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 A novel computational and inference framework of the physics-of-failure 

(PoF) reliability modeling for complex dynamic systems has been established in this 

research. The PoF-based reliability models are used to perform a real time simulation 

of system failure processes, so that the system level reliability modeling would 

constitute inferences from checking the status of component level reliability at any 

given time. The “agent autonomy” concept is applied as a solution method for the 

system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept 

originated from artificial intelligence (AI) as a leading intelligent computational 

inference in modeling of multi agents systems (MAS).  



  

 The concept of agent autonomy in the context of reliability modeling was first 

proposed by M. Azarkhail [1], where a fundamentally new idea of system 

representation by autonomous intelligent agents for the purpose of reliability 

modeling was introduced. Contribution of the current work lies in the further 

development of the agent anatomy concept, particularly the refined agent 

classification within the scope of the PoF-based system reliability modeling, new 

approaches to the learning and the autonomy properties of the intelligent agents, and 

modeling interacting failure mechanisms within the dynamic engineering system. The 

autonomous property of intelligent agents is defined as agent’s ability to self-activate, 

deactivate or completely redefine their role in the analysis. This property of agents 

and the ability to model interacting failure mechanisms of the system elements makes 

the agent autonomy fundamentally different from all existing methods of probabilistic 

PoF-based reliability modeling. 
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Chapter 1: Background, Motivation and Contribution 

1.1. Introduction 

As technological advancements have been rapidly progressing over the last 

few decades, engineering systems are becoming increasingly complex, and as a result, 

they experience new failure modes because of complex and often interdependent 

physical failure mechanisms. New technology has required adapted approaches to 

ensure that engineering systems meet desired reliability goals in a cost-effective and 

timely manner.  

Since the 1990’s, reliability engineering faced a strong challenge to eliminate 

the need to rely solely on life tests and historical failure data for reliability assessment 

of electronic devices, mechanical components, and complex engineering  systems
1
. 

As life tests are becoming more costly and time consuming, the classical way of 

reliability assessment is mostly dependent on the availability of extensive field data 

for empirical modeling and component libraries having reliability measures for 

similar parts. The failure rate prediction made by this approach often results in 

                                                 
1
 In this research, the terms “part”, “component” and “system” used in hardware system description, 

are defined as follows:  

1) Part (or piece part) is a simplest constituent element of more complex items, further defined as 

components, so that the only constituent element of the part is material it is made of. 

2) Component is more complex item comprised of parts, it is a combination of parts having a specific 

function, which can be installed or replaced only as an entity. 

3) System is functionally, physically, and/or behaviorally related group of regularly interacting or 

interdependent elements, such as hardware (components), software (programs) and human elements. 

4) Note that a complex component may be considered a system, and the terms “component” and 

“system” are sometimes used interchangeably to the user’s discretion, often depending on the levels of 

system hierarchy and complexity of the item. In contrary, a piece part cannot be treated as a 

component in the context of this research, even though the term “component” is often used in the 

literature referring to a “part”. Also, the term “sub-system” is not defined here, but can be found in the 

literature, meaning “component” in the context of this research. 
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inaccurate reliability estimates due to only partial relevance of historical data to a new 

system with different design subjected to non-identical operating conditions. 

 As an alternative to fully empirical reliability modeling not rooted in the 

underlying physical process, the physics-of-failure (PoF) approach has emerged in the 

past 50 years as a powerful method of component reliability analysis based on 

modeling and simulation that relies on understanding the underlying physical 

processes contributing to the degradation, damage and occurrence of critical failures. 

This concept has been in use in fracture mechanics and by structural engineers for 

many years, but in the 1990’s it has been more extensively used in reliability 

engineering. Sufficient computational tools and technological advancements in 

testing technologies also supported more practical modeling of the underlying 

physical phenomena.  

 The PoF-based reliability models, also known as probabilistic-mechanistic life 

models, have proven to deliver the most comprehensive representation, capable of 

bringing many influential factors into the reliability models of the engineering 

system. As such, the PoF approach was shown to bring more reality into reliability 

models. In addition, these models have wider applications because they are more 

flexible to accommodate variation of item characteristics and usage profiles.  

 Due to inevitable variations of many factors involved in failure processes and 

limited information about them, the probabilistic physics-of-failure (PPoF) 

methodologies were developed for assessing the reliability of parts and components 

by involving variations of environmental and operational stresses, mission profiles, 

and manufacturing processes. Taking the PPoF approach to the modeling of a 
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complex dynamic system, however, can be very challenging, if not impossible, due to 

the diversity of components and their failure mechanisms, the complexity of system 

logic, and various types of dependencies at all levels of system hierarchy.   

 The traditional static techniques of system reliability (e.g. fault tree, event 

tree, reliability block diagram, Bayesian belief network), as well as dynamic methods 

(e.g. Markov chains, stochastic Petri nets, dynamic event trees) demonstrated a 

limited capability to incorporate physics of failure into the system level assessment 

and offer no or very limited ability to model quantitative causal relations between 

interdependent and interacting failure mechanisms of the system elements during the 

system evolution over time. 

 New methodologies are required and currently being developed by several 

researchers to introduce PoF into system reliability in a robust, structured, but also 

flexible manner to capture the dynamics of system evolution. The intelligent agent-

oriented approach is introduced in this research as a framework for efficient use of the 

PoF information and models in developing reliability assessment approaches for 

highly reliable mechanical and electronic systems, structures and components with 

interacting failure mechanisms. 

 

1.2. Reliability Modeling of Complex Engineering Systems 

 The PoF modeling approach, driven by the first principles of degradation and 

failure, continues standing as the dominant method for reliability modeling of 

mechanical, electromechanical, and electronic components. While significant 

achievements have been made with the PoF application for component reliability 
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assessment, a formal structure of the PoF approach for the system level analysis is not 

yet defined [2]. Widely used static methodologies of system reliability modeling, 

specifically event tree, fault tree and Bayesian belief network [3] - [7], do not 

explicitly treat the time-dependent interactions between operational variables (i.e. 

environmental factors and operational parameters) and triggered or stochastic events 

(e.g., degradation and failure of components) that may lead to the coupling between 

these events during system operation. Poor treatment of such dynamic interactions 

implies that potentially significant dependencies between failures events may not be 

identified or properly quantified with current methods.  

 The dynamic methodologies of system reliability modeling, specifically 

Markov chain [6], [8] - [13], Petri net [6], GO-FLOW [14], [15], Dynamic Master 

Logic Diagram [16] and various types of dynamic event trees [6], [14], [17] - [36], 

are intended to address system dynamics, but their application is limited to specific 

aspects of reliability engineering and Probabilistic Risk Assessment [3] and has a 

limited capability to capture interacting degradation processes and interdependent 

failure events. Also, both static and dynamic traditional methods of system modeling 

are lacking a robust framework for aggregation of available data from various 

sources, such as material level fatigue models, material coupon tests, component 

tests, field data, in-service inspection findings, health monitoring measurements, data 

from generic sources, expert opinion, and partially relevant data.  

 In summary, both static and dynamic traditional methods of system modeling 

impose several challenges when applied to modern engineering systems: 
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1. Modeling degraded states of the system 

  Modern systems have three basic elements: hardware, software, and human 

elements. Reliability engineering was originally developed to handle failures of 

hardware components [37]. A commonly adopted assumption underlying the 

quantitative analysis of hardware failures by the system analysis methods is that 

systems are made up of binary components (i.e., devices that can be in two states, 

either fully functional or failed). Yet, there are many components which could 

operate in a degraded state as a result of the wear-out / aging process. As a result, 

the overall performance of a system can settle at different levels (compared to the 

initial performance level) depending on the operational states of its constituent 

elements. As the degradation of system components proceeds, the level of system 

performance becomes a function of time until a complete loss of system 

functionality occurs. In literature, such systems are referred as degraded systems. 

Their analysis requires the development of new techniques of system state 

representation, modeling and quantification.  

 Degraded systems reliability analysis is not currently supported by the 

classical static methods of system modeling. Fault tree and event tree methods 

relate the states of the components to the occurrence of the top event of interest 

(system failure condition) and do not explicitly make use of the state changes 

(dynamics) of the system. In this case, the top event is defined without knowing 

the sequence of state changes that leads from a good functioning state to the 

system failure. Consequently, the scenarios that lead to the system failure 
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condition cannot be deduced from a Fault Tree or an Event Tree. The same is true 

for Bayesian Belief Network. 

 While several dynamic modeling methodologies, such as Markov Chains or 

Dynamic Master Logic Diagrams, can be used to handle the degradation process 

of a specific multi-state system that consists of more than one multi-state 

component, these methodologies are limited to special cases of the system 

degradation scheme [16], [38] - [42]. No generic framework, however, exists to 

perform explicit PoF-based reliability analysis of a continuously degrading 

system. 

2. Modeling system dynamics 

 System components usually operate in highly varied dynamic environments in 

which operational conditions of each hardware component strongly depend on the 

nearby components, usage stresses and environmental conditions, as well as 

software and human elements. It means that in a dynamic system, not only the 

properties of parts, components, and other system elements may change over 

time, but also the system configuration and failure logic. The probability of each 

event is conditional on the physical states of system elements, the operational and 

environmental conditions, and system configuration.  

 Conventional (static) methods of system modeling do not have the capability 

to depict system reliability in the context of multi-state dynamics of the system 

elements evolving over time. Fault trees, event trees and Bayesian belief networks 

generally show a snap-shot reliability, which is not dynamically sensitive to the 

variation of operational and environmental conditions. In order to create a 
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dynamic model of the system, a new fault tree model is required for every 

scenario of the relationship between the components with each other and their 

environment as the system dynamics progresses over time. As a result, it becomes 

difficult (or almost impossible) to list all potential paths of system degradation 

and failure within the framework of conventional risk assessment methods. 

 Dynamic methods of system modeling provide some ability to quantitatively 

capture the realistic features of the stochastic behavior of dynamic systems. Even 

these approaches, however, cannot address all necessary aspects of the physical 

evolution of the system. In addition, they face significant limitations due to the 

size of the analysis when a complex system is considered. 

3. Modeling interacting and interdependent failure mechanisms 

 Interdependency of failure events at all levels of system hierarchy increases 

system unavailability compared to the case when the system is modeled as a 

sequence of independent failure events. The most common sources of component 

dependency in a system are usually related to the operational and environmental 

conditions (such as temperature, pressure and other influential stresses) that may 

affect the life of the components or other coupling factors leading to common 

cause failures of several components. Both traditional (static) and dynamic system 

reliability modeling approaches provide some ability to model these types of 

dependencies (with a higher capability for dynamic methods). 

 In addition to the numerous links between different components by means of 

their operational characteristics and environmental conditions, there is another 

type of interdependency often overlooked due to its complexity. In the study of 
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system behavior, there are situations when failure progress in one component may 

activate or accelerate failure mechanisms of other components. Also, one failure 

mechanism of a certain component may activate or accelerate another failure 

mechanism of the same component.  

 For example, if an ordinary gear box consists of two bearings, a shaft and one 

gear, the bearings and the gear have a one-way interaction with the shaft, while 

the shaft is able to exchange information with the gear and bearings. A change in 

operational characteristics of the gear passes through the shaft and impacts the 

operation of the bearings. Changes in operational parameters of the bearings as 

well as the shaft due to age related degradation result in an additional impact on 

the degradation process of the gear. These direct and indirect interactions are 

examples of interdependency between failure mechanisms of several components. 

At the component level, two failure mechanisms can accelerate each other, such 

as fatigue and corrosion.  

 The existing methods of system reliability analysis, static or dynamic, have 

limited capability of providing quantitative causal relations between several 

competing mechanisms that cause failures [43], [44]. The same applies to 

modeling complex interactions between hardware, software, and human elements 

within a dynamic process of system degradation and failure processes. There are 

very few studies that deterministically model the interactions between failure 

mechanisms by means of the finite element analysis (FEA) method, and there are 

no probabilistic models that consider the interdependency and interactions of the 

competing failure mechanisms [43]. 
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 As such, PoF-based reliability modeling techniques, similar to those employed 

for stress or temperature analysis, are needed for accurate reliability analysis of an 

engineering system. New methodologies are currently being developed to introduce 

PoF into system reliability in a robust, structured yet flexible manner to capture the 

dynamics of system evolution. The Dynamic Hybrid Bayesian Network approach has 

been recently introduced by C. Iamsumang [45] as a computational algorithm for 

reliability inference in real-time System Health Management (SHM) of complex 

engineering systems considering the underlying physics of failure. Another 

methodology of PoF-based system reliability modeling is proposed in the current 

research. 

 

1.3. Distributed Artificial Intelligence 

 Agent autonomy, a methodology of distributed artificial intelligence, was the 

benchmark for the methods and concepts which were used to represent the evolution 

of system reliability over time. The agent-oriented distributed modeling approach 

originated from computer science and artificial intelligence (AI), where intelligent 

computer agents are software programs designed to act autonomously and adaptively 

to achieve goals defined by the developer or runtime users [46] - [62]. The following 

aspects of computer agent autonomy helped to build a foundation of the PoF-based 

agent autonomy for system reliability modeling that is proposed in this research: 

1. Decentralization of control and decision making is considered a paradigm 

shift and a future direction of research in computer science. Decentralization 

capability is critical because it provides flexibility and adaptability of 
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computer software in runtime in order to react accordingly to structural 

modifications in runtime. It also considers all time-dependent interactions and 

interdependencies between the system elements. A system of computer-based 

agents as autonomous decision makers is the most efficient solution proposed 

to date.  

2. Each computer-based agent is capable of settling on its state evolution 

autonomously and without interference of the environment or other agents.  

3. Each computer-based agent is able to sense the environment and collect the 

information which is critical for its internal processes.  

4. Each computer-based agent shares its properties and the current state with 

other agents. 

 The key focus of multi-agent system development is on the flexible behavior 

of computer agents related to the above listed expectations. It is agent flexibility 

which makes the agent-oriented approach a valuable choice of modeling methodology 

for dynamic systems. Although there is no universally accepted definition of a 

computer agent, most authors agree on the following concepts: each agent is 

autonomous, has a set of goals, has a local model of the part of the world that affects 

the achievement of its goals, and has a way of communicating with other agents. The 

following properties of computer agents, described in the literature sources [46], [49], 

[50], [51], [57], [59], were considered in this research in development of the PoF-

based agent autonomy: 

1. Autonomy in Action 

2. Intelligence 
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2.1. Internal Knowledge (Rules of Behavior, Memory, Goals, Plans) 

2.2. Reactivity 

2.3. Reasoning / Learning (Adaptability) 

2.4. Proactivity, Goal Orientation 

3. Communication, Social Activity, Cooperation 

4. Mobility 

 This generally accepted categorization of agent properties was summarized by 

M. Azarkhail in his dissertation [1] and will be further addressed within the current 

research. 

 A probabilistic aspect of computer-based agents within agent autonomy was 

considered in several publications [53] - [56], [60], [61]. The Bayesian belief network 

(BBN) methodology was utilized to introduce a probabilistic aspect into sharing raw 

data and analysis results (probability distributions) among the computer agents. 

Another work [53] proposed Bayesian updating framework to support agent learning 

and decision making tasks in multi-agent computer systems used for control of 

complex industrial processes. Bayesian formalism was applied to incorporate the 

uncertainty through agent representation by probability density functions used in 

Bayesian inference. 

 

1.4. Motivation 

 Based on the discussion in previous sections, a new approach to system 

reliability modeling should be able to incorporate physics-of-failure knowledge about 

the systems elements, including the following capabilities: 
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1. The ability to capture physics of degradation and failure and describe the 

system degradation processes according to failure mechanisms of hardware 

parts and components. This includes software reliability, human interactions 

with the system and the resulting scenarios of the system evolution in time. 

2. The capability to include interactions between the failure mechanisms of the 

system elements (i.e. two or more simultaneous failure mechanisms affecting 

each other’s propagation rate and resulting in one complex mechanism at the 

hardware part, component or system level). 

The above objectives and the following baseline concepts defined the choice of a 

novel approach to system reliability modeling developed in this research: 

1. In any engineering system, hardware components and sub-systems are 

physically distributed, have their own properties and rules of behavior, and an 

ability to influence the final state of the system. One may consider it as an 

intelligence within the component that autonomously responds to changes (in 

usage conditions and in adjacent components) by managing its properties and 

behaviors and making appropriate decisions on its final state (i.e. success, 

degraded performance or failure). Evolution of hardware components, sub-

systems and the entire system is affected by software reliability and 

interactions with human elements. The latter possess certain properties and 

rules of behavior when acting upon the given system. As such, the modeling 

procedure implies a distribution of the failure knowledge (i.e. intelligence) 

among all elements of the system. 
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2. Knowledge of the first principles and physics of failure fundamentals allows 

the modeler to set rules and conditions for the behavior of system elements 

(hardware, software, human elements) and anticipate the resulting degradation 

and failure events. 

 

1.5. Agent Autonomy 

 In this research the agent autonomy is used as a solution method for 

probabilistic physics-of-failure modeling of reliability of complex engineering 

systems with interacting failure mechanisms. The agent-oriented distributed modeling 

approach originated from computer science and artificial intelligence (AI), where 

intelligent agents were software programs designed to act autonomously and 

adaptively to achieve goals defined by the developer or runtime users. In system 

reliability modeling, however, agent hierarchy, classification, and properties of agents 

are different from those in computer science and artificial intelligence.   

 In this research an agent is a computer replica of any parameter, characteristic 

or feature of the system element (hardware part or component, software, human 

element) or usage profile (environmental or operational conditions, mission attributes, 

inspection and maintenance program, etc.). This piece of software contains all 

properties of the respective element, mimics how that element evolves over time, and 

shares information with other agents. The agent structure of engineering systems is 

tailored to the dynamics of physical and chemical degradation and failure processes 

of system elements under variable usage conditions.  
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1.6. Contributions of this Research 

 The contributions of this research can be summarized as follows: 

1. Introduced a new classification of agents and agent hierarchy within the scope 

of system reliability modeling: Type I Micro-Agents, Type II Macro-Agents, 

and Type III Monitoring Agents. Three classes of agents are defined 

according to the different types of entities within the physical processes of 

degradation and failure at all levels of system hierarchy, from materials and 

piece parts to components and the entire system, also considering software 

and human elements. This also included the identification of the properties of 

each class of agents, considering the physical characteristics of their 

counterparts in the real system and their role in system evolution. 

2. Developed agent representation which presents a new approach to modeling 

complex interdependency and interactions between failure mechanisms of 

different elements of a system, specifically where the degradation process in 

one element (part, material or component) activates or accelerates the failure 

mechanisms of other elements. The associated terms are explicitly introduced 

into the PoF or empirical models of the system elements and their respective 

agents. This allows for bidirectional communication between agents where 

interacting failure mechanisms exist. 

3. Proposed a new definition of the learning property of intelligent agents. 

Developed guidelines for the selection of the agent learning algorithm 

depending on the agent class, availability of the PoF or empirical model of the 
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system element represented by the agent, and the types of data used for agent 

learning. 

4. Introduced a new definition of the key property of intelligent agents - 

autonomy in action. Autonomy was defined as agent’s ability to activate and 

deactivate itself during system evolution. There is also a proposed algorithm 

of agent activation and deactivation based on the most appropriate methods of 

uncertainty importance and sensitivity analysis. This new definition of the 

autonomy is a “core” contribution of this research. 

5. Identified the key distinctions between the agent autonomy and the existing 

methods of system reliability modeling. The autonomy property of intelligent 

agents and the capability of the agent autonomy to model interacting failure 

mechanisms of system elements make the agent autonomy fundamentally 

different from all existing methods of probabilistic PoF-based reliability 

modeling and simulation. These features bring more reality into reliability 

models, giving the agent autonomy an advantage over the traditional methods 

of system reliability modeling. 
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1.7. Outline of this Dissertation 

 The remainder of this dissertation is organized into eight chapters. Chapter 2 

defines research objectives and the choice of research approach. In Chapter 3, the 

definition of agents and agent classification is developed. Next, agent classes and 

their role in PPoF system model are described. Chapter 4 outlines the agent 

properties, while Chapter 5 and Chapter 6 are focused specifically on the learning 

property of agents. Chapter 7 provides detailed definition of the autonomy property of 

agents along with considerations of uncertainty characterization within the agent 

autonomy modeling. Chapter 8 presents a case study of a gas turbine aircraft engine 

structures as an application example. The conclusions and suggested future research 

are summarized in Chapter 9.  
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Chapter 2: Research Approach 

2.1. Concept Definition and Objectives 

Consider the hardware system of several interconnected components. Figure 

2-1 depicts a hierarchy of hardware system elements in the context of PoF, as 

proposed in [44]. Failure of such system relates to the failures of its components, 

which comprise several piece parts and materials. In turn, piece parts and materials 

fail due to specific failure mechanisms which are driven by several stress-strength and 

degradation-endurance factors influenced by operational and environmental 

conditions of the given system.  

Operational and environmental conditions and subsequently stress-strength 

and degradation-endurance factors (Figure 2-1) could be introduced deterministically 

or probabilistically depending on the degree of uncertainty. They are further used to 

build PPoF models of the individual failure mechanisms at the piece part/material 

level as a combination of the scientific knowledge of degradation processes and the 

uncertainties of operational variables, material properties and environmental 

conditions. Every item and feature in the system hierarchy in Figure 2-1 is further 

replaced by an intelligent autonomous software agent acting according to the system 

logic towards the final states of the system. Such agents are autonomously evolving 

over time, having access to the status of other agents and ability to intelligently react 

to any circumstances that may occur during the course of system operation within the 

given environment.  
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Figure 2-1: Conceptual System Hierarchy and Failure Dynamics 

 

 The objective of this research is to develop an agent-oriented approach to 

system reliability modeling as a hierarchy of intelligent autonomous agents powered 

to accomplish the following three tasks, as depicted on Figure 2-1: 

1. Develop representation of interactions between failure mechanisms at the 

piece part/material level within the PPoF modeling scheme of item 

degradation over time. 

2. Expand piece part/material-level PPoF models of degradation and failure 

processes to the component-level PPoF modeling framework, accounting for 

interactions between failure mechanisms of various piece parts / materials and 

components. 

Research Task 1:
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Failure Mechanisms at 
Part/Material level
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Environmental / Operating Variables:
External (e.g. ambient temperature, humidity, radiation, 

load, applied voltage, mechanical shock, vibration),

Internal (e.g. material properties, geometry, contact 

pressure, lubricant viscosity, velocity, other design 
parameters and operational characteristics)

Stress-Strength Variables, Degradation-
Endurance Variables (e.g. normal stress on surface, 
friction generated shear stress, shear strength, corrosion 

resistance, crack size, wear depth, distortion, corroded 
area, internal vibration of the part, crack growth rate) 

Parts / Materials (e.g. seal, scroll, bearing, shaft, tube, 
lubricant, gear, protective coating/plating, pipe, electrical 
wiring, bolt, connector, diode, capacitor, solder) 

Components (e.g. compressor, condenser, evaporator, 
control unit, actuator, motor, gearbox, pump, boiler, valve)

System (e.g. aircraft engine, air management system, 
hydraulic system, flight controls, electrical system, fuel 
system, wheels and brakes system, landing gear, 

windshield assembly, doors, fuselage)

Failure Mechanisms (e.g. fatigue cracking, wear, creep, 
pitting corrosion, hydrogen embrittlement, electromigration, 
dielectric breakdown, whisker growth, stress corrosion 

cracking, oxidation) 
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3. Link component-level PPoF models into the system-level PPoF representation 

of degraded states of the system and system failures, considering interactions 

between failure mechanisms at all levels of system hierarchy. 

 Monte Carlo based sampling will be used to combine PoF knowledge about 

piece parts/material and components within direct simulation to assess system 

reliability. Using this approach, the probabilities of possible system states are 

sampled based on state probabilities of all different variables included in PoF models 

of piece parts / materials and components, yet consistent with dynamic configuration 

of the system. As such, system level reliability modeling becomes as simple as 

checking the status of system elements at any given time. This way, the most relevant 

system model will be available at every “snapshot” in time. The same concept applies 

to any engineering system containing not only hardware components, but also 

software and human elements. 

 

2.2. Research Approach 

 The concept of the intelligent agent-oriented approach to reliability modeling 

was first introduced by M. Azarkhail [1]. In that research, a direct and efficient 

intelligent agent-oriented simulation is proposed to model the reliability of a long-

term complex dynamic system. In this system simulation, every component of the 

system is replaced by an intelligent piece of software that represents the properties 

and behaviors of its real counterpart from the system. These software agents act 

autonomously to mimic their counterparts in real system. The failures are simulated 

using Monte Carlo-type methods applied to a system of intelligent computer agents. 
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That computer-based direct simulation is made to account for the dynamic failure 

logic, design, and control characteristics of the system. The software agents are meant 

to support the failure logic of the system that evaluates the final state of the complex 

system, given the final state of the components. The agent-oriented approach also 

assumes that there are always enough PoF models that explain the underlying failure 

phenomena of the system components and piece parts.  

 The current research is intended to expand M. Azarkhail’s approach [1] by 

developing a universal, structured framework of agent autonomy supporting the PoF-

driven modeling of complex engineering systems with competing and interdependent 

failure mechanisms. The scope of this research includes the definition of agents, the 

development of the multi-agent system hierarchy, and system reliability modeling 

techniques. As identified in Section 2.1, the developed agent autonomy should allow 

modeling interdependent and interacting failure mechanisms within the dynamic 

system.  

 Consider a system built of hardware parts and components (Figure 2-2) where 

each component contains one or more piece parts. Each piece part is decomposed into 

failure mechanisms. Failure mechanisms as real causes of failures can be linked to 

certain physical or chemical degradation processes developing within the piece part 

over its life. Stress-strength and degradation-endurance variables are responsible for 

the progression of failure mechanisms and linked to the operational and 

environmental conditions (coupling factors) by PoF equations of physical or chemical 

degradation processes (enablers), as shown on Figure 2-2. Part reliability measure is 

life to failure (or time to a certain degree of degradation) given by physical model of 
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stress/strength or degradation/endurance vs. life which obtains its probabilistic 

representation where uncertainty exists. 

 

 

Figure 2-2: Probabilistic-Mechanistic Framework of System Reliability 

 

 Part interdependency arises from the exposure to the same environmental and 

operational conditions, as well as due to the same design, materials, components, 

location in the system or other factors that lead to common cause failures. 

Interdependency also means that the degradation process in one piece part could be 

influenced by the failure mechanisms of other piece parts, resulting in cascading 

failures and possibly altering the physical nature of the progressing failure 

mechanisms of one or more piece parts due to load redistribution or other changes in 



 22 

 

the operational conditions. This is especially important in modeling complex 

components or systems with several competing failure mechanisms which are 

progressing at all levels of the system hierarchy, as shown in Figure 2-2. The 

elements of the probabilistic-mechanistic framework of system reliability, from 

coupling factors to the PPoF life model, are defined on the right side of the diagram 

in Figure 2-2, while the arrows depict interdependent elements. 

 Depending on the depth of engineering knowledge about the degradation and 

failure processes, failure mechanisms could be defined at the component or at the 

sub-system level, while PoF equations of degradation and the PoF life model could be 

replaced by an alternative empirical representation. In addition, the same concepts as 

described above for a hardware system (shown in Figure 2-2) apply to any 

engineering system containing software and human elements in addition to hardware 

parts and components. 

 Figure 2-3 provides an example of a probabilistic-mechanistic framework of 

system reliability for an aircraft cargo door system. Reliability of the positioning 

mechanism, for instance, is driven by degradation and failure measures of three 

components: life to fatigue failure for the roller guide fitting, fatigue crack size for the 

roller guide, and damage due to wear for the roller. Dashed lines in Figure 2-3 show 

interactions between the failure mechanisms of the system elements. For example, the 

progression of the roller wear leads to the increased vibration of the roller, which in 

turn, impacts the shear stress of the roller as well as the cyclic stress of the roller 

guide. The PoF model of roller guide fatigue mechanism (equation of fatigue crack 
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size) and the PoF model of roller wear (equation of wear depth) should include 

additional terms corresponding to the roller vibration. 

 

 

Figure 2-3: Example of System Hierarchy for Positioning Mechanism of Aircraft Cargo Door 

 

 An example of the probabilistic-mechanistic life model of a hardware part, 

particularly time-to-failure model of a ball bearing, is given by Figure 2-4. This PPoF 

model was developed from physical principles considering critical variables that 

contributed to the failure of ball bearings. The obtained PPoF model was then 

converted into a PPoF agent-oriented representation of bearing reliability.  
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In order to integrate a PPoF representation of system reliability into an agent-oriented 

framework, each element of the system hierarchy is replaced by an agent designed 

with a level of intelligence that allows it to handle its needs in the system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4: Probabilistic-Mechanistic Reliability Life Model of Ball Bearing 

 

 Similar to computer science and artificial intelligence, in system reliability 

modeling, agents are viewed as intelligent autonomous entities that are capable of 

effective operation over time in dynamic environments. One of the main reasons for 

introducing the agent-oriented approach in both areas is the necessity to model all 

aspects of system dynamics. This means that a complex system comprised of many 

interacting elements in changing environments should be able to react accordingly to 

any changes in the components and environments in runtime as well as consider all 
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time-dependent interactions and interdependencies between the system elements, and 

to do so autonomously and based on agent roles and the rules of system evolution. 

One of the key tasks of this research, therefore, is modeling two-way interactions 

(shown by dashed lines in Figure 2-4) as “feedback loops”: while the lower level 

simple variables (such as coupling factors) are the inputs to much more complex 

variables at higher levels of the hierarchy (such as stress-strength and degradation-

endurance variables), the latter may impact the state of lower level variables. 

 A multi-agent approach to reliability modeling is explained in the next chapter 

and the structure of agents replacing each element of the engineering system is 

discussed along with definition and classification of agents and their properties. The 

hierarchy of autonomous intelligent agents and agent properties has been developed 

in this work based on the concepts of computer agents described in Chapter 1, the 

definitions of agent autonomy for reliability modeling introduced by M. Azarkhail 

[1], and the objective of the PoF representation of degradation and failure processes 

of dynamic engineering systems with interacting failure mechanisms. 

 It must be noted that, while agent definition and classification developed in 

this research makes provisions for representation of all elements of the complex 

engineering system (hardware, software and human factors), the concepts of agent 

autonomy are demonstrated only for hardware parts and components in order to limit 

the scope to a reasonable size. 

 

 

 



 26 

 

Chapter 3: Definition and Classification of Agents 

3.1. Definition of Agents in the Context of System Reliability 

 This research defines an agent as a computer replica of any element of a 

system operational profile, such as characteristic or feature of a hardware part, 

component, software program, or human element, environmental factor or operational 

parameter, an attribute of inspection and maintenance program or mission profile. 

This computer replica is developed by a modeler based on the physical principles of 

degradation and failure of system elements operating in the context environment.  It 

contains all the properties of the respective variable, mimics changes of that variable 

over time, and communicates with other agents. To accomplish these tasks, each 

agent is structured to have a single output variable as a function of one or more input 

variables. Each input variable represents another agent, specifically its output 

variable. The general form of the agent output variable can be written as: 

   (          ) 

Equation 3-1 

where Y denotes a single output variable of an agent as a function of input variables 

X1, X2, …, Xn. The function f(∙) is a PoF-based or empirical model of the agent output 

variable, which can be either probabilistic or deterministic. Such agents are also 

called “multi-agents” because their evolution depends on the inputs from several 

other agents and inter-agent interactions during system degradation over time. There 

could also be agents which do not obtain any inputs from other agents. These are 

“self-sufficient agents”, agents that are not dependent on other agents for their own 
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development. Such agents have their independent output variables in the form of 

probability density functions.  

 It must be noted that an output of any multi-agent is always probabilistic due 

to uncertainties related to a function, f(∙), the input variables Xi, or both. An output of 

any self-sufficient agent is also probabilistic in accordance to the applicable 

probability density function (with fixed or uncertain parameters). Any characteristic 

or parameter given by a constant value should be treated as a constant and should not 

be assigned with an agent. If a certain quantity is deterministic but changes during 

system evolution in a known fashion (e.g. time variable) or according to the 

deterministically defined function of time (or other non-randomly varying quantity), 

such quantity is identified as an agent. 

 Agent classes and their relationship to the elements of a physical system in the 

context of system reliability modeling are defined further in this chapter.  

 

3.2. Classification of Agents in Reliability System Modeling 

 Different levels of agents can be defined, depending on the area of application 

of that intelligent agent autonomy. In order to allow modeling the progression of 

interdependent and interacting failure mechanisms at all levels of system hierarchy 

(Figure 2-2 and Figure 2-4), it is logical to identify types of agents according to the 

degree of dependency between various elements of the probabilistic-mechanistic 

framework of system reliability. This would include everything from coupling factors 

to the PPoF life model. Three classes of intelligent agents are proposed in this 

research for the agent-oriented reliability modeling of engineering systems: Type I 
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Micro-Agents, Type II Macro-Agents and Type III Monitoring Agents. Sections 3.2.1 

to 3.2.4 provide detailed definitions of three classes of agents and include a 

discussion on why this classification is important and novel for PoF-based system 

reliability modeling. 

 

3.2.1. Type I Micro-Agents 

 Agent classification starts with the highest granularity of agent autonomy – 

Type I Micro-Agents. Agents are assigned not at sub-system or module level, not 

even at component level, but to every feature and internal characteristic of a piece 

part, material, component, software, human element, and each external parameter 

affecting the degradation and failure mechanisms of system elements. In the context 

of the probabilistic-mechanistic framework of system reliability shown in Figure 2-2, 

Type I Micro-Agents represent both inter- and intra-coupling factors.  

 Type I Micro-Agents include five subclasses, Group A to Group E, in order to 

distinguish coupling factors of different natures, such as environmental and 

operational factors, material properties, design characteristics, performance 

parameters, mission attributes, software design features, and various aspects of 

human elements.  

 Type I Micro-Agents are introduced to represent the physical variables that 

lead to degradation and failure (such as environmental and operational conditions) or 

impact the nature of life limiting failure mechanisms and rate of degradation/failure 

(such as material properties, design characteristics, duty cycle and usage profile). 

These physical variables affect various elements of the system during system 
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evolution. This implies that each Type I Micro-Agent may be used as an input to 

several next level agents, specifically Type II Macro-Agents described in Section 

3.2.2. Such representation allows expressing the interdependency between the system 

elements which arises from the same design features, same functional requirements, 

or the exposure to the same environmental and operational conditions. Type I Micro-

Agents are needed to identify the “drivers” of degradation and failure processes 

within the PoF-based system reliability model. 

 Some examples of Type I Micro-Agents from each of five groups are shown 

in Table 3-1, Table 3-2, Table 3-3, Table 3-4 and Table 3-5. These tables are intended 

to serve as Type I Micro-Agents classification guidelines and do not provide a 

complete list of the elements as potential agents or impose any strict rules regarding 

agent assignment within the Type I Micro-Agents class. 

 

Table 3-1: Classification of Agents – Type I Micro-Agents, Group A 

Type I. Micro-Agents 

Group A. Usage Stress Variables (Intra-Coupling Factors) 

Variables External to Hardware, Software, Human Elements 

Group A1. Environmental Factors 

1.Temperature 

2. Thermal Cycling Range 

3. Humidity 

4. Moisture/Water Ingress 

5. Icing/Fog/Rain 

6. Concentration of reactive substances (salt, acids and bases) 

7. Dust, Dirt, Sand 

8. Grease, Oil, other contaminants 

9. Radiation 

10. Lightning 

11. Atmospheric Pressure 

12. Wind Speed 

13. Earthquake Strength 

14. Environment Factor Rating (Environmental Designation) for Hardware 

Examples: GB (Ground Mobile), AA (Airborne Attack), AIF (Airborne Inhabited Fighter) 
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Group A2. Operational Conditions, Maintenance Characteristics, Logistics 

1. Voltage 

2. Power 

3. Pressure 

4. Pressure Cycling/Pressure Impulse 

5. Vibration, Random or Sinusoidal 

6. Mechanical Load (e.g. Static Load, Amplitude of Dynamic Load) 

7. Mechanical Shock 

8. Acceleration 

9. Electromagnetic Impact 

10. Operating Speed 

11. Altitude 

12. Preventive/Corrective Maintenance (interval, goodness of repair/restoration factor) 

13. Software Application Type (Airborne, Strategic, Tactical, Process Control, other) 

14. Software Development Environment 

15. Software Test Coverage 

16. Number of Software Test Cases 

17. Software Fault Exposure Ratio 

18. Goodness of Repair (Repair Effectiveness) 

19. Inspection Interval 

20. Frequency of Preventive Maintenance 

21. Elements and Parameters of Preventive Maintenance Activities (tests, measurements, 

adjustments, application of lubrication solution, parts replacement) 

22. Repair Rate 

23. Weight of Passengers, Cargo 

 

Table 3-2: Classification of Agents – Type I Micro-Agents, Group B 

Type I Micro-Agents 

Group B. Exposure Time and Mission Parameters (Intra-Coupling Factors) 

Mission Variables External to Hardware, Software, Human Elements 

1. Accumulated Missions since Installation, Entry into Service, Overhaul, other milestone  

2. Accumulated Mission Hours or Operational Hours since Installation, Entry into Service, 

Overhaul, other milestone 

3. Calendar Time or Number of Cycles since Installation or since Operation Start 

4. Mission Profile Parameters (Mission Duration, Phases, Duration of each Phase) 

5. Duty Cycle of Hardware, Equipment Utilization Frequency, Duration of On/Off Cycle 

Examples: Duty Cycle is 50% (1 Operating Hour = 2 Mission Hours); Duty Cycle is 100% 

during Cruise Phase and 0% during Landing Phase 

6. Software Operational Profile/Usage Frequency 

7. Number of Cycles per Mission Phase 

8. Time in Storage/Inspection/Transportation/Assembly 

 

 



 31 

 

Table 3-3: Classification of Agents – Type I Micro-Agents, Group C 

Type I Micro-Agents 

Group C. Hardware Characteristics (Inter-Coupling Factors) 

Variables Internal to Hardware 

Group C1. Design Parameters and Manufacturing Characteristics  

1. Material properties  
Examples: Material Grade, Strength characteristics, Surface roughness, Surface defects, Hardness, 

Elongation, Microstructure, Lubricant type, Fluid viscosity, Additives, Material Constants (various) 

2. Shape/Geometry/Dimensions and Tolerances 

3. Design characteristics (various)  

4. Item Type, Grade, Style, Category, Quality Factor, other factors related to the item 
Examples (from MIL-HDBK-217F): Resistor Type (Fixed, Film, Insulated), Resistance Factor, 

Capacitor Type (Paper, By-pass, Filter, Blocking, DC), Capacitance Factor,  Quality Factors 

5. Configuration Attributes 
Examples: Number of parts/components of a certain type, location of parts/components in the 

assembly 

6. Manufacturing Process Attributes 
Examples: Manufacturing technology type, process grade, stress screening sample size, end of line 

testing applied, inspection frequency, category of acceptance test procedure 

Group C2. Performance Parameters and Functional Characteristics 

1. Voltage/Voltage Range 

2. Power 

3. Pressure (gas, fluid) 

4. Pressure Impulse 

5. Vibration 

6. Mechanical Load  

7. Torque 

8. Transition Rate (e.g. Heat Release Rate, Reaction Rate, other) 

9. Thermal Expansion 

10. Heat Dissipation 

11. Operating Speed 

12. Acceleration 

13. Processing Time 

14. Efficiency 

15. Capacitance 

16. Resistance 

17. Current/Current Density 

18. Impedance 

19. Noise 

20. Distortion  

21. Dimensions (Linear, Angular) 

22. Cycling Frequency 

23. Intensity (of Signal, Light, etc.) 

24. Flammability 
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Table 3-4: Classification of Agents – Type I Micro-Agents, Group D 

Type I Micro-Agents 

Group D. Software Design Parameters (Inter-Coupling Factors) 

Variables Internal to Software 

1. Number of LOC (Lines of Code) 

2. Modularity (Number or Complexity of Modules) 

3. Language Type 

4. Instruction Rate  

5. Number of Object Instructions in the Program 

6. Number of Errors Fixed in Time Interval 

7. Number of Faults Experienced in Test Case(s) 

 

Table 3-5: Classification of Agents – Type I Micro-Agents, Group E 

Type I Micro-Agents 

Group E. Human Factors (Inter-Coupling Factors) 

Variables Internal to Human Elements 

1. Performance Shaping Factors (PSF) of Human Behavior 

Examples: Experience/Knowledge, Psychological Stress, Safety & Quality Culture, Non-

task Related Load, Shift Handover, Fatigue, Procedure Availability, Procedure Quality 

2. Organizational Factors 

Examples: Structural Factors (related to organization structure and resource allocation), 

Behavioral Factors (related to responsibilities on the job, objectives, management 

commitment to reliability and safety of the product, methods and processes, training, 

performance measures, work compensation, etc.) 

3. Technology Factors 

Examples: Technological Complexity Factors (related to the degree of technological 

advancements of product commodity), Engineering Knowledge and Expertise Factors 

(related to engineering experience with the given commodity in the organization) 

 

 According to the above classification, Type I Micro-Agent is the simplest type 

of agents. Type I Micro-Agent may have no input from other agents. For example, if 

an ambient temperature agent is normally distributed, T ~ N(), then temperature, 

T, is the output variable of this agent, but there are no agents providing input 

variables to this ambient temperature agent. Otherwise, Type I Micro-Agents are 

dependent on other Type I Micro-Agents and Type II Macro-Agents as inputs and 

have a functional form defined by Equation 3-1. 
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3.2.2. Type II Macro-Agents 

 More complex agents at higher abstraction level are Type II Macro-Agents. In 

the context of the probabilistic-mechanistic framework of system reliability, shown 

on Figure 2-2, Type II Macro-Agents represent stress-strength and degradation-

endurance variables and life to failure (or time to degradation). Type II Macro-Agents 

can have any number of inputs from other agents. The simplest Type II Macro-Agent 

represents an independent random variable which has no inputs from other agents (for 

example, time to failure developed from pass/fail test data as Weibull probability 

distribution). More complex Type II Macro-Agents are expressed as a combination of 

two or more Type I Micro-Agents via the PoF model or the empirical function 

generally defined by Equation 3-1. The most complex Type II Macro-Agent may 

combine several Type I Micro-Agents, Type II Macro-Agents and Type III 

Monitoring Agents in a similar manner. In order to support the objective of PoF-

based modeling of system reliability, input agents should be combined into a Type II 

Macro-Agent by means of a PoF model as a mathematical relationship which is 

derived from the physical principles of degradation and failure of the associated 

element (such as hardware part or component). Empirical functions should only be 

used where PoF model is not available or where it cannot be utilized due to lack of 

knowledge.  

 General examples of Type II Macro-Agents are given in Table 3-6. Note that 

this table is not a complete list of potential Type II Macro-Agents, but rather the 

modeler’s guideline for assignment of Type II Macro-Agent classification.  
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Table 3-6: Classification of Agents - Type II Macro-Agents 

Type II Macro-Agents 
(Stress and Strength Variables, Time to Degradation or Damage Accumulation, 

 Life to Failure) 

Variables describing Failure Mechanisms of Hardware, Software Program or Human 

Elements 

1. Life to Failure or Time to Critical Degradation 

2. Degradation Measures - direct (crack size, distortion, wear depth, corroded area, etc.) 

3. Degradation Measures - indirect (various failure precursors) 

4. Rate of Degradation (wear rate, crack growth rate, creep rate, etc.) 

5. Strength Characteristics (tensile strength of structural part, creep strength, rated 

maximum operating temperature, rated voltage, corrosion resistance, etc.)  

6. Stress Parameters (mean or amplitude of tensile/bending/torsional stress, stress intensity 

factor, current density, etc.) 

7. Failure Rate or Failure Probability of Hardware Part or Component (failures per 

operating hour, probability of failure on demand, cumulative failure probability, etc.)  

8. Rate or Probability of Software Faults (probability of software faults within time 

interval, number of remaining software errors at a given time, etc.) 

9. Rate or Probability of Human Errors (probability of human error in a certain action 

(task) upon a part, component or system, accumulated number of human errors by a given 

point in time, etc.) 

 

 The fundamental difference between Type I Micro-Agents and Type II 

Macro-Agents lies in the type of variables that these agents represent. Type I Micro-

Agents are assigned to the physical variables that lead to degradation and failure. 

Type II Macro-Agents are needed to accomplish the main objective of the research – 

to introduce physics-of-failure knowledge into the system reliability model. Type II 

Macro-Agents are assigned to the degradation and failure characteristics of the 

system parts and components, such as mechanical stress, wear depth or life to failure. 

Each degradation or failure characteristic is a physics-of-failure-based function of 

several other degradation or failure characteristics, environmental and operational 

conditions, and/or other variables. This implies that several Type II Macro-Agents 

may share the same inputs from Type I Micro-Agents and Type II Macro-Agents, and 
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may become inputs to other Type II Macro-Agents or Type I Micro-Agents. Such 

representation allows linking the interdependent elements of system hierarchy and 

modeling interactions between failure mechanisms. 

 As such, a commonality between the multi-agents of Type I and Type II is in 

the representation of their output variables as functions of the output variables of 

other Type I Micro-Agents and Type II Macro-Agents. Similarly, the self-sufficient 

agents of Type I and Type II have their independent output variables given by 

probability distributions. This implies that the probability distribution of the element 

represented by an agent depends on the level of detail selected by the modeler and the 

uncertainty about the functional form of the agent output model and about each input 

variable (for the dependent agents, or multi-agents). The dependence of agent output 

uncertainty on the granularity of the agent representation via other agents was the 

main driver of the agent classification process presented in this research. This 

classification is intended to be flexible enough to model engineering systems of any 

composition and complexity. 

 As an example of the definition of Type II Macro-Agent, consider the Type II 

Macro-Agent life to fatigue failure of structural part, LF, given by Equation 3-2 as a 

function of cyclic stress: 

     SnALSAL F
n

F  lnln    

Equation 3-2 

The model parameters, A and n, could be represented by probability distributions or 

as constant values. Applied alternating stress, S, is the input variable (from the 

cyclic stress agent), and life to fatigue failure, LF, is the output variable. In turn, S 
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could be a Type I Micro-Agent, defined deterministically (e. g., constant amplitude 

during each phase of the mission) or probabilistically (if variation is present). The 

agent S could also be structured as a Type II Macro-Agent if it depends on other 

operational factors as inputs (e.g. pressure amplitude, vibration, temperature, thermal 

cycles, etc.) or if it is a function of time. 

 

3.2.3. Type III Monitoring Agents 

 Type III Monitoring Agents are intended to “monitor” the status of each 

hardware part, component, and system and communicate it as an output variable in a 

form of probabilistic measure of degradation or failure, such as: 

- Degree of damage accumulation (DA),  

- Remaining useful life (RUL),  

- Probability of reaching critical degradation limit,   

- Probability of failure. 

 Type III Monitoring Agents are assigned to each part and each component of 

the system and to the system itself, as summarized in Table 3-7. Each Type III 

Monitoring Agent is expressed as a combination of one or more Type II Macro-

Agents and/or other Type III Monitoring Agents. These Type II Macro-Agents and 

Type III Monitoring Agents are the input agents to the Type III Monitoring Agent of 

interest. The output variable of the Type III Monitoring Agent has a functional form 

defined by Equation 3-1, where the function f(∙) is a deterministic or probabilistic 

empirical model of the agent output variable which is developed according to 

degradation and failure logic of the item it represents (hardware part, component, or 
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the system). For example, deterministic failure logic of the item could be depicted by 

a fault tree or Bayesian belief network, and the function, f(∙), becomes a logic 

equation for a failure event (or reaching critical degradation limit). Degradation logic 

could also be given by a deterministic or probabilistic expression of the degree of 

damage accumulation or the remaining useful life according to the particular 

application. 

 

Table 3-7: Classification of Agents – Type III Monitoring Agents 

Type III Monitoring Agents 

Group A. Part Monitoring Agents 

1. Remaining Useful Life (RUL) at a given point in Time 

2. Degree of Damage Accumulation (DA) by a given point in Time 

3. Probability of Reaching Critical Degradation Threshold at a given point in Time  

4. Probability of Failure, Operational Availability, Reliability (Probability of Success) at a 

given point in Time 

5. Mean Time To Failure (MTTF), Mean Time Between Failures (MTBF), Mean Time To 

Repair (MTTR) at a given point in Time 

6. Failure Count within a given Time Interval 

Group B. Component Monitoring Agents 

1. Remaining Useful Life (RUL) at a given point in Time 

2. Degree of Damage Accumulation (DA) by a given point in Time 

3. Probability of Reaching Critical Degradation Threshold at a given point in Time  

4. Probability of Failure, Operational Availability, Reliability (Probability of Success) at a 

given point in Time 

5. Mean Time To Failure (MTTF), Mean Time Between Failures (MTBF), Mean Time To 

Repair (MTTR) at a given point in Time 

6. Failure Count within a given Time Interval 

Group C. System Monitoring Agent 

1. Remaining Useful Life (RUL) at a given point in Time 

2. Probability of Reaching Critical Degradation Threshold at a given point in Time  

3. Probability of Failure, Operational Availability, Reliability (Probability of Success) at a 

given point in Time 

4. Mean Time To Failure (MTTF), Mean Time Between Failures (MTBF), Mean Time To 

Repair (MTTR) at a given point in Time 

5. Failure Count within a given Time Interval 

 



 38 

 

 Type III Part Monitoring Agents are structured as a combination of Type II 

Macro-Agents associated with failure mechanisms of the given hardware part, 

aggregating information from Type II Macro-Agents according to the part 

degradation and failure logic. Type III Component Monitoring Agents collect 

information from Type II Macro-Agents and Type III Part Monitoring Agents 

associated with PoF of the given hardware component, and aggregate the input agents 

information according to the component failure logic or according to the definition of 

degraded states of the component. Type III System Monitoring Agent collects 

information from Type III Component Monitoring Agents, Type III Part Monitoring 

Agents and Type II Macro-Agents, and aggregates this information into the system 

reliability measure according to the system degradation and failure logic. 

 Type I Micro-Agents and Type II Macro-Agents representing software and 

human elements are the inputs into the associated Type III Monitoring Agents, 

providing information about software programs or human elements that interact with 

system hardware and impact the status of hardware parts, components and the entire 

system reported by Type III Monitoring Agents. 

 A probabilistic representation of the output variable of Type III Monitoring 

Agent is obtained by means of simulation using deterministic or probabilistic function 

f(∙) and probability distributions of the input agents.  

 To summarize, Type III Monitoring Agents are introduced to render the 

system reliability assessment (RUL, DA) that is an ultimate objective of the agent-

oriented modeling. This assessment relies on the input from degradation and failure 

characteristics of the parts and components (represented Type II Macro-Agents) 



 39 

 

under the influence of physical variables that lead to degradation and failure (defined 

by Type I Micro-Agents). 

 

3.2.4. Agent Hierarchy 

 It is shown that the proposed agent classification supports representation of all 

three main elements involved in the operation of engineering systems: hardware parts 

and components, software programs and human actions. Multilevel agent 

classification presented in this section was also developed to allow modeling of any 

level of system complexity, from a system consisting of one piece part to a complex 

combination of multiple hardware parts and components controlled by software 

programs and subjected to human actions. Further, each element of an engineering 

system could be represented at any level of detail preferred by the modeler, starting 

from the lowest level of system hierarchy, such as environmental and operational 

conditions, manufacturing process parameters, maintenance schedule, material 

properties and geometrical dimensions of hardware piece parts, number of lines in a 

software code, characteristics and behavioral patterns of human actions. Type I 

Micro-Agents are used to represent such variables. Every aspect of the degradation 

and failure mechanisms of hardware, software faults and human actions are modeled 

by Type II Macro-Agents which represent complex, dependent characteristics of 

system elements. Interactions and interdependency between system elements are 

explicitly expressed within the structure of the associated Type I Micro-Agents and 

Type II Macro-Agents via the Type I Micro-Agents and Type II Macro-Agents they 

share as inputs. This shows that the proposed agent structure and classification 
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scheme allows bidirectional communication between Type I Micro-Agents and Type 

II Macro-Agents where complex interdependencies between failure mechanisms of 

the system components exist. Type III Monitoring Agents define the degradation or 

failure status of the hardware parts, components and the entire system, considering 

the evolution of all system elements and their interactions. 

 The resulting agent hierarchy may combine agents of all classes for an 

efficient mechanistic representation of complex engineering systems that comprise 

hardware parts and components in combination with software and human elements, as 

shown on Figure 3-1. The arrows indicate that agents exchange information by 

communicating the required inputs to each other. This information exchange is a key 

feature of agent autonomy because it allows modeling of interactions and 

interdependency between system elements. Note that Type I Micro-Agents exchange 

information with other Type I Micro-Agents and with Type II Macro-Agents, while 

Type II Macro-Agents exchange information with agents of all three classes. Type III 

Monitoring Agents exchange information with other Type III Monitoring Agents and 

with Type II Macro-Agents.  

 It can be concluded that the classification of agents, introduced in this chapter, 

covers various elements of engineering systems and usage profiles to support 

probabilistic-mechanistic reliability modeling of the dynamic behavior of system 

elements in a continuously changing environment.  
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Figure 3-1: Agents Classes and Information Exchange 

 

 Figure 3-2 shows an example of system architecture in terms of the elements 

of degradation and failure processes and their interactions. Each element of the 

system hierarchy on Figure 3-2 will be further assigned with an intelligent agent, 

either a simple Type I Micro-Agent (such as for coupling factors), or a complex Type 

II Macro-Agent, comprised of several Type I Micro-Agents and Type II Macro-

Agents of the lower levels of the system hierarchy (such as for stress-strength and 

degradation-endurance variables, life to failure or time to degradation at failure 

Ambient Temperature

Type I Micro-Agents:
Group A1. 

Usage Stress Variables:
Environmental Factors 

Type II Macro-Agents:
Damage Accumulation 

Variables, Life to Failure 
(Hardware)

Type III Monitoring Agents:
Group B.

Component Monitoring Agents

Thermal Cycling Rate

Random Vibration

Type I Micro-Agents:
Group A2. 

Usage Stress Variables:
Operational Conditions and 
Maintenance Characteristics

Applied Load

Load Cycles per Mission

Type I Micro-Agents:
Group B. 

Exposure Time and 
Mission Parameters 

Accumulated Load Cycles

Geometry Factor

Type I Micro-Agents:
Group C1. 

Hardware Characteristics: 
Design Parameters and 

Manufacturing Characteristics

Maximum Shear Stress

Operating Velocity

Type I Micro-Agents:
Group C2. 

Hardware Characteristics: 
Performance Parameters and 

Functional Characteristics 

Initial Crack Size

Number of LOC

Type I Micro-Agents:
Group D. 

Software Design 
Parameters 

Instruction Rate 

Performance Shaping Factor s

Type I Micro-
Agents:

Group E. 
Human Factors

Number of Process Steps

Crack Size 

Wear Amount

. . .
. . .

. . .. . .

. . . . . .

. . .

. . .

Type II Macro-Agents:
Damage  Accumulation  

Rate
(Hardware)

Crack Growth Rate 

Surface Wear Rate

. . .

Type II Macro-Agents:
Stress and Strength  

Variables 
(Hardware)

Cyclic Stress

Maximum Shear Stress

. . .

Type II Macro-Agents:
Software Reliability 

Measures
(Software) 

Fault Exposure Ratio 

Rate of Software Program Faults 

. . .

Type II Macro-Agents:
Probability of Human 
Error, Organizational 

Capabilities to Fulfill Tasks
(Human  Elements) 

Success Likelihood Index

Human Error Probability 

. . .

Type III Monitoring Agents:
Group A. 

Hardware Part Monitoring Agents 

Remaining Useful Life at a given Time for Part 1

. . .

Part Failure Probability at a given Time for Part 2

Remaining Useful Life at a given Time for Component 1

Remaining Useful Life at a given Time for Component 2

. . .

Type III Monitoring Agent:
Group C.

System Monitoring Agent

Remaining Useful Life at a given Time 
Ty

p
e 

I M
ic

ro
-A

ge
n

ts
Ty

p
e 

II
 M

ac
ro

-A
ge

n
ts

Ty
p

e
 II

I M
o

n
it

o
ri

n
g

A
ge

n
ts

Failure Probability at a given Time 

. . .



 42 

 

mechanism level), or a Type III Monitoring Agent at the part level or at the system 

level of the hierarchy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Flowchart of System Hierarchy 

 

 As shown on Figure 3-2, an output of one agent in the system hierarchy 

becomes an input to others. A change in the output variable of one agent propagates 

through the system hierarchy to update the output variables of other agents. 

Furthermore, two Type III Part Monitoring Agents collect information from five 

failure mechanisms (FM), combined further by a Type III System Monitoring Agent 

into the reliability model of the system. Properties of agents reflecting the roles of 

various elements within system hierarchy are defined in the next chapter. 
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Chapter 4: Agent Properties 

 Properties of intelligent agents in the context of agent autonomy for reliability 

modeling were identified by M. Azarkhail [1]. While the same definitions of agent 

properties are used in current research, some properties, specifically agent autonomy 

and learning, were further developed in this research and described in this chapter. 

 

4.1. Internal Knowledge of Agent 

 This property was introduced and briefly explained in [1] as part of the 

reasoning/learning characteristic. In the current research, internal knowledge of an 

agent, also called “agent’s beliefs”, is defined as the information about an agent 

output variable, Y, according to the model function, f(∙) (per Equation 3-1, given input 

agents Xi), or according to the probability density function (PDF) of an agent output 

variable with no inputs from other agents. Agent’s beliefs are updated when new data 

become available. This process is called learning and is explained further in this 

section (see definition of learning property of agents in Section 4.3).  

 A history of beliefs comprises an agent’s memory about the past events that 

occurred to the agent during system evolution. Agent’s memory is preserved upon 

every update as the agent evolves over time, following the degradation process of the 

system. It is due to the nature of the agent learning process that agents can preserve 

what they have learned from previous experiences and upgrade this knowledge during 

further updates when new data arrive. An agent’s beliefs also include the agent’s 
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status as active or inactive, according to autonomous properties of agents (described 

below). Agent’s beliefs are shared with other agents within agent autonomy (as 

explained in communication/cooperation property of agents) and therefore, are 

categorized as the public knowledge of an agent. 

 In addition to an agent’s beliefs, internal knowledge of an agent may include 

special rules of agent behavior during system evolution as a set of goals that the agent 

is intending to pursue in addition of the main goal of self-evolution (described in 

Section 4.4). Special rules of agent behavior are formulated by the modeler and built 

into the computer program of a given agent. They are only accessible by the agent 

itself and are not shared with other agents, thus categorized as private knowledge of 

the agent. Special rules of behavior may include, but are not limited to the following 

examples: 

- Special conditions causing a change in the failure logic equation for a 

complex item represented by the agent, such as a hardware component or a 

system modeled by a Type III Monitoring Agent (for example, failure of 

oxygen supply is removed from the aircraft failure logic for the flight phases 

at altitudes below 12,500 feet). 

- Change of the critical degradation threshold for a hardware part or component 

represented by the Type III Monitoring Agent due to changes in 

environmental or operational conditions (such as a reduction in the critical 

crack size when an aircraft is switching to a different mission type with more 

severe operational conditions). 
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- When more than one failure mechanism is working within a component at 

different times of system evolution, the Type III Component Monitoring 

Agent is designed and programmed to consider the appropriate one based on 

the circumstances (for example, an agent representing erosive wear 

mechanism due to sand blasting becomes an input agent to Type III 

Monitoring Agent only when the aircraft mission takes place in a sandy 

environment). 

 

4.2. Reactivity 

 The reactivity property of agents was identified in [1] as agents’ ability to 

perceive their environment by responding to changes that occur. This includes both 

the sensing and the reaction stages of the action. It is due to this property that the 

agents remain alert about the changes to the system without the need to modify the 

agents. 

 In the context of PoF-based agent autonomy within this research, reactivity is 

defined as an agent’s ability to gain information about the status of other agents, 

particularly the input agents associated with the input variables Xi (per Equation 3-1). 

The sensing capability is the agent’s ability to track the current beliefs of the input 

agents, particularly the status of their output variables in a functional form defined by 

Equation 3-1. It is triggered when an update of the input agents’ beliefs is requested 

upon the availability of new data. The agent reacts to the changes of the input agents’ 
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beliefs by updating the probability distribution its output variable, Y, by means of 

simulation using the updated input variables, Xi (i = 1, 2, …). 

 According to the above definition, the reactivity property is not applicable to 

Type I Micro-Agents and Type II Macro-Agents which have no inputs from other 

agents. 

 

4.3. Learning/Reasoning 

 The learning property was defined in general terms by M. Azarkhail [1] as an 

agent’s ability to learn from previous experiences in order to be able to continuously 

adapt its behavior to the environment. This current research develops a detailed 

definition of the learning property and introduces methods of learning for three 

classes of agents:  

1. The process of updating an agent’s beliefs using new data is called learning. 

The learning property supports the development of the internal knowledge of 

an agent and involves updating the agent’s beliefs about the agent output 

variable, Y, according the model function, f(∙) (per Equation 3-1), given the 

input variables, Xi (i = 1, 2, …), specifically: 

a. Update the functional form of the PoF or empirical model, where a 

function f(∙) is probabilistic or deterministic, as applicable. 

b. Update the parameters of the PoF or empirical model given by a 

function f(∙), if f(∙) is probabilistic function. 
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c. Obtain the updated distribution of the agent output variable, Y, by the 

simulation over the updated model function, f(∙), given the current 

(updated) beliefs about input variables, Xi (i = 1, 2, …). 

For Type I Micro-Agents and Type II Macro-Agents that do not have inputs 

from other agents, the learning property involves updating the functional form 

and/or parameters of the PDF of the agent output variable.  

2. The essence of the agent learning task is to infer posterior knowledge about 

the agent output function, f(∙), or about PDF of the agent output variable (for 

agents with no inputs) from prior knowledge and the observed data 

(evidence), and to do it recursively as new data become available. This 

posterior knowledge (updated beliefs) is obtained by combining the prior 

knowledge (past beliefs) and new observations (data) by means of the learning 

methods. The choices of learning methods for Type I Micro-Agents and Type 

II Macro-Agents depend on the nature of the physical characteristics 

represented by the agent and the available data. A detailed definition of the 

learning methods for Type I Micro-Agents and Type II Macro-Agents, their 

applicability and conditions of use are outlined in Chapter 5. The learning 

property of Type III Monitoring Agents is discussed in Chapter 6. 

 

4.4. Proactivity/Goal Orientation 

 According to [1], proactivity is defined (for an agent that has a complex goal) 

as a collection of several goals that could be switched depending on the 
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circumstances. An example of this, given in [1], is when more than one failure 

mechanism is involved and the agent is capable of the activation of the appropriate 

mechanism based on the circumstances. Proactivity of an agent is seen as a goal 

oriented judgment based on the agent’s knowledge of goal preferences. 

 In this research, all agents have a goal of self-evolving. Each agent follows the 

dynamics of the environment and uses new data to update the agent’s beliefs about 

the status of the agent output, Y, according to the updated model function, f(∙) (per 

Equation 3-1), or according to the updated PDF of the agent output variable (for 

agents with no inputs). This goal is supported by the reactivity and learning properties 

of an agent.  

 Any additional goals may be set for an agent by the modeler by setting the 

special rules of agent behavior (as part of an agent’s internal knowledge property 

described in Section 4.1). In this case, the proactivity of an agent will also include an 

agent’s capability to choose the correct behavior in the given circumstances. 

 

4.5. Communication/Cooperation 

 Social activity or the communication property of agents was developed in [1], 

and defined as an agent’s ability to interact with other agents when appropriate. In 

addition, the cooperation property was defined for the agents that share their goals 

and knowledge while providing a solution for a common task. In order to cooperate 

successfully, agents need to communicate their goals, tools and status, and do so 

using one of the two main approaches: the blackboard approach (indirect 
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communication by accessing a common location for information posted by other 

agents) and the message passing approach (agents exchange messages directly with 

each other using defined protocols). 

 The blackboard approach was used to establish the communication property of 

agents in this research. In the context of PoF-based agent autonomy, agents 

communicate by sharing their beliefs with other agents. Information about the agent 

output variable, Y, is expressed by either a function f(∙) (per Equation 3-1, given input 

agents Xi), or by the PDF of the agent output variable (for agents with no inputs), and 

is accessible for all other agents within the agent autonomy. This sharing allows an 

agent to cooperate with other agents during the system evolution by providing a 

required input to some agents and using others as inputs.  

 

4.6. Autonomy 

 Agent autonomy was generally defined in [1] as one of the key characteristics 

of agents; the agents are not only capable of evolving over time with no supervision, 

but also have some degree of control over their own actions (e.g. self-activation and 

self-deactivation). This current research extends the definition of the autonomy 

property and proposes methods of autonomy execution. 

 In the context of PoF-based agent autonomy developed in this research, an 

agent may change its status with respect to the form of the input it provides to the 

other agents. According to the definition of agents in Section 3.1, the output variable 

of any agent is always probabilistic (i.e. represented by probability distribution of a 
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certain kind). An agent is said to have an active status if the probabilistic form of the 

agent’s output variable is used by other agents as an input to their model functions, 

f(∙) (per Equation 3-1). As an alternative, a constant value, representing the agent’s 

output variable, could be used as an input to other agents. This constant value could 

be defined as the mean, median, certain percentile, or other numerical value 

associated with the probability distribution of the agent’s output variable. In this case, 

the agent is said to have inactive status. Change of status from active to inactive is 

called agent deactivation, and the reverse is called agent activation. Agents activate 

and deactivate themselves according to defined criteria. For example, if we assume 

that the agents “A” and “B” are the two inputs for the agent “C”, then 

activation/deactivation criteria for the agents “A” and “B” will be based on the 

contribution of the uncertainty (variability) of their output variables into the 

uncertainty (variability) of the output variable of the agent “C”. This contribution can 

be quantified using methods of uncertainty importance (also known as sensitivity 

analysis). Recommended methods of uncertainty importance for the modeling of 

agent autonomy along with the considerations of activation/deactivation criteria are 

discussed in Chapter 7. 

 Agent autonomy reduces the computation time, brings only the most relevant 

elements into the system reliability simulation, and allows achieving a better quality 

of prior information that is needed for the future use of agents in the agent autonomy 

of similar systems. It is the autonomy property that makes the agent-oriented 

approach fundamentally different from all existing methods of reliability modeling. 
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4.7. Mobility 

 The mobility of an agent is described in [1] as the ability to navigate within a 

communication network, specifically when a program needs to perform a task on a 

distributed network. 

 The current research defines agent mobility in the context of PoF-based agent 

autonomy for system reliability modeling as the ability to reuse agents in other 

system applications.  As agents learn and execute their autonomy during system 

evolution, they become richer in their knowledge about the elements they represent. 

Specifically, each agent continuously improves its “expertise” about the model of the 

agent output variable and inputs from other agents. In addition, each agent gains the 

knowledge about its “importance” to other agents (i.e. about the contribution of the 

uncertainty in the agent output variable into the uncertainty in the output variable of 

other agents which are using a given agent as an input). As such, the agents become 

“experts” about the associated elements of the system hierarchy. These “experts” 

could be reused as unrelated but relevant experience for other applications to reduce 

computational effort, minimize data requirements, and provide “mature” prior 

information for further learning.  

 In order to reuse an agent in similar applications, the agent should be relevant 

and have an active status. The relevance of an agent stems from a similar design and 

functionality of the associated element of the system in the new versus the baseline 

application. If an agent is relevant but inactive, it is introduced into the new 

application as a constant (not an agent).    
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4.8. Summary of Agent Properties 

 Figure 4-1 provides a summary of agent properties. It can be seen that agent 

properties are linked together to support the agent’s Goal of self-evolution. 

Reactivity, Learning and Autonomy ensure that internal knowledge of an agent is 

updated when new data become available. Agents communicate by sharing their 

internal knowledge with other agents. Agents are mobile (i.e. can be used within other 

agent systems in similar applications), which is especially beneficial when agents 

become “experts” after several rounds of updates of their beliefs and they deliver 

“mature” information about a system element. The data types for updating an agent’s 

beliefs could include fully or partially relevant data for the given system (such as test 

results or operational records) or generic data (such as published industry data or 

reliability prediction standards). 

 Agent properties for each class of agents are shown in details on Figure 4-2, 

Figure 4-3, Figure 4-4 and Figure 4-5.  The main distinction between the three classes 

of agents is in the nature of their communication, reactivity, learning, autonomy and 

mobility properties, specifically: 

1. Agents share their beliefs (communicate) with other agents laterally within 

their class and vertically with agents from one class above and one class 

below (as applicable). For example, Type II Macro-Agents provide inputs to 

other Type II Macro-Agents, to Type I Micro-Agents, and to Type III Part and 

Component Monitoring Agents. Type I Micro-Agents share their beliefs with 

other Type I Micro-Agents and with Type II Macro-Agents. Type III System 

Agent exchanges information only with Type III Part and Component 
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Monitoring Agents, while the latter also share their beliefs with each other and 

Type II Macro-Agents. 

2. The reactivity property applies to all agents except Type I Micro-Agents and 

Type II Macro-Agents that don’t receive any inputs from other agents. All 

other agents receive information from their input agents, specifically the 

updated beliefs of the input agents.  

3. The learning process of Type I Micro-Agents and Type II Macro-Agents that 

don’t have any inputs from other agents (i.e. self-sufficient agents) involves 

updating the type and parameters of the PDF of the agent output variable 

using data. The dependent Type I Micro-Agents, Type II Macro-Agents and 

Type III Monitoring Agents (or multi-agents) with probabilistic model of 

agent output variable learn in three-step process: 1) updating the functional 

form of the agent output model using data (if applicable), 2) updating the 

agent output model parameters using data, and 3) updating the probability 

distribution of the agent output variable by simulation over the updated agent 

output model given the latest beliefs of the input agents. The learning process 

of Type I Micro-Agents, Type II Macro-Agents and Type III Monitoring 

Agents with deterministic model of agent output variable involves a two-step 

process: 1) updating the functional form of the agent output model using data 

(if applicable), and 2) updating the probability distribution of the agent output 

variable by simulation over the (updated) agent output model given the latest 

beliefs of the input agents. For any class of agents, the parameters of the 

probability density function of the agent output variable obtained by 
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simulation could be defined by selecting the best fit probability distribution to 

the simulated sample. 

4. Autonomy and mobility properties apply to all agents with the exception of 

the Type III System Monitoring Agent which remains in an active state at all 

times during system evolution and typically is not mobile (unless reused as a 

Type III Sub-System Monitoring Agent representing a sub-system within 

another system).   

5. Agents update their beliefs and the status (by learning and autonomy) upon 

availability of new data. It is recommended that the update frequency is 

defined by the modeler considering the value of information. The value of 

information principle implies that agent beliefs and status update occurs if the 

new information noticeably changes the uncertainty of the agent’s output 

variable (for example, coefficient of variation (CV) changes by 10%). 

Alternatively, the agent beliefs and status update frequency could be based on 

practical considerations of the amount of new data, frequency of data arrival 

from different sources and for different agents within the agent hierarchy, 

other criteria. 

 Chapter 5, Chapter 6 and Chapter 7 provide detailed definitions of learning 

and autonomy properties proposed for three agent classes introduced in this research. 
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Figure 4-1: Summary of Agents Properties  
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Figure 4-2: Properties of Type I Micro-Agents (Multi-Agents) 
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Figure 4-3: Properties of Type II Macro-Agents (Multi-Agents) 
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Figure 4-4: Properties of Type I Micro-Agents and Type II Macro-Agents (Self-Sufficient Agents) 
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Figure 4-5: Properties of Type III Monitoring Agents 
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Chapter 5: Learning Property of Type I and Type II Agents 

5.1. Introduction 

 The essence of agent learning was described in Chapter 4 as the recursive 

updating of agent’s beliefs every time new data became available. During recursive 

(sequential) updating, new data are added to the current beliefs of an agent.  

To further define agent learning, consider an agent with an output variable given by 

Equation 3-1. The first step of the update of agent’s beliefs involves updating the 

parameters of the agent output model given by a function f(∙) (per Equation 3-1), if 

the function f(∙) is probabilistic (has uncertain parameters).  

 In the case if a function f(∙) is deterministic, the agent’s beliefs update 

involves the change of parameters and/or a functional form of the agent output model 

if the model error does not satisfy acceptability criteria defined by the modeler. In 

such case the agent output variable is given by deterministic function, f(∙), as follows:  

   (  )   (  )            

Equation 5-1 

In the above equation Y denotes a single output variable of an agent as a function of 

the input variables, X1, X2, …, Xn, and(Xi) is an additive error term. If necessary, 

multiplicative error model could be used as an alternative to the additive error model 

given by Equation 5-1. Multiplicative error model (also called ratio model) implies 

that the magnitude of error is proportional to the value of the output variable. In the 

additive error model (also called absolute difference model) the magnitude of error 

does not depend on the value of the output variable. Multiplicative error model could 

be transformed into an additive error model by a non-linear transformation (such as 



 61 

 

logarithm transform). The suitability of either type of error term is typically evaluated 

based on several criteria such as the model fit to the data, predictive capability of the 

model, the degree of separation of the systematic and random errors (the uncertainties 

resulted from the difference between the model and the average system responses vs. 

the uncertainties causing the data variations between experimental runs), applicability 

to the wide range of variation of the output [63]. Additive errors are normally 

distributed, while multiplicative errors are highly skewed and follow gamma or 

lognormal distribution. More complex error models could be used, but there is the 

risk of over-fitting, and such models quickly lose their predictive capability. A 

complex error term also implies poor choice of measurement system or inadequate 

model of the output variable, f(∙). 

 In the second step of an agent’s beliefs update, once the functional form and 

the parameters of the agent output model are updated, the probability distribution of 

the agent output variable is updated by simulation over the updated model function 

(probabilistic or deterministic) using the latest beliefs of the input agents.  

 For Type I Micro-Agents and Type II Macro-Agents that do not have inputs 

from other agents, the agent’s beliefs update involves only one step, changing the 

type and/or parameters of the PDF of the agent output variable by finding parametric 

distribution function having the best fit to the new data. 

 This chapter introduces the learning methods for Type I Micro-Agents and 

Type II Macro-Agents which can be used to define the model of the agent output 

variable, if the model is not available, and update the parameters of the identified or 

already known model. Changing (updating) the functional form of the model during 
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agent learning does not require any special methods in addition to the common 

criteria of model error evaluation (e.g. normality of additive error, a comparison of 

the error value to the value of the output variable) and the modeler’s engineering 

judgment. Special reasons for model type change could be programmed into the 

agent’s internal knowledge (particularly the special rules of behavior). Updating the 

probability distribution of an agent output variable by means of simulation will not be 

discussed further in this chapter because simulation algorithms are well known and 

widely applied [64], [65]. 

 With respect to the format of the data required for agent learning, discrete 

measurements are obtained when the system elements are sampled at certain time 

points during system evolution. Continuous measurements must be discretized. 

Where indirect measurements of the output quantity, Y, are used, a reasoning 

algorithm (causal relationship) is required to correlate a change in the measured 

variable (also called precursor variable) with a change in agent output variable, Y. 

It is desirable that such correlation is based on the PoF model rather than a statistical 

function because use of purely statistical transfer function implies that the first 

principles are omitted and extrapolation to new conditions is at risk to be invalid if 

non-monotonic relationships or complex interacting failure mechanisms are present. 

 Several existing methods of data analysis were chosen as learning methods for 

Type I Micro-Agents and Type II Macro-Agents, as summarized in Table 5-1 and 

discussed further in this chapter.  
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Table 5-1: Applicability of Learning Methods for Type I and Type II Agents 

Learning Method 

Type I Micro-Agents 

(with No Inputs) 
 

Type II Macro-Agents  

(with No Inputs) 

Type I Micro-Agents  

(with One or More 

Inputs) 
  

Type II Macro-Agents  

(with One or More 

Inputs) 

Parametric Distribution 

Analysis (classical)   

Model-based Parametric 

Distribution Analysis 

(cumulative damage)  

  

Time Series and Trend 

Analysis for Degradation 

and other Trend Modeling 
  

Machine Learning and 

Pattern Recognition 

Methods (excluding Bayesian 

Fusion methods)  

  

Bayesian Inference   

Bayesian Fusion   

 

 Applicability of each learning method to a specific Type I Micro-Agent or 

Type II Macro-Agent is identified according to the criteria that comprise the 

following considerations, as a minimum: 

1. Dependency of the agent output variable on other variables 

a. Independent variable Y, or  

b. Variable Y(t) is a function of one or more input variables ti (i = 1, …). 

2. Availability of PoF or empirical model of the agent output variable 

a. A model is not available, or 

b. A model is available, the model is probabilistic or deterministic (i.e. 

model parameters are uncertain or fully defined), linear or nonlinear. 

http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Blue_check.svg/600px-Blue_check.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Blue_check.svg/600px-Blue_check.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Blue_check.svg/600px-Blue_check.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Blue_check.svg/600px-Blue_check.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Blue_check.svg/600px-Blue_check.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Blue_check.svg/600px-Blue_check.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Blue_check.svg/600px-Blue_check.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Blue_check.svg/600px-Blue_check.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Blue_check.svg/600px-Blue_check.svg.png
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3. Time dependency of the agent output variable 

a. Time dependent (time trend in the output variable Y(t) exists, one of 

the input variables, ti, is time variable), or 

b. Not time dependent (no time trends in the output variable Y(t) exist). 

4. Type of agent output variable according to the continuity of data/information 

represented by the variable 

a. Continuous variable (represented by continuous distribution model), or 

b. Discrete variable (represented by discrete distribution model). 

5. Rate of change in the agent output variable over time (for time dependent 

variables) 

a. Slow change over time (gradual increase in degradation measure, 

accumulation of damage, such as crack growth to critical size), or 

b. Rapid change over time (acute change in degradation measure, rapid 

increase in accumulated damage, e.g., as brittle fracture, rapid crack 

propagation to rupture, crack arrest).  

6. Monotonicity of change in the agent output variable over time (for time 

dependent variables) 

a. Monotonic change over time (entirely non-increasing or non-

decreasing), or 

b. Non-monotonic pattern (e.g., cyclic changes, seasonal patterns). 

7. Types of data available for agent learning 

a. Direct measurements of the agent output variable, Y, or 
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b. Direct measurements of the agent output variable, Y(t), and the input 

variables ti (i = 1, …). 

8. Data sources 

a. Inspection and maintenance records. 

b. Data from sensors and monitors. 

c. Generic data. 

d. Expert opinion. 

 The next sections of this chapter include the guidelines for choosing an agent 

learning method based on the above criteria and provide application examples. 

 

5.2. Parametric Distribution Analysis (Classical) 

 Classical parametric distribution analysis [8], [66] - [70] can be used as an 

agent learning method for the Type I Micro-Agent or the Type II Macro-Agent 

assigned to a time independent, random variable with no inputs from other variables 

(i.e. no PoF or empirical model of the agent output variable exists). Classical methods 

of parameter estimation, least squares regression (LSR) or maximum likelihood 

estimation (MLE) method, are used to estimate the parameters of the best fitted 

distribution for the data. Each time new data emerge, it is added to the previously 

available data and the analysis is repeated for the updated data set. Any discrete or 

continuous parametric distribution can be used to represent the agent output variable. 

An extensive list of parametric distributions is given in publication [71]. The data that 

are required for agent learning include the direct measurements of the agent output 

variable, such as environmental or operational characteristic, time to failure/success, 
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etc. Typical data sources are the testing, inspection and maintenance records from 

field operation, and generic data sources. 

 For example, ball bearings are tested in a lab and the ball bearing temperature 

is considered a critical variable within physical failure model of the bearing. Even 

under a constant ambient temperature, the internal temperature of a ball bearing 

fluctuates depending on the operating conditions. If the relationship between the ball 

bearing temperature and the operating stresses cannot be reasonably established, then 

ball bearing temperature is defined as a Type I Micro-Agent with no input agents. 

The probability distribution model for the output variable of this agent is established 

using initial lab test measurements as normal distribution, N(). As the test 

continues, new measurements of bearing temperature arrive and are added to the 

initial data set, then the parametric distribution analysis is performed to obtain an 

updated normal distribution, N(), having the best fit to the updated data set. 

 The multivariate parametric distribution function can be viewed as a 

generalization of agent representation and learning through parametric distribution 

analysis for Type II Macro-Agents. For example, the bivariate normal distribution of 

Type I Micro-Agents X and Y forms a representation of the output variable of the 

Type II Macro-Agent, Z: 

 ( )   (   )  
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Equation 5-2 
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As new data become available, the distribution parameters are revaluated using all 

available data for the variable Z versus variables X and Y. 

 Table 5-2 provides two examples of the learning process of Type I Micro-

Agents: current density and temperature of the conductor. These Type I Micro-Agents 

could be used further as input agents to a certain Type II Macro-Agent, for example 

life to electromigration failure of electronic part. The type of model of the agent 

output variable (i.e. PDF of the current density, J, and PDF of the conductor 

temperature, T) did not change during the updating of agent’s beliefs, but the model 

parameters were updated using new data. 

 

Table 5-2: Examples of Agent Learning by Parametric Distribution Analysis 

Elements of 
Agent Learning 

Process 

Type I  Micro-Agent 

Current Density 
Temperature of the 

Conductor 

Input Variables 
from Input 
Agents 

Not applicable Not applicable 

Output Variable Current Density, J 
Temperature of the 

Conductor, T 

Model of Agent 
Output Variable 
- Past Beliefs 

Lognormal probability 

distribution, LN(, EF0),  
obtained by selecting best fit 

distribution for the measurements 

collected during the past test (6 

data points), where  is median 

and EF0 is Error Factor of the 

distribution  

Normal probability 

distribution, N(, 0), 
obtained by selecting best fit 

distribution for the temperature 

measurements collected during the 

past test (6 data points), where  is 

mean and 0 is standard deviation 

of the distribution 

Parameters of 
Agent Output 
Model 
- Past Beliefs 

 = 500,000 A/cm
2
, EF = 2, 

distribution parameters are 

obtained by MLE method 

 = 60C,  = 3C, 
distribution parameters are 

obtained by MLE method 

New Data 
Current density measurements 

obtained during accelerated test 

(3 data points) 

Temperature values obtained 

from the thermal model (3 data 

points) 
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Elements of 
Agent Learning 

Process 

Type I  Micro-Agent 

Current Density 
Temperature of the 

Conductor 

Model of Agent 
Output Variable 
- Updated Beliefs 

Lognormal probability 

distribution, LN(, EF1), 
obtained by selecting best fit 

distribution for the measurements 

collected during the past test and 

the current accelerated test 

combined (total of 9 data points), 

where  is median and EF1 is 

Error Factor of the updated 

distribution 

Normal probability 

distribution, N(, 1), 
obtained by selecting best fit 

distribution for the temperature 

measurements collected during the 

past test and obtained from the 

thermal model combined (total of 9 

data points), where  is mean and 

1 is standard deviation of the 

updated distribution 

Parameters of 
Agent Output 
Model 
- Updated Beliefs 

 = 600,000 A/cm
2
, EF = 

1.5, distribution parameters are 

obtained by MLE method 

 = 65C,  = 2C, 
distribution parameters are 

obtained by MLE method 

 

5.3. Model-Based Parametric Distribution Analysis (Cumulative 

Damage Model) 

 The output variable of the Type I Micro-Agent or the Type II Macro-Agent 

with one or more input agents can be represented by a parametric distribution if one 

or more parameters of that distribution are expressed by the PoF or empirical function 

of agent input variables (associated with the input agents). The agent output variable 

is not time dependent (i.e. no time trends in agent output variable exist, and none of 

the input variable is time variable). In this case the agent model will be given by the 

PDF as a combination of the probability distribution model (such as Weibull, 

lognormal, exponential, etc.) and the life-stress PoF relationship (such as Arrhenius 

model, inverse power law (IPL), exponential model, etc.) with uncertain parameters. 

The examples are Eyring-Weibull, IPL-exponential, Arrhenius-lognormal probability 

distribution functions. The MLE method is used to estimate model parameters. Some 
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of the input variables could be time-varying, so that the life-stress relationship and the 

maximum likelihood estimation of model parameters will take into account the 

cumulative effects of the applied stresses [72]. That’s why the described type of 

model is also referred to as a cumulative damage or cumulative exposure model. 

Each time new data set emerges, it is combined with all the past observations into one 

data set for a re-estimation of the parameters of the model-based probability 

distribution. The data set that is required for agent learning includes the direct 

measurements of the agent output variable (such as time to failure/success) and direct 

measurements of input variables (such as environmental or operational parameters, 

etc.). Typical data sources include test results, inspection and maintenance records 

from field operation. 

 For example, the Type II Macro-Agent representing time to fatigue failure of 

a component due to cyclic stress, S, could be modeled by Weibull-IPL probability 

distribution function,    (   |     ), as follows: 

 (   )      (    )      [ (    ) ] 

Equation 5-3 

The letter t in the above equation denotes time to failure, letters  K and n denote the 

model parameters, specifically,  is Weibull shape parameter, while Weibull scale 

parameter,  is expressed as IPL function of the cyclic stress, S: 

  
 

   
 

Equation 5-4 

 The probability density function given by Equation 5-3 is a combination of the 

empirical Weibull distribution model of the time to failure and life-stress PoF model 
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defined by Equation 5-4. Distribution parameters  K and n could be obtained by the 

MLE method. As new data for time to failure versus cyclic stress become available, 

the distribution parameters are revaluated using all available data combined.  

 

5.4. Time Series and Trend Analysis 

 The learning property of the Type II Macro-Agent assigned to a time 

dependent degradation variable could be modeled using various methods of time 

series and trend analysis, stationary or non-stationary [73], [74], [75]. Time series is 

defined as sequence of measurements of a numerical quantity collected at a regular 

interval. The available data recorded in chronological order are used to develop a time 

series plot which is further used to detect trends in the data over time and compare the 

trends across several data groups. The data are plotted on the vertical y-axis versus 

time on the horizontal x-axis. Trend analysis is used to fit a general trend model to the 

time series, and to provide forecasts (extrapolations of the trend model fits). The 

elements of the fitted equation are: t, representing the time variable (calendar hours, 

operational hours, cycles, expended life or an index of age, etc.), and Y(t), 

representing the value of the measured variable at time t. All other terms are the 

coefficients, i.e. numerical constants that are used to express the variable under 

consideration as a function of time. Some examples of trend models which can be 

assigned to the output variable of a Type I Micro-Agent or a Type II Macro-Agent are 

the following: 

 Regression model (cubic) 
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 ( )            
     

  

Equation 5-5 

 Exponential model 

 ( )      
       (      ) 

Equation 5-6 

 Sinusoidal model 

 ( )     (          
 )    (        ) 

Equation 5-7 

The time variable, t, in trend equations is an output variable of the Type I Micro-

Agent representing time (e.g. cycles, hours, months), being a single input to another 

Type I Micro-Agent or Type II Macro-Agent with output variable Y(t). The 

coefficients i (i = 1, 2, …) are the model parameters. Classical methods of parameter 

estimation, LSR or MLE, are used to obtain the model parameters. 

 A general form of the output variable of a Type I Micro-Agent or a Type II 

Macro-Agent is defined by the time series or trend model with a single input variable, 

which can be written as: 

     ttftY   ,
 

Equation 5-8 

where Y(t) is the agent output variable,  f(t,) is a mathematical function of the input 

variable, t, with the vector of model parameters ={0, 1,…, k}, and (t) is an 

additive error term, which is assumed to be a normally distributed, random variable 

with zero mean and standard deviation , as follows: 

 ( )         (   ) 

Equation 5-9 
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The variable t may represent not only a time variable, but also any other variable 

serving as an input to the stochastic variable Y(t). If necessary, multiplicative error 

model could be used instead of the additive error model given by Equation 5-8. 

 The learning properties of Type I Micro-Agents or Type II Macro-Agents that 

are assigned to a time dependent variable could also be modeled using trend analysis 

in cases when the agent has more than one input variable. Some examples of trend 

models for complex variables, Y(ti, i=1,…,n), representing the output variables of 

Type I Micro-Agents or Type II Macro-Agents as a combination of two or more input 

variables, t1, t2, …, tn, (associated with input agents), are the following: 

 Linear model 

 (          )                      

Equation 5-10 

 Nonlinear model 

 (     )          (     )       (     )      
  

Equation 5-11 

The coefficients i (i = 1, 2, …) are the model parameters. A general form of the 

output variable of a Type I Micro-Agent or a Type II Macro-Agent with the output 

variable defined by a trend model with multiple input variables can be written as: 

     TTfTY   ,  

Equation 5-12 

Y(T) is agent output variable,  f(T,) is a mathematical function of n input variables T 

= {t1 , t2, …, tn} with the vector of model parameters ={0, 1,…, k}, and (T) is an 

additive error term, which is assumed to be normally distributed random variable with 

zero mean and standard deviation , as follows: 
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 ( )         (   ) 

Equation 5-13 

 In order to choose the appropriate model, a model fit to the data is subject to 

graphical and quantitative techniques of model validation. For example, residual plots 

could be used to determine if the ordinary least squares assumptions are being met for 

the additive error term, such as the constant variance for different data groups, 

independence of variables and the normality of the distribution of residuals with zero 

mean. If these assumptions are satisfied and the value of standard deviation,  is 

relatively small, then the chosen model will have unbiased coefficient estimates with 

minimum variance. Otherwise, the modeler could decide to update the functional 

form of the model as part of the agent learning process or choose to use multiplicative 

error term.  

 Another method of time series analysis, decomposition, is used to separate the 

time series into the linear trend, seasonal components, and the error term, and to 

provide forecasts. Decomposition is used when the data exhibit either no trend or a 

constant trend, have constant seasonal pattern, and the seasonal component is either 

additive or multiplicative with the trend. The decomposition method determines the 

seasonal indices used to seasonally adjust the data and fits a trend line to the 

seasonally adjusted series. The trend and seasonal indices are further used to 

determine the predicted values and forecasts as a sum (additive case) or a product 

(multiplicative case) of the trend and seasonal components. Figure 5-1 shows the 

example of decomposition analysis for the temperature variable. 
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Figure 5-1: Results of Data Analysis by Decomposition  

  

 The data decomposition procedure produces a graph containing a trend line, 

observations, predicted values, and forecasts versus time (Figure 5-2). The predicted 

values and the forecasts are obtained from the fitted trend line multiplied by 

(multiplicative model) or added to (additive model) the seasonal indices. Each 

predicted value in this example of the additive model is a sum of the trend value and 

the corresponding seasonal index. Same applies to the forecasts. For example, for the 

second period, the trend component, obtained from the trend equation, equals 353.9, 

the seasonal index is -69.597, and their sum gives the predicted value for the second 

period as 284.3.  

 



 75 

 

 

Figure 5-2: Graphical Output for Decomposition Example 

 

The coefficients of the linear function, Y(t), and the seasonal indices (shown on 

Figure 5-1) comprise parameters of the model of the agent output variable, given in 

general form by equation: 

 (         )   ( )                                

Equation 5-14 

Such model applies to the output variable of the Type I Micro-Agent or the Type II 

Macro-Agent with the time variable as a single input variable. 

 Empirical mode decomposition (EMD) method of breaking down a signal can 

be viewed as a generalization of the decomposition techniques described above [75]. 

EMD is used, along with other analysis methods such as Fourier transforms and 

wavelet decomposition, to decompose non-linear and non-stationary time dependent 

variable into a finite number of components. 

605550454035302520151051

800

700

600

500

400

300

200

Index

T
e

m
p

e
ra

tu
re

, 
F

Actual

Fits

Trend

Forecasts

Variable

Time Series Decomposition Plot for Temperature, F
Additive Model



 76 

 

 The time series and trend analysis models described in this chapter can be 

used as agent learning methods for Type I Micro-Agents or Type II Macro-Agents, 

both independent agents (with no inputs from other agents) and agents with one or 

more input agents (one of which could represent time variable). These agents could 

represent time dependent degradation measures (such as crack size) or other time-

dependent or time-independent variables when the PoF or empirical model of agent 

output variable is not available. Every time new data become available, it is combined 

with all past observations into one data set for re-estimation of the time series or trend 

model parameters. The data set that is required for agent learning includes the direct 

observations of the agent output variable (such as degradation measure, 

environmental or operational characteristic, etc.) and direct measurements of input 

variables (such as time variable, environmental or operational parameters, etc.). 

Typical data sources are testing, inspection and maintenance records from field 

operation, and data recorded by sensors and monitors. Examples of Type II Macro-

Agent learning by trend analysis are given in Table 5-3.   

 It must be noted that several supervised machine-learning learning and pattern 

recognition procedures could also be used for time series and trend analysis. 

Application of machine-learning learning and pattern recognition methods of data 

analysis for agent learning is discussed in Section 5.5. 
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Table 5-3: Examples of Agent Learning by Time Series and Trend Analysis 

Elements of 
Agent Learning 

Process 

Type II  Macro-Agent 

Operating Temperature, 

T 
Current Density, J 

Input Variables 
from Input 
Agents 

Flight Time, t Voltage, V 

Output 
Variable 

Device Operating 

Temperature, T 
Diode Current Density, J 

Model of Agent 
Output 
Variable 
- Past Beliefs 

 ( )        (  

 )    (   )    (   )  

The above equation was 

obtained by selecting best fit 

model based on the physical 

nature of temperature 

change during flight cycle 

and using temperature 

measurements collected 

during three flight cycles.  
 

 

The PoF fundamentals dictate the 

following exponential model: 

 ( )  
  
 
[   (

 

  
)   ] 

where: 

I0 is the diode reverse saturation current 

(diode material constant), A/cm
2
 

A is the junction area, cm
2
  

V is applied voltage across the terminals 

of the diode (forward bias, V > 0), Volts 

VT is thermal voltage, Volts 

VT = kT/q, where 

q is absolute value of electron charge, 

k is Boltzmann's constant, 

T is absolute temperature (K), 

VT = 25.85 mV at room temperature 

(T=300K). 

The model is simplified for room 

temperature operation, as follows: 

 ( )    [   (
 

       
)   ] 

where J0 = I0 /A, A/cm
2
. 

Parameters of 
Agent Output 
Model 
- Past Beliefs 

Iterative algorithm was used 

to obtain model parameters, 

as follows: 
                   

The model parameter J0 was 

obtained by LSR method based on 

experimental measurements of the 

current density vs. voltage (6 data 

points), as follows:  

J0 = 25.0 A/cm
2 

New Data 
Temperature measurements 

collected during ten flight 

cycles (10 data points). 

Additional experimental 

measurements of current density vs. 

voltage (3 data points) 

Model of Agent 
Output 
Variable 
- Updated Beliefs 

Time model for operating 

temperature T is unchanged: 
 ( )        (  
 )    (   )    (   ) 

Exponential model for the current 

density J remains unchanged:  

 ( )    [   (
 

       
)   ] 
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Elements of 
Agent Learning 

Process 

Type II  Macro-Agent 

Operating Temperature, 

T 
Current Density, J 

Parameters of 
Agent Output 
Model 
- Updated Beliefs 

The iterative algorithm was 

used to obtain the updated 

model parameters using the 

temperature measurements 

collected during the total of 

six flight cycles (i.e. total of 

6 data points): 
                   

The updated parameter J0 was 

obtained by LSR method based on 

the current density vs. voltage 

measurements collected during the 

two rounds of experimentation (total 

of 9 data points):  

J0 = 24.5 A/cm
2
 

 

5.5. Machine Learning and Pattern Recognition Methods 

 Machine learning, a branch of artificial intelligence, deals with data 

representation and generalization. Representation of data instances and functions 

(patterns) evaluated on these instances are part of all machine learning methods. 

Generalization is the property that the measured variable will perform well on unseen 

data instances, allowing to make predictions of future behavior that is based on the 

known properties learned from the data. These approaches are based on statistical 

learning techniques from the theory of pattern recognition, and include supervised 

and unsupervised learning methods. Statistical models and algorithms of machine 

learning comprise the core of the data-driven approaches to prognostics and health 

management (PHM). Figure 5-3 shows the most common machine learning methods 

employed in PHM, detailed in publications [76] - [88].  
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Figure 5-3: Machine Learning Methods 

 

 Supervised learning is defined as the machine learning algorithm of inferring 

a function from labeled data called training data. The training data is a set of training 

examples, where each example is a pair of input object measures and a desired output 

value (also called a supervisory signal). A supervised machine learning algorithm 

analyzes the training data set and produces an inferred function for the output 

quantity. This function is used to map new data points to obtain a predicted value of 

the output. To be effective, the training data for machine learning algorithms must 

span the universe of system failures and operational conditions, which is impractical 

when dealing with complex engineering systems. 

 The task of unsupervised learning is finding hidden structures in unlabeled 

data. Since the data given to the learner are unlabeled, no error could be obtained to 

Data-Driven Approaches:

Machine Learning SupervisedUnsupervised

Kalman Filter (KF)

Particle Filters (PF) 
(Sequential Monte 

Carlo methods)

Generalized Parity 
Vector (GPV)

Lumped Parameter 
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K-Nearest Neighbor 
Classifier (KNN)

Sequential Probability 
Ratio Test

Mahalanobis 
Distance

Multivariate State 
Estimation Technique 

Symbolic Time 
Series Techniques

Self-Organizing 
Map

Artificial Neural 
Networks (ANNs)

Support Vector 
Machine (SVM)

Hidden Markov 
Model (HMM)

Euclidean Distance 
Clustering

Fuzzy C-Means 
(Fuzzy Clustering)

Decision Tree 
Classifier

Hierarchical 
Clustering

Extended Kalman 
Filter (EKF)

Least Squares 
Optimization

Fuzzy C-Means 
Classifier 

Naive Bayesian 
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Singular Value 
Decomposition
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Component 

Analysis (ICA)

Principal Component 
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Relevance Vector 
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evaluate a potential solution. Unsupervised learning is similar to the problem of 

probability density estimation in statistics (described in Sections 5.2 to 5.4). 

Unsupervised learning, however, also encompasses many other techniques that 

explain key features of the data. 

 While the machine learning approaches are suitable for all levels of system 

hierarchy from the piece part to the system, the above considerations suggest that 

unsupervised algorithms are preferred for the agent learning process. Furthermore, 

considering properties and capabilities of the available unsupervised methods, 

Kalman filter (KF) and extended Kalman filter (EKF) are generally recommended as 

learning methods of Type I Micro-Agents and Type II Macro-Agents where PoF or 

empirical model of the agent output variable exists. Applicability of KF and EKF 

depends on the model type: KF is suitable under the assumptions of the model 

linearity and Gaussian distribution of the agent output variable and the noise (error 

term), while EKF performs local linearization of the non-linear model. Both KF and 

EKF, along with several other unsupervised algorithms, are categorized as Bayesian 

fusion methods and discussed in details in Section 5.8. Other machine learning 

methods (supervised and unsupervised) could still be used for agent learning to the 

discretion of the modeler. For a detailed description of machine learning methods, the 

interested reader is referred to the literature. One of the recommended machine 

learning methods from a supervised category, Gaussian process regression, is 

described below in Section 5.5.1.  

 Similar to parametric distribution analysis and trend models, machine learning 

methods make no reflection on fault sites, operating conditions, and physical 



 81 

 

mechanisms of failure (i.e. the first principles are omitted). With exception of 

Bayesian Fusion methods, machine learning algorithms are used for agent learning 

when the physics-of-failure model of the agent output variable is not available. 

 Machine learning methods are suitable for Type I Micro-Agents or Type II 

Macro-Agents, both independent agents (with no inputs from other agents) and agents 

with one or more input agents (one of which could represent time variable). The 

required data for agent learning include direct measurements of the agent output 

quantity, Y(T), T = {t1 , t2, …, tn}, and the input quantities, ti (i = 1, …, n), where Y(T) 

is could be a degradation measure (e.g. crack size), environmental or operational 

characteristic. Typical data sources are sensors and monitors (usually in PHM 

applications). New data, when become available, are combined with all past 

measurements into the updated data set for a re-estimation of machine learning or 

pattern recognition model parameters.  

 Application examples include situations when a Type I Micro-Agent or a 

Type II Macro-Agent represents a failure precursor used as an indicator of part 

degradation in lieu of the physical model of degradation or failure [89]. A precursor is 

a random time dependent variable which could also be a function of other variables. 

Examples of failure precursors for electronic devices are reverse leakage current, 

forward voltage drop and power dissipation for diodes, leakage current/resistance for 

capacitors, and impedance changes for cables and connectors. Examples of failure 

precursors in mechanical systems are vibration of a gearbox [90], noise and vibration 

of ball bearings [91]. Failure precursor measurements are collected at certain intervals 

during the experiment or in field operation. Machine learning methods can be used to 
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recursively update the time trend model of such agent as it evolves over time, due to 

continuous change in the precursor following the degradation process of the item. A 

failure condition would be considered to occur when the precursor value has reached 

a known threshold. 

 

5.5.1. Gaussian Process Regression 

 Gaussian process regression (GPR) is non-parametric regression technique 

that provides an alternative solution to the model selection problem commonly seen 

in parametric models [78], [86], [87], [92]. GPRs are able to model complex non-

linear relationships that are often present in failure rate data. This model has received 

considerable attention recently due to the inherent flexibility provided in its Bayesian 

framework. The technique also provides a straightforward approach for modeling 

dependencies within the data.  

 Within a framework of agent autonomy, the GPR model could be used to 

represent the output variable of Type I Micro-Agents or Type II Macro-Agents 

having multiple input variables from other agents. The problem of learning in a 

Gaussian processes is finding suitable properties for the covariance function, 

specifically hyperparameters of the covariance function [78].  

 An example of GPR application to agent learning is the modeling of a certain 

reliability characteristic, such as failure rate, as a function of time (or accumulated 

mileage), aircraft or vehicle model (type), and usage conditions. Modeling the failure 

rate of a fleet of vehicles on a monthly basis using the GPR method is described in 
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publication [92]. An example of Type II Macro-Agent learning by means of the GPR 

is given in Table 5-4. 

 

Table 5-4: Example of Type II Macro-Agent Learning by GPR 

Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Automotive Tire Tread Wear Rate 

Input Variables 
from Input 
Agents 

Type I Micro-Agents: 

1. Accumulated Mileage Agent, M 

2. Vehicle Model Agent, V (3 vehicle models, assigned with 2 

indicator variables due to qualitative nature) 

3. Predominant Road Conditions Agent, R (3 road types, 

assigned with 2 indicator variables due to qualitative nature) 

Output 
Variable 

Tire Tread Wear Rate, WR 

Model of Agent 
Output 
Variable 
- Past Beliefs 

WR = f(X) is the observed tread wear rates for each vehicle 

during the month, defined as follows: 

1. Input vector X =(x1, x2, x3), where 

continuous variable x1 represents agent M, 

indicator variables x2, x3 represent agent V,  

indicator variables x4, x5 represent agent R 

2. Distribution of the log of the fleet rate of tire tread wear:   

   ( ( ))   ( ( )  (     ))             

   ( ( ))  ( ( )  (   )) 

3. The data outputs will be centered to have zero mean on 
the training data set, m(X) = 0. 

4. Possible periodic trend in tread wear rate is expected, leading 

to a periodic kernel function component. A smoothed model 

that could handle the noise present within the data is also 

required, leading to the addition of squared exponential and 

noise components. The resulting kernel function consists of the 

sum of squared exponential, periodic, and general noise 

components: 

 (     )  

  
    ( 

(     )
 
 (     )

   
 )    

    ( 
(     )

 
 (     )
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Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Automotive Tire Tread Wear Rate 

    (  (     )
 
 (     ))

   
 )   

      

where ij is a Kronecker delta which is one iff i = j and zero 

otherwise, P is diagonal 5-dimensional matrix with 

hyperparameters  through  along the diagonal and zeros 

elsewhere, each hyperparameter in matrix P corresponds to the 

respective term in the input vector X =(x1, x2, x3). 

5. The log-likelihood of data (X,Y) (reasoning property of the 
agent) is defined as: 

    ( |   )   
 

 
  [ (   )    

  ]    
 

 
   [ (   )  

  
  ]  

 

 
   (  )  

where  is the vector containing all hyperparameters and noise 

level parameter   
 , = ({P},  

 
)

T
. 
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Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Automotive Tire Tread Wear Rate 

Parameters of 
Agent Output 
Model 
- Past Beliefs 

The vector containing all hyperparameters and noise level 

parameter   
 : = ({P},  

 
)

T
 

The optimal values of the hyperparameters and noise level 

parameter were computed from the past training data in GPML 

Matlab code using conjugate gradient optimization [92]: 

 

Parameter  Value  

1 7.734 

 2 0.245 

 3 0.390 

 4 716.394 

 5 325.983 

 6 30.285 

 7 3.764 

 8 10.324 

 9 1.120 

 10 5.506 

 n 0.025 

 

Note:  

The chosen kernel function  (     ) allows for relevance 

determination, such as the optimal values of the 

hyperparameters within matrix P define the relevance of the 

contribution of the specific input within the overall model 

structure: large hyperparameter values indicate high relevance 

to the model, while small values indicate input covariates of 

lower importance to predicting the rate of tire tread wear. For 

example, hyperparameter 1 (corresponding to the odometer 

reading) is relatively small indicating low impact of 

accumulated mileage on tire tread wear rate. Relatively high 

values of hyperparameters 4 and 5 indicate high importance 

of road conditions on tire tread wear rate. 
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Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Automotive Tire Tread Wear Rate 

New Data 

The new set of training data is obtained from the collection of 

unscheduled maintenance actions on a fleet of similar vehicles 

that are used for various jobs in different locations. The data 

collection is performed on a monthly basis, and the objective is 

to understand any differences in the underlying tread wear rate 

that may exist across the fleet. The values in the input vector X 

are the various factors that may impact the tread wear rate for a 

vehicle tire in the fleet during a given month: accumulated 

mileage, M, vehicle model, V, and predominant road 

conditions, R. 

The new training data points were used to develop the Log-

GPR model with the X inputs associated with the month 

number and the Log(Y) being the log of the fleet tire tread wear 

rate each month.   

Model of Agent 
Output 
Variable 
- Updated Beliefs 

Same as “Representation of Output Set - Past Beliefs” 

Parameters of 
Agent Output 
Model 
- Updated Beliefs 

The optimal values of the updated hyperparameters and noise 

level parameter were computed, as follows: 

Parameter  Value  

1 24.629 

 2 0.297 

 3 0.405 

 4 987.541 

 5 412.974 

 6 22.113 

 7 5.365 

 8 8.174 

 9 3.156 

 10 3.704 

 n 0.003 
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5.6. Bayesian Inference 

 In Bayesian inference, the initial belief about the distribution of the 

parameters of the model of agent output variable (a priori distribution) is 

systematically updated according to Bayes' theorem based on new data (evidence) to 

obtain a posteriori distribution of the model parameters [68], [69], [93], [94]. New 

data are recursively added to the existing estimates, so that there is no need to 

combine new data with all past observations and to re-run the analysis. This reduces 

the computational time by building on the agent’s “memory” about the history of all 

past updates. Bayesian formalism is flexible enough to combine data from different 

sources, including partially relevant data. For these reasons, Bayesian inference is 

recommended as one of the primary methods of agent learning for Type I Micro-

Agents and Type II Macro-Agents. Bayesian inference applies when the PoF or 

empirical model of the agent output variable is or is not available, and can be used as 

parameter estimation method for the majority of functional forms of the agent output 

variable including standard parametric distributions, model-based parametric 

distributions (cumulative damage models), time series and trend functions 

(degradation or other trends), and some machine learning algorithms (e.g., Gaussian 

process regression [92]). 

 The required data for agent learning via Bayesian inference include direct 

measurements of the agent output quantity Y(T), T = {t1 , t2, …, tn}, and the input 

quantities ti (i = 1, …, n), where Y(T) is could be a degradation measure (e.g. crack 

size), time to failure/success, environmental or operational characteristic. Any type of 

data are useable, such as test results, inspection and maintenance records in field 
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operation, records from sensors and monitors (usually in PHM applications), data 

from generic sources, and expert opinion.  

 The examples shown in Table 5-5, Table 5-6, Table 5-7 and Table 5-8 

demonstrate different cases of Bayesian updating in the context of agent learning. 

Bayesian formulation takes a different form depending on the type of problem and the 

available data (evidence). When dealing with test or field data collected under time-

varying stresses, the life-stress relationship must take into account the cumulative 

effect of the applied stresses. Cumulative damage (cumulative exposure) models are 

described in publication [72], which presents a derivation of the model parameters by 

classical estimation methods. Bayesian formulation for the cumulative damage model 

parameters is demonstrated by the example in Table 5-7. It must be noted that 

Bayesian updating of the cumulative damage model parameters cannot be done 

recursively due to the nature of cumulative damage equations, and new data must be 

combined with all past observations in order to re-run the analysis. In this exceptional 

case, the only advantage of the Bayesian inference over the classical methods of 

parameter estimation is the ability to use the first set of prior estimates of model 

parameters available from the past before any data were obtained within the current 

study of system reliability.  

 A disadvantage of Bayesian inference as an agent learning method is 

significant computational effort. Software programs existing today (WinBUGS [120], 

[121], R-Dat, R-Dat Plus and BRASS [95]) have a limited ability to handle complex 

non-conjugate Bayesian formulations typical for most applications of homogeneous 

Bayesian inference (including Bayesian inference for cumulative damage model). A 
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software program R-Dat Plus also handles non-homogeneous Bayesian inference 

[95], but has similar limitations when complex non-conjugate Bayesian formulations 

are concerned.  Significant developments in this area are necessary. 

 

Table 5-5: Example of Type I Micro-Agent Learning by Bayesian Inference 

Elements of 
Agent Learning 
Process 

Type I  Micro-Agent 

Operating Temperature 

Input Variables 
from Input 
Agents 

Not applicable 

Output 
Variable 

Operating Temperature of the Component, T 

Model of Agent 
Output 
Variable 
- Past Beliefs 

Variation of operating temperature of the mechanical 

component is defined by normal distribution with parameters  

and , as follows: T N() 

Parameters of 
Agent Output 
Model 
- Past Beliefs 

The vector of model parameters: = ()
T
 

Prior beliefs about the agent output model parameters are 

established according to engineering knowledge and historical 

field data as follows: 

   (     )    (     ) 

where m1, s1, m2, s2 are known values. 

New Data 

Temperature measurements D{T1, T2, …, Tn} obtained from the 

field are used as an evidence to update prior beliefs of 

Operating Temperature Agent into the posterior distribution of 

the agent output model parameters,  and .  

Model of Agent 
Output 
Variable 
- Updated Beliefs 

The updated model of the agent output variable, T, is 

developed, as follows: 

1. Priori distributions of the agent output model parameters  

and  are defined in “Parameters of Agent Output Model - Past 

Beliefs” section of this table: 

   (     )    (     ) 

where m1, s1, m2, s2 are known values.  

2. Temperature measurements D{T1, T2, …, Tn} are used as data 

(evidence) for Bayesian updating. 
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Elements of 
Agent Learning 
Process 

Type I  Micro-Agent 

Operating Temperature 

3. The Likelihood function of the evidence (reasoning property 

of the agent): 

 ( |   )  
 

  
   [ 

 

   
∑(    )

 

 

   

] 

4. Priori distribution of the agent output model parameters is 

the following joint distribution of  and  (assuming their 

independence): 

  (   )  
 

    
   [ 

(    )
 

 (  ) 
]    [ 

(    )
 

 (  ) 
] 

5. Bayesian formulation for posteriori probability of the agent 

output model parameters according to Bayes’ theorem: 

 (   | )  
 ( |   )  (   )

∬ ( |   )  (   )    
 

6. Posterior predictive distribution of Operating Temperature 

variable resulted from the learning process becomes: 

 (̅ )  ∬ ( |   ) (   | )      

This formulation provides the new (updated) probability 

distribution of the agent output variable Operating 

Temperature, T. The term  ( |   ) represents a formulation of 

normal distribution of the variable T, N(): 

 ( |   )  
 

 √  
   ( 

(   ) 

   
) 

Parameters of 
Agent Output 
Model 
- Updated Beliefs 

Bayesian formulation for posteriori probability of the model 

parameters provides the updated beliefs about the agent output 

model parameters (as obtained in “Model of Agent Output 

Variable - Updated Beliefs” section of this table): 

 (   | )  
 ( |   )  (   )

∬ ( |   )  (   )    
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Table 5-6: Example of Type II Macro-Agent Learning by Bayesian Inference 

Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Life to Fatigue Failure 

Input Variables 
from Input 
Agents 

Type I Micro-Agents: 

Amplitude of Applied Alternating Stress, S 

Note: 

Life to Fatigue Failure Macro-Agent is not time dependent (no 

time trends exist). 

Output 
Variable 

Life to Fatigue Failure of Structural Part, N 

Note: 

The structure of this Macro-Agent and the respective Bayesian 

formulations are also shown on Figure 2-4. 

Model of Agent 
Output 
Variable 
- Past Beliefs 

1. PoF life-stress model of time to fatigue failure: 

  
 

    
 

where S is stress amplitude, K is proportionality constant and n 

is power parameter. 

2. The agent output variable N is assumed to follow lognormal 

distribution with shape parameter  and median defined 

according to PoF life-stress model of time to fatigue failure 

shown above:  

    (   ) 

where log-mean  is assigned as 

     (      )     (
 

    
) 

3. Life-stress multivariate lognormal distribution of time to 

fatigue failure variable N: 

 ( |       )

 
 

  √  
   [ 

 

 
(
   ( )     ( )      ( )

 
)

 

] 
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Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Life to Fatigue Failure 

Parameters of 
Agent Output 
Model 
- Past Beliefs 

The vector of model parameters: = (K, n, )
T
 

Priori distribution of agent output model parameters K, n,  is 

given by joint probability distribution derived from 

uninformative (uniform) prior distributions established based 

on engineering judgment: 

  (     )    ( )    ( )    ( ) 

where 

  ( )   (         ) 

  ( )   (         ) 

  ( )   (         ) 

New Data 

The data are obtained from accelerated fatigue test where stress 

amplitude S remains constant during the test. 

The test data D comprising F complete failure observations ti 

and S right censored observations Tj are used as evidence for 

Bayesian updating: D {(ti,Tj), i = 1, …F, j = 1, …, S}. 

Model of Agent 
Output 
Variable 
- Updated Beliefs 

The updated model of the agent output variable N is developed, 

as follows: 

1. Priori distribution of the agent output model 

parameters   (     ) is defined in “Parameters of Agent 

Output Model - Past Beliefs” section of this table. 

2. The test data D {(ti,Tj), i = 1, …F, j = 1, …, S} are used as an 

evidence for Bayesian updating. 

3. The Likelihood function of the evidence becomes: 

 ( |     )   (               |     )

 ∏ (  |     )∏ (  |     )

 

   

 

   

 

Reliability function in the above equation is given by: 

 (  |       )    ∫  ( |       )  

  

 

 

4. Bayesian formulation for posteriori probability of the agent 

output model parameters according to Bayes’ theorem: 

 (     | )  
 ( |     )  (     )

∭ ( |     )  (     )      
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Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Life to Fatigue Failure 

5. Posterior predictive distribution of Life to Fatigue Failure 

agent N is an outcome of the agent learning process: 

 (̅   )  ∭ ( |       ) (     | )        

This function provides the new (updated) probability 

distribution of the agent output variable Life to Fatigue Failure 

N. The term  ( |       ) represents a formulation of 

lognormal distribution of the variable N, as defined in “Model 

of Agent Output Variable - Past Beliefs” section of this table. 

Parameters of 
Agent Output 
Model 
- Updated Beliefs 

Bayesian formulation for the posteriori probability of the model 

parameters represents the updated beliefs about the agent 

output model parameters (as obtained in “Model of Agent 

Output Variable - Updated Beliefs” section of this table): 

 (     | )  
 ( |     )  (     )

∭ ( |     )  (     )      
 

 

Table 5-7: Example of Type II Macro-Agent Learning by Bayesian Inference 

Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Life to Failure (Cumulative Damage) 

Input Variables 
from Input 
Agents 

Type II Macro-Agents: 

Stress Variable, x(t) 

Type I Micro-Agents:  

Operational or Test Time, t (indirect input to Life to Failure agent 

via Stress Variable agent x(t)) 

Note: 

Life to Failure Macro-Agent is time dependent via Stress Variable 

agent x(t) 

Output 
Variable 

Life to Failure, L 

Model of Agent 
Output 
Variable 
- Past Beliefs 

1. The PoF life-stress model of time to failure L: 

 ( ( ))   (   )  [
 

 ( )
]
 

 

where stress variable x is a function of time t, x(t), parameter K is 

proportionality constant, n is power parameter,  is shape 

parameter and  is scale parameter (characteristic life) of Weibull 
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Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Life to Failure (Cumulative Damage) 

time-to-failure distribution W(,).  

2. Weibull reliability function is given by: 

 (   )     [ ( (   ))
 
] 

where the integral I(t,x) is cumulative damage equation: 

 (   )  ∫ [
 ( )

 
]

 

  

 

 

 

3. Weibull probability density function (pdf) is given by: 

 (   )  
 

 (   )
( (   ))

   
   [ ( (   ))

 
] 

Parameters of 
Agent Output 
Model 
- Past Beliefs 

The vector of the agent output model parameters: = (K, n, )
T
 

Priori distribution of model parameters K, n,  could take any form 

depending on the available engineering knowledge. For example, it 

could be joint probability distribution derived from uninformative 

(uniform) prior distributions established based on engineering 

judgment: 

  (     )    ( )    ( )    ( ) 

where 

  ( )   (         ) 

  ( )   (         ) 

  ( )   (         ) 

New Data 

The data are obtained from accelerated testing where stress x is a 

function of test time, x(t). 

Test data D comprising F complete failure observations ti and S 

right censored observations Tj are used as evidence for Bayesian 

updating: D {(ti,Tj), i = 1, …F, j = 1, …, S} 

Model of Agent 
Output 
Variable 
- Updated Beliefs 

Same as “Model of Agent Output Variable - Past Beliefs” 

Parameters of 
Agent Output 
Model 
- Updated Beliefs 

The updated beliefs about parameters of the agent output model are 

developed, as follows: 

1. Priori distribution of model parameters   (     ) is defined in 

“Parameters of Agent Output Model - Past Beliefs” section of this 

table. 
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Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Life to Failure (Cumulative Damage) 

2. The test data D {(ti,Tj), i = 1, …F, j = 1, …, S} are used as an 

evidence for Bayesian updating. 

3. The Likelihood function of the evidence is the following: 

 ( |     )  ∏ (     )∏ (     )

 

   

 

   

 

where xi = x(Ti), xj = x(Tj), Ti is the exact failure time of the i-th 

failure observation, Tj is the running time of the j-th suspension. 

Considering the equations of reliability function and probability 

density function (pdf), shown in “Model of Agent Output Variable 

- Past Beliefs” section of this table, the likelihood becomes: 

 ( |     )  

 ∏{
 

 (     )
( (     ))

   
   [ ( (     ))
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  ∏   [ ( (     ))
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Upon substitution of the equation of PoF life-stress model of time 

to failure L(x(t)) and the integral I(t,x) (given in “Model of Agent 

Output Variable - Past Beliefs” section of this table) the final 

expression of the likelihood is obtained as: 

 ( |     )  
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4. Bayesian formalism for the posterior distribution of agent output 

model parameters K, n and  can be expressed as: 

 (     | )  
 ( |     )  (     )

∭ ( |     )  (     )      
 

This posterior distribution of model parameters provides the new 

(updated) beliefs about the agent output variable Life to Failure, L. 
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Table 5-8: Example of Type II Macro-Agent Learning by Bayesian Inference 

Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Crack Size 

Input Variables 
from Input 
Agents 

Type I Micro-Agents: 

1. Applied Stresses, S: 

   1a) Cyclic Mechanical Stress,  

   1b) Frequency of the Applied Cyclic Load, v 

   1c) Corrosion Current, Ip    

2. Test Time (Number of Cycles of Load Application), N 

Note: 

Crack Size agent is time dependent via test time N. 

Output 
Variable 

Crack Size (Crack Depth) in a Structural Part, a 

Model of Agent 
Output 
Variable 
- Past Beliefs 

In the works [96] and [97], a combined probabilistic physics-

of-failure-based model for pitting and corrosion-fatigue 

degradation mechanisms is proposed to estimate the reliability 

of structures (such as pipes and steam generator tubes in power 

plants and oil pipelines). Bayesian updating formalism, 

described in [96] and [97], is shown in this table as an example 

of learning method for Type II Macro-Agent representing a 

degradation attribute of an item (specifically crack size of a 

structural part). 

1. PoF model connecting the environmental degradation factors 

with accumulated damage (i.e., crack depth, a) is the following: 

 (       )  
  (                    )    

  (                   )     [( 
                   ) ] 

where the applied mechanical and environmental stress agents 

are cyclic load frequency, , cyclic mechanical stress, , and 

corrosion current, Ip, and N is number of cycles of load 

application. The model parameters, A and B, depend on 

material properties only (i.e., they are independent of the 

effects of applied mechanical and environmental stresses). 

2. It is assumed that lognormal distribution represents the 

variability of crack size a, where  and  are the log-mean and 

log-standard deviation of the crack size distribution: 

 ( )    (   ) 

3. Using PoF model of the crack length, the log-mean of the 

crack size distribution is expressed as follows: 
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Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Crack Size 

 (       )  
   [                         

                          ( 
                    )] 

4. The corrosion-fatigue model is separated into pitting-

corrosion and corrosion-fatigue parts, dividing the above 

equation into the following two: 

   (     )    [  
                       ] 

   (     )    [  
                       ( 

                    )] 

5. Substituting above two equations into lognormal distribution 

model of crack size a yields the conditional lognormal 

distribution functions of the crack size a given stress conditions 

and cycles of load, for the pitting corrosion and the corrosion-

assisted fatigue parts: 

 (     |            )  

 
 

        √  
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[  (     )

   (   
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 (     |            )  

 
 

        √  
   { 

 

    
 [  (     )

   (   
      

         
       

    ( 

        
       

        ))]
 

} 

where spc and scf are the standard deviation of the log-normal 

distribution of crack size when pitting-corrosion or corrosion-

fatigue is dominant, respectively. 

Parameters of 
Agent Output 
Model 
- Past Beliefs 

Vector of the agent output model parameters:(A, B, spc, scf )
-1

.  

Parameters A, B, spc, scf  were initially estimated using the 

generic data produced from a benchmark model and used as 

prior estimates of the PoF model parameters within Bayesian 

updating framework (shown in “Model of Agent Output 

Variable - Updated Beliefs” section of this table). 
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Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Crack Size 

New Data 

The data  {                 } are obtained during pitting-

corrosion and corrosion-fatigue lab testing conducted under the 

constant stresses. The data include number of cycles Ni, applied 

stresses Si (pitting-corrosion current, applied mechanical loads, 

load frequency) and crack size measurements. 

Model of Agent 
Output 
Variable 
- Updated Beliefs 

Same as “Model of Agent Output Variable - Past Beliefs” 

Parameters of 
Agent Output 
Model 
- Updated Beliefs 

Updated beliefs about parameters of the agent output model are 

developed, as follows: 

1. The likelihood functions for the pitting corrosion and the 

corrosion-assisted fatigue parts are: 

 (           |     )

 ∏ (     |            )                

   

   

 

 (           |     )

 ∏  (     |            )                 

      

   

 

where, Ntr and Nf are transition and final number of cycles in 

the corrosion-fatigue experiment, respectively.  

2. Test data  {                 } are used as an evidence for 

Bayesian updating. 

3. Bayesian formulation for posteriori probability of the crack 

size model parameters  is the following: 

 ( | )  
 ( | )  ( )

∭ ( | )  ( )  
 

Upon substitution of the expressions of data likelihood 

functions for the pitting corrosion and the corrosion-assisted 

fatigue parts into the above equation will obtain updated form 

of posterior probability of crack size model parameters : 
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Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Crack Size 

 ( | )   (           |                 )  

 
 (           |     ) (           |     )  ( )

∫  (           |     ) (           |     )  ( )  
 

As an outcome of agent learning, this probabilistic function 

provides the updated beliefs of the agent crack size a, 

specifically the updated distribution of the agent output model 

parameters, vector . 

 

5.7. Overview of Data Fusion Methods 

 The ultimate goal of the agent-oriented PoF modeling of system reliability is 

to evaluate the progression of the degradation processes within a system in order to 

predict the long-term evolution of damage accumulation and the failure time based on 

the anticipated future usage profile. The necessary data for agent learning are often 

obtained from various sources. It is critical to be able to combine all independent 

sources of information in order to achieve a more accurate assessment of system 

reliability. Further discussion about data fusion pertains to hardware parts, but 

conceptually similar approaches may also apply to software and human elements of 

the system. 

 Data fusion methods are especially useful when data are collected during in-

field health monitoring in addition to the available data from other sources, such as 

reliability testing, in-service inspection and maintenance records, published generic 

data, and engineering analysis. If an automated health management system is the 

source of data for agent learning, then the fusion of data and information can happen 
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at different levels [98], as shown in Figure 5-4. At each level, the outcomes of the 

previous levels are fused together with the objective to improve the overall 

prognostics of time to failure. 

 

 

 

Figure 5-4: Data Fusion Architecture for Type II Macro-Agents 

 

 At the lowest level (Level 1 on Figure 5-4), data coming from an array of 

sensors or inspection by an operator can be combined to validate the signals or to 
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the quantity or quality of interest. Machine learning methods (described in Section 

5.5) and trend analysis techniques (described in Section 5.4) can be utilized to 

combine (fuse) the signals from multiple sensors into an output feature. The 

combination of available sensors and signal processing routines is also known as a 

virtual sensor (soft sensor/analytic sensor). A schematic representation of artificial 

neural network as a virtual sensor is shown in Figure 5-5 [98]. A virtual sensor may 

be implemented as an artificial neural network, a Kalman filter, a look-up table, a 

fuzzy-logic expert system, or another similar mapping tool of machine learning or 

trend analysis. In terms of agent-oriented system modeling, the lowest level of data 

fusion means that output variables of multiple Type I Micro-Agents (variables 

measured by each sensor or by human operator) will form another Type I Micro-

Agent or Type II Macro-Agent (a new feature formed by fusion) which learns by 

means of the chosen fusion method (from the available machine learning or trend 

analysis methods described in Sections 5.4 and 5.5). 

 

 

Figure 5-5: Artificial Neural Network as a Virtual Sensor 
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(Neural Network)
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 Once feature extraction is performed on signals from the individual sensors, 

the extracted features are combined to obtain better information about the item of 

interest. For instance, in acoustic emission (AE) monitoring described in [99], the AE 

count rate feature is calculated by first extracting the AE count feature directly from 

the raw signals, and then calculating its rate of change with respect to elapsed fatigue 

cycles. Another example is when a feature related to the particle count and size in a 

bearing’s lubrication oil was fused with a vibration characteristic, such as kurtosis 

[98]. The combined result yielded an improved confidence about the bearing’s health. 

Several fusion architectures exist for processing the multi-sensor data during different 

stages within Level 1 data fusion, the most common are described in [98]. An agent-

oriented model developer will choose the appropriate architecture based on the sensor 

network size, amount of data collected, required accuracy, and available 

computational resources. 

 Data fusion at Level 2 is performed by means of the Bayesian inference 

described in Section 5.6 through the PoF or empirical model of failure for the item of 

interest. The most complex knowledge fusion occurs at Level 3, where experience-

based information such as legacy failure rates and physics-based modeling 

architectures are incorporated with signal-based data. The most common fusion 

approaches are [98]: 

1. Bayesian Fusion 

 Bayesian fusion is based on the recursive Bayesian estimation 

technique for the fusion of information from multiple sources. Recursive 

Bayesian estimation (Bayes filter) is a probabilistic approach for estimating an 
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unknown probability density function recursively over time using incoming 

uncertain observations (noisy measurements) and a mathematical process 

model that describes the evolution of the state variables over time. This 

method is recommended for agent learning when data fusion is required, as 

shown on Figure 5-4 for “Type II Macro-Agent Damage Characteristic D”. A 

detailed description of the Bayesian fusion methods and their application to 

agent learning is outlined in Section 5.8. 

2. Dempster-Shafer Fusion 

 The Dempster-Shafer reasoning method generalizes the Bayesian 

inference to support not only a single hypothesis but also the union of 

hypotheses, which could contain any possible hypotheses including a nested 

hypothesis (a hypothesis that is a subset of another hypothesis), non-mutually 

exclusive (overlapping) hypotheses, and an ignorance hypothesis. The 

Dempster-Shafer theory of evidence and Bayesian inference produce identical 

results if all the hypotheses in the study are mutually exclusive and are not 

nested.  

 The Dempster-Shafer methodology is often used to combine the sensor 

outputs where subjective judgments are present. The Dempster-Shafer fusion 

approach lacks a well-established decision theory, whereas the Bayesian 

decision theory maximizes the expected utility and is almost universally 

accepted. The above definitions suggest that Dempster-Shafer fusion may be 

used as an agent learning method in cases where the data are coming from 

various sources (different sensors, inspection records), some of the available 
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data are subjective, and human interactions are present. Specifically, different 

types of sensors may use different physical principles, cover different data 

space, provide data in different formats, and the generated data can have a 

different resolution and accuracy. In addition, human inspection records may 

contain subjective judgments and impose the same challenges as noted above 

for the sensors data. The Dempster-Shafer theory of evidence could be used as 

a generalized fusion solution to overcome data context difficulties and 

efficiently combine the outputs from multiple sensors and human inspection 

data.  

3. Neural-Network Fusion 

 A well-accepted application of artificial neural networks (ANNs) is 

data and feature fusion. This method however, requires large amount of 

training data, which is not expected to be available when the fusion of signal-

based data and physical model predictions is required. This type of data fusion 

is not recommended as an agent learning method; however, it could be used 

when applicable, to the discretion of the modeler. 

 

5.8. Bayesian Fusion Methods 

 Bayesian fusion, also known as Bayes filtering or recursive Bayesian 

estimation, is one of the most common data fusion methodologies. It involves the 

recursive estimation of the unknown probability density function over time [98]. 

Recursive Bayesian estimation has two elements: a time update and a measurement 

update [100]. In the context of agent learning, the time update comes from the 



 105 

 

understanding of previous values of the agent output variable and how they relate to 

the current point in time according to the PoF or empirical model of the agent output 

variable. The measurement update involves inferring information from observations 

made at the current point in time. Recursive Bayesian estimation combines both 

elements to improve the systemic understanding of state evolution of the associated 

system element. For a comprehensive review of the concept of recursive Bayesian 

estimation and the existing methodologies of Bayesian fusion, the interested reader is 

referred to publications [100], [101].  

 Bayesian fusion is suitable as a learning method for Type I Micro-Agents or 

Type II Macro-Agents with one or more input agents. The PoF or empirical model of 

the agent output variable should be available and model parameters must be fully 

defined (i.e. all model parameters are assigned with known constant values). In 

addition, all input agents should be set in “inactive” status (i.e. constant values are 

assigned to their output variables). The required data for agent learning include 

measurements of the agent output quantity Y(T), T = {t1 , t2, …, tn}, and the input 

quantities ti (i = 1, …, n), where Y(T) is a degradation measure (e.g. crack size), 

environmental or operational characteristic. Typical data sources are sensors and 

monitors (usually in PHM applications). When new data set becomes available, it is 

combined with the model-based prediction for the current point in time to update past 

estimates of the Bayesian fusion model parameters obtained during the previous 

learning cycle. Several examples of agent learning via Bayesian fusion are provided 

in Sections 5.8.1 and 5.8.2. 
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5.8.1. Discrete-Time Kalman Filter 

 A discrete-time Kalman filter (KF) can be used if discrete measurements are 

taken, whether they come from a discrete or a continuous system. A continuous-time 

Kalman filter is used when the measurements are continuous functions of time. This 

section describes the applications of the discrete-time Kalman filter as a learning 

method, considering that only discrete data are used for agent learning. 

 Discrete-time Kalman filter generates closed formed recursive solutions as it 

makes three simplifying assumptions [100]. The first assumption is that both the state 

transition function and the observation function are linear. The second is that each 

state variable is normally distributed. The third is that the ‘noise’ factors are normally 

distributed. In order to use the discrete-time Kalman filter as a method of agent 

learning, the following must be defined for the respective Type I Micro-Agent or 

Type II Macro-Agent: 

1. The state variable to be estimated – this is the agent output variable. 

2. A state transition function that defines the evolution of state variables over 

time – this is the PoF or empirical model of the agent output variable. 

3. An observation function that defines how various observations over time 

(data) are related to the state variables – this is the reasoning algorithm (causal 

relationship) used to correlate the measured quantity (e.g. precursor values) 

with the agent output variable. 

4. The noise (uncertainty) in both the process model and the observation model – 

this is assumed model error. 
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 An example of Type II Macro-Agent learning by the discrete-time Kalman 

filter is given in Table 5-9. 

 

Table 5-9: Example of Type II Macro-Agent Learning by Kalman Filter 

Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Roller Damage due to Wear (Wear Depth) 

Input Variables 
from Input 
Agents 

Type I Micro-Agents: 

1. Accumulated number of passes, p  

2. Material shear yield point, yp 

3. Stress concentration factor, ke 

4. Roller load (due to weight of the supported structure), W 

5. Roller diameter, d 

6. Width of the contact surface of the roller, w 

7. Friction coefficient, f 

Type II Macro-Agents: 

1. Wear rate,  ̇ 

2. Maximum shear stress in the vicinity of the surface, max 

3. Normal stress on the surface, n 

4. Friction generated shear stress, f 
 

Notes: 

1. Wear Depth agent is time dependent via Accumulated 

Number of Passes Agent, p 

2. All input agents have “Inactive” status (i.e. constant values 

are assigned to their output variables). 

Output 
Variable Roller Wear Depth, D 

Model of Agent 
Output 
Variable 
- Past Beliefs 

1. The PoF model of roller wear depth is defined as 

   ̇    

where wear rate  ̇ is considered to be a constant value 

calculated as 

 ̇   [
    
   

]

 

 

where B and k are model parameters, and the other terms are: 

       √(
  
 
)
 

 (  )
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Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Roller Damage due to Wear (Wear Depth) 

   
 

   
 

        

2. The roller wear depth D is considered a system state variable. 

According to the Kalman filter assumptions, the state variable 

D  is Gaussian, specified by its first and second moments: 

         ( ̂    ) 

where  ̂  and    denote the first and second moments of the 

wear depth distribution (i.e., posterior mean and posterior 

covariance) at time step  . 

3. A general form of process model equations is: 

 ̂ ̅    ̂           

  ̅        
      

where 

 ̂ ̅ is the mean of the prior estimate of xk, which is solely based 

on the process model of the state defined by system dynamics, 

before updating with observation y , 

 ̂    is the mean of the posterior state density at time k–1 after 

it has been updated with observation y -1, 

  ̅ is prior estimate of covariance matrix of the state density at 

time  , solely based on the process model defined by system 

dynamics and before updating with observation y , 

     is covariance matrix of the posterior state density at time 

k–1 after it has been updated with observation yk-1,  

A is state transition matrix, B is the matrix mapping external 

inputs to system state variables   , Q is a process error.  

 

These equations are written for roller wear depth according to 

PoF model defined in step 1 above: 

 ̂ ̅   ̂     ̇     

  ̅         

where         ̇, variables vector uk represents the number 

of passes    accumulated since step k-1, Q is a process error (a 

scalar).  

These equations establish the 1
st
 step of Bayesian fusion via 

Kalman filter, Model Based Prediction (Time Update). 

4. General form of Kalman filter equations for the posterior 
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Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Roller Damage due to Wear (Wear Depth) 

mean  ̂  and the posterior covariance Pk of the state variable xk: 

 ̂   ̂ ̅    (     ̂ ̅)  

   (     )  ̅  

     ̅ 
 (   ̅ 

   )    

where H is the measurement matrix (i.e., the matrix mapping 

the observable evidence yk to system state   ), Kk is Kalman 

Gain and R is a measurement error. 

 

These equations take the following form for roller wear depth 

variable: 

 ̂   ̂ ̅    (    ̂ ̅) 

   (    )  ̅ 

     ̅(  ̅   )
   

where R is a measurement error (a scalar), yk is roller wear 

measurement at time step  . It is assumed that the measurement 

yk is the exact same scale as system state estimate xk, i.e. H = 1. 

These equations establish the 2
nd

 step of Bayesian Fusion via 

Kalman filter, Data Driven Correction (Measurement Update). 

5. The initial conditions for the system state variable (roller 

wear depth)  ̂  and P0 are assigned with zero mean and high 

variance as it is completely unknown. Initialization with more 

meaningful starting values results in faster convergence. 

For example, wear rate of the roller material is 1x10
8
 m

3
/km. 

Roller size is: 30 mm outside diameter, length 30 mm. Roller 

pass is 50 cm. Wear rate  ̇ becomes 7.1E–5 m/pass. Initial 

conditions prior to test start (at     ) are assigned as: 

 ̂       

          
  

Parameters of 
Agent Output 
Model 
- Past Beliefs 

1. State transition parameter, A:     

2. External inputs to system state conversion parameter, B: 

   ̇                 

3. Measurement to state variable conversion parameter, H: 

    

4. Process error, Q:             

5. Measurement error, R:            
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Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Roller Damage due to Wear (Wear Depth) 

New Data 
(1st Data Set) 

The new measurement of roller wear depth y1 is obtained 

during the test after p1 roller passes.  

Model of Agent 
Output 
Variable 
- Updated Beliefs 
1st Update 

The 1
st
 update uses the following equations below: 

1. Time Update: 

 ̂ ̅   ̂   ̇     

  ̅       

2. Measurement Update: 

 ̂   ̂ ̅    (    ̂ ̅) 

   (    )  ̅ 

     ̅(  ̅   )
   

Parameters of 
Agent Output 
Model 
- Updated Beliefs 
1st Update 

Same as “Parameters of Agent Output Model – Past Beliefs” 

New Evidence  
(2nd Data Set) 

New measurement of roller wear depth y2 is obtained during the 

test after p2 roller passes. Total number of passes since test start 

is        . 

Model of Agent 
Output 
Variable 
- Updated Beliefs, 
2nd Update 

The 2
nd

 update uses the following equations below: 

1. Time Update: 

 ̂ ̅   ̂   ̇     

  ̅       

2. Measurement Update: 

 ̂   ̂ ̅    (    ̂ ̅) 

   (    )  ̅ 

     ̅(  ̅   )
   

Parameters of 
Agent Output 
Model 
- Updated Beliefs, 
2nd Update 

Same as “Parameters of Agent Output Model – Updated Beliefs 

1st Update” 
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5.8.2. Discrete-Time Extended Kalman Filter 

 If the first of the three limiting assumptions of the discrete-time Kalman filter 

formulation, discussed in Section 5.8.1, does not hold (i.e. the state transition and 

observation models are not linear functions of the state variable), the discrete-time 

extended Kalman filter (EKF) is used as the nonlinear version of the discrete-time 

Kalman filter [101]. Discrete-time EKF utilizes the first-order Taylor series 

approximation (around its current state) instead of the linear transition and 

observation functions.  

 An example of Type II Macro-Agent learning by means of the discrete-time 

EKF is given in Table 5-10. This example is based on the fatigue crack propagation 

study described in [99]. The two agents, crack growth rate and crack size, are learning 

simultaneously via Bayesian fusion by discrete-time EKF.  

 

Table 5-10: Example of Type II Macro-Agent Learning by Extended Kalman Filter 

Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Fatigue Crack Size 

Crack Growth Rate 

Input Variables 
from Input 
Agents 

Type I Micro-Agents: 

Loading cycles elapsed since previous time step k, Nk 

Type II Macro-Agents: 

Stress intensity factor range at time step k, Kk 
 

Notes: 

1. Crack Size agent and Crack Growth Rate agent are time 

dependent via Elapsed Loading Cycles AgentNk . 

2. All input agents have “Inactive” status (i.e. constant values 

are assigned to their output variables). 

Output 
Variable 

Size of Fatigue Crack in Metallic Structure, a 

Crack Growth Rate,  ̇ 
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Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Fatigue Crack Size 

Crack Growth Rate 

Model of Agent 
Output 
Variable 
- Past Beliefs 

1. The PoF model of crack growth is defined as 

  ∑   
 

 

     ̇       

  ∑   
 

 

where a is crack size at accumulated load cycles N, ak is the 

amount of crack extension at time step k (k = 1, 2, …), Nk is 

the number of elapsed loading cycles since time step k–1, and 

 ̇    is crack growth rate at time step k–1. 

Paris equation is used to relate the crack growth rate   ̇ to the 

stress intensity factor range Δ   at every time step k: 

 ̇   (   )
  

where Kk is stress intensity range at time step k,   and   are 

constants that depend on material properties and a set of test 

conditions, such as loading ratio, frequency and environment. 

The stress intensity factor range at every time step  , Δ  , is 

defined as a function of the geometry of the structure, applied 

loading cycle and the crack size   . For example, Δ   for a 

standard specimen (per ASTM E647-08 2008) is defined as 

follows: 

    
   

 √ 

(    )

(    )   
(                    

 

        
       

 ) 

where    is the dimensionless crack size   ⁄ ,   and   are 

the thickness and the width of the specimen, respectively, and 

Δ   is the amplitude range of applied load at time step  . 

2. According to the EKF process model equation, the matrix of 

system state variables is specified in general form as: 

    (          )  

where    is the vector of system state variables at time step k,  

  -1 is the vector of system state variables at time step k–1,  

uk is a vector that contains all external inputs, wk is the ‘noise’ 
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Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Fatigue Crack Size 

Crack Growth Rate 

vector that is normally distributed with zero mean and 

covariance Qk: wk Normal (0, Qk), where Qk is process 

variance matrix (i.e., process model error). 

Crack size ak and crack growth rate  ̇  are considered system 

state variables: 

   (
  
 ̇ 
) 

External input    is used to map the time steps of the state-

space model to the elapsed loading cycles, Δ  , and stress 

intensity factor range at time step k, ΔK . The process error is 

defined as: 

   (    ) 

where    is a 2×2 covariance matrix Q at time step k.  

Considering PoF model described in step 1 above, the system 

state function is defined as follows: 

 (          )  (
      ̇      
 (   )

 )     

where Δ   is a function of the crack size    at time step  , 
         ̇      . 

Crack growth process model equation becomes: 

(
  
 ̇ 
)  (

      ̇      
 (   )

 )     

3. According to the EKF observation  model equation, the 

vector of observable evidence is defined as 

    (     ) 

where yk is a vector of the observable evidence, υk is the ‘noise’ 

vector that is normally distributed with zero mean and 

covariance Rk: υk  Normal (0, Rk), where Rk is measurement 

variance matrix (i.e., measurement error). 

An observation vector yk includes two types of observations at 

time step  : the observation of crack size and the observation of 

crack growth rate. An observation vector is defined assuming a 

linear form for the observation function  (∙): 
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Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Fatigue Crack Size 

Crack Growth Rate 

   (
  
  

) (
  
 ̇ 
)     

The measurement error    is defined as 

   (    ) 

where R  is a 2×2 covariance matrix R at time step k. 

4. If there are times when only crack growth rate observation is 

available, but not crack size measurement, a rule could be 

programmed onto the agent’s internal knowledge (specifically 

into special rules of agent behavior) to change an observation 

vector to the following when only one observation is available: 

   (  ) (
  
 ̇ 
)     

where covariance matrix R  becomes a scalar representing 

variance of the observation noise. 

5. Initial conditions for the system state variables (crack size 

and crack growth rate)  ̂  and P0 are assigned based on the 

known distribution of initial crack size,     ( ̂    ), as 

follows: 

 ̂  (
 ̂ 
 ̂̇ 
) 

where 

 ̂̇   (  ̂ )
 

 

and   ̂  is evaluated for crack size  ̂ .  

Parameters of 
Agent Output 
Model 
- Past Beliefs 

1. Process error matrix time step k, Qk 

2. Measurement error matrix time step k, Rk 

3. Constants   and   (obtained from fatigue tests performed on 

standard components with similar material and in the same 

testing condition) 

New Data 

The new measurement of the crack size, a1, and the 

corresponding measurement of the crack growth rate,  ̇ ,are 

obtained during the test after N1 roller passes: 

   (
  
 ̇ 
) 
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Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Fatigue Crack Size 

Crack Growth Rate 

Model of Agent 
Output 
Variable 
- Updated Beliefs 

1. The 1
st
 step of Bayesian fusion via the EKF is Model Based 

Prediction (Time Update): 

 ̂ ̅  (
 ̂ ̅
 ̂̇ ̅
)  (

 ̂     ̂̇      

 (  ̂ ̅)
 ) 

  ̅          
        

  

where 

Ak and Wk are the partial derivative matrices: 

   
  

  
|
 ̂   

 

   
  

  
|
 ̂   

 

 ̂ ̅ is the mean of the prior estimate of xk, which is solely based 

on the process model of the state defined by system dynamics, 

before updating with observation y , 

 ̂    is the mean of the posterior state density at time k–1 after 

it has been updated with observation y -1, 

  ̅ is prior estimate of covariance matrix of the state density at 

time  , solely based on the process model defined by system 

dynamics and before updating with observation y , 

     is covariance matrix of the posterior state density at time 

k–1 after it has been updated with observation yk-1, 

  ̂ ̅ is evaluated for the crack size  ̂ ̅, where  ̂ ̅   ̂    
 ̂̇      . 

For the first update, using initial conditions, the above 

equations take a form:  

 ̂ ̅  (
 ̂ ̅
 ̂̇ ̅
)  (

 ̂   ̂̇    

 (  ̂ ̅)
 ) 

  ̅        
        

  

2. The 2
nd

 step of Bayesian fusion via the EKF, Data Driven 

Correction (Measurement Update), is performed to obtain the 

posterior mean  ̂  and the posterior covariance Pk of the state 

variable    (
  
 ̇ 
): 
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Elements of 
Agent Learning 
Process 

Type II  Macro-Agent 

Fatigue Crack Size 

Crack Growth Rate 

 ̂   ̂ ̅    [    ( ̂ ̅  )] 

 ( ̂ ̅  )  (
  
  

) (
 ̂ ̅
 ̂̇ ̅
) 

   (      )  ̅ 

     ̅  
 (    ̅  

        
 )   

where yk is the vector of crack size and crack growth rate 

measurements at time step  , Kk is Kalman Gain, Hk and Mk are 

the partial derivative matrices: 

   
  

  
|
 ̂ ̅

 

   
  

  
|
 ̂ ̅

 

For the first update using the new data, the above equations 

take a form:  

 ̂   ̂ ̅    [    ( ̂ ̅  )] 

   (      )  ̅ 

     ̅  
 (    ̅  

        
 )   

where  

   (
  
 ̇ 
) 

 ( ̂ ̅  )  (
  
  

) (
 ̂ ̅
 ̂̇ ̅
) 

Parameters of 
Agent Output 
Model 
- Updated Beliefs 

Same as “Parameters of Agent Output Model – Past Beliefs” 
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5.8.3. Other Nonlinear Approaches 

 More refined linearization techniques than discrete-time EKF (Section 5.8.2) 

can be used to reduce the linearization error in the discrete-time EKF for highly 

nonlinear systems. They include iterated EKF (IEKF) and second-order discrete-time 

EKF (SOEKF) [101], both recommended as agent learning methods.  

 Other approaches also exist to handle nonlinear systems. These techniques 

typically provide better estimation performance for highly nonlinear systems, but do 

so at the price of higher complexity and significant computational effort. The most 

common methods of nonlinear filtering are Gaussian sum filters, grid filters and 

unscented Kalman filter (UKF) [101]. Another method, called the particle filter, is a 

simulation-based estimation technique that models the probability density function of 

state variables using a set of discrete points called particles. No assumptions (such as 

linearity or normally distributed uncertainty) need to be made. One approach that has 

been proposed for improving particle filtering is to combine it with another filter such 

as the EKF or the UKF.  Due to the high computational intensity, the combined 

approaches may not be practical for the agent learning application, at least until 

further advancements in computational sciences occur. 

 For a system that is nonlinear and/or has non-Gaussian noise, the non-linear 

Kalman filters can be used for state estimation, although the particle filter may give 

more accurate estimates at the price of higher computational expense. The unscented 

Kalman filter provides a good balance between the moderate computational effort of 

the non-linear Kalman filters and the high performance of the particle filter. 
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5.9. Summary of Learning Methods for Type I and Type II Agents 

 This chapter introduced the learning methods of Type I Micro-Agents and 

Type II Macro-Agents, specifically those methods which are used to define the model 

of the agent output variable, if the model is not available, and update the parameters 

of the identified or already known model. The guidelines for applicability of these 

learning methods are summarized in Table 5-11. This summary suggests that 

Bayesian methods of agent learning (Bayesian inference and Bayesian fusion) are 

superior to other methods because of their ability to incorporate physics-of-failure 

into the agent representation model as well as to recursively update the existing 

estimates of model parameters with new information from various sources. This 

recursive (sequential) update of agent’s beliefs using all available data maximizes the 

system reliability knowledge and minimizes computation time. The ability to 

incorporate physics-of-failure into agent modeling was highlighted in the previous 

chapters as a key aspect of agent structure and evolution. Bayesian inference and 

Bayesian fusion, therefore, are considered the primary methods of agent learning 

within the scope of intelligent agent autonomy.  

 Bayesian fusion is the most comprehensive method of agent learning in 

situations when incoming uncertain observations from in-field health monitoring or 

life testing are available in addition to a mathematical model that describes the 

evolution of the variables over time. Where two or more learning methods are 

applicable for an agent, Bayesian methods of agent learning (i.e. Bayesian inference 

or Bayesian fusion) should be preferred due to the efficient data updating scheme.  
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 It is known, however, that the physical model of failure may not be available 

for some agents due to the lack of engineering knowledge, complexity of failure 

process, or a nature of some random variables external to the system under study 

(such as environmental factors, for instance). Empirical models of the agent output 

variable can be used within the agent learning scheme in lieu of the PoF relationship. 

If there is no model available for the agent output variable, several learning methods 

may apply, such as parametric distribution analysis (classical), time series and trend 

analysis methods, machine learning and pattern recognition methods, or Bayesian 

inference.  
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Table 5-11: Learning Method Selection Criteria for Type I and Type II Agents 

 

Agent 

Learning 

Method 

Type of Agent 

Output Variable 

Agent Output 

Model (PoF or 

Empirical) 

Time 

Dependency of 

Agent Output 

Variable 

Required Data Types 

Data 

Aggregation 

within Agent 

Learning Process 

Examples 

Parametric 

Distribution 

Analysis 

(classical) 

Independent 

Output Variable Y, 

continuous or 

discrete 

 

Model is not 

available 

Not time 

dependent (no 

time trends in 

output Y exist) 

 

Direct measurements of 

the quantity Y, such as 

environmental or 

operational characteristic, 

time to failure or time to 

success, other 

independent variable.  

Typical data sources: 

inspection, maintenance 

records, generic data. 

New evidence is 

combined with all 

past observations 

into one data set 

for re-estimation 

of parametric 

distribution 

parameters 

Probability 

distributions: 

- Normal 

- Lognormal 

- Weibull 

Model-

based 

Parametric 

Distribution 

Analysis 

(Cumulative 

Damage)  

Output Variable 

Y(t), continuous, is 

a function of Input 

Variables ti (i = 1, 

…, n), none of 

which is time 

variable 

Model is 

available, the 

model is 

probabilistic, 

linear or 

nonlinear 

Not time 

dependent (no 

time trends in 

output Y(t) exist) 

Direct measurements of 

the quantity Y(t) and input 

quantities ti (i = 1, …, n), 

where Y(t) is time to 

failure or time to success. 

Typical data sources: 

inspection, maintenance 

records. 

New evidence is 

combined with all 

past observations 

into one data set 

for re-estimation 

of model-based 

parametric 

distribution 

parameters 

Cumulative 

Damage models: 

- Eyring-Weibull 

- IPL-Exponential 

- Arrhenius-

Lognormal 
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Agent 

Learning 

Method 

Type of Agent 

Output Variable 

Agent Output 

Model (PoF or 

Empirical) 

Time 

Dependency of 

Agent Output 

Variable 

Required Data Types 

Data 

Aggregation 

within Agent 

Learning Process 

Examples 

Time Series 

and Trend 

Analysis for 

Degradation 

and other 

Trend 

Modeling 

- Independent 

Output Variable Y, 

continuous or 

discrete 

- Output Variable 

Y(t), continuous or 

discrete, is a 

function of Input 

Variables, ti (i = 1, 

…, n), one of 

which could be 

time variable 

Model is not 

available 

 

- Time dependent 

(time trends in 

Y(t) exist), 

monotonic or 

non-monotonic, 

slow change over 

time  

- Not time 

dependent (no 

time trends in 

Y(t) exist) 

Direct measurements of 

the quantity Y(t) and input 

quantities ti (i = 1, …, n), 

where Y(t) is degradation 

measurement (e.g. crack 

size), environmental or 

operational characteristic, 

other variable. 

Typical data sources: 

inspection, maintenance 

records, sensors, 

monitors.  

New evidence is 

combined with all 

past observations 

into one data set 

for re-estimation 

of time series and 

trend equation 

parameters 

Time Series and 

Trend Analysis 

methods: 

- Regression 

- Sinusoidal 

- Exponential   

- Logarithmic 

- Decomposition 

Machine 

Learning 

and Pattern 

Recognition 

Methods 

(excluding 

Bayesian 

Fusion 

methods)  

- Independent 

Output Variable Y, 

continuous or 

discrete 

- Output Variable 

Y(t), continuous or 

discrete, is a 

function of Input 

Variables, ti (i = 1, 

…, n), one of 

which could be 

time variable 

Model is not 

available 

 

- Time dependent 

(time trends in 

Y(t) exist), 

monotonic or 

non-monotonic, 

slow change over 

time  

- Not time 

dependent (no 

time trends in 

Y(t) exist) 

Direct measurements of 

the quantity Y(t) and input 

quantities ti (i = 1, …, n), 

where Y(t) is degradation 

measurement (e.g. crack 

size), environmental or 

operational characteristic, 

other variable. 

Typical data sources: 

sensors, monitors (PHM 

applications). 

New data are 

combined with all 

past data into one 

data set for re-

estimation of 

machine learning 

or pattern 

recognition model 

parameters 

Machine Learning 

methods: 

- Particle Filter 

- Artificial Neural 

Networks 

- Gaussian 

Process 

Regression 
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Agent 

Learning 

Method 

Type of Agent 

Output Variable 

Agent Output 

Model (PoF or 

Empirical) 

Time 

Dependency of 

Agent Output 

Variable 

Required Data Types 

Data 

Aggregation 

within Agent 

Learning Process 

Examples 

Bayesian 

Inference 
- Independent 

Output Variable Y, 

continuous or 

discrete 

- Output Variable 

Y(ti), continuous 

or discrete, is a 

function of Input 

Variables, ti (i = 1, 

…, n), one of 

which could be 

time variable 

- Model is not 

available 

- Model is 

available, the 

model is 

probabilistic, 

linear or 

nonlinear 

- Time dependent 

(time trends in 

Y(t) exist), 

monotonic or 

non-monotonic, 

slow or rapid 

change over time 

- Not time 

dependent (no 

time trends in 

Y(t) exist) 

Direct measurements of 

the quantity Y(t) and input 

quantities ti (i = 1, …, n), 

where Y(t) is degradation 

measurement (e.g. crack 

size), time to failure or 

time to success, 

environmental or 

operational characteristic,  

other variable. 

Typical data sources: 

inspection, maintenance 

records, sensors, 

monitors, expert opinion, 

generic data. 

New data are used 

to update the 

existing estimates 

of model 

parameters 

obtained in the 

past using 

previously 

available data 

Applied to: 

- Parametric 

Distributions 

- Model-based 

Parametric 

Distributions 

(Cumulative 

Damage models)  

- Time Series and 

Trend models 

- Machine 

Learning models 

(e.g. Gaussian 

Process 

Regression) 
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Agent 

Learning 

Method 

Type of Agent 

Output Variable 

Agent Output 

Model (PoF 

or Empirical) 

Time 

Dependency of 

Agent Output 

Variable 

Required Data Types 

Data 

Aggregation 

within Agent 

Learning 

Process 

Examples 

Bayesian 

Fusion 
Output Variable 

Y(ti), continuous 

or discrete, is a 

function of Input 

Variables, ti (i = 1, 

…, n), one of 

which could be 

time variable 

Model is 

available, the 

model is 

probabilistic or 

deterministic, 

linear or 

nonlinear 

- Time dependent 

(time trends in 

Y(t) exist), 

monotonic or 

non-monotonic, 

slow change over 

time  

- Not time 

dependent (no 

time trends in 

Y(t) exist) 

Direct measurements of 

the quantity Y(t) and input 

quantities ti (i = 1, …, n), 

where Y(t) is degradation 

measurement (e.g. crack 

size), environmental or 

operational characteristic,  

other dependent variable. 

Typical data sources: 

sensors, monitors (PHM 

applications). 

Model based 

prediction and 

new data are 

combined to 

recursively update 

current estimates 

of Bayesian 

fusion model 

parameters 

obtained in the 

past using 

previously 

available data and 

model based 

prediction 

Fusion methods 

(discrete time): 

- Kalman Filter 

(KF) 

- Extended 

Kalman Filter 

(EKF) 

- Unscented 

Kalman Filter 

(UKF) 

- Iterated EKF 

(IEKF)  

- Second-Order 

EKF (SOEKF) 

- Gaussian Sum 

Filters 

- Grid Filters 
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Chapter 6: Learning Property of Type III Agents 

 Type III Monitoring Agents learn and update their status by aggregating 

information from the input agents (Type II Macro-Agents and other Type III 

Monitoring Agents) according to the failure logic of the system elements they 

represent. The failure logic of an item represented by the Type III Monitoring Agent 

(hardware part, component or the entire system) could be given by: 

1. A fault tree or an event tree [3] 

2. Bayesian belief network (BBN) [4], [5] 

3. Any mathematical expression f(Xi,) representing the Type III agent output 

variable Y(Xi) as a function of n input variables provided by the input agents, 

Xi (i = 1, …, n), with deterministically or probabilistically defined vector of 

model parameters ={0, 1,…, k}: 

   ,ii XfXY   

Equation 6-1
 

 The learning process of Type III Monitoring Agents with deterministic model 

of the agent output variable, a function f(∙), involves: 1) updating the functional form 

of f(∙) using data, if applicable, and 2) updating the probability distribution of the 

agent output variable, Y,  by means of simulation over the (updated) model of the 

agent output variable given the probability distributions of the input variables, Xi (i = 

1, …, n), according to the latest beliefs of the respective input agents. 

 The learning process of Type III Monitoring Agents with probabilistic model 

of the agent output variable, a function f(∙), involves: 1) updating the functional form 
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of f(∙) using data, if applicable, 2) updating the agent output model parameters, 

={0, 1,…, k}, using data, and 3) updating the probability distribution of the agent 

output variable, Y,  by means of simulation over the updated model of the agent 

output variable given the probability distributions of the input variables, Xi (i = 1, …, 

n), according to the latest beliefs of the respective input agents. 

 In many cases the output variable of the Type III Monitoring Agent is given 

by a deterministic function of the input variables, i.e. the agent output model 

parameters are fully defined constant values which do not get updated during agent 

learning. In such cases there is no uncertainty associated with the failure logic 

equation that is developed strictly based on the rules of probability according to the 

definition of the item failure within the given application. The failure logic of an item 

represented by the Type III Monitoring Agent, however, may change over time (e.g. 

the probabilistic equation P(A) = P(B) x P(C) could change to P(A) = P(B) x P(C) x 

P(D), where P(A) stands for probability of the event A, and so on). The functional 

form of the deterministic model of the agent output variable would change over time 

if the change criteria are programmed onto the agent’s internal knowledge 

(specifically, into the special rules of agent behavior).  

 In some cases the output variable of the Type III Monitoring Agent is given 

by probabilistic function of the input variables, which implies that the failure logic of 

an item or the contribution of some input events probability into the output event 

probability is uncertain. In such cases data are used to update the uncertain 

parameters of the model of Type III Monitoring Agent output variable. 
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 Examples of the learning process of Type III Monitoring Agents with 

deterministic model of the agent output variable by means of fault tree and BBN are 

given in Table 6-1 and Table 6-2, respectively.  

 

Table 6-1: Example of Type III Monitoring Agent Learning via Fault Tree Logic 

Elements of 
Agent Learning 
Process 

Type III  Monitoring Agent 

Functionality of Airspeed Indication Equipment 

Input Variables 
from Input 
Agents 

Type II Macro-Agents: 

- Three Failure Mechanisms of Pitot Tube, PTi, i = 1, 2, 3 

- Two Failure Mechanisms of Static Circuits, SCj, j = 1, 2 

Failure Mechanism probabilities f(PTi), i = 1, 2, 3, and f(SCj), j 

= 1, 2, are given by probability distributions representing 

output variables of the respective Type II Macro Agents. 

Output 
Variable 

Loss of Functionality of Airspeed Indication Equipment, ASI 

 

Model of Agent 
Output 
Variable 
- Past Beliefs 

Probability of Airspeed Indication Equipment failure (loss of 

functionality), P(ASI), is modeled by the Fault Tree: 

 

Probability f(ASI), is expressed through the probabilities of ASI 

Failure Mechanisms according to the Fault Tree logic, as 

follows: 

 (   )   (   )   (   )   (   )   (   )   (   ) 

Probability distribution f(ASI) is obtained from probability 

distributions probabilities f(PTi), i = 1, 2, 3, and f(SCj), j = 1, 2, 

via simulation. 

Loss of Functionality of 
Airspeed Indication 

Equipment

SC1 SC2
PT3PT2PT1
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Elements of 
Agent Learning 
Process 

Type III  Monitoring Agent 

Functionality of Airspeed Indication Equipment 

Parameters of 
Agent Output 
Model 
- Past Beliefs 

All model parameters are equal one (unity).  

New Data 

No data are used to update agent output model parameters. 

New information, however, may become available to update 

the Fault Tree structure according to the criteria defined in the 

Special Rules of agent behavior (such as design changes or 

other reasons). For example, consider the following new 

structure: 

 

Model of Agent 
Output 
Variable 
 
- Updated Beliefs 

Probability f(ASI) is updated to the following: 

 (   )   (   )   (   )   (   )   (   )   (   )  

 (   )   (   )   (   )  

Probability distribution f(ASI) is obtained from probability 

distributions probabilities f(PTi), i = 1, 2, 3, and f(SCj), j = 1, 2, 

via simulation. 

Parameters of 
Agent Output 
Model 
- Updated Beliefs 

All model parameters are equal one (unity). 

 

 

 

 

 

Loss of Functionality of 
Airspeed Indication 

Equipment

SC1 SC2
PT3PT2PT1

2/3

Voting Gate
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Table 6-2: Example of Type III Monitoring Agent Learning via Bayesian Belief Network 

Elements of 
Agent Learning 
Process 

Type III  Monitoring Agent 

Pilot Error 

Input Variables 
from Input 
Agents 

Type I Micro-Agents: 

- Flight Experience, FE (binary state: Sufficient, Low) 

Type II Macro-Agents: 

- Weather Conditions, WC (binary state: Normal, Severe) 

Type III Monitoring Agents: 

- Functionality of Airspeed Indication Equipment, AE (binary 

state: Normal, Partial Loss of Function) 

Binary states are assumed for all nodes: 

   {              }  {     ̅̅ ̅} 

   {             }  {     ̅̅̅̅ } 

   {                               }  {     ̅̅ ̅} 

  {                                     }  {   }̅ 

Probability distributions of the input variables FE, WC and AE: 

 (  )       (  ̅̅ ̅)        

 (  )       (  ̅̅̅̅ )        

 (  )       (  ̅̅ ̅)        

Probability pfe is known fixed value (the output of Type I Micro 

Agent Flight Experience). 

Probability pwc is a distribution obtained based on physical 

model and weather data for the flight region (the output of Type 

II Macro Agent Regional Weather). 

Probability pae is a distribution obtained by simulation via Fault 

Tree logic of functional failure condition for the Airspeed 

Indication Equipment (the output of Type III Equipment 

Monitoring Agent described in Table 6-1). 

Output 
Variable 

Pilot Error resulting in Aerodynamic Stall, F (binary state: 

Aircraft in Control, Failure to Avoid Aerodynamic Stall) 

Model of Agent 
Output 
Variable 
- Past Beliefs 

Probability of Pilot Error is modeled by the following BBN: 

 
 

FE

F

AE
WC
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Elements of 
Agent Learning 
Process 

Type III  Monitoring Agent 

Pilot Error 

Probability distribution of the output variable F, P(F), is 

defined by the unconditional probability of F computed as a 

sum of conditional probabilities of the states of F given the 

states of the input variables FE, WC and AE: 

Node 

FE 

Node 

WC 

Node 

AE 

Probability of 

Combination, pi 
Pc(F=f)i Puc(F=f)i  

                                 

        ̅̅ ̅          (     )            

     ̅̅̅̅           (     )               

     ̅̅̅̅    ̅̅ ̅ 
      (  

   )(     )  
           

  ̅̅ ̅          (     )                   

  ̅̅ ̅      ̅̅ ̅ 
   (  

   )   (     )  
           

  ̅̅ ̅   ̅̅̅̅     
   (     )(  

   )     
           

  ̅̅ ̅   ̅̅̅̅    ̅̅ ̅ 
   (     )(  

   )(     )  
           

where ri=Pc(F=f)i is conditional probability of F being in state 

f given the i-th combination of the states of three input 

variables, and Pi=Puc(F=f)i is the respective unconditional 

probability. The resulting probability of the agent output 

variable F being in state f is defined by the following sum: 

 (   )  ∑   

 

   

∑    

 

   

 

Note, that conditional probabilities ri do not sum up to unity in 

general case:  

∑    

 

   

 

Parameters of 
Agent Output 
Model 
- Past Beliefs 

The model parameters are conditional probabilities of F being 

in state f given the i-th combination of the states of the input 

variables: = ({ri}, i=1,…, 8). These conditional probabilities 

are known constant values. 
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Elements of 
Agent Learning 
Process 

Type III  Monitoring Agent 

Pilot Error 

New Data 

No data are used to update agent output model parameters. 

New information, however, may become available about the 

degree of influence of various states of the input variables FE, 

WC and AE on the states of the output variable F. This 

information would be used to update the values of conditional 

probabilities of F being in state f given i-th combination of the 

states of the input variables, ri, according to the criteria defined 

in the Special Rules of agent behavior (such as design changes, 

different mission profile, or other reasons). 

Model of Agent 
Output 
Variable 
- Updated Beliefs 

Same as “Model of Agent Output Variable - Past Beliefs” 

Parameters of 
Agent Output 
Model 
- Updated Beliefs 

New information are utilized to obtain updated values of 

conditional probabilities of F being in state f given i-th 

combination of the states of the input variables, ri.  

The new values of ri, i=1,…, 8, are used as agent output model 

parameters instead of the past values. 

 

 Figure 6-1 provides an example of agent autonomy in order to demonstrate the 

difference in the learning property of the three types of agents: 

- Type I Micro-Agent cyclic load has an independent output variable, mechanical 

load amplitude, defined probabilistically as a lognormal probability distribution 

LN(). As a new set of field data (for use load amplitude) becomes available, 

parameters of probability distribution of the mechanical load amplitude are 

updated through Bayesian formalism. This update is the only step of the learning 

process for the mechanical load amplitude agent that has no inputs from other 

agents. 

- Type II Macro-Agent has the output variable, fatigue life of structural component, 

as a function of the mechanical load amplitude. This agent’s 1
st
 step of learning is 
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updating the parameters of the PoF model of fatigue life to failure (Equation 3-2 

in Section 3.2.2) by Bayesian inference using the available test data. This Type II 

Macro-Agent has Type I Micro-Agent cyclic stress (mechanical load amplitude) 

as an input agent. In the 2
nd

 step of learning, the probability distribution of fatigue 

life to failure is obtained by simulation over the PoF model with the updated 

parameters and using the latest (updated) probability distribution of the 

mechanical load amplitude. 

- The Type III Monitoring Agent has the output variable, remaining life to failure 

(called remaining useful life, or RUL), quantified by simulation according to the 

RUL equation (as life to failure less total accumulated load cycles, N) based on 

the input from the Type II Macro-Agent fatigue life. 



 132 

 

 

 

Figure 6-1: Agent Learning Demonstration Example
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Chapter 7: Autonomy Property of Agents 

 The ability of intelligent agents to activate and deactivate themselves during 

system evolution is what makes an agent autonomous. Autonomy means that an agent 

is not only capable to act without supervision by recursive learning, but also has a 

degree of control over its participation in system evolution, specifically by changing 

its status between “active” and “inactive”. An agent’s ability to activate and 

deactivate itself is achieved by means of uncertainty importance analysis performed 

upon the agent output variable after each learning cycle.   

 

7.1. Uncertainty Importance Measures for Autonomy Execution 

 Uncertainty importance measures are intended to identify the contribution of 

the uncertainty of input variables to that of the output response [102]. Based on the 

rankings of the input variables, one can give more priority to the variables with high 

importance, and neglect the variables with low importance, depending on the 

objective of the study. Uncertainty importance measures have been extensively 

introduced by sensitivity analysis [103] - [105].  

 By general definition, model sensitivity analysis determines the impact that 

changes in model inputs have on the model outputs. Model inputs include primarily 

model variables, but could also consider the initial conditions, boundary conditions, 

etc. Considering the n dimensional vector, X, as a vector of independent random 

variables, xi (i = 1, 2, …, n), the output, Y = f(X), is also a random variable as a 

function of n random variables. Uncertainty importance aims to determine the part of 
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the total unconditional variance, Var(Y), of the output, Y, resulting from each input 

random variable, xi. Within the scope of agent-oriented modeling, uncertainty 

importance analyzes whether or not sensible changes in the input variables (given by 

the input agents) would induce noticeable changes in the agent output variable. 

 Sensitivity approaches can be categorized into two main groups - local 

methods and global methods [106] - [112]. Local methods represent the simplest 

approach to sensitivity analysis (one-at-a-time analysis), where sensitivity measures 

are determined by varying only one parameter, while all others are held constant. The 

local sensitivity analysis methods have the advantage of being straightforward to 

implement while maintaining modest computational demands. The major drawback 

of these methods is their inability to account for input parameter interactions, making 

them prone to underestimating true model sensitivities. Alternatively, global 

parameter sensitivity analysis methods vary all of a model’s inputs in predefined 

regions to quantify their importance and the importance of input parameter 

interactions. This is critical for the agent-oriented modeling of complex dynamic 

systems. 

 The choice of methods of sensitivity analysis for agent autonomy is dictated 

by the following considerations: 

1. Nonlinearity in output variables, non-monotonic output variables 

 The local sensitivity analysis methods cannot provide accurate 

sensitivity measures when the model response is nonlinear and/or non-

monotonic with respect to its inputs. Variance-based global sensitivity 

measures should be used. 
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2. Input parameter interactions 

 If interactions between the model inputs are present, varying two or 

more inputs simultaneously causes greater variation in the output than that 

upon varying each input alone. Such interactions are present in any non-

additive model, but they are neglected by the local sensitivity methods that are 

based on one-at-a-time perturbations. 

 Based on the above considerations, the desirable properties of sensitivity 

analysis for agent autonomy execution are the following [112]: 

1. The ability to incorporate the effect of the input parameter mean, variation, 

and the form of its probability density function 

 It is important to consider the type of probability distribution of each 

input variable and the distribution parameters. The method should work 

regardless of the linearity and monotonicity of the model. The local sensitivity 

methods do not have these capabilities, and therefore global methods should 

be preferred. 

2. The ability to perform multivariate analysis  

 Local sensitivity methods consider the effect of the variation of one 

input parameter while all others are kept constant at the mean (or nominal) 

value. A global method should be used in order to evaluate the effect of one 

input parameter while all others are also varying. This would allow capturing 

the input parameter interactions, which are said to occur when the effect of 

changing two or more input variables is different from the sum of their 

individual effects. 
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 From the above discussion, global sensitivity analysis methods are the most 

appropriate for modeling agent’s activation and deactivation capability. Sobol’s 

method of global sensitivity analysis is recommended because it is capable to deal 

with simultaneous variation in all qualitative and quantitative inputs, model 

nonlinearity, input interactions, and non-monotonic models, and it can also yield 

robust sensitivity rankings. To explain the essence of Sobol’s method, let us denote a 

single output variable, Y, as a function of an input variable, X, or Y = f(X), where X is 

defined by individual elements as X = {x1, x2, …, xn}. Sobol’s method is based on 

variance decomposition where the variance, V(Y), of the output is a finite sum, and 

each term corresponds to the contribution of one input variable, xi, or to the 

interaction of several input variables [108], [109], [112]. According to Sobol’s 

method, two sensitivity indexes should be calculated: the first-order effect index for 

the variance of the input variable, xi, and the total effects index for the variance of xi. 

The first-order effect index of the variance of xi is given by: 

   
  
 ( )

 
   (    ( |  ))

 ( )
 

Equation 7-1 

where V(Y) is the total variance of the output, Y, Vi is a contribution of variance of xi 

into V(Y),     ( |  ) denotes the expectation of the output, Y, by fixing the variable xi 

at a particular value and considering random variations of all other variables (denoted 

by    ). Equation 7-1 calculates the variance of this expectation by considering the 

random variation in xi and fixing it at random values. Monte Carlo simulation is used 

to calculate Si by solving the respective multidimensional integral for Vi: 
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Equation 7-2 

where p(xk) is the probability density function of variable xi, E(Y) denotes the 

expected value of the output variable, Y, considering random variations of all the 

elements of the input variable, X = {x1, x2, …, xn},    is the sample space for xi, and 

    corresponds to the reduced sample space defined by: 
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Equation 7-3 

 The first-order effect calculated in Equation 7-1 gives an estimate of the 

contribution of the variable xi to the uncertainty in the output, Y, without 

consideration of the effects of the other variables,    , since their contribution is 

averaged. The contribution of the input variable xi in combination with all other input 

variables is known as the total effects index and can be calculated as: 
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Equation 7-4 

where    ( |   ) denotes the variance of the output, Y, when all variables other than 

xi (denoted by    ) are fixed at a particular quantity to calculate the variance by 

considering variation in xi. Equation 7-4 calculates the expectation of this variance by 

considering the variation in all other quantities (   ). Monte Carlo simulation is used 

to calculate STi by solving the respective multidimensional integral for VTi: 
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Equation 7-5 

 In summary, the first-order effect, Si, describes the contribution of a particular 

input variable, xi, alone to the uncertainty in the output variable, whereas the total 

effect, STi, describes the overall contribution of a particular input variable, xi, to the 

uncertainty in the output variable, in combination with all other variables. The 

determination of Si and STi is a problem in the evaluation of multidimensional 

integrals. In practice, this evaluation is carried out with sampling-based methods 

(such as Monte Carlo sampling). The concept of Monte Carlo sampling for the 

evaluation of sensitivity indexes is discussed in [5], [112] and [113], one of the 

sampling algorithms is also shown in [108]. The Monte Carlo sampling procedure 

involves sampling the input variables from given probability distributions for the 

evaluation of the first order and total effect Sobol’s sensitivity indices. The sensitivity 

indexes calculation method, proposed in [114] and discussed in [115], formulates 

Sobol’s indices in terms of the Pearson correlation coefficients and subtracts the 

spurious correlations (correlations caused by finite sample size in an ideally 

uncorrelated data) for improved accuracy. Both approaches, direct Monte Carlo 

sampling and correlation coefficients method, could be used to calculate the 

sensitivity indexes as a measure of uncertainty importance in establishing the 

activation/deactivation property of intelligent agents. 

 While statistical (probabilistic) sensitivity methods are the most appropriate 

for modeling the activation/deactivation capability of intelligent agents, they are 
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mathematically comprehensive and involve significant computational effort. Their 

use is inefficient for large models and their results, in some cases, are comparable to 

those obtained from simpler techniques of local sensitivity measures. The local 

methods of sensitivity analysis are suitable for agent autonomy modeling if there are 

no interactions between the input variables and the model of the output variable is 

linear. If any of the above two conditions are not met, the use of a local sensitivity 

analysis method becomes a compromise between the reduction in computational 

effort and partial loss of information. 

 For Type II Macro-Agents and Type III Monitoring Agents which have a 

large number of inputs from other agents, the number of simulations required for a 

global sensitivity analysis becomes too large to be practical. In such case, the local 

methods of sensitivity analysis could be suitable given no interactions between the 

input variables are anticipated (each input variable is statistically independent of any 

other input variable) and a nonlinear model of the output variable can be linearized by 

transformation. Where the latter cannot be achieved (no transform function can be 

defined), graphical sensitivity analysis method called a scatter plot could be used to 

help identify relationships between individual inputs and a model output. Each point 

on a scatter plot represents a pair of an input value and the corresponding output 

value generated by simulation. A relationship could be linear or nonlinear. If the 

relationship is close to linear for all input variables, the local methods of sensitivity 

analysis could be considered a suitable compromise when the agent output model is 

large. If the relationship is highly nonlinear, the use of local sensitivity analysis 

methods may need to be ruled out. 
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 Where a local sensitivity analysis is intended, the local method called 

Importance Index (II) is recommended for modeling of agent activation and 

deactivation capability. This measure of importance provides an indication of each 

input parameter's contribution to the variability in the model output. The Importance 

Index uses random sampling techniques to evaluate the input parameter's fractional 

contribution to the amount of uncertainty in the model output when varying each 

input parameter, one-at-a-time, according to its probability density function while the 

effect of all other variables is averaged out. This sensitivity index is the ratio of the 

output variance, obtained by considering random variation in the input parameter of 

interest, xi, and fixing all other parameters at their mean values, to the total variance 

of the model output, Y, upon random variation of all input parameters. The 

Importance Index is calculated as: 
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Equation 7-6 

where    ( |   ) denotes the variance of the output, Y, when all variables other than 

xi (denoted by    ) are fixed at a particular quantity (usually the mean value) to 

calculate the variance of Y by considering variation in xi, and V(Y) is the total 

variance of the output parameter Y = f(X), considering random variations of all 

elements of the input variable X = {x1, x2, …, xn}. 
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7.2. Agent Status Update Process 

 As discussed in Chapter 4, Type I Micro-Agents, Type II Macro-Agents, and 

Type III Monitoring Agents (except the Type III System Monitoring Agent) have 

activation and deactivation properties. These properties stem from the fact that an 

influence of some physical characteristics and constituent parts of the system on a 

physical processes of degradation and failure may change over time. For example, the 

variation of environmental temperature in the avionics bay of an aircraft was 

considered a critical input to the thermal model of the electronic control unit (ECU) 

which provided inputs to the reliability model of the ECU. After several years in 

service, upon degradation of some heat dissipation measures inside the ECU, 

variation of the bay temperature does not have any significant effect on the thermal 

model results and, consequently, on the reliability model of time to failure of the ECU 

because of other significant contributors to the board temperature rise. Changes in 

relative importance of various attributes to system degradation over time imply that 

the sensitivity of the model output to the input variables also changes with time, 

therefore, it is necessary to calculate the sensitivity indices as a function of number of 

the cycles or other measure of time.  

 As discussed in Section 7.1, uncertainty importance (sensitivity) analysis 

calculates the effect of the variance of an input quantity on the variance of the output 

quantity for a generic model given by: 

   ( )      {          } 

Equation 7-7 
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where xi, i = 1, …, n, denote the input variables and Y is an output variable. In the 

context of agent autonomy, Y represents the output variable of the Type II Macro-

Agent or the Type III Monitoring Agent, and xi represents output variables of Type I 

Micro-Agents, Type II Macro-Agents or Type III Monitoring Agents serving as 

inputs to the respective Type II Macro-Agent or Type III Monitoring Agent. For 

example, the output of Type II Macro-Agent, Y, is the crack size at the end of a 

particular number of cycles, then the inputs, xi, i = 1, …, n, include all Type I Micro-

Agents and Type II Macro-Agents that affect the crack size prediction based on the 

physical model of crack growth (e.g. such Type I Micro-Agents as initial crack size, 

loading parameters, geometry, material constant, etc.). 

 A rule restricting the activation/deactivation property of certain agents could 

be programmed into the agent’s internal knowledge (particularly special rules of 

behavior) to the discretion of the modeler. For example, a rule may be added that 

restricts the activation/deactivation property of all agents within the agent hierarchy 

except for Type I Micro-Agents and Type II Macro-Agents that have no inputs from 

other agents. This would imply that only the independent variables can change their 

input from probabilistic to deterministic and vice versa, while all dependent variables 

in the system hierarchy (with one or more inputs) will remain active at all times. 

Other examples are setting a permanent “active” status for the Type II Macro-Agent 

which serves as an input to the Type I Micro-Agent, and setting a permanent “active” 

status for all Type III Part Monitoring Agents and Type III Component Monitoring 

Agents. 
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 The modeler defines the activation/deactivation criteria for each agent that has 

the autonomy property. These criteria may have a form of relative importance rank of 

the output variable of an agent, xi, compared to the output variables of other agents 

forming an input set {          } for a certain higher level agent with the output 

variable, Y. Such rank would be assigned based on first order and/or total sensitivity 

indexes for all the input variables, {          }. In the above example of Type II 

Macro-Agent crack size, the input agents (initial crack size, loading parameters, 

geometry and material constant) will be ranked based on their sensitivity indexes and 

the agents with the lowest rank may be deactivated per activation/deactivation criteria 

set by the modeler. Considering these four input agents and using the Importance 

Index as sensitivity measure, the agent deactivation criteria could be set as, for 

example, Importance Index (II) < 0.10, meaning that the input agent is deactivated if 

not more that 10% of the crack size variance is explained by variation of this input 

agent. 

 “Inactive” status of an agent implies that the agent output variable, xi , has no 

effect on the next level agent, Y, and so xi can be fixed at any value over its 

uncertainty range, preferably at mean value, changing the representation of the 

respective agent from probabilistic to deterministic (see Sections 3.1 and 4.6).  

 If a certain agent serves as an input agent for two or more other agents, this 

input agent could have an “active” status with respect to one of the next level agents 

and an “inactive” status with respect to the others. For example, if a Type I Micro-

Agent mechanical load is an input to two Type II Macro-Agents, fatigue crack size 

and wear depth, sensitivity analysis may render this Type I Micro-Agent as “active” 
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for Type II Macro-Agent fatigue crack size and “inactive” for Type II Macro-Agent 

wear depth. 

 The learning property of an agent is not affected by the agent status. The agent 

learns with the same intensity and according to the same rules, defined in previous 

chapters, regardless of its status (active or inactive).  

 The agent activation/deactivation procedure can be summarized, as follows: 

1. All agents are set as active at time zero when the agent hierarchy is developed 

based on PoF knowledge of the system and prior (initially available) data. 

2. Upon the first update of the agents’ beliefs based on new data (through the 

agent learning process), sensitivity analysis is performed for each Type I 

Micro-Agent, Type II Macro-Agent and Type III Monitoring Agent (except 

Type III System Monitoring Agent) to evaluate the effect of the variance of 

the agent output variable on the variance of the output variables of other 

agents that use aforementioned agent as an input. Sensitivity indexes are 

evaluated only for probabilistic agents comprising inputs to the next level 

agent, while uncertain parameters of the output model of the latter are set at 

fixed values, preferably at their mean values. 

3. If the effect of the variance of the output variable of a given input agent on the 

variance of the output variable of the respective agent exceeds a threshold 

identified by the modeler, the input agent’s status remains as “active”. 

4. If the effect of the variance of the output variable of a given input agent on the 

variance of the output variable of the respective agent is below a threshold 
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identified by the modeler, the input agent’s status changes to “inactive” (i.e. 

this input agent is deactivated). 

5. Upon the next update of the agents’ beliefs based on new data (through the 

agent learning process), sensitivity analysis is performed for each agent within 

the agents hierarchy (except Type III System Monitoring Agent), including 

inactive agents, to re-evaluate the effect of the variance of the agent output 

variable on the variance of the output variables of the respective agents that 

use aforementioned agent as an input. 

6. If the effect of the variance of the output variable of a given input agent on the 

variance of the output variable of the respective agent exceeds a threshold 

identified by the modeler, the input agent’s status remains as “active” if the 

agent is currently active, or changes to “active” if the agent is currently 

inactive (i.e. this input agent is reactivated). 

7. If the effect of the variance of the output variable of a given input agent on the 

variance of the output variable of the respective agent is below a threshold 

identified by the modeler, the input agent’s status remains as “inactive” if the 

agent is currently inactive, or changes to “inactive” if the agent is currently 

active (i.e. this input agent is deactivated). 

8. Steps 5 to 7 are repeated every time the agents in the hierarchy complete their 

learning process upon the availability of the new data. 

 As an example of uncertainty importance for agent autonomy, consider a Type 

II Macro-Agent, life to failure of the electromechanical component. The PoF model 
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of the agent output variable, life to failure, is given by the following life-stress 

equation: 

     (  )     (
 
 
)( )     (  )   

Equation 7-8 

where A, B, k, l, m and n are the model parameters, T is ambient temperature, T is 

thermal cycling amplitude, V is applied voltage, H is ambient humidity, and P is 

pressure load cycling amplitude. Random variables T, T, V, H and P are 

represented by the Type I Micro-Agents, which are the inputs to the Type II Macro-

Agent, life to failure, L.  Life test data were used to update the beliefs of the Type I 

Micro-Agents and the Type II Macro-Agent. Upon each update, uncertainty 

importance (sensitivity) analysis was performed for the random variables T, T, V, H 

and P to evaluate their “importance” for the dependent variable L. The Importance 

Index (II) method was used to assess the contribution of the uncertainty (variability) 

of the input variables, T, T, V, H and P, into the uncertainty (variability) of the 

output variable, L. All five Type I Micro-Agents were set to have an active status 

prior to the first update. The results of two updates are summarized in Table 7-1. The 

contribution of each input agent was ranked according to the normalized importance 

index. It can be seen that Type I Micro-Agents representing thermal cycling and 

humidity levels remained active upon the first update and deactivated themselves 

after the second update, while Type I Micro-Agent pressure cycling remained active 

at all times. The Type I Micro-Agents temperature and voltage deactivated 

themselves upon the first update and remained inactive upon the second update. It 

was concluded that pressure cycling is the most important contributor to the 
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variability of the life to failure. Pressure cycling should be represented by a Type I 

Micro-Agent in a future study, while temperature and voltage may be set as constant 

values. In order to confirm the status of thermal cycling and humidity agents, the 

modeler may need to obtain additional data so that the respective agents could 

continue their learning process. Another observation is related to the chosen method 

of sensitivity analysis, the Importance Index. The fractional contribution of each input 

variable to the uncertainty in the model output was evaluated by varying each of five 

input parameters, one-at-a-time, while holding all other variables at their average 

values. Since the life to failure, L, is a nonlinear function of the input variables, T, T, 

V, H and P , the total effect of all five input variables was close to 50% after each 

update (as shown by the importance index for life to failure variable in Table 7-1). 

This suggests that global sensitivity analysis methods, specifically Sobol’s method of 

variance decomposition, should be preferred to improve the accuracy of the analysis. 

 

Table 7-1: Example of the Agent Status Update by Uncertainty Importance (Sensitivity) Analysis 
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7.3. Key Features and Advantages of the Autonomy Property 

 Considering the agent status update procedure described in Section 7.2, the 

next step is to define the algorithm of the autonomy execution within agent-oriented 

reliability modeling. The following example demonstrates the process. Consider the 

agent     having an output variable   as a function of the input variables     (i = 1, 2, 

…, n), where the variables     represent the respective input agents    : 

    (             ) 

Equation 7-9 

Assume that the agent    provides an input to another agent Z with an output variable 

z, where the latter is a function of the variable    and several other variables     (j = 

2, …, m) associated with the agents   : 

   (          ) 

Equation 7-10 

The agents     (j = 1, 2, …, m, i = 1, 2, …, n) are the input agents of the respective 

agents    (j = 1, 2, …, m). The autonomy execution algorithm is defined as the 

follows: 

1. As new data/information becomes available, the agent    learns from it by 

updating the functional form and the parameters of the model function f(∙).  

2. The input agents     (i = 1, 2, …, n) also learn from the new data/information 

and update their beliefs about: a) the functional form and the parameters of the 

model of their output variables,    , and b) the resulting probability 

distributions of their output variables,  (   ), given the respective input 

variables (as applicable). 
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3. The input agents     (i = 1, 2, …, n) update their status by means of 

uncertainty importance (sensitivity analysis) to evaluate the effect of the 

variance of the agent output variables,    , on the variance of the output 

variable of the agent    (this process is described in Section 7.2). 

4. The input agents     (i = 1, 2, …, n) communicate the updated believes about 

the probability distributions of their output variables,  (   ), and about their 

status with respect to other agents (active or inactive) to all agents within the 

agent hierarchy, including the agent   . 

5. The agent    reacts to the updated beliefs of the input agents     (i = 1, 2, …, 

n) by updating the distribution of its output variable,  (  ), by means of 

simulation over the updated model function, f(∙), and using the updated 

probability distributions  (   ) of those and only those input variables     that 

represent the agents     with an active status with respect to the agent   . 

Probability distributions  (   ) of the input variables     associated with 

inactive agents     with respect to the agent    are not used in the simulation 

of the probability distribution  (  ). For the purpose of this simulation, the 

output variables of the inactive input agents     are assigned with constant 

values derived from their respective probability distributions,  (   ), such as 

distribution mean or median. 

6. The agents    (j = 2, …, m) and their respective input agents     (j = 2, …, m, i 

= 1, 2, …, n) learn and update their beliefs in the same manner as the agent    

and its input agents     (i = 1, 2, …, n) in accordance to steps 1 to 5 above. 
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7. The agent Z learns from the new data/information by updating the functional 

form and the parameters of the model function g(∙). 

8. The agents    (j = 1, 2, …, m) update their status with respect to the agent Z by 

means of uncertainty importance (sensitivity analysis) to evaluate the effect of 

the variance of their output variables,   , on the variance of the output variable 

of the agent Z (this process is described in Section 7.2). 

9. The agents    (j = 1, 2, …, m) communicate their updated believes about the 

probability distributions of their output variables,  (  ), and about their status 

with respect to other agents (active or inactive) to all agents within the agent 

hierarchy, including the agent Z. 

10. The agent Z reacts to the updated beliefs of the input agents    (j = 1, 2, …, m) 

by updating the distribution of its output variable,  ( ), by means of 

simulation over the updated model function, g(∙), and using the updated 

probability distributions  (  ) of those and only those input variables    that 

represent the agents    with an active status with respect to the agent Z. 

Probability distributions  (  ) of the input variables    associated with 

inactive agents    with respect to the agent Z are not used in the simulation of 

the probability distribution  ( ). For the purpose of this simulation, inactive 

input agents are assigned with constant values derived from their respective 

probability distributions,  (  ), such as distribution mean or median. 

11. Steps 1 to 10 above are repeated every time new data/information becomes 

available. 
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The above process of the autonomy execution suggests that the agent autonomy uses 

only the most relevant elements for the system reliability assessment since only the 

active agents are included in the simulation. This brings several benefits which 

distinguish the PoF-based agent autonomy approach from other existing methods of 

system reliability modeling and makes the autonomy property of agents a “core” 

contribution of this research: 

1. Agent autonomy offers more efficient algorithm due to less frequent updates 

and reduced computational effort. In resemblance to the well-known 80/20 

rule, the concept could be described as “80% of the answer is delivered by 

20% of the agents and achieved it with 20% of the modeler’s efforts”. 

2. Agent autonomy delivers higher quality of prior information for the future use 

of the mobile agents in the agent autonomy of similar systems.  

3. Agent autonomy provides stronger guidance for uncertainty reduction by 

pointing to the multiple elements of the system which are not “important”. 

4. Since any agent could have an “active” status with respect to one agent and an 

“inactive” status with respect to the other while constantly updating its 

probabilistic model by learning from new data/information, the agents are said 

to be active globally but active/inactive locally. It means that all agents remain 

to be probabilistic at all times during the system modeling and share the 

probabilistic information about their output variables with other agents in the 

hierarchy (i.e. being “active globally”), however become deterministic when 

deactivate themselves only with respect to some selected agents and only until 

the uncertainty importance defines so (i.e. become “inactive locally”). 
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7.4. Uncertainty Characterization within the Agent Autonomy 

 Uncertainty characterization within agent autonomy has some advantages as 

well as some challenges. Both epistemic and aleatory uncertainties are present within 

the agent autonomy model as they emerge from various sources, such as:  

1. Uncertainty in the functional form of the agent output model (primarily 

epistemic uncertainty due to lack of engineering knowledge about the physical 

phenomena, human reliability or software errors, or due to lack of data for the 

right choice of the best fit model). 

2. Uncertainty in the agent output model parameters (primarily epistemic 

uncertainty due to lack of data for parameters estimation, but aleatory 

uncertainty could also take place for complex dynamic systems). 

3. Uncertainty in the agent input variables, which includes both epistemic and 

aleatory uncertainties related to the input variables as well as initial and 

boundary conditions. 

4. Data uncertainty due to partial relevance, conflicting pieces of information 

within the data set, subjectivity of engineering judgment and expert opinion, 

and/or measurement errors. 

5. Uncertainty in the reasoning algorithm (causal relationship model) where 

indirect measurements of a certain quantity are used as information (data) for 

agent learning.  

6. Calculation uncertainties as a result of simplification, approximation or 

rounding errors, and/or the use of simulation or numerical techniques in lieu 

of closed form solution. 
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7. Data discretization related uncertainties. 

 These uncertainties propagate through the agent autonomy modeling structure 

and form the uncertainties about the output variables of all agents up to the Type III 

Monitoring Agent providing system reliability measures. A range or a distribution of 

the agent output variable or the agent output model parameters are used to quantify 

uncertainties within the agent autonomy framework. 

 The two-step uncertainty quantification could be performed. The first step 

quantifies agent output model related uncertainties associated with the model 

structure and model parameters (items 1 and 2 from the above list of uncertainty 

sources) while holding the input variables constant. The second step uses a simulation 

to update the uncertainty distribution of the agent output variable according to the 

uncertainty distributions of the input agent variables to quantify uncertainties 

introduced by the agent model inputs (item 3 from the above list of uncertainty 

sources). In the case of a single deterministic model representing the agent output 

variable, the first step of uncertainty quantification comes to evaluation the 

(uncertain) error term (which could be additive, multiplicative or both, as discussed in 

Section 5.1).  

 The above process may assist the separation of epistemic and aleatory 

uncertainties in the final results, however such separation is generally not a 

straightforward process. In most applications, the modeler could make a case for both 

types of uncertainties where, for instance, epistemic uncertainty is represented by a 

probability distribution of the value of the random (aleatory) characteristic. In order 

to make a clear distinction between epistemic and aleatory uncertainties, the modeler 
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must have good understanding of the nature of the physical model of the phenomenon 

associated with the given variable. Within the agent autonomy modeling, which relies 

on engineering knowledge of the degradation and failure of a complex dynamic 

system and often uses limited or partially relevant data, making a distinction between 

the two types of uncertainties becomes quite challenging, if possible at all. It is much 

more critical for the modeler, however, to evaluate uncertainty importance of the 

variables representing the various agents in order to distinguish the top contributors to 

the uncertainty in the system reliability measures and identify uncertainty reduction 

opportunities. 

 Uncertainty importance assessment is performed within the context of agent 

autonomy execution. Global methods of uncertainty importance analysis by variance 

decomposition appear to be the most appropriate for the agent autonomy representing 

dynamic engineering system. The global methods, however, impose significant 

computational effort in evaluating the importance indexes that limits their practicality 

in many cases. Local methods of uncertainty importance analysis are relatively simple 

and computationally inexpensive, but are invalid or at least inaccurate in the 

identification of key contributors to the uncertainty when complex PoF modeling is 

involved. Despite their complexity, global methods of uncertainty importance 

analysis are yet to be used for agent autonomy containing bidirectional 

communication between agents and feedback loops. Such interactions between agents 

result in an “amplification” of uncertainty through the agent-based reliability model, 

making accurate identification of the uncertainty “drivers” of paramount importance. 
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 The modeler’s knowledge of physical failure mechanisms and availability of 

the associated PoF models is critical for the quantitative assessment of model-related 

uncertainties, especially in the agent autonomy approach which has an ultimate goal 

of bringing physics-of-failure into the system reliability assessment. In case of limited 

PoF knowledge of the system degradation processes, several PoF and empirical 

models Y = f(X) should be tested as part of agent learning allowing each agent to 

“choose” the most appropriate model of its output variable according to the amount of 

uncertainty. In addition, weighting and combining several plausible models, and 

switching between the models according to the specified conditions could also be 

exercised by the agent during model selection process [116]. The modeler’s judgment 

plays an important role when choosing which treatment options to be programmed 

into the agent. For complex models within the agent autonomy, special computer 

techniques may be developed to compare model uncertainties [117].  

 While an agent “matures” upon learning from new information, updating the 

functional form and parameters of the agent output model results in the reduction of 

epistemic uncertainties throughout the system reliability model. Aleatory uncertainty, 

often associated with the inherent variability of the output variables of the 

independent agents (i.e. Type I and Type II agents with no inputs from other agents), 

will remain in the model along with other sources of irreducible uncertainty (such as 

data uncertainties, calculation uncertainties, and data discretization uncertainties). 

 Data availability is a common source of epistemic uncertainty when limited 

and partially relevant data need to be used for reliability model development. 
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Bayesian inference is, therefore, defined as a preferred framework of agent learning 

to maximize use of the available information. 

 The agent autonomy approach also offers several improvements with respect 

to uncertainty characterization. Since the agent autonomy approach maximizes data 

usage and makes the agents mobile (usable in other applications), it is advantageous 

for the decision makers performing high-consequence risk analysis of a complex 

engineering system with limited knowledge about the system behavior. In addition, 

the agent autonomy approach to system reliability modeling allows for some 

reduction of subjectivity and arbitrariness in the definition of system failure scenarios 

and their consequences compared to fault tree and event tree methodologies because 

the intelligent agents evolve autonomously reflecting on all relevant failure scenarios 

(not only those believed to be the “worst case” sequences). This is particularly 

important for high-hazard industries, such as nuclear, aerospace, defense and several 

others, where both underestimation and overestimation of the criticality of accident 

scenarios lead to potentially significant consequences.  

 Another aspect of uncertainty characterization is related to the capability of 

the agent autonomy to provide realistic representation of the system dynamics as it 

evolves over time. For example, fault trees and event trees typically use the classical 

binary success/failure logic of system reliability representation. In addition, fault trees 

and event trees are static techniques which cannot take into account time-dependent 

evolutions of dynamic systems. In contrary, the agent autonomy approach effectively 

models the dynamics of system evolution in time and differentiates between the 

different levels of system performance depending on the degraded states of the 



 157 

 

constitutive parts and components. As a result, epistemic uncertainties, introduced by 

simplification and approximation of the reality, will be reduced for agent autonomy 

models. 
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Chapter 8: Case Study: Agent-Based Reliability Assessment 

of Gas Turbine Aircraft Engine Structures 

8.1. Introduction 

 This chapter provides an application example of a gas turbine system 

reliability analysis by means of the agent-based PoF modeling in order to demonstrate 

concepts and methods of agent autonomy that are introduced in this work. 

A gas turbine is a type of internal combustion engine used to power aircrafts, trains, 

ships, generators, or tanks. In the aerospace industry, current aircraft maintenance 

practices rely on highly conservative life estimates for critical gas turbine engine 

components to ensure that they are replaced prior to failure. While these practices 

have resulted in extremely low failure rates, they also reduce the aircraft’s availability 

and incur significant labor costs to replace the components with significant remaining 

useful lives. In some cases, even highly conservative life estimates, however, cannot 

account for the extreme or unpredictable circumstances that contribute to many of the 

documented engine failures. It is therefore critical, to develop a reliability model that 

will enable accurate evaluation of the life of critical engine components for each 

known mission profile and specific use conditions. The accuracy of the model for 

determining the component life and monitoring its consumption significantly impacts 

the engine safety and life cycle cost. The physics-based agent autonomy approach, 

presented in this dissertation, will be used to combine the test and field data with the 

life models to estimate life to failure for gas turbine components. 
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8.2. Gas Turbine Overview 

 A turboprop engine is a turbine engine where an aircraft propeller is driven 

using a reduction gear [118]. A turboprop engine consists of air intake section, 

compressor, combustor, turbine (also called high pressure turbine), gearbox, and 

propelling nozzle (exhaust section), as shown on Figure 8-1. Air is drawn into the 

intake section, compressed by the compressor, and forced into the combustor. The 

compressed air is mixed with fuel in the combustion chamber, where the fuel-air 

mixture is then ignited by a spark. The fuel burns producing hot gases, which expand 

and drive the fan blades of the high pressure turbine. Most of the power generated by 

the turbine is transmitted to the propeller through the reduction gear, while some 

power is used to drive the compressor. The combustion gases expand further in the 

propelling nozzle where they are discharged into the atmosphere. The propelling 

nozzle creates only a small proportion of the total thrust generated by a turboprop 

engine (the turboprop engine's exhaust gases contain very low energy compared to a 

jet engine and make only a small contribution into the aircraft propulsion). 

 

 

Figure 8-1: Schematic Diagram of a Turboprop Engine  

(from http://commons.wikimedia.org/wiki/File:Turboprop_operation.png) 
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 This case study involves high pressure turbine of a turboprop engine. A single 

turbine section (stage) contains a rotor wheel. The turbine wheel includes a turbine 

disk that holds turbine blades. The turbine stages are splined together and secured by 

the bolts. A roller bearing at the forward end and another at the aft end of the turbine 

shaft support the entire assembly. The number of turbine sections (stages) varies in 

different types of engines. The high pressure turbine sections are connected to the 

compressor sections with a shaft. The air pressure and temperature are rising while 

the air is compressed in the compressor stages of the engine. The air pressure and 

temperature are significantly increased further due to fuel combustion inside the 

combustor chamber, which is located between the compressor and the turbine. The 

high temperature and high pressure gases pass through the high pressure turbine 

stages, where the energy is extracted from the air flow, lowering the temperature and 

pressure of the air. The high pressure turbine is, therefore, exposed to the hottest and 

highest pressure air.  

 

8.3. Gas Turbine Components Life Consumption 

 The design of high performance gas turbine engines have made the overall 

turbine structural reliability limited by the fatigue life of major rotating components 

of the high pressure turbine. Gas turbine discs are usually the most critical 

components which must endure substantial mechanical and thermal loading. The 

degraded performance of other components of the high pressure section adjacent to 

the disks, such as blades, shaft and bearings, also contribute to disk reliability.  
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 If a problem arises in the turbine section, it will significantly affect the engine 

functionality and safety of the aircraft. Blade loss can be contained within the engine 

casing, while the catastrophic failure of a turbine wheel (disk and blade assembly) 

could cause a puncture of the engine casing by the larger fragments of the disc. 

Turbine engine bearing failures are another leading cause of engine loss.  

 In this work, the agent-oriented PoF model is developed for interacting failure 

mechanisms of a high pressure turbine sub-assembly of three components: turbine 

disk (the first stage disk), a high pressure shaft and two roller bearings. For 

simplicity, this research only deals with the above three types of components which 

are among the most important contributors to the reliability and safety of a high 

pressure turbine of an aircraft engine, based on evidence from accelerated life test 

data and field maintenance records.  The first stage disk is chosen because the first 

stage turbine rotor components are the most severely loaded out of the four stages in 

the studied gas turbine engine. Cyclic fatigue is the leading failure mechanism for the 

studied components, as explained in Appendix A. 

 

8.4. Physics-of-Failure Fatigue Life Model of Gas Turbine 

Components 

 Probabilistic-mechanistic life models of the fatigue failure mechanism in high 

pressure turbine bearings, shaft and disk are is shown on Figure 8-2, Figure 8-3 and 

Figure 8-4, respectively. These PoF models are developed from the physical 

principles of the component operation, considering the critical variables which 

contribute to the failure process, as described in Appendix A of this dissertation. A 
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detailed derivation of the PoF-based life-stress equations for the high pressure turbine 

components can be found in Appendix A. 

 

 
 

Figure 8-2: Reliability-Based Fatigue Life Model of High Pressure Turbine Bearing 
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Figure 8-3: Reliability-Based Fatigue Life Model of High Pressure Turbine Shaft 
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Figure 8-4: Reliability-Based Fatigue Life Model of High Pressure Turbine Disk 

 

8.5. Definition of Agents 

 The next step is to develop an agent-oriented representation of the physical 

models of the gas turbine structures presented in the last sections, considering agent 

classification defined in Chapter 3. An intelligent agent is assigned to each element of 

the physical model of failure according to the nature of the element and its role in the 

PoF hierarchy (shown on Figure 8-2, Figure 8-3 and Figure 8-4). Type I Micro-

Agents are listed in Table 8-1. Type II Macro-Agents and Type III Monitoring Agents 

are defined in Table 8-3 and Table 8-4, respectively. 
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Table 8-1: Agent Autonomy for Reliability Modeling of Gas Turbine Structures - Type I Micro-Agents  

Type I Micro-Agents 

ID
# 

Name of Agent 
Output Variable 

Letter ID Representation of Agent 
Output Variable 

Agent Learning Method 

1 Tangential Force on 
the Turbine Wheel 
Disks  

R Monitored during 
operation to obtain Data 
{Ri} and develop 
probability distribution 
(R) 

Classical methods of 
parametric distribution 
fitting to the Data {Ri} 
to obtain probability 
distribution (R) 

2 Amplitude of 
Tangential Force on 
the Turbine Wheel 
Disks at Start 

R Monitored during 
operation to obtain Data 
{Ri} and develop 
probability distribution 
(R) 

Classical methods of 
distribution fitting to 
the Data {Ri} to 
obtain probability 
distribution (R) 

3 Random Vibration  Grms Monitored during 
operation to obtain Data 
{Grmsi} and develop 
probability distribution 
(Grms) 

Classical methods of 
distribution fitting to 
the Data {Grmsi} to 
obtain probability 
distribution (Grms) 

4 Burner Outlet 
Temperature (BOT) 
at Start 

TIT Monitored during 
operation to obtain Data 
{TITi} and develop 
probability distribution 
(TIT) 

Classical methods of 
distribution fitting to 
the Data {TITi} to 
obtain probability 
distribution (TIT) 

5 Dwell Time before 
Shutdown 

D Monitored during 
operation to obtain Data 
{Di} and develop 
probability distribution 
(D) 

Classical methods of 
distribution fitting to 
the Data {Di} to obtain 
probability 
distribution (D) 

6 Initial Crack Size, 
Shaft 

ainitialS Obtained from past 
experience and analysis, 
measured before 
operation start to obtain 
Data {ainitialSi} and 
develop probability 
distribution (ainitialS) 

Classical methods of 
distribution fitting to 
the Data {ainitialSi} to 
obtain probability 
distribution (ainitialS) 

7 Initial Crack Size, 
Disk 

ainitialD Obtained from past 
experience and analysis, 
measured before 
operation start to obtain 
Data {ainitialDi} and 
develop probability 
distribution (ainitialD) 

Classical methods of 
distribution fitting to 
the Data {ainitialDi} to 
obtain probability 
distribution (ainitialD) 

8 Accumulated 
Missions 

M Mission count from 
operation start to data 
collection time point. 
Deterministic quantity 
changing over time, 
taking known values 

Following known 
change pattern over 
time (known values of 
test missions count at 
data collection time 
point) 

 



 166 

 

 According to the agent definitions in Table 8-1, the first seven Type I Micro-

Agents are probabilistic independent agents that have no inputs from other agents. 

They do not have a model of the output variable and learn by parametric distribution 

analysis (classical) using operational data. The Type I Micro-Agent ID #8, 

accumulated missions, is a deterministic time dependent agent, evolving over time in 

a known manner. 

 All eleven Type II Macro-Agents, listed in Table 8-3, are dependent agents 

with several inputs from other agents. They have the PoF model of the output variable 

and learn by Bayesian inference using bench test data. 

 Type III Monitoring Agents, shown in Table 8-4, are developed to evaluate 

the remaining useful life for the components of each of the three tested engines (disk, 

shaft and two bearings) and for each engine as a system.  

 Table 8-2 provides a list of constants used in the case study which were not 

defined as agents due to their deterministic nature (however, having a sequential ID 

number assigned along with the agents). Some of these constants (such as disk 

geometry constant or bearing spall size threshold) can be assigned with an agent in 

future studies if uncertainties arise. 

 

Table 8-2: Agent Autonomy for Reliability Modeling of Gas Turbine Structures - Constants 

Constants 

ID # 
Name of the 

Constant 
Letter ID Definition / Source Value 

9 
Disk Geometry 
Constant 


Obtained from past 
experience and stress analysis 

 = 1.12 

10 
Bearing Spall Size 
Threshold 

SpLimit 
Obtained from past 
experience and analysis 

SpLimit = 0.2 in2 

11 
Number of Tested 
Engines 

E 
Sample size, defined according 
to test set-up 

E = 3 
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Table 8-3: Agent Autonomy for Reliability Modeling of Gas Turbine Structures - Type II Macro-Agents 

Type II Macro-Agents 

ID
# 

Name of 
Agent 

Output 
Variable L

et
te

r 
ID

 

Public Attributes 

Representation 
of Agent 
Output 

Variable 

A
ge

n
t 

L
ea

rn
in

g 
M

et
h

o
d

 

In
p

u
t 

A
ge

n
ts

 
an

d
 C

o
n

st
a

n
ts

 

Data for Agent Learning 

A
ge

n
t 

O
u

tp
u

t 
M

o
d

el
 

P
ar

am
et

er
s 

 

12 Bearing 
Life to Spall 
Initiation 
(Bearing 
#1) 

L1  Weibull 
probability 
distribution 
(L1) =   
W(, L1) 

 PoF model 
for L1: see 
Equation 8-1 B

ay
es

ia
n

 I
n

fe
re

n
ce

 R Time to spall initiation 
(complete observations 
L1i right censored 
observations t1i), 
conditional on input 
variable R: 
{L1i, t1i, Ri}, i = 1, …, E, 
where E is sample size  

1 
k 
B1(1) 
B2(1) 
B3(1) 

13 Bearing 
Life to Spall 
Initiation 
(Bearing 
#2) 

L2  Weibull 
probability 
distribution 
(L2) = 
W(,L2) 

 PoF model 
for L2: see 
Equation 8-2 B

ay
es

ia
n

 I
n

fe
re

n
ce

 R Time to spall initiation 
(complete observations 
L2i right censored 
observations t2i), 
conditional on input 
variable R:  
{L2i, t2i, Ri}, i = 1, …, E, 
where E is sample size  

2 
k 
B1(2) 
B2(2) 
B3(2) 

     ( ) 
 (  ( )    ( ))

     
 

 
Equation 8-1 

     ( ) 
 (  ( )    ( ))

     
 

 
Equation 8-2 

14 Bearing 
Spall Size  
(Bearing 
#1) 

Sp1 

 

 Lognormal 
probability 
distribution  
(Sp1) = 
LN(Sp1, B1) 

 PoF model 
for Sp1: see 
Equation 8-3 B

ay
es

ia
n

 I
n

fe
re

n
ce

 R 
L1 

M 
 

Missions Mi to spall 
propagation from zero 
to size Sp1i, conditional 
on input variable R:  
{Mi, Ri, Sp1i}, i = 1, …, E, 
where E is sample size 

B1 
m  
B4(1)   
B5(1)   
B6(1)   
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Type II Macro-Agents 

ID
# 

Name of 
Agent 

Output 
Variable L

et
te

r 
ID

 

Public Attributes 

Representation 
of Agent 
Output 

Variable 

A
ge

n
t 

L
ea

rn
in

g 
M

et
h

o
d

 

In
p

u
t 

A
ge

n
ts

 
an

d
 C

o
n

st
a

n
ts

 

Data for Agent Learning 

A
ge

n
t 

O
u

tp
u

t 
M

o
d

el
 

P
ar

am
et

er
s 

 

15 Bearing 
Spall Size  
(Bearing 
#2) 

Sp2  Lognormal 
probability 
distribution 
(Sp2) = 
LN(Sp2, B2) 

 PoF model 
for Sp2: see 
Equation 8-4 B

ay
es

ia
n

 I
n

fe
re

n
ce

 R 
L2 

M 

Missions Mi to spall 
propagation from zero 
to size Sp2i, conditional 
on input variable R:  
{Mi, Ri, Sp2i}, i = 1, …, E, 
where E is sample size 

B2 
m  
B4(2)   
B5(2)   
B6(2)   

    [  ( )(  ( )    ( ))
 
(  

 

 
) (    )]

 

  
 
      

 
Equation 8-3 

    [  ( )(  ( )    ( ))
 
(  

 

 
) (    )]

 

  
 
      

 
Equation 8-4 

16 Maximum 
Spall Size 

Sp  Probability 
distribution 
(Sp) is 
obtained by 
simulation 
via PoF 
model for Sp  

 PoF model 
for Sp: see 
Equation 8-5 

Si
m

u
la

ti
o

n
 Sp1  

Sp2 

No data 
required 

Parameters of 
probability 
distribution (Sp), 
obtained via 
simulation from 
(Sp1) and (Sp2), 
are defined by 
selecting best fit 
parametric 
distribution 
function for the 
simulated 
distribution (Sp) 

 
      {       }  

 
Equation 8-5 
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Type II Macro-Agents 

ID# 
Name of 

Agent Output 
Variable L

et
te

r 
ID

 

Public Attributes 

Representation 
of Agent Output 

Variable A
ge

n
t 

L
ea

rn
in

g 
M

et
h

o
d

 

In
p

u
t 

A
ge

n
ts

 
an

d
 

C
o

n
st

an
ts

 

Data for Agent 
Learning 

A
ge

n
t 

O
u

tp
u

t 
M

o
d

el
 

P
ar

am
et

er
s 

 

17 Bearing Life 
to Spall 
Propagation 
to Critical 
Size at 
Failure 
(Bearing #1) 

NB1 

 

 Weibull 
probability 
distribution 
(NB1) =  
W(B1 , NB1) 

 PoF model for 
NB1: see 
Equation 8-6 
(derived from 
PoF model for 
agent Sp1, ID 
#14, note the 
same model 
parameters 
B4(1), B5(1), B6(1)) 

B
ay

es
ia

n
 I

n
fe

re
n

ce
 R 

SpLimit 

Missions Mi to 
failure or to spall 
propagation to 
size Sp1i, 
conditional on 
input variable R:  
{Mi, i-th Failure / 
No Failure 
Condition of 
Bearing #1, Ri, 
Sp1i},    i = 1, …, E, 
where E is 
sample size 

B1 
m  
B4(1)   
B5(1)   
B6(1)   

18 Bearing Life 
to Spall 
Propagation 
to Critical 
Size at 
Failure 
(Bearing #2) 

NB2 

 

 Weibull 
probability 
distribution 
(NB2) =  
W(B2 , NB2) 

 PoF model for 
NB2: see 
Equation 8-7 
(derived from 
PoF model for 
agent Sp2, ID 
#15, note the 
same model 
parameters 
B4(2), B5(2), B6(2)) 

B
ay

es
ia

n
 I

n
fe

re
n

ce
 R 

SpLimit 

Missions Mi to 
failure or to spall 
propagation to 
size Sp2i, 
conditional on 
input variable R:  
{Mi, i-th Failure / 
No Failure 
Condition of 
Bearing #2, Ri, 
Sp2i},    i = 1, …, E, 
where E is 
sample size 

B2 
m  
B4(2)   
B5(2)   
B6(2)   

     
(       )

  
 
 

  ( )(  ( )    ( ))
 
(  

 
 )
    



Equation 8-6 

     
(       )

  
 
 

  ( )(  ( )    ( ))
 
(  

 
 )
     

 

Equation 8-7 
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Type II Macro-Agents 

ID# 
Name of 

Agent Output 
Variable L

et
te

r 
ID

 

Public Attributes 

Representation 
of Agent Output 

Variable A
ge

n
t 

L
ea

rn
in

g 
M

et
h

o
d

 

In
p

u
t 

A
ge

n
ts

 
an

d
 

C
o

n
st

an
ts

 

Data for Agent 
Learning 

A
ge

n
t 

O
u

tp
u

t 
M

o
d

el
 

P
ar

am
et

er
s 

 

19 Shaft Crack 
Size     
 
 

aS  Lognormal 
probability 
distribution  
(aS) =  
LN(S, S) 

 PoF model for 
aS: see Equation 

8-8 

B
ay

es
ia

n
 I

n
fe

re
n

ce
 

R 
Grms 

ainitialS  
Sp  
M 
 

Missions Mi to 
crack 
propagation to 
size aSi, 
conditional on 
input variables 
R, Grms, Sp:  
{Mi, aSi, Ri, Grmsi, 
Spi}, i = 1, …, E, 
where E is 
sample size 

S 
n  
Cs  
S1  
S2  
S3 

 

   [         
        [ {  (  )

    [ (  
 

 
)]

 
 
(    )

    (  )
 
}]
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  ) ]

 
     

        

 
Equation 8-8 

20 Shaft Life to 
Crack Size at 
Failure  
 

NS  Weibull 
probability 
distribution  
(NS) =  
W(S, S) 

 PoF model for 
NS: see 
Equation 8-9 
(derived from 
PoF model for 
agent aS, ID 
#19, note the 
same model 
parameters S1, 
S2, S3) 

B
ay

es
ia

n
 I

n
fe

re
n

ce
 

R 
Grms 

ainitialS 
Sp 

Missions Mi to 
failure or to 
crack 
propagation to 
size aSi, 
conditional on 
input variables 
R, Grms, Sp:  
{Mi, i-th Failure / 
No Failure 
Condition, aSi, Ri, 
Grmsi, Spi}, i = 1, …, 
E, where E is 
sample size 

S 
n  
Cs  
S1  
S2  
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Type II Macro-Agents 
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Equation 8-9

21 Disk Crack 
Size 

aD  Lognormal 
probability 
distribution 
(aD) = 
LN(D,D) 

 PoF model for 
aD: see 
Equation 8-10 
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propagation to 
size aDi, 
conditional on 
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Di}, i = 1, …, E, 
where E is 
sample size 
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Type II Macro-Agents 

ID# 
Name of 

Agent Output 
Variable L
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ID

 

Public Attributes 

Representation 
of Agent Output 
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Data for Agent 
Learning 
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22 Disk Life to 
Crack Size at 
Failure 

ND  Weibull 
probability 
distribution 
(ND) =  
W(D, ND) 

 PoF model for 
ND: see 
Equation 8-11 
(derived from 
PoF model for 
agent aD, ID 
#21, note the 
same 
parameters of 
the model, D1, 
D2, D3) 
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Missions Mi to 
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propagation to 
size aDi, 
conditional on 
input variables 
R, TIT, D:  
{Mi, i-th Failure / 
No Failure 
Condition, aDi, 
Ri, TITi, Di}, i = 1, 
…, E, where E is 
sample size 
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Table 8-4: Agent Autonomy for Reliability Modeling of Gas Turbine Structures - Type III Monitoring Agents 

Type III Monitoring Agents: Component-Monitoring Agents 

ID# 
Name of 

Agent Output 
Variable 

Letter 
ID 

Public Attributes 

Item 
Monitored 

Representation of 
Agent Output 

Variable 

Method of Agent 
Learning 

23 Remaining 
Useful Life of 
Bearing #1 

RULB1 Bearing #1 Probabilistic, by 

distribution (RULB1)  

RULB1 = L1 + NB1 - M 

Simulation from 
input agents L1 (ID# 
15), NB1 (ID# 17) and 
M (ID# 8) 

24 Remaining 
Useful Life of 
Bearing #2 

RULB2 Bearing #2 Probabilistic, by 

distribution (RULB2) 

RULB2 = L2 + NB2 - M 

Simulation from 
input agents L2 (ID# 
16), NB2 (ID# 18) and 
M (ID# 8) 

25 Remaining 
Useful Life of 
the Shaft  

RULS Shaft Probabilistic, by 
distribution (RULS)  

RULS = NS - M 

Simulation from 
input agents NS (ID# 
20) and M (ID# 8) 

26 Remaining 
Useful Life of 
the Disk 

RULD Disk Probabilistic, by 
distribution (RULD) 

RULD = ND - M 

Simulation from 
input agents ND (ID# 
21) and M (ID# 8) 

Type III Monitoring Agents: System-Monitoring Agent 

ID# 
Name of 

Agent Output 
Variable 

Letter 
ID 

Public Attributes 

Components 
Included 

Representation of 
Agent Output 

Variable 

Method of Agent 
Learning 

27 Remaining 
Useful Life of 
the System 

RUL Bearing #1 
Bearing #2 
Shaft 
Disk 

Probabilistic, 
RUL = Min{RULB1, 

RULB2,  RULS, RULD} 

Simulation from 
Type III Agents ID# 
23, ID# 24, ID# 25 
and ID# 26 

 

 As shown in Table 8-4, Type III Monitoring Agents are assigned to evaluate 

the remaining useful life (RUL) of each component and the system by simulation 

over the respective RUL equation, given the probability distributions of the input 

agents. RUL, also called remaining service life or residual life, refers to the time left 

before observing a failure given the current age and condition of an item, and the past 

operation profile. Since the time to fatigue failure of each component is a random 

variable, the system RUL is also a random variable, and the distribution of RUL 

would be of interest for a full understanding of the system reliability. Probabilistic 
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prognosis of the RUL of each component and the system with respect to a critical 

crack size (for the shaft and the disk) and critical spall size (for the bearings) can be 

obtained from the distributions of bearing spall size, shaft crack size, and disk crack 

size, assuming a known future usage profile. 

 An estimation of the component and system RUL has been extensively 

researched within the framework of PHM (prognostics and health management). RUL 

estimates are commonly obtained by data-driven approaches (machine learning and 

pattern recognition methods, described in Section 5.5) applied to failure precursor 

measurements, or according to the PoF-based cumulative damage model of the item 

of interest. “Fusion” approaches as a combination of the two are still being researched 

[119]. The difference between the PoF model-based PHM and the intelligent agent 

autonomy approach is that, compared to the PoF based life-stress models used in 

PHM, the agent autonomy offers more comprehensive and flexible framework for 

addressing dynamic interactions between several failure processes evolving over time 

within the system. The agent Autonomy approach to PPoF system reliability, when 

fully developed and validated, may become the most suitable solution for the “fusion” 

of data-driven and PoF-based models in PHM. 

8.6. Agents Hierarchy 

 The agent hierarchy shown in Figure 8-5 was developed according to the 

agent classification given by Table 8-1, Table 8-3, Table 8-4 and the physical model 

of failure for each component (Figure 8-2, Figure 8-3, Figure 8-4) and the system (as 

a serial system of four components). This agent hierarchy represents the concept of 

Figure 3-2, as applicable to the agent structure of the studied system.  
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 Comparing the agent hierarchy on Figure 8-5 with PoF models shown in 

Figure 8-2, Figure 8-3 and Figure 8-4, it can be seen that Type II Macro-Agents 

represent stress-strength and degradation-endurance variables, life to failure or time 

to degradation. Type I Micro-Agents represent only probabilistic coupling factors (i.e. 

those which are included in stress-life PoF relationships as random variables), while 

several deterministic coupling factors are included into the PoF model parameters, 

and are not assigned with an agent as they are not expected to change over the life of 

the turbine structure (the exceptions are disk geometry factor and spall size threshold, 

which are currently defined as constants in Table 8-2, but may need to be assigned 

with an agent, if it becomes necessary in future due to design changes to the 

respective components). For simplicity and to keep a reasonable size of the diagram, 

only probabilistic agents are presented on Figure 8-5. Enablers, stress vs. life 

relationships and probabilistic life relationships are not shown because they represent 

agents’ internal knowledge, specifically the PoF models of the output variables of the 

respective Type II Macro-Agents and Type III Monitoring Agents. The deterministic 

time-dependent Type I Micro-Agent accumulated missions is also not shown on the 

agent hierarchy because it simply defines total accumulated time since time point 

zero. 
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Figure 8-5: Hierarchy of Agents and their Communication Scheme 

 

 Agent definitions proposed in Section 8.5 and reflected in the current 

hierarchy of agents are also intended to demonstrate one critical objective of this 

work: the ability to capture the interactions between the failure mechanisms of system 

elements making the agent autonomy superior to other system reliability modeling 

methods. This capability is built specifically into the PoF model of the shaft as a 

dependency of the shaft crack size on the bearing spall size through the maximum 

value of the spall size among the two bearing for each given point in time. Equation 

8-8 and, therefore, Equation 8-9 contain the term Sp which represents the Type II 
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Macro-Agent, maximum spall size, which is dependent on the spall size of each of 

two bearings. This example demonstrates the key capability of agent autonomy to 

explicitly model the interdependent degradation measures or other interdependent 

variables within system hierarchy.  

 It can be seen that the proposed agent hierarchy combines the agents of all 

types and shows the bidirectional communication between agents to model complex 

interdependencies between system elements. The arrows in Figure 8-5 depict physical 

and causal relationships between all types of agents. Type I Micro-Agents are the 

simplest independent agents which do not affect each other but only provide inputs to 

the higher level agents, particularly to Type II Macro-Agents. Type II Macro-Agents 

and Type III Monitoring Agents have complex relationships with each other and with 

other agents from one level up and one level down. 

 

8.7. Agent Learning and Autonomy Properties 

8.7.1. Mechanisms of Agent Learning 

 A mechanism of agent reasoning and learning requires special attention 

because learning is a key property of an intelligent autonomous agent along with the 

ability to activate/deactivate itself (autonomy property). The autonomy property is 

discussed in the next section 8.7.2. In this case study, agent reasoning and learning 

capabilities are established in accordance with the rules and procedures defined in 

Chapter 5 and Chapter 6. Specifically, independent Type I Micro-Agents are learning 

through the classical distribution analysis using the data collected during the flight 
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test program and field operation, as described in Table 8-1. The learning property of 

Type II Macro-Agents is accomplished by Bayesian inference, as stated in Table 8-3. 

Type III Monitoring Agents evaluate the remaining useful life of the items they 

represent by simulation algorithm that is based on “series” system failure logic 

(system is considered failed if at least one failure mode occurs out of all possible 

modes).  

 The Bayesian framework presented below in Table 8-5 is an example of a 

learning capability of a Type II Macro-Agent, disk crack size. The same concept 

applies to the other Type II Macro-Agents. 

 

Table 8-5: Learning Process of Type II Macro-Agent Disk Crack Size 

Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Disk Crack Size 

Input Variables 
from Input 
Agents 

Type I Micro-Agents: 

1. Amplitude of Tangential Force on the Turbine Wheel Disks 

at Start, R 

2. BOT at start, TIT  

3. Dwell Time before Shutdown, D 

4. Accumulated Missions, M 

5. Disk Initial Crack Size, ainitialD 

Constants: 

Disk Geometry Constant,  

Note: 

Disk Crack Size agent is time dependent via Accumulated 

Missions agent, M. 

Output 
Variable Disk Crack Size, aD 
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Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Disk Crack Size 

Model of Agent 
Output 
Variable 
- Past Beliefs 

1. The PoF model connecting Disk Crack Size with 

operational stress factors: 

   [         
  (  ⁄ )

   ( √ )
 
(
 

 
  ) {(          )

 

 (   )
 } ]

 
  (  ⁄ )

     

2. It is assumed that lognormal distribution represents the 

variability of Disk Crack Size, where D and D are the log-

mean and log-standard deviation of the crack size distribution: 

 (  )    (     ) 

3. Using the PoF model of the disk crack size as a 

representation of the mean value of the crack size, the log-

mean of the disk crack size distribution is expressed as 

follows: 
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 (   )
 } ]

 
  (  ⁄ )

)      

4. Substituting the above equation for D into lognormal 

distribution model of crack size aD yields conditional 

lognormal distribution functions of the crack size aD given 

operational stress factors and accumulated missions: 
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Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Disk Crack Size 
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where {Mi, aDi, Ri, TITi, Di}, i = 1, …, E, are the data points, E 

is sample size. 

Parameters of 
Agent Output 
Model 
- Past Beliefs 

Vector of model parameters (h, Cd, D1, D2, D3, D)
-1

 

represents parameters of the PoF model of disk crack size.  

Parameters h, Cd, D1, D2, D3, D were initially estimated using 

the generic data produced from a benchmark model and used 

as prior estimates of the PoF model parameters within 

Bayesian updating framework (shown in “Model of Agent 

Output Variable - Updated Beliefs” section of this table). 

New Data 

The data {Mi, aDi, Ri, TITi, Di}, i = 1, …, E, are obtained from 

engine bench test of three engines. The data include number of 

cycles (simulated missions) Mi, applied stresses (amplitude of 

tangential force on the turbine wheel disks at start Ri, BOT at 

start TITi, dwell time before shutdown, Di) and crack size 

measurements aDi. 

Parameters of 
Agent Output 
Model 
- Updated Beliefs 
 

The updated beliefs about parameters of the agent output 

model are developed, as follows: 

1. The likelihood function is: 

 (                  | )

 ∏ (   (                )|              )

 

   

 

where E is the number of systems studied (i.e. the number of 

tested engines). 

It must be noted that this likelihood function applies to the 
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Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Disk Crack Size 

situations when crack size measurements are obtained under 

unchanging operational stresses R, TIT and D, otherwise 

cumulative degradation (cumulative exposure) model must be 

introduced. This cases study is dealing with three engines (E = 

3), each operating under the constant stresses R, TIT and D. 

As such, cumulative degradation modeling will not be applied 

to disk crack growth. 

2. The data {Mi, aDi, Ri, TITi, Di}, i = 1, …, E are used as an 

evidence for Bayesian updating. 

3. Bayesian formulation for posteriori probability of the crack 

size model parameters  (Internal Parameters Set of the agent): 

 ( |    )  
 (    | )  ( )

∭ (    | )  ( )  
 

Upon substitution of the expression of data likelihood function 

into the above equation will obtain updated form of posterior 

probability of crack size model parameters : 

 ( |    )   ( |                  )  

 
 (                  | )  ( )

∫  (                  | )  ( )  
 

This function provides the updated model parameters of the 

agent output, crack size aD, as an outcome of agent learning. 
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Elements of 
Agent Learning 
Process 

Type II Macro-Agent 

Disk Crack Size 

Model of Agent 
Output 
Variable 
- Updated Beliefs 

Same as “Model of Agent Output Variable - Past Beliefs”. 

The expected distribution of disk crack size aD is obtained by 

integration over all possible values of model parameters : 

 (  |          )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
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WinBUGS/OpenBUGS program [120], [121] is used for 

Bayesian updating according to the above formulations. 

 

8.7.2. Autonomy Property of Agents 

 Due to the nature of agents in this case study, the activation/deactivation 

property is only assigned to the independent Type I Micro-Agents, specifically agents 

ID# 1 to 7 in Table 8-1. All Type II Macro-Agents, summarized in Table 8-3, 
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represent damage accumulation related characteristics of four critical components of a 

gas turbine engine, and will remain in the active status in order to serve the purpose 

of the probabilistic reliability modeling. The Importance Index method of local 

sensitivity analysis is chosen for the modeling of agent activation and deactivation 

capability of the specified Type I Micro-Agents because engineering knowledge of 

the studied components suggests that there are no interactions between the output 

variables of these agents. Nonlinearity of the underlying PoF models, however, 

suggests that Sobol’s method of global sensitivity analysis should be used if a higher 

accuracy of estimation is required. Since this case study is only intended to 

demonstrate the autonomy property, the Importance Index method is considered 

sufficient and preferred due to its simplicity. 

 

8.7.3. Computational Resources 

 Several software programs (WinBUGS/OpenBUGS [120], [121], Oracle 

Crystal Ball [122], Minitab [73]) were used in combination to perform Bayesian 

inference, simulation, classical distribution fitting and uncertainty importance 

(sensitivity) analysis for the agent leaning and autonomy execution. Each step was 

programed in a different software program and the analysis results were manually 

transferred into another program to perform the next step of system modeling. As 

such, the case study was very time-consuming and computationally intense despite of 

the small size of the system consisting of four hardware components. A computer 

program would have to be developed to allow the definition of agent autonomy and 

execution of agent-oriented system reliability model within a single interface. 
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8.8. Agent-Oriented Probabilistic PoF Model of System Reliability 

 This section provides a summary of the results of the case study. It must be 

noted that a major part of the available design characteristics, material properties, 

operating conditions, and degradation parameters of the gas turbine components 

could not be published due to the confidentiality agreement with the sponsor 

companies. As such, the numerical values shown below are given for presentation 

only and may be different from their actual values. 

 The results of the learning process of Type I Micro-Agents based on 

operational data are shown in Table 8-6. Operational (flight test) data were collected 

three times to develop and further update the uncertainty distributions of the seven 

Type I Micro-Agents. A total of three updates occurred.  
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Table 8-6: Type I Micro-Agents - Operational Data and Learning Process  

 

 

 

 

 

Past Believes New Data Updated Believes (1st Update) New Data Updated Believes (2nd Update) New Data Updated Believes (3rd Update)

Probability distribution

(R) = Normal (Mean = 90 N, 

St.Dev. = 5 N)

Probability distribution

(R) = Normal (Mean = 220 

N, St.Dev. = 15 N)

Probability distribution

(Grms) = Normal (Mean = 6 

Grms, St.Dev. = 1 Grms)

Probability distribution

(TIT) = Normal (Mean = 

1025°C, St.Dev. = 110°C)

Probability distribution

(D) = Lognormal (Mean = 

150 sec., St.Dev. = 50 sec.)

Probability distribution

(a initialS) = Weibull (Mean = 

0.014 in, St.Dev. = 0.0025 in)

Probability distribution

(a initialD) = Weibull (Mean = 

0.01 in, St.Dev. = 0.003 in)

Not available

Probability distribution (TIT) = 

Normal (Mean = 980°C, St.Dev. 

= 50°C)

Operational Data: 

{TITi}, i = 1, …, 3

Operational Data: 

{TITi}, i = 1, …, 3

7
Initial Crack Size 

(depth), Disk 
a initialD

Probability distribution 

(a initialD) = Weibull (Mean = 

0.01 in, St.Dev. = 0.003 in)

Probability distribution 

(a initialD) = Weibull (Mean = 

0.01 in, St.Dev. = 0.003 in)

Not available Not available

6
Initial Crack Size 

(depth), Shaft 
a initialS

Probability distribution 

(a initialS) = Weibull (Mean = 

0.014 in, St.Dev. = 0.0025 in)

Probability distribution 

(a initialS) = Weibull (Mean = 

0.014 in, St.Dev. = 0.0025 in)

Not available

Operational Data: 

{Di}, i = 1, …, 3

Operational Data: 

{Di}, i = 1, …, 3

4 BOT at start T IT

Probability distribution (TIT) = 

Normal (Mean = 990°C, 

St.Dev. = 75°C)

2

Amplitude of 

Tangential Force on 

the Turbine Wheel 

Disks at Start

 R
Probability distribution (R) = 

Normal (Mean = 210 N, 

St.Dev. = 20 N)

Probability distribution (R) = 

Normal (Mean = 215 N, St.Dev. 

= 15 N)

Operational Data:

{Ri}, i  = 1, …, 6

Operational Data:

{Ri}, i  = 1, …, 6

Operational Data: 

{Di}, i = 1, …, 3

Probability distribution (D) = 

Lognormal (Mean = 155 sec., 

St.Dev. = 40 sec.)

Not available

Probability distribution 

(a initialD) = Weibull (Mean = 

0.01 in, St.Dev. = 0.003 in)

3 Random Vibration G rms

Probability distribution (Grms) 

= Normal (Mean = 5.8 Grms, 

St.Dev. = 1.1 Grms)

Probability distribution (Grms) = 

Normal (Mean = 6.1 Grms, 

St.Dev. = 1.3 Grms)

Operational Data:

{Grmsi}, i  = 1, …, 6

Operational Data:

{Grmsi}, i  = 1, …, 6

5
Dwell Time before 

Shutdown
D

Probability distribution (D) = 

Lognormal (Mean = 145 sec., 

St.Dev. = 60 sec.)

Probability distribution (D) = 

Lognormal (Mean = 160 sec., 

St.Dev. = 45 sec.)

Operational Data:

{Ri}, i  = 1, …, 6

Probability distribution (R) = 

Normal (Mean = 230 N, St.Dev. 

= 10 N)

Operational Data:

{Grmsi}, i  = 1, …, 6

Probability distribution (Grms) = 

Normal (Mean = 6 Grms, St.Dev. 

= 0.8 Grms)

Operational Data: 

{TITi}, i = 1, …, 3

Probability distribution (TIT) = 

Normal (Mean = 970°C, St.Dev. 

= 55°C)

Public Attributes

Type I Micro-Agents

Not available

Probability distribution 

(a initialS) = Weibull (Mean = 

0.014 in, St.Dev. = 0.0025 in)

Probability distribution (R) = 

Normal (Mean = 95 N, St.Dev. 

= 5 N)

Probability distribution (R) = 

Normal (Mean = 90 N, St.Dev. = 

3 N)

Operational Data:

{Ri}, i  = 1, …, 6

Operational Data:

{Ri}, i  = 1, …, 6

ID#
Name of Agent Output 

Variable L
et

te
r 

ID

1

Tangential Force on 

the Turbine Wheel 

Disks 
R

Operational Data:

{Ri}, i  = 1, …, 6

Probability distribution (R) = 

Normal (Mean = 85 N, St.Dev. = 

6 N)
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 The data for the learning process of Type II Macro-Agents have been obtained 

from the engine bench test. The mission (engine cycle) represents starting a cold 

engine, taking-off, flying to a destination, landing, and shutting down. The following 

tables (Table 8-7 to Table 8-10) contain extracts from the calculation file, 

demonstrating the learning process of Type II Macro-Agents based on the data 

collected during the bench test of three prototype engines. The test duration was 2000 

engine cycles, each simulating a mission cycle under the defined conditions.  Seven 

data sets were obtained from the test, each containing the records of input variables 

(from input agents) and the respective measurements of the agent output variable, 

collected at 500 engine cycles, 1000 engine cycles, 1200 engine cycles, 1400 engine 

cycles, 1600 engine cycles, 1800 engine cycles and 2000 engine cycles. Bayesian 

inference was used to aggregate the available data into the updated beliefs about the 

PoF model parameters of the agent output variable. A total of seven updates occurred, 

the first one at 500 missions and the seventh at 2000 missions. For example, new data 

set 5 (at 1600 engine cycles) for Type II Macro-Agent ID #19, shaft crack size, 

contains the following data (Table 8-9): 

Engine #1: R = 230 N, Grms = 8 Grms, aS = 0.043 in, Sp = 0.015 in
2
 

Engine #2: R = 250 N, Grms = 10 Grms, aS = 0.035 in, Sp = 0.024 in
2
 

Engine #3: R = 270 N, Grms = 14 Grms, aS = 0.030 in, Sp = 0.031 in
2
 

Here R, Grms and Sp represent the input agents, aS is agent output variable (shaft 

crack size). Bayesian inference formalism, similar to the model shown in Table 8-5, 

was used to obtain the updated beliefs about the parameters, S1, S2 and S3, of the PoF 

model of the shaft crack size given by Equation 8-8. It must be noted that Type II 
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Macro-Agent ID #20, shaft life to crack size at failure, and Type II Macro-Agent ID 

#19, shaft crack size, share the same parameters, S1, S2 and S3, because the PoF model 

of the agent ID #20 is another form of the PoF model of the agent ID #19. As such, 

the agent ID #20, shaft life to crack size at failure, learns simultaneously with the 

agent ID #19, shaft crack size, however, the resulting probability distributions of the 

two agents are different.  

 Table 8-11 contains an extract from the calculation file, demonstrating the 

learning process of Type III Monitoring Agents from the updated Type II Macro-

Agents. The functional form of the agent output model remained unchanged for the 

all agents in this study. No special rules of behavior have been set for any agents.  
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Table 8-7: Type II Macro-Agents ID #12 and ID #13 - Test Data and the Learning Process 

 

 

 

 

 

 

Past Believes New Data Set 1 (j = 1 ) Updated Believes (1st Update) New Data Set 2 (j = 2 )

Probability distribution for each tested engine: 

(L1) =  Weibull ( , L1) 

Probability distribution for each tested engine: 

(L1) =  Weibull ( , L1) 

where i = 1, …, E , E  is sample size, E = 3. where i = 1, …, E , E  is sample size, E = 3.

B1(1) = Uniform (1E+10, 1E+20) B1(1) = {Mean = 3.20E+16 , St.Dev. = 3.52E+15}

B2(1) = Uniform (0, 1) B2(1) = {Mean = 0.13 , St.Dev. = 0.02}

B3(1) = Uniform (0, 1E+04) B3(1) = {Mean = 2.45E+03 , St.Dev. = 8.62E+01}

k = -1 R 1  = 110 N, R 2  = 130 N, R 3  = 150 N, k = -1 R 1  = 110 N, R 2  = 130 N, R 3  = 150 N,

  = Uniform (1, 8) t 11  = t 12 = t 13  = 500,   = {Mean = 5.3, St.Dev. = 1.0} t 11  = t 12 = t 13  = 1000,

M j  = M 1  = 500 M j  = M 2  = 1000

Probability distribution for each tested engine: 

(L2) =  Weibull ( , L2) 

Probability distribution for each tested engine: 

(L2) =  Weibull ( , L2) 

where i = 1, …, E , E  is sample size, E  = 3. where i = 1, …, E , E  is sample size, E  = 3.

B1(2) = Uniform (1E+10, 1E+20) B1(2) = {Mean = 1.59E+16 , St.Dev. = 2.82E+15}

B2(2) = Uniform (0, 1) B2(2) = {Mean = 0.21 , St.Dev. = 0.03}

B3(2) = Uniform (0, 1E+04) B3(2) = {Mean = 2.04E+03 , St.Dev. = 6.46E+02}

k = -1 R 1  = 110 N, R 2  = 130 N, R 3  = 150 N, k = -1 R 1  = 110 N, R 2  = 130 N, R 3  = 150 N,

  = Uniform (1, 8) t 21  = t 22 = t 23  = 500,   = {Mean = 5.5, St.Dev. = 1.0} t 21  = t 22 = t 23  = 1000,

M j  = M 1  = 500 M j  = M 2  = 1000

L 1

13

Bearing Life to 

Spall Initiation 

(Bearing #2)
L 2

{M j , L 1i , t 1i , R i }, i = 1, …, E, where E  is 

sample size, E  = 3.

{M j , L 1i , t 1i , R i }, i = 1, …, E, where E  is 

sample size, E  = 3.

{M j , L 2i , t 2i , R i }, i = 1, …, E, where E  is 

sample size, E = 3.

{M j , L 2i , t 2i , R i }, i = 1, …, E, where E  is 

sample size, E = 3.

ID#
Name of Agent 

Output Variable L
et

te
r 

ID

Test Data: 

Accumulated missions M j , missions  to 

spall initiation (left censored 

observations L 2i , right censored 

observations t 2i ), conditional on Input Set 

variable R i ,

Test Data: 

Accumulated missions M j , missions  to 

spall initiation (interval censored 

observations L 2i , right censored 

observations t 2i ), conditional on Input Set 

variable R i ,

Test Data: 

Accumulated missions M j , missions to 

spall initiation (left censored 

observations L 1i , right censored 

observations t 1i ), conditional on Input Set 

variable R i ,

Test Data: 

Accumulated missions M j , missions to 

spall initiation (interval censored 

observations L 1i , right censored 

observations t 1i ), conditional on Input Set 

variable R i ,
Bearing Life to 

Spall Initiation 

(Bearing #1)

12

Type II Macro-Agents
Public Attributes

      ( )  
   ( )     ( )

     

      ( )  
   ( )     ( )

     

      ( )  
   ( )     ( )

     

      ( )  
   ( )     ( )
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Table 8-8: Type II Macro-Agents ID #14 and ID #15 - Test Data and the Learning Process 

 

 

Past Believes New Data Set 4 (j = 4 ) Updated Believes (1st Update) New Data Set 5 (j = 5 )

Probability distribution Probability distribution 

 (S p1 ) =  LN( S p 1 ,  B1 )  (S p1 ) =  LN( S p 1 ,  B1 )

where i = 1, …, E , E  is sample size, E  = 3. R 1  = 110 N, R 2  = 130 N, R 3  = 150 N, where i = 1, …, E , E  is sample size, E  = 3. R 1  = 110 N, R 2  = 130 N, R 3  = 150 N,

B4(1) = Uniform (1E+02, 1E+10)
M j  = M 4  = 1400, M j  1  = M 3  = 1200

B4(1) = {Mean = 4.20E-07 , St.Dev. = 3.60E-08}
M j  = M 5  = 1600, M j  1  = M 4  = 1400

B5(1) = Uniform (0, 1E+03) S p11j  = S p114  = 0.006 in2
B5(1) = {Mean = 69.50, St.Dev. = 5.5} S p11j  = S p115  = 0.015 in2

B6(1) = Uniform (0, 1E+03) S p11(j-1)  = S p113  is not applicable, B6(1) = {Mean = 0.01, St.Dev. = 0.02} S p11(j-1)  = S p114  = 0.006 in2

m = 0.7 S p12j  = S p124  = 0.008 in2
m = 0.7 S p12j  = S p125  = 0.018 in2

B  = Uniform (0, 1) S p12(j-1)  = S p123  is not applicable, B  = {Mean = 0.002, St.Dev. = 0.0006} S p12(j-1)  = S p124  = 0.008 in2

S p13j  = S p134  = 0.016 in2 S p13j  = S p135  = 0.031 in2

S p13(j-1)  = S p133  = 0.004 in2 S p13(j-1)  = S p134  = 0.016 in2

Probability distribution 

 (S p2 ) =  LN( S p2 ,  B2 )

Probability distribution 

 (S p2 ) =  LN( S p2 ,  B2 )

where i = 1, …, E , E  is sample size, E  = 3. where i = 1, …, E , E  is sample size, E  = 3.

B4(2) = Uniform (1E+02, 1E+10) R 1  = 110 N, R 2  = 130 N, R 3  = 150 N, B4(2) = {Mean = 1.70E-06 , St.Dev. = 2.50E-07} R 1  = 110 N, R 2  = 130 N, R 3  = 150 N,

B5(2) = Uniform (0, 1E+03) M j  = M 4  = 1400, M j  1  = M 3  = 1200 B5(2) = {Mean = 5.50, St.Dev. = 1.5} M j  = M 5  = 1600, M j  1  = M 4  = 1400

B6(2) = Uniform (0, 1E+03) S p21j  = S p214  = 0.007 in2
B6(2) = {Mean = 250.70, St.Dev. = 50.60} S p21j  = S p215  = 0.014 in2

m = 0.7 S p21(j-1)  = S p213  is not applicable, m = 0.7 S p21(j-1)  = S p214  = 0.007 in2

B  = Uniform (0, 1) S p22j  = S p224  = 0.011 in2
B  = {Mean = 0.016, St.Dev. = 0.0009} S p22j  = S p225  = 0.024 in2

S p22(j-1)  = S p223  = 0.003 in2 S p22(j-1)  = S p224  = 0.011 in2

S p23j  = S p234  = 0.015 in2 S p23j  = S p235  = 0.030 in2

S p23(j-1)  = S p233  = 0.005 in2 S p23(j-1)  = S p234  = 0.015 in2

L
et

te

r 
IDName of Agent 

Output Variable
ID#

{M j , R i , S p2ij , S p2i(j-1) }, i = 1, …, E, where E 

is sample size, E  = 3.

15

Bearing Spall 

Size 

(Bearing #2)
S p2

{M j , R i , S p2ij , S p2i(j-1) }, i = 1, …, E, where E 

is sample size, E  = 3.

Test Data:

Missions M j  to spall propagation to size 

S p2ij  from size S p2i(j-1)  at previous check at 

M j-1  missions, conditional on Input Set 

variable R, 

Test Data:

Missions M j  to spall propagation to size 

S p2ij  from size S p2i(j-1)  at previous check at 

M j-1  missions, conditional on Input Set 

variable R, 

14

Bearing Spall 

Size 

(Bearing #1)
S p1

Test Data:

Missions M j  to spall propagation to size 

S p1ij  from size S p1i(j-1)  at previous check at 

M j-1  missions, conditional on Input Set 

variable R, 

{M j , R i , S p1ij , S p1i(j-1) }, i = 1, …, E, where E 

is sample size, E  = 3.

Test Data:

Missions M j  to spall propagation to size 

S p1ij  from size S p1i(j-1)  at previous check at 

M j-1  missions, conditional on Input Set 

variable R, 

{M j , R i , S p1ij , S p1i(j-1) }, i = 1, …, E, where E 

is sample size, E  = 3.

Public Attributes

Type II Macro-Agents
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Table 8-9: Type II Macro-Agent ID #19 - Test Data and Learning Process 

 

Updated Believes (4th Update) New Data Set 5 (j = 5 ) Updated Believes (5th Update) New Data Set 6 (j = 6 )

Probability distribution Probability distribution

 (a S ) =  LN( a S ,  S )  (a S ) =  LN( a S ,  S )

where i  = 1, ..., E , E  is sample size, E  = 3. where i  = 1, ..., E , E  is sample size, E  = 3.

S1 = {Mean = 0.014, St.Dev. = 0.03} S1 = {Mean = 0.012, St.Dev. = 0.02} 

S2 = {Mean = 18.2, St.Dev. = 3.7} S2 = {Mean = 16.6, St.Dev. = 3.3}

S3 = {Mean = 4.3E+05, St.Dev. = 1.9E+5} S3 = {Mean = 2.9E+05, St.Dev. = 1.0E+5}

n = 3.2 n = 3.2

CS = 1.65E-09 (in/cycle)/(Mpa(in)1/2)n CS = 1.65E-09 (in/cycle)/(Mpa(in)1/2)n

S = {Mean = 0.0005, St.Dev. = 0.0003} S = {Mean = 0.0009, St.Dev. = 0.0001}

M j  = M 5  = 1600, M j  1  = M 4  = 1400 M j  = M 6  = 1800, M j  1  = M 5  = 1600

Grms1  = 8, Grms2  = 10, Grms3 = 14 Grms1  = 8, Grms2  = 10, Grms3 = 14

a S1j  = a S15  = 0.043 in a S1j  = a S16  = 0.046 in

a S2j  = a S25  = 0.035 in a S2j  = a S26  = 0.038 in

a S3j  = a S35  = 0.030 in a S3j  = a S36  = 0.035 in

a S1(j-1)  = a S14  = 0.040 in a S1(j-1)  = a S15  = 0.043 in

a S2(j-1)  = a S24  = 0.031 in a S2(j-1)  = a S25  = 0.035 in

a S3(j-1)  = a S34  = 0.022 in a S3(j-1)  = a S35  = 0.030 in

S p1j  = S p15  = 0.015 in2 S p1j  = S p16  = 0.031

S p2j  = S p25  = 0.024 in2 S p2j  = S p26  = 0.045

S p3j  = S p35  = 0.031 in2 S p3j  = S p36  = 0.056

S p1(j-1)  = S p14  = 0.007 in2 S p1(j-1)  = S p15  = 0.015 in2

S p2(j-1)  = S p24  = 0.011 in2 S p2(j-1)  = S p25  = 0.024 in2

S p3(j-1)  = S p34  = 0.016 in2 S p3(j-1)  = S p35  = 0.031 in2

Type II Macro-Agents

Public Attributes

Shaft Crack Size 

(cont.)  
19

ID#
Name of Agent 

Output Variable L
et

te
r 

ID
Accumulated missions:

M j  = M 5  = 1600

Accumulated missions:

M j  = M 6  = 1800

Test Data: 

Missions M j  to crack propagation to size a Sij  from 

size a Si(j-1)  at previous check at M j-1  missions, 

conditional on Input Set variables R, Grms, Sp: 

Test Data: 

Missions M j  to crack propagation to size a Sij  from 

size a Si(j-1)  at previous check at M j-1  missions, 

conditional on Input Set variables R, Grms, Sp: 

{M j , R i , G rmsi , a Sij , a Si(j-1) , 

S pij  = Max (S p1ij , S p2ij ), S pi(j-1)  = Max (S p1i(j-1) , S p2i(j-1) }, 

i = 1, …, E, where E is sample size, E  = 3.

{M j , R i , G rmsi , a Sij , a Si(j-1) , 

S pij  = Max (S p1ij , S p2ij ), S pi(j-1)  = Max (S p1i(j-1) , S p2i(j-1) }, 

i = 1, …, E, where E is sample size, E  = 3.

R1  = 230 N, R2  = 250 N, 

R3 = 270 N

R1  = 230 N, R2  = 250 N, 

R3 = 270 N

a S
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Table 8-10: Type II Macro-Agent ID #21 - Test Data and Learning Process 

 

 

 

 

Updated Believes (4th Update) New Data Set 5 (j = 5 ) Updated Believes (5th Update) New Data Set 6 (j = 6 )

Probability distribution  (a D ) = 

LN(  D ,  D )

Accumulated missions:

M j  = M 5  = 1600

Probability distribution  (a D) = 

LN(  D ,  D)

Accumulated missions:

M j  = M 6  = 1800

where i  = 1, ..., E , E  is sample size, E  = 3. where i  = 1, ..., E , E  is sample size, E  = 3.

D1 = {Mean = 0.48, St.Dev. = 0.006} D1 = {Mean = 0.65, St.Dev. = 0.006}

D2 = {Mean = 0.09, St.Dev. = 0.04} D2 = {Mean = 0.12, St.Dev. = 0.01}

D3 = {Mean = 1.3E+04, St. Dev. = 6.4E+03} D3 = {Mean = 1.4E+04, St. Dev. = 3.2E+03}

h = 2.5 h = 2.5

Cd = 2.4E-10 (in/cycle)/(Mpa(in)1/2)n Cd = 2.4E-10 (in/cycle)/(Mpa(in)1/2)n

  = 1.12   = 1.12

S = {Mean = 0.0025, St.Dev. = 0.001} R1 = 230 N, R2 = 250 N S = {Mean = 0.0018, St.Dev. = 0.0005} R1 = 230 N, R2 = 250 N

R3 = 270 N R3 = 270 N

T IT1  = 1200 C, T IT2  = 1250C T IT1  = 1200 C, T IT2  = 1250C

T IT3  = 1300 C T IT3  = 1300 C

D 1  = 180 s, D 2  = 120 s, D 3  = 60 s D 1  = 180 s, D 2  = 120 s, D 3  = 60 s

a D1j  = a D15  = 0.091 in a D1j  = a D16  = 0.107 in

a D2j  = a D25  = 0.068 in a D2j  = a D26  = 0.082 in

a D3j  = a D35  = 0.043 in a D3j  = a D36  = 0.054 in

a D1(j-1)  = a D14  = 0.078 in a D1(j-1)  = a D15  = 0.091 in

a D2(j-1)  = a D24  = 0.057 in a D2(j-1)  = a D25  = 0.068 in

a D3(j-1)  = a D34  = 0.035 in a D3(j-1)  = a D35  = 0.043 in

Type II Macro-Agents
Public Attributes

ID#
Name of Agent 

Output Variable
L

et
te

r 
ID

Test Data: 

Missions M j  to crack propagation to size a Dij  from size 

a Di(j-1)  at previous check at M j-1  missions, conditional 

on Input Set variables R, TIT, D: 

{M j , a Dij , a Di(j-1) , R i , T ITi , D i }, i = 1, …, E, where E is 

sample size, E  = 3.

{M j , a Dij , a Di(j-1) , R i , T ITi , D i }, i = 1, …, E, where E is 

sample size, E  = 3.

21
Disk Crack Size 

(cont.)
a D

Test Data: 

Missions M j  to crack propagation to size a Dij  from size 

a Di(j-1)  at previous check at M j-1  missions, conditional 

on Input Set variables R, TIT, D: 
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Table 8-11: Type III Monitoring Agents ID #23 to #25 - Learning Process 

Past Believes Updated Believes (1st Update) Updated Believes (2nd Update) Updated Believes (3rd Update)

Probability distribution  (RUL B1)  is obtained for 

each tested engine by simulation via PoF model 

for RUL B1  according to the "Past Believes" for 

agents L 1  (ID# 12), N B1  (ID# 17) and accumulated 

missions M j:

Probability distribution  (RUL B1)  is obtained for 

each tested engine by simulation via PoF model 

for RUL B1  according to the "Updated Believes (1st 

Update)" for agents L 1  (ID# 12), N B1  (ID# 17) and 

accumulated missions M j:

Probability distribution  (RUL B1)  is obtained for 

each tested engine by simulation via PoF model 

for RUL B1  according to the "Updated Believes (2nd 

Update)" for agents L 1  (ID# 12), N B1  (ID# 17) and 

accumulated missions M j:

Probability distribution  (RUL B1)  is obtained for 

each tested engine by simulation via PoF model 

for RUL B1  according to the "Updated Believes (3rd 

Update)" for agents L 1  (ID# 12), N B1  (ID# 17) and 

accumulated missions M j:

RUL B1i  = L 1i  + N B1i  - M j , where i  = 1, …, E ,  

E  is sample size,  E  = 3,  M j = M 0  = 0

RUL B1i  = L 1i  + N B1i  - M j , where i  = 1, …, E ,  

E  is sample size,  E  = 3,  M j = M 1  = 500

RUL B1i  = L 1i  + N B1i  - M j , where i  = 1, …, E ,  

E  is sample size,  E  = 3,  M j = M 2  = 1000

RUL B1i  = L 1i  + N B1i  - M j , where i  = 1, …, E ,  

E  is sample size,  E  = 3,  M j = M 3  = 1200

Probability distribution  (RUL B2)  is obtained for 

each tested engine by simulation via PoF model 

for RUL B2  according to the "Past Believes" for 

agents L 2  (ID# 13), N B2  (ID# 18) and accumulated 

missions M j:

Probability distribution  (RUL B2)  is obtained for 

each tested engine by simulation via PoF model 

for RUL B2  according to the "Updated Believes (1st 

Update)" for agents L 2  (ID# 13), N B2  (ID# 18) and 

accumulated missions M j:

Probability distribution  (RUL B2)  is obtained for 

each tested engine by simulation via PoF model 

for RUL B2  according to the "Updated Believes (2nd 

Update)" for agents L 2  (ID# 13), N B2  (ID# 18) and 

accumulated missions M j:

Probability distribution  (RUL B2)  is obtained for 

each tested engine by simulation via PoF model 

for RUL B2  according to the "Updated Believes (3rd 

Update)" for agents L 2  (ID# 13), N B2  (ID# 18) and 

accumulated missions M j:

RUL B2i  = L 2i  + N B2i  - M j , where i  = 1, …, E ,  

E  is sample size,  E = 3,  M j = M 0  = 0

RUL B2i  = L 2i  + N B2i  - M j , where i  = 1, …, E ,  

E  is sample size,  E = 3,  M j = M 1  = 500

RUL B2i  = L 2i  + N B2i  - M j , where i  = 1, …, E ,  

E  is sample size,  E = 3,  M j = M 2  = 1000

RUL B2i  = L 2i  + N B2i  - M j , where i  = 1, …, E ,  

E  is sample size,  E = 3,  M j = M 3  = 1200

Probability distribution  (RUL S )  is obtained for 

each tested engine by simulation via PoF model 

for RUL S according to the "Past Believes" for agent 

N S (ID# 20) and accumulated missions M j:

Probability distribution  (RUL S )  is obtained for 

each tested engine by simulation via PoF model 

for RUL S according to the "Updated Believes (1st 

Update)" for agent N S (ID# 20) and accumulated 

missions M j:

Probability distribution  (RUL S )  is obtained for 

each tested engine by simulation via PoF model 

for RUL S according to the "Updated Believes (2nd 

Update)" for agent N S (ID# 20) and accumulated 

missions M j:

Probability distribution  (RUL S )  is obtained for 

each tested engine by simulation via PoF model 

for RUL S according to the "Updated Believes (3rd 

Update)" for agent N S (ID# 20) and accumulated 

missions M j:

RUL Si  = N Si  - M j , where i  = 1, …, E ,  

E  is sample size,  E  = 3,  M j = M 0  = 0

RUL Si  = N Si  - M j , where i  = 1, …, E ,  

E  is sample size,  E  = 3,  M j = M 1  = 500

RUL Si  = N Si  - M j , where i  = 1, …, E ,  

E  is sample size,  E  = 3,  M j = M 2  = 1000

RUL Si  = N Si  - M j , where i  = 1, …, E ,  

E  is sample size,  E  = 3,  M j = M 3  = 1200

Probability distribution  (RUL D)  is obtained for 

each tested engine by simulation via PoF model 

for RUL D  according to the "Past Believes" for agent 

N D  (ID# 22) and accumulated missions M j:

Probability distribution  (RUL D)  is obtained for 

each tested engine by simulation via PoF model 

for RUL D  according to the "Updated Believes (1st 

Update)" for agent N D  (ID# 20) and accumulated 

missions M j:

Probability distribution  (RUL D)  is obtained for 

each tested engine by simulation via PoF model 

for RUL D  according to the "Updated Believes (2nd 

Update)" for agent N D  (ID# 20) and accumulated 

missions M j:

Probability distribution  (RUL D)  is obtained for 

each tested engine by simulation via PoF model 

for RUL D  according to the "Updated Believes (3rd 

Update)" for agent N D  (ID# 20) and accumulated 

missions M j:

RUL Di  = N Di  - M j , where i  = 1, …, E ,  

E  is sample size,  E  = 3,  M j = M 0  = 0

RUL Di  = N Di  - M j , where i  = 1, …, E ,  

E  is sample size,  E  = 3,  M j = M 1  = 500

RUL Di  = N Di  - M j , where i  = 1, …, E ,  

E  is sample size,  E  = 3,  M j = M 2  = 1000

RUL Di  = N Di  - M j , where i  = 1, …, E ,  

E  is sample size,  E  = 3,  M j = M 3  = 1200

Past Believes Updated Believes (1st Update) Updated Believes (2nd Update) Updated Believes (3rd Update)

Probability distribution  (RUL)  is obtained for 

each tested engine by simulation via PoF model 

for RUL  according to the "Past Believes" for agents 

RUL B1  (ID# 23), RUL B2  (ID# 24), RUL S (ID# 25), 

RUL D  (ID# 26) and accumulated missions M j:

Probability distribution  (RUL)  is obtained for 

each tested engine by simulation via PoF model 

for RUL  according to the "Updated Believes (1st 

Update)" for agents RUL B1  (ID# 23), RUL B2  (ID# 

24), RUL S (ID# 25), RUL D  (ID# 26) and 

accumulated missions M j:

Probability distribution  (RUL)  is obtained for 

each tested engine by simulation via PoF model 

for RUL  according to the "Updated Believes (2nd 

Update)" for agents RUL B1  (ID# 23), RUL B2  (ID# 

24), RUL S (ID# 25), RUL D  (ID# 26) and 

accumulated missions M j:

Probability distribution  (RUL)  is obtained for 

each tested engine by simulation via PoF model 

for RUL  according to the "Updated Believes (3rd 

Update)" for agents RUL B1  (ID# 23), RUL B2  (ID# 

24), RUL S (ID# 25), RUL D  (ID# 26) and 

accumulated missions M j:

RUL = Minimum {RUL B1i  + RUL B2i  + 

RUL Si  + RUL Di - M j }, where i  = 1, …, E ,  E  is 

sample size,  E  = 3,  M j = M 0  = 0

RUL = Minimum {RUL B1i  + RUL B2i  + 

RUL Si  + RUL Di - M j }, where i  = 1, …, E ,  E  is 

sample size,  E  = 3,  M j = M 1  = 500

RUL = Minimum {RUL B1i  + RUL B2i  + 

RUL Si  + RUL Di - M j }, where i  = 1, …, E ,  E  is 

sample size,  E  = 3,  M j = M 2  = 1000

RUL = Minimum {RUL B1i  + RUL B2i  + 

RUL Si  + RUL Di - M j }, where i  = 1, …, E ,  E  is 

sample size,  E  = 3,  M j = M 3  = 1200
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 The prediction of system RUL occurred after 2000 engine test cycles upon the 

7
th

 round of agents learning. The engine test continued after 2000 missions until 

failure of at least one of four components (shaft, disk and two bearings) in each of 

three tested engines. The RUL predicted upon 2000 engine test cycles was compared 

to the true value of RUL obtained upon system failure, and the results are 

summarized in Table 8-12. The true value of RUL at 2000 engine cycles (named 

“RUL True Value” in Table 8-12) appeared to be within the 90% confidence interval 

of the predicted RUL (named “RUL Prediction – 90% Confidence Bounds” in Table 

8-12).  

 

Table 8-12: Summary of RUL Results  

(all values are given in engine cycles) 

Tested 

Engine 

Component 
System 

Weakest 

Component Bearing 1 Bearing 2 Shaft Disk 

RUL Prediction 

90% Confidence Bounds Mean 
According to 

Mean RUL  

Engine #1 803 - 1185 721 - 1024 694 - 997 606 - 828 700 Disk 

Engine #2 716 - 954 610 - 799 534 - 796 768 - 956 634 Shaft 

Engine #3 485 - 721 455 - 653 327 - 573 740 - 1115 432 Shaft 

RUL True Value 

Engine #1 1005 900 820 720 720 Disk 

Engine #2 815 675 640 840 640 Shaft 

Engine #3 575 540 420 890 420 Shaft 

RUL Prediction (Shaft-Bearings Interaction excluded) 

90% Confidence Bounds  Mean 
According to 

Mean RUL 

Engine #1 803 - 1185 721 - 1024 2238 - 2551 606 - 828 705 Disk 

Engine #2 716 - 954 610 - 799 1319 - 1523 768 - 956 698 Bearing 2 

Engine #3 485 - 721 455 - 653 910 - 1254 740 - 1115 531 Bearing 2 
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 Interactions between failure mechanisms of several components were treated 

within the agent autonomy. Specifically, the PoF model of the shaft (built into Type II 

Macro-Agent, shaft crack size, ID #19 and Type II Macro-Agent, shaft life to crack 

size at failure, ID#20) includes a term denoting the maximum spall size of the two 

bearings (given by Type II Macro-Agent, maximum spall size, ID #16). This implies 

that a spall progression in the two bearings accelerates the degradation of the shaft 

(shaft crack growth). Evolution of the respective agents over time resulted in accurate 

predictions of system reliability, as mentioned above. Removing shaft-bearings 

interactions caused a poor performance of the model (refer to section “RUL 

Prediction (Shaft-Bearings Interaction excluded) – 90% Confidence Bounds” in Table 

8-12), proving a significance of this interaction for system evolution. 

 Table 8-13 demonstrates the agent autonomy property (i.e. self-activation and 

deactivation of Type I Micro-agents during system evolution). Some agents (ID#2 

and ID#5) deactivated themselves when more data became available, while others 

remained active due to their significant contribution to the uncertainty of the 

associated Type II Macro-Agents’ output variables (listed in column “Input to Agents 

ID# in Table 8-13).  

 All other properties of agents are applicable as defined in Chapter 4: 

dependent agents react to the updates of their respective input agents, all agents have 

a goal of self-evolving following the system degradation processes, and cooperate by 

communicating their believes to other agents. All agents are mobile because they 

could be reused in unrelated but relevant applications. 



 195 

 

Table 8-13: Activation/Deactivation Property of Type I Micro-Agents 

 
 

Updated Beliefs (1st 

Update)

Updated Beliefs 

(2nd Update)

Updated Beliefs 

(3rd Update)

Updated Beliefs 

(4th Update)

Updated Beliefs 

(5th Update)

Updated Beliefs 

(6th Update)

Updated Beliefs 

(7th Update)

3 Active Active Active Active Active Active Active 

4 Active Active Active Active Active Active Active

 Active Active Active Active Active Active Active 

 Active Active Active Active Active Inactive R = 230 N Inactive R = 230 N

 Active Active Active Active Active Active Active 









ID#
Name of Agent Output 

Variable

L
et

te
r 

ID
1 R

Tangential Force on the 

Turbine Wheel Disks 

2

Amplitude of Tangential 

Force on the Turbine 

Wheel Disks at Start
 R

Inactive TIT = 1025°C Active Active 

3 Random Vibration G rms Active Active  Active Active Active 

Inactive D = 155 s

6
Initial Crack Size (depth), 

Shaft 
a initialS Active 

5
Dwell Time before 

Shutdown
D Active Inactive D = 160 s

Active Active Active Active Active Active 

7
Initial Crack Size (depth), 

Disk 
a initialD Active Active Active Active Active Active Active 

Type I Micro-Agents

Input to 

Agents ID#

Agent Status

Active 

Inactive D = 155 s Inactive D = 155 s Inactive D = 155 s Inactive D = 155 s

Active Active Active Active 

Active 

4 BOT at start T IT
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8.9. Case Study Summary and Conclusions 

 A comprehensive case study was presented to demonstrate the agent-oriented 

approach to PoF reliability modeling of the dynamic system with interacting failure 

mechanisms. Agent autonomy was developed to represent the degradation processes 

of gas turbine engine components during engine operation. The predicted RUL for a 

system of several components was in agreement with the actual time to failure. The 

interactions between the failure mechanisms of several components (the shaft and two 

bearings) were incorporated into the agent-based system model and were shown to be 

critical for the model accuracy. Several finding were made in relation to the learning, 

autonomy and mobility properties of the agents: 

1. Type II Macro-Agents appeared to be better “learners” than Type I Micro-

Agents and Type III Monitoring Agents. The learning process of Type II 

Macro-Agents involved acquisition of our knowledge about the progression of 

degradation processes within the interdependent and interacting system 

components in dynamic environment, which is the “core” of system reliability 

modeling. In contrary, the Type I Micro-Agents learned by updating their 

knowledge about the time trend or probability distribution of the associated 

random variables, while the Type III Monitoring Agents used a simulation 

algorithm to combine probability distributions according the applicable logic. 

The agent learning process, therefore, was found to be the most intense and 

mathematically complex for the Type II Macro-Agents.  

2. Another finding of the case study concerned the agent autonomy property. 

While all Type I Micro-Agents activated/deactivated themselves during the 
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seven steps of the system model update, the Type II Macro-Agents remained 

active at all times during the system evolution because they represented 

degradation characteristics of the system components that are critical for the 

system reliability. The Type II Macro-Agents were the key “players” in the 

probabilistic representation of system degradation and failure processes and 

the major contributors to the uncertainty in the system RUL due to complexity 

of their PoF models, lack of prior information and limited test and field data 

for model development. The Type III Monitoring Agents also remained active 

in order to deliver probabilistic representation of the remaining useful life of 

each component and the system as an ultimate objective of the agent-oriented 

reliability modeling. The autonomy property, therefore, was found to be most 

effective in deactivating “unimportant” Type I Micro-Agents. The Type II 

Macro-Agents and Type III Monitoring Agents remained active throughout 

the study since the engineering knowledge suggested their continuous 

“importance” for the uncertainty within the system reliability model. 

3. The mobility property of the agents in the case study was found to be the most 

important for Type II Macro-Agents. As these agents learned and executed 

their autonomy during system evolution, they acquired significant knowledge 

about the elements they represent, specifically degradation characteristics of 

the engine components. These agents turned into "experts" that could be 

reused in future studies of the same or similar engines. 

 The case study also highlighted the substantial computational effort required 

to complete the agent-oriented reliability assessment. A combination of several 
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software programs (WinBUGS/OpenBUGS [120], [121], Oracle Crystal Ball [122], 

Minitab [73]) was used for agent learning and autonomy execution. The system 

reliability model became very large even though the most complex methods of agent 

learning, such as Kalman filters or artificial neural networks, were not utilized. The 

application of machine learning and pattern recognition methods for agent learning, 

or global sensitivity analysis methods for agent autonomy execution, would have 

required the use of MATLAB, SAS or custom developed code in addition to the 

software programs used in this case study. Software developments, therefore, are 

needed in order to create a single program for system reliability modeling by PoF-

based agent autonomy. Such software program should offer multiple data analysis 

and simulation methods (such as Monte Carlo and Latin Hypercube sampling, 

Markov chain Monte Carlo (MCMC) methods, classical distribution fitting, model-

based distribution analysis, Kalman filters, and other machine learning and pattern 

recognition algorithms, and variance-based uncertainty importance methods). The 

applicable methods would be chosen by the modeler and sequenced within a single 

interface. 
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Chapter 9: Summary, Conclusions and Recommendations 

for Future Research 

9.1. Summary and Conclusions 

 The following summary outlines the contributions, findings and conclusions 

of this work: 

1. Agent autonomy was proposed as a solution method for the physics-of-failure 

based reliability modeling of complex engineering system. The concept of 

agent autonomy originated from Artificial Intelligence (AI) as a 

computational inference for modeling intelligent Multi-Agents Systems. In 

system reliability modeling, however, agent hierarchy, classification, and the 

properties of agents are somewhat different from those in computer science 

and artificial intelligence.  This distinction implies that current research 

advances our ability to perform dynamic degradation and reliability analysis 

by defining and modeling agents in the context of reliability engineering. 

2. In the agent-oriented system reliability model, each element of the system 

(piece part, component, environmental and operational parameter, software 

characteristic, or human element) is replaced by an agent as an intelligent 

piece of software that represents the entire knowledge about the item. Each 

agent is represented by a single output variable, Y, which could be either a 

function of one or more input variables, Xi (i = 1, …, n), given by the input 

agents, Y = f(Xi), or an independent random variable that has no inputs from 



 200 

 

other agents. A system is a network of agents - autonomous intelligent entities 

which communicate with each other during system evolution.   

3. Three classes of agents are introduced according to the different types of 

entities within the physical processes of degradation and failure at all levels of 

system hierarchy, from materials and piece parts to components and the entire 

system, considering software and human elements. The proposed 

classification and hierarchy of agents is flexible enough to model engineering 

system of any type and complexity. 

4. The properties of each class of agents were described based on the 

classification of agent properties introduced by M. Azarkhail [1] and 

considering the physical characteristics of agents’ counterparts in the real 

system and their role in system evolution. Seven properties of intelligent 

agents are: internal knowledge, learning/reasoning, proactivity/goal 

orientation, communication/cooperation, autonomy and mobility. While the 

same definitions of agent properties as in [1] were used in the current 

research, some properties, specifically learning and autonomy, were taken to a  

new level and further developed in this research.  

5. The learning property of agents was defined as an agent’s ability to use new 

data and previous experiences to update an agent’s internal knowledge, 

particularly an agent’s beliefs about the functional form (type) and parameters 

of the PoF or empirical model of agent output variable. In addition, a 

dependent agent (with one or more inputs from other agents) obtains the latest 

(updated) beliefs of the respective input agents and performs a simulation over 
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the updated model of the agent output variable using the latest beliefs about 

the input variables in order to update the probability distribution of the agent 

output variable. This is how agents fulfill their goal of self-evolving in the 

dynamic system environment. The updated probability distributions of the 

agent output variables are further used for prognosis (e.g. evaluation of the 

remaining useful life as system reliability measure). 

6. Several algorithms of agent learning, specifically aimed to update parameters 

of the PoF or empirical model of the agent output variable, were proposed 

along with the guidelines for the selection of a learning algorithm, depending 

on agent class, availability of the PoF or empirical model of the system 

element represented by the agent, and the types of data used for agent 

learning. Bayesian inference and Bayesian Fusion were identified as the 

preferred methods of agent learning because they allow the recursive 

(sequential) updating of agent beliefs using all available data, such as to 

maximize system reliability knowledge and minimize the computation time. 

7. The intelligent agent is not only capable to evolve over time without 

supervision (by means of learning), but also has some degree of control over 

its participation in system evolution, particularly the ability to activate and 

deactivate itself. The activation/deactivation capability of agents represents 

the autonomy property and is developed in this research by means of 

sensitivity analysis/uncertainty importance methods, particularly Sobol’s 

method of global sensitivity analysis or the Importance Index method of local 

sensitivity analysis (where applicable). 
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8. Agent autonomy proposed in this research successfully is capable to model 

the interdependency and interactions between failure mechanisms of different 

elements of a system, specifically where the degradation process in one 

element (part, material or component) activates or accelerates the failure 

mechanisms of other elements. The dependent elements are explicitly 

introduced into the PoF or empirical models of the respective system elements 

and output variables of the associated agents, allowing for bidirectional 

communication between agents where interacting failure mechanisms exist. 

9. The agent-oriented approach to PoF reliability modeling was demonstrated by 

a comprehensive case study involving the reliability modeling of a gas turbine 

and aircraft engine structures. Agent autonomy was developed to represent the 

interacting failure mechanisms of the engine components during engine 

operation. The predicted RUL for a system of several components was in 

agreement with the actual time to failure. When agent output models were 

revised to remove the interactions between failure mechanisms, the system 

model performed poorly, proving a significant advantage of the proposed 

methodology in modeling complex engineering systems with interacting and 

interdependent failure mechanisms.  

10. Two major findings of the case study are related to the learning and autonomy 

properties of intelligent agents. Type II Macro-Agents appeared to be better 

“learners” than Type I Micro-Agents or Type III Monitoring Agents. While 

the learning process of most Type I Micro-Agents constituted time trending or 

improved knowledge about the probability distribution of a random variable, 
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Type II Macro-Agents’ learning reflected on the progression of the 

degradation processes of the interdependent and interacting system elements 

in a dynamic environment. Type III Monitoring Agents use simulation to 

combine several probability distributions according to certain logic as the 

associated agents evolve over time. The learning process of the Type II 

Macro-Agents is the most intense and forms the “core” of the system 

reliability modeling by agent autonomy.  

11. Another finding of the case study concerns the autonomy property of agents. 

It was found that, while agent activation/deactivation is accomplished by all 

Type I Micro-Agents, most of Type II Macro-Agents remain active during the 

system evolution because they carry the knowledge about the key “players” in 

the system degradation processes. Almost all Type III Monitoring Agents also 

remain active in order to probabilistically represent the system parts and 

components. Specifically, Type III System Monitoring Agent remains in an 

active state at all times during system evolution because deactivation of this 

agent defeats the purpose of probabilistic modeling of system reliability. The 

autonomy property, however plays an important role in agent-oriented system 

reliability modeling because the number of Type I Micro-Agents in the agent 

hierarchy is considerably large compared to the number of Type II Macro-

Agents and Type III Monitoring Agents. 

12. The fundamental difference between the agent autonomy and all existing 

methods of probabilistic PoF-based reliability modeling and simulation is in 

the autonomy property of intelligent agents and the capability of the agent 
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autonomy to model the interacting failure mechanisms of system elements at 

all levels of system hierarchy. These two features bring more reality into the 

reliability models, making the agent autonomy superior to the existing 

methods of system reliability modeling. 

13. As agents learn and execute their autonomy during system evolution, they 

become richer in their knowledge about the elements that they represent and 

their “importance” to the other elements of the system hierarchy, and take an 

active role in system evolution by activating or deactivating themselves. As a 

result, the agents become mature “experts” that could be reused in other 

unrelated but relevant applications to reduce computational effort, minimize 

data requirements, and provide high quality prior information for further 

learning. 

14. Despite of the advantages described above the agent autonomy approach has 

several limitations, such as some ambiguity in selection between Type I 

Micro-Agents and Type II Macro-Agents that may exist for complex PoF 

models, limited mobility of agents according to their relevance to another 

application.  

15. Some challenges pertaining to other reliability assessment methods are also 

present for the agent autonomy, specifically uncertainty characterization:  

a) Both epistemic and aleatory uncertainties are present within the agent 

autonomy model as they emerge from various sources. Separation of 

epistemic and aleatory uncertainties is generally not a straightforward 
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process for any modeling methodology and requires good engineering 

knowledge about the modeled phenomenon.  

b) Uncertainty importance assessment is performed within the context of 

agent autonomy execution and requires use of global methods of variance 

decomposition because of the complexity of agent autonomy modeling 

structure (PoF-based modeling framework containing bidirectional 

communication between agents and feedback loops). The global methods 

of uncertainty importance analysis, however, impose significant 

computational effort in evaluating the importance indexes.  

c) Data availability is another source of uncertainty and a common challenge 

for all probabilistic modeling methods when limited and partially relevant 

data are used for reliability model development. Bayesian inference is, 

therefore, identified as a preferred framework of agent learning to 

maximize use of the available information and minimize uncertainty. 

d) Modeler’s knowledge of physical failure mechanisms and availability of 

PoF models is critical for quantitative assessment of the model related 

uncertainties within the agent autonomy. In case of limited PoF 

knowledge of the system degradation processes or high complexity of the 

plausible PoF models, special computer techniques may need to be 

developed to evaluate and compare model uncertainties.  

16. The agent autonomy approach also offers several improvements with respect 

to uncertainty characterization:  
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a) The agent autonomy approach to system reliability modeling allows some 

reduction of subjectivity and arbitrariness in the definition of system 

failure scenarios and their consequences compared to fault tree and event 

tree methodologies, for example, because the intelligent agents evolve 

autonomously reflecting on all relevant failure scenarios (not only those 

believed to be the “worst case” sequences).  

b) Another aspect of uncertainty characterization is related to the capability 

of the agent autonomy to provide realistic representation of the system 

evolution over time. For example, fault trees and event trees typically use 

the classical binary success/failure logic of system reliability 

representation. In addition, fault trees and event trees are static techniques 

which cannot take into account time-dependent evolutions of dynamic 

systems. In contrary, the agent autonomy effectively models dynamics of 

the system evolution in time and can differentiate between different levels 

of system performance depending on the degraded states of the 

constitutive parts and components. As a result, epistemic uncertainties, 

introduced by simplification and approximation of the reality, will be 

reduced in agent autonomy models. 

17. A disadvantage of the agent-oriented approach to system reliability modeling 

is the high computational effort. While Bayesian Fusion techniques and global 

methods of uncertainty importance/sensitivity analysis are computationally 

intense due to their complexity, the reliability model of a system with very 

few components becomes large and difficult to handle even if Bayesian 
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inference and simple local methods of sensitivity analysis are used, as in the 

presented case study of gas turbine structures. Software developments are 

necessary to further support the use and expansion of PoF-based agent 

autonomy as system reliability modeling approach. Despite of the significant 

computational effort, the complexity of agent autonomy framework is 

reasonable and manageable, and agent-based system reliability modeling is 

practically attainable in contrast to the traditional simulation.  

 

9.2. Recommendations for Future Research 

 Since the scope of the agent autonomy approach to PPoF modeling of 

dynamic systems is very broad, further research is required to develop some of the 

specific aspects of the proposed methodology, as follows: 

1. Performability Modeling 

 Many real-world systems are composed of multi-state components, 

which have different performance levels where one cannot formulate an "all 

or nothing" type of failure criteria. Even though this work introduced 

representation of the item degradation process within the agent oriented 

model, the qualitative definition of the consequent change in capacity and/or 

performance efficiency of the system will need to be included in future 

research. A partial loss of function and degraded performance models will 

need to be introduced into the agent structure. 
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2. Phased-Mission Modeling 

 The agent-oriented approach to phased-mission modeling has been 

discussed in [123] and [124]. It was noted that the hierarchy of agents will, in 

general, change from phase to phase during the mission. Based on the 

requirements of each phase, assemblies and their related components are 

called for duty. In addition to the changes in agent hierarchy, the agent-

oriented approach proposed in this research also implies that the functional 

form of the PoF or empirical model of agent output variables may change 

between mission phases. This is because the physical failure mechanisms and 

failure logic of the system elements and the system itself may differ from 

phase to phase. As a result, the system reorients itself and the structure of 

agent autonomy becomes dynamic.  

 While this research makes provisions for introduction of phased-

mission rules within an agent’s internal knowledge (particularly, as part of 

special rules of agent behavior), further work is required to elaborate the 

dynamics of agent hierarchy, change in agent type, and rules of agent’s beliefs 

update at all levels due to the effects of mission phases. 

3. Representation of Human Interactions within Agent Hierarchy 

 The agent definition and classification proposed in this research 

includes human factors as part of the agent-oriented system model. Further 

research may be necessary to elaborate on the detailed methods of introducing 

a human element into the agent autonomy. The agent learning methods may 

be somewhat different from those introduced in this research for hardware 
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parts and components due to the subjectivity involved in human reliability 

analysis. 

4. Software Faults and their Impact on Agent-Oriented System Model 

 The agent definition and classification developed in this research 

contains agents representing software programs in addition to hardware parts 

and components as part of an agent-oriented system model. Further research 

may be necessary to elaborate on the detailed methods of software reliability 

modeling within agent autonomy. Software agents may need to have specific 

definitions of agent properties that are somewhat different than those 

introduced in this research. 

5. Representation of Scheduled and Unscheduled Inspection and Maintenance 

Actions, Renewal Process Modeling 

 Agent definition and classification established in this research makes 

provisions for defining agents that represent inspection and maintenance tasks. 

This work, however, does not provide detailed examples of introducing these 

tasks into the agent autonomy framework, which could be a subject for further 

research. Renewal process and availability assessment would have to be 

represented within the agent autonomy by means of stochastic models of 

reliability of repairable system to address inspection, maintenance, testing and 

repair activities required for mechanical components. 

6. Mobility Property of Agents in Case of Partial Relevance 

 In order to fully develop the mobility property of agents, the ability to 

reuse partially relevant agents in other system applications may need to be 
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elaborated (e.g. by adjusting agent output model in order to reflect on the 

degree of relevance).  
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Appendices 

Appendix A: Fatigue Failures of Gas Turbine Aircraft Engine 

Structures 

A.1. Physics-of-Failure Life Model of Gas Turbine Bearings 

 While many types of mechanical components fail due to fatigue, bearings are 

unique since fatigue cracks in bearings form under high compressive stress, and spall 

formation is a result of the continuous initiation and coalescence of thousands of 

small cracks, rather that the propagation of a single dominant crack.  Thus, traditional 

approaches to fatigue modeling (such as Paris law) perform poorly when applied to 

bearings.  

 Other equations have been developed to quantify the life of a bearing under a 

given set of operating conditions [125]. Current methods for predicting the life of 

rolling element bearings are based on the initiation of the first spall. Spalling is 

defined as subsurface chipping and breaking [126], [127]. Spalls are generated when 

a micro piece of metal flakes off the rolling surface. In aircraft propulsion 

applications, bearings are typically designed to have a fatigue life greater than the 

design life of the subsystem they are in. However, debris contamination (due to 

inadequate sealing or contaminants in the lubricant) or mishandling can damage the 

bearing surfaces and lead to spall initiation. Misalignment is also a prolific source of 

premature spalling.  
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 Once an incipient spall has formed, it causes a stress concentration and 

becomes self-propagating. When initiated, a spall grows relatively quickly producing 

high vibration levels, and debris in the oil. Due to the relatively short remaining life 

following spall initiation, the appearance of a spall typically serves as a criterion for 

failure of bearings in critical applications. While spall progression typically occurs 

more quickly than spall initiation, studies showed that 3 to 20 % of a particular 

bearings useful life remains after spall initiation [128]. 

Typically an equation similar in form to Equation A-1 is used to predict the life-to-

spall initiation of a roller bearing [126], [128] - [130], as follows: 

3/10

321 









P

C
aaaLn  

Equation A-1 

where C is basic dynamic capacity (dynamic load rating) of the bearing, and P is 

equivalent radial load (pressure) on the bearing, a1 is life adjustment factor (a1 = 1.0 

for Ln = L10), a2 is life adjustment factor for bearing materials, a3 is life adjustment 

factor for application conditions (temperature, rotation speed, lubrication regime). 

Random vibration would cause bearing degradation (particularly false brinelling) 

only in a stationary bearing, therefore the life adjustment factor, a3, does not include 

random vibration stress. 

 For a particular bearing material and specific operational conditions of the 

engine, the mean life is a function of two variables: equivalent radial load, P, and 

operating speed, V. In turn, bearing speed, V, is proportional to the tangential force on 

the turbine wheel disks, R, which generates torque on the shaft, so that: 
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Equation A-2 

 Equivalent radial load, P, is derived from shaft bending moment, Mb, shaft 

torque, T, and bearing preload, p. As shown in Section A.2. of this appendix, both the 

shaft bending moment and the shaft torque are proportional only to one variable, 

tangential force on the turbine wheel disks, R. Equivalent radial load, P, can be 

written as: 

pRP 21    

Equation A-3 

where 1 and 2 are proportionality constants related to the geometry of the shaft and 

the bearing. Under these considerations, Equation A-1 for life to spall initiation can 

be reduced to: 

     
 (      )

      

Equation A-4 

where B1, B2 and B3 are proportionality constants combining all material and 

geometrical constants, bearing preload, p, and basic dynamic capacity, C. 

 Life to spall initiation can be defined in accumulated flight hours or 

accumulated missions, if the mission duration is constant. In this work, the aircraft 

mission has an average duration of two flight hours and does not substantially change 

from flight to flight. Therefore, the life to spall initiation will be counted in aircraft 

missions, M, each being two hours long. The mission, M, represents starting a cold 

engine, taking-off, flying to a destination, landing, idling and shutting-down. This 

stress history from the time of start-up to landing is defined as a disk cycle. 
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 The actual beginning of spalling is invisible because the origin is usually 

below the surface. The first visible sign is a small crack and this too is usually 

indiscernible. The crack cannot be seen or indirectly detected otherwise. For practical 

purposes, therefore, life to spall initiation given by Equation A-4 is defined as the 

time to the development of a detectable spall. The time between incipient and 

advanced spalling varies with speed and load, but in any event it is not a sudden 

condition that will cause destructive failure within a matter of hours. With condition 

monitoring by regular inspection a fatigue spalling can be detected. Generally, the 

failed component is replaced and operation of the mechanism recommences. 

 When a fatigue spall is formed in a bearing, the contact stress, heat generation 

rate and vibration are increased, accelerating the formation of fatigue cracks within 

the unfailed subsurface material of the contact area. The contact surface continuously 

deteriorates upon the creation of new subsurface cracks and propagation of the 

existing ones. The fatigue spall grows during the bearing operation until the entire 

contact area has been roughened, leading to bearing failure [131]. 

 In most applications, the replacement of the bearing after the generation of the 

initial fatigue spall is an acceptable practice. However, in some applications the 

initiation of the first spall does not indicate the end of the useful life of the bearing. 

Depending on the amount of acceptable vibratory loading within the system and the 

means for heat dissipation, a bearing with a fatigue spall can be used for many cycles 

of operation beyond the initial failure. 

 Stable spall progression is characterized by gradual spall growth and exhibits 

low broadband vibration amplitudes. The onset of unstable spall progression 
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coincides with increasing broadband vibration amplitudes [128]. A study in [131] 

used a modified semi-empirical method for predicting spall progression rates for 

roller bearings as: 

  2
1

K
PDK

dN

dD
  

Equation A-5 

where K1 and K2 are empirical constants to be determined for the bearings under the 

operating conditions for which Equation A-5 is used, N is a cycle count, DP is a 

degree of bearing damage due to spall progression.  

 Damage mechanics based fatigue model, therefore, would explicitly take into 

account the gradual material degradation that occurs during rolling contact cycling 

under applied stresses. As discussed in [125], damage evolution is assumed to occur 

according to an equation of the following form: 

m

PDKdN

dD



















)1(3


 

Equation A-6 

where K3 and m are material constants,  is shear stress range acting along the inter-

element joint (bearing surface). The damage variable D can be further defined as 

follows [132]: 

S

S
D D

P   

Equation A-7 

where SD is the damaged surface area as projected area of all spalls, and S is the total 

surface area of the bearing.  
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 The study in [128] uses a similar model of spall propagation which relates 

spall progression rate, dSp /dN, to the spall similitude, Wsp, using two constants (A and 

m): 

   

  
  (   )

 
 

Equation A-8 

The spall similitude is defined in [128] in terms of the maximum radial (normal) 

stress, max, average shear stress, avg, and the spall length, Sp: 

  pavgsp SW  max  

Equation A-9 

Note that max = n = P is the normal stress on the surface resulting from pressure, P, 

avg is friction generated shear stress, avg = f = P, where  is a friction factor. The 

friction factor is determined based on the lubrication regime of the bearing.  

 Combining Equation A-3, Equation A-8 and Equation A-9 results in the 

following semi-empirical model of spall propagation rate, represents bearing damage 

accumulation as a function of material loss: 

   

  
   (  )

   
(      )

  

Equation A-10 

where dSp /dN is damage accumulation rate due to spall propagation, and B4, B5 and 

B6 are proportionality constants capturing all constants included in Equation A-3, 

Equation A-8 and Equation A-9. Stress cycle count, N, for the turbine bearing (will be 

defined as NB from now on) represents one aircraft mission, M, two flight hours long. 
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The spall length, Sp, can be substituted by spall size as a percentage of bearing 

surface, SD.  

 Integration of Equation A-10 gives time to spall progression to the size, Spi, as 

the number of stress cycles passed since spall initiation (at the time of bearing 

inspection), NBi: 

         
(   )

  
 
 

  (      ) (  
 
 )
     

Equation A-11 

The number of missions accumulated up to a certain time, Mi, includes life to spall 

initiation, L, and stress cycles (missions), NBi, accumulated since spall initiation until 

propagation to the size, Spi: 

Bii NLM   

Equation A-12 

Equation A-11 can be solved for Spi to obtain the relationship between the spall size 

and stress cycles from spall initiation, NBi (or Mi – L): 

    [  (      )
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Equation A-13 

 The degree of spall progression, denoted by Spi in Equation A-11 and 

Equation A-13, can be detected during periodic inspections by measuring the spall 

length, or spall size as a percentage of track surface, or oil particle quantity. The latter 

approach, however, requires preliminary lab testing to obtain scaling of the oil 

particle quantity to the approximate spall size [128].  
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 The spall length is zero before the initiation of a detectable spall. Spall size 

threshold defined as SpLimit is allowable material removal. When exceeded, a bearing 

is considered failed. Spall progression life, Np, can be obtained from Equation A-10 

by integrating over the range of spall progression from zero to SpLimit (or from 

Equation A-11 by replacing Spi with SpLimit): 

    
(       )
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Equation A-14 

 While tangential force on the turbine wheel disks, R, is explicitly defined in 

Equation A-4 and Equation A-10 as a random variable, other parameters, such as 

preloading, misalignment, lubrication, material parameters, geometrical and 

manufacturing tolerances of the particular bearing, are included in the constants k, m, 

B1 to B6, which will be probabilistically defined within the framework of PoF-based 

agent autonomy, as described in Chapter 8. This approach was used in order to 

simplify the life model of the bearings. It is always an option, however, to explicitly 

introduce any variable into this PoF-based life model, if engineering knowledge and 

data availability allows. 

 

A.2. Physics-of-Failure Life Model of Gas Turbine Shaft 

 Most catastrophic mechanical failures in power rotor shafts occur under cyclic 

bending that is combined with steady torsion, where cyclic bending stress is due to 

the self-weight bending during the rotation or possible misalignment between roller 

bearings. The multi-axial mixed-mode fatigue crack growth is an occurrence common 
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to many engineering structures and components. The fundamental postulate of the 

linear elastic fracture mechanics (LEFM) is that the behavior of a crack (i.e. whether 

it grows or not, and how fast it grows) is determined by one parameter, the stress 

intensity factor (SIF). This factor is a function of the applied loading and the 

geometry of the cracked component. For mixed-mode loading, the fatigue crack 

growth rate may be expressed by the Paris law, where the SIF range is replaced by an 

equivalent SIF range, Keq: 

  

  
   (    )

 
 

Equation A-15 

where Cs and n are constants depending on the several parameters such as the 

material type, microstructure, environment, stress ratio R, Kmax (K = Kmax – Kmin), 

fracture toughness KIc. There are many approaches proposed to define the equivalent 

SIF range Keq for mixed-mode loadings [133]. One of them is based on the 

equivalence of energy release rate, G, and the stress intensity factor, K, for nominal 

elastic loading [134]. Adding the individual energy release rates for a planar crack 

under plane stress conditions for the three loading modes [135] results in the 

equation: 
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Equation A-16 

This leads to the following equivalent stress intensity factor range: 
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Equation A-17 
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where Gtotal is the total strain energy release, and E is the Young modulus, 

        (  )
    

Equation A-18 

         (  )
    

Equation A-19 

          (  )
    

Equation A-20 

and Y1, Y2, Y3 are geometry factors (for three crack loading modes, Mode I, Mode II 

and Mode III, respectively), depending on the crack geometry, material Poisson’s 

ratio, , and the loading conditions,  is an amplitude of the remote applied bending 

stress,  is an amplitude of the remote applied shear stress (Mode II) or torsion stress 

(Mode III), and a is a crack size [134].  

 The term Keq can be used for the mixed-mode loading condition in a Paris 

law type equation (Equation A-15) to obtain the crack growth rate, da/dN, or cycles to 

failure through integration. Equation A-17 is used to obtain Mode I and Mode III 

SIFs along the front of the semi-elliptical surface cracks in shafts subjected to 

simultaneous bending and torsion (where the surface crack is on a normal plane to the 

axis of the shaft): 
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 ]    

Equation A-21 

Equation A-15 for Paris law of crack growth rate then becomes: 
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Equation A-22 

 For a shaft supported in bearings at its ends and carrying the turbine wheels, 

the maximum normal stress due to bending loads, , and the torsion shear stress, , 

are found on the surface of the shaft. Bending and torsion shear stresses are the 

functions of shaft geometry and loading conditions, as follows: 

1. Bending stress, , is proportional to the bending moment, Mb, in the location 

of the initial crack and section modulus, S, for the solid circular shaft with 

diameter d and length L: 

  
  
 

 

   Equation A-23 

where  

               

   Equation A-24 

  
   

  
 

  Equation A-25 

The bending force on the shaft, F, is a combination of turbine wheels weight 

(mass), m, and tangential force on the turbine wheel disks, R (due to tangential 

force generated on the turbine blades as a response to the surface 

(aerodynamic) loads), and c is a constant related to the location of the initial 

crack. The surface loads on the turbine blades are associated with 

aerodynamic forces resulting from the impingement of hot gases on the 

surfaces of the blades. The tangential force is a push force applied 
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perpendicular to the radial line of the shaft causing the driven shaft to rotate at 

a certain speed. As such, the rotational speed of the shaft is proportional to the 

tangential force generated on the turbine blades. The tangential force on the 

turbine wheel disks, R, is steady during normal steady-state operation 

(constant rotational speed) and variable otherwise at operation start and upon 

operation completion, and is proportional to the change in speed from zero to 

operating speed at start and from operating speed to zero prior to the 

shutdown. 

2. Torsional stress, , for the solid circular shaft with a diameter d is proportional 

to the torque, T, section modulus, S, and radius of turbine wheel disk, r: 

  
 

  
 

   Equation A-26 

where 

      

   Equation A-27 

  
   

  
 

   Equation A-28 

 The bending stress is fully reversed as the shaft rotates (with zero mean 

stress), while the torsion stress is a steady stress during normal steady-state operation 

and variable otherwise with a non-zero mean and zero minimum stress at operation 

start and upon operation completion. Notations  and  in Equation A-21 and 

Equation A-22 are the stress ranges that would have existed at the crack location, but 

for the initial uncracked shaft. Under constant amplitude loading conditions, these 
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would stay constant. Both amplitudes are, however, variable, as they are affected by 

the operational profile and the utilization of the engine. 

 Further, random vibration changes the loading conditions of the entire 

structure (including the shaft) and the response spectrum of the cracked components 

(as demonstrated in [136]), which affects the fatigue crack progression through the 

material. In addition, damage accumulation in the adjacent structural components 

over time (particularly bearings considered in this work and described in Section A.1. 

of this appendix) impacts the applied loads of the turbine shaft and alters stress state. 

These two factors further changing total bending stress by adding two components: 

1. A stress component due to random vibration, V, which can be written as 

V = C1rms (according to [136]), where rms is equivalent tensile stress 

range due to random vibration and C1 is a correction factor for the statistical 

distribution of the random vibration response (called equivalent damage 

constant). If Grms is the root mean square value of the acceleration obtained 

from the random vibration input and the response curve (or power spectral 

density (PSD) vs. frequency curve), then the equivalent relative displacement, 

Zrms, is proportional to the Grms value, the 1
st
 natural frequency and a damping 

coefficient of the shaft [136], [137].  Stress component, V, is proportional to 

the equivalent dynamic displacement, Zrms, and the response natural frequency 

[136], and can be written as: 

rmsV GCC 21  

Equation A-29 
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where the constant C2 encompasses all material and geometrical constants 

relating Zrms and Grms, V and Zrms (including the 1
st
 natural frequency and 

damping coefficient).  As shown in [136], the equivalent damage constant C1 

is only a function of the Paris law exponent, n: 

n

n n
C

/1

2/
1

2
12 
















  

  Equation A-30 

The standard value of random vibration, Grms, for engine structures of a fixed 

wing aircraft is obtained from DO-160F (curve D on Figure 8-1) [138] as 8.92 

Grms for the standard vibration and 12.61 Grms for high vibration conditions. 

The random vibration signal is assumed to have a stationary Gaussian 

distribution, and the instantaneous vibration acceleration peaks of the control 

signal are limited to three times the Grms acceleration level. Also, the random 

vibration input profile is considered to follow a “smooth” and uniform PSD 

curve given by DO-160F (Figure 8-1) [138] without notches (peaks and 

valleys in the frequency domain), so that the shift in natural frequency does 

not affect the stress state (and as such, life to failure) [136]. The frequency 

range used is 20 Hz to 2000 Hz. 

2. The stress component due to sinusoidal vibration caused by the damaged 

bearing due to spalling, S, is proportional to the degree of the bearing’s 

surface damage due to spall progression, Sp, by the maximum radial 

displacement, ZS ~ Sp. The stress component S is proportional to the 

maximum radial displacement ZS [136], and can be written as: 
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pS SC3  

  Equation A-31 

where the proportionality constant C3 includes all material and geometrical 

constants relating ZS and Sp, S and ZS. 

 Considering all sources of bending stress described above, Equation A-21 

becomes: 
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Equation A-32 

Using Equation A-32 for the equivalent SIF range, Equation A-15 for Paris law of 

crack growth rate can be written as: 
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Equation A-33 

 After substituting Equations A-23 to A-31 into Equation A-33 and combing 

all proportionality constants into model coefficients will obtain Paris equation of 

crack growth rate for the turbine shaft in the following form: 
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Equation A-34 

where S1, S2 and S3 are model coefficients. While R and Grms may depend on several 

operational factors, Sp is a function of time as the degradation of the bearing proceeds. 

Although this semi-empirical model will utilize an experimental data in lieu of the 

finite element analysis (FEA), the physics of the underlying fatigue failure will be 

retained. This approach is preferred over a fully empirical model which is not rooted 

in the underlying physical process.  
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 Stress cycle count N for the shaft (will be defined as NS from now on) 

represents one aircraft mission M, two flight hours long. The relation between aircraft 

missions accumulated up to a certain time, Mi, and stress cycle count for roller 

bearings, NBi, (Equation A-12) and for the shaft, NSi: 

SiBii NNLM   

Equation A-35 

The number of missions (stress cycles) to failure can be further defined for the turbine 

shaft by integrating both sides of Equation A-34 and considering that ainitialS 
1-(n/2)

 >> 

aSf 
1-(n/2)

 (since n > 2 for metals and ainitialS << aSf according to the past experience), 

where ainitialS is the initial crack size and aSf is the crack size at failure: 
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Equation A-36 

The number of missions (stress cycles) to the development of crack size aSi becomes: 
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Equation A-37 

 Equation E-37 can be solved for aSi to obtain a relationship between crack size 

and the number of accumulated stress cycles (at the time of shaft inspection), NSi 

(equal to accumulated aircraft missions Mi): 
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Equation A-38 

It must be noted that, while the amplitude of tangential force on the turbine wheel 

disks, R, and a random vibration level, Grms, are explicitly defined in Equation A-34 

as random variables, other variables, such as material parameters, geometry and 

manufacturing tolerances of the shaft, are included in the constants n, Cs, S1 to S3, 

which will be probabilistically defined within the framework of PoF-based agent 

autonomy, as described in Chapter 8. This approach was used to reduce the 

complexity of the life model of HP turbine shaft, although it is always an option to 

explicitly define any variable within the life model where engineering knowledge 

allows and data are available. 

 A separate note should be made about the degree of bearing surface damage 

due to spall progression (spall size), Sp, which appears in Equation A-34, Equation A-

36 and Equation A-37. Since two bearings are included in the system under the study, 

one of the two bearings with the largest spall size at a given time to be considered in 

the above equations, as it results in maximum radial displacement. As such, spall size, 

Sp, can be written as: 

{ }21,  ppp SSMaxS   

Equation A-39 
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A relationship between spall size at any given time Spi and stress cycles of the shaft, 

NSi (or Mi, see Equation A-35), becomes: 

       {         }   
 

Equation A-40 

 In order to develop a definition of the amplitude of tangential force on the 

turbine wheel disks, R, it needs to be noted that the gas turbine components 

generally experience cyclic thermo-mechanical loading during engine 

startup/shutdown, while cruise (steady holds) may cause thermo-mechanical creep 

fatigue damage to the material. Since creep deformation is considered to be negligible 

due to the advancements in material technology, cyclic loading during startup/ 

shutdown represents the major loading cycle of gas turbine engine components, 

which can have a severer impact on the life of the material in comparison to the 

isothermal conditions during steady state cruise. R in Equation A-34 and further is 

defined as the amplitude of tangential force on the turbine wheel disks at start-up. 

As turboprop engines are designed to produce torque, which is driving a propeller, a 

power output of turboprop engines is measured by a torquemeter. A torquemeter 

provides the means of accurately measuring the torque input from the shaft into the 

reduction gear assembly. As such, the torquemeter measures the power applied to the 

shaft. Torque measurements were used to monitor tangential force on the turbine 

wheel disks R, particularly to measure the force amplitude R at start-up. 
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A.3. Physics-of-Failure Life Model of Gas Turbine Disk 

 This PoF model is developed from the physical principles considering critical 

variables which contribute to the failure process, as described in [139], [140]. The 

publications [139], [140] present a case study in which structural reliability-based 

methodologies are used to assess the cyclic fatigue life of a high pressure turbine of a 

turboprop engine. The disk material is a cast nickel-base superalloy. The component 

experiences fatigue damage at the disk rim from mechanically and thermally induced 

loading. The mechanical loads are caused by the disk rotational speed, and the 

thermal loads are caused by the temperature gradients throughout the disk. The 

loadings change with the mission cycle, causing complex stress cycles in the disk. 

The variation in the primary hot gas and secondary cooling air, the uncertainty of the 

complex mission loading, and the scatter in mission duration are considered to be the 

major sources of uncertainty. 

 The fatigue life of the HP turbine disk is measured by the number of flight 

missions and can be generally separated into crack initiation and crack propagation 

phases. To define the initial crack size (ainitialD), the procedure in [139], [140] assumes 

a crack initiation life of zero cycles, and chooses a range of initial equivalent flaw 

sizes based on the comparison of the analytical crack growth results with crack size 

data from disks inspected in the field. The crack size does not represent the physically 

realized crack initiation size, but is a crack in the LEFM regime that represents the 

culmination of crack nucleation and the small crack effect. In other words, although 

the disk may not have a crack size of ainitialD at zero cycles, the crack growth analysis 
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and field experience indicates that the disk "acts" as though it has a crack of size 

ainitialD at zero cycles.  

 The crack propagation life is determined using a LEFM model (the Paris law). 

The fracture mechanics analysis for predicting crack growth in disks under the flight 

cycle loading assumes the cyclic growth of a surface crack that is initiated by the 

loading of unflawed material (growth of a subsurface crack from an inherent material 

defect is not considered because the processing of a vacuum-melted superalloy used 

in aircraft gas turbines now includes stringent controls which minimize the 

occurrence and size of these defects). Consider the Paris law representation of an 

edge crack in an infinite plate subjected to a constant stress cycle: 

 hd KC
dN

da
  

Equation A-41 

where a is the crack length, N is the number of cycles, da/dN is the crack growth rate, 

K is the stress intensity factor, Cd and h are the constants related to material 

properties. The factor K is determined using the stress cycle and crack geometry: 

  aK    

Equation A-42 

where  is the stress range,  is the geometry constant,   = 1.12 [139], [140]. 

 Gas turbine disks are subjected to complex thermo-mechanical loading with 

many uncertainties. Potentially significant random variables that influence disk life 

include BOT (burner outlet temperature) during startup, burner profile, dwell time at 

idle during startup, and dwell time at idle before shutdown (all categorized as 

coupling factors within agent autonomy developed in this work). For modeling 
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purposes, quantitative estimation of the above variables, as well as the 

characterization of the relationships connecting these variables to stress and 

degradation characteristics of the turbine disk, are derived from the first principles 

and/or obtained from the FEA [139]. The disk stresses and strains throughout the 

mission were shown to be determined by the following variables: 

1. Material properties 

 In the present study, the Paris law coefficient Cd and the Paris law 

exponent h are treated as random variables to represent the scatter in the 

material data. According to studies [141] and [142], the value of the Paris law 

exponent, h, for the turbine disk material may vary in the range of h = 2 to h = 

6. It must be noted that both constants are temperature dependent, because the 

disk operating temperature, Td, impacts crack growth rate. Three main groups 

of mechanisms are cited for the temperature dependence of superalloys in the 

temperature range of 600–800°C [142]: (i) environmental effects including 

dynamic embrittlement involving atomic oxygen and/or oxidation of grain 

boundaries at and ahead of the crack tip, and grain boundary carbides (the 

latter two processes are stress assisted), (ii) creep (especially at grain 

boundaries), and (iii) changes in the monotonic mechanical properties of the 

material, most notably the yield strength and the threshold of stress intensity 

factor range, ΔKth, due to thermally activated modes of dislocation movement 

and other effects. The relative importance of these processes can change with 

temperature and crack tip stress cycle, and thus crack growth rate will change 

depending on these parameters. For these reasons, material constants Cd and h 
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are treated as a random variables reflecting on the temperature dependency of 

crack propagation rate. 

 For the material of the studied turbine disk, thermally activated 

processes are not dominant compared to the relative importance of pure 

mechanical fatigue. This is not to say that oxidation or creep does not occur, 

but that the oxidation or creep that occurs is not significantly enhancing the 

fatigue crack growth. In this case, pure cyclic fatigue processes (due to 

mechanical stresses and temperature gradient between bore and rim) are 

considered to predominate. 

2. Mechanical Loads 

 A rotating component in the hot section of a turbine engine is subject 

to a combination of surface (aerodynamic) loads, centrifugal loads and 

thermal loads. The surface loads are associated with aerodynamic forces, 

resulting mainly from the impingement of hot gases on the surfaces of blades. 

The centrifugal loads that arise from the mass of the rotated disc and blades 

are usually the most critical loads that act on a turbine disc. Thermal loads are 

driven by a high temperature in the turbine section and a thermal gradient 

between the disk bore and rim. 

a) Centrifugal forces (Fc) 

 Centrifugal forces are proportional to the square of the 

rotational speed of the disk, where the latter is expressed as angular 

velocity of the disk  or linear velocity v: 

     
    

  Equation A-43 
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  Equation A-47 

where r is the radius of turbine wheel disk, m is a mass of the disk, and 

RPM is rotational speed in revolutions per minute. Centrifugal stress, 

therefore, is proportional to the square of the rotational speed of the 

turbine rotor.  

 Since the optimum power turbine speed is maintained during 

engine operation that is driving the mechanical loads at a constant 

speed, the amplitude of the centrifugal stress is close to zero during 

normal steady-state operation and is variable otherwise at operation 

start and upon operation completion. This is proportional to the change 

in turbine rotor speed from zero to the maximum engine rotational 

speed at start and down to zero when the engine is returned to 

standstill. The timing of these two major cycles of acceleration from 

standstill and coating to rest is well defined by the operational settings 

and does not vary from flight to flight. Rotational speed of the turbine 

shaft (RPM) is, however, monitored during the mission by the speed 
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indicators for conformance. Centrifugal stresses, therefore, are 

consistent from flight to flight and are not included in the list of 

significant random variables. They will be indirectly accounted for in 

the constants of the PoF model. 

b) Thermal Loads 

 The thermal loads are defined by the disk temperature 

throughout the mission, Tp, which is a function of temperature, 

velocity and pressure of the primary hot gas flow and the secondary 

cooling air flow. For a given engine installed on a specific aircraft 

model, perturbation analysis of the random variables in the heat 

transfer model showed two random variables to have a significant 

effect on the disk temperatures: BOT at startup and dwell time at idle 

before shutdown.  

 Minor cycles of disk temperature change, experienced during 

flight due to increased fuel flow at times of load increase, are 

considered negligible during steady state operation of the given 

aircraft (according to turbine inlet temperature measurements), and 

thus are not included in the list of significant random variables in this 

work. 

 Burner outlet temperature (BOT) during start 

 The BOT is also known as combustion section outlet 

temperature. The maximum combustion section outlet temperature 

(turbine inlet temperature) in this engine is above 1000°C (up to 
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1300°C). The highest temperature in any turbine engine is 

measured at the turbine inlet. Turbine inlet temperature, therefore, 

is considered to be one of the limiting factors in the operation a gas 

turbine engine. The temperature of a turbine section is monitored 

with the turbine inlet temperature gauge, turbine outlet temperature 

gauge, inter-stage turbine temperature gauge, and turbine gas 

temperature gauge. 

 The BOT, or the turbine inlet temperature (TIT), is a function 

of several operational variables such as the compressor discharge 

temperature, gas pressure and total fuel metered to the engine.  

Start BOT is a random variable assumed to be time independent 

for model simplification. This assumption is supported by the fact 

that the turbine inlet temperature is monitored and maintained 

within the allowable limits by adjusting several engine parameters.  

BOT for each start was obtained from TIT gauge readings. 

 Dwell time at idle before shutdown (D) 

 Longer idle dwell times affect the thermal loading by allowing 

the temperatures to stabilize, thus decreasing the thermal gradient 

between the disk bore and rim during the startup and shutdown. 

Stress analysis showed that the dwell time at idle during start did 

not affect the major or minor stress cycles [139], [140]. The dwell 

time before shutdown was estimated by interviewing the aircrafts 

operators. 
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c) Aerodynamic Forces (R) 

 The aerodynamic forces are imposed on the surface of turbine 

blades by compressed airflow, and result in tangential force on the 

turbine wheel disks, R, which defines the rotor torque, T (a twisting 

force applied to the turbine shaft, see Equation A-26). The magnitude 

of the aerodynamic forces (and torque output) depends on the working 

temperature and the working pressure in a combustion chamber and 

the resulting air flow.     

 A turboprop engine turbine is required to produce torque for 

driving a propeller. The turbine torque output is measured by the 

torquemeter. Since constant a power turbine speed must be maintained 

during engine operation, the torquemeter measures the power applied 

to the turbine shaft, where power, W, is a product of torque, T, and 

rotational speed,  (angular velocity): 

RrTW    

Equation A-48 

Torquemeter readings are used to monitor tangential force on the 

turbine wheel disks, R.  

While a constant turbine speed is maintained during engine operation, 

the amplitude of the tangential force on the turbine wheel disks, R, is 

non-zero at times when load increase is required. The amplitude, R, 

is the highest, however, at operation start and upon operation 

completion, resulting in a change in the turbine torque from zero to the 
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required value at startup, and down to zero when the engine is returned 

to standstill. Tangential force amplitude, R, during these two major 

cycles of acceleration (from standstill and coming to rest) will be 

considered in the fatigue model of the disk as one of the key sources of 

cyclic stress. Minor torque cycles of varying size that are experienced 

due to the load increase that is required to maintain a constant power 

turbine speed are considered to be negligible during the steady state 

operation of a given aircraft (according to the available torque 

measurements), and thus are not included in the list of significant 

random variables in this work. These cycles will be indirectly 

accounted for in the constants of the PoF model described below. 

 Based on the above considerations, the stress amplitude  is a function of 

BOT at start, the amplitude of tangential force on the turbine wheel disks at start-up, 

and the dwell time before shutdown:  

 DTRf IT ,,  

Equation A-49 

 According to the Paris law Equation A-41, the initial crack size (ainitialD) is 

also a significant random variable. To summarize the above, the fatigue life of a HP 

turbine disk as a function of the significant random variables can be written as: 

 hCaDTRfN dinitialDITD ,,,,,  

Equation A-50 

where ND is the number of missions until failure, TIT is the start BOT, D is the dwell 

time before shutdown, ainitialD is the initial crack size, Cd and h are material constants. 
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 Considering all sources of cyclic stresses during the mission, Equation A-41 

takes a form: 

ShutdownupStart dN

da

dN

da

dN

da


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


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
 

Equation A-51 

where start-up and shutdown components can be expanded further as: 
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Equation A-52 
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Equation A-53 

Substituting Equation A-52 and Equation A-53 into Equation E-51 will obtain: 
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{(          )

  (   
  ) } 

Equation A-54 

Integrating both sides of the last equation, and considering one flight mission as a 

stress cycle for the disk, will obtain: 
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Equation A-55 

   { } hhh

ITeq DDTDRD /11

321    

Equation A-56 
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Equation A-57 

where ND is the number of missions to failure, ainitialD is the initial crack size in the 

disk, and aDf is the crack size at failure. Since h > 2 for metals and ainitialD << aDf 

(according to the past experience), then ainitialD 
1-(h/2)

 >> aDf 
1-(h/2)

 and, considering 

Equation A-56,  Equation A-57 can be written as following: 
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Equation A-58 

The number of missions to crack size aDi is given by: 
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Equation A-59 

Equation A-59 can be solved for aDi to obtain a relationship between the crack size 

and the number of accumulated stress cycles (at the time of disk inspection), NDi 

(equal to accumulated aircraft missions Mi): 
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Equation A-60 

 Stress cycle count, N, for the disk, defined as ND, represents one aircraft 

mission, M, two flight hours long. The relation between the aircraft missions 
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accumulated up to a certain time, Mi, and the stress cycle count for roller bearings, 

NBi, (Equation A-12), the shaft, NSi (Equation A-35) and the disk, NDi: 

DiSiBii NNNLM   

Equation A-61 

 While the amplitude of the tangential force on the turbine wheel disks, R, 

BOT at start-up, TIT, and dwell time at shutdown, D, are explicitly defined in 

Equation A-58 as random variables, material parameters C and h are also assigned to 

be random variables to indirectly account for insignificant variation of operating 

parameters during steady state phase of the mission, although all geometry and 

manufacturing tolerances of the particular disk are included in the constants D1 to D3. 

These are probabilistically defined within the framework of PoF-based agent 

autonomy, as described in Chapter 8 of this dissertation. 
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