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originated from artificial intelligence (Al) as a leading intelligent computational
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The concept of agent autonomy in the context of reliability modeling was first
proposed by M. Azarkhail [1], where a fundamentally new idea of system
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Chapter 1: Background, Motivation and Contribution

1.1. Introduction

As technological advancements have been rapidly progressing over the last
few decades, engineering systems are becoming increasingly complex, and as a result,
they experience new failure modes because of complex and often interdependent
physical failure mechanisms. New technology has required adapted approaches to
ensure that engineering systems meet desired reliability goals in a cost-effective and
timely manner.

Since the 1990’s, reliability engineering faced a strong challenge to eliminate
the need to rely solely on life tests and historical failure data for reliability assessment
of electronic devices, mechanical components, and complex engineering systems'.
As life tests are becoming more costly and time consuming, the classical way of
reliability assessment is mostly dependent on the availability of extensive field data
for empirical modeling and component libraries having reliability measures for

similar parts. The failure rate prediction made by this approach often results in

CLINT3

" In this research, the terms “part”, “component” and “system” used in hardware system description,
are defined as follows:

1) Part (or piece part) is a simplest constituent element of more complex items, further defined as
components, so that the only constituent element of the part is material it is made of.

2) Component is more complex item comprised of parts, it is a combination of parts having a specific
function, which can be installed or replaced only as an entity.

3) System is functionally, physically, and/or behaviorally related group of regularly interacting or
interdependent elements, such as hardware (components), software (programs) and human elements.
4) Note that a complex component may be considered a system, and the terms “component” and
“system” are sometimes used interchangeably to the user’s discretion, often depending on the levels of
system hierarchy and complexity of the item. In contrary, a piece part cannot be treated as a
component in the context of this research, even though the term “component” is often used in the
literature referring to a “part”. Also, the term “sub-system” is not defined here, but can be found in the
literature, meaning “component” in the context of this research.



inaccurate reliability estimates due to only partial relevance of historical data to a new
system with different design subjected to non-identical operating conditions.

As an alternative to fully empirical reliability modeling not rooted in the
underlying physical process, the physics-of-failure (PoF) approach has emerged in the
past 50 years as a powerful method of component reliability analysis based on
modeling and simulation that relies on understanding the underlying physical
processes contributing to the degradation, damage and occurrence of critical failures.
This concept has been in use in fracture mechanics and by structural engineers for
many years, but in the 1990’s it has been more extensively used in reliability
engineering. Sufficient computational tools and technological advancements in
testing technologies also supported more practical modeling of the underlying
physical phenomena.

The PoF-based reliability models, also known as probabilistic-mechanistic life
models, have proven to deliver the most comprehensive representation, capable of
bringing many influential factors into the reliability models of the engineering
system. As such, the PoF approach was shown to bring more reality into reliability
models. In addition, these models have wider applications because they are more
flexible to accommodate variation of item characteristics and usage profiles.

Due to inevitable variations of many factors involved in failure processes and
limited information about them, the probabilistic physics-of-failure (PPoF)
methodologies were developed for assessing the reliability of parts and components
by involving variations of environmental and operational stresses, mission profiles,

and manufacturing processes. Taking the PPoF approach to the modeling of a



complex dynamic system, however, can be very challenging, if not impossible, due to
the diversity of components and their failure mechanisms, the complexity of system
logic, and various types of dependencies at all levels of system hierarchy.

The traditional static techniques of system reliability (e.g. fault tree, event
tree, reliability block diagram, Bayesian belief network), as well as dynamic methods
(e.g. Markov chains, stochastic Petri nets, dynamic event trees) demonstrated a
limited capability to incorporate physics of failure into the system level assessment
and offer no or very limited ability to model quantitative causal relations between
interdependent and interacting failure mechanisms of the system elements during the
system evolution over time.

New methodologies are required and currently being developed by several
researchers to introduce PoF into system reliability in a robust, structured, but also
flexible manner to capture the dynamics of system evolution. The intelligent agent-
oriented approach is introduced in this research as a framework for efficient use of the
PoF information and models in developing reliability assessment approaches for
highly reliable mechanical and electronic systems, structures and components with

interacting failure mechanisms.

1.2. Reliability Modeling of Complex Engineering Systems

The PoF modeling approach, driven by the first principles of degradation and
failure, continues standing as the dominant method for reliability modeling of
mechanical, electromechanical, and electronic components. While significant

achievements have been made with the PoF application for component reliability



assessment, a formal structure of the PoF approach for the system level analysis is not
yet defined [2]. Widely used static methodologies of system reliability modeling,
specifically event tree, fault tree and Bayesian belief network [3] - [7], do not
explicitly treat the time-dependent interactions between operational variables (i.e.
environmental factors and operational parameters) and triggered or stochastic events
(e.g., degradation and failure of components) that may lead to the coupling between
these events during system operation. Poor treatment of such dynamic interactions
implies that potentially significant dependencies between failures events may not be
identified or properly quantified with current methods.

The dynamic methodologies of system reliability modeling, specifically
Markov chain [6], [8] - [13], Petri net [6], GO-FLOW [14], [15], Dynamic Master
Logic Diagram [16] and various types of dynamic event trees [6], [14], [17] - [36],
are intended to address system dynamics, but their application is limited to specific
aspects of reliability engineering and Probabilistic Risk Assessment [3] and has a
limited capability to capture interacting degradation processes and interdependent
failure events. Also, both static and dynamic traditional methods of system modeling
are lacking a robust framework for aggregation of available data from various
sources, such as material level fatigue models, material coupon tests, component
tests, field data, in-service inspection findings, health monitoring measurements, data
from generic sources, expert opinion, and partially relevant data.

In summary, both static and dynamic traditional methods of system modeling

impose several challenges when applied to modern engineering systems:



1. Modeling degraded states of the system

Modern systems have three basic elements: hardware, software, and human
elements. Reliability engineering was originally developed to handle failures of
hardware components [37]. A commonly adopted assumption underlying the
quantitative analysis of hardware failures by the system analysis methods is that
systems are made up of binary components (i.e., devices that can be in two states,
either fully functional or failed). Yet, there are many components which could
operate in a degraded state as a result of the wear-out / aging process. As a result,
the overall performance of a system can settle at different levels (compared to the
initial performance level) depending on the operational states of its constituent
elements. As the degradation of system components proceeds, the level of system
performance becomes a function of time until a complete loss of system
functionality occurs. In literature, such systems are referred as degraded systems.
Their analysis requires the development of new techniques of system state
representation, modeling and quantification.

Degraded systems reliability analysis is not currently supported by the
classical static methods of system modeling. Fault tree and event tree methods
relate the states of the components to the occurrence of the top event of interest
(system failure condition) and do not explicitly make use of the state changes
(dynamics) of the system. In this case, the top event is defined without knowing
the sequence of state changes that leads from a good functioning state to the

system failure. Consequently, the scenarios that lead to the system failure



condition cannot be deduced from a Fault Tree or an Event Tree. The same is true
for Bayesian Belief Network.

While several dynamic modeling methodologies, such as Markov Chains or
Dynamic Master Logic Diagrams, can be used to handle the degradation process
of a specific multi-state system that consists of more than one multi-state
component, these methodologies are limited to special cases of the system
degradation scheme [16], [38] - [42]. No generic framework, however, exists to
perform explicit PoF-based reliability analysis of a continuously degrading
system.

2. Modeling system dynamics

System components usually operate in highly varied dynamic environments in
which operational conditions of each hardware component strongly depend on the
nearby components, usage stresses and environmental conditions, as well as
software and human elements. It means that in a dynamic system, not only the
properties of parts, components, and other system elements may change over
time, but also the system configuration and failure logic. The probability of each
event is conditional on the physical states of system elements, the operational and
environmental conditions, and system configuration.

Conventional (static) methods of system modeling do not have the capability
to depict system reliability in the context of multi-state dynamics of the system
elements evolving over time. Fault trees, event trees and Bayesian belief networks
generally show a snap-shot reliability, which is not dynamically sensitive to the

variation of operational and environmental conditions. In order to create a



dynamic model of the system, a new fault tree model is required for every
scenario of the relationship between the components with each other and their
environment as the system dynamics progresses over time. As a result, it becomes
difficult (or almost impossible) to list all potential paths of system degradation
and failure within the framework of conventional risk assessment methods.

Dynamic methods of system modeling provide some ability to quantitatively
capture the realistic features of the stochastic behavior of dynamic systems. Even
these approaches, however, cannot address all necessary aspects of the physical
evolution of the system. In addition, they face significant limitations due to the
size of the analysis when a complex system is considered.
3. Modeling interacting and interdependent failure mechanisms

Interdependency of failure events at all levels of system hierarchy increases
system unavailability compared to the case when the system is modeled as a
sequence of independent failure events. The most common sources of component
dependency in a system are usually related to the operational and environmental
conditions (such as temperature, pressure and other influential stresses) that may
affect the life of the components or other coupling factors leading to common
cause failures of several components. Both traditional (static) and dynamic system
reliability modeling approaches provide some ability to model these types of
dependencies (with a higher capability for dynamic methods).

In addition to the numerous links between different components by means of
their operational characteristics and environmental conditions, there is another

type of interdependency often overlooked due to its complexity. In the study of



system behavior, there are situations when failure progress in one component may
activate or accelerate failure mechanisms of other components. Also, one failure
mechanism of a certain component may activate or accelerate another failure
mechanism of the same component.

For example, if an ordinary gear box consists of two bearings, a shaft and one
gear, the bearings and the gear have a one-way interaction with the shaft, while
the shaft is able to exchange information with the gear and bearings. A change in
operational characteristics of the gear passes through the shaft and impacts the
operation of the bearings. Changes in operational parameters of the bearings as
well as the shaft due to age related degradation result in an additional impact on
the degradation process of the gear. These direct and indirect interactions are
examples of interdependency between failure mechanisms of several components.
At the component level, two failure mechanisms can accelerate each other, such
as fatigue and corrosion.

The existing methods of system reliability analysis, static or dynamic, have
limited capability of providing quantitative causal relations between several
competing mechanisms that cause failures [43], [44]. The same applies to
modeling complex interactions between hardware, software, and human elements
within a dynamic process of system degradation and failure processes. There are
very few studies that deterministically model the interactions between failure
mechanisms by means of the finite element analysis (FEA) method, and there are
no probabilistic models that consider the interdependency and interactions of the

competing failure mechanisms [43].



As such, PoF-based reliability modeling techniques, similar to those employed
for stress or temperature analysis, are needed for accurate reliability analysis of an
engineering system. New methodologies are currently being developed to introduce
PoF into system reliability in a robust, structured yet flexible manner to capture the
dynamics of system evolution. The Dynamic Hybrid Bayesian Network approach has
been recently introduced by C. [amsumang [45] as a computational algorithm for
reliability inference in real-time System Health Management (SHM) of complex
engineering systems considering the underlying physics of failure. Another
methodology of PoF-based system reliability modeling is proposed in the current

research.

1.3. Distributed Artificial Intelligence

Agent autonomy, a methodology of distributed artificial intelligence, was the
benchmark for the methods and concepts which were used to represent the evolution
of system reliability over time. The agent-oriented distributed modeling approach
originated from computer science and artificial intelligence (AI), where intelligent
computer agents are software programs designed to act autonomously and adaptively
to achieve goals defined by the developer or runtime users [46] - [62]. The following
aspects of computer agent autonomy helped to build a foundation of the PoF-based
agent autonomy for system reliability modeling that is proposed in this research:

1. Decentralization of control and decision making is considered a paradigm
shift and a future direction of research in computer science. Decentralization

capability is critical because it provides flexibility and adaptability of



computer software in runtime in order to react accordingly to structural

modifications in runtime. It also considers all time-dependent interactions and

interdependencies between the system elements. A system of computer-based
agents as autonomous decision makers is the most efficient solution proposed
to date.

2. Each computer-based agent is capable of settling on its state evolution
autonomously and without interference of the environment or other agents.

3. Each computer-based agent is able to sense the environment and collect the
information which is critical for its internal processes.

4. Each computer-based agent shares its properties and the current state with
other agents.

The key focus of multi-agent system development is on the flexible behavior
of computer agents related to the above listed expectations. It is agent flexibility
which makes the agent-oriented approach a valuable choice of modeling methodology
for dynamic systems. Although there is no universally accepted definition of a
computer agent, most authors agree on the following concepts: each agent is
autonomous, has a set of goals, has a local model of the part of the world that affects
the achievement of its goals, and has a way of communicating with other agents. The
following properties of computer agents, described in the literature sources [46], [49],
[50], [51], [57], [59], were considered in this research in development of the PoF-
based agent autonomy:

1. Autonomy in Action

2. Intelligence
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2.1. Internal Knowledge (Rules of Behavior, Memory, Goals, Plans)

2.2. Reactivity

2.3. Reasoning / Learning (Adaptability)

2.4. Proactivity, Goal Orientation

3. Communication, Social Activity, Cooperation
4. Mobility

This generally accepted categorization of agent properties was summarized by
M. Azarkhail in his dissertation [ 1] and will be further addressed within the current
research.

A probabilistic aspect of computer-based agents within agent autonomy was
considered in several publications [53] - [56], [60], [61]. The Bayesian belief network
(BBN) methodology was utilized to introduce a probabilistic aspect into sharing raw
data and analysis results (probability distributions) among the computer agents.
Another work [53] proposed Bayesian updating framework to support agent learning
and decision making tasks in multi-agent computer systems used for control of
complex industrial processes. Bayesian formalism was applied to incorporate the
uncertainty through agent representation by probability density functions used in

Bayesian inference.

1.4. Motivation

Based on the discussion in previous sections, a new approach to system
reliability modeling should be able to incorporate physics-of-failure knowledge about

the systems elements, including the following capabilities:
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The ability to capture physics of degradation and failure and describe the
system degradation processes according to failure mechanisms of hardware
parts and components. This includes software reliability, human interactions
with the system and the resulting scenarios of the system evolution in time.
The capability to include interactions between the failure mechanisms of the
system elements (i.e. two or more simultaneous failure mechanisms affecting
each other’s propagation rate and resulting in one complex mechanism at the

hardware part, component or system level).

The above objectives and the following baseline concepts defined the choice of a

novel approach to system reliability modeling developed in this research:

1.

In any engineering system, hardware components and sub-systems are
physically distributed, have their own properties and rules of behavior, and an
ability to influence the final state of the system. One may consider it as an
intelligence within the component that autonomously responds to changes (in
usage conditions and in adjacent components) by managing its properties and
behaviors and making appropriate decisions on its final state (i.e. success,
degraded performance or failure). Evolution of hardware components, sub-
systems and the entire system is affected by software reliability and
interactions with human elements. The latter possess certain properties and
rules of behavior when acting upon the given system. As such, the modeling
procedure implies a distribution of the failure knowledge (i.e. intelligence)

among all elements of the system.
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2. Knowledge of the first principles and physics of failure fundamentals allows
the modeler to set rules and conditions for the behavior of system elements
(hardware, software, human elements) and anticipate the resulting degradation

and failure events.

1.5. Agent Autonomy

In this research the agent autonomy is used as a solution method for
probabilistic physics-of-failure modeling of reliability of complex engineering
systems with interacting failure mechanisms. The agent-oriented distributed modeling
approach originated from computer science and artificial intelligence (Al), where
intelligent agents were software programs designed to act autonomously and
adaptively to achieve goals defined by the developer or runtime users. In system
reliability modeling, however, agent hierarchy, classification, and properties of agents
are different from those in computer science and artificial intelligence.

In this research an agent is a computer replica of any parameter, characteristic
or feature of the system element (hardware part or component, software, human
element) or usage profile (environmental or operational conditions, mission attributes,
inspection and maintenance program, etc.). This piece of software contains all
properties of the respective element, mimics how that element evolves over time, and
shares information with other agents. The agent structure of engineering systems is
tailored to the dynamics of physical and chemical degradation and failure processes

of system elements under variable usage conditions.
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1.6. Contributions of this Research

The contributions of this research can be summarized as follows:

1. Introduced a new classification of agents and agent hierarchy within the scope
of system reliability modeling: Type I Micro-Agents, Type Il Macro-Agents,
and Type III Monitoring Agents. Three classes of agents are defined
according to the different types of entities within the physical processes of
degradation and failure at all levels of system hierarchy, from materials and
piece parts to components and the entire system, also considering software
and human elements. This also included the identification of the properties of
each class of agents, considering the physical characteristics of their
counterparts in the real system and their role in system evolution.

2. Developed agent representation which presents a new approach to modeling
complex interdependency and interactions between failure mechanisms of
different elements of a system, specifically where the degradation process in
one element (part, material or component) activates or accelerates the failure
mechanisms of other elements. The associated terms are explicitly introduced
into the PoF or empirical models of the system elements and their respective
agents. This allows for bidirectional communication between agents where
interacting failure mechanisms exist.

3. Proposed a new definition of the learning property of intelligent agents.
Developed guidelines for the selection of the agent learning algorithm

depending on the agent class, availability of the PoF or empirical model of the
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system element represented by the agent, and the types of data used for agent
learning.

Introduced a new definition of the key property of intelligent agents -
autonomy in action. Autonomy was defined as agent’s ability to activate and
deactivate itself during system evolution. There is also a proposed algorithm
of agent activation and deactivation based on the most appropriate methods of
uncertainty importance and sensitivity analysis. This new definition of the
autonomy is a “core” contribution of this research.

Identified the key distinctions between the agent autonomy and the existing
methods of system reliability modeling. The autonomy property of intelligent
agents and the capability of the agent autonomy to model interacting failure
mechanisms of system elements make the agent autonomy fundamentally
different from all existing methods of probabilistic PoF-based reliability
modeling and simulation. These features bring more reality into reliability
models, giving the agent autonomy an advantage over the traditional methods

of system reliability modeling.
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1.7. Outline of this Dissertation

The remainder of this dissertation is organized into eight chapters. Chapter 2
defines research objectives and the choice of research approach. In Chapter 3, the
definition of agents and agent classification is developed. Next, agent classes and
their role in PPoF system model are described. Chapter 4 outlines the agent
properties, while Chapter 5 and Chapter 6 are focused specifically on the learning
property of agents. Chapter 7 provides detailed definition of the autonomy property of
agents along with considerations of uncertainty characterization within the agent
autonomy modeling. Chapter 8 presents a case study of a gas turbine aircraft engine
structures as an application example. The conclusions and suggested future research

are summarized in Chapter 9.
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Chapter 2: Research Approach

2.1. Concept Definition and Objectives

Consider the hardware system of several interconnected components. Figure
2-1 depicts a hierarchy of hardware system elements in the context of PoF, as
proposed in [44]. Failure of such system relates to the failures of its components,
which comprise several piece parts and materials. In turn, piece parts and materials
fail due to specific failure mechanisms which are driven by several stress-strength and
degradation-endurance factors influenced by operational and environmental
conditions of the given system.

Operational and environmental conditions and subsequently stress-strength
and degradation-endurance factors (Figure 2-1) could be introduced deterministically
or probabilistically depending on the degree of uncertainty. They are further used to
build PPoF models of the individual failure mechanisms at the piece part/material
level as a combination of the scientific knowledge of degradation processes and the
uncertainties of operational variables, material properties and environmental
conditions. Every item and feature in the system hierarchy in Figure 2-1 is further
replaced by an intelligent autonomous software agent acting according to the system
logic towards the final states of the system. Such agents are autonomously evolving
over time, having access to the status of other agents and ability to intelligently react
to any circumstances that may occur during the course of system operation within the

given environment.

17



Structural Hierarchy
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Figure 2-1: Conceptual System Hierarchy and Failure Dynamics

The objective of this research is to develop an agent-oriented approach to

system reliability modeling as a hierarchy of intelligent autonomous agents powered

to accomplish the following three tasks, as depicted on Figure 2-1:

1.

Develop representation of interactions between failure mechanisms at the
piece part/material level within the PPoF modeling scheme of item
degradation over time.

Expand piece part/material-level PPoF models of degradation and failure
processes to the component-level PPoF modeling framework, accounting for
interactions between failure mechanisms of various piece parts / materials and

components.
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3. Link component-level PPoF models into the system-level PPoF representation
of degraded states of the system and system failures, considering interactions
between failure mechanisms at all levels of system hierarchy.

Monte Carlo based sampling will be used to combine PoF knowledge about
piece parts/material and components within direct simulation to assess system
reliability. Using this approach, the probabilities of possible system states are
sampled based on state probabilities of all different variables included in PoF models
of piece parts / materials and components, yet consistent with dynamic configuration
of the system. As such, system level reliability modeling becomes as simple as
checking the status of system elements at any given time. This way, the most relevant
system model will be available at every “snapshot” in time. The same concept applies
to any engineering system containing not only hardware components, but also

software and human elements.

2.2. Research Approach

The concept of the intelligent agent-oriented approach to reliability modeling
was first introduced by M. Azarkhail [1]. In that research, a direct and efficient
intelligent agent-oriented simulation is proposed to model the reliability of a long-
term complex dynamic system. In this system simulation, every component of the
system is replaced by an intelligent piece of software that represents the properties
and behaviors of its real counterpart from the system. These software agents act
autonomously to mimic their counterparts in real system. The failures are simulated

using Monte Carlo-type methods applied to a system of intelligent computer agents.
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That computer-based direct simulation is made to account for the dynamic failure
logic, design, and control characteristics of the system. The software agents are meant
to support the failure logic of the system that evaluates the final state of the complex
system, given the final state of the components. The agent-oriented approach also
assumes that there are always enough PoF models that explain the underlying failure
phenomena of the system components and piece parts.

The current research is intended to expand M. Azarkhail’s approach [1] by
developing a universal, structured framework of agent autonomy supporting the PoF-
driven modeling of complex engineering systems with competing and interdependent
failure mechanisms. The scope of this research includes the definition of agents, the
development of the multi-agent system hierarchy, and system reliability modeling
techniques. As identified in Section 2.1, the developed agent autonomy should allow
modeling interdependent and interacting failure mechanisms within the dynamic
system.

Consider a system built of hardware parts and components (Figure 2-2) where
each component contains one or more piece parts. Each piece part is decomposed into
failure mechanisms. Failure mechanisms as real causes of failures can be linked to
certain physical or chemical degradation processes developing within the piece part
over its life. Stress-strength and degradation-endurance variables are responsible for
the progression of failure mechanisms and linked to the operational and
environmental conditions (coupling factors) by PoF equations of physical or chemical
degradation processes (enablers), as shown on Figure 2-2. Part reliability measure is

life to failure (or time to a certain degree of degradation) given by physical model of
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stress/strength or degradation/endurance vs. life which obtains its probabilistic

representation where uncertainty exists.

Part 1 Part 2 Part 3
Mechanism 1 Mechanism 2 Mechanism 3

A A A

i | [ Probabilistic Life: Probabilistic Life
Model (Mechanistic or Physics-of-
Failure-based)

—_

—_

Stress/Strength vs. Life, Degradation/
Endurance vs. Life: Mechanistic or
Physics-of-Failure-based Life Model for
A Time to Degradation or Time to Failure
>4 Stress-Strength or Degradation-
Endurance Variables: Relationships for

Stress/Degradation Variables causing Failure
/T when Strength/Endurance is exceeded

Enablers: Relationships Connecting
Coupling Factors to Stress-Strength
and Degradation-Endurance Variables

Inter-Coupling Factors: Operational
v Variables (Internal to the Part)

’ Intra-Coupling Factors:
Environmental/Operational
Variables (External to the Part)

Figure 2-2: Probabilistic-Mechanistic Framework of System Reliability

Part interdependency arises from the exposure to the same environmental and
operational conditions, as well as due to the same design, materials, components,
location in the system or other factors that lead to common cause failures.
Interdependency also means that the degradation process in one piece part could be
influenced by the failure mechanisms of other piece parts, resulting in cascading
failures and possibly altering the physical nature of the progressing failure

mechanisms of one or more piece parts due to load redistribution or other changes in
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the operational conditions. This is especially important in modeling complex
components or systems with several competing failure mechanisms which are
progressing at all levels of the system hierarchy, as shown in Figure 2-2. The
elements of the probabilistic-mechanistic framework of system reliability, from
coupling factors to the PPoF life model, are defined on the right side of the diagram
in Figure 2-2, while the arrows depict interdependent elements.

Depending on the depth of engineering knowledge about the degradation and
failure processes, failure mechanisms could be defined at the component or at the
sub-system level, while PoF equations of degradation and the PoF life model could be
replaced by an alternative empirical representation. In addition, the same concepts as
described above for a hardware system (shown in Figure 2-2) apply to any
engineering system containing software and human elements in addition to hardware
parts and components.

Figure 2-3 provides an example of a probabilistic-mechanistic framework of
system reliability for an aircraft cargo door system. Reliability of the positioning
mechanism, for instance, is driven by degradation and failure measures of three
components: life to fatigue failure for the roller guide fitting, fatigue crack size for the
roller guide, and damage due to wear for the roller. Dashed lines in Figure 2-3 show
interactions between the failure mechanisms of the system elements. For example, the
progression of the roller wear leads to the increased vibration of the roller, which in
turn, impacts the shear stress of the roller as well as the cyclic stress of the roller

guide. The PoF model of roller guide fatigue mechanism (equation of fatigue crack
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size) and the PoF model of roller wear (equation of wear depth) should include

additional terms corresponding to the roller vibration.

Aircraft Cargo Access Door System

/i

Pressure \ »
Seal Roller Guide ) (" Roller @ @ @ o Proximity
Door Fitting Guide Sensor1 /...

Stops

| Fracture | l Fracture | |Vlbraﬁon| |Seizure|

[Fatigue] [Fatigue]«---- {Wear]

Accumulated
Inter/intra Cyclic Load Cyclic Load on Accumulated Initial Static Load Number of
Coupling Factors on Fitting Roller Guide Load Cycles Crack Size on Roller Passes

Figure 2-3: Example of System Hierarchy for Positioning Mechanism of Aircraft Cargo Door

An example of the probabilistic-mechanistic life model of a hardware part,
particularly time-to-failure model of a ball bearing, is given by Figure 2-4. This PPoF
model was developed from physical principles considering critical variables that
contributed to the failure of ball bearings. The obtained PPoF model was then

converted into a PPoF agent-oriented representation of bearing reliability.
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In order to integrate a PPoF representation of system reliability into an agent-oriented
framework, each element of the system hierarchy is replaced by an agent designed

with a level of intelligence that allows it to handle its needs in the system.

Probabilistic-Mechanistic Life Model of Ball Bearing for the Rolling Contact
Fatigue - Wear Mechanism (Fatigue Cracking and Formation of Flake-like Wear Particles)
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Figure 2-4: Probabilistic-Mechanistic Reliability Life Model of Ball Bearing

Similar to computer science and artificial intelligence, in system reliability
modeling, agents are viewed as intelligent autonomous entities that are capable of
effective operation over time in dynamic environments. One of the main reasons for
introducing the agent-oriented approach in both areas is the necessity to model all
aspects of system dynamics. This means that a complex system comprised of many
interacting elements in changing environments should be able to react accordingly to

any changes in the components and environments in runtime as well as consider all
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time-dependent interactions and interdependencies between the system elements, and
to do so autonomously and based on agent roles and the rules of system evolution.
One of the key tasks of this research, therefore, is modeling two-way interactions
(shown by dashed lines in Figure 2-4) as “feedback loops”: while the lower level
simple variables (such as coupling factors) are the inputs to much more complex
variables at higher levels of the hierarchy (such as stress-strength and degradation-
endurance variables), the latter may impact the state of lower level variables.

A multi-agent approach to reliability modeling is explained in the next chapter
and the structure of agents replacing each element of the engineering system is
discussed along with definition and classification of agents and their properties. The
hierarchy of autonomous intelligent agents and agent properties has been developed
in this work based on the concepts of computer agents described in Chapter 1, the
definitions of agent autonomy for reliability modeling introduced by M. Azarkhail
[1], and the objective of the PoF representation of degradation and failure processes
of dynamic engineering systems with interacting failure mechanisms.

It must be noted that, while agent definition and classification developed in
this research makes provisions for representation of all elements of the complex
engineering system (hardware, software and human factors), the concepts of agent
autonomy are demonstrated only for hardware parts and components in order to limit

the scope to a reasonable size.
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Chapter 3: Definition and Classification of Agents

3.1. Definition of Agents in the Context of System Reliability

This research defines an agent as a computer replica of any element of a
system operational profile, such as characteristic or feature of a hardware part,
component, software program, or human element, environmental factor or operational
parameter, an attribute of inspection and maintenance program or mission profile.
This computer replica is developed by a modeler based on the physical principles of
degradation and failure of system elements operating in the context environment. It
contains all the properties of the respective variable, mimics changes of that variable
over time, and communicates with other agents. To accomplish these tasks, each
agent is structured to have a single output variable as a function of one or more input
variables. Each input variable represents another agent, specifically its output
variable. The general form of the agent output variable can be written as:

Y =f(X1, X5, o, Xn)
Equation 3-1

where Y denotes a single output variable of an agent as a function of input variables
X1, X5, ..., X,. The function () is a PoF-based or empirical model of the agent output
variable, which can be either probabilistic or deterministic. Such agents are also
called “multi-agents” because their evolution depends on the inputs from several
other agents and inter-agent interactions during system degradation over time. There
could also be agents which do not obtain any inputs from other agents. These are

“self-sufficient agents”, agents that are not dependent on other agents for their own
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development. Such agents have their independent output variables in the form of
probability density functions.

It must be noted that an output of any multi-agent is always probabilistic due
to uncertainties related to a function, f(*), the input variables X;, or both. An output of
any self-sufficient agent is also probabilistic in accordance to the applicable
probability density function (with fixed or uncertain parameters). Any characteristic
or parameter given by a constant value should be treated as a constant and should not
be assigned with an agent. If a certain quantity is deterministic but changes during
system evolution in a known fashion (e.g. time variable) or according to the
deterministically defined function of time (or other non-randomly varying quantity),
such quantity is identified as an agent.

Agent classes and their relationship to the elements of a physical system in the

context of system reliability modeling are defined further in this chapter.

3.2. Classification of Agents in Reliability System Modeling

Different levels of agents can be defined, depending on the area of application
of that intelligent agent autonomy. In order to allow modeling the progression of
interdependent and interacting failure mechanisms at all levels of system hierarchy
(Figure 2-2 and Figure 2-4), it is logical to identify types of agents according to the
degree of dependency between various elements of the probabilistic-mechanistic
framework of system reliability. This would include everything from coupling factors
to the PPoF life model. Three classes of intelligent agents are proposed in this

research for the agent-oriented reliability modeling of engineering systems: Type |
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Micro-Agents, Type II Macro-Agents and Type III Monitoring Agents. Sections 3.2.1
to 3.2.4 provide detailed definitions of three classes of agents and include a
discussion on why this classification is important and novel for PoF-based system

reliability modeling.

3.2.1. Type I Micro-Agents

Agent classification starts with the highest granularity of agent autonomy —
Type I Micro-Agents. Agents are assigned not at sub-system or module level, not
even at component level, but to every feature and internal characteristic of a piece
part, material, component, software, human element, and each external parameter
affecting the degradation and failure mechanisms of system elements. In the context
of the probabilistic-mechanistic framework of system reliability shown in Figure 2-2,
Type I Micro-Agents represent both inter- and intra-coupling factors.

Type I Micro-Agents include five subclasses, Group A to Group E, in order to
distinguish coupling factors of different natures, such as environmental and
operational factors, material properties, design characteristics, performance
parameters, mission attributes, software design features, and various aspects of
human elements.

Type I Micro-Agents are introduced to represent the physical variables that
lead to degradation and failure (such as environmental and operational conditions) or
impact the nature of life limiting failure mechanisms and rate of degradation/failure
(such as material properties, design characteristics, duty cycle and usage profile).

These physical variables affect various elements of the system during system
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evolution. This implies that each Type I Micro-Agent may be used as an input to
several next level agents, specifically Type II Macro-Agents described in Section
3.2.2. Such representation allows expressing the interdependency between the system
elements which arises from the same design features, same functional requirements,
or the exposure to the same environmental and operational conditions. Type I Micro-
Agents are needed to identify the “drivers” of degradation and failure processes
within the PoF-based system reliability model.

Some examples of Type I Micro-Agents from each of five groups are shown
in Table 3-1, Table 3-2, Table 3-3, Table 3-4 and Table 3-5. These tables are intended
to serve as Type I Micro-Agents classification guidelines and do not provide a
complete list of the elements as potential agents or impose any strict rules regarding

agent assignment within the Type I Micro-Agents class.

Table 3-1: Classification of Agents — Type I Micro-Agents, Group A

Type 1. Micro-Agents
Group A. Usage Stress Variables (Intra-Coupling Factors)
Variables External to Hardware, Software, Human Elements
Group Al. Environmental Factors
1.Temperature
2. Thermal Cycling Range
. Humidity
. Moisture/Water Ingress
. Icing/Fog/Rain
. Concentration of reactive substances (salt, acids and bases)
. Dust, Dirt, Sand
. Grease, Oil, other contaminants
9. Radiation
10. Lightning
11. Atmospheric Pressure
12. Wind Speed
13. Earthquake Strength
14. Environment Factor Rating (Environmental Designation) for Hardware
Examples: GB (Ground Mobile), AA (Airborne Attack), AIF (Airborne Inhabited Fighter)

DA N ||V
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Group A2. Operational Conditions, Maintenance Characteristics, Logistics

. Voltage

. Power

. Pressure

. Pressure Cycling/Pressure Impulse

. Vibration, Random or Sinusoidal

. Mechanical Load (e.g. Static Load, Amplitude of Dynamic Load)

. Mechanical Shock

XA N[ |W[ND|—

. Acceleration

Ne)

. Electromagnetic Impact

10. Operating Speed

11. Altitude

12. Preventive/Corrective Maintenance (interval, goodness of repair/restoration factor)

13. Software Application Type (Airborne, Strategic, Tactical, Process Control, other)

14. Software Development Environment

15. Software Test Coverage

16. Number of Software Test Cases

17. Software Fault Exposure Ratio

18. Goodness of Repair (Repair Effectiveness)

19. Inspection Interval

20. Frequency of Preventive Maintenance

21. Elements and Parameters of Preventive Maintenance Activities (tests, measurements,
adjustments, application of lubrication solution, parts replacement)

22. Repair Rate

23. Weight of Passengers, Cargo

Table 3-2: Classification of Agents — Type I Micro-Agents, Group B

Type I Micro-Agents

Group B. Exposure Time and Mission Parameters (Intra-Coupling Factors)
Mission Variables External to Hardware, Software, Human Elements

1. Accumulated Missions since Installation, Entry into Service, Overhaul, other milestone

2. Accumulated Mission Hours or Operational Hours since Installation, Entry into Service,
Overhaul, other milestone

3. Calendar Time or Number of Cycles since Installation or since Operation Start

4. Mission Profile Parameters (Mission Duration, Phases, Duration of each Phase)

5. Duty Cycle of Hardware, Equipment Utilization Frequency, Duration of On/Off Cycle
Examples: Duty Cycle is 50% (1 Operating Hour = 2 Mission Hours); Duty Cycle is 100%
during Cruise Phase and 0% during Landing Phase

6. Software Operational Profile/Usage Frequency

7. Number of Cycles per Mission Phase

8. Time in Storage/Inspection/Transportation/Assembly
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Table 3-3: Classification of Agents — Type I Micro-Agents, Group C

Type I Micro-Agents

Group C. Hardware Characteristics (Inter-Coupling Factors)
Variables Internal to Hardware

Group Cl1. Design Parameters and Manufacturing Characteristics

1. Material properties
Examples: Material Grade, Strength characteristics, Surface roughness, Surface defects, Hardness,
Elongation, Microstructure, Lubricant type, Fluid viscosity, Additives, Material Constants (various)

2. Shape/Geometry/Dimensions and Tolerances

3. Design characteristics (various)

4. Item Type, Grade, Style, Category, Quality Factor, other factors related to the item
Examples (from MIL-HDBK-217F): Resistor Type (Fixed, Film, Insulated), Resistance Factor,
Capacitor Type (Paper, By-pass, Filter, Blocking, DC), Capacitance Factor, Quality Factors

5. Configuration Attributes
Examples: Number of parts/components of a certain type, location of parts/components in the
assembly

6. Manufacturing Process Attributes
Examples: Manufacturing technology type, process grade, stress screening sample size, end of line
testing applied, inspection frequency, category of acceptance test procedure

Group C2. Performance Parameters and Functional Characteristics

. Voltage/Voltage Range

. Power

. Pressure (gas, fluid)

. Pressure Impulse

. Vibration

. Mechanical Load

. Torque

R NQ[ N | N ||| —
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Table 3-4: Classification of Agents — Type I Micro-Agents, Group D

Type I Micro-Agents

Group D. Software Design Parameters (Inter-Coupling Factors)
Variables Internal to Software

1. Number of LOC (Lines of Code)
2. Modularity (Number or Complexity of Modules)

3. Language Type

4. Instruction Rate

5. Number of Object Instructions in the Program

6. Number of Errors Fixed in Time Interval

7. Number of Faults Experienced in Test Case(s)

Table 3-5: Classification of Agents — Type I Micro-Agents, Group E

Type I Micro-Agents

Group E. Human Factors (Inter-Coupling Factors)
Variables Internal to Human Elements

1. Performance Shaping Factors (PSF) of Human Behavior

Examples: Experience/Knowledge, Psychological Stress, Safety & Quality Culture, Non-
task Related Load, Shift Handover, Fatigue, Procedure Availability, Procedure Quality
2. Organizational Factors

Examples: Structural Factors (related to organization structure and resource allocation),
Behavioral Factors (related to responsibilities on the job, objectives, management
commitment to reliability and safety of the product, methods and processes, training,
performance measures, work compensation, etc.)

3. Technology Factors

Examples: Technological Complexity Factors (related to the degree of technological
advancements of product commodity), Engineering Knowledge and Expertise Factors
(related to engineering experience with the given commodity in the organization)

According to the above classification, Type I Micro-Agent is the simplest type
of agents. Type I Micro-Agent may have no input from other agents. For example, if
an ambient temperature agent is normally distributed, 7'~ N(u, o), then temperature,
T, is the output variable of this agent, but there are no agents providing input
variables to this ambient temperature agent. Otherwise, Type I Micro-Agents are
dependent on other Type I Micro-Agents and Type II Macro-Agents as inputs and

have a functional form defined by Equation 3-1.
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3.2.2. Type Il Macro-Agents

More complex agents at higher abstraction level are Type II Macro-Agents. In
the context of the probabilistic-mechanistic framework of system reliability, shown
on Figure 2-2, Type Il Macro-Agents represent stress-strength and degradation-
endurance variables and life to failure (or time to degradation). Type I Macro-Agents
can have any number of inputs from other agents. The simplest Type II Macro-Agent
represents an independent random variable which has no inputs from other agents (for
example, time to failure developed from pass/fail test data as Weibull probability
distribution). More complex Type II Macro-Agents are expressed as a combination of
two or more Type I Micro-Agents via the PoF model or the empirical function
generally defined by Equation 3-1. The most complex Type II Macro-Agent may
combine several Type I Micro-Agents, Type Il Macro-Agents and Type 111
Monitoring Agents in a similar manner. In order to support the objective of PoF-
based modeling of system reliability, input agents should be combined into a Type II
Macro-Agent by means of a PoF model as a mathematical relationship which is
derived from the physical principles of degradation and failure of the associated
element (such as hardware part or component). Empirical functions should only be
used where PoF model is not available or where it cannot be utilized due to lack of
knowledge.

General examples of Type Il Macro-Agents are given in Table 3-6. Note that
this table is not a complete list of potential Type II Macro-Agents, but rather the

modeler’s guideline for assignment of Type II Macro-Agent classification.
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Table 3-6: Classification of Agents - Type I Macro-Agents

Type II Macro-Agents
(Stress and Strength Variables, Time to Degradation or Damage Accumulation,
Life to Failure)
Variables describing Failure Mechanisms of Hardware, Software Program or Human
Elements

1. Life to Failure or Time to Critical Degradation

2. Degradation Measures - direct (crack size, distortion, wear depth, corroded area, etc.)

3. Degradation Measures - indirect (various failure precursors)

4. Rate of Degradation (wear rate, crack growth rate, creep rate, etc.)

5. Strength Characteristics (fensile strength of structural part, creep strength, rated
maximum operating temperature, rated voltage, corrosion resistance, etc.)

6. Stress Parameters (mean or amplitude of tensile/bending/torsional stress, stress intensity
factor, current density, etc.)

7. Failure Rate or Failure Probability of Hardware Part or Component (failures per
operating hour, probability of failure on demand, cumulative failure probability, etc.)

8. Rate or Probability of Software Faults (probability of software faults within time
interval, number of remaining software errors at a given time, etc.)

9. Rate or Probability of Human Errors (probability of human error in a certain action
(task) upon a part, component or system, accumulated number of human errors by a given
point in time, etc.)

The fundamental difference between Type I Micro-Agents and Type 11
Macro-Agents lies in the type of variables that these agents represent. Type I Micro-
Agents are assigned to the physical variables that lead to degradation and failure.
Type Il Macro-Agents are needed to accomplish the main objective of the research —
to introduce physics-of-failure knowledge into the system reliability model. Type 11
Macro-Agents are assigned to the degradation and failure characteristics of the
system parts and components, such as mechanical stress, wear depth or life to failure.
Each degradation or failure characteristic is a physics-of-failure-based function of
several other degradation or failure characteristics, environmental and operational
conditions, and/or other variables. This implies that several Type II Macro-Agents

may share the same inputs from Type I Micro-Agents and Type II Macro-Agents, and
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may become inputs to other Type Il Macro-Agents or Type I Micro-Agents. Such
representation allows linking the interdependent elements of system hierarchy and
modeling interactions between failure mechanisms.

As such, a commonality between the multi-agents of Type I and Type Il is in
the representation of their output variables as functions of the output variables of
other Type I Micro-Agents and Type II Macro-Agents. Similarly, the self-sufficient
agents of Type I and Type II have their independent output variables given by
probability distributions. This implies that the probability distribution of the element
represented by an agent depends on the level of detail selected by the modeler and the
uncertainty about the functional form of the agent output model and about each input
variable (for the dependent agents, or multi-agents). The dependence of agent output
uncertainty on the granularity of the agent representation via other agents was the
main driver of the agent classification process presented in this research. This
classification is intended to be flexible enough to model engineering systems of any
composition and complexity.

As an example of the definition of Type II Macro-Agent, consider the Type II
Macro-Agent life to fatigue failure of structural part, Lr, given by Equation 3-2 as a

function of cyclic stress:
L = A(AS)' = In(Ly )= A+n-In(AS)

Equation 3-2

The model parameters, 4 and n, could be represented by probability distributions or
as constant values. Applied alternating stress, AS, is the input variable (from the

cyclic stress agent), and life to fatigue failure, L, is the output variable. In turn, AS
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could be a Type I Micro-Agent, defined deterministically (e. g., constant amplitude
during each phase of the mission) or probabilistically (if variation is present). The
agent AS could also be structured as a Type I Macro-Agent if it depends on other
operational factors as inputs (e.g. pressure amplitude, vibration, temperature, thermal

cycles, etc.) or if it is a function of time.

3.2.3. Type IIl Monitoring Agents

Type III Monitoring Agents are intended to “monitor” the status of each
hardware part, component, and system and communicate it as an output variable in a
form of probabilistic measure of degradation or failure, such as:

- Degree of damage accumulation (DA),

- Remaining useful life (RUL),

- Probability of reaching critical degradation limit,
- Probability of failure.

Type III Monitoring Agents are assigned to each part and each component of
the system and to the system itself, as summarized in Table 3-7. Each Type III
Monitoring Agent is expressed as a combination of one or more Type II Macro-
Agents and/or other Type III Monitoring Agents. These Type II Macro-Agents and
Type III Monitoring Agents are the input agents to the Type III Monitoring Agent of
interest. The output variable of the Type III Monitoring Agent has a functional form
defined by Equation 3-1, where the function f(-) is a deterministic or probabilistic
empirical model of the agent output variable which is developed according to

degradation and failure logic of the item it represents (hardware part, component, or
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the system). For example, deterministic failure logic of the item could be depicted by
a fault tree or Bayesian belief network, and the function, f(-), becomes a logic
equation for a failure event (or reaching critical degradation limit). Degradation logic
could also be given by a deterministic or probabilistic expression of the degree of
damage accumulation or the remaining useful life according to the particular

application.

Table 3-7: Classification of Agents — Type III Monitoring Agents

Type III Monitoring Agents

Group A. Part Monitoring Agents

1. Remaining Useful Life (RUL) at a given point in Time

2. Degree of Damage Accumulation (DA) by a given point in Time

3. Probability of Reaching Critical Degradation Threshold at a given point in Time

4. Probability of Failure, Operational Availability, Reliability (Probability of Success) at a
given point in Time

5. Mean Time To Failure (MTTF), Mean Time Between Failures (MTBF), Mean Time To
Repair (MTTR) at a given point in Time

6. Failure Count within a given Time Interval

Group B. Component Monitoring Agents

1. Remaining Useful Life (RUL) at a given point in Time

2. Degree of Damage Accumulation (DA) by a given point in Time

3. Probability of Reaching Critical Degradation Threshold at a given point in Time

4. Probability of Failure, Operational Availability, Reliability (Probability of Success) at a
given point in Time

5. Mean Time To Failure (MTTF), Mean Time Between Failures (MTBF), Mean Time To
Repair (MTTR) at a given point in Time

6. Failure Count within a given Time Interval

Group C. System Monitoring Agent

1. Remaining Useful Life (RUL) at a given point in Time

2. Probability of Reaching Critical Degradation Threshold at a given point in Time

3. Probability of Failure, Operational Availability, Reliability (Probability of Success) at a
given point in Time

4. Mean Time To Failure (MTTF), Mean Time Between Failures (MTBF), Mean Time To
Repair (MTTR) at a given point in Time

5. Failure Count within a given Time Interval
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Type III Part Monitoring Agents are structured as a combination of Type II
Macro-Agents associated with failure mechanisms of the given hardware part,
aggregating information from Type II Macro-Agents according to the part
degradation and failure logic. Type III Component Monitoring Agents collect
information from Type II Macro-Agents and Type III Part Monitoring Agents
associated with PoF of the given hardware component, and aggregate the input agents
information according to the component failure logic or according to the definition of
degraded states of the component. Type III System Monitoring Agent collects
information from Type III Component Monitoring Agents, Type III Part Monitoring
Agents and Type Il Macro-Agents, and aggregates this information into the system
reliability measure according to the system degradation and failure logic.

Type I Micro-Agents and Type Il Macro-Agents representing software and
human elements are the inputs into the associated Type III Monitoring Agents,
providing information about software programs or human elements that interact with
system hardware and impact the status of hardware parts, components and the entire
system reported by Type III Monitoring Agents.

A probabilistic representation of the output variable of Type III Monitoring
Agent is obtained by means of simulation using deterministic or probabilistic function
f(*) and probability distributions of the input agents.

To summarize, Type III Monitoring Agents are introduced to render the
system reliability assessment (RUL, DA) that is an ultimate objective of the agent-
oriented modeling. This assessment relies on the input from degradation and failure

characteristics of the parts and components (represented Type I Macro-Agents)
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under the influence of physical variables that lead to degradation and failure (defined

by Type I Micro-Agents).

3.2.4. Agent Hierarchy

It is shown that the proposed agent classification supports representation of all
three main elements involved in the operation of engineering systems: hardware parts
and components, software programs and human actions. Multilevel agent
classification presented in this section was also developed to allow modeling of any
level of system complexity, from a system consisting of one piece part to a complex
combination of multiple hardware parts and components controlled by software
programs and subjected to human actions. Further, each element of an engineering
system could be represented at any level of detail preferred by the modeler, starting
from the lowest level of system hierarchy, such as environmental and operational
conditions, manufacturing process parameters, maintenance schedule, material
properties and geometrical dimensions of hardware piece parts, number of lines in a
software code, characteristics and behavioral patterns of human actions. Type I
Micro-Agents are used to represent such variables. Every aspect of the degradation
and failure mechanisms of hardware, software faults and human actions are modeled
by Type II Macro-Agents which represent complex, dependent characteristics of
system elements. Interactions and interdependency between system elements are
explicitly expressed within the structure of the associated Type I Micro-Agents and
Type I Macro-Agents via the Type I Micro-Agents and Type II Macro-Agents they

share as inputs. This shows that the proposed agent structure and classification
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scheme allows bidirectional communication between Type I Micro-Agents and Type
IT Macro-Agents where complex interdependencies between failure mechanisms of
the system components exist. Type III Monitoring Agents define the degradation or
failure status of the hardware parts, components and the entire system, considering
the evolution of all system elements and their interactions.

The resulting agent hierarchy may combine agents of all classes for an
efficient mechanistic representation of complex engineering systems that comprise
hardware parts and components in combination with software and human elements, as
shown on Figure 3-1. The arrows indicate that agents exchange information by
communicating the required inputs to each other. This information exchange is a key
feature of agent autonomy because it allows modeling of interactions and
interdependency between system elements. Note that Type I Micro-Agents exchange
information with other Type I Micro-Agents and with Type II Macro-Agents, while
Type 11 Macro-Agents exchange information with agents of all three classes. Type III
Monitoring Agents exchange information with other Type III Monitoring Agents and
with Type Il Macro-Agents.

It can be concluded that the classification of agents, introduced in this chapter,
covers various elements of engineering systems and usage profiles to support
probabilistic-mechanistic reliability modeling of the dynamic behavior of system

elements in a continuously changing environment.
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Figure 3-1: Agents Classes and Information Exchange

Figure 3-2 shows an example of system architecture in terms of the elements
of degradation and failure processes and their interactions. Each element of the
system hierarchy on Figure 3-2 will be further assigned with an intelligent agent,
either a simple Type I Micro-Agent (such as for coupling factors), or a complex Type
IT Macro-Agent, comprised of several Type I Micro-Agents and Type II Macro-
Agents of the lower levels of the system hierarchy (such as for stress-strength and

degradation-endurance variables, life to failure or time to degradation at failure
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mechanism level), or a Type IIIl Monitoring Agent at the part level or at the system

level of the hierarchy.
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Figure 3-2: Flowchart of System Hierarchy

As shown on Figure 3-2, an output of one agent in the system hierarchy
becomes an input to others. A change in the output variable of one agent propagates
through the system hierarchy to update the output variables of other agents.
Furthermore, two Type III Part Monitoring Agents collect information from five
failure mechanisms (FM), combined further by a Type III System Monitoring Agent
into the reliability model of the system. Properties of agents reflecting the roles of

various elements within system hierarchy are defined in the next chapter.
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Chapter 4: Agent Properties

Properties of intelligent agents in the context of agent autonomy for reliability
modeling were identified by M. Azarkhail [1]. While the same definitions of agent
properties are used in current research, some properties, specifically agent autonomy

and learning, were further developed in this research and described in this chapter.

4.1. Internal Knowledge of Agent

This property was introduced and briefly explained in [1] as part of the
reasoning/learning characteristic. In the current research, internal knowledge of an
agent, also called “agent’s beliefs”, is defined as the information about an agent
output variable, ¥, according to the model function, () (per Equation 3-1, given input
agents X;), or according to the probability density function (PDF) of an agent output
variable with no inputs from other agents. Agent’s beliefs are updated when new data
become available. This process is called learning and is explained further in this
section (see definition of learning property of agents in Section 4.3).

A history of beliefs comprises an agent’s memory about the past events that
occurred to the agent during system evolution. Agent’s memory is preserved upon
every update as the agent evolves over time, following the degradation process of the
system. It is due to the nature of the agent learning process that agents can preserve
what they have learned from previous experiences and upgrade this knowledge during

further updates when new data arrive. An agent’s beliefs also include the agent’s
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status as active or inactive, according to autonomous properties of agents (described
below). Agent’s beliefs are shared with other agents within agent autonomy (as
explained in communication/cooperation property of agents) and therefore, are
categorized as the public knowledge of an agent.

In addition to an agent’s beliefs, internal knowledge of an agent may include
special rules of agent behavior during system evolution as a set of goals that the agent
is intending to pursue in addition of the main goal of self-evolution (described in
Section 4.4). Special rules of agent behavior are formulated by the modeler and built
into the computer program of a given agent. They are only accessible by the agent
itself and are not shared with other agents, thus categorized as private knowledge of
the agent. Special rules of behavior may include, but are not limited to the following
examples:

- Special conditions causing a change in the failure logic equation for a
complex item represented by the agent, such as a hardware component or a
system modeled by a Type III Monitoring Agent (for example, failure of
oxygen supply is removed from the aircraft failure logic for the flight phases
at altitudes below 12,500 feet).

- Change of the critical degradation threshold for a hardware part or component
represented by the Type III Monitoring Agent due to changes in
environmental or operational conditions (such as a reduction in the critical
crack size when an aircraft is switching to a different mission type with more

severe operational conditions).
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- When more than one failure mechanism is working within a component at
different times of system evolution, the Type III Component Monitoring
Agent is designed and programmed to consider the appropriate one based on
the circumstances (for example, an agent representing erosive wear
mechanism due to sand blasting becomes an input agent to Type 111
Monitoring Agent only when the aircraft mission takes place in a sandy

environment).

4.2. Reactivity

The reactivity property of agents was identified in [1] as agents’ ability to
perceive their environment by responding to changes that occur. This includes both
the sensing and the reaction stages of the action. It is due to this property that the
agents remain alert about the changes to the system without the need to modify the
agents.

In the context of PoF-based agent autonomy within this research, reactivity is
defined as an agent’s ability to gain information about the status of other agents,
particularly the input agents associated with the input variables X; (per Equation 3-1).
The sensing capability is the agent’s ability to track the current beliefs of the input
agents, particularly the status of their output variables in a functional form defined by
Equation 3-1. It is triggered when an update of the input agents’ beliefs is requested

upon the availability of new data. The agent reacts to the changes of the input agents’
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beliefs by updating the probability distribution its output variable, Y, by means of
simulation using the updated input variables, X; (i =1, 2, ...).

According to the above definition, the reactivity property is not applicable to
Type I Micro-Agents and Type II Macro-Agents which have no inputs from other

agents.

4.3. Learning/Reasoning

The learning property was defined in general terms by M. Azarkhail [1] as an
agent’s ability to learn from previous experiences in order to be able to continuously
adapt its behavior to the environment. This current research develops a detailed
definition of the learning property and introduces methods of learning for three
classes of agents:

1. The process of updating an agent’s beliefs using new data is called learning.
The learning property supports the development of the internal knowledge of
an agent and involves updating the agent’s beliefs about the agent output
variable, Y, according the model function, f(-) (per Equation 3-1), given the
input variables, X; (i =1, 2, ...), specifically:

a. Update the functional form of the PoF or empirical model, where a
function f{*) is probabilistic or deterministic, as applicable.
b. Update the parameters of the PoF or empirical model given by a

function f(*), if {(*) is probabilistic function.
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c. Obtain the updated distribution of the agent output variable, Y, by the
simulation over the updated model function, f(-), given the current
(updated) beliefs about input variables, X; (i =1, 2, ...).

For Type I Micro-Agents and Type II Macro-Agents that do not have inputs
from other agents, the learning property involves updating the functional form
and/or parameters of the PDF of the agent output variable.

2. The essence of the agent learning task is to infer posterior knowledge about
the agent output function, f(-), or about PDF of the agent output variable (for
agents with no inputs) from prior knowledge and the observed data
(evidence), and to do it recursively as new data become available. This
posterior knowledge (updated beliefs) is obtained by combining the prior
knowledge (past beliefs) and new observations (data) by means of the learning
methods. The choices of learning methods for Type I Micro-Agents and Type
IT Macro-Agents depend on the nature of the physical characteristics
represented by the agent and the available data. A detailed definition of the
learning methods for Type I Micro-Agents and Type II Macro-Agents, their
applicability and conditions of use are outlined in Chapter 5. The learning

property of Type III Monitoring Agents is discussed in Chapter 6.

4.4. Proactivity/Goal Orientation

According to [1], proactivity is defined (for an agent that has a complex goal)

as a collection of several goals that could be switched depending on the
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circumstances. An example of this, given in [1], is when more than one failure
mechanism is involved and the agent is capable of the activation of the appropriate
mechanism based on the circumstances. Proactivity of an agent is seen as a goal
oriented judgment based on the agent’s knowledge of goal preferences.

In this research, all agents have a goal of self-evolving. Each agent follows the
dynamics of the environment and uses new data to update the agent’s beliefs about
the status of the agent output, ¥, according to the updated model function, f(-) (per
Equation 3-1), or according to the updated PDF of the agent output variable (for
agents with no inputs). This goal is supported by the reactivity and learning properties
of an agent.

Any additional goals may be set for an agent by the modeler by setting the
special rules of agent behavior (as part of an agent’s internal knowledge property
described in Section 4.1). In this case, the proactivity of an agent will also include an

agent’s capability to choose the correct behavior in the given circumstances.

4.5. Communication/Cooperation

Social activity or the communication property of agents was developed in [1],
and defined as an agent’s ability to interact with other agents when appropriate. In
addition, the cooperation property was defined for the agents that share their goals
and knowledge while providing a solution for a common task. In order to cooperate
successfully, agents need to communicate their goals, tools and status, and do so

using one of the two main approaches: the blackboard approach (indirect
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communication by accessing a common location for information posted by other
agents) and the message passing approach (agents exchange messages directly with
each other using defined protocols).

The blackboard approach was used to establish the communication property of
agents in this research. In the context of PoF-based agent autonomy, agents
communicate by sharing their beliefs with other agents. Information about the agent
output variable, Y, is expressed by either a function f(-) (per Equation 3-1, given input
agents X;), or by the PDF of the agent output variable (for agents with no inputs), and
is accessible for all other agents within the agent autonomy. This sharing allows an
agent to cooperate with other agents during the system evolution by providing a

required input to some agents and using others as inputs.

4.6. Autonomy

Agent autonomy was generally defined in [1] as one of the key characteristics
of agents; the agents are not only capable of evolving over time with no supervision,
but also have some degree of control over their own actions (e.g. self-activation and
self-deactivation). This current research extends the definition of the autonomy
property and proposes methods of autonomy execution.

In the context of PoF-based agent autonomy developed in this research, an
agent may change its status with respect to the form of the input it provides to the
other agents. According to the definition of agents in Section 3.1, the output variable

of any agent is always probabilistic (i.e. represented by probability distribution of a
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certain kind). An agent is said to have an active status if the probabilistic form of the
agent’s output variable is used by other agents as an input to their model functions,
f(*) (per Equation 3-1). As an alternative, a constant value, representing the agent’s
output variable, could be used as an input to other agents. This constant value could
be defined as the mean, median, certain percentile, or other numerical value
associated with the probability distribution of the agent’s output variable. In this case,
the agent is said to have inactive status. Change of status from active to inactive is
called agent deactivation, and the reverse is called agent activation. Agents activate
and deactivate themselves according to defined criteria. For example, if we assume
that the agents “A” and “B” are the two inputs for the agent “C”, then
activation/deactivation criteria for the agents “A” and “B” will be based on the
contribution of the uncertainty (variability) of their output variables into the
uncertainty (variability) of the output variable of the agent “C”. This contribution can
be quantified using methods of uncertainty importance (also known as sensitivity
analysis). Recommended methods of uncertainty importance for the modeling of
agent autonomy along with the considerations of activation/deactivation criteria are
discussed in Chapter 7.

Agent autonomy reduces the computation time, brings only the most relevant
elements into the system reliability simulation, and allows achieving a better quality
of prior information that is needed for the future use of agents in the agent autonomy
of similar systems. It is the autonomy property that makes the agent-oriented

approach fundamentally different from all existing methods of reliability modeling.
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4.7. Mobility

The mobility of an agent is described in [1] as the ability to navigate within a
communication network, specifically when a program needs to perform a task on a
distributed network.

The current research defines agent mobility in the context of PoF-based agent
autonomy for system reliability modeling as the ability to reuse agents in other
system applications. As agents learn and execute their autonomy during system
evolution, they become richer in their knowledge about the elements they represent.
Specifically, each agent continuously improves its “expertise” about the model of the
agent output variable and inputs from other agents. In addition, each agent gains the
knowledge about its “importance” to other agents (i.e. about the contribution of the
uncertainty in the agent output variable into the uncertainty in the output variable of
other agents which are using a given agent as an input). As such, the agents become
“experts” about the associated elements of the system hierarchy. These “experts”
could be reused as unrelated but relevant experience for other applications to reduce
computational effort, minimize data requirements, and provide “mature” prior
information for further learning.

In order to reuse an agent in similar applications, the agent should be relevant
and have an active status. The relevance of an agent stems from a similar design and
functionality of the associated element of the system in the new versus the baseline
application. If an agent is relevant but inactive, it is introduced into the new

application as a constant (not an agent).
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4.8. Summary of Agent Properties

Figure 4-1 provides a summary of agent properties. It can be seen that agent
properties are linked together to support the agent’s Goal of self-evolution.
Reactivity, Learning and Autonomy ensure that internal knowledge of an agent is
updated when new data become available. Agents communicate by sharing their
internal knowledge with other agents. Agents are mobile (i.e. can be used within other
agent systems in similar applications), which is especially beneficial when agents
become “experts” after several rounds of updates of their beliefs and they deliver
“mature” information about a system element. The data types for updating an agent’s
beliefs could include fully or partially relevant data for the given system (such as test
results or operational records) or generic data (such as published industry data or
reliability prediction standards).

Agent properties for each class of agents are shown in details on Figure 4-2,
Figure 4-3, Figure 4-4 and Figure 4-5. The main distinction between the three classes
of agents is in the nature of their communication, reactivity, learning, autonomy and
mobility properties, specifically:

1. Agents share their beliefs (communicate) with other agents laterally within
their class and vertically with agents from one class above and one class
below (as applicable). For example, Type Il Macro-Agents provide inputs to
other Type II Macro-Agents, to Type I Micro-Agents, and to Type III Part and
Component Monitoring Agents. Type I Micro-Agents share their beliefs with
other Type I Micro-Agents and with Type Il Macro-Agents. Type III System

Agent exchanges information only with Type III Part and Component
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Monitoring Agents, while the latter also share their beliefs with each other and
Type Il Macro-Agents.

The reactivity property applies to all agents except Type I Micro-Agents and
Type 11 Macro-Agents that don’t receive any inputs from other agents. All
other agents receive information from their input agents, specifically the
updated beliefs of the input agents.

The learning process of Type I Micro-Agents and Type II Macro-Agents that
don’t have any inputs from other agents (i.e. self-sufficient agents) involves
updating the type and parameters of the PDF of the agent output variable
using data. The dependent Type I Micro-Agents, Type II Macro-Agents and
Type III Monitoring Agents (or multi-agents) with probabilistic model of
agent output variable learn in three-step process: 1) updating the functional
form of the agent output model using data (if applicable), 2) updating the
agent output model parameters using data, and 3) updating the probability
distribution of the agent output variable by simulation over the updated agent
output model given the latest beliefs of the input agents. The learning process
of Type I Micro-Agents, Type Il Macro-Agents and Type III Monitoring
Agents with deterministic model of agent output variable involves a two-step
process: 1) updating the functional form of the agent output model using data
(if applicable), and 2) updating the probability distribution of the agent output
variable by simulation over the (updated) agent output model given the latest
beliefs of the input agents. For any class of agents, the parameters of the

probability density function of the agent output variable obtained by

53



simulation could be defined by selecting the best fit probability distribution to
the simulated sample.

4. Autonomy and mobility properties apply to all agents with the exception of
the Type III System Monitoring Agent which remains in an active state at all
times during system evolution and typically is not mobile (unless reused as a
Type III Sub-System Monitoring Agent representing a sub-system within
another system).

5. Agents update their beliefs and the status (by learning and autonomy) upon
availability of new data. It is recommended that the update frequency is
defined by the modeler considering the value of information. The value of
information principle implies that agent beliefs and status update occurs if the
new information noticeably changes the uncertainty of the agent’s output
variable (for example, coefficient of variation (CV) changes by 10%).
Alternatively, the agent beliefs and status update frequency could be based on
practical considerations of the amount of new data, frequency of data arrival
from different sources and for different agents within the agent hierarchy,
other criteria.

Chapter 5, Chapter 6 and Chapter 7 provide detailed definitions of learning

and autonomy properties proposed for three agent classes introduced in this research.

54



Agent Autonomy - a System of Agents

Static Portion: Agent Classification:
- Type lll Monitoring Agents

Type i - Type Il Macro-Agents
Mcnitonne Resnt - Type | Micro-Agents

—> Agent Inputs
~
e ——> Agent Outputs

Agent Dynamics: Properties of Agents

Internal Knowledge Reactivity
- AgentBeliefs: Agent Output Model + - Obtain Beliefs of InputAgents
Agent Status Active / Inactive = = =
i ; ; Proactivity / Goal Orientation

SpecialiflissiBenavey - Self-Evolve: React, Learn, Activate

Learning / Deactivate itself
\L - Update AgentModel using Data - Fulfill other Goals according to
Communication/ Cooperation Special Rules of Behavior
- Share Beliefs with other Agents
Autonomy

- Activate / Deactivate itself

Mobility
- Reuse an Agentin Similar Applications

System Specific Data Generic Data
Test Results (Material / Component / System Testing, Software Testing) Prediction standards
In-service Records (Field Removals, Health Monitoring Records) Engineering analysis
Technical datasheets

Expert opinion
Studies of human behavior

Real System and
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Environment T~

Temperature ., Part 1 Part 2 Part 3
‘ Mechanism 1 Mechanism 2 Mechanism 3

Humidity Altitude

Figure 4-1: Summary of Agents Properties
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Type | Micro-Agents (with One or More Inputs)

Associated Elements of System Hierarchy
- Inter and Intra Coupling Factors

Internal Knowledge

- Agent Output Model (PoF or Empirical Function, probabilistic or deterministic)

- Probability Distribution of Agent Output Variable (Simulated over Output Model given Input Agents)
- Agent Status Active / Inactive

- Special Rules of Behavior (if applicable)

Reactivity
- Obtain Beliefs of Input Agents

Learning

- Update Functional Form of Agent Output Model using Data

- Update Parameters of Agent Output Model using Data

- Update Probability Distribution of Agent Output Variable by Simulation via Agent Output Model
(given Input Agents)

Data for Learning
- Test Data, Data Collected during Field Operation and Maintenance, Generic Data
- Fully or Partially Relevant

Autonomy
- Activate / Deactivate itself

Proactivity / Goal Orientation
- Self-Evolve: React, Learn, Activate / Deactivate itself
- Fulfill other Goals according to Special Rules of Behavior

Communication/ Cooperation
- Share Beliefs with other Type | Micro-Agents (with One or More Inputs) and Type |l Macro-Agents

Mobility
- Reuse an Agentin Similar Applications

Figure 4-2: Properties of Type I Micro-Agents (Multi-Agents)
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Type Il Macro-Agents (with One or More Inputs)

Represent Elements ofSystem Hierarchy
- Stress and Strength Variables, Degradation-Endurance Variables, Time to Degradation or to
Damage Accumulation, Life to Failure

Internal Knowledge

- Agent Output Model (PoF or Empirical Function, probabilistic or deterministic)

- Probability Distribution of Agent Output Variable (Simulated over Output Model given Input Agents)
- Agent Status Active / Inactive

- Special Rules of Behavior (if applicable)

Reactivity
- Obtain Beliefs of Input Agents

Learning

- Update Functional Form of Agent Output Model using Data

- Update Parameters of Agent Output Model using Data

- Update Probability Distribution of Agent Output Variable by Simulation via Agent Output Model
(given Input Agents)

Data for Learning
- Test Data, Data Collected during Field Operation and Maintenance, Generic Data
- Fully or Partially Relevant

Autonomy
- Activate / Deactivate itself

Proactivity / Goal Orientation
- Self-Evolve: React, Learn, Activate / Deactivate itself
- Fulfill other Goals according to Special Rules of Behavior

Communication/ Cooperation
- Share Beliefs with Type | Micro-Agents, other Type Il Macro-Agents and Type lll Part and
Component Monitoring Agents

Mobility
- Reuse an Agent in Similar Applications

Figure 4-3: Properties of Type Il Macro-Agents (Multi-Agents)
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Type | Micro-Agents (with No Inputs)
Type Il Macro-Agents (with No Inputs)

Associated Elements of System Hierarchy

- Inter and Intra Coupling Factors (Type | Micro-Agents)

- Stress and Strength Variables, Degradation-Endurance Variables, Time to
Degradation, Life to Failure (Type Il Macro-Agents)

Internal Knowledge

- PDF (Probability Density Function) of Agent Output Variable
- Agent Status Active / Inactive

- Special Rules of Behavior (if applicable)

Reactivity
- Not Applicable

Learning
- Update Functional Form of the PDF of Agent Output Variable using Data
- Update Parameters of the PDF of Agent Output Variable using Data

Data for Learning

- Test Data, Data Collected during Field Operation and Maintenance,
Generic Data

- Fully or Partially Relevant

Autonomy
- Activate / Deactivate itself

Proactivity / Goal Orientation
- Self-Evolve: Learn, Activate / Deactivate itself
- Fulfill other Goals according to Special Rules of Behavior

Communication/ Cooperation
- Share Beliefs with Type | Micro-Agents (with One or More Inputs) and Type I
Macro-Agents

Mobility
- Reuse an Agent in Similar Applications

Figure 4-4: Properties of Type I Micro-Agents and Type II Macro-Agents (Self-Sufficient Agents)
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Type lll Part Monitoring Agents
Type Ill Component Monitoring Agents

Represent Elements of System Hierarchy
- Parts, Components

Internal Knowledge

- Agent Output Model (Empirical Function, deterministic or
probabilistic)

- Probability Distribution of Agent Output Variable (Simulated
over Output Model given Input Agents)

- Agent Status Active / Inactive

- Special Rules of Behavior (if applicable)

Reactivity
- Obtain Beliefs of Input Agents

Learning

- Update Functional Form of Agent Output Model using Data
- Update Parameters of Agent Output Model using Data

- Update Probability Distribution of Agent Output Variable by
Simulation via Agent Output Model (given Input Agents)

Data for Learning

- Test Data, Data Collected during Field Operation and
Maintenance, Generic Data

- Fully or Partially Relevant

Autonomy
- Activate / Deactivate itself

Proactivity / Goal Orientation
- Self-Evolve: React, Learn, Activate / Deactivate itself
- Fulfill other Goals according to Special Rules of Behavior

Communication/ Cooperation

- Share Beliefs with Type Il Macro-Agents, other Type Il Part
and Component Monitoring Agents, and Type lll System
Monitoring Agent

Mobility

- Reuse an Agent in Similar Applications

Type lll System Monitoring Agent

Represents Element of System Hierarchy
- System

Internal Knowledge

- Agent Output Model (Empirical Function, deterministic
or probabilistic)

- Probability Distribution of Agent Output Variable
(Simulated over Output Model given Input Agents)

- Special Rules of Behavior (if applicable)

Reactivity
- Obtain Beliefs of Input Agents

Learning

- Update Functional Form of Agent Output Model using
Data

- Update Parameters of Agent Output Model using Data

- Update Probability Distribution of Agent Output Variable
by Simulation via Agent Output Model (given Input
Agents)

Data for Learning

- Test Data, Data Collected during Field Operation
and Maintenance, Generic Data

- Fully or Partially Relevant

Autonomy
- Not Applicable (always Active)

Proactivity / Goal Orientation

- Self-Evolve: React, Learn

- Fulfill other Goals according to Special Rules of
Behavior

Communication/ Cooperation
- Share Beliefs with Type Il Part and Component
Monitoring Agents

Mobility
- Reuse an Agent in Similar Applications (if applicable)

Figure 4-5: Properties of Type III Monitoring Agents
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Chapter 5: Learning Property of Type I and Type II Agents

5.1. Introduction

The essence of agent learning was described in Chapter 4 as the recursive
updating of agent’s beliefs every time new data became available. During recursive
(sequential) updating, new data are added to the current beliefs of an agent.

To further define agent learning, consider an agent with an output variable given by
Equation 3-1. The first step of the update of agent’s beliefs involves updating the
parameters of the agent output model given by a function f(*) (per Equation 3-1), if
the function f(-) is probabilistic (has uncertain parameters).

In the case if a function f(*) is deterministic, the agent’s beliefs update
involves the change of parameters and/or a functional form of the agent output model
if the model error does not satisfy acceptability criteria defined by the modeler. In
such case the agent output variable is given by deterministic function, f{(-), as follows:

Y=fX)+eXp), i=1,..,n

Equation 5-1

In the above equation Y denotes a single output variable of an agent as a function of
the input variables, X;, X, ..., X,, and &X)) is an additive error term. If necessary,
multiplicative error model could be used as an alternative to the additive error model
given by Equation 5-1. Multiplicative error model (also called ratio model) implies
that the magnitude of error is proportional to the value of the output variable. In the
additive error model (also called absolute difference model) the magnitude of error
does not depend on the value of the output variable. Multiplicative error model could

be transformed into an additive error model by a non-linear transformation (such as

60



logarithm transform). The suitability of either type of error term is typically evaluated
based on several criteria such as the model fit to the data, predictive capability of the
model, the degree of separation of the systematic and random errors (the uncertainties
resulted from the difference between the model and the average system responses vs.
the uncertainties causing the data variations between experimental runs), applicability
to the wide range of variation of the output [63]. Additive errors are normally
distributed, while multiplicative errors are highly skewed and follow gamma or
lognormal distribution. More complex error models could be used, but there is the
risk of over-fitting, and such models quickly lose their predictive capability. A
complex error term also implies poor choice of measurement system or inadequate
model of the output variable, f{(*).

In the second step of an agent’s beliefs update, once the functional form and
the parameters of the agent output model are updated, the probability distribution of
the agent output variable is updated by simulation over the updated model function
(probabilistic or deterministic) using the latest beliefs of the input agents.

For Type I Micro-Agents and Type Il Macro-Agents that do not have inputs
from other agents, the agent’s beliefs update involves only one step, changing the
type and/or parameters of the PDF of the agent output variable by finding parametric
distribution function having the best fit to the new data.

This chapter introduces the learning methods for Type I Micro-Agents and
Type 11 Macro-Agents which can be used to define the model of the agent output
variable, if the model is not available, and update the parameters of the identified or

already known model. Changing (updating) the functional form of the model during
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agent learning does not require any special methods in addition to the common
criteria of model error evaluation (e.g. normality of additive error, a comparison of
the error value to the value of the output variable) and the modeler’s engineering
judgment. Special reasons for model type change could be programmed into the
agent’s internal knowledge (particularly the special rules of behavior). Updating the
probability distribution of an agent output variable by means of simulation will not be
discussed further in this chapter because simulation algorithms are well known and
widely applied [64], [65].

With respect to the format of the data required for agent learning, discrete
measurements are obtained when the system elements are sampled at certain time
points during system evolution. Continuous measurements must be discretized.
Where indirect measurements of the output quantity, Y, are used, a reasoning
algorithm (causal relationship) is required to correlate a change in the measured
variable (also called precursor variable) with a change in agent output variable, Y.

It is desirable that such correlation is based on the PoF model rather than a statistical
function because use of purely statistical transfer function implies that the first
principles are omitted and extrapolation to new conditions is at risk to be invalid if
non-monotonic relationships or complex interacting failure mechanisms are present.

Several existing methods of data analysis were chosen as learning methods for
Type I Micro-Agents and Type 1l Macro-Agents, as summarized in Table 5-1 and

discussed further in this chapter.
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Table 5-1: Applicability of Learning Methods for Type I and Type II Agents

Type I Micro-Agents
Type I Micro-Agents (with One or More

(with No Inputs) Inputs)
Learning Method
Type II Macro-Agents | Type II Macro-Agents
(with No Inputs) (with One or More
Inputs)
Parametric Distribution V4

Analysis (classical)

Model-based Parametric
Distribution Analysis v
(cumulative damage)

Time Series and Trend
Analysis for Degradation v V4
and other Trend Modeling

Machine Learning and
Pattern Recognition V4 Vs
Methods (excluding Bayesian
Fusion methods)

Bayesian Inference w4 4

Bayesian Fusion e

Applicability of each learning method to a specific Type I Micro-Agent or
Type 11 Macro-Agent is identified according to the criteria that comprise the
following considerations, as a minimum:
1. Dependency of the agent output variable on other variables
a. Independent variable Y, or
b. Variable Y(?) is a function of one or more input variables ¢; (i = 1, ...).
2. Availability of PoF or empirical model of the agent output variable
a. A model is not available, or
b. A model is available, the model is probabilistic or deterministic (i.e.

model parameters are uncertain or fully defined), linear or nonlinear.
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3. Time dependency of the agent output variable
a. Time dependent (time trend in the output variable Y(z) exists, one of
the input variables, #;, is time variable), or
b. Not time dependent (no time trends in the output variable Y(?) exist).
4. Type of agent output variable according to the continuity of data/information
represented by the variable
a. Continuous variable (represented by continuous distribution model), or
b. Discrete variable (represented by discrete distribution model).
5. Rate of change in the agent output variable over time (for time dependent
variables)
a. Slow change over time (gradual increase in degradation measure,
accumulation of damage, such as crack growth to critical size), or
b. Rapid change over time (acute change in degradation measure, rapid
increase in accumulated damage, e.g., as brittle fracture, rapid crack
propagation to rupture, crack arrest).
6. Monotonicity of change in the agent output variable over time (for time
dependent variables)
a. Monotonic change over time (entirely non-increasing or non-
decreasing), or
b. Non-monotonic pattern (e.g., cyclic changes, seasonal patterns).
7. Types of data available for agent learning

a. Direct measurements of the agent output variable, Y, or
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b. Direct measurements of the agent output variable, Y(?), and the input
variables t; (i = 1, ...).
8. Data sources
a. Inspection and maintenance records.
b. Data from sensors and monitors.
c. Generic data.
d. Expert opinion.
The next sections of this chapter include the guidelines for choosing an agent

learning method based on the above criteria and provide application examples.

5.2. Parametric Distribution Analysis (Classical)

Classical parametric distribution analysis [8], [66] - [70] can be used as an
agent learning method for the Type I Micro-Agent or the Type II Macro-Agent
assigned to a time independent, random variable with no inputs from other variables
(i.e. no PoF or empirical model of the agent output variable exists). Classical methods
of parameter estimation, least squares regression (LSR) or maximum likelihood
estimation (MLE) method, are used to estimate the parameters of the best fitted
distribution for the data. Each time new data emerge, it is added to the previously
available data and the analysis is repeated for the updated data set. Any discrete or
continuous parametric distribution can be used to represent the agent output variable.
An extensive list of parametric distributions is given in publication [71]. The data that
are required for agent learning include the direct measurements of the agent output

variable, such as environmental or operational characteristic, time to failure/success,

65



etc. Typical data sources are the testing, inspection and maintenance records from
field operation, and generic data sources.

For example, ball bearings are tested in a lab and the ball bearing temperature
is considered a critical variable within physical failure model of the bearing. Even
under a constant ambient temperature, the internal temperature of a ball bearing
fluctuates depending on the operating conditions. If the relationship between the ball
bearing temperature and the operating stresses cannot be reasonably established, then
ball bearing temperature is defined as a Type I Micro-Agent with no input agents.
The probability distribution model for the output variable of this agent is established
using initial lab test measurements as normal distribution, N(z, oy). As the test
continues, new measurements of bearing temperature arrive and are added to the
initial data set, then the parametric distribution analysis is performed to obtain an

updated normal distribution, N(x;,0,), having the best fit to the updated data set.

The multivariate parametric distribution function can be viewed as a
generalization of agent representation and learning through parametric distribution
analysis for Type II Macro-Agents. For example, the bivariate normal distribution of
Type I Micro-Agents X and Y forms a representation of the output variable of the

Type II Macro-Agent, Z:

f@)=f&Y)=

X —uy)? | (Y — py)? _ X —p) Y — uy)
+ 2p
. 1 ox _ UXZ O-yz O-Xo-y
P 2(1- p?)

- 21\ 1 — p?oxoy

Equation 5-2
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As new data become available, the distribution parameters are revaluated using all

available data for the variable Z versus variables X and Y.

Table 5-2 provides two examples of the learning process of Type I Micro-

Agents: current density and temperature of the conductor. These Type I Micro-Agents

could be used further as input agents to a certain Type II Macro-Agent, for example

life to electromigration failure of electronic part. The type of model of the agent

output variable (i.e. PDF of the current density, J, and PDF of the conductor

temperature, 7) did not change during the updating of agent’s beliefs, but the model

parameters were updated using new data.

Table 5-2: Examples of Agent Learning by Parametric Distribution Analysis

Elements of
Agent Learning

Type I Micro-Agent

Temperature of the

data points), where Liyis median
and EF is Error Factor of the
distribution

rrent Densi
Process Curre ensity Conductor
Input Variables
from Input Not applicable Not applicable
Agents
. . Temperature of the
tD t
Output Variable | Current Density, J Conductor, T
Lognormal probability Normal probability
distribution, LN(g EF)), distribution, N(uy oy),
Model of Agent obtained by selecting best fit obtained by selecting best fit
. distribution for the measurements distribution for the temperature
f)l::l E?Iéleth‘e,:sl riable collected during the past test (6 measurements collected during the

past test (6 data points), where Liyis
mean and oy is standard deviation
of the distribution

Parameters of

o= 500,000 A/cm?’, EFy=2,

Ho=60°C, op=3°C,

(3 data points)

Agent Output o e
Model distribution parameters are distribution parameters are
ode obtained by MLE method obtained by MLE method
- Past Beliefs
Current density measurements Temperature values obtained
New Data obtained during accelerated test | from the thermal model (3 data

points)
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Elements of
Agent Learning

Type I Micro-Agent

Temperature of the

distribution for the measurements
collected during the past test and
the current accelerated test
combined (total of 9 data points),
where p; is median and EF; is
Error Factor of the updated
distribution

Process Current Density Conductor
Model of Agent | Lognormal probability Normal probability
Output Variable | distribution, LN(u;, EF;), distribution, N(u,, o),

- Updated Beliefs obtained by selecting best fit obtained by selecting best fit

distribution for the temperature
measurements collected during the
past test and obtained from the
thermal model combined (total of 9
data points), where 1, is mean and
oy is standard deviation of the
updated distribution

Parameters of
Agent Output

Model
- Updated Beliefs

;= 600,000 A/em?, EF ;=
1.5, distribution parameters are
obtained by MLE method

4= 65°C, 0,=2°C,
distribution parameters are
obtained by MLE method

5.3. Model-Based Parametric Distribution Analysis (Cumulative

Damage Model)

The output variable of the Type I Micro-Agent or the Type II Macro-Agent

with one or more input agents can be represented by a parametric distribution if one

or more parameters of that distribution are expressed by the PoF or empirical function

of agent input variables (associated with the input agents). The agent output variable

is not time dependent (i.e. no time trends in agent output variable exist, and none of

the input variable is time variable). In this case the agent model will be given by the

PDF as a combination of the probability distribution model (such as Weibull,

lognormal, exponential, etc.) and the life-stress PoF relationship (such as Arrhenius

model, inverse power law (IPL), exponential model, etc.) with uncertain parameters.
The examples are Eyring-Weibull, IPL-exponential, Arrhenius-lognormal probability

distribution functions. The MLE method is used to estimate model parameters. Some
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of the input variables could be time-varying, so that the life-stress relationship and the
maximum likelihood estimation of model parameters will take into account the
cumulative effects of the applied stresses [72]. That’s why the described type of
model is also referred to as a cumulative damage or cumulative exposure model.

Each time new data set emerges, it is combined with all the past observations into one
data set for a re-estimation of the parameters of the model-based probability
distribution. The data set that is required for agent learning includes the direct
measurements of the agent output variable (such as time to failure/success) and direct
measurements of input variables (such as environmental or operational parameters,
etc.). Typical data sources include test results, inspection and maintenance records

from field operation.

For example, the Type Il Macro-Agent representing time to fatigue failure of
a component due to cyclic stress, S, could be modeled by Weibull-IPL probability
distribution function, Y~W (t, S|B, K, n), as follows:
f(t,S) = BKS™(KS™t)PLexp[—(KS™t)F|
Equation 5-3

The letter ¢ in the above equation denotes time to failure, letters £, K and n denote the
model parameters, specifically, £ is Weibull shape parameter, while Weibull scale

parameter, ¢, is expressed as IPL function of the cyclic stress, S:

1
a =
KS™
Equation 5-4

The probability density function given by Equation 5-3 is a combination of the

empirical Weibull distribution model of the time to failure and life-stress PoF model
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defined by Equation 5-4. Distribution parameters £, K and n could be obtained by the
MLE method. As new data for time to failure versus cyclic stress become available,

the distribution parameters are revaluated using all available data combined.

5.4. Time Series and Trend Analysis

The learning property of the Type Il Macro-Agent assigned to a time
dependent degradation variable could be modeled using various methods of time
series and trend analysis, stationary or non-stationary [73], [74], [75]. Time series is
defined as sequence of measurements of a numerical quantity collected at a regular
interval. The available data recorded in chronological order are used to develop a time
series plot which is further used to detect trends in the data over time and compare the
trends across several data groups. The data are plotted on the vertical y-axis versus
time on the horizontal x-axis. Trend analysis is used to fit a general trend model to the
time series, and to provide forecasts (extrapolations of the trend model fits). The
elements of the fitted equation are: #, representing the time variable (calendar hours,
operational hours, cycles, expended life or an index of age, etc.), and Y(?),
representing the value of the measured variable at time 7. All other terms are the
coefficients, i.e. numerical constants that are used to express the variable under
consideration as a function of time. Some examples of trend models which can be
assigned to the output variable of a Type I Micro-Agent or a Type Il Macro-Agent are
the following:

e Regression model (cubic)
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Y(t) = Bo + Brt+Pot* +5t3
Equation 5-5
e Exponential model
Y (t) = BoBi" + Brexp(Bst + Ba)
Equation 5-6
e Sinusoidal model
Y(t) = o + (By + Bat + Pst?) sin(2rfut + fs)
Equation 5-7
The time variable, ¢, in trend equations is an output variable of the Type I Micro-
Agent representing time (e.g. cycles, hours, months), being a single input to another
Type I Micro-Agent or Type Il Macro-Agent with output variable Y(z). The
coefficients f; (i = 1, 2, ...) are the model parameters. Classical methods of parameter
estimation, LSR or MLE, are used to obtain the model parameters.

A general form of the output variable of a Type I Micro-Agent or a Type II
Macro-Agent is defined by the time series or trend model with a single input variable,
which can be written as:

Y(e)=1(t,0)+&(t)
Equation 5-8
where Y(?) is the agent output variable, f(7, 6) is a mathematical function of the input
variable, ¢, with the vector of model parameters 8 ={f, f,,..., B}, and &) is an
additive error term, which is assumed to be a normally distributed, random variable
with zero mean and standard deviation o, as follows:
e(t) = Normal (0,0)

Equation 5-9
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The variable  may represent not only a time variable, but also any other variable
serving as an input to the stochastic variable Y(?). If necessary, multiplicative error
model could be used instead of the additive error model given by Equation 5-8.

The learning properties of Type I Micro-Agents or Type 1l Macro-Agents that
are assigned to a time dependent variable could also be modeled using trend analysis
in cases when the agent has more than one input variable. Some examples of trend
models for complex variables, Y(t, i=1,...,n), representing the output variables of
Type I Micro-Agents or Type Il Macro-Agents as a combination of two or more input
variables, ¢, t,, ..., t,, (associated with input agents), are the following:

e Linear model
Y(ty, ty o tn) = Bo + Paty + Baty + -+ + Brty
Equation 5-10
¢ Nonlinear model
Y(ty,t2) = B+ Bo - Ln(ty + B3) + Baexp(ty + Bs) + Bsts
Equation 5-11
The coefficients f; (i =1, 2, ...) are the model parameters. A general form of the
output variable of a Type I Micro-Agent or a Type Il Macro-Agent with the output
variable defined by a trend model with multiple input variables can be written as:
Y(T)=£(7,0)+&(T)
Equation 5-12
Y(T) is agent output variable, f(7,6) is a mathematical function of #n input variables T’
={t;, s, ..., t,} with the vector of model parameters 8 ={fy, f,..., B}, and &T) is an
additive error term, which is assumed to be normally distributed random variable with

zero mean and standard deviation o, as follows:
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&(T) = Normal (0,0)
Equation 5-13

In order to choose the appropriate model, a model fit to the data is subject to
graphical and quantitative techniques of model validation. For example, residual plots
could be used to determine if the ordinary least squares assumptions are being met for
the additive error term, such as the constant variance for different data groups,
independence of variables and the normality of the distribution of residuals with zero
mean. If these assumptions are satisfied and the value of standard deviation, o, is
relatively small, then the chosen model will have unbiased coefficient estimates with
minimum variance. Otherwise, the modeler could decide to update the functional
form of the model as part of the agent learning process or choose to use multiplicative
error term.

Another method of time series analysis, decomposition, is used to separate the
time series into the linear trend, seasonal components, and the error term, and to
provide forecasts. Decomposition is used when the data exhibit either no trend or a
constant trend, have constant seasonal pattern, and the seasonal component is either
additive or multiplicative with the trend. The decomposition method determines the
seasonal indices used to seasonally adjust the data and fits a trend line to the
seasonally adjusted series. The trend and seasonal indices are further used to
determine the predicted values and forecasts as a sum (additive case) or a product
(multiplicative case) of the trend and seasonal components. Figure 5-1 shows the

example of decomposition analysis for the temperature variable.
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Fitted Trend Equation

Y(t) = 345.4 + 4.25%t

Seasonal Indices

FPeriod Index
—-82.057
-65.557
-50.431
—40.847
0.403
54,569
170.653
64.5986
34.56%9
15.819
11 -45.531
12 =-52.057

[==TRE I AR, B R FU I ST

[uny
(=Rt ]

Figure 5-1: Results of Data Analysis by Decomposition

The data decomposition procedure produces a graph containing a trend line,
observations, predicted values, and forecasts versus time (Figure 5-2). The predicted
values and the forecasts are obtained from the fitted trend line multiplied by
(multiplicative model) or added to (additive model) the seasonal indices. Each
predicted value in this example of the additive model is a sum of the trend value and
the corresponding seasonal index. Same applies to the forecasts. For example, for the
second period, the trend component, obtained from the trend equation, equals 353.9,
the seasonal index is -69.597, and their sum gives the predicted value for the second

period as 284.3.

74



Time Series Decomposition Plot for Temperature, F
Additive Model
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Figure 5-2: Graphical Output for Decomposition Example

The coefficients of the linear function, Y(?), and the seasonal indices (shown on
Figure 5-1) comprise parameters of the model of the agent output variable, given in
general form by equation:

Y(t,Season;) = Y(t) + Seasonal Index;, i =1,2,...,12
Equation 5-14

Such model applies to the output variable of the Type I Micro-Agent or the Type 11
Macro-Agent with the time variable as a single input variable.

Empirical mode decomposition (EMD) method of breaking down a signal can
be viewed as a generalization of the decomposition techniques described above [75].
EMD is used, along with other analysis methods such as Fourier transforms and
wavelet decomposition, to decompose non-linear and non-stationary time dependent

variable into a finite number of components.
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The time series and trend analysis models described in this chapter can be
used as agent learning methods for Type I Micro-Agents or Type II Macro-Agents,
both independent agents (with no inputs from other agents) and agents with one or
more input agents (one of which could represent time variable). These agents could
represent time dependent degradation measures (such as crack size) or other time-
dependent or time-independent variables when the PoF or empirical model of agent
output variable is not available. Every time new data become available, it is combined
with all past observations into one data set for re-estimation of the time series or trend
model parameters. The data set that is required for agent learning includes the direct
observations of the agent output variable (such as degradation measure,
environmental or operational characteristic, etc.) and direct measurements of input
variables (such as time variable, environmental or operational parameters, etc.).
Typical data sources are testing, inspection and maintenance records from field
operation, and data recorded by sensors and monitors. Examples of Type II Macro-
Agent learning by trend analysis are given in Table 5-3.

It must be noted that several supervised machine-learning learning and pattern
recognition procedures could also be used for time series and trend analysis.
Application of machine-learning learning and pattern recognition methods of data

analysis for agent learning is discussed in Section 5.5.
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Table 5-3: Examples of Agent Learning by Time Series and Trend Analysis

Elements of

Type II Macro-Agent

Agent Learning | o i
perating Temperature, .

Process T Current Density, J
Input Variables
from Input Flight Time, ¢ Voltage, V'
Agents

Device Operatin . .
Output P £ Diode Current Density, J
Variable Temperature, 7'

T(t) = By + By T(t — The PqF fundament.als dictate the

D+B,T(t — 2)+BsT(t — 3) f0110w1}1g expon;ntlal model:

The above equation was Jov) =2 [exp (_> - 1]

obtained by selecting best fit ] A Vr

del based on the physical where:

mo phy Iy is the diode reverse saturation current

nature of tgmpergture (diode material constant), A/cm’

Chang? during flight cycle A is the junction area, cm’

and using temperature V is applied voltage across the terminals
Model of Agent | measurements collected of the diode (forward bias, ¥ > 0), Volts
Output during three flight cycles. Vris thermal voltage, Volts
Variable Vi = kT/q, where
- Past Beliefs T=f(t) q is absolute value of electron charge,

123456 7 8 91011121314 15 16 17 18 19 20

k is Boltzmann's constant,

T is absolute temperature (K),
Vr=25.85 mV at room temperature
(T=300K).

The model is simplified for room
temperature operation, as follows:

JWV) =Jo [e"p <o 0;585) 1]

where J, = 1,/4, Alem®.

Parameters of

Iterative algorithm was used
to obtain model parameters,
as follows:

The model parameter J, was
obtained by LSR method based on

Agent Output experimenta.l measurements of the
Model Bo=20,B,=P,=B3=— cur.rent density vs. voltage (6 data
- Past Beliefs points), as follows:
Jy=25.0 pAlem’

Temperature measurements | Additional experimental
New Data collected during ten flight measurements of current density vs.

cycles (10 data points). voltage (3 data points)
Model of Agent Time model for operating Exponential model for the current
Output temperature 7 is unchanged: | density J remains unchanged:
Variable T(t) = By + BT (t — 14
- Updated Beliefs | 1)+8,T(t — 2)+BsT(t —3) |/() =)o [e"p <0 02585) 1]
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Elements of Type II Macro-Agent

Agent Learning i
Process Operating T;mperature, Current Density, J

Parameters of The iterative algorithm was
Agent Output used to obtain the updated
Model model parameters using the
- Updated Beliefs temperature measurements
collected during the total of
six flight cycles (i.e. total of
6 data points):

Bo=15 B =P, =p3=-1

The updated parameter J, was
obtained by LSR method based on
the current density vs. voltage
measurements collected during the
two rounds of experimentation (total
of 9 data points):

Jo=24.5 pA/em’

5.5. Machine Learning and Pattern Recognition Methods

Machine learning, a branch of artificial intelligence, deals with data
representation and generalization. Representation of data instances and functions
(patterns) evaluated on these instances are part of all machine learning methods.
Generalization is the property that the measured variable will perform well on unseen
data instances, allowing to make predictions of future behavior that is based on the
known properties learned from the data. These approaches are based on statistical
learning techniques from the theory of pattern recognition, and include supervised
and unsupervised learning methods. Statistical models and algorithms of machine
learning comprise the core of the data-driven approaches to prognostics and health
management (PHM). Figure 5-3 shows the most common machine learning methods

employed in PHM, detailed in publications [76] - [88].
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_.| Kalman Filter (KF) | Extended Kalman || Sequential Probability | | Artificial Neural
Particle Filters (PF) Filter (EKF) Ratio Test Networks (ANNs)
] (Ségﬁznlﬁzi}i\gggte | ,| Hierarchical | ,| Symbolic Time | ,| Self-Organizing
Clustering Series Techniques Map
| ,| K-Nearest Neighbor — -
Classifier (KNN) | ,| Least Squares | ,| Multivariate State | ,| Hidden Markov
Optimization Estimation Technique Model (HMM)
| ,| Lumped Parameter v o S —
Model uzzy C-Means Mahal : aive Bayesian
] Classifier > Matalanobis | Classifier (NBC)
| ,| Generalized Parity -
Vector (GPV) | ,| Singular V.a!ue | Support Vector | |  Fuzzy C-Megns
Decomposition Machine (SVM) (Fuzzy Clustering)
Independent ;
> AColmpot(lleg; : L ﬁ’;g?gf‘zt:t’;; | ,| Linear Discriminant | | Euclidean Distance
nalysis i i
Y (EM) Algorithm Analysis Clustering
L_,| Principal Component | Gaussian Process |_,| Decision Tree
Analysis (PCA) Regression (GPR) Classifier
L, Relevance Vector
Machine (RVM)

Figure 5-3: Machine Learning Methods

Supervised learning is defined as the machine learning algorithm of inferring
a function from labeled data called training data. The training data is a set of training
examples, where each example is a pair of input object measures and a desired output
value (also called a supervisory signal). A supervised machine learning algorithm
analyzes the training data set and produces an inferred function for the output
quantity. This function is used to map new data points to obtain a predicted value of
the output. To be effective, the training data for machine learning algorithms must
span the universe of system failures and operational conditions, which is impractical
when dealing with complex engineering systems.

The task of unsupervised learning is finding hidden structures in unlabeled

data. Since the data given to the learner are unlabeled, no error could be obtained to
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evaluate a potential solution. Unsupervised learning is similar to the problem of
probability density estimation in statistics (described in Sections 5.2 to 5.4).
Unsupervised learning, however, also encompasses many other techniques that
explain key features of the data.

While the machine learning approaches are suitable for all levels of system
hierarchy from the piece part to the system, the above considerations suggest that
unsupervised algorithms are preferred for the agent learning process. Furthermore,
considering properties and capabilities of the available unsupervised methods,
Kalman filter (KF) and extended Kalman filter (EKF) are generally recommended as
learning methods of Type I Micro-Agents and Type II Macro-Agents where PoF or
empirical model of the agent output variable exists. Applicability of KF and EKF
depends on the model type: KF is suitable under the assumptions of the model
linearity and Gaussian distribution of the agent output variable and the noise (error
term), while EKF performs local linearization of the non-linear model. Both KF and
EKF, along with several other unsupervised algorithms, are categorized as Bayesian
fusion methods and discussed in details in Section 5.8. Other machine learning
methods (supervised and unsupervised) could still be used for agent learning to the
discretion of the modeler. For a detailed description of machine learning methods, the
interested reader is referred to the literature. One of the recommended machine
learning methods from a supervised category, Gaussian process regression, is
described below in Section 5.5.1.

Similar to parametric distribution analysis and trend models, machine learning

methods make no reflection on fault sites, operating conditions, and physical
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mechanisms of failure (i.e. the first principles are omitted). With exception of
Bayesian Fusion methods, machine learning algorithms are used for agent learning
when the physics-of-failure model of the agent output variable is not available.

Machine learning methods are suitable for Type I Micro-Agents or Type 11
Macro-Agents, both independent agents (with no inputs from other agents) and agents
with one or more input agents (one of which could represent time variable). The
required data for agent learning include direct measurements of the agent output
quantity, Y(7), T={t; , t2, ..., t,}, and the input quantities, ¢; (i = 1, ..., n), where Y(T)
is could be a degradation measure (e.g. crack size), environmental or operational
characteristic. Typical data sources are sensors and monitors (usually in PHM
applications). New data, when become available, are combined with all past
measurements into the updated data set for a re-estimation of machine learning or
pattern recognition model parameters.

Application examples include situations when a Type I Micro-Agent or a
Type 11 Macro-Agent represents a failure precursor used as an indicator of part
degradation in lieu of the physical model of degradation or failure [89]. A precursor is
a random time dependent variable which could also be a function of other variables.
Examples of failure precursors for electronic devices are reverse leakage current,
forward voltage drop and power dissipation for diodes, leakage current/resistance for
capacitors, and impedance changes for cables and connectors. Examples of failure
precursors in mechanical systems are vibration of a gearbox [90], noise and vibration
of ball bearings [91]. Failure precursor measurements are collected at certain intervals

during the experiment or in field operation. Machine learning methods can be used to
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recursively update the time trend model of such agent as it evolves over time, due to
continuous change in the precursor following the degradation process of the item. A
failure condition would be considered to occur when the precursor value has reached

a known threshold.

5.5.1. Gaussian Process Regression

Gaussian process regression (GPR) is non-parametric regression technique
that provides an alternative solution to the model selection problem commonly seen
in parametric models [78], [86], [87], [92]. GPRs are able to model complex non-
linear relationships that are often present in failure rate data. This model has received
considerable attention recently due to the inherent flexibility provided in its Bayesian
framework. The technique also provides a straightforward approach for modeling
dependencies within the data.

Within a framework of agent autonomy, the GPR model could be used to
represent the output variable of Type I Micro-Agents or Type Il Macro-Agents
having multiple input variables from other agents. The problem of learning in a
Gaussian processes is finding suitable properties for the covariance function,
specifically hyperparameters of the covariance function [78].

An example of GPR application to agent learning is the modeling of a certain
reliability characteristic, such as failure rate, as a function of time (or accumulated
mileage), aircraft or vehicle model (type), and usage conditions. Modeling the failure

rate of a fleet of vehicles on a monthly basis using the GPR method is described in
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publication [92]. An example of Type Il Macro-Agent learning by means of the GPR

is given in Table 5-4.

Table 5-4: Example of Type II Macro-Agent Learning by GPR

Elements of
Agent Learning
Process

Type II Macro-Agent

Automotive Tire Tread Wear Rate

Input Variables

Type I Micro-Agents:
1. Accumulated Mileage Agent, M
2. Vehicle Model Agent, V (3 vehicle models, assigned with 2

from Input
Agents P indicator variables due to qualitative nature)
3. Predominant Road Conditions Agent, R (3 road types,
assigned with 2 indicator variables due to qualitative nature)
OUtPUt Tire Tread Wear Rate, WR
Variable
WR = f(X) is the observed tread wear rates for each vehicle
during the month, defined as follows:
1. Input vector X =(x;, x,, x3), where
continuous variable x; represents agent M,
indicator variables x,, x; represent agent V
indicator variables x,, xs represent agent R
2. Distribution of the log of the fleet rate of tire tread wear:
log(f (x)) ~GP (m(x), k(x 7)), i,j = 1,2,3
log(f (X)) ~N(m(X), K (X, X))
Model of Agent | 3 The data outputs will be centered to have zero mean on
Output the training data set, m(X) = 0.
Variable ) o ] ) )
- Past Beliefs 4. Possible periodic trend in tread wear rate is expected, leading

to a periodic kernel function component. A smoothed model
that could handle the noise present within the data is also
required, leading to the addition of squared exponential and
noise components. The resulting kernel function consists of the
sum of squared exponential, periodic, and general noise
components:

k(xl-,xj) =

T
OZexp (— Geim2;) P(xi_xj)> + OZexp

T
_ (r=xj) PCri—x;)
202

202
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Elements of Type Il Macro-Agent

Agent Learning
Process Automotive Tire Tread Wear Rate

Zsin<7r2 (xl-—x]')TP(xi—xj)>

2
910

+O'7%6ij

where ¢ is a Kronecker delta which is one iff i = j and zero
otherwise, P is diagonal 5-dimensional matrix with
hyperparameters 6, through 6salong the diagonal and zeros
elsewhere, each hyperparameter in matrix P corresponds to the
respective term in the input vector X =(x;, x,, x3).

5. The log-likelihood of data (X, Y) (reasoning property of the
agent) is defined as:

logp (Y|X,0) = —~YT[K(X,X) + 621]7'Y — Zlog[K (X, X) +
o7 1] - Zlog(2m)

where @ is the vector containing all hyperparameters and noise
level parameter o2, @ = ({P},0s 05, O, 00, 0,9, 02 )".
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Elements of
Agent Learning
Process

Type II Macro-Agent

Automotive Tire Tread Wear Rate

Parameters of
Agent Output

Model
- Past Beliefs

The vector containing all hyperparameters and noise level
parameter 02: 0 = ({P}, 05, 05, Os, 0o, 0,9, 02 )"
The optimal values of the hyperparameters and noise level

parameter were computed from the past training data in GPML
Matlab code using conjugate gradient optimization [92]:

Parameter Value
0, 7.734
0, 0.245
03 0.390
04 716.394
05 325.983
06 30.285
07 3.764
05 10.324
04 1.120
010 5.506
Gn 0.025

Note:

The chosen kernel function k(xi, xj) allows for relevance
determination, such as the optimal values of the
hyperparameters within matrix P define the relevance of the
contribution of the specific input within the overall model
structure: large hyperparameter values indicate high relevance
to the model, while small values indicate input covariates of
lower importance to predicting the rate of tire tread wear. For
example, hyperparameter 6; (corresponding to the odometer
reading) is relatively small indicating low impact of
accumulated mileage on tire tread wear rate. Relatively high
values of hyperparameters 6y and 05 indicate high importance
of road conditions on tire tread wear rate.
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Elements of Type Il Macro-Agent

Agent Learning
Process Automotive Tire Tread Wear Rate

The new set of training data is obtained from the collection of
unscheduled maintenance actions on a fleet of similar vehicles
that are used for various jobs in different locations. The data
collection is performed on a monthly basis, and the objective is
to understand any differences in the underlying tread wear rate
that may exist across the fleet. The values in the input vector X
are the various factors that may impact the tread wear rate for a
vehicle tire in the fleet during a given month: accumulated
mileage, M, vehicle model, V, and predominant road
conditions, R.

New Data

The new training data points were used to develop the Log-
GPR model with the X inputs associated with the month
number and the Log(7Y) being the log of the fleet tire tread wear
rate each month.

Model of Agent | Same as “Representation of Output Set - Past Beliefs”
Output

Variable
- Updated Beliefs

Parameters of | The optimal values of the updated hyperparameters and noise

Agent Output level parameter were computed, as follows:
Model

_ Updated Beliefs Parameter Value
0, 24.629
0> 0.297
03 0.405
04 987.541
05 412.974
06 22.113
07 5.365
05 8.174
0o 3.156
01 3.704
[ 0.003
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5.6. Bayesian Inference

In Bayesian inference, the initial belief about the distribution of the
parameters of the model of agent output variable (a priori distribution) is
systematically updated according to Bayes' theorem based on new data (evidence) to
obtain a posteriori distribution of the model parameters [68], [69], [93], [94]. New
data are recursively added to the existing estimates, so that there is no need to
combine new data with all past observations and to re-run the analysis. This reduces
the computational time by building on the agent’s “memory” about the history of all
past updates. Bayesian formalism is flexible enough to combine data from different
sources, including partially relevant data. For these reasons, Bayesian inference is
recommended as one of the primary methods of agent learning for Type I Micro-
Agents and Type II Macro-Agents. Bayesian inference applies when the PoF or
empirical model of the agent output variable is or is not available, and can be used as
parameter estimation method for the majority of functional forms of the agent output
variable including standard parametric distributions, model-based parametric
distributions (cumulative damage models), time series and trend functions
(degradation or other trends), and some machine learning algorithms (e.g., Gaussian
process regression [92]).

The required data for agent learning via Bayesian inference include direct
measurements of the agent output quantity ¥(7), T= {¢;, t2, ..., t,}, and the input
quantities #; (i = I, ..., n), where Y(7) is could be a degradation measure (e.g. crack
size), time to failure/success, environmental or operational characteristic. Any type of

data are useable, such as test results, inspection and maintenance records in field
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operation, records from sensors and monitors (usually in PHM applications), data
from generic sources, and expert opinion.

The examples shown in Table 5-5, Table 5-6, Table 5-7 and Table 5-8
demonstrate different cases of Bayesian updating in the context of agent learning.
Bayesian formulation takes a different form depending on the type of problem and the
available data (evidence). When dealing with test or field data collected under time-
varying stresses, the life-stress relationship must take into account the cumulative
effect of the applied stresses. Cumulative damage (cumulative exposure) models are
described in publication [72], which presents a derivation of the model parameters by
classical estimation methods. Bayesian formulation for the cumulative damage model
parameters is demonstrated by the example in Table 5-7. It must be noted that
Bayesian updating of the cumulative damage model parameters cannot be done
recursively due to the nature of cumulative damage equations, and new data must be
combined with all past observations in order to re-run the analysis. In this exceptional
case, the only advantage of the Bayesian inference over the classical methods of
parameter estimation is the ability to use the first set of prior estimates of model
parameters available from the past before any data were obtained within the current
study of system reliability.

A disadvantage of Bayesian inference as an agent learning method is
significant computational effort. Software programs existing today (WinBUGS [120],
[121], R-Dat, R-Dat Plus and BRASS [95]) have a limited ability to handle complex
non-conjugate Bayesian formulations typical for most applications of homogeneous

Bayesian inference (including Bayesian inference for cumulative damage model). A
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software program R-Dat Plus also handles non-homogeneous Bayesian inference

[95], but has similar limitations when complex non-conjugate Bayesian formulations

are concerned. Significant developments in this area are necessary.

Table 5-5: Example of Type I Micro-Agent Learning by Bayesian Inference

Elements of
Agent Learning
Process

Type I Micro-Agent

Operating Temperature

Input Variables

from Input Not applicable

Agents

Output .

Variable Operating Temperature of the Component, T

Model of Agent | v/ jation of operating temperature of the mechanical

SUtPl:)tl component is defined by normal distribution with parameters
ariab and o, as follows: T ~N(u,0)

- Past Beliefs

Parameters of

The vector of model parameters: 8 = (i, o))"
Prior beliefs about the agent output model parameters are

Agent Output established according to engineering knowledge and historical

Model field data as follows:

- Past Beliefs u~N(my,s;),c6~N(m,,s,)
where m;, s;, my, s, are known values.
Temperature measurements D{7}, T>, ..., T,} obtained from the
field are used as an evidence to update prior beliefs of

New Data Operating Temperature Agent into the posterior distribution of
the agent output model parameters, x and o.

Model of Agent | The updated model of the agent output variable, T, is

Output developed, as follows:

Variable

- Updated Beliefs

1. Priori distributions of the agent output model parameters u
and o are defined in “Parameters of Agent Output Model - Past
Beliefs” section of this table:

u~N(my,s;),0~N(my,s,)
where m;, s;, m, s> are known values.

2. Temperature measurements D{7T;, T5, ...
(evidence) for Bayesian updating.

, T,} are used as data
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Elements of
Agent Learning
Process

Type I Micro-Agent

Operating Temperature

3. The Likelihood function of the evidence (reasoning property
of the agent):

L(D|u,o) ! ! né (T, )?
oc — =
U, P =53 2, = U

4. Priori distribution of the agent output model parameters is
the following joint distribution of 1 and o (assuming their
independence):

o (1, 0) 1 ex _(H_m1) (U m;)?
O s T 260 2607
5. Bayesian formulation for posteriori probability of the agent
output model parameters according to Bayes’ theorem:

L(Dlu, o)mo(p, o)
JI LD, o)y (u, 0)dudo

6. Posterior predictive distribution of Operating Temperature
variable resulted from the learning process becomes:

f(T) = H f(T\u, o)m(u, o|D) dudo

This formulation provides the new (updated) probability
distribution of the agent output variable Operating
Temperature, 7. The term f (T |y, o) represents a formulation of
normal distribution of the variable 7, N(u,0):

1 (T — w)?
f(Tlw o) = amexp <——202 >

n(u,0|D) =

Parameters of
Agent OQutput

Model
- Updated Beliefs

Bayesian formulation for posteriori probability of the model
parameters provides the updated beliefs about the agent output
model parameters (as obtained in “Model of Agent Output
Variable - Updated Beliefs” section of this table):

L(D|u, 0)mo(p, o)

n(,o|D) = i
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Table 5-6: Example of Type II Macro-Agent Learning by Bayesian Inference

Elements of
Agent Learning
Process

Type Il Macro-Agent

Life to Fatigue Failure

Input Variables
from Input

Type I Micro-Agents:
Amplitude of Applied Alternating Stress, S

Note:

Agents Life to Fatigue Failure Macro-Agent is not time dependent (no
time trends exist).
Life to Fatigue Failure of Structural Part, N
Output Note:
Variable The structure of this Macro-Agent and the respective Bayesian
formulations are also shown on Figure 2-4.
1. PoF life-stress model of time to fatigue failure:
N 1
~K-Sn
where S is stress amplitude, K is proportionality constant and n
is power parameter.
2. The agent output variable N is assumed to follow lognormal
distribution with shape parameter o and median defined
according to PoF life-stress model of time to fatigue failure
Model of Agent | shown above:
Output N~LN(u, o)
Variable . .
- Past Beliefs where log-mean g is assigned as

u = log(Median) = log (K -S”)

3. Life-stress multivariate lognormal distribution of time to
fatigue failure variable N:

f(N|S,K,n, o)
1 1/log(N) + log(K) + nlog(S) 2
oNv2z 7 ‘E< o )
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Elements of
Agent Learning
Process

Type Il Macro-Agent

Life to Fatigue Failure

Parameters of

The vector of model parameters: 8 = (K, n, o)”

Priori distribution of agent output model parameters K, n, ois
given by joint probability distribution derived from
uninformative (uniform) prior distributions established based
on engineering judgment:

Agent Output
MOdel Tlo (KI n, O-) =Ty (K) Ty (n) "My (O-)
- Past Beliefs where
Ty (K) = U(Kmin' Kmax)
7o (M) = U(Msmin, Nmax)
79(0) = U(Omin) Omax)
The data are obtained from accelerated fatigue test where stress
amplitude S remains constant during the test.
New Data The test data D comprising F' complete failure observations ¢
and S right censored observations 7} are used as evidence for
Bayesian updating: D {(t,T)), i =1, ..F,j =1, ..., S}.
Model of Agent | The updated model of the agent output variable N is developed,
Output as follows:
Variable

- Updated Beliefs

1. Priori distribution of the agent output model
parameters 17, (K, n, o) is defined in “Parameters of Agent
Output Model - Past Beliefs” section of this table.

2. Thetestdata D {(t,T), i =1, ..F,j =1, ..., S} are used as an
evidence for Bayesian updating.
3. The Likelihood function of the evidence becomes:

L(DlK, n, O-) = L(tl, ey tp, Tl’ ey Tle, n, O')

F s
= nf(till(,n,a) HR(TAK,n, 0)
i=1 j=1

Reliability function in the above equation is given by:

Tj

R(Tj|S,K,n,a) =1 —f f(x|S,K,n,o)dx
0

4. Bayesian formulation for posteriori probability of the agent
output model parameters according to Bayes’ theorem:

L(D|K,n,0)my(K,n, o)
[[f L(D|K, n, 0)mo(K, n, 0)dKdndo

n(K,n,o|D) =
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Elements of
Agent Learning
Process

Type Il Macro-Agent

Life to Fatigue Failure

5. Posterior predictive distribution of Life to Fatigue Failure
agent N is an outcome of the agent learning process:

F(N,S) = f f f FNIS, K, n, 0)(K, n, 5|D) dKdndo

This function provides the new (updated) probability
distribution of the agent output variable Life to Fatigue Failure
N. The term f(N|S, K, n, o) represents a formulation of
lognormal distribution of the variable », as defined in “Model
of Agent Output Variable - Past Beliefs” section of this table.

Parameters of
Agent Output

Model
- Updated Beliefs

Bayesian formulation for the posteriori probability of the model
parameters represents the updated beliefs about the agent
output model parameters (as obtained in “Model of Agent
Output Variable - Updated Beliefs” section of this table):

L(D|K,n,0)my(K,n,0)

K,no|D) =
n(K,n,olD) [[f L(D|IK,n, 0)mo(K, n,0)dKdndo

Table 5-7: Example of Type Il Macro-Agent Learning by Bayesian Inference

Elements of

Type Il Macro-Agent

Agent Learning
Process

Life to Failure (Cumulative Damage)

Type 11 Macro-Agents:
Stress Variable, x(?)
Type I Micro-Agents:

Input Variabl . ) o . . .
fnpu ariables Operational or Test Time, ¢ (indirect input to Life to Failure agent
rom Input . .
A via Stress Variable agent x(2))
gents
Note:
Life to Failure Macro-Agent is time dependent via Stress Variable
agent x(t)
Output . .
Variable Life to Failure, L
1. The PoF life-stress model of time to failure L:
Model of Agent _ KT
Output L(x(®) =n(t,x) = [x(t)
Varlablf: where stress variable x is a function of time t, x(t), parameter K is
- Past Beliefs

proportionality constant, n is power parameter, 3 is shape
parameter and 77 is scale parameter (characteristic life) of Weibull
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Elements of
Agent Learning
Process

Type Il Macro-Agent

Life to Failure (Cumulative Damage)

time-to-failure distribution W(g, n).
2. Weibull reliability function is given by:

R(t,x) = exp :—(I(t, x))ﬁ]

where the integral /(z,x) is cumulative damage equation:
t
x(W)]"
It,x) =] |—]| d
(¢,%) f W l u
3. Weibull probability density function (pdf) is given by:

0
B B-1 B
0 (I(t, x)) exp [—(I(t, x)) ]

ft,x) =

Parameters of
Agent Output

Model
- Past Beliefs

The vector of the agent output model parameters: 8 = (K, n, S )7

Priori distribution of model parameters K, n, £ could take any form
depending on the available engineering knowledge. For example, it
could be joint probability distribution derived from uninformative
(uniform) prior distributions established based on engineering
judgment:

o (K, n, B) = mo(K) - mo(n) - 7o (B)
where
o (K) = U(Kmin' Kmax)
7o (M) = UMsmin, Mmax)

o (B) = U(Bmins Bmax)

The data are obtained from accelerated testing where stress x is a
function of test time, x(?).

New Data Test data D comprising F' complete failure observations ¢; and S
right censored observations 7 are used as evidence for Bayesian
updating: D {(t,T), i =1, ...F,j=1, ..., §}

Model of Agent | Same as “Model of Agent Output Variable - Past Beliefs”

Output

Variable

- Updated Beliefs

Parameters of
Agent Output

Model
- Updated Beliefs

The updated beliefs about parameters of the agent output model are
developed, as follows:

1. Priori distribution of model parameters 7y (K, n, f) is defined in
“Parameters of Agent Output Model - Past Beliefs” section of this
table.
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Elements of
Agent Learning
Process

Type Il Macro-Agent

Life to Failure (Cumulative Damage)

2. Thetestdata D {(t,T)), i =1, ...F,j =1, ..., §} are used as an
evidence for Bayesian updating.

3. The Likelihood function of the evidence is the following:

F S
L(DIK,n, B) = Hf(Ti' x;) H R(T}, %))
i=1 j=1

where x; = x(T;), x; = x(T}), T; 1s the exact failure time of the i-th
failure observation, 7} is the running time of the j-th suspension.

Considering the equations of reliability function and probability
density function (pdf), shown in “Model of Agent Output Variable
- Past Beliefs” section of this table, the likelithood becomes:

L(DIK,n,B) =

= ﬁ{r}(tl, l)( (tl,x)) exp[ (It xp)) ]}
X ﬁexp [— (I(Tj,xj))ﬁ]

Upon substitution of the equation of PoF life-stress model of time
to failure L(x(?)) and the integral /(z,x) (given in “Model of Agent
Output Variable - Past Beliefs” section of this table) the final
expression of the likelihood is obtained as:

L(D|K,n,B) =

T

) F Ix(T)l J[x(u)l N x(u)l \
(oo |/ (2] ‘

4. Bayesian formalism for the posterior distribution of agent output
model parameters K, n and £ can be expressed as:

L(D|K,n,B)my(K,n,B)
[[[ L(DIK,n, B)my (K, n, B)dKdndp

This posterior distribution of model parameters provides the new
(updated) beliefs about the agent output variable Life to Failure, L.

(K, n, B|D) =
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Table 5-8: Example of Type II Macro-Agent Learning by Bayesian Inference

Elements of
Agent Learning
Process

Type Il Macro-Agent

Crack Size

Input Variables
from Input
Agents

Type I Micro-Agents:
1. Applied Stresses, S:
la) Cyclic Mechanical Stress, o
1b) Frequency of the Applied Cyclic Load, v
Ic) Corrosion Current, 7,
2. Test Time (Number of Cycles of Load Application), N

Note:
Crack Size agent is time dependent via test time N.

Output
Variable

Crack Size (Crack Depth) in a Structural Part, a

Model of Agent
Output

Variable
- Past Beliefs

In the works [96] and [97], a combined probabilistic physics-
of-failure-based model for pitting and corrosion-fatigue
degradation mechanisms is proposed to estimate the reliability
of structures (such as pipes and steam generator tubes in power
plants and oil pipelines). Bayesian updating formalism,
described in [96] and [97], is shown in this table as an example
of learning method for Type II Macro-Agent representing a
degradation attribute of an item (specifically crack size of a
structural part).

1. PoF model connecting the environmental degradation factors
with accumulated damage (i.e., crack depth, a) is the following:
a(A,B;S,N) =

= A(g0182y~0228];,0.248) N1/3

+ B(g324y=0377 [p0421) N 2oxp[(4

x 10~ 1052:062,-0.024) ]
where the applied mechanical and environmental stress agents
are cyclic load frequency, v, cyclic mechanical stress, o, and
corrosion current, /,, and N is number of cycles of load
application. The model parameters, 4 and B, depend on
material properties only (i.e., they are independent of the
effects of applied mechanical and environmental stresses).
2. It is assumed that lognormal distribution represents the
variability of crack size a, where x and o are the log-mean and
log-standard deviation of the crack size distribution:

f@ =LNs)

3. Using PoF model of the crack length, the log-mean of the
crack size distribution is expressed as follows:
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Elements of Type Il Macro-Agent

Agent Learning

u(4,B;S,N) =
— Ln[AO'O'182V_0'2281p0'248N1/3
+ B0.3.24v—0.377Ip0.4-21NZexp(4
X 10—100.2.062V—0.024N)]

4. The corrosion-fatigue model is separated into pitting-
corrosion and corrosion-fatigue parts, dividing the above
equation into the following two:

,upc(A; S, N) — LTl[AO'O'182V_0'2281p0'248N1/3]
,ucf(B;S, N) — Ln[BO.3.24-V—0.377Ip0.421N2€xp(4
X 10—100.2.062v—0.024N)]

5. Substituting above two equations into lognormal distribution
model of crack size a yields the conditional lognormal
distribution functions of the crack size a given stress conditions
and cycles of load, for the pitting corrosion and the corrosion-
assisted fatigue parts:

f(apeiloivi, IpiN;) =
——enp |- gz [1n(epe)
=——  exp{———|Ln(a,,;
SpcQpe,iV 2T P 2s5¢ pet

_ Ln(Aaio'lszv-‘°'2281p°'2481vi1/3)]2}

l l
f(acsilowvi IpiN;) =
1 1
=—exp{——|Ln(a,.;
Serlors o p{ Zsczf[ ( pc,l)
—In (Bai3.24v_—0.377Iplp.421Ni2 exp (4

l

x 10—100..2.0621/.—0.0241\,'))]2}
l l 4
where s, and s, are the standard deviation of the log-normal
distribution of crack size when pitting-corrosion or corrosion-
fatigue is dominant, respectively.

Vector of the agent output model parameters: 6 (4, B, sy, Scf)_l .

Parameters of | Parameters 4, B, s, s, were initially estimated using the
Agent Output generic data produced from a benchmark model and used as
Model prior estimates of the PoF model parameters within Bayesian
- Past Beliefs updating framework (shown in “Model of Agent Output
Variable - Updated Beliefs” section of this table).
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Elements of

Type Il Macro-Agent

Agent Learning

Process Crack Size
The data D{S i» Niy Qpeis A f,i} are obtained during pitting-
corrosion and corrosion-fatigue lab testing conducted under the

New Data constant stresses. The data include number of cycles »;, applied
stresses S; (pitting-corrosion current, applied mechanical loads,
load frequency) and crack size measurements.

Model of Agent | Same as “Model of Agent Output Variable - Past Beliefs”

Output

Variable

- Updated Beliefs

Parameters of
Agent Output

Model
- Updated Beliefs

Updated beliefs about parameters of the agent output model are
developed, as follows:

1. The likelihood functions for the pitting corrosion and the
corrosion-assisted fatigue parts are:
L(apc,i Si, Ni |4, spc)
Ner

= nf(apcli|ai,vi,1pi,Ni), for 0 < N; < N,,

i=1

L(acf,i, Si! NilB, Scf)
Nf_Ntr

= 1_[ f(acsiloivi IpiN;), for New < N; < Ny
i=1
where, N;- and Nyare transition and final number of cycles in
the corrosion-fatigue experiment, respectively.

2. Test data D{Si, N;, ape i) acf,l-} are used as an evidence for
Bayesian updating.

3. Bayesian formulation for posteriori probability of the crack
size model parameters € is the following:

L(D[8)my(6)

mOIP) =177 D16Ymo (@) a6

Upon substitution of the expressions of data likelihood
functions for the pitting corrosion and the corrosion-assisted
fatigue parts into the above equation will obtain updated form
of posterior probability of crack size model parameters &
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Elements of Type Il Macro-Agent

Agent Learning

T[(HID) = T[(A,B,Spc,scflapc’i, acf‘i,Si,Ni) =

_ L(apc’i, Si' Ni |A, SpC)L(aCf,i! Si' Ni |B, Scf)T[O (G)
f L(apc’i, Si' Ni |A, SpC)L(aCf‘i, Si' Ni |B, Scf)ﬂo (Q)de

As an outcome of agent learning, this probabilistic function
provides the updated beliefs of the agent crack size a,
specifically the updated distribution of the agent output model
parameters, vector 6.

5.7. Overview of Data Fusion Methods

The ultimate goal of the agent-oriented PoF modeling of system reliability is
to evaluate the progression of the degradation processes within a system in order to
predict the long-term evolution of damage accumulation and the failure time based on
the anticipated future usage profile. The necessary data for agent learning are often
obtained from various sources. It is critical to be able to combine all independent
sources of information in order to achieve a more accurate assessment of system
reliability. Further discussion about data fusion pertains to hardware parts, but
conceptually similar approaches may also apply to software and human elements of
the system.

Data fusion methods are especially useful when data are collected during in-
field health monitoring in addition to the available data from other sources, such as
reliability testing, in-service inspection and maintenance records, published generic
data, and engineering analysis. If an automated health management system is the

source of data for agent learning, then the fusion of data and information can happen
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at different levels [98], as shown in Figure 5-4. At each level, the outcomes of the
previous levels are fused together with the objective to improve the overall

prognostics of time to failure.

Typel
Micro-Agents:
Signals A1, ..., Ai

s 2 Signal

2 ©

St Feature
w2 Extraction

Inspection
by Operator

Trending Feature

s @ . Type Il
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Engineering Analysis & Simulation
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Figure 5-4: Data Fusion Architecture for Type II Macro-Agents

At the lowest level (Level 1 on Figure 5-4), data coming from an array of
sensors or inspection by an operator can be combined to validate the signals or to
create new features. At this level, one must use signal-processing or decision making

techniques that can read the available sensor outputs and provide information about
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the quantity or quality of interest. Machine learning methods (described in Section
5.5) and trend analysis techniques (described in Section 5.4) can be utilized to
combine (fuse) the signals from multiple sensors into an output feature. The
combination of available sensors and signal processing routines is also known as a
virtual sensor (soft sensor/analytic sensor). A schematic representation of artificial
neural network as a virtual sensor is shown in Figure 5-5 [98]. A virtual sensor may
be implemented as an artificial neural network, a Kalman filter, a look-up table, a
fuzzy-logic expert system, or another similar mapping tool of machine learning or
trend analysis. In terms of agent-oriented system modeling, the lowest level of data
fusion means that output variables of multiple Type I Micro-Agents (variables
measured by each sensor or by human operator) will form another Type I Micro-
Agent or Type Il Macro-Agent (a new feature formed by fusion) which learns by
means of the chosen fusion method (from the available machine learning or trend

analysis methods described in Sections 5.4 and 5.5).

Dimensional

Measurements Fault Diagnostics
| Vibration Signals (faultlocations, degree
}\ of degradation, etc.)

| Power Spectrum Data FN Virtual Sensor >
k
| Acoustic Emission Data |—//> (Neural Network)

| Temperature Measurements }7

| Current Density Measurements

Figure 5-5: Artificial Neural Network as a Virtual Sensor
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Once feature extraction is performed on signals from the individual sensors,
the extracted features are combined to obtain better information about the item of
interest. For instance, in acoustic emission (AE) monitoring described in [99], the AE
count rate feature is calculated by first extracting the AE count feature directly from
the raw signals, and then calculating its rate of change with respect to elapsed fatigue
cycles. Another example is when a feature related to the particle count and size in a
bearing’s lubrication oil was fused with a vibration characteristic, such as kurtosis
[98]. The combined result yielded an improved confidence about the bearing’s health.
Several fusion architectures exist for processing the multi-sensor data during different
stages within Level 1 data fusion, the most common are described in [98]. An agent-
oriented model developer will choose the appropriate architecture based on the sensor
network size, amount of data collected, required accuracy, and available
computational resources.

Data fusion at Level 2 is performed by means of the Bayesian inference
described in Section 5.6 through the PoF or empirical model of failure for the item of
interest. The most complex knowledge fusion occurs at Level 3, where experience-
based information such as legacy failure rates and physics-based modeling
architectures are incorporated with signal-based data. The most common fusion
approaches are [98]:

1. Bayesian Fusion
Bayesian fusion is based on the recursive Bayesian estimation
technique for the fusion of information from multiple sources. Recursive

Bayesian estimation (Bayes filter) is a probabilistic approach for estimating an
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2.

unknown probability density function recursively over time using incoming
uncertain observations (noisy measurements) and a mathematical process
model that describes the evolution of the state variables over time. This
method is recommended for agent learning when data fusion is required, as
shown on Figure 5-4 for “Type Il Macro-Agent Damage Characteristic D”. A
detailed description of the Bayesian fusion methods and their application to
agent learning is outlined in Section 5.8.

Dempster-Shafer Fusion

The Dempster-Shafer reasoning method generalizes the Bayesian
inference to support not only a single hypothesis but also the union of
hypotheses, which could contain any possible hypotheses including a nested
hypothesis (a hypothesis that is a subset of another hypothesis), non-mutually
exclusive (overlapping) hypotheses, and an ignorance hypothesis. The
Dempster-Shafer theory of evidence and Bayesian inference produce identical
results if all the hypotheses in the study are mutually exclusive and are not
nested.

The Dempster-Shafer methodology is often used to combine the sensor
outputs where subjective judgments are present. The Dempster-Shafer fusion
approach lacks a well-established decision theory, whereas the Bayesian
decision theory maximizes the expected utility and is almost universally
accepted. The above definitions suggest that Dempster-Shafer fusion may be
used as an agent learning method in cases where the data are coming from

various sources (different sensors, inspection records), some of the available
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3.

data are subjective, and human interactions are present. Specifically, different
types of sensors may use different physical principles, cover different data
space, provide data in different formats, and the generated data can have a
different resolution and accuracy. In addition, human inspection records may
contain subjective judgments and impose the same challenges as noted above
for the sensors data. The Dempster-Shafer theory of evidence could be used as
a generalized fusion solution to overcome data context difficulties and
efficiently combine the outputs from multiple sensors and human inspection
data.
Neural-Network Fusion

A well-accepted application of artificial neural networks (ANNs) is
data and feature fusion. This method however, requires large amount of
training data, which is not expected to be available when the fusion of signal-
based data and physical model predictions is required. This type of data fusion
is not recommended as an agent learning method; however, it could be used

when applicable, to the discretion of the modeler.

5.8. Bayesian Fusion Methods

Bayesian fusion, also known as Bayes filtering or recursive Bayesian

estimation, is one of the most common data fusion methodologies. It involves the
recursive estimation of the unknown probability density function over time [98].
Recursive Bayesian estimation has two elements: a time update and a measurement

update [100]. In the context of agent learning, the time update comes from the
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understanding of previous values of the agent output variable and how they relate to
the current point in time according to the PoF or empirical model of the agent output
variable. The measurement update involves inferring information from observations
made at the current point in time. Recursive Bayesian estimation combines both
elements to improve the systemic understanding of state evolution of the associated
system element. For a comprehensive review of the concept of recursive Bayesian
estimation and the existing methodologies of Bayesian fusion, the interested reader is
referred to publications [100], [101].

Bayesian fusion is suitable as a learning method for Type I Micro-Agents or
Type 11 Macro-Agents with one or more input agents. The PoF or empirical model of
the agent output variable should be available and model parameters must be fully
defined (i.e. all model parameters are assigned with known constant values). In
addition, all input agents should be set in “inactive” status (i.e. constant values are
assigned to their output variables). The required data for agent learning include
measurements of the agent output quantity Y(7), T = {¢; , t, ..., t,}, and the input
quantities #; (i = 1, ..., n), where Y(7) is a degradation measure (e.g. crack size),
environmental or operational characteristic. Typical data sources are sensors and
monitors (usually in PHM applications). When new data set becomes available, it is
combined with the model-based prediction for the current point in time to update past
estimates of the Bayesian fusion model parameters obtained during the previous
learning cycle. Several examples of agent learning via Bayesian fusion are provided

in Sections 5.8.1 and 5.8.2.
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5.8.1. Discrete-Time Kalman Filter

A discrete-time Kalman filter (KF) can be used if discrete measurements are
taken, whether they come from a discrete or a continuous system. A continuous-time
Kalman filter is used when the measurements are continuous functions of time. This
section describes the applications of the discrete-time Kalman filter as a learning
method, considering that only discrete data are used for agent learning.

Discrete-time Kalman filter generates closed formed recursive solutions as it
makes three simplifying assumptions [100]. The first assumption is that both the state
transition function and the observation function are linear. The second is that each
state variable is normally distributed. The third is that the ‘noise’ factors are normally
distributed. In order to use the discrete-time Kalman filter as a method of agent
learning, the following must be defined for the respective Type I Micro-Agent or
Type Il Macro-Agent:

1. The state variable to be estimated — this is the agent output variable.

2. A state transition function that defines the evolution of state variables over
time — this is the PoF or empirical model of the agent output variable.

3. An observation function that defines how various observations over time
(data) are related to the state variables — this is the reasoning algorithm (causal
relationship) used to correlate the measured quantity (e.g. precursor values)
with the agent output variable.

4. The noise (uncertainty) in both the process model and the observation model —

this is assumed model error.
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An example of Type II Macro-Agent learning by the discrete-time Kalman

filter is given in Table 5-9.

Table 5-9: Example of Type II Macro-Agent Learning by Kalman Filter

Elements of
Agent Learning
Process

Type II Macro-Agent

Roller Damage due to Wear (Wear Depth)

Type I Micro-Agents:

1. Accumulated number of passes, p

2. Material shear yield point, 7,

3. Stress concentration factor, k.

4. Roller load (due to weight of the supported structure), W
5. Roller diameter, d

6. Width of the contact surface of the roller, w

7. Friction coefficient, f

Input Variables | Type Il Macro-Agents:

from Input 1. Wear rate, D

Agents 2. Maximum shear stress in the vicinity of the surface, 7.,
3. Normal stress on the surface, o,
4. Friction generated shear stress, 7
Notes:
1. Wear Depth agent is time dependent via Accumulated
Number of Passes Agent, p
2. All input agents have “Inactive” status (i.e. constant values
are assigned to their output variables).

Output

Variable Roller Wear Depth, D
1. The PoF model of roller wear depth is defined as

D=D-p

where wear rate D is considered to be a constant value
calculated as

Model of Agent k

Output D =R IT’"“"]

Variable Typ

- Past Beliefs

where B and k are model parameters, and the other terms are:

Tmax = ke\/(%)z + (Tf)z
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Elements of
Agent Learning
Process

Type II Macro-Agent

Roller Damage due to Wear (Wear Depth)

_ w
= dw
Tf:f'o-n

2. The roller wear depth D is considered a system state variable.
According to the Kalman filter assumptions, the state variable
D 1s Gaussian, specified by its first and second moments:

Dy ~Normal(5k, Pk)

where D, and Py denote the first and second moments of the
wear depth distribution (i.e., posterior mean and posterior
covariance) at time step k.

3. A general form of process model equations is:
QE = Aﬁk—l + Buk

Py = AP,_,AT +Q

where

X 1s the mean of the prior estimate of x;, which is solely based
on the process model of the state defined by system dynamics,
before updating with observation y,

Xr_1 1s the mean of the posterior state density at time k—1 after
it has been updated with observation yk-1,

Py, 1s prior estimate of covariance matrix of the state density at
time k, solely based on the process model defined by system
dynamics and before updating with observation yx,

Py, _4 1s covariance matrix of the posterior state density at time
k—1 after it has been updated with observation yy i,

A is state transition matrix, B is the matrix mapping external
inputs to system state variables xk, Q is a process error.

These equations are written for roller wear depth according to
PoF model defined in step 1 above:

where = 1, B = D, variables vector represents the number
of passes p;, accumulated since step k-7, Q is a process error (a
scalar).

These equations establish the 1% step of Bayesian fusion via
Kalman filter, Model Based Prediction (Time Update).

4. General form of Kalman filter equations for the posterior
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Elements of
Agent Learning
Process

Type II Macro-Agent

Roller Damage due to Wear (Wear Depth)

mean X and the posterior covariance Pj of the state variable x;:
Xy = X + K (yr — HXg)

P, = (1 — Ky H)Pyg
K, = PzHT(HPzHT + R)™!

where H is the measurement matrix (i.e., the matrix mapping
the observable evidence yy to system state xx), Ki is Kalman
Gain and R is a measurement error.

These equations take the following form for roller wear depth
variable:

Ky = Pg(Pz + R)™

where R is a measurement error (a scalar), yy is roller wear
measurement at time step k. It is assumed that the measurement
Vi 1s the exact same scale as system state estimate x, i.e. H = 1.

These equations establish the 2™ step of Bayesian Fusion via
Kalman filter, Data Driven Correction (Measurement Update).

5. The initial conditions for the system state variable (roller
wear depth) X, and P are assigned with zero mean and high
variance as it is completely unknown. Initialization with more
meaningful starting values results in faster convergence.

For example, wear rate of the roller material is 1x10® um?/km.
Roller size is: 30 mm outside diameter, length 30 mm. Roller
pass is 50 cm. Wear rate D becomes 7.1E-5 um/pass. Initial
conditions prior to test start (at p, = 0) are assigned as:

Dy, = 0 um
Py, = 1E — 6 um?

Parameters of
Agent OQutput

Model
- Past Beliefs

1. State transition parameter, 4: A = 1

2. External inputs to system state conversion parameter, B:
B =D =7.1E — 5 um/pass

3. Measurement to state variable conversion parameter, H:
H=1

4. Process error, Q: Q = 1E — 12 uym?

5. Measurement error, R: R = 1E — 8 um?
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Elements of

Type II Macro-Agent

Agent Learning

Process Roller Damage due to Wear (Wear Depth)
New Data Thei new measurement of roller wear depth y; is obtained
(15t Data Set) during the test after p; roller passes.

Model of Agent | The 1* update uses the following equations below:
Output | Time Undate:

Variable - {ime Update:

- Updated Beliefs D-=D.+D -

1st Update ! 0 P1

Pi1=Py+Q
2. Measurement Update:
E1 = BT + K1(3’1 - BT)
Py =(1-K)Pg
Ky = Pt(P; + R)™!

Parameters of
Agent Output

Model
- Updated Beliefs
1st Update

Same as “Parameters of Agent Output Model — Past Beliefs”

New Evidence

New measurement of roller wear depth y, is obtained during the

(2md Data Set) test after p; roller passes. Total number of passes since test start
isp =p; +p,.

Model of Agent | The 2™ update uses the following equations below:

Output | Time Undate:

Variable - ime Update:

- Updated Beliefs, Ds=D + D .

2nd Update 2 ! Pz

Pz =P +Q
2. Measurement Update:
ﬁz = EE + KZ(yZ - 57)
P, = (1-K;)P3
K, = P3(Pz + R)™ !

Parameters of
Agent OQutput
Model

- Updated Beliefs,
2nd Update

Same as “Parameters of Agent Output Model — Updated Beliefs
Ist Update”
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5.8.2. Discrete-Time Extended Kalman Filter

If the first of the three limiting assumptions of the discrete-time Kalman filter
formulation, discussed in Section 5.8.1, does not hold (i.e. the state transition and
observation models are not linear functions of the state variable), the discrete-time
extended Kalman filter (EKF) is used as the nonlinear version of the discrete-time
Kalman filter [101]. Discrete-time EKF utilizes the first-order Taylor series
approximation (around its current state) instead of the linear transition and
observation functions.

An example of Type Il Macro-Agent learning by means of the discrete-time
EKF is given in Table 5-10. This example is based on the fatigue crack propagation
study described in [99]. The two agents, crack growth rate and crack size, are learning

simultaneously via Bayesian fusion by discrete-time EKF.

Table 5-10: Example of Type Il Macro-Agent Learning by Extended Kalman Filter

LB s i Type II Macro-Agent

Agent Learning . :

Process Fatigue Crack Size
Crack Growth Rate

Type I Micro-Agents:
Loading cycles elapsed since previous time step k, ANy

Type II Macro-Agents:
Input Variables | Stress intensity factor range at time step k, AK)
from Input

Agents Notes:

1. Crack Size agent and Crack Growth Rate agent are time
dependent via Elapsed Loading Cycles Agent ANy.

2. All input agents have “Inactive” status (i.e. constant values
are assigned to their output variables).

Output Size of Fatigue Crack in Metallic Structure, a
Variable Crack Growth Rate, a
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Elements of

Type II Macro-Agent

Agent Learning
Process Fatigue Crack Size
Crack Growth Rate
1. The PoF model of crack growth is defined as
a= Z Aay,
K
Aak = dk—lANk
N = 2 ANk
K

where a is crack size at accumulated load cycles N, Aay is the

amount of crack extension at time step kK (k=1, 2, ...), AN is

the number of elapsed loading cycles since time step &1/, and

ajy_q 1s crack growth rate at time step 1.

Paris equation is used to relate the crack growth rate dx to the

stress intensity factor range AKy at every time step 4:

dk = C(AKk)m

where 4K} is stress intensity range at time step &, C and m are
Model of Agent const.a.nts that depend on mater'lal properties and a s§t of test
Output conditions, such as loading ratio, frequency and environment.
Variable The stress intensity factor range at every time step k, AKk, is
- Past Beliefs defined as a function of the geometry of the structure, applied

loading cycle and the crack size ak. For example, AKj for a
standard specimen (per ASTM E647-08 2008) is defined as
follows:

_ APk (2 + afk)
BYW (1 — a;)3/2
+ 14.72a;,2 — 5.6, %)

AK;,

(0.886 + 4.64a;, — 13.32a;.2

where ax is the dimensionless crack size ax/W, B and W are
the thickness and the width of the specimen, respectively, and
APy is the amplitude range of applied load at time step k.

2. According to the EKF process model equation, the matrix of
system state variables is specified in general form as:

xp = f (Xg—1, Uk, W)
where xy is the vector of system state variables at time step £,

Xk-1 1s the vector of system state variables at time step i1,
uy 1s a vector that contains all external inputs, wy is the ‘noise’
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Elements of
Agent Learning
Process

Type II Macro-Agent

Fatigue Crack Size
Crack Growth Rate

vector that is normally distributed with zero mean and
covariance Oy: wy ~ Normal (0, O), where Oy is process
variance matrix (i.e., process model error).

Crack size a; and crack growth rate a; are considered system

state variables:
Ay
Xie = (ak)

External input u is used to map the time steps of the state-
space model to the elapsed loading cycles, ANk, and stress
intensity factor range at time step k, AKx. The process error is
defined as:

Wi~ (Ol Qk)
where Qy is a 2x2 covariance matrix Q at time step £.

Considering PoF model described in step 1 above, the system
state function is defined as follows:

(0578 + dk_ ANk
f(xk—ll U, Wk) = ( E(AKk)in ) + Wi

where AK is a function of the crack size ax at time step k,
ap = Ak_q + C'Lk_lANk.

Crack growth process model equation becomes:

(flk) _ (ak—l + ak—lANk) tw
Ay C(AK )™ k

3. According to the EKF observation model equation, the
vector of observable evidence is defined as

Vi = h(x, vi)
where yy is a vector of the observable evidence, vy is the ‘noise’
vector that is normally distributed with zero mean and
covariance Ry: vy ~Normal (0, Ry), where Ry is measurement
variance matrix (i.e., measurement error).

An observation vector y; includes two types of observations at
time step k: the observation of crack size and the observation of
crack growth rate. An observation vector is defined assuming a
linear form for the observation function h(*):
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Elements of
Agent Learning
Process

Type II Macro-Agent

Fatigue Crack Size
Crack Growth Rate

7= (o 1) a) o

The measurement error vy, is defined as
Vg~ (O! Rk)
where Ry is a 2x2 covariance matrix R at time step k.

4. If there are times when only crack growth rate observation is
available, but not crack size measurement, a rule could be
programmed onto the agent’s internal knowledge (specifically
into special rules of agent behavior) to change an observation
vector to the following when only one observation is available:

ye =0 D () +v

where covariance matrix R becomes a scalar representing
variance of the observation noise.

5. Initial conditions for the system state variables (crack size
and crack growth rate) X, and Py are assigned based on the
known distribution of initial crack size, ay~N (dy, P,), as

follows:
o~ (ao>
Xo = ao

ao = C(A/I\('())m

where

and AK|, is evaluated for crack size a.

Parameters of

1. Process error matrix time step &, Ok
2. Measurement error matrix time step &, Ry

Agent Output . .
M%) del P 3. Constants C and m (obtained from fatigue tests performed on
- Past Beliefs stapdard components with similar material and in the same
testing condition)
The new measurement of the crack size, a;, and the
corresponding measurement of the crack growth rate, a,,are
New Data obtained during the test after AN; roller passes:

7= (a)
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Elements of

Type II Macro-Agent

Agent Learnin
Pfocess s Fatigue Crack Size
Crack Growth Rate
Model of Agent 1. The 1* step of Bayesian fusion via the EKF is Model Based
Out_put Prediction (Time Update):
Variable

- Updated Beliefs

5(\_ _ (a&) _ ﬁk_l + ak_lANk

Py = ApPye_1 A} + W, QW)
where

Ay and W, are the partial derivative matrices:

d
Ak = —f
0x Rh-1
_9f
k= ow Rhe—1

X7 1s the mean of the prior estimate of x;, which is solely based
on the process model of the state defined by system dynamics,
before updating with observation y,

X _1 1s the mean of the posterior state density at time k—1/ after
it has been updated with observation yx.1,

Py, 1s prior estimate of covariance matrix of the state density at
time k, solely based on the process model defined by system
dynamics and before updating with observation yx,

P;,_1 is covariance matrix of the posterior state density at time
k—1 after it has been updated with observation yy_i,

AK7, is evaluated for the crack size dg, where ai = a4 +
Qg —1ANg.

For the first update, using initial conditions, the above
equations take a form:

L (ai) _ (8o + apAN,
e aT B C(A/Rj)m
P1 = A1P0AI + W1Q1W1T

2. The 2™ step of Bayesian fusion via the EKF, Data Driven
Correction (Measurement Update), is performed to obtain the
posterior mean X, and the posterior covariance Py of the state

. Ak
variable x;, = ( Q ):
K
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Elements of
Agent Learning
Process

Type II Macro-Agent

Fatigue Crack Size
Crack Growth Rate

Xx = Xz + Ky [yx — h(%%,0)]
o o (1 0)(Gr
h(3 0) = (0 1) (ak)
b = (1 —Kka)Pk
Ky = PyHy (HiPRHy, + MR M) ™"

where yy is the vector of crack size and crack growth rate

measurements at time step k, K is Kalman Gain, H; and M; are

the partial derivative matrices:

. _oh
k_ax,'gk
_on
k_anE

For the first update using the new data, the above equations
take a form:

=Xt K [3’1 — h(%1,0)]

P = (1 - K1H1)PT
Ky = PyH{ (H;PiH{ + M;R;M{)™!

where
7=(a,)

() ()

Parameters of
Agent OQutput
Model

- Updated Beliefs

Same as “Parameters of Agent Output Model — Past Beliefs”
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5.8.3. Other Nonlinear Approaches

More refined linearization techniques than discrete-time EKF (Section 5.8.2)
can be used to reduce the linearization error in the discrete-time EKF for highly
nonlinear systems. They include iterated EKF (IEKF) and second-order discrete-time
EKF (SOEKF) [101], both recommended as agent learning methods.

Other approaches also exist to handle nonlinear systems. These techniques
typically provide better estimation performance for highly nonlinear systems, but do
so at the price of higher complexity and significant computational effort. The most
common methods of nonlinear filtering are Gaussian sum filters, grid filters and
unscented Kalman filter (UKF) [101]. Another method, called the particle filter, is a
simulation-based estimation technique that models the probability density function of
state variables using a set of discrete points called particles. No assumptions (such as
linearity or normally distributed uncertainty) need to be made. One approach that has
been proposed for improving particle filtering is to combine it with another filter such
as the EKF or the UKF. Due to the high computational intensity, the combined
approaches may not be practical for the agent learning application, at least until
further advancements in computational sciences occur.

For a system that is nonlinear and/or has non-Gaussian noise, the non-linear
Kalman filters can be used for state estimation, although the particle filter may give
more accurate estimates at the price of higher computational expense. The unscented
Kalman filter provides a good balance between the moderate computational effort of

the non-linear Kalman filters and the high performance of the particle filter.
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5.9. Summary of Learning Methods for Type I and Type II Agents

This chapter introduced the learning methods of Type I Micro-Agents and
Type I Macro-Agents, specifically those methods which are used to define the model
of the agent output variable, if the model is not available, and update the parameters
of the identified or already known model. The guidelines for applicability of these
learning methods are summarized in Table 5-11. This summary suggests that
Bayesian methods of agent learning (Bayesian inference and Bayesian fusion) are
superior to other methods because of their ability to incorporate physics-of-failure
into the agent representation model as well as to recursively update the existing
estimates of model parameters with new information from various sources. This
recursive (sequential) update of agent’s beliefs using all available data maximizes the
system reliability knowledge and minimizes computation time. The ability to
incorporate physics-of-failure into agent modeling was highlighted in the previous
chapters as a key aspect of agent structure and evolution. Bayesian inference and
Bayesian fusion, therefore, are considered the primary methods of agent learning
within the scope of intelligent agent autonomy.

Bayesian fusion is the most comprehensive method of agent learning in
situations when incoming uncertain observations from in-field health monitoring or
life testing are available in addition to a mathematical model that describes the
evolution of the variables over time. Where two or more learning methods are
applicable for an agent, Bayesian methods of agent learning (i.e. Bayesian inference

or Bayesian fusion) should be preferred due to the efficient data updating scheme.
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It is known, however, that the physical model of failure may not be available
for some agents due to the lack of engineering knowledge, complexity of failure
process, or a nature of some random variables external to the system under study
(such as environmental factors, for instance). Empirical models of the agent output
variable can be used within the agent learning scheme in lieu of the PoF relationship.
If there is no model available for the agent output variable, several learning methods
may apply, such as parametric distribution analysis (classical), time series and trend
analysis methods, machine learning and pattern recognition methods, or Bayesian

inference.
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Table 5-11: Learning Method Selection Criteria for Type I and Type II Agents

Agent Agent Output Time Data
Learning Type of Agent Model (PoF or Dependency of Required Data Types A.ggf'egatlon Examples
Output Variable . Agent Output within Agent
Method Empirical) . c
Variable Learning Process
P:.lrar.netr.ic Independent Model is not Not time Direct measurements of New evidence is | Probability
DlSt“b_“tmn Output Variable Y, | available dependent (no the quantity Y, such as combined with all | distributions:
Anal;isns continuous or time trends in environmental or past observations | _ Normal
(classical) discrete output Y exist) operational characteristic, | into one data set
. . . - - Lognormal
time to failure or time to for re-estimation i
success, other of parametric - Weibull
independent variable. distribution
Typical data sources: parameters
inspection, maintenance
records, generic data.
Model- Output Variable Model is Not time Direct measurements of | New evidence is | Cumulative
based ) Y(t), continuous, is | available, the | dependent (no the quantity Y(#) and input | combined with all | Damage models:
Parametric | ; function of Input | model is time trends in quantities #; (i = I n), | pastobservations | _ Eyring-Weibull
Distribution i (i = ilisti i L T
Analveis Variables ¢; (i = 1, probablhstlc, output Y(z) exist) | where ¥(#) is time to into one (.1ata set | _ IPL-Exponential
ysis ..., n), none of linear or failure or time to success. | for re-estimation .
(Cumulative | which is time nonlinear Tvpical data sources: of model-based - Arrhenius-
Damage) variable | ypieal . : parametric Lognormal
Inspection, maintenance e
distribution
records.
parameters
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Agent Agent Output Ui Data
Learning Type of Agent Model (PoF or Dependency of Required Data Types A.ggl.‘egatlon Examples
Output Variable . . Agent Output within Agent
Method Empirical) A .
Variable Learning Process
Time Series | _ [ndependent Model is not - Time dependent | Direct measurements of New evidence is | Time Series and

and Trend Output Variable Y, | available (time trends in the quantity Y(?) and input | combined with all | Trend Analysis
Analysis for | continuous or Y(?) exist), quantities #; (i = I, ..., n), | past observations | methods:
Degradation | discrete monotonic or where Y(?) is degradation | into one data set | _ Regression
and other - Output Variable non-monotonic, | measurement (e.g. crack | for re-estimation Si dal
Trend Y(t), continuous or slow change over | size), environmental or of time seriesand | > Ot a.
Modeling disc,rete, isa time operational characteristic, | trend equation - Exponential
function of Input - Not time other variable. parameters - Logarithmic
Variables, ¢; (i = 1, dependent (no Typical data sources: - Decomposition
..., 1), one of time trends in inspection, maintenance
which could be Y(?) exist) records, sensors,
time variable monitors.
Machi.ne - Independent Model is not - Time dependent | Direct measurements of | New data are Machine Learning
Learning Output Variable Y, | available (time trends in the quantity Y(#) and input | combined with all | methods:
and Pat.te.rn cgntinuous or Y(1) exist), quantities ; (i = I, ..., n), | Pastdataintoone | _particle Filter
gleect(l)lgolzllstwn discrete | monotonic or where Y(1) is degradation datg set for re- _ Artificial Neural
. - Output Variable non-monotonic, | measurement (e.g. crack | estimation of Networks
](Bexclung Y(t), continuous or s}ow change over size), environmental or machine learning G )
F:Z’iisrian discrete, is a time ' operational characteristic, or pattg:_n del i)roilé:lan
methods) fun(ftlon of Input - Not time other variable. recognition mode Regression
Variables, ¢, (i = 1, dependent (no parameters

..., n), one of
which could be
time variable

time trends in
Y(1) exist)

Typical data sources:
sensors, monitors (PHM
applications).
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Agent Agent Output Time Data A
Learning s Agent Model (PoF or LGOS Required Data Types A.ggl.‘egatlon Examples
Method Output Variable D) Agent Qutput w1th.1n Agent
Variable Learning Process

Bayesian - Independent - Model isnot | - Time dependent | Direct measurements of New data are used | Applied to:

Inference Output Variable Y, | available (time trends in the quantity Y(?) and input | to update the - Parametric
continuous or - Model is Y(1) exist), quantities #; (i = 1, ..., n), | existing estimates | Distributions
discrete available, the | monotonic or where Y(?) is degradation | of model _ Model-based
- Output Variable | model is non-monotonic, | measurement (e.g. crack | parameters Parametric
Y(t,), continuous probabilistic, slow or rapid size), time to failure or obtained in the Distributions
or discrete, is a linear or change over time tirne; to success, past ysing (Cumulative
function of Input | nonlinear - Not time environmental or previously

Variables, ¢; (i = 1,
..., ), one of
which could be
time variable

dependent (no
time trends in
Y(?) exist)

operational characteristic,
other variable.

Typical data sources:
inspection, maintenance
records, sensors,
monitors, expert opinion,
generic data.

available data

Damage models)

- Time Series and
Trend models

- Machine
Learning models
(e.g. Gaussian
Process
Regression)
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Data

Time c
Agent Agent Output Aggregation
Learning Type of Agent Model (PoF Dependency of Required Data Types within Agent Examples
Output Variable A Agent Output .
Method or Empirical) Variable Learning
Process
Bayesian Output Variable Model is - Time dependent | Direct measurements of | Model based Fusion methods
Fusion Y(t;), continuous available, the | (time trends in the quantity Y(#) and input | prediction and (discrete time):
or discrete, is a model is Y(¥) exist), quantities #; (i = /, ..., n), | new data are - Kalman Filter
function of Input | probabilistic or | monotonic or where Y(?) is degradation | combined to (KF)
Variables, ¢; (i = 1, dpterrmmstw, non-monotonic, | Measurement (e.g. crack recurswely update | Extended
..., n), one of linear or slow chanee over | Size), environmental or current estimates .
. . g . o ) Kalman Filter
which could be nonlinear time operational characteristic, | of Bayesian (EKF)
time variable : other dependent variable. | fusion model
- Not time . arameters - Unscented
dependent (no Typical data sources: parameter Kal Fil
: : i btained in the aman Eilter
time trends in sensors, monitors (PHM | © _ (UKF)
Y(1) exist) applications). past using
previously - Iterated EKF
available data and | (IEKF)
model based - Second-Order
prediction EKF (SOEKF)

- Gaussian Sum
Filters

- Grid Filters
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Chapter 6: Learning Property of Type III Agents

Type III Monitoring Agents learn and update their status by aggregating
information from the input agents (Type Il Macro-Agents and other Type III
Monitoring Agents) according to the failure logic of the system elements they
represent. The failure logic of an item represented by the Type III Monitoring Agent
(hardware part, component or the entire system) could be given by:

1. A fault tree or an event tree [3]

2. Bayesian belief network (BBN) [4], [5]

3. Any mathematical expression f{X 6) representing the Type III agent output
variable Y(X;) as a function of n input variables provided by the input agents,

X; (i=1, ..., n), with deterministically or probabilistically defined vector of

model parameters 8 ={fy, [, ..., B/}

Y(X,)=r(x..0)
Equation 6-1

The learning process of Type III Monitoring Agents with deterministic model
of the agent output variable, a function f(-), involves: 1) updating the functional form
of f(*) using data, if applicable, and 2) updating the probability distribution of the
agent output variable, ¥, by means of simulation over the (updated) model of the
agent output variable given the probability distributions of the input variables, X; (i =
1, ..., n), according to the latest beliefs of the respective input agents.

The learning process of Type III Monitoring Agents with probabilistic model

of the agent output variable, a function f(-), involves: 1) updating the functional form
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of f(*) using data, if applicable, 2) updating the agent output model parameters,
0={Po, bi..., B}, using data, and 3) updating the probability distribution of the agent
output variable, ¥, by means of simulation over the updated model of the agent
output variable given the probability distributions of the input variables, X; (i = 1, ...,
n), according to the latest beliefs of the respective input agents.

In many cases the output variable of the Type III Monitoring Agent is given
by a deterministic function of the input variables, i.e. the agent output model
parameters are fully defined constant values which do not get updated during agent
learning. In such cases there is no uncertainty associated with the failure logic
equation that is developed strictly based on the rules of probability according to the
definition of the item failure within the given application. The failure logic of an item
represented by the Type III Monitoring Agent, however, may change over time (e.g.
the probabilistic equation P(A) = P(B) x P(C) could change to P(A) = P(B) x P(C) x
P(D), where P(A) stands for probability of the event A, and so on). The functional
form of the deterministic model of the agent output variable would change over time
if the change criteria are programmed onto the agent’s internal knowledge
(specifically, into the special rules of agent behavior).

In some cases the output variable of the Type III Monitoring Agent is given
by probabilistic function of the input variables, which implies that the failure logic of
an item or the contribution of some input events probability into the output event
probability is uncertain. In such cases data are used to update the uncertain

parameters of the model of Type III Monitoring Agent output variable.
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Examples of the learning process of Type III Monitoring Agents with
deterministic model of the agent output variable by means of fault tree and BBN are

given in Table 6-1 and Table 6-2, respectively.

Table 6-1: Example of Type III Monitoring Agent Learning via Fault Tree Logic

Elements of Type III Monitoring Agent
Agent Learning
Process Functionality of Airspeed Indication Equipment

Type II Macro-Agents:
- Three Failure Mechanisms of Pitot Tube, PT;, i = 1, 2, 3

Input Variables | _ Two Failure Mechanisms of Static Circuits, SC;, j = 1, 2
from Input
Agents Failure Mechanism probabilities f{PT}), i = 1, 2, 3, and f(SC)), j

= [, 2, are given by probability distributions representing
output variables of the respective Type Il Macro Agents.

Output Loss of Functionality of Airspeed Indication Equipment, A4S/
Variable

Probability of Airspeed Indication Equipment failure (loss of
functionality), P(ASI), is modeled by the Fault Tree:
Loss of Functionality of

Airspeed Indication
Equipment

Model of Agent . A

Output
Variable

- Past Beliefs @ @ @ @ @

Probability f(AS]), is expressed through the probabilities of ASI

Failure Mechanisms according to the Fault Tree logic, as
follows:

f(ASI) = f(SC1) 'f(SCZ) +f(PT1) +f(PT2) +f(PT3)

Probability distribution f(4S]) is obtained from probability
distributions probabilities f(PT;), i = 1, 2, 3, and f(SC)), j = 1, 2,
via simulation.
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Elements of

Type III Monitoring Agent

Agent Learning

Process Functionality of Airspeed Indication Equipment

Parameters of | All model parameters are equal one (unity).

Agent Output

Model

- Past Beliefs
No data are used to update agent output model parameters.
New information, however, may become available to update
the Fault Tree structure according to the criteria defined in the
Special Rules of agent behavior (such as design changes or
other reasons). For example, consider the following new
structure:

Loss of Functionality of
Airspee(.i Indication
New Data Fadlpment
l(\)/lotdeltof Agent Probability f(ASI) is updated to the following:
utpu
Variable fASI) = f(SCy) - f(SC3) + f(PTy) - f(PT;) + f(PT) -

- Updated Beliefs

f(PT3)+f(PT1)'f(PT3)

Probability distribution f(A4S]) is obtained from probability
distributions probabilities f(PT;), i = 1, 2, 3, and f(SC)), j = 1, 2,
via simulation.

Parameters of
Agent Output

Model
- Updated Beliefs

All model parameters are equal one (unity).
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Table 6-2: Example of Type III Monitoring Agent Learning via Bayesian Belief Network

Elements of
Agent Learning
Process

Type III Monitoring Agent

Pilot Error

Input Variables
from Input
Agents

Type I Micro-Agents:
- Flight Experience, FE (binary state: Sufficient, Low)

Type Il Macro-Agents:
- Weather Conditions, WC (binary state: Normal, Severe)

Type III Monitoring Agents:
- Functionality of Airspeed Indication Equipment, AE (binary
state: Normal, Partial Loss of Function)

Binary states are assumed for all nodes:

FE = {Sufficient,Low} = {fe, fe}
WC = {Normal, Severe} = {wc,wc}
AE = {Normal, Partial Loss of Function} = {ae, ae}
F = {Aircraft In Control, Aerodynamic Stall} = {f,f}

Probability distributions of the input variables FE, WC and AE:

P(fe) = pfe'P(f_G) =1-—Dpre

P(wc) = pye, P(WC) = 1 — pyye

P(ae) = pge, P(ae) = 1 — pge
Probability py is known fixed value (the output of Type I Micro
Agent Flight Experience).
Probability p,. is a distribution obtained based on physical
model and weather data for the flight region (the output of Type
IT Macro Agent Regional Weather).
Probability p,. is a distribution obtained by simulation via Fault
Tree logic of functional failure condition for the Airspeed

Indication Equipment (the output of Type III Equipment
Monitoring Agent described in Table 6-1).

Output Pilot Error resulting in Aerodynamic Stall, F' (binary state:

Variable Aircraft in Control, Failure to Avoid Aerodynamic Stall)
Probability of Pilot Error is modeled by the following BBN:

Model of Agent

Output @ @ @

Variable

- Past Beliefs
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Elements of
Agent Learning
Process

Type III Monitoring Agent

Pilot Error

Probability distribution of the output variable F, P(F), is
defined by the unconditional probability of /' computed as a
sum of conditional probabilities of the states of F' given the
states of the input variables FE, WC and AE:

Node | Node | Node Probability of _ _
FE | WC | AE Combination, p; Pe(E=p; | PuctE=);
fe wc ae P1 = PrePwcPae " Py =pn
fe wc ae P2 = pfepwc(l - pae) ) P, =p;my
fe wc ae P3 = pfe(l - pwc)pae T3 Py = p3r3

_ Py = Pre(1 —

fe wc ae T Py =pymy
pwc)(l - pae)

fe | we | ae | ps= (1~ DPse)PwcPac s Ps = ps7s

_ =(1-

fe wc ae e = Ts Ps = pe7s

pfe)pwc(l - pae)
_ =(1- 1-
fe wc ae pr=( pfe)( 7 P; =psry
Pwc)Pae

_ =(1- 1-

fe | we | ae P = (1= pre)( Tg Pg = pgrg
pwc)(l - pae)

where r,=Pc(F=f); is conditional probability of F' being in state
f given the i-th combination of the states of three input
variables, and P;=Puc(F=f); is the respective unconditional
probability. The resulting probability of the agent output
variable F being in state f'is defined by the following sum:

P(F=f) ZES:Pi =28:Pi7‘i
i=1 i1

Note, that conditional probabilities 7; do not sum up to unity in

general case:
8

Zri?‘:l

i=1

Parameters of
Agent OQutput

Model
- Past Beliefs

The model parameters are conditional probabilities of /' being
in state f given the i-th combination of the states of the input
variables: 8 = ({r;}, i=1,..., 8). These conditional probabilities
are known constant values.
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Elements of

Type III Monitoring Agent

Agent Learning

Process Pilot Error
No data are used to update agent output model parameters.
New information, however, may become available about the
degree of influence of various states of the input variables FE,
WC and AE on the states of the output variable F. This

New Data information would be used to update the values of conditional
probabilities of F being in state /' given i-th combination of the
states of the input variables, r;, according to the criteria defined
in the Special Rules of agent behavior (such as design changes,
different mission profile, or other reasons).

Model of Agent | Same as “Model of Agent Output Variable - Past Beliefs”

Output

Variable

- Updated Beliefs

Parameters of
Agent Output

Model
- Updated Beliefs

New information are utilized to obtain updated values of
conditional probabilities of F' being in state f given i-th
combination of the states of the input variables, 7;.

The new values of r;, i=1,..., 8, are used as agent output model
parameters instead of the past values.

Figure 6-1 provides an example of agent autonomy in order to demonstrate the

difference in the learning property of the three types of agents:

- Type I Micro-Agent cyclic load has an independent output variable, mechanical

load amplitude, defined probabilistically as a lognormal probability distribution

LN(p,0). As a new set of field data (for use load amplitude) becomes available,

parameters of probability distribution of the mechanical load amplitude are

updated through Bayesian formalism. This update is the only step of the learning

process for the mechanical load amplitude agent that has no inputs from other

agents.

- Type Il Macro-Agent has the output variable, fatigue life of structural component,

as a function of the mechanical load amplitude. This agent’s 1% step of learning is
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updating the parameters of the PoF model of fatigue life to failure (Equation 3-2
in Section 3.2.2) by Bayesian inference using the available test data. This Type II
Macro-Agent has Type I Micro-Agent cyclic stress (mechanical load amplitude)
as an input agent. In the 2™ step of learning, the probability distribution of fatigue
life to failure is obtained by simulation over the PoF model with the updated
parameters and using the latest (updated) probability distribution of the
mechanical load amplitude.

The Type III Monitoring Agent has the output variable, remaining life to failure
(called remaining useful life, or RUL), quantified by simulation according to the
RUL equation (as life to failure less total accumulated load cycles, N) based on

the input from the Type II Macro-Agent fatigue life.
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Type | Micro-Agent:
Load Amplitude

Life Cycles to Failure

Type Il Macro-Agent:

- Load values were recorded during L (Time-to-Failure Data | 9)
the test for each system at

accumulated cycles N

Prior Distribution of
I Internal Parameters f;(0)

6={An} A

L(D4T4]0) £,(8)

1(0)= f(f’IDA“):W

_________________________'I|________I
I Distribution of Load Statistical Model of Load Data - Tvpe lll Monitoring Agent:
I Amplitude: AS=LN (p,0) /7| T | Expected Probability I IRVP et |?_'f g I
istri i emaining uUsertul Lite
|FieldUse Load Data |—\> Likelihood I I _________________ I
| L (Load Data | 0) I: R i :I
g et q 1Imuiation over the
I Prior Distributionof | L _______ (as) = J’ (8510) (01Data)d I 1
Internal Parameters f(0) | . ; I I
[[8=twot H—— |
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Figure 6-1: Agent Learning Demonstration Example
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Chapter 7: Autonomy Property of Agents

The ability of intelligent agents to activate and deactivate themselves during
system evolution is what makes an agent autonomous. Autonomy means that an agent
is not only capable to act without supervision by recursive learning, but also has a
degree of control over its participation in system evolution, specifically by changing
its status between “active” and “inactive”. An agent’s ability to activate and
deactivate itself is achieved by means of uncertainty importance analysis performed

upon the agent output variable after each learning cycle.

7.1. Uncertainty Importance Measures for Autonomy Execution

Uncertainty importance measures are intended to identify the contribution of
the uncertainty of input variables to that of the output response [102]. Based on the
rankings of the input variables, one can give more priority to the variables with high
importance, and neglect the variables with low importance, depending on the
objective of the study. Uncertainty importance measures have been extensively
introduced by sensitivity analysis [103] - [105].

By general definition, model sensitivity analysis determines the impact that
changes in model inputs have on the model outputs. Model inputs include primarily
model variables, but could also consider the initial conditions, boundary conditions,
etc. Considering the » dimensional vector, X, as a vector of independent random
variables, x; (i = 1, 2, ..., n), the output, ¥ = f(X), is also a random variable as a

function of n random variables. Uncertainty importance aims to determine the part of
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the total unconditional variance, Var(Y), of the output, Y, resulting from each input
random variable, x;. Within the scope of agent-oriented modeling, uncertainty
importance analyzes whether or not sensible changes in the input variables (given by
the input agents) would induce noticeable changes in the agent output variable.

Sensitivity approaches can be categorized into two main groups - local
methods and global methods [106] - [112]. Local methods represent the simplest
approach to sensitivity analysis (one-at-a-time analysis), where sensitivity measures
are determined by varying only one parameter, while all others are held constant. The
local sensitivity analysis methods have the advantage of being straightforward to
implement while maintaining modest computational demands. The major drawback
of these methods is their inability to account for input parameter interactions, making
them prone to underestimating true model sensitivities. Alternatively, global
parameter sensitivity analysis methods vary all of a model’s inputs in predefined
regions to quantify their importance and the importance of input parameter
interactions. This is critical for the agent-oriented modeling of complex dynamic
systems.

The choice of methods of sensitivity analysis for agent autonomy is dictated
by the following considerations:

1. Nonlinearity in output variables, non-monotonic output variables
The local sensitivity analysis methods cannot provide accurate
sensitivity measures when the model response is nonlinear and/or non-
monotonic with respect to its inputs. Variance-based global sensitivity

measures should be used.
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2. Input parameter interactions

If interactions between the model inputs are present, varying two or
more inputs simultaneously causes greater variation in the output than that
upon varying each input alone. Such interactions are present in any non-
additive model, but they are neglected by the local sensitivity methods that are
based on one-at-a-time perturbations.

Based on the above considerations, the desirable properties of sensitivity

analysis for agent autonomy execution are the following [112]:

1.

The ability to incorporate the effect of the input parameter mean, variation,
and the form of its probability density function

It is important to consider the type of probability distribution of each
input variable and the distribution parameters. The method should work
regardless of the linearity and monotonicity of the model. The local sensitivity
methods do not have these capabilities, and therefore global methods should
be preferred.
The ability to perform multivariate analysis

Local sensitivity methods consider the effect of the variation of one
input parameter while all others are kept constant at the mean (or nominal)
value. A global method should be used in order to evaluate the effect of one
input parameter while all others are also varying. This would allow capturing
the input parameter interactions, which are said to occur when the effect of
changing two or more input variables is different from the sum of their

individual effects.

135



From the above discussion, global sensitivity analysis methods are the most
appropriate for modeling agent’s activation and deactivation capability. Sobol’s
method of global sensitivity analysis is recommended because it is capable to deal
with simultaneous variation in all qualitative and quantitative inputs, model
nonlinearity, input interactions, and non-monotonic models, and it can also yield
robust sensitivity rankings. To explain the essence of Sobol’s method, let us denote a
single output variable, Y, as a function of an input variable, X, or Y = f{(X), where X is
defined by individual elements as X = {x;, x,, ..., x,!. Sobol’s method is based on
variance decomposition where the variance, V(Y), of the output is a finite sum, and
each term corresponds to the contribution of one input variable, x;, or to the
interaction of several input variables [108], [109], [112]. According to Sobol’s
method, two sensitivity indexes should be calculated: the first-order effect index for
the variance of the input variable, x;, and the total effects index for the variance of x;.

The first-order effect index of the variance of x; is given by:

Vi Vi (Bel (V1))

SV T T M

Equation 7-1

where V(Y) is the total variance of the output, Y, V; is a contribution of variance of x;
into V(Y), Ex_,(Y|x;) denotes the expectation of the output, ¥, by fixing the variable x;
at a particular value and considering random variations of all other variables (denoted
by x.;). Equation 7-1 calculates the variance of this expectation by considering the
random variation in x; and fixing it at random values. Monte Carlo simulation is used

to calculate S; by solving the respective multidimensional integral for V;:
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Equation 7-2
where p(x;) is the probability density function of variable x;, E(Y) denotes the
expected value of the output variable, Y, considering random variations of all the

elements of the input variable, X = {x,, x,, ..., x,}, x; 1s the sample space for x;, and

x—i corresponds to the reduced sample space defined by:

n
X-i = l_[)(k
k=1

ki
Equation 7-3
The first-order effect calculated in Equation 7-1 gives an estimate of the
contribution of the variable x; to the uncertainty in the output, Y, without
consideration of the effects of the other variables, x._;, since their contribution is
averaged. The contribution of the input variable x; in combination with all other input

variables is known as the total effects index and can be calculated as:

Ve VO =V (B V1x2) B, (G (V1x2)
V) VY - V()

Sti
Equation 7-4
where V. (Y]x..;) denotes the variance of the output, Y, when all variables other than
x; (denoted by x..;) are fixed at a particular quantity to calculate the variance by
considering variation in x;. Equation 7-4 calculates the expectation of this variance by
considering the variation in all other quantities (x..;). Monte Carlo simulation is used

to calculate S7; by solving the respective multidimensional integral for Vy;:
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Equation 7-5

In summary, the first-order effect, S;, describes the contribution of a particular
input variable, x;, alone to the uncertainty in the output variable, whereas the total
effect, Sy, describes the overall contribution of a particular input variable, x;, to the
uncertainty in the output variable, in combination with all other variables. The
determination of S; and S7; is a problem in the evaluation of multidimensional
integrals. In practice, this evaluation is carried out with sampling-based methods
(such as Monte Carlo sampling). The concept of Monte Carlo sampling for the
evaluation of sensitivity indexes is discussed in [5], [112] and [113], one of the
sampling algorithms is also shown in [108]. The Monte Carlo sampling procedure
involves sampling the input variables from given probability distributions for the
evaluation of the first order and total effect Sobol’s sensitivity indices. The sensitivity
indexes calculation method, proposed in [114] and discussed in [115], formulates
Sobol’s indices in terms of the Pearson correlation coefficients and subtracts the
spurious correlations (correlations caused by finite sample size in an ideally
uncorrelated data) for improved accuracy. Both approaches, direct Monte Carlo
sampling and correlation coefficients method, could be used to calculate the
sensitivity indexes as a measure of uncertainty importance in establishing the
activation/deactivation property of intelligent agents.

While statistical (probabilistic) sensitivity methods are the most appropriate

for modeling the activation/deactivation capability of intelligent agents, they are
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mathematically comprehensive and involve significant computational effort. Their
use is inefficient for large models and their results, in some cases, are comparable to
those obtained from simpler techniques of local sensitivity measures. The local
methods of sensitivity analysis are suitable for agent autonomy modeling if there are
no interactions between the input variables and the model of the output variable is
linear. If any of the above two conditions are not met, the use of a local sensitivity
analysis method becomes a compromise between the reduction in computational
effort and partial loss of information.

For Type II Macro-Agents and Type III Monitoring Agents which have a
large number of inputs from other agents, the number of simulations required for a
global sensitivity analysis becomes too large to be practical. In such case, the local
methods of sensitivity analysis could be suitable given no interactions between the
input variables are anticipated (each input variable is statistically independent of any
other input variable) and a nonlinear model of the output variable can be linearized by
transformation. Where the latter cannot be achieved (no transform function can be
defined), graphical sensitivity analysis method called a scatter plot could be used to
help identify relationships between individual inputs and a model output. Each point
on a scatter plot represents a pair of an input value and the corresponding output
value generated by simulation. A relationship could be linear or nonlinear. If the
relationship is close to linear for all input variables, the local methods of sensitivity
analysis could be considered a suitable compromise when the agent output model is
large. If the relationship is highly nonlinear, the use of local sensitivity analysis

methods may need to be ruled out.
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Where a local sensitivity analysis is intended, the local method called
Importance Index (II) is recommended for modeling of agent activation and
deactivation capability. This measure of importance provides an indication of each
input parameter's contribution to the variability in the model output. The Importance
Index uses random sampling techniques to evaluate the input parameter's fractional
contribution to the amount of uncertainty in the model output when varying each
input parameter, one-at-a-time, according to its probability density function while the
effect of all other variables is averaged out. This sensitivity index is the ratio of the
output variance, obtained by considering random variation in the input parameter of
interest, x;, and fixing all other parameters at their mean values, to the total variance
of the model output, Y, upon random variation of all input parameters. The
Importance Index is calculated as:

V(Y1)
TN

Equation 7-6
where V,, (Y]x.;) denotes the variance of the output, ¥, when all variables other than
x; (denoted by x._;) are fixed at a particular quantity (usually the mean value) to
calculate the variance of Y by considering variation in x;, and V(Y) is the total
variance of the output parameter Y = f(X), considering random variations of all

elements of the input variable X = {x;, x, ..., x,/}.
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7.2. Agent Status Update Process

As discussed in Chapter 4, Type I Micro-Agents, Type Il Macro-Agents, and
Type III Monitoring Agents (except the Type III System Monitoring Agent) have
activation and deactivation properties. These properties stem from the fact that an
influence of some physical characteristics and constituent parts of the system on a
physical processes of degradation and failure may change over time. For example, the
variation of environmental temperature in the avionics bay of an aircraft was
considered a critical input to the thermal model of the electronic control unit (ECU)
which provided inputs to the reliability model of the ECU. After several years in
service, upon degradation of some heat dissipation measures inside the ECU,
variation of the bay temperature does not have any significant effect on the thermal
model results and, consequently, on the reliability model of time to failure of the ECU
because of other significant contributors to the board temperature rise. Changes in
relative importance of various attributes to system degradation over time imply that
the sensitivity of the model output to the input variables also changes with time,
therefore, it is necessary to calculate the sensitivity indices as a function of number of
the cycles or other measure of time.

As discussed in Section 7.1, uncertainty importance (sensitivity) analysis
calculates the effect of the variance of an input quantity on the variance of the output
quantity for a generic model given by:

Y=f(X), X=1{x;,x5, ..., x5}

Equation 7-7
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where x;, i = 1, ..., n, denote the input variables and Y is an output variable. In the
context of agent autonomy, Y represents the output variable of the Type II Macro-
Agent or the Type III Monitoring Agent, and x; represents output variables of Type I
Micro-Agents, Type Il Macro-Agents or Type III Monitoring Agents serving as
inputs to the respective Type II Macro-Agent or Type III Monitoring Agent. For
example, the output of Type Il Macro-Agent, Y, is the crack size at the end of a
particular number of cycles, then the inputs, x;, i = I, ..., n, include all Type I Micro-
Agents and Type Il Macro-Agents that affect the crack size prediction based on the
physical model of crack growth (e.g. such Type I Micro-Agents as initial crack size,
loading parameters, geometry, material constant, etc.).

A rule restricting the activation/deactivation property of certain agents could
be programmed into the agent’s internal knowledge (particularly special rules of
behavior) to the discretion of the modeler. For example, a rule may be added that
restricts the activation/deactivation property of all agents within the agent hierarchy
except for Type I Micro-Agents and Type I Macro-Agents that have no inputs from
other agents. This would imply that only the independent variables can change their
input from probabilistic to deterministic and vice versa, while all dependent variables
in the system hierarchy (with one or more inputs) will remain active at all times.
Other examples are setting a permanent “active” status for the Type Il Macro-Agent
which serves as an input to the Type I Micro-Agent, and setting a permanent “active”
status for all Type III Part Monitoring Agents and Type 11l Component Monitoring

Agents.
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The modeler defines the activation/deactivation criteria for each agent that has
the autonomy property. These criteria may have a form of relative importance rank of
the output variable of an agent, x;, compared to the output variables of other agents
forming an input set {x,, x5, ..., x,,} for a certain higher level agent with the output
variable, Y. Such rank would be assigned based on first order and/or total sensitivity
indexes for all the input variables, {x;, X, ..., X, }. In the above example of Type 11
Macro-Agent crack size, the input agents (initial crack size, loading parameters,
geometry and material constant) will be ranked based on their sensitivity indexes and
the agents with the lowest rank may be deactivated per activation/deactivation criteria
set by the modeler. Considering these four input agents and using the Importance
Index as sensitivity measure, the agent deactivation criteria could be set as, for
example, Importance Index (II) < 0.10, meaning that the input agent is deactivated if
not more that 10% of the crack size variance is explained by variation of this input
agent.

“Inactive” status of an agent implies that the agent output variable, x; , has no
effect on the next level agent, Y, and so x; can be fixed at any value over its
uncertainty range, preferably at mean value, changing the representation of the
respective agent from probabilistic to deterministic (see Sections 3.1 and 4.6).

If a certain agent serves as an input agent for two or more other agents, this
input agent could have an “active” status with respect to one of the next level agents
and an “inactive” status with respect to the others. For example, if a Type I Micro-
Agent mechanical load is an input to two Type II Macro-Agents, fatigue crack size

and wear depth, sensitivity analysis may render this Type I Micro-Agent as “active”
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for Type II Macro-Agent fatigue crack size and “inactive” for Type Il Macro-Agent
wear depth.

The learning property of an agent is not affected by the agent status. The agent
learns with the same intensity and according to the same rules, defined in previous
chapters, regardless of its status (active or inactive).

The agent activation/deactivation procedure can be summarized, as follows:

1. All agents are set as active at time zero when the agent hierarchy is developed
based on PoF knowledge of the system and prior (initially available) data.

2. Upon the first update of the agents’ beliefs based on new data (through the
agent learning process), sensitivity analysis is performed for each Type I
Micro-Agent, Type Il Macro-Agent and Type III Monitoring Agent (except
Type III System Monitoring Agent) to evaluate the effect of the variance of
the agent output variable on the variance of the output variables of other
agents that use aforementioned agent as an input. Sensitivity indexes are
evaluated only for probabilistic agents comprising inputs to the next level
agent, while uncertain parameters of the output model of the latter are set at
fixed values, preferably at their mean values.

3. If the effect of the variance of the output variable of a given input agent on the
variance of the output variable of the respective agent exceeds a threshold
identified by the modeler, the input agent’s status remains as “active”.

4. If the effect of the variance of the output variable of a given input agent on the

variance of the output variable of the respective agent is below a threshold
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identified by the modeler, the input agent’s status changes to “inactive” (i.e.
this input agent is deactivated).

5. Upon the next update of the agents’ beliefs based on new data (through the
agent learning process), sensitivity analysis is performed for each agent within
the agents hierarchy (except Type III System Monitoring Agent), including
inactive agents, to re-evaluate the effect of the variance of the agent output
variable on the variance of the output variables of the respective agents that
use aforementioned agent as an input.

6. If the effect of the variance of the output variable of a given input agent on the
variance of the output variable of the respective agent exceeds a threshold
identified by the modeler, the input agent’s status remains as “active” if the
agent is currently active, or changes to “active” if the agent is currently
inactive (i.e. this input agent is reactivated).

7. If the effect of the variance of the output variable of a given input agent on the
variance of the output variable of the respective agent is below a threshold
identified by the modeler, the input agent’s status remains as “inactive” if the
agent is currently inactive, or changes to “inactive” if the agent is currently
active (i.e. this input agent is deactivated).

8. Steps 5 to 7 are repeated every time the agents in the hierarchy complete their
learning process upon the availability of the new data.

As an example of uncertainty importance for agent autonomy, consider a Type

IT Macro-Agent, life to failure of the electromechanical component. The PoF model
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of the agent output variable, life to failure, is given by the following life-stress

equation:

B

L = A (AT) *exp® ()-tH-m(aP)="
Equation 7-8

where A4, B, k, [, m and n are the model parameters, 7 is ambient temperature, A7 is
thermal cycling amplitude, V' is applied voltage, H is ambient humidity, and AP is
pressure load cycling amplitude. Random variables 7, AT, V, H and AP are
represented by the Type I Micro-Agents, which are the inputs to the Type II Macro-
Agent, life to failure, L. Life test data were used to update the beliefs of the Type I
Micro-Agents and the Type II Macro-Agent. Upon each update, uncertainty
importance (sensitivity) analysis was performed for the random variables 7, AT, V, H
and AP to evaluate their “importance” for the dependent variable L. The Importance
Index (IT) method was used to assess the contribution of the uncertainty (variability)
of the input variables, T, AT, V, H and AP, into the uncertainty (variability) of the
output variable, L. All five Type I Micro-Agents were set to have an active status
prior to the first update. The results of two updates are summarized in Table 7-1. The
contribution of each input agent was ranked according to the normalized importance
index. It can be seen that Type I Micro-Agents representing thermal cycling and
humidity levels remained active upon the first update and deactivated themselves
after the second update, while Type I Micro-Agent pressure cycling remained active
at all times. The Type I Micro-Agents temperature and voltage deactivated
themselves upon the first update and remained inactive upon the second update. It

was concluded that pressure cycling is the most important contributor to the
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variability of the life to failure. Pressure cycling should be represented by a Type |

Micro-Agent in a future study, while temperature and voltage may be set as constant

values. In order to confirm the status of thermal cycling and humidity agents, the

modeler may need to obtain additional data so that the respective agents could

continue their learning process. Another observation is related to the chosen method

of sensitivity analysis, the Importance Index. The fractional contribution of each input

variable to the uncertainty in the model output was evaluated by varying each of five

input parameters, one-at-a-time, while holding all other variables at their average

values. Since the life to failure, L, is a nonlinear function of the input variables, 7, A7,

V, H and AP , the total effect of all five input variables was close to 50% after each

update (as shown by the importance index for life to failure variable in Table 7-1).

This suggests that global sensitivity analysis methods, specifically Sobol’s method of

variance decomposition, should be preferred to improve the accuracy of the analysis.

Table 7-1: Example of the Agent Status Update by Uncertainty Importance (Sensitivity) Analysis

Type I Micro-Agent Output Variables

Type Il Macro-Agent
Output Variable

First Update

Variable Name Temperature | Thermal Cycle | Voltage Humidity | Pressure Load Cycle Life to Failure
Variable Letter ID T AT v H AP L
Distribution Normal Lognormal Normal Lognormal Lognormal Lognormal
Mean 4.89 59.06 55.01 0.56 5.44 61,192
Variance 454.74 536.47 37.54 0.03 5.72 4.837E+09
Model Parameter ID B k 1 m n A
Model Parameter (Mean) 100 1 2 1 2 1.00E+10
Importance Index 0.000 0.117 0.011 0.069 0.261 0.457
Importance Index Rank 0 26 2 15 57 100
Agent Status Inactive Active Inactive Active Active -
Second Update
Variable Name Temperature | Thermal Cycle | Voltage Humidity | Pressure Load Cycle Life to Failure
Random Variable ID T AT v H AP L
Distribution Normal Lognormal Normal Lognormal Lognormal Lognormal
Mean 5.12 56.34 55.08 0.56 5.81 64,627
Variance 462.19 148.62 60.83 0.01 11.57 1.063E+10
Model Parameter ID B k 1 m n A
Model Parameter (Mean) 500 2 1 1 2 1.50E+10
Importance Index 0.002 0.024 0.003 0.003 0.547 0.580
Importance Index Rank 0 4 1 1 94 100
Agent Status Inactive Inactive Inactive Inactive Active -
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7.3. Key Features and Advantages of the Autonomy Property

Considering the agent status update procedure described in Section 7.2, the
next step is to define the algorithm of the autonomy execution within agent-oriented
reliability modeling. The following example demonstrates the process. Consider the
agent Y; having an output variable y,as a function of the input variables x;; (i = 1, 2,

..., n), where the variables x;; represent the respective input agents X;;:

y1 = f(x11,X12, oes X190)
Equation 7-9

Assume that the agent Y; provides an input to another agent Z with an output variable
z, where the latter is a function of the variable y; and several other variables y; (j =
2, ..., m) associated with the agents Y;:

Z = g(ylﬂyZJ "'ﬂym)

Equation 7-10
The agents Xj; (j =1, 2, ..., m, i =1, 2, ..., n) are the input agents of the respective
agents Y; (j = I, 2, ..., m). The autonomy execution algorithm is defined as the
follows:

1. As new data/information becomes available, the agent Y; learns from it by
updating the functional form and the parameters of the model function f(-).

2. The input agents Xy; (i = 1, 2, ..., n) also learn from the new data/information
and update their beliefs about: a) the functional form and the parameters of the
model of their output variables, x;;, and b) the resulting probability
distributions of their output variables, (x,;), given the respective input

variables (as applicable).
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The input agents X;; (i = 1, 2, ..., n) update their status by means of
uncertainty importance (sensitivity analysis) to evaluate the effect of the
variance of the agent output variables, x;;, on the variance of the output
variable of the agent Y; (this process is described in Section 7.2).

The input agents X;; (i = 1, 2, ..., n) communicate the updated believes about
the probability distributions of their output variables, 7(x;;), and about their
status with respect to other agents (active or inactive) to all agents within the
agent hierarchy, including the agent Y;.

The agent Y; reacts to the updated beliefs of the input agents X;; (i = 1, 2, ...,
n) by updating the distribution of its output variable, 7 (y,), by means of
simulation over the updated model function, f(-), and using the updated
probability distributions 7(x,;) of those and only those input variables x;; that
represent the agents X;; with an active status with respect to the agent Y.
Probability distributions 7 (x;;) of the input variables x,; associated with
inactive agents X;; with respect to the agent Y; are not used in the simulation
of the probability distribution 7(y, ). For the purpose of this simulation, the
output variables of the inactive input agents X;; are assigned with constant
values derived from their respective probability distributions, (x;;), such as
distribution mean or median.

The agents Y (j = 2, ..., m) and their respective input agents X;; (j =2, ..., m, i
=1, 2, ..., n) learn and update their beliefs in the same manner as the agent Y;

and its input agents X;; (i = 1, 2, ..., n) in accordance to steps 1 to 5 above.
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7.

10.

1.

The agent Z learns from the new data/information by updating the functional
form and the parameters of the model function g(+).

The agents Y (j = 1, 2, ..., m) update their status with respect to the agent Z by
means of uncertainty importance (sensitivity analysis) to evaluate the effect of
the variance of their output variables, y;, on the variance of the output variable
of the agent Z (this process is described in Section 7.2).

The agents Y; (j = 1, 2, ..., m) communicate their updated believes about the
probability distributions of their output variables, n(yj), and about their status
with respect to other agents (active or inactive) to all agents within the agent
hierarchy, including the agent Z.

The agent Z reacts to the updated beliefs of the input agents ¥; (j = 1, 2, ..., m)
by updating the distribution of its output variable, m(z), by means of
simulation over the updated model function, g(-), and using the updated
probability distributions n(yj) of those and only those input variables y; that
represent the agents Y; with an active status with respect to the agent Z.
Probability distributions n(yj) of the input variables y; associated with
inactive agents Y; with respect to the agent Z are not used in the simulation of
the probability distribution (z). For the purpose of this simulation, inactive
input agents are assigned with constant values derived from their respective
probability distributions, ﬂ(yj), such as distribution mean or median.

Steps 1 to 10 above are repeated every time new data/information becomes

available.

150



The above process of the autonomy execution suggests that the agent autonomy uses
only the most relevant elements for the system reliability assessment since only the
active agents are included in the simulation. This brings several benefits which
distinguish the PoF-based agent autonomy approach from other existing methods of
system reliability modeling and makes the autonomy property of agents a “core”
contribution of this research:

1. Agent autonomy offers more efficient algorithm due to less frequent updates
and reduced computational effort. In resemblance to the well-known 80/20
rule, the concept could be described as “80% of the answer is delivered by
20% of the agents and achieved it with 20% of the modeler’s efforts”.

2. Agent autonomy delivers higher quality of prior information for the future use
of the mobile agents in the agent autonomy of similar systems.

3. Agent autonomy provides stronger guidance for uncertainty reduction by
pointing to the multiple elements of the system which are not “important”.

4. Since any agent could have an “active” status with respect to one agent and an
“inactive” status with respect to the other while constantly updating its
probabilistic model by learning from new data/information, the agents are said
to be active globally but active/inactive locally. It means that all agents remain
to be probabilistic at all times during the system modeling and share the
probabilistic information about their output variables with other agents in the
hierarchy (i.e. being “active globally”), however become deterministic when
deactivate themselves only with respect to some selected agents and only until

the uncertainty importance defines so (i.e. become “inactive locally”).
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7.4. Uncertainty Characterization within the Agent Autonomy

Uncertainty characterization within agent autonomy has some advantages as

well as some challenges. Both epistemic and aleatory uncertainties are present within

the agent autonomy model as they emerge from various sources, such as:

1.

Uncertainty in the functional form of the agent output model (primarily
epistemic uncertainty due to lack of engineering knowledge about the physical
phenomena, human reliability or software errors, or due to lack of data for the
right choice of the best fit model).

Uncertainty in the agent output model parameters (primarily epistemic
uncertainty due to lack of data for parameters estimation, but aleatory
uncertainty could also take place for complex dynamic systems).

Uncertainty in the agent input variables, which includes both epistemic and
aleatory uncertainties related to the input variables as well as initial and
boundary conditions.

Data uncertainty due to partial relevance, conflicting pieces of information
within the data set, subjectivity of engineering judgment and expert opinion,
and/or measurement errors.

Uncertainty in the reasoning algorithm (causal relationship model) where
indirect measurements of a certain quantity are used as information (data) for
agent learning.

Calculation uncertainties as a result of simplification, approximation or
rounding errors, and/or the use of simulation or numerical techniques in lieu

of closed form solution.
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7. Data discretization related uncertainties.

These uncertainties propagate through the agent autonomy modeling structure
and form the uncertainties about the output variables of all agents up to the Type III
Monitoring Agent providing system reliability measures. A range or a distribution of
the agent output variable or the agent output model parameters are used to quantify
uncertainties within the agent autonomy framework.

The two-step uncertainty quantification could be performed. The first step
quantifies agent output model related uncertainties associated with the model
structure and model parameters (items 1 and 2 from the above list of uncertainty
sources) while holding the input variables constant. The second step uses a simulation
to update the uncertainty distribution of the agent output variable according to the
uncertainty distributions of the input agent variables to quantify uncertainties
introduced by the agent model inputs (item 3 from the above list of uncertainty
sources). In the case of a single deterministic model representing the agent output
variable, the first step of uncertainty quantification comes to evaluation the
(uncertain) error term (which could be additive, multiplicative or both, as discussed in
Section 5.1).

The above process may assist the separation of epistemic and aleatory
uncertainties in the final results, however such separation is generally not a
straightforward process. In most applications, the modeler could make a case for both
types of uncertainties where, for instance, epistemic uncertainty is represented by a
probability distribution of the value of the random (aleatory) characteristic. In order

to make a clear distinction between epistemic and aleatory uncertainties, the modeler
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must have good understanding of the nature of the physical model of the phenomenon
associated with the given variable. Within the agent autonomy modeling, which relies
on engineering knowledge of the degradation and failure of a complex dynamic
system and often uses limited or partially relevant data, making a distinction between
the two types of uncertainties becomes quite challenging, if possible at all. It is much
more critical for the modeler, however, to evaluate uncertainty importance of the
variables representing the various agents in order to distinguish the top contributors to
the uncertainty in the system reliability measures and identify uncertainty reduction
opportunities.

Uncertainty importance assessment is performed within the context of agent
autonomy execution. Global methods of uncertainty importance analysis by variance
decomposition appear to be the most appropriate for the agent autonomy representing
dynamic engineering system. The global methods, however, impose significant
computational effort in evaluating the importance indexes that limits their practicality
in many cases. Local methods of uncertainty importance analysis are relatively simple
and computationally inexpensive, but are invalid or at least inaccurate in the
identification of key contributors to the uncertainty when complex PoF modeling is
involved. Despite their complexity, global methods of uncertainty importance
analysis are yet to be used for agent autonomy containing bidirectional
communication between agents and feedback loops. Such interactions between agents
result in an “amplification” of uncertainty through the agent-based reliability model,

making accurate identification of the uncertainty “drivers” of paramount importance.
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The modeler’s knowledge of physical failure mechanisms and availability of
the associated PoF models is critical for the quantitative assessment of model-related
uncertainties, especially in the agent autonomy approach which has an ultimate goal
of bringing physics-of-failure into the system reliability assessment. In case of limited
PoF knowledge of the system degradation processes, several PoF and empirical
models Y = f(X) should be tested as part of agent learning allowing each agent to
“choose” the most appropriate model of its output variable according to the amount of
uncertainty. In addition, weighting and combining several plausible models, and
switching between the models according to the specified conditions could also be
exercised by the agent during model selection process [116]. The modeler’s judgment
plays an important role when choosing which treatment options to be programmed
into the agent. For complex models within the agent autonomy, special computer
techniques may be developed to compare model uncertainties [117].

While an agent “matures” upon learning from new information, updating the
functional form and parameters of the agent output model results in the reduction of
epistemic uncertainties throughout the system reliability model. Aleatory uncertainty,
often associated with the inherent variability of the output variables of the
independent agents (i.e. Type I and Type II agents with no inputs from other agents),
will remain in the model along with other sources of irreducible uncertainty (such as
data uncertainties, calculation uncertainties, and data discretization uncertainties).

Data availability is a common source of epistemic uncertainty when limited

and partially relevant data need to be used for reliability model development.
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Bayesian inference is, therefore, defined as a preferred framework of agent learning
to maximize use of the available information.

The agent autonomy approach also offers several improvements with respect
to uncertainty characterization. Since the agent autonomy approach maximizes data
usage and makes the agents mobile (usable in other applications), it is advantageous
for the decision makers performing high-consequence risk analysis of a complex
engineering system with limited knowledge about the system behavior. In addition,
the agent autonomy approach to system reliability modeling allows for some
reduction of subjectivity and arbitrariness in the definition of system failure scenarios
and their consequences compared to fault tree and event tree methodologies because
the intelligent agents evolve autonomously reflecting on all relevant failure scenarios
(not only those believed to be the “worst case” sequences). This is particularly
important for high-hazard industries, such as nuclear, acrospace, defense and several
others, where both underestimation and overestimation of the criticality of accident
scenarios lead to potentially significant consequences.

Another aspect of uncertainty characterization is related to the capability of
the agent autonomy to provide realistic representation of the system dynamics as it
evolves over time. For example, fault trees and event trees typically use the classical
binary success/failure logic of system reliability representation. In addition, fault trees
and event trees are static techniques which cannot take into account time-dependent
evolutions of dynamic systems. In contrary, the agent autonomy approach effectively
models the dynamics of system evolution in time and differentiates between the

different levels of system performance depending on the degraded states of the
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constitutive parts and components. As a result, epistemic uncertainties, introduced by
simplification and approximation of the reality, will be reduced for agent autonomy

models.
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Chapter 8: Case Study: Agent-Based Reliability Assessment

of Gas Turbine Aircraft Engine Structures

8.1. Introduction

This chapter provides an application example of a gas turbine system
reliability analysis by means of the agent-based PoF modeling in order to demonstrate
concepts and methods of agent autonomy that are introduced in this work.

A gas turbine is a type of internal combustion engine used to power aircrafts, trains,
ships, generators, or tanks. In the aerospace industry, current aircraft maintenance
practices rely on highly conservative life estimates for critical gas turbine engine
components to ensure that they are replaced prior to failure. While these practices
have resulted in extremely low failure rates, they also reduce the aircraft’s availability
and incur significant labor costs to replace the components with significant remaining
useful lives. In some cases, even highly conservative life estimates, however, cannot
account for the extreme or unpredictable circumstances that contribute to many of the
documented engine failures. It is therefore critical, to develop a reliability model that
will enable accurate evaluation of the life of critical engine components for each
known mission profile and specific use conditions. The accuracy of the model for
determining the component life and monitoring its consumption significantly impacts
the engine safety and life cycle cost. The physics-based agent autonomy approach,
presented in this dissertation, will be used to combine the test and field data with the

life models to estimate life to failure for gas turbine components.
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8.2. Gas Turbine Overview

A turboprop engine is a turbine engine where an aircraft propeller is driven
using a reduction gear [118]. A turboprop engine consists of air intake section,
compressor, combustor, turbine (also called high pressure turbine), gearbox, and
propelling nozzle (exhaust section), as shown on Figure 8-1. Air is drawn into the
intake section, compressed by the compressor, and forced into the combustor. The
compressed air is mixed with fuel in the combustion chamber, where the fuel-air
mixture is then ignited by a spark. The fuel burns producing hot gases, which expand
and drive the fan blades of the high pressure turbine. Most of the power generated by
the turbine is transmitted to the propeller through the reduction gear, while some
power is used to drive the compressor. The combustion gases expand further in the
propelling nozzle where they are discharged into the atmosphere. The propelling
nozzle creates only a small proportion of the total thrust generated by a turboprop
engine (the turboprop engine's exhaust gases contain very low energy compared to a

jet engine and make only a small contribution into the aircraft propulsion).

Compressor Turbine Exhaust

Combustion
chamber

Figure 8-1: Schematic Diagram of a Turboprop Engine
(from http://commons.wikimedia.org/wiki/File:Turboprop operation.png)
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This case study involves high pressure turbine of a turboprop engine. A single
turbine section (stage) contains a rotor wheel. The turbine wheel includes a turbine
disk that holds turbine blades. The turbine stages are splined together and secured by
the bolts. A roller bearing at the forward end and another at the aft end of the turbine
shaft support the entire assembly. The number of turbine sections (stages) varies in
different types of engines. The high pressure turbine sections are connected to the
compressor sections with a shaft. The air pressure and temperature are rising while
the air is compressed in the compressor stages of the engine. The air pressure and
temperature are significantly increased further due to fuel combustion inside the
combustor chamber, which is located between the compressor and the turbine. The
high temperature and high pressure gases pass through the high pressure turbine
stages, where the energy is extracted from the air flow, lowering the temperature and
pressure of the air. The high pressure turbine is, therefore, exposed to the hottest and

highest pressure air.

8.3. Gas Turbine Components Life Consumption

The design of high performance gas turbine engines have made the overall
turbine structural reliability limited by the fatigue life of major rotating components
of the high pressure turbine. Gas turbine discs are usually the most critical
components which must endure substantial mechanical and thermal loading. The
degraded performance of other components of the high pressure section adjacent to

the disks, such as blades, shaft and bearings, also contribute to disk reliability.
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If a problem arises in the turbine section, it will significantly affect the engine
functionality and safety of the aircraft. Blade loss can be contained within the engine
casing, while the catastrophic failure of a turbine wheel (disk and blade assembly)
could cause a puncture of the engine casing by the larger fragments of the disc.
Turbine engine bearing failures are another leading cause of engine loss.

In this work, the agent-oriented PoF model is developed for interacting failure
mechanisms of a high pressure turbine sub-assembly of three components: turbine
disk (the first stage disk), a high pressure shaft and two roller bearings. For
simplicity, this research only deals with the above three types of components which
are among the most important contributors to the reliability and safety of a high
pressure turbine of an aircraft engine, based on evidence from accelerated life test
data and field maintenance records. The first stage disk is chosen because the first
stage turbine rotor components are the most severely loaded out of the four stages in
the studied gas turbine engine. Cyclic fatigue is the leading failure mechanism for the

studied components, as explained in Appendix A.

8.4. Physics-of-Failure Fatigue Life Model of Gas Turbine

Components

Probabilistic-mechanistic life models of the fatigue failure mechanism in high
pressure turbine bearings, shaft and disk are is shown on Figure 8-2, Figure 8-3 and
Figure 8-4, respectively. These PoF models are developed from the physical
principles of the component operation, considering the critical variables which

contribute to the failure process, as described in Appendix A of this dissertation. A
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detailed derivation of the PoF-based life-stress equations for the high pressure turbine

components can be found in Appendix A.

Probabilistic-Mechanistic Life Model of Roller Bearing for the

Rolling Contact Fatigue Mechanism
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Figure 8-2: Reliability-Based Fatigue Life Model of High Pressure Turbine Bearing
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Probabilistic-Mechanistic Life Model of the Fatigue Mechanism
in High Pressure Turbine Shaft of a Turboprop Engine
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Figure 8-3: Reliability-Based Fatigue Life Model of High Pressure Turbine Shaft
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Probabilistic-Mechanistic Life Model of the Fatigue Mechanism
in High Pressure Turbine Disks of a Turboprop Engine
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Figure 8-4: Reliability-Based Fatigue Life Model of High Pressure Turbine Disk

8.5. Definition of Agents

The next step is to develop an agent-oriented representation of the physical

models of the gas turbine structures presented in the last sections, considering agent

classification defined in Chapter 3. An intelligent agent is assigned to each element of

the physical model of failure according to the nature of the element and its role in the

PoF hierarchy (shown on Figure 8-2, Figure 8-3 and Figure 8-4). Type I Micro-

Agents are listed in Table 8-1. Type II Macro-Agents and Type III Monitoring Agents

are defined in Table 8-3 and Table 8-4, resp