift along

the PPF, while Δej due to a change in Gi
t(·) (ΔGi

t(·)) is a shift of the PPF.

Fuel economy regulations and changes in gasoline prices are two important

factors that (indirectly) change fuel economy through affecting Xj, cj and Gi
t(·).

Facing new regulations or consumers’ strong demand for fuel economy due to high

gasoline prices, automakers improve fuel economy of their models by adjusting Xj or

cj or advancing Gi
t(·). Reducing the size and power of the vehicle is the easiest way

to improve fuel economy, although it may not be welcomed by consumers. Indeed,

the introduction of the CAFE Standards in the U.S. in 1978 brought a significant

reduction in vehicle weight and power (?). In addition, new regulations or high gaso-

line prices likely increase efficiency-improvement cost cj . For instance, the new fuel

economy regulations established by the Obama administration in 2009 are expected

to increase the cost of the average car by $1,300. Also, Berry et al. (1996) estimate

automakers’ cost function for 1972-1982 and find that tighter emission standards and

increasing gasoline prices likely moved production costs upward. Third, as induced

innovation hypothesis predicts, the regulatory pressure or higher demand for fuel

efficiency may induce research and development in fuel efficiency and shift the PPF,

Gi(·), upward. In order to empirically analyze the effect of fuel economy regula-
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tions on technological progress, we need to separate these three effects and extract

information on the shift of Gi
t(·) alone.

Estimating induced technological progress would be easy if we have data on ej ,

Xj and cj for vehicles of different model years. We can estimate Gi
t(·) by regressing

ej on Xj and cj for year t models, and analyzing technological progress by observing

how Gi
t(·) shifts over time.

The trouble is that cj is most likely unobservable. It is practically impossible

to find out how much is spent for fuel economy improvement in each vehicle model.

If we ignore cj and just regress ej on Xj for different model years when cj is likely

to be changing over time as well, we can still control for the effect of changes in Xj

(ΔXj), but cannot distinguish the effect of Δcj and the effect of ΔGi
t(·). We cannot

know whether fuel economy improvement after controlling for changes in vehicle

characteristics comes from technological progress or from increasing the efficiency

improvement cost. Under tightened regulations, ignoring cj is likely to overestimate

technological progress because cj will also increase in order to meet the regulations.5

3.3 Fuel Economy Regulations and Trends in Japan

Figure 1 summarizes Japanese fuel economy standards set in the 1990s. Target values

are based on weight classes, so each automaker’s average fuel economy in each class is

required to exceed the corresponding target value. The range of a “flat” part of a line

in Figure 1 corresponds to a weight class. In 1993, the government established new

5Therefore, Knittel (2009)’s estimate of “technological progress” in the early 1980s is probably
overestimated because cj likely increased over time in the early 1980s due to tightened regulations
and high gasoline prices but he did not include any measure of cj in the estimation.
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standards, which came into effect in 2000. These standards aimed at improving fuel

economy of the total fleet by 8.5% in 2000, relative to 1990. In 1999, new standards

to be satisfied in 2010 were enacted, targeting to improve average fuel economy by

about 23% by 2010, relative to 1995.6

Have these standards actually helped improve fuel economy? Table 1 summa-

rizes the rate of fuel economy improvement in each weight class for different periods.

For example, the value of 0.2 in weight class (1) for 1990-1993 means that sales-

weighted average fuel economy of vehicles in that class improved by 0.2% between

1990 and 1993. The last column shows the change in sales-weighted average fuel

economy of the total fleet.7 Table 1 shows that fuel economy improved much faster

in the last three periods than the first two. Especially, improvement rates jumped

up in the 1996-1999 period in most weight classes. As gasoline prices in Japan was

slowly going down in the 1990s (Figure 2), these jumps should be attributed to the

introduction of fuel economy standards set in 1993. Although the standards came

into effect in 2000 and automakers were not under any obligations until that time,

improvement accelerated earlier because new fuel efficient technologies are mostly

introduced when each vehicle model experiences a model change, which usually oc-

curs every five to seven years. That is, rather than having a huge jump in year 2000,

fuel economy improved gradually since the mid-1990s.

Although Table 1 shows the effect of regulations on improving fuel economy, it

does not necessarily imply induced technological progress. As discussed before, when

6Recently, targets for 2015 were established in 2007, which are expected to improve average fuel
economy by 23.5% in 2015, relative to 2004.

7Weight classes are defined differently for 1990-1993, so values for weight classes (4)-(9) are not
available.
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regulations are tightened, fuel economy improvement may come from three factors:

ΔXj, Δcj and ΔGi
t(·). As Table 1 is based on weight classes and weight is the most

important factor affecting fuel economy, the effect of ΔXj over time is (partially)

controlled. The improvement rates in Table 1 still contain the effects of both Δcj

and ΔGi
t(·). We cannot be sure from the table alone how much of the improvement

after 1996 comes from technological progress (ΔGi
t(·)).

3.4 Empirical Framework

This paper attempts to obtain a reliable evidence of technological progress induced

by Japanese fuel economy regulations set in the 1990s by looking at Japanese cars

sold in the United States. As explained below, efficiency improvement cost cj for

Japanese cars sold in the U.S. between the late 1980s and 2004 are likely to be stable

over time, making the effect of Δcj on fuel economy negligible. This allows us to

find evidence of induced innovation regardless of unobservability of cj.

There are two key observations for this strategy. First, Japanese automakers

practically have faced no fuel economy regulations in the U.S. market. Second,

gasoline prices remained stable since the mid-1980s until the early 2000s, making

consumers’ demand for fuel economy relatively stable compared to the mid and late

2000s, when gasoline prices changed significantly.

Figure 3 shows the historical trend of the CAFE Standards since 1978, when

they first came into effect. Under the CAFE Standards, for each of specified cat-

egories (currently, imported passenger cars, domestically produced passenger cars,
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and light trucks with a gross vehicle weight rating (GVWR) of 8,500 pounds or less)

of new vehicles sold in the United States in a model year, a manufacturer is required

to keep the sales-weighted average fuel economy of its fleet above the level set by

the National Highway Traffic Safety Administration (NHTSA). It needs to pay a

penalty if it fails to meet the CAFE target for a category.8 As can be seen in the

figure, the standards were being tightened consistently until the mid-1980s. Since

then, however, they remained at almost the same levels for two decades. Since the

mid-2000s, the light truck target has been tightened again at a fast pace.9

Moreover, the CAFE standards have not been binding for most Japanese au-

tomakers. Except for some cases, their average fuel economy values have been well

above the target values for all years since the introduction of the CAFE standards.

Therefore, the CAFE regulations have had little or no influences on Japanese au-

tomaker’s strategy in the U.S. market. Practically, Japanese automakers have faced

no fuel economy regulations in the U.S. Hence, they do not need to increase cj of

their models sold in the U.S. in order to comply with the U.S. regulations.

Next, we look at another factor that affects cj significantly: gasoline prices

and consumers’ demand for fuel economy. As gasoline becomes more expensive,

consumers will become more willing to pay for fuel economy because it will reduce

the operating cost of owning a vehicle. Higher demand for fuel efficient vehicles

8Currently, the penalty is $5.50 for every 0.1 mile per gallon under the target value times the
total volume of the vehicles in the fleet.

9In March 2009, the NHTSA announced that the passenger car target would be tightened for
model year 2011 and become more stringent than the 1985 target of 27.5 miles per gallon for the
first time. Under the new rule set by the Obama administration in 2009, each automaker will be
required to achieve the total fleet (passenger cars and light trucks) average of 35.5 miles per gallon
by 2016. This will bring a significant improvement in fuel economy, considering the 2009 targets of
27.5 mpg for passenger cars, and 23.1 mpg for light trucks.
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induces firms to improve ej by changing cj and Xj. Figure 4 shows regular unleaded

gasoline real prices in the U.S. since the 1970s. As we see in the figure, gasoline

prices were very stable since the late 1980s until 2004 or so, implying that consumers’

demand for fuel economy was also relatively stable during the period. Figure 5 plots

the trend of sales-weighted average weight of all vehicles sold in the U.S. There is a

clear change of trend in 2005: The pace of weight increase slowed down after 2005.

This is consistent with the fact that gasoline prices went up significantly in 2005.

Consumers started to demand fuel economy in 2005. In other words, gasoline prices

had only a negligible impact on their demand for fuel economy until 2004, so that cj

of 2004 models and earlier are likely to be free from consumers’ stronger demand for

fuel economy due to increasing gasoline prices. I assume that consumer’s demand

for fuel efficiency remained almost constant between 1988 and 2004.

Based on the above observations, I assume in this paper that cj of Japanese

cars sold in the U.S. market between 1988 and 2004 remained so stable over time

that improvement in fuel economy attributable to Δcj is negligible.

On the other hand, if tightening of fuel economy regulations in Japan in-

duces technological progress in fuel efficiency technology of Japanese automakers,

this progress should be reflected even in Japanese cars sold in the U.S. As rational

producers, automakers would try to produce vehicles as close to the technological

frontier Gi
t(·) as possible. Therefore, wherever a vehicle is produced or sold, its

producer has an incentive to use better fuel efficiency technology to produce it. Of

course, even within the same company, it would probably be impossible to transplant

all new technologies to all factories instantaneously. Thus, if we find evidence of in-
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duced technological progress from Japanese fuel economy regulations by observing

Japanese cars sold in the U.S., it may be more appropriate to interpret it as the

lower bound for the magnitude of induced technological progress.

3.5 Estimation Equation and Data

Using data on Japanese cars sold in the U.S., I estimate the following equation

separately for every two year period between 1988 and 2006 (i.e., 1988-1990, 1989-

1991, . . ., 2004-2006):

lnmpgj = δt+Xjβ. (3.3)

Subscript j represents vehicle configuration j.10 mpgj is fuel economy (miles per

gallon) and Xj is a vector of vehicle attributes that affect fuel economy: log of

weight (lnwj), log of horsepower-to-weight ratio (ln aj), which measures acceleration

capacity, transmission dummy (automatic [AT], semi-automatic [SAT] or manual

[MT]), drivetrain dummy (front wheel drive [FWD], rear wheel drive [RWD] or all

wheel drive [AWD]), light-duty truck dummy and a constant. In each estimation,

t takes zero if configuration j is observed in the first year of the period, and takes

one if it is observed in the second year, and so on.11 Thus, δ (or more precisely,

exp(δ) − 1) is the annual rate of fuel efficiency improvement after controlling for

vehicle characteristics Xj, which may contain the effects of both Δcj and ΔGi
t(·).

10A vehicle model (e.g. Toyota Camry) in a given model year usually has a number of config-
urations with differences in weight, engine displacement, transmission type, and so on. The data
used in the estimation generally include several configurations per model.

11For instance, suppose configuration j is observed in the data set for year 2000. If the estimation
period is 2000-2002 (1999-2001), then t = 0 (t = 1) for this observation.
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Since cj can reasonably be considered stable from the 1988 to at least 2004, δ is a

good estimate of the rate of technological progress during this period.

I use the EPA’s annual “Fuel Economy Test Car List Data.” This data set

contains information on all fuel economy tests performed each year, providing data

on ej and Xj for almost all vehicle configurations sold in the U.S. each year. In the

following estimation, I use only gasoline-engine models, so hybrid and diesel models

are excluded. Each year I have around 300-500 configurations used in the regressions.

I estimate Equation (3.3) by Weighted Least Squares using the above data.

Weights are calculated as follows. All configurations produced by automaker i in

model year t receive the same weight which equals the total sales of i at t divided

by the number of configurations produced by i at t. This weighting prevents small

automakers like Suzuki and Mazda, which tend to have disproportionately many

observations compared to their sales, from being overrepresented.

3.6 Estimation Results

Table 2 summarizes the size and standard error of the rate of fuel efficiency improve-

ment after controlling for changes in vehicle characteristics, calculated as (exp(δ̂)−

1) × 100, where δ̂ is the estimate of δ, for all two year periods between 1988 and

2006. Figure 6 plots the values in Table 2.The horizontal axis represents the initial

year of a two year period. As discussed above, from period 1988-1990 to period 2002-

2004, fuel economy improvement after controlling for vehicle characteristics mostly

results from technological progress. Thus, the rate of fuel economy improvement
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can be reasonably interpreted as the rate of technological progress in fuel efficiency.

For the last two periods (2003-2005 and 2004-2006), a large portion of fuel economy

improvement might result from an increase in fuel efficiency cost cj.

Table 2 and Figure 6 provide evidence of both autonomous and induced techno-

logical progress. From the initial period of 1988-1990 until the mid 1990s, the average

rate is stable around 1.5% a year. During the mid to late 1990s, the rate appears

to be on the decrease, reaching the lowest of 0.4% for the 1998-2000 period. After

that, it increases sharply to 2.0% for 2001-2003, and remains above 2%. The rate of

technological progress has been positive for all periods including the late 1980s and

early 1990s, when Japanese automakers faced no binding fuel economy regulations

in Japan and the U.S., and gasoline prices were so stable that consumers’ demand

for fuel economy was likely to be stable as well. Thus, technological progress in

fuel efficiency occurs autonomously even without any pressure from fuel economy

regulations and consumers’ demand for fuel economy. More importantly, the jump

in the rate in the 2000s is evidence of induced innovation: Japanese fuel economy

regulations accelerated the speed of technological progress in fuel efficiency.

3.7 Conclusion

Environmental regulations are considered a potential factor to accelerate technolog-

ical progress (the “induced innovation hypothesis”). According to the hypothesis,

firms that are required to comply with environmental standards will allocate more

R&D activities to develop technologies useful for meeting the standards. This leads
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to technological progress in environmental technologies. In other words, environmen-

tal regulations “induce” technological progress.

This paper analyzes whether automobile fuel economy regulations induce tech-

nological progress in fuel efficiency by looking at past experiences of Japanese au-

tomakers. Japanese fuel economy regulations started to be tightened in the 1990s.

I estimate technological progress in fuel efficiency achieved by Japanese automak-

ers before and after new regulations were introduced, and see whether technological

progress is accelerated under the regulations, as indicated by the induced innovation

hypothesis.

An issue in estimating technological progress in fuel efficiency is how to dis-

tinguish technological progress from the effect of an increase in production costs

spent on various fuel-economy-improving systems or devices. Both better technol-

ogy and increased production costs can increase fuel economy. Findings by Berry

et al. (1996) with U.S. data imply that both of these factors were likely to be in effect

simultaneously after fuel economy regulations were introduced in Japan. However,

it is difficult to observe the cost spent on fuel-economy-improving systems or devices

used in each vehicle model. To deal with this issue, this paper focuses on Japanese

cars and trucks sold in the U.S. Vehicles produced by Japanese automakers and sold

in the U.S. are likely to have little changes in the production cost relating to fuel

efficiency during the 1990s and early 2000s for two reasons. First, U.S. fuel economy

regulations were not binding for Japanese automakers during the period. Addition-

ally, gasoline prices in the U.S. were fairly stable in this period, and so is consumer

demand on fuel economy. These observations imply that production costs relating
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to fuel efficiency would remain stable for Japanese cars and trucks sold in the U.S.

market, allowing us to identify the effect of technological progress.

I regress fuel economy of different vehicle models on vehicle characteristics (e.g.,

weight and horsepower) and time. The coefficient on the time variable gives the rate

of technological progress for the sample period. I estimate the rate of technological

progress for different periods between 1988 and 2006, and analyze how the rate has

changed over time. Estimation results suggest that technological progress has accel-

erated significantly after 2000, implying that fuel economy regulations introduced in

Japan in the 1990s induced innovations in fuel efficiency technology used by Japanese

automakers.
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5
10

15
20

F
ue

l E
co

no
m

y 
(k

m
/li

te
r)

500 1000 1500 2000 2500
Vehicle Weight (kg)

1990 Actual 2000 Target (Set in 1993)
2010 Target (Set in 1999)

Figure 1: Japanese Fuel Economy Standards Established in the 1990s

Period\Class (1) (2) (3) (4) (5) (6) (7) (8) (9) Total

1990-1993 0.2 -0.3 0.1 -1.6
1993-1996 1.0 -0.1 0.4 0.8 0.4 0.0 0.1 -0.3 0.1 -0.2
1996-1999 0.4 1.5 1.0 1.0 1.1 1.4 0.7 1.3 0.3 1.1
1999-2002 0.7 1.0 1.6 1.9 1.1 0.8 0.8 0.3 0.1 1.4
2002-2005 4.3 1.0 0.4 0.9 0.6 0.8 0.7 0.5 0.3 0.5

Table 1: Fuel Economy Improvement in Japan by Weight Class
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Figure 2: Regular Gasoline Prices per Liter in Japan (in 2005 Yen)
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Figure 3: U.S. CAFE Standards
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Figure 4: Regular Gasoline Prices per Gallon in the U.S. (in August 2008 Dollars)
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Figure 5: Average Vehicle Weight in the U.S.
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Period Rate (%) Std. Err.

1988-1990 1.57 0.33
1989-1991 1.11 0.31
1990-1992 1.29 0.30
1991-1993 1.52 0.32
1992-1994 1.41 0.34
1993-1995 1.47 0.32
1994-1996 1.36 0.31
1995-1997 0.88 0.30
1996-1998 1.12 0.29
1997-1999 1.12 0.27
1998-2000 0.40 0.25
1999-2001 0.71 0.26
2000-2002 1.26 0.28
2001-2003 2.03 0.30
2002-2004 2.15 0.28
2003-2005 2.25 0.27
2004-2006 2.25 0.26

Table 2: The Rate of Technological Progress in Fuel Efficiency
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Figure 6: Rate of Technological Progress in Fuel Efficiency
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