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A new unsplit staggered mesh algorithm (USM) that solves multidimensional

magnetohydrodynamics (MHD) on a staggered mesh is introduced and studied.

Proper treatments of multidimensional flow problems are required for MHD simula-

tions to avoid unphysical results that can even introduce numerical instability. The

research work in this dissertation, which is based on an approach that combines the

high-order Godunov method and the constrained transport (CT) scheme, uses such

multidimensional consideration in a spatial reconstruction-evolution step.

The core problem of MHD simulation is the nonlinear evolution of solutions

using well-designed algorithms that maintain the divergence-free constraint of the

magnetic field components. The USM algorithm proposed in this dissertation en-

sures the solenoidal constraint by using Stokes’ Theorem as applied to a set of

induction equations. In CT-type of MHD schemes, one solves the discrete induc-

tion equations to proceed temporal evolutions of the staggered magnetic fields using

electric fields. The accuracy of the computed electric fields therefore directly influ-



ence the solution quality of the magnetic fields. To meet this end, an accurate and

improved electric field construction (IEC) scheme has been introduced as one of the

essential parts of the current dissertation work.

Another important feature in this work is a development of a new algorithm

that solves the induction equations with an added capability that controls numerical

(anti)dissipations of the magnetic fields. This staggered dissipation-control differ-

encing algorithm (SDDA) makes use of extra dissipation terms, for which their

derivations are established from modified equations of the induction equations.

A series of comparison studies in a suite of numerical results of the USM-IEC-

SDDA scheme will show a great deal of qualitative improvements in many stringent

multidimensional MHD test problems.
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Chapter 1

INTRODUCTION

If you wish to make an apple pie truly from scratch,

you must first invent the universe.

Carl Sagan

The latest available challenges of the numerical MHD simulations are discussed

in Chapter 1. Among many others, three major solenoidal constraint preserving al-

gorithms are briefly compared with an emphasis on the divergence-free constraint

property in various CT-type MHD solvers. The physical importance to keep the

divergence-free fields in MHD simulations will be first discussed, and different nu-

merical approaches to preserve the solenoidal magnetic fields will be inter-compared.

Based on the comparison study, several key advantages in using the CT-type of

divergence-free approach, from which the USM-IEC-SDDA algorithm stems, will be

drawn.

The general ideas given in Chapter 1 will be extended to develop algorithms

of the USM-IEC-SDDA in the following chapters. To this end, related issues in each

different MHD scheme will be first overviewed and then important consequences of

introducing the USM scheme with the IEC and SDDA developments will be laid

out.

The last part of the chapter is devoted to discuss the validity of MHD theory.
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Major interest covers the basic concepts of physical motivations to develop MHD

theory, which can be approached using from the kinetic theory to the fluid (multi-

fluid, two-fluid and single-fluid) theories. Several conditions of validity for MHD

theory will be outlined.

1.1 Motivation

USM-IEC-SDDA is a multidimensional MHD scheme that uses a staggered

mesh algorithm combined with an unsplit time integration method. The method

is a second-order finite volume Godunov algorithm which has a TVD version of

the MUSCL-Hancock scheme. This unsplit approach is found to be more accurate

than most dimensional splitting time integration methods, where there are gen-

erally operator splitting errors. The current MHD algorithm conveys full aspects

of multidimensional MHD problems. Most importantly, the solenoidal constraint

of the magnetic fields by using a staggered mesh algorithm (Balsara et al., 1999

[9]; Balsara, 2001 [10, 11]) has been successfully achieved in the USM-IEC-SDDA

development.

The staggered mesh algorithm is shown to be very efficient (Tóth, 2000 [88]) for

maintaining the divergence-free constraint on the magnetic fields in solving MHD

problems numerically. The staggered mesh algorithm updates the magnetic field

components (surface variables) by preserving the divergence-free constraint up to

round-off error. The staggered mesh algorithm further uses a Godunov-type finite

volume scheme as an underlying solver to update the rest of the volumetric variables
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(e.g., density, momentum, and total energy). An approximate Roe-type Riemann

solver is then a good choice to compute the high-order Godunov fluxes at each cell

interface center.

In Godunov-type finite volume schemes there are two approaches to update

temporal integrations of multidimensional conservation laws: the dimensional split-

ting and unsplit methods. The simplest and comparatively less expensive way is

to use the dimensional splitting method. This type of method, which is simply an

extension of the finite volume scheme in one-dimension to multi-dimension, is shown

to be robust, relatively straightforward to implement, and generally faster than the

unsplit method. The method, however, does generally introduce splitting errors

when solving one-dimensional subproblems in each sweep direction. This is because

the linearized Jacobian flux matrices do not commute, e.g., ĀxĀy 6= ĀyĀx, in most

of the nonlinear multidimensional problems [53, 54].

Alternatively, one can use the unsplit method to update the cell averaged so-

lutions by simultaneously accounting for the flux contributions from all interface

boundaries in a single step. This approach is more accurate than the splitting

scheme, and forms a basis of the scheme in this dissertation to solve the multidi-

mensional MHD equations. Compared to the dimensional splitting algorithm, the

unsplit scheme usually requires more storage, and its implementation has been quite

limited for use of MHD schemes. Crockett et al. [26] have recently presented an

unsplit MHD scheme, based on the unsplit algorithm for hydrodynamics of Colella

[24], using a projection divergence-cleaning method.

The staggered mesh algorithm has a major advantage over the projection
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scheme in that it is computationally inexpensive. It also has many attractive fea-

tures, such as that it can be easily applied with different boundary conditions or

different types of zoning. This is in contrast with most of the FFT based pro-

jection schemes, for which the choice of boundary conditions are very restrictive.

While many works [6, 21, 46] have used multigrid methods in incompressible flows

and such restrictions seem much less severe, the numerical design still requires extra

implementations, whereas the staggered mesh algorithm does not.

One of the well known difficulties in modern MHD codes is to keep the ∇ ·

B = 0 constraint throughout simulations. This constraint comes from the physical

observation that there are no isolated magnetic sources or monopoles. This implies

that the magnetic field lines, which are tangent to B, are closed or have ends at

infinity. Ideally, one would like to have the same constraint in his/her numerical

scheme to avoid unphysical effects. Violating the ∇ · B = 0 constraint allows

errors to be accumulated over each time step and may produce erroneous solutions

[18]. Several attempts have been made to maintain the ∇ · B = 0 constraint in

shock-capturing MHD codes. As recent studies have shown; however, successful

development of such comprehensive code is a difficult problem. The issues in such

schemes have been well documented and compared by Tóth [88]. The formulations

within shock-capturing high-order Godunov-type schemes can be categorized into

three major approaches.

The first approach is the constrained transport (CT) type of schemes on a

staggered mesh, originally proposed by Yee (1966) [94], and studied by many others

[9,11,19,28,33,34,37,59,78]. Recently Balsara and Spicer [9] proposed a CT scheme

4



(flux-CT) that utilizes high-order Godunov fluxes to construct electric fields, fol-

lowed by an update of the divergence-free magnetic fields by solving the induction

equations with the electric fields. Historically, the name, constrained transport, was

first introduced by Evans and Hawley [34], and it simply means a particular choice

of finite difference discretization on a staggered grid that maintains ∇·B = 0 in the

discretized form of equations. In the CT-type of schemes, the accuracy of round-off

errors can be achieved in the discretized form of ∇·B = 0, provided that the initial

and boundary conditions satisfy the divergence-free condition. Tóth [88] compares

seven different algorithms which are widely used in modern MHD codes and un-

derscores both the physical and numerical importance of maintaining the solenoidal

constraint in MHD problems. In his study, Balsara and Spicer’s flux-CT scheme

is shown to be the most accurate scheme for the test problems therein. The next

section will discuss several different approaches and key ideas adopted in the CT

schemes in more detail.

The second approach is the projection scheme, first proposed by Brackbill

and Barnes (1980) [18] for use in MHD. The basic idea behind this method is to

construct a mathematical vector space and its subspace, where the non divergence-

free magnetic fields are projected to the subspace of zero divergence fields by a

linear operator. In each time step, these projections (or corrections) of magnetic

fields are performed by solving corresponding Poisson equations and the divergence-

free mode of magnetic fields can be obtained to the same order of accuracy as the

Poisson solver. The approach is shown to be very accurate and works well for any

grid on which the Poisson equation can be solved (even on unstructured grids). It
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has, however, the additional complexity of computing the Poisson solution at each

time step. There are two choices in the projection of the magnetic fields, either to

project the cell-centered fields or face-centered fields. The first is consistent with the

underlying topologies of the cell center based Godunov schemes; however, there are

some numerical issues such as energy imbalance from the changes in the cell-centered

magnetic fields in the fluid as well as the checkerboard-type instabilities involving

a centered difference approximation to the divergence operator. The second type of

projection, also called the MAC projection [26], has as its advantage that it uses the

projected divergence-free fields in calculating fluxes and therefore is more reliable

in keeping the algorithm conservative.

The third approach is the 8-wave (or divergence-wave) formulation which was

suggested by Powell et al. [68]. This method solves the MHD equations using an

additional eighth wave of the governing equations. The formulation requires some

source terms, proportional to ∇·B, on the right hand side of the governing equations,

where they are residual terms that cannot be expressed in divergence form in their

cell-centered field formulation. Since the scheme uses an additional eighth wave

corresponding to monopoles, such unphysical monopoles will effectively travel at

the flow speed over time and presumably be advected out of the domain eventually.

The scheme also requires a minor modification to an approximate Riemann-type

solver due to its extra wave structure of the scheme. Powell et al. [68] also cited

another downside of the method in solving the governing equations with additional

source terms: the truncation error is reflected on the right hand side of the equations

proportional to the order of the truncation error of ∇ · B. In turn, this makes the
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scheme to be non-strictly conservative and hence the method can give incorrect

jump conditions across discontinuities. However, for many practical problems of

interest, even with this non-conservative property, the 8-wave formulation is found

to be robust in terms of stability and accuracy.

The current motivation in developing MHD solvers that retain the ∇ · B =

0 property stems from the solar wind modeling work [40, 74, 79]. An approach

therein used Flux Corrected Transport (FCT), a method that does not require a

Riemann solver, and employed a staggered mesh with cell-centered and face-centered

magnetic fields and edge-based electric fields. That code solves the full 3D MHD

system in spherical coordinates and thus obtains the radial expansion of the solar

wind in a natural way. An AMR (adaptive mesh refinement) version has been

formulated in [29]. It is envisioned that the method presented in this dissertation,

when extended to 3D, will be eminently suitable for solar wind work. It will retain

the unsplit multidimensional staggered mesh arrangement, thus preserving the ∇ ·

B = 0 condition in a similar way to FCT, but provide a significantly more accurate

and robust approach in that it is less diffusive.

The goal in this dissertation is to develop a new unsplit MHD solver for mul-

tidimensional flow problems, and is fourfold. Firstly, a new unsplit method that

employs a method of multidimensional characteristic analysis for reconstructing the

Riemann state variables has been introduced. The characteristic method will be

shown to be very efficient to treat multidimensional MHD terms. This is in contrast

to all previous approaches have used one-dimensional characteristic tracing method

to reconstruct the Riemann states. The development of the characteristic method
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is discussed in Chapter 2.

Secondly, the base flux-CT scheme of Balsara and Spicer has been extended

to develop a new electric field construction scheme on a staggered grid. In this de-

velopment, a new high-order construction algorithm will be presented that provides

more accurate directional gradient information as well as an improved treatment of

numerical dissipations. This algorithm, which will be called as an improved electric

field construction (IEC) scheme, is described in Chapter 3.

Thirdly, a new (anti)dissipation relationship has been established in solving

the MHD induction equations by considering modified equations of the induction

equations. Such (anti)dissipation control will be shown to play an important role to

prevent unphysical growths of the components of the magnetic field in MHD simula-

tions. Details of the development, which will be designated as staggered dissipation-

control differencing algorithm (SDDA), is discussed in Chapter 4.

Finally, an implementation of a parallel, adaptive mesh refinement (AMR)

version of USM-IEC-SDDA will be described in Chapter 5. The implementation

has been achieved in the FLASH 3 simulation code [36] using the PARAMESH

AMR library [62].

In Chapter 6, results of several test problems are presented, including the

Brio-Wu shock tube [20], field loop advection/diffusion problems [37, 82], Orszag-

Tang vortex [65], rotor problem [9,11,55,56,60,88], shock-cloud interaction problem

[28, 56, 88], MHD blast problem [11, 95], and current sheet problem [37, 82]. It will

be shown that the USM-IEC-SDDA scheme has a great capability to solve these

stringent MHD problems in multidimension.
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Several conclusions and future work will be drawn in Chapter 7.

1.2 Divergence-Free MHD Algorithms

In this section, discussions of several key aspects in multidimensional MHD

flow problems will be made. Such discussions will underline the numerical efficiency

and robustness of the background of the USM-IEC-SDDA scheme. Concepts of

the electric fields construction and the evolutions of the induction equations on the

staggered grid will also be presented briefly and they will be further developed for

the USM-IEC-SDDA scheme in later chapters.

1.2.1 Divergence-Free Requirement for MHD

A well-designed numerical MHD algorithm should generate solutions that re-

flect the fact that there are no isolated magnetic monopoles. It is due to Brackbill

and Barnes (1980) [18] that violating the ∇ · B = 0 constraint can cause fictitious

forces to develop parallel to the magnetic fields. This results in additional extra

source terms in the momentum, induction and energy equations. For instance, one

can see that the Lorentz force per unit volume (assuming overall charge neutrality)

can be written as

j × B = (∇× B) × B (1.1)

= (B · ∇)B− 1

2
∇B2 (1.2)

= ∇ · (BB) − (∇ · B)B− 1

2
∇B2, (1.3)
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where j and B are the current density and magnitude of the magnetic fields, respec-

tively. Note that the first and second terms in equation (1.2) represent the forces

from the magnetic tension and magnetic pressure, respectively.

If ∇ · B = 0, then one can rewrite the last equation (1.3) in a conservation

form as the divergence of the Maxwell stress tensor T = BB− B2

2
I:

j × B = ∇ · (BB) − 1

2
∇B2 = ∇ · T, (1.4)

where I is a unit matrix. As a consequence, when ∇ · B 6= 0 this conservation

form of the Lorentz force is violated and hence the MHD equations are no longer

to be conservative (See more details in [18]). Furthermore, the nonzero value of

∇ · B is proportional to B and hence there will be an extra compressive magnetic

component parallel to the magnetic fields. This will allow unphysical magnetic

acceleration along the field lines. Notice that the gas pressure p is

p = (γ − 1)(E − 1

2
ρU2 − 1

2
B2), (1.5)

where E, U , and B are the total energy density, magnitudes of velocity fields and

magnetic fields, respectively. The above equation (1.5) shows that if there is an

extra development of magnetic compressive components due to the nonzero ∇ · B

value, then the magnetic pressure 1
2
B2 will be increased and hence the gas pressure

p will be apparently reduced during the simulation. The greater the magnetic force

acceleration is relative to the fluid velocity the lesser the fluid velocity is relative

to the Alfvén wave. In numerical simulations, ∇ · B is typically small, but not

exactly zero. Since ∇ · B itself is a numerical discretization error, the resultant
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error would be accumulated over the computational domain and may produce an

erroneous solution.

1.2.2 Cell-centered Fields Algorithms in High-Order Godunov MHD

Over the last decade the high-order Godunov method, one of the accurate and

robust schemes originally developed in hydrodynamics, has become a great interest

for use in MHD. A brief list of developments includes Brio and Wu (1988) [20],

Zachary, Malagoli, and Colella (1994) [95], Dai and Woodward (1994) [27], Powell

et al. (1994) [68], Ryu and Jones (1995) [77], Balsara and Spicer (1998) [9], Londrillo

and Del Zanna (1999) [59], Pen et al. (2003) [67], Londrillo and Del Zanna (2004)

[60], Balsara (2003) [11], Crockett et al. (2005) [26], and Gardiner and Stone (2005)

[37].

The high-order Godunov scheme was first developed by van Leer (1979) for

Euler flows and substantial progress thereafter has opened a new era of robust and

accurate performance in numerical simulations of MHD as well as hydrodynamics.

It is interesting to notice that early efforts in high-order Godunov MHD schemes

focused entirely on the numerical formulations that collocate the magnetic fields

at zone centers. This was because of the fact that the underlying aspects of the

Godunov algorithms are based on the conservation laws in which the zone centered

variables are conserved. The MHD equations, thus, were treated as a simple system

of conservation laws in earlier formulations.

In the cell-centered fields formulations one does not encounter any difficulty
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until one tries to solve multidimensional MHD problems. This is because in one-

dimensional MHD the normal field is held to be a constant and there is no need

to worry about keeping the divergenceless evolution of the magnetic fields. In mul-

tidimensional MHD, however, one needs to maintain the solenoidal constraint via

solving the induction equation. For instance the induction equation for the ideal

MHD has the form:

∂B

∂t
+ ∇× E = 0. (1.6)

A correct interpretation of the above induction equation does not mean to follow

any conservation law but the divergenceless evolution of the magnetic fields. This

can be seen by taking the divergence of the induction equation (1.6):

∂∇ · B
∂t

= ∇ · (−∇× E) = 0. (1.7)

Apparently this analytical result may not be true numerically, because the discrete

divergence of the discrete curl may not give zero exactly.

Until recently, two traditional approaches have been proposed to enforce the

divergence-free constraint in the formulations using the cell-centered fields. The

first method is the projection method, which, in the context of MHD, was first

proposed by Brackbill and Barnes [18] (also earlier work in [8, 77, 95] and recently

in [26]), takes a divergence-cleaning step in their high-order Godunov based MHD

schemes. In this approach two types of schemes are available, a scalar divergence-

cleaning type and a vector divergence-cleaning type, depending on a choice of a

space in which the divergence-cleaning is evaluated: real space or Fourier space.

This method potentially contains some disadvantages. One needs to pay the price
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to solve the associated Poisson problems either directly or iteratively. This, in gen-

eral, is computationally expensive with possible restrictions on boundary conditions

and difficulties on non-Cartesian domains. Also, since the method requires a global

solution to the Poisson problem the approach has no choice to avoid all-to-all com-

munication on a parallel machine. Another disadvantage in this method is the extra

complexity because the discretization of the elliptic equation must be compatible

with that of the MHD equations. With a lot of efforts, an adaptive mesh refinement

(AMR) can be accommodated in the scalar divergence-cleaning approach, yet it

would be hobbled in solving the Poisson problems and become progressively compu-

tationally expensive as the AMR hierarchy increases. Finally, the situation becomes

even worse for the vector divergence-cleaning approach, in that there seems to be

no AMR algorithm available yet. More details on other various numerical issues for

this approach have been well cataloged in [12, 88].

The second method, the so-called 8-wave formalism, proposed by Powell et

al. [70], utilizes the modified MHD equations that includes source terms that are

proportional to ∇ · B. An additional eighth wave reflects the propagation of the

magnetic monopole that is designed to be convected with the local flow speed, and

eventually advected out of the computational domain. Although the scheme is found

to be robust and accurate (as compared to the basic conservative scheme), obviously

this set-up results in non-conservative forms of the MHD governing equations and

is susceptible to produce incorrect jump conditions and propagation speed across

discontinuities in certain problems [70, 88]. Due to its inherent formalism allowing

the truncation error of ∇ · B that travels with the local flow, the price this scheme
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should pay is the loss of the divergence-free property. Potentially this would lose

the important physics of MHD and hence the magnetic field topologies. Recently,

there also have been other approaches [31, 48] to extend the 8-wave schemes that

manifest the ∇ ·B source term.

1.2.3 Cell Face-centered Fields Algorithms in High-Order Godunov

MHD: the Staggered Mesh Algorithm

For the reasons that have been raised in the high-order Godunov based MHD

formulations using the cell-centered fields, and to overcome such issues, many re-

searchers have developed various efficient staggered mesh algorithms by taking an

alternative line of thought that uses a staggered collocation of the magnetic fields.

The basic idea in the staggered approach is to evolve MHD flows by solving the

MHD induction equation (1.6) via Stokes’ Theorem in a discrete sense.

The staggered grid algorithm was first introduced by Yee (1966) [94] to com-

pute the divergence-free MHD flow in the finite difference formulation that trans-

ports the electromagnetic fields. Ever since, many approaches have been proposed

to use the staggered grid to keep ∇ · B = 0. Bretcht et al. (1981) [19] used the

staggered mesh formulation for their global MHD modeling of Earth’s magneto-

sphere for which they used a non-linear FCT flux limiter. The constrained transport

(CT) method later by Evans and Hawley (1988) [34] followed the vector potential

approach on the staggered grid for evolutions of the MHD induction equations. An-

other approach by DeVore (1991) [33] also used the staggered mesh algorithm of
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Brecht et al. [19] and applied it to a flux corrected transport (FCT) algorithm.

Due to Evans and Hawley [34], the name constrained transport (CT) has be-

come a popular name that encompasses all the branches that have been developed in

the staggered mesh approaches [9, 11, 28, 33, 34, 37, 59, 78]. The original CT method

places the surface variable (or the magnetic flux) – the components of the magnetic

field at the cell face centers, and the rest of the volumetric variables such as mass,

momentum and energy at the cell centers on the staggered grid. There also has

been a variant CT approach by Tóth [88] that places all of the variables at the cell

centers and uses central differencing for the induction equation. In his paper, Tóth

made an extensive and comparative study of different MHD schemes focusing on

the divergence-free property of each scheme. He compared the various approaches

that are different in how the base scheme (e.g. van Leer’s TVD-MUSCL, or Yee’s

TVD-Lax Friedrich) is modified regarding the induction equation. Tóth’s study did

not only compare three major different algorithms (e.g. the projection schemes,

the 8-wave schemes, and the CT based staggered mesh schemes) but also different

approaches in the CT formulation.

In the CT schemes, different approaches adopt different ideas on how to ob-

tain the electro-motive force (EMF) E, which can be defined by E = −u × B as a

simple case in ideal MHD. The flux-CT scheme by Balsara and Spicer [9] uses the

second-order Godunov fluxes to construct the EMF by using the so-called duality

relationship between the components of the flux vector and the electric fields. The

field-interpolated CT scheme designed by Dai and Woodward [28] simply uses the

interpolated magnetic and velocity fields to obtain the EMF in their Godunov-type
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formulation. Ryu et al. [78] also proposed the transport-flux-interpolated CT scheme

which basically transports the upwind fluxes along with the upwind correction terms

for maintaining the TVD property. Balsara’s series of recent work [10,11] studied a

new reconstruction algorithm for the cell-centered magnetic fields. In his modified-

CT approach the magnetic fields at each cell center are reconstructed directly from

the divergence-free cell face-centered field components using the reconstruction poly-

nomial. Such reconstructed magnetic fields at the cell centers (not only the cell face

fields) are also guaranteed to maintain the divergence-free constraint by design. Re-

cently, Gardiner and Stone [37] developed a multidimensional CT scheme that is

consistent with the plane-parallel, grid-aligned one-dimensional base flow problems

by modifying the simple arithmetic electric fields averaging scheme of Balsara and

Spicer [9]. As another approach, upwinding-CT (UTC) scheme, was proposed in

Londrillo and Del Zanna [60]. Their approach used a similar reconstruction algo-

rithm as described in [10, 11] for the magnetic fields and evaluate the EMF based

on the upwinding strategy in their Godunov-type scheme. In the UTC scheme,

the divergence-free property is maintained as a built-in property. Yet it is evident

from their test results that their scheme suffers from keeping ∇ ·B sufficiently low,

and allowing up to the order of 10−4 (See [59]), while, it will be shown in later

chapters that, the USM-IEC-SDDA scheme allows ∇ · B only up to the orders of

10−12 ∼ 10−16 in most of the simulations.

It is worth mentioning that, in Tóth’s work [88], one of the most accurate

high-order MHD schemes is the flux-CT scheme by Balsara and Spicer [9]. Recently,

Balsara [10, 11] has extended his original flux-CT scheme on an AMR grid.
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According to the observation have made so far, in this dissertation a CT ap-

proach which stems from the work of Balsara and Spicer [9] is adopted and extended

to develop the USM-IEC-SDDA scheme.

In Chapter 3, a new electric field construction algorithm (IEC) will be pre-

sented that improves the base construction scheme of Balsara and Spicer [9]. Later

in Chapter 4, the improved electric field construction (IEC) algorithm will be used

to solve the induction equations according to the SDDA scheme.

1.3 Basic Properties of MHD

The ideal MHD equations can be formulated as a hyperbolic system of conser-

vation laws. High-order Godunov schemes are often preferable to more traditional

schemes such as FCT to solve this conservative system to increase the accuracy of

numerical solution. In general the resistive MHD equations can be written in a

quasi-conservative form as following:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1.8)

∂ρu

∂t
+ ∇ · (ρuu − BB) + ∇ptot = 0, (1.9)

∂B

∂t
+ ∇ · (uB − Bu) + ∇× (ηj) = 0, (1.10)

∂E

∂t
+ ∇ · (ue + uptot − BB · u − B × ηj) = 0. (1.11)

The above equations represent the continuity equation, momentum equation, induc-

tion equation, and energy equation, respectively.

The conservative variables are the plasma mass density ρ, plasma momentum

density ρu, magnetic field B, and total energy density E. The plasma velocity u,
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current density j = ∇ × B, total pressure ptot = p + B2/2, and thermal pressure

p = (γ − 1)(E − 1
2
ρU2 − 1

2
B2) are derived quantities, where U 2 = u2 + v2 + w2

and B2 = B2
x + B2

y + B2
z . Flow parameters include the ratio of specific heats γ and

resistivity η. The initial conditions should satisfy ∇ · B = 0.

The resistivity η is zero for ideal MHD, otherwise η > 0. The resistive MHD

equations are formally of mixed type, containing both hyperbolic waves which satisfy

a causality condition and have a finite domain of dependence, as well as parabolic

diffusion, due to the term ∇ × (ηj) = η∇2B in the induction equation (1.10), in

which the term describes diffusion of the magnetic field with a formally infinite

domain of dependence. For zero resistivity (η = 0) the ideal MHD equations are

hyperbolic and admit wave-like solutions that propagate without dissipation. As

long as the advection time scale is short compared to the resistive time scale, the

numerical techniques applicable to the ideal MHD equations are also suitable for

resistive MHD and numerical schemes have mostly been developed for solving the

ideal equations.

There are some interesting properties of the ideal MHD equations: the system

of equations is not strictly hyperbolic due to the fact that the wave speeds can be

equal. The ideal MHD equations yield non-convexity, which allows the existence

of compound waves. The wave structure of ideal MHD consists of three different

families: slow, Alfvén, and fast waves, and they give more complicated structures

than in the pure hydrodynamics case. The Alfvén wave is linearly degenerate and

propagates with a speed vA = |B|/√ρ, whereas fast and slow waves involve com-

pression of plasma and are related to ordinary sound waves propagating with the
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sound speed.

This Alfvén speed vA is indeed a fundamental quantity in the fluid description

of MHD. As it will be discussed in the next section, vA is the characterization of

the very-low frequency fluid-like macroscopic dynamics of the magnetic field lines

to which the plasma is fastened. The Alfvén waves are consequence of the mag-

netic tension, as appeared in the first term of the Lorentz force (1.2), which tends

to restore the initial shape just like in the way that a sling-shot exerts a force di-

rected to the local center of curvature. Furthermore, since the frequency of the

macroscopic MHD depend on the wavelength1, the slowest waves have the longest

wavelengths. This points to a fundamental property of the Alfvén waves that they

feel the global magnetic configuration, viz., Alfvén waves carry the information of

the overall magnetic geometry.

The formidable complexity in numerical MHD problems is to keep the divergence-

free constraint properly. In simulations of MHD flow problems, violating the divergence-

free constraint would lead to unphysical parallel force to the magnetic field [18].

As was discussed previously, by losing the constraint, the magnetohydrodynamics

equations are no longer to be in conservation form. Even with very small errors

in preserving the divergence-free constraint can lead to large errors in the solutions

of the conservative form of the magnetohydrodynamics equations. In the work of

Brackbill and Barnes [18], such erroneous effect was first studied, and a use of non-

conservative formulation of the momentum equation, rather than the conservative

1This is in contrast with the fact that the microscopic plasma oscillations with the plasma

frequency is independent of the wavelength.

19



form, was proposed to eliminate the non divergence-free error.

The equations of ideal MHD can be written in a conservative form (or diver-

gence form). The ideal part (i.e., η = 0) of the equations (1.8)∼(1.11), thus, can be

rewritten in a short form of a conservative system equation in full three-dimensions

as

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0, (1.12)

where U contains the eight MHD conservative variables and F,G,H represent cor-

responding conservative fluxes in x, y, z directions respectively.

One can find that U is given as

U =(ρ, ρu, ρv, ρw, Bx, By, Bz, E)T , (1.13)

and multidimensional fluxes F,G,H are also given by

F =





































ρu

ρu2 + ptot − B2
x

ρuv − ByBx

ρuw − BzBx

0

uBy − vBx = −Ez

uBz − wBx = Ey

(E + ptot)u − Bx(uBx + vBy + wBz)





































, (1.14)
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G =





































ρv

ρvu − BxBy

ρv2 + ptot − B2
y

ρvw − BzBy

vBx − uBy = Ez

0

vBz − wBy = −Ex

(E + ptot)v − By(uBx + vBy + wBz)





































, (1.15)

H =





































ρw

ρwu − BxBz

ρwv − ByBz

ρw2 + ptot − B2
z

wBx − uBz = −Ey

wBy − vBz = Ex

0

(E + ptot)w − Bz(uBx + vBy + wBz)





































. (1.16)

Notice that Ohm’s law for perfectly conducting plasma, E = −u × B, has

been used, where E ≡ (Ex, Ey, Ez)
T , is the electromotive force (EMF, or simply the

electric fields).
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In one-dimensional problems, one often uses 1.5D (or 1.75D) to represent

symmetry-reduced 2D problems. This allows one to keep track of the component of

B perpendicular to the x axis (i.e., By or Bz). For instance, we have

U =







(ρ, ρu, ρv, By, E)T for 1.5D,

(ρ, ρu, ρv, ρw, By, Bz, E)T for 1.75D.

(1.17)

For example, one of the well known one-dimensional problems such as the Brio-

Wu MHD shock tube problem is of 1.5-dimension in this sense. Notice that in one-

dimension, ∇ ·B = 0 implies Bx to be constant in both cases, reducing the number

of the conserved variables by one. With the reduced number of governing equations

in one-dimensional MHD problems, the divergence-free constraint of magnetic fields

is satisfied trivially, and it is not required to implement any divergence-cleaning

routine. However, the situation is different in multidimension. For instance, in two-

dimensional Orszag-Tang MHD vortex problem, the initial conditions are given by

smooth sinusoidal waves and they evolve into complicated wave structures, i.e., the

magnetic fields are no longer to be constant. A proper divergence cleaning scheme

should be then applied to keep ∇ · B = 0 in this case.

In designing such multidimensional MHD solvers, it should be noted in multi-

dimension, an unsplit scheme is more natural because the system of the governing

equations (1.12) is written that way. Splitting such full multidimensional equations

into one-dimensional subproblems results in unphysical situations, in that the non-

linearly coupled systems are forced to be decoupled. Although the formal accuracy

of the dimensional splitting formulation is the same as the accuracy of the unsplit

method the splitting method can potentially cause unphysical errors due to the
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operator splitting. Also it is to be noted that when the splitting scheme is used,

the one-dimensional MHD equations exclude the possibility of jumps in the normal

field. While this is clearly acceptable in one-dimension, this can decrease accuracy

in multidimension since nonlinear waves propagate not only along the cardinal axes,

but also to any direction.

For many purposes, astrophysical flows are highly compressible. A choice with

Godunov-type formulations, thus, appears to be an attractive approach for this class

of problem. Godunov-type techniques are based on the finite volume scheme. In

constructing computational models for compressible flows it is advantageous to in-

troduce a numerical scheme that allows weak solutions, i.e., discontinuous solutions

such as contact or rotational discontinuity or shock waves. The most desirable choice

is to use the finite volume discretization, as the integral form of the equations is same

as the analytical definition of weak solutions, and hence the scheme automatically

satisfies the conservation property. In general, the theory (such as Lax equivalence

theorem) of the consistency, stability, and convergence of a numerical scheme are

only valid for smooth solutions and therefore one cannot guarantee that an arbi-

trary numerical scheme could correctly approximate weak solutions if other types of

discretization (e.g., finite difference, finite element) are employed straightforwardly.

1.4 Limits of MHD Theory

At this point it is useful to outline MHD theory and discuss the regions of

validity. MHD is a macroscopic, non-relativistic theory to study large-scale (global)
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and low-frequency (slow) phenomena in magnetic plasmas. Quite recently, the de-

sire to understand the basic properties of plasma has largely stimulated by ranges

of physical recognition of the importance of solar physics, space physics, and astro-

physics. Especially in the 1950s, prospects for the development of safe controlled

thermonuclear fusion energy have unleashed a new era towards fusion research, such

as early pinch experiments and tokomaks.

One of the remarkable plasma phenomena out in the universe is that the

Sun emits a highly conducting tenuous plasma, called the solar wind, which is a

consequence of the hot (1 ∼ 2 × 106 K) corona. Closer at home, such high speed

solar wind and the magnetic storms on the Sun interact with the Earth. Luckily,

the Earth resides within a vast magnetic cavity, called the magnetosphere, and it

is not vulnerable to attack from the sky. The existence of the magnetosphere is a

consequence that the solar wind reacts to the magnetic field of the Earth and is

deflected by shock waves around the fields. In a bigger picture, the Sun also has its

own magnetosphere, called the heliosphere, which contains most of the solar system

but not the most distant comets. The importance of understanding plasma physics,

therefore, arises when one realizes almost all astrophysical objects are in the plasma

state, the fourth state.

Down on the Earth, human beings seek for an almost unlimited and relatively

clean means for energy production, and controlled nuclear fusion seems to be the

best solution for that. One of the main obstacles for this ambitious plan is to provide

a way to confine and control plasmas with high temperatures of the order of 108 K

and with high densities of 1020m−3. It is clear that there are no material containers
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that can hold these hot and dense plasmas during times in the order of minutes (or

at least seconds) without immediately burning. One way to solve this problem is to

use the confining properties of the magnetic fields. All these scientific desires have

triggered off theoretical and experimental research into the properties of magnetic

plasmas.

A plasma is a macroscopically electrically charged neutral substance with many

interacting free electrons and ions which exhibit collective behavior due to the long-

range2 Coulomb forces. Thus, a plasma can be viewed as a large N-body system3

of mobile charged particles and electromagnetic fields. To understand and solve the

system of plasmas, many practitioners have developed a number of plasma models.

The kinetic model, which contains all the relevant physical phenomena, is

hard to be solved even with the most powerful modern supercomputers. Even if

the system is solved exactly, there would be far more information than one would

require from using the kinetic model. There are also fluid models such as multi-

fluid theory, two-fluid theory, and single-fluid theory. MHD is based on taking this

last single-fluid approach, a macroscopic and non-relativistic fluid description, and

provides large-scale and low-frequency solutions in magnetic plasmas. MHD can be

considered as classical fluid dynamics combined with the additional complication

2This Coulomb interaction is a long-range interaction so that one particle interacts simultane-

ously with many particles.
3The fundamental difference between a neutral gas and a plasma should be noted. In a neutral

gas the forces are very strong and short-range, and the dynamics of it is dominated by two-body

billiard-ball-like collisions. In a plasma state, the inter-particle forces between charged particles

are comparatively weak and long-range electromagnetic forces obeying the Coulomb’s law.
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that the fluid is electrically conducting.

One way to achieve equations of MHD is to begin from first principles with the

fundamental microscopic equations (kinetic theory) and then systematically derive

the equations of multi-fluid and single-fluid MHD. It is encouraged to present only

a brief outline on such mathematical derivations in this section. More detailed

descriptions can be found in [35, 38, 43].

Kinetic Theory

In kinetic theory one replaces the real plasma consisting of discrete particles

with a smeared-out density distribution function in phase space. It is often con-

venient that, instead of looking at each individual particle, one adopts a kinetic

description with distribution functions for the different species. The Boltzmann

equation4 governs the evolution of such species in the phase space and time. The

equation reads

∂fα

∂t
+ w · fα(r,w, t) + a · ∇wfα(r,w, t) =

(∂fα

∂t

)

coll
, (1.18)

where fα is the distribution function in the phase space for particles of type α, r is

a position, and w is a velocity vector. The term that appears on the right hand side

represents the net variation (gain or loss) of particles of type α per unit volume in

phase space and unit time due to collision. The Boltzmann equation together with

4The collisionless Boltzmann equation or Vlasov equation can be obtained taking the collision

term on the right hand side zero.
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the Maxwell equations

∇× E = −∂B

∂t
, (1.19)

∇ ·B = 0, (1.20)

∇× B = µj +
1

c2

∂E

∂t
, (1.21)

∇ ·E =
Q

ε
, (1.22)

form a closed set of system equations. Here E is the electric field, B is the mag-

netic induction, j is the total electric current density, Q is the total electric charge

density, and µ and ε are the magnetic permeability and the electric permittivity of

the plasma. In this kinetic approach, any macroscopic quantity, such as density,

pressure, temperature, can be determined by integrating the expressions involving

fα(r,w, t) over velocity space.

There are three important criteria for plasma in this microscopic particle ap-

proach. The first is the Debye shielding length λD. The potential around a point

charge in warm plasma has different Coulomb potential because of the screening by

the other charged particles. Only within distances smaller than λD the potential

follows the Coulomb potential, otherwise it decreases exponentially. This first cri-

terion for a plasma essentially concerns overall charge neutrality, viz., the volume

occupied by the plasma must be much larger than a Debye sphere so that there is

overall charge neutrality in the plasma. The spatial length scale L of the plasma,

thus, must be larger than λD. Only over time spans which is much longer than the

plasma oscillation5, the charge neutrality becomes a valid approximation.

5Plasma oscillations are high-frequency motions of electrons due to deviations from charge
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The second criterion for plasma is that there are sufficiently many particles

in the Debye sphere so that there is effective screening and collective behavior.

The average inter-particle distance is to be much smaller than λD and the average

potential energy of a particle to its nearest neighbor should be much smaller than

its kinetic energy: the plasma is weakly coupled.

The third criterion concerns damping of plasma oscillations due to collisions

of electrons with heavy neutral particles, causing a loss of momentum of electrons.

Such plasma oscillations should only be slightly damped by the collisions and the

frequency for collisions of electrons with neutrals must be smaller than the electron

plasma frequency.

In plasmas the interaction of charged particles with the magnetic field lines

plays an important role. For instance, the particles are said to be magnetized in a

sense that they are effectively glued to the magnetic field lines: they move in Larmor

circles around the magnetic field lines with their Larmor frequency. The Larmor

radius (or cyclotron gyration radius) rL,t gives a description of Larmor circles, which

is defined by

rL,t =
vt

ωc
, (1.23)

where vt is the particle’s thermal velocity and ωc = |q|B/m is the angular frequency

(Larmor frequency). Here q is a particle’s charge and m is its mass, with B a

magnitude of the magnetic fields. The light electrons can be easily magnetized

(i.e., glued to the field lines), however, the heavy ions could be deviated from the

Larmor circles. In that situation one can expect the predictions available from ideal

neutrality in a cold plasma.
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MHD are lost due to the heavy ion dynamics. It is also noted that the high-frequency

behavior of plasma, such as the electron plasma frequency (ωp,e), Debye length (λD),

Larmor frequency of electron (ωc,e), Larmor radius of electron (rL,e), are dominated

by the dynamics of electrons, and the quantities such as ωp,i, ωc,i, rL,i characterize

the low-frequency behavior and are dominated by the dynamics of ions.

Fluid Description

Should a very detailed description of plasma behavior be provided using the

full set of Boltzmann-Maxwell equations (1.18)∼(1.22), solving the set of equations

become virtually impossible in any nontrivial situation. The simpler mathematical

model, fluid theories, can give a narrower range of applicability for this purpose.

In multi-fluid theory one recognizes that the plasma is composed of different

particle species and assumes that each species behaves as a separate fluid. The

light electrons and the heavy ions are treated differently in their fluid behaviors.

Taking zeroth, first, and second moments of the Boltzmann equation (1.18) give

a set of differential equations of mass (continuity equation), conservation of mo-

mentum (equation of motion), and conservation of energy (energy equation) in the

macroscopic variables. The resulting equations contain information about global

quantities related to the particles of type α ranging from high-frequency short-scale

dynamics up to low-frequency large-scale fluid dynamics. The microphysics that is

available from the distribution functions in the kinetic theory is lost by integrating

the Boltzmann equations as applied with three moments. Unfortunately, the result-

29



ing differential equations are hard to be satisfactory when one realizes that the new

set of equations are not in closed form at each stage of the hierarchy of moments.

As a special case of the multi-fluid theory, one can obtain the two-fluid theory

equations. These equations consider a fully ionized plasma consisting of electrons

and only one type of ions, still containing information of both high-frequency and

low-frequency fluid dynamics.

Further simplification can be made if one considers plasma as a conducting

fluid without specifying its various individual species, and therefore, use quantities

for the plasma as a whole. This approach is called the single-fluid theory. In this

theory, each macroscopic variable is formed by adding contributions of the various

particle species in the plasma, by using collisional invariance. In contrast with the

plasma descriptions so far, this single-fluid theory loses the high-frequency short

scale plasma dynamics of the electrons and ions when adopting the single-fluid

equations. Since the single-fluid equations for mass, momentum and internal energy

still do not form a closed system, they are not very useful yet.

To close the system of equations, therefore, one further needs to take the first

order charge moment of the Boltzmann equation and get the generalized Ohm’s law,

E = −u × B
︸ ︷︷ ︸

IT

+
j

σ
︸︷︷︸

OT

+
1

ene

j × B

︸ ︷︷ ︸

HT

− 1

ene

∇pe

︸ ︷︷ ︸

BT

, (1.24)

where one can see the first term is the dynamo term or the induction term (IT),

the second is the Ohmic term (OT), the third is the Hall term (HT), and the

last is the battery term (BT). One can arrive at the above generalized Ohm’s law

on assumption that the collisions lead to isotropic distribution functions for both
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electrons and ions, and hence one only considers pressure tensor contributions for

electrons and ions from the isotropic electron and ion pressures for the battery term.

Classical MHD also assumes the equal temperatures of electrons and ions to make

physical sense that the temperatures of electrons and ions should be as comparable

as a whole plasma temperature.

Finally one can obtain closed form of MHD equations (1.8)∼(1.11) by using

the single-fluid equations with combinations6 of the generalized Ohm’s law and the

pre-Maxwell equations7 which are defined as

∇× E = −∂B

∂t
, (1.25)

∇ · B = 0, (1.26)

∇× B = µj (1.27)

∇ · E =
Q

ε
. (1.28)

Returning attention to the generalized Ohm’s law for a moment, one can

realize that it is an equation for the electric field involving four terms. Choosing the

induction term −u×B as a reference, one can compare the other terms to find out

which terms are relatively important. On carrying out some approximations and

6For instance, the induction equation (1.10) is a combination of the first equation (Faraday’s

equation) of the pre-Maxwell equations substituted with the equation of the electric field given by

the generalized Ohm’s law (1.24). The third equation (Ampére’s equation without the displacement

current term) of the pre-Maxwell equations can also be solved for j and substituted in (1.24).
7The pre-Maxwell equations are the Maxwell equations that are simplified for non-relativistic

MHD version. Hence one can effectively drop the displacement current. This implies that the

electromagnetic waves are removed from the consideration for the non-relativistic plasma.
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algebras, one can obtain

OT

IT
= 10−12 << 1,

HT

IT
= 10−1 << 1,

BT

IT
= 10−2 << 1. (1.29)

This comparison shows that in a typical large-scale low-frequency plasma situation,

the induction term is comfortably larger than all the other terms of the generalized

Ohm’s law (1.24). Excluding all three terms except the induction term, one can

achieve a very good approximation of the generalized Ohm’s law,

E = −u × B. (1.30)

This is the ideal MHD limit of the generalized Ohm’s law. Retaining the Hall term

gives the Ohm’s law in the Hall MHD which estimates the effect of the electric field

caused by the motion of the electron gas in the presence of the magnetic field,

E = −u × B +
1

ene
j × B = −ue × B. (1.31)

Similarly, for the resistive MHD, one gets

E = −u × B +
j

σ
. (1.32)

Let us now discuss, based on the observations made so far, to get conditions

of validity for MHD. First note that the approximation of MHD makes physical

sense for plasma situations where the spatial and temporal scales of the variations

of the fluids and fields are substantially longer than the corresponding scales of the

heaviest component of plasmas, viz., ions. One hence arrives at a conclusion for

MHD to give the first vital condition of small gyro-radius:

rL,i

L
<< 1,

ω

ωc,i
<< 1, (1.33)
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where ω is used for the characteristic frequency of any plasma variation. Also MHD

theory assumes sufficient collisions to take place in order to make the distribution

functions locally nearly Maxwellian. This is required in that the collision times are

short compared to the global time scale of the system defined by e.g., the thermal

velocity of the ions vt,i and the size L of the system, viz.,

τe,ivt,i

L
<< 1,

τi,ivt,i

L
<< 1, (1.34)

where averaged collision times τi,i = 1/ν̄i,i and τe,i = 1/ν̄e,i with the average fre-

quency ν̄ of collisions between the charged particles. This is equivalent to having

small Knudsen numbers, i.e.,

Kne,i =
`e,i

L
<< 1, Kni,i =

`i,i

L
<< 1, (1.35)

where `α,β is the mean free path for particles of type α and β.

It is also required that the ions and electrons have the same temperature,

leading to the energy equilibration time τeq ≈ (mi/me)τe,i is much shorter than

global time scale L/vt,i:

mi

me

τe,i <<
L

vt,i

, (1.36)

which yields a second condition for high collisionality

mi

me

τe,ivt,i

L
<< 1. (1.37)

The above inequality implies that the thermal conduction of the energy equation can

be neglected. The relationships in (1.33) and (1.37) constitute important conditions

for MHD to be an accurate representation of plasma phenomenon characterized by

a given temporal scale τ and a length scale L.
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A third condition of the large magnetic Reynolds number Rm = Lv/η >> 1

(i.e., small resistivity condition for ideal MHD) is additionally required for ideal

MHD.

Let us conclude this chapter by making some observations for different regimes

of MHD. Firstly, the generalized Ohm’s law can be simplified by comparing the

various terms with the induction term. The limitations in ideal MHD, therefore, can

arise by only keeping the induction term and dropping all other terms. This is the

very low-frequency large-scale approximation taken to the extreme. The movement

of the plasma affects the temporal evolution of magnetic fields. In ideal MHD, the

essential condition for this approximation to make sense is that the length scale of

the plasma phenomenon is much longer than the ion Larmor radius.

Secondly, the Hall term becomes important when the heavy ions start to de-

viate from the magnetic field lines. In other words, dropping this term is still valid

if the ions as well as the electrons are both magnetized, i.e., tightly glued to the

magnetic field lines. Ideal MHD, therefore, yields a good valid estimate for the

plasma fastened to the field lines as a whole. It is easily considered that, for the

light electrons, they are effectively magnetized. This is, however, not obvious for

the heavy ions. In that situation the Hall terms should be recovered. From the

induction equation, one can see that the properties of flux conservation and frozen-

in magnetic field lines are the most basic properties of ideal MHD. Due to terms

other than the induction term, deviation from flux conservation occurs. Inclusion

of the Hall term to account the effect that the ions are no longer to be glued to the

magnetic field lines is one source to break the flux conservation. The Hall term ef-
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fectively predicts the relationship that the magnetic fields are frozen to the electron

flow rather than to the bulk velocity fields. The Hall effect becomes large whenever

j is large, notably in thin current sheets, and the Hall term serves as to decouple

ions from electrons.

Thirdly, the resistive terms also cause the deviation from the ideal flux freezing.

The magnetic field becomes diffusive when the magnetic field is spatially inhomo-

geneous at the presence of the resistive terms. This diffusion process takes place on

a long time scale, and eventually turns dissipation of magnetic energy into heat.

Lastly, one shall largely forget about the battery term according to the com-

parison with the induction term. The battery term, in fact, can generate a (weak)

electrical field in the direction along the magnetic fields, since the component ∇pe

has components both parallel and normal to the magnetic field lines. Because the

induction term, which does not have any component parallel to the field lines, dom-

inates the battery term, the electric field parallel the field lines can be ignored in

general.

The next chapter describes the development of a method of multidimensional

characteristic analysis in the USM-IEC-SDDA scheme that retains a novel way to

treat important physical consideration in multidimensional MHD.
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Chapter 2

MATHEMATICAL MODELING OF THE USM SCHEME

Whatever Nature has in store for mankind,

unpleasant as it may be,

men must accept,

for ignorance is never better than knowledge.

Enrico Fermi

In Chapter 2 a mathematical description of the USM scheme is presented.

Crockett et al. [26] and Gardiner et al. [37] seem to have first recognized com-

putational necessary for including multidimensional MHD terms that have been

neglected in previous efforts in MHD simulations. The USM scheme, in this aspect,

has included such multidimensional requirements in a data reconstruction-evolution

step, in which a very versatile and computationally efficient multidimensional char-

acteristic method is used.

The mathematical formulation of the USM-IEC-SDDA scheme can be divided

into several steps and will be described throughout the rest of the dissertation. These

steps include a data reconstruction step to solve Riemann problem which will be

studied in this chapter, an improved electric field construction (IEC) step in Chapter

3, and finally a staggered dissipation-control differencing algorithm (SDDA) step in

Chapter 4.
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2.1 USM-IEC-SDDA: An Unsplit Staggered Mesh Scheme for MHD

The first step of the USM-IEC-SDDA scheme for multidimensional MHD prob-

lems is now discussed in this section. This first step uses a second-order MUSCL-

Hancock type TVD algorithm for a data reconstruction. The reconstruction uses

the cell-centered data to evaluate boundary extrapolated values that are required to

solve Riemann problems at cell interfaces. In this reconstruction step it is impor-

tant to include terms that reflect multidimensional relationships in MHD governing

equations. These relationships have been ignored in many one-dimensional based

dimensional splitting type MHD solvers until they were studied by Gardiner et al.

[37], and Crockett et al. [26] very recently. In this dissertation work, similar multi-

dimensional consideration has been achieved by using a method of multidimensional

characteristic analysis, rather than using a simple one-dimensional tracing method.

The method forms a new approach in a data reconstruction strategy in that aspect.

An update of the cell-centered variables is followed using the high-order Godunov

fluxes which are solutions to the Riemann problem. The overall procedure of the

USM-IEC-SDDA scheme can be broken up into the following steps:

• Quasi-linearization: This replaces the nonlinear system of equations (1.12)

with an approximate, quasi-linearized system of equations.

• Evolution in normal directions: Given the cell-centered variables, the quasi-

linearized equations are solved to compute the boundary extrapolated Rie-

mann state variables, followed by temporal evolutions by a half time step. A

second-order TVD slope limiter is used in constructing a MUSCL-Hancock
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type of evolution. Multidimensional MHD terms proportional to ∂Bx/∂x (or

∂By/∂y) are to be included in x-normal directional update (or y-normal di-

rectional update).

• Transversal flux contributions: Another set of quasi-linearized equations are

solved to account for the contributions from the transversal fluxes. Again,

multidimensional terms that are proportional to ∂By/∂y (or ∂Bx/∂x) are in-

cluded at this y-transversal step (or x-transversal step). The transversal flux

updates provide the two Riemann states which are of second-order.

• Riemann problem: Using the updated left and right Riemann states the

scheme proceeds to solve the Riemann problem to obtain the second-order

fluxes at the cell interfaces.

• Update of cell-centered variables: The unsplit time integrations are performed

using the high-order Godunov fluxes to update the cell-centered variables for

the next time step.

• IEC algorithm: Using the high-order Godunov fluxes, at the same time, the

cell corner (edge in 3D) based electric fields are constructed.

• SDDA scheme: The electric fields are used to evolve the cell face-centered

magnetic fields by solving the induction equations. The SDDA scheme will

effectively eliminate any possible erroneous growth of the magnetic fields by

balancing numerical anti-dissipative terms with added dissipative contribu-

tions.
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2.2 Quasi-linearization of MHD Equations

The linearization procedure involves obtaining the Roe flux Jacobian matrices

Ā = (Āx, Āy, Āz), where they are quasi-linearized forms of the exact flux Jacobian

matrices A = (Ax,Ay,Az). The construction of the matrices A and Ā can be

simplified by writing the governing equations (1.12)∼(1.16) as a linearized system

in the primitive variables,

V =(ρ, u, v, w, Bx, By, Bz, p)T . (2.1)

Note that there is a simple relationship between the conservative (U) and primitive

(V) variables such that

dU = QdV, (2.2)

where Q is a Jacobian matrix defined as

Q =
∂U

∂V
=


































1 0 0 0 0 0 0 0

u ρ 0 0 0 0 0 0

v 0 ρ 0 0 0 0 0

w 0 0 ρ 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1
2
U2 ρu ρv ρw Bx By Bz

−1
k


































, (2.3)

where k = 1 − γ.

In general the equation of state for ideal gases, the range of typical values of

γ = cP /cV is 1 < γ < 2. As a special case, γ = 1 is used for isothermal gas, for
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which the pressure is a function of the density only, and a barotropic equation of

state is obtained. For adiabatic process one has PV γ = constant, leading to a stiff1

equation of state for large γ and a soft2 equation of state for small γ. One can

express γ in terms of degrees of freedom d for a given particle, viz., γ = (d + 2)/d.

For instances, monatomic ideal gas which has no internal degrees of freedom can

have three translational degrees of freedom (d = 3), giving γ = 5/3, diatomic gas

which has two additional rotational degrees of freedom (d = 5) gives γ = 7/5, and

polyatomic gas allowing three translational and three rotational degrees of freedom

(d = 6) yields γ = 8/6. In the macroscopic large-scale fluid description of MHD,

γ = 5/3 is used for many simulation purposes.

Now inverting Q in (2.2), one gets

dV = Q−1dU, (2.4)

where

Q−1 =
∂V

∂U
=


































1 0 0 0 0 0 0 0

−u
ρ

1
ρ

0 0 0 0 0 0

−v
ρ

0 1
ρ

0 0 0 0 0

−w
ρ

0 0 1
ρ

0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

−k
2

U2 du kv kw kBx kBy kBz −k


































. (2.5)

1Adiabatic compression yields large pressure increase.
2Adiabatic compression yields small pressure increase.
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The conservative form of the equation (1.12) can then be rewritten in primitive

variables,

Q
∂V

∂t
+

∂F

∂U
Q

∂V

∂x
+

∂G

∂U
Q

∂V

∂y
+

∂H

∂U
Q

∂V

∂z
= 0, (2.6)

or

∂V

∂t
+ Q−1 ∂F

∂U
Q

∂V

∂x
+ Q−1∂G

∂U
Q

∂V

∂y
+ Q−1∂H

∂U
Q

∂V

∂z
= 0. (2.7)

This gives rise to the exact flux Jacobian matrices Ax,Ay, and Az defined by,

Ax = Q−1 ∂F

∂U
Q = Q−1 ∂F

∂V
, Ay = Q−1 ∂G

∂U
Q = Q−1 ∂G

∂V
, (2.8)

Az = Q−1 ∂H

∂U
Q = Q−1∂H

∂V
. (2.9)

Equation (2.7) can be now written as

∂V

∂t
+ Ax

∂V

∂x
+ Ay

∂V

∂y
+ Az

∂V

∂z
= 0. (2.10)

On carrying out the algebra one obtains

Ax =


































u ρ 0 0 0 0 0 0

0 u 0 0 −Bx

ρ
By

ρ
Bz

ρ
1
ρ

0 0 u 0 −By

ρ
−Bx

ρ
0 0

0 0 0 u −Bz

ρ
0 −Bx

ρ
0

0 0 0 0 0 0 0 0

0 By −Bx 0 −v u 0 0

0 Bz 0 −Bx −w 0 u 0

0 γp 0 0 −u · B 0 0 u


































, (2.11)
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Ay =


































v 0 ρ 0 0 0 0 0

0 v 0 0 −By

ρ
−Bx

ρ
0 0

0 0 v 0 Bx

ρ
−By

ρ
Bz

ρ
1
ρ

0 0 0 v 0 −Bz

ρ
−By

ρ
0

0 −By Bx 0 v −u 0 0

0 0 0 0 0 0 0 0

0 0 Bz −By 0 −w v 0

0 0 γp 0 0 −u · B 0 v


































, (2.12)

Az =


































w 0 0 ρ 0 0 0 0

0 w 0 0 −Bz

ρ
0 −Bx

ρ
0

0 0 w 0 0 −Bz

ρ
−By

ρ
0

0 0 0 w Bx

ρ
By

ρ
−Bz

ρ
1
ρ

0 −Bz 0 Bx w 0 −u 0

0 0 −Bz By 0 w −v 0

0 0 0 0 0 0 0 0

0 0 0 γp 0 0 −u · B w


































. (2.13)

Note that, from relations (1.14)∼(1.16), there are only seven non-trivial equa-

tions and one trivial equation for which the time derivative becomes zero. This

yields the zeros located in each corresponding row in the above 8 × 8 matrices

(2.11)∼(2.13) as shown. In general the primitive form of the equations can be re-
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placed by a quasi-linear system of equations,

∂V

∂t
+ Ā · ∇V =

∂V

∂t
+ (Āx, Āy, Āz) · ∇V = 0, (2.14)

where Ā = Ā(VL,VR) with two left and right states, VL,VR. The matrix Ā is

subject to satisfy the following properties [20]:

• Hyperbolicity of the system: Ā has real eigenvalues and linearly independent

right eigenvectors, where eigenvalues can be degenerate (non-strict hyperbol-

icity).

• Consistency with the exact Jacobian: Ā(V0,V0) = A(V0)
(

≡ ∂Flux

∂V

∣
∣
∣
V=V0

)

,

for all V0.

• Conservation across discontinuities: ∆Flux = Ā∆V = Ā(VL,VR)(VR−VL).

These three properties guarantee that the numerical scheme with these prop-

erties is consistent and conservative. In practice the last property is shown to be

the most difficult to obtain. The nonlinear behavior of the MHD solutions would

depend on the choice of the mean state value Vavg of the given left and right states,

VL and VR. In Brio and Wu [20] the Roe matrix Ā for the MHD equations has

been constructed for a special case γ = 2 satisfying all three properties. For many

practical purposes, a typical choice of Ā is to use the exact flux Jacobian matrices

A with its analytic entries replaced by their averaged numerical counterparts. (See

equation (2.15).)
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Many efforts have been made to find a Roe average for the MHD equations. In

[69], Powell et al. introduced two mean states, but their average is computationally

expensive and not always well-behaved. As a result, their average scheme has not

found much use. Roe [75] has provided a single linearized Jacobian matrix which

satisfies the linearization conditions in that the corresponding averaging in the Euler

equation is the
√

ρ –weighted average for 1/ρ, u, v, w and enthalpy h2.

In fact, if a linearized Jacobian matrix which satisfies Roe’s conditions can

be constructed, then there exist an infinite number of such linearizations. The

existence of a Roe linearization for ideal MHD is thus guaranteed on rather general

grounds [45]. Cargo and Gallice [23] also discussed the non-uniqueness of the Roe

linearization and studied on the relative efficiency of two different Roe linearizations

for ideal MHD.

It has been shown that the arithmetic Roe-averaging derived for γ = 2 plasmas

as in [20] works quite well for other values of γ too [41, 58]. Moreover, Roe and

Balsara [76] have shown that the computed flux is not sensitive to the choice of such

a mean state Vavg. For these reasons the simplest choice Vavg = (VL + VR) /2 is

adopted for general values of γ 6= 2, while the Roe-averages [20] is used for γ = 2.

It is now ready to define the Roe flux Jacobian matrices Ā = (Āx, Āy, Āz) in

terms of A = (Ax,Ay,Az) by

Ā(VL,VR) = A(Vavg). (2.15)

With this replacement, the quasi-linearized conservative form of the equation (2.10)
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in primitive variables can be rewritten as:

∂V

∂t
+ Āx

∂V

∂x
+ Āy

∂V

∂y
+ Āz

∂V

∂z
= 0. (2.16)

2.3 Multidimensional MHD Terms

In one-dimensional MHD the full eight MHD equations can be reduced to

seven equations. Should the gradient of the normal magnetic field be zero, one

would not need such constant normal field to be evaluated. For multidimensional

MHD, however, the terms ∂Bx/∂x and ∂By/∂y are not zeros in general. They play

crucial roles and cannot be ignored. A simple dimensional splitting algorithm based

on a truly one-dimensional MHD system of equations does not have these gradient

terms and would produce incorrect solutions for this reason.

To treat the gradient terms that arise in multidimensional MHD, the full

matrices (2.11)∼(2.13) should be modified. The current work follows an approach

similar to Crockett et al. [26] for obtaining the multidimensional MHD terms. The

idea is to treat the evolution of the normal field BN separately from the other

primitive variables, i.e., for a case with BN = Bx, one can define

V̄ =








V̂

Bx








and Āx =








Âx ABx

0 0








. (2.17)

Here V̂ is a 7× 1 vector excluding Bx, Âx is a 7× 7 matrix omitting both fifth row

and fifth column in the original matrix Ax (2.11), and ABx is a 7 × 1 vector which

is defined by

ABx =

[

0,−Bx

ρ
,−By

ρ
,−Bz

ρ
,−v,−w,−u · B

]T

. (2.18)
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Similarly, for BN = By, Ây can be constructed by omitting both sixth row and

column in the original matrix Ay (2.12), and ABy is defined by

ABy =

[

0,−Bx

ρ
,−By

ρ
,−Bz

ρ
,−u,−w,−u · B

]T

. (2.19)

The terms ABx and ABy will be called the multidimensional MHD terms hereafter.

Note that the hat (^) notation has been introduced for the reduced system and the

bar (-) notation for the re-assembled full system.

2.4 Boundary Extrapolation

The reconstructions of the four multidimensional Riemann states V
n+1/2
i,j,N , V

n+1/2
i,j,S ,

V
n+1/2
i,j,E and V

n+1/2
i,j,W at cell boundaries, as illustrated in figure 2.1, are achieved to

second-order accuracy by using a TVD MUSCL-Hancock approach. In extrapolat-

ing the cell center values to the cell boundaries (or interfaces) one can use a TVD

slope limiter to the primitive variables.

It is important to discuss the strategy used in this dissertation for employing

a TVD limiting at this stage. The limiting is applied to the zone-centered variables,

such as density, velocity fields, and pressure, in both normal and transversal direc-

tions, while only in transversal direction to the cell face-centered magnetic fields. In

other words, for the normal field variables, no limiting is used; rather directly use

the divergence-free field values at the cell face centers from the previous time step.

As a consequence, the C0 continuity of the normal component of the magnetic field

at zone faces are maintained. This recognition is based on numerical consideration

to prevent undesired jumps in the normal fields at the cell boundaries.
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Indeed, Powell et al. [68] have known that if the normal fields have jumps at

the cell boundaries, the resultant cell-centered field based MHD formulations using

the Riemann solver become ill-defined. They eventually resolved this situation by

introducing their 8-wave model with the modified MHD equations.

This situation is completely removed in the current CT-type of scheme using

the cell face-centered fields, where, as just mentioned, one can easily meet the con-

tinuity consideration of the normal fields at the cell interfaces. More details of such

strategy will further be discussed in the next section.

∗(i, j)

V
n+1/2
i,j−1,N

V
n+1/2
i,j,S

V
n+1/2
i,j,N

V
n+1/2
i,j+1,S

V
n+1/2
i−1,j,E V

n+1/2
i,j,W V

n+1/2
i,j,E V

n+1/2
i+1,j,W

Figure 2.1: The boundary extrapolated values on a 2D cell geometry. The values

are subscripted by N, S, E and W accordingly. These are used as the state values

for solving the Riemann problems at each cell boundary interface.

Keeping the strategy in mind, only the cell center values of reduced system V̂i,j

are extrapolated to the cell boundaries using a TVD slope limiter. The extrapolated
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values are

V̂#
i,j,W = V̂n

i,j −
1

2
∆̂n

i ; V̂#
i,j,E = V̂n

i,j +
1

2
∆̂n

i (2.20)

V̂#
i,j,S = V̂n

i,j −
1

2
∆̂n

j ; V̂#
i,j,N = V̂n

i,j +
1

2
∆̂n

j , (2.21)

where ∆̂n
i and ∆̂n

j are undivided differences using a TVD slope limiter. Given the

n-time step’s cell-centered variables one obtains

∆̂n
i = TVD_Limiter

(

V̂n
i+1,j − V̂n

i,j, V̂
n
i,j − V̂n

i−1,j

)

, (2.22)

∆̂n
j = TVD_Limiter

(

V̂n
i,j+1 − V̂n

i,j, V̂
n
i,j − V̂n

i,j−1

)

, (2.23)

where the choice of the TVD_Limiter can be such as MINMOD, MC or van Leer’s

limiter.

One can also choose a mixed type of limiter as described in [11]. In this choice,

one uses a compressible limiter such as MC or van Leer’s limiter to produce a more

crisp representation for linearly degenerate wave fields. Such wave families include

an entropy wave and left- and right-going Alfvén waves. Since much of the variations

in these waves consist of the density and the magnetic fields, a compressive limiter

can be applied to these two variables. Other variables, the velocity field components

and pressure, constitute four genuinely nonlinear wave families (e.g., left- and right-

going fast/slow magneto-sonic waves) in MHD. These genuinely nonlinear wave

families inherently behave according to their self steepening mechanism and one

can simply use a diffusive but robust MINMOD limiter.
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2.5 Method of Multidimensional Characteristic Analysis

At each cell, the above extrapolated boundary values (2.20)∼(2.21) are evolved

by a half time step, ∆t/2, in the quasi-linearized system (2.16). In the discretized

form, the quasi-linearized equation can be written as

V
n+1/2
i,j,E,W = V#

i,j,E,W +
∆t

2∆x
Ax(V

n
i,j)[V

#
i,j,W − V#

i,j,E] +
∆t

2∆y
Ay(V

n
i,j)[V

#
i,j,S − V#

i,j,N ],

(2.24)

and

V
n+1/2
i,j,N,S = V#

i,j,N,S +
∆t

2∆x
Ax(V

n
i,j)[V

#
i,j,W − V#

i,j,E] +
∆t

2∆y
Ay(V

n
i,j)[V

#
i,j,S − V#

i,j,N ].

(2.25)

Substitutions of V#
i,j,E,W and V#

i,j,N,S, as obtained from (2.20) and (2.21), into

(2.24) and (2.25) yield

V
n+1/2
i,j,E,W = Vn

i,j +
1

2
[±I − ∆t

∆x
Ax(V

n
i,j)]∆

n
i − ∆t

2∆y
Ay(V

n
i,j)∆

n
j , (2.26)

V
n+1/2
i,j,N,S = Vn

i,j −
∆t

2∆x
Ax(V

n
i,j)∆

n
i +

1

2
[±I − ∆t

∆y
Ay(V

n
i,j)]∆

n
j , (2.27)

where the plus and minus signs correspond to directions of E, N and W, S, respec-

tively. Ax(V
n
i,j) and Ax(V

n
i,j) are the matrices calculated at Vn

i,j. At this stage,

thus far, the full system of equations in the quasi-linearized form is available.

For the characteristic analysis of (2.26) and (2.27), one can split the evolution

procedure into two separate steps, the normal predictor and transversal corrector.

To compute the normal predictor step for (2.26), let us return to the reduced system
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(2.17),








V̂

Bx








n+1/2,‖

i,j,E,W

=








V̂

Bx








n

i,j

+
1

2









±








Î 0

0 1







− ∆t

∆x








Âx ABx

0 0








n

i,j









∆̄n
i , (2.28)

where ∆̄n
i =

(

∆̂n
i , ∆Bn

x,i

)T
and ∆Bn

x,i = bn
x,i+1/2,j − bn

x,i−1/2,j . The notations Bτ and

bτ will be reserved for the cell-centered and the cell face-centered magnetic field

component respectively, where τ = x, y, z. It is worth mentioning that, with the

favor of the staggered mesh CT algorithm, ∆Bn
x,i is constructed in such a way that

the numerical divergence is zero with the use of the cell face-centered magnetic fields.

In other words, ∆Bn
x,i and ∆Bn

y,j are chosen such that

∆Bn
x,i

∆x
+

∆Bn
y,j

∆y
= 0, (2.29)

where one can similarly define ∆Bn
y,j = bn

y,i,j+1/2 − bn
y,i,j−1/2. It should also be noted

that no forms of TVD limiting are applied to ∆Bn
x,i and ∆Bn

y,j .

Now solving (2.28) is equivalent to considering two subsystems







V̂
n+1/2,‖
i,j,E,W = V̂n

i,j + 1
2

(

±Î − ∆t
∆x

Âx

)n

i,j
∆̂n

i − ∆t
2∆x

(ABx)
n
i,j∆Bn

x,i,

(Bx)
n+1/2,‖
i,j,E,W = Bn

x,i,j ± 1
2
∆Bn

x,i.

(2.30)

It can be easily seen that the second equation in (2.30) becomes

(Bx)
n+1/2,‖
i,j,E,W = Bn

x,i,j ±
1

2
∆Bn

x,i = bn
x,i+1/2,j, (2.31)

when the cell-centered magnetic field is reconstructed as

Bn
x,i,j =

1

2

(

bn
x,i+1/2,j + bn

x,i−1/2,j

)

. (2.32)

It will be shown in Chapter 5 that the relation in (2.32) is indeed a choice for the

USM-IEC-SDDA scheme.
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One can now apply the eigenstructure of the one-dimensional based MHD

equations (see Appendix A) and use the characteristic tracing for the first two

terms in the first equation in (2.30). Following Colella [24] the reference states at

the cell left (i − 1/2, j) and right (i + 1/2, j) are given by

V̂Ref
i−1/2,j = V̂i,j −

[1

2
+ min

(

λ−
f,i,j, 0

) ∆t

2∆x

]

∆̂n
i , (2.33)

V̂Ref
i+1/2,j = V̂i,j +

[1

2
− max

(

λ+
f,i,j, 0

) ∆t

2∆x

]

∆̂n
i , (2.34)

where λ−
f,i,j = λ1

i,j and λ+
f,i,j = λ7

i,j are the smallest and largest eigenvalues, respec-

tively, at (i, j). Then the Riemann states at the cell boundaries are evaluated using

the characteristic tracing in the normal direction as

V̂
n+1/2,‖
i,j,W = V̂Ref

i−1/2,j +
∆t

2∆x

∑

k;λk
i,j<0

(

λ1
i,j − λk

i,j

)

rk
x,i,jl

k
x,i,j · ∆̂n

i , (2.35)

V̂
n+1/2,‖
i,j,E = V̂Ref

i+1/2,j +
∆t

2∆x

∑

k;λk
i,j>0

(

λ7
i,j − λk

i,j

)

rk
x,i,jl

k
x,i,j · ∆̂n

i . (2.36)

Here λk
x,i,j, r

k
x,i,j, l

k
x,i,j represent the eigenvalue, and the right and left eigenvectors of

Âx, calculated at the corresponding cell center (i, j) in x-direction at time step n.

The dot product of the k-th left eigenvector lkx,i,j with ∆̂n
i reflects the jump in the

k-th characteristic variable.

In general, one can obtain two different sets of eigenstructure available for the

MHD system. The first is the eigensystem, rk, lk, which can be derived from the

governing equations in the primitive form. The second is its counterpart Rk,Lk from

the conservative form. One can effectively convert one from the other by multiplying

the Jacobian matrices (2.3) and (2.5):

Lk = lk
∂V

∂U
; Rk =

∂U

∂V
rk, k = 1, ..., 7. (2.37)
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The primitive form eigenstructure should be used in this characteristic tracing

method because the method uses the primitive variables. At this stage the nor-

mal predictor state variables which include all multidimensional consideration have

been obtained. The calculation of the normal predictor of (2.27) in y-direction

follows the same procedure, involving only the first and the last terms therein.

The next step is to update the transversal flux contribution to the updated

normal predictor state variables. The transversal correction step follows the similar

approach using the eigenstructure of the MHD equations. This correction step

finalizes the update from the transversal flux contributions, e.g., the last and second

terms in (2.26) and (2.27), respectively. In (2.26) the transversal corrector step can

be updated as

V
n+1/2
i,j,E,W = V

n+1/2,‖
i,j,E,W − ∆t

2∆y
Ay(V

n
i,j)∆

n
j . (2.38)

Again, this can be written as








V̂

By








n+1/2

i,j,E,W

=








V̂

By








n+1/2,‖

i,j,E,W

− ∆t

2∆y








Ây ABy

0 0








n

i,j

∆̄n
j . (2.39)

This reduces to solving just one subsystem

V̂
n+1/2
i,j,E,W = V̂

n+1/2,‖
i,j,E,W − ∆t

2∆y
(Ây)

n
i,j∆̂

n
j − ∆t

2∆y
(ABy)

n
i,j∆Bn

y,j . (2.40)

Using the eigensystem at the cell nodal point (i, j) in y-direction, one gets

V̂
n+1/2
i,j,E,W = V̂

n+1/2,‖
i,j,E,W − ∆t

2∆y

7∑

k=1

λk
y,i,jr

k
y,i,jl

k
y,i,j · ∆̂n

j − ∆t

2∆y
(ABy)

n
i,j∆Bn

y,j . (2.41)

Similarly, the transversal update for (2.27) is straightforward as

V̂
n+1/2
i,j,N,S = V̂

n+1/2,‖
i,j,N,S − ∆t

2∆x

7∑

k=1

λk
x,i,jr

k
x,i,jl

k
x,i,j · ∆̂n

i − ∆t

2∆x
(ABx)

n
i,j∆Bn

x,i. (2.42)
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So far, all four Riemann states V
n+1/2
i,j,N ,V

n+1/2
i,j,S ,V

n+1/2
i,j,E and V

n+1/2
i,j,W have been

obtained at each cell. At this stage, it should be noticed that upon taking the

transversal corrector step as in (2.40), the C0 continuities of the normal fields at the

cell boundaries have been lost. Note that the continuities were imposed, for instance,

in the second equation of the normal predictor step (2.30) and (2.31). Maintaining

this continuity requirement of the normal fields at the boundaries has been pointed

out and recognized as one of the important issues in the MHD Riemann problem

[11, 26, 37]. This requirement is essential for physical consistency for solving MHD

Riemann problem. Computationally, allowing jumps in the normal fields at the

cell boundaries will lead to more diffusive solutions to the Riemann problems from

the upwinding procedure in the Riemann solvers. For the transversal components

of the magnetic field, however, discontinuities are allowed to mediate the proper

upwindings for them. As a last step, therefore, it is encouraged to enforce the

normal field components to be continuous at the cell normal boundaries, based on

the relationship in equation (2.31). This step thus leads to

B
n+1/2
x,i,j,E = bn

x,i+1/2,j, B
n+1/2
x,i,j,W = bn

x,i−1/2,j , (2.43)

B
n+1/2
y,i,j,N = bn

y,i,j+1/2, B
n+1/2
y,i,j,S = bn

y,i,j−1/2. (2.44)

It is to be realized that the algorithm for the Riemann state data reconstruction

completely based on the method of multidimensional characteristic analysis. There

have been other approaches to get the second-order accurate approximations of the

transversal flux derivatives [24, 26]. For their transversal updating step, they used

the normal predictor step values to solve another set of two intermediate Riemann
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problems. The resulting interface fluxes are then used to take numerical derivatives,

which completes the construction of the second-order Riemann states for evaluating

the multidimensional Riemann states.

The current characteristic method, which accommodates the MHD eigenstruc-

ture multidimensionally all at the same time, is simpler and computationally cheaper

than the approach using the extra Riemann problem to evaluate the transversal

fluxes. This approach causes no loss of stability for appropriately chosen Courant

numbers. The characteristic method is mathematically consistent with the quasi-

linearized system of MHD equations, (2.24) and (2.25).

Another valuable aspect of the current approach can be viewed in that the

multidimensional terms ABx and ABy are included in such a way that they are

proportional to ∆Bx,i/∆x and ∆By,j/∆y. These derivatives are computed using

the cell face-centered magnetic fields that are divergence-free due to the CT-type

of USM-IEC-SDDA scheme. This fact implies that the quantities u, v, w, Bz, p are

all evolved proportional to the sum
∆Bx,i

∆x
+

∆By,j

∆y
, which is preserved to be zero

numerically (see equation (2.29)). As a result, this phenomenon has an important

meaning: if perturbations to the divergence
∆Bx,i

∆x
+

∆By,j

∆y
were introduced, such

perturbation would affect the whole behavior of u, v, w, Bz, p. The USM-IEC-SDDA

method, taking care of the multidimensional MHD terms properly and efficiently,

does not suffer from such phenomenon, and it will be seen clearly in the test suite

in Chapter 6.

The use of the transversal flux approach in [26], after updating the charac-

teristic tracing in the normal direction, thus might potentially yield incorrect con-
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sequence. Although they used the same multidimensional terms ABx∆Bn
x,i/∆x for

E, W states in the normal characteristic tracing step and ABy∆Bn
y,j/∆y for N, S

states in another normal characteristic tracing step, the other set of the multidi-

mensional term ABy∆Bn
y,j/∆y for E, W states (and ABx∆Bn

x,i/∆x for N, S states)

are not included in the transversal direction; rather they just added the numer-

ical derivative of the transversal fluxes. Updating such transversal fluxes would

contribute some sort of similar effects of including ABy∆Bn
y,j/∆y for obtaining the

E, W Riemann states (ABx∆Bn
x,i/∆x for N, S states), however, these multidimen-

sional terms are not canceled identically.

2.6 Riemann Problem for USM-IEC-SDDA

Thus far V
n+1/2
i,j,N,S,E,W have been obtained and they provide the second-order

accurate Riemann states. The second-order Godunov fluxes can now be evaluated

from these states by solving Riemann problems (RP for short) at cell interfaces.

That is,

F
∗,n+1/2
i−1/2,j = RP

(

V
n+1/2
i−1,j,E,V

n+1/2
i,j,W

)

, F
∗,n+1/2
i+1/2,j = RP

(

V
n+1/2
i,j,E ,V

n+1/2
i+1,j,W

)

, (2.45)

and

G
∗,n+1/2
i,j−1/2 = RP

(

V
n+1/2
i,j−1,N ,V

n+1/2
i,j,S

)

, G
∗,n+1/2
i,j+1/2 = RP

(

V
n+1/2
i,j,N ,V

n+1/2
i,j+1,S

)

. (2.46)

A Roe-type Riemann solver is used for solving nonlinear MHD conservative system

(see Appendix B).
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2.7 Choice of Time Step Using CFL Stability Limit

The choice of the time step ∆t follows Colella [24]. In his corner transport

upwind (CTU) scheme, the CFL time step limit for multidimensional flow problems

is given by

maxi,j,k

(∣
∣
∣
∣λ

k
x,i,j

∆t

∆x

∣
∣
∣
∣ ,

∣
∣
∣
∣
∣
λk

y,i,j

∆t

∆y

∣
∣
∣
∣
∣

)

≤ 1, (2.47)

where λk
x,i,j and λk

y,i,j are chosen to be the maximum wave mode speeds in the x- and

y-directions, respectively. In a practical point of view, this is equivalent to taking a

time step ∆t as

∆t = CFL min

(

∆x
∣
∣
∣λmax

x,i,j

∣
∣
∣

,
∆y

∣
∣
∣λmax

y,i,j

∣
∣
∣

)

. (2.48)

Notice that the above time step limit (2.48) in multidimension is an extention

of the one-dimensional Fourier stability limit as found in a simple linear model prob-

lem, e.g., an advection equation, discretized in a first-order accurate fashion. For

such a simple linear advection equation, an 1D version of (2.48) serves as both nec-

essary and sufficient conditions. However, for multidimensional nonlinear problems,

such as the MHD equations, Fourier-type of stability analysis is not available due to

the nonlinearity of the system. At least, it is expected that a second-order scheme

should maintain the same stability limit as the usual first-order scheme must have.

Therefore, one can see the relation in (2.48) from the fact that when the system is

fully limited (i.e., ∆n
i and ∆n

j become zeros) in the presence of strong jumps, the

interface and cell center states are equal, and the scheme yields first-order Godunov

solutions in both x- and y-directions. The numerical tests in Chapter 6 have not

found any difficulty when the time step is bound according to (2.48). For instance,
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a CFL number of 0.5 should work without any loss of stability.

2.8 USM-IEC-SDDA Solution Update

The algorithm now updates the cell-centered conserved variables at time step

n + 1 using an unsplit single step:

Un+1
i,j = Un

i,j −
∆t

∆x

{

F
∗,n+1/2
i+1/2,j − F

∗,n+1/2
i−1/2,j

}

− ∆t

∆y

{

G
∗,n+1/2
i,j+1/2 − G

∗,n+1/2
i,j−1/2

}

. (2.49)

In general, after this update, non-zero divergence magnetic fields are still present at

cell centers. In the following two chapters the IEC and SDDA schemes are described

to keep the magnetic field variables divergence-free numerically.
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Chapter 3

CONSTRUCTION OF ELECTRIC FIELDS

Mathematics is a game

played according to certain simple rules

with meaningless marks on paper.

David Hilbert

A new improved electric field construction (IEC) scheme that demonstrates

full directional information is introduced and studied in Chapter 3. The IEC scheme

is obtained by using the second-order accurate Godunov fluxes that are available in

classical staggered mesh schemes (see [9]). Taylor expansions are applied to the flux

components of the magnetic fields (or electric fields by the duality relationship, [9]),

at the face centers, to obtain extrapolations to each cell corners, where the electric

fields are collocated on a staggered grid. These electric fields are then used in the

next SDDA step.

The first part of the chapter will outline several basic algorithms that are used

to construct electric fields in the flux-CT formulation, and the later part will discuss

the IEC algorithm.
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3.1 Classical Staggered Mesh Averaging Scheme

As briefly mentioned in the previous chapter, the CT based scheme requires

to evaluate the EMF E (or simply electric fields). In the algorithm by Balsara &

Spicer [9], a novel idea to evaluate the electric fields on a staggered mesh system

using high-order Godunov fluxes was proposed. Among many others, one primary

advantage in the CT-type schemes is that if a staggered mesh algorithm is adopted

for the computation, then the scheme maintains ∇ ·B = 0 up to machine round-off

error [9, 88]. Balsara & Spicer’s original arithmetic averaging scheme for the cell-

cornered (cell edge-centered in three-dimension) electric field values, as described in

[9], uses the duality relationship between the high-order Godunov flux components

for magnetic fields and the electric fields. For instance, the negative of the sixth

component of the flux in x (equation (1.14)) and the positive of the fifth component

of the flux in y (equation (1.15)) can be interpreted as the z component of the

electric fields, Ez, at the cell face centers on the staggered grid. One simple way to

construct Ez at each cell corner is then to take a spatial average directly from this

duality relationship:

E
n+1/2
z,i+1/2,j+1/2 =

1

4

{

− F
∗,n+1/2
6,i+1/2,j − F

∗,n+1/2
6,i+1/2,j+1 + G

∗,n+1/2
5,i,j+1/2 + G

∗,n+1/2
5,i+1,j+1/2

}

=
1

4

{

E
∗,n+1/2
z,i+1/2,j + E

∗,n+1/2
z,i+1/2,j+1 + E

∗,n+1/2
z,i,j+1/2 + E

∗,n+1/2
z,i+1,j+1/2

}

, (3.1)

where the subscripts 6 and 5 denote the sixth and fifth components in the corre-

sponding flux vectors in equations (1.14)–(1.15), and the superscript ∗ denotes the

fluxes (or flux components) directly from the high-order Godunov schemes. The

relationship in equation (3.1) will be called as the base electric field construction
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scheme for the electric fields hereafter. See figure 3.1 for the staggered mesh ar-

rangement.

The electric field Ez in equation (3.1) can now be used to update the MHD

induction equations in a properly discretized manner depending on discretization

schemes in different MHD solvers. To discretize the induction equation in a general

sense, let us consider integrating the differential form (1.6) over a single three-

dimensional control volume of a size [i − 1
2
, i + 1

2
] × [j − 1

2
, j + 1

2
] × [k − 1

2
, k + 1

2
] in

the Cartesian staggered grid (See figure 3.2). Taking a surface integral yields

∂

∂t

∫ ∫

∑

`
F`

B · ndA +
∫ ∫

∑

`
F`

∇× E · ndA = 0, (3.2)

where n is a unit normal vector and the summation is taken over the six bounding

faces F`, ` = 1, . . . , 6. Then for each face F` of the control volume one can use

Stokes’ Theorem and get

∂

∂t

∫ ∫

F`

B · ndA = −
∫ ∫

F`

∇× E · ndA

= −
∫

∂F`

E · Tdl (3.3)

where T is a unit tangential vector and dl is a line element. Considering the as-

sociated normal (denoted by η) and tangential (denoted by τ) components of the

magnetic and electric fields for each face F`, one can let

bn
η =

1

µ(F`)

∫ ∫

F`

BηdA, (3.4)

En+1/2
τ =

1

µ(∂F`)

∫

∂F`

Eτdl, (3.5)

where µ is a measure and η, τ = x, y, z. Notice that in the CT formulation the

magnetic field components bn
η are the area-averaged values at cell faces, whereas the
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rest of the conservative variables such as density, momentum, and energy are the

volume-averaged quantities.

Using (3.4) and (3.5), one can rewrite the above equation (3.3) at each control

volume’s face in component-wise form as

∆y∆z
∂

∂t
bn
x,i± 1

2
,j,k

= −{∆z(E
n+1/2

z,i± 1

2
,j+ 1

2
,k
− E

n+1/2

z,i± 1

2
,j− 1

2
,k
) + ∆y(E

n+1/2

y,i± 1

2
,j,k− 1

2

− E
n+1/2

y,i± 1

2
,j,k+ 1

2

)},(3.6)

∆x∆z
∂

∂t
bn
y,i,j± 1

2
,k

= −{∆z(E
n+1/2

z,i− 1

2
,j± 1

2
,k
− E

n+1/2

z,i+ 1

2
,j± 1

2
,k
) + ∆x(E

n+1/2

x,i,j± 1

2
,k+ 1

2

− E
n+1/2

x,i,j± 1

2
,k− 1

2

)},(3.7)

∆x∆y
∂

∂t
bn
z,i,j,k± 1

2

= −{∆x(E
n+1/2

x,i,j− 1

2
,k± 1

2

− E
n+1/2

x,i,j+ 1

2
,k± 1

2

) + ∆y(E
n+1/2

y,i+ 1

2
,j,k± 1

2

− E
n+1/2

y,i− 1

2
,j,k± 1

2

)}.(3.8)

Note that in the above equations the lower case b denotes the magnetic fields at cell

face centers, whereas the upper case B represents the cell-centered volumetric field

variables as mentioned earlier.

Further by discretizing the temporal derivative terms and dividing out ∆x, ∆y

and ∆z, one can obtain a set of discrete forms of the induction equations on the

staggered grid. For instance, in two-dimension, one can get the original Yee’s method

(1966) [94] by applying the forward temporal discretization:

bn+1
x,i+1/2,j = bn

x,i+1/2,j −
∆t

∆y

{

E
n+1/2
z,i+1/2,j+1/2 − E

n+1/2
z,i+1/2,j−1/2

}

, (3.9)

bn+1
y,i,j+1/2 = bn

y,i,j+1/2 −
∆t

∆x

{

− E
n+1/2
z,i+1/2,j+1/2 + E

n+1/2
z,i−1/2,j+1/2

}

. (3.10)

Many other CT schemes [9–11,37] fundamentally take the above discretization
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•
Ez,i+1/2,j+1/2

6G
∗,n+1/2
i,j+1/2 ◦

6G∗,n+1/2
i+1,j+1/2◦

� −F
∗,n+1/2
i+1/2,j◦

� −F
∗,n+1/2
i+1/2,j+1◦

Figure 3.1: The 2D geometry of the staggered mesh in the flux-CT finite volume

scheme. In the staggered mesh, the upwinded numerical fluxes F∗ and G∗ are

collocated at the centers of cell interfaces and the electric fields E (only Ez is shown

here for 2D) are collocated at the cell corners. The upwinded fluxes F∗ and G∗ from

the high-order Godunov scheme are averaged and used to calculate the cell-cornered

electric field Ez. See also next figure.
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Figure 3.2: A 3D control volume on the staggered grid with the cell center at (i, j, k).

The magnetic fields are collocated at the cell face centers and the electric fields at

the cell edge centers. The line integral of the electric fields
∫

∂Fn
E ·Tdl in equation

(3.3) along the four edges of the face Fx,i+1/2,j,k gives rise to the negative of the rate

of change of the magnetic field flux in x-direction through the area enclosed by the

four edges (e.g., the area of Fx,i+1/2,j,k).
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scheme. On the staggered grid, the numerical divergence of B is defined by

(∇ · B)n+1
i,j =

bn+1
x,i+1/2,j − bn+1

x,i−1/2,j

∆x
+

bn+1
y,i,j+1/2 − bn+1

y,i,j−1/2

∆y
(3.11)

and it remains zero to the accuracy of machine round-off errors, provided that

(∇ · B)n
i,j = 0. See a proof in the next section.

3.2 Numerical Proof of Divergence-Free Constraint

It has been seen already in equation (1.7) that the divergence-free property

of the magnetic fields can be obtained analytically by taking the divergence of the

induction equation. This analytical proof, however, does not guarantee that the

same nice property also holds in a discrete space. Thus it is encouraged to present

a proof that shows the divergence-free constraint also holds in a discrete sense for

the method described in the previous section.

Let us assume that (∇ · B)n
(i,j) = 0 initially at time step n. Then

(∇ · B)n+1
i,j =

bn+1
x,i+1/2,j − bn+1

x,i−1/2,j

∆x
+

bn+1
y,i,j+1/2 − bn+1

y,i,j−1/2

∆y

=
1

∆x

{

bn
x,i+1/2,j −

∆t

∆y
(E

n+1/2
z,i+1/2,j+1/2 − E

n+1/2
z,i+1/2,j−1/2)

−bn
x,i−1/2,j +

∆t

∆y
(E

n+1/2
z,i−1/2,j+1/2 − E

n+1/2
z,i−1/2,j−1/2)

}

+
1

∆y

{

bn
y,i,j+1/2 −

∆t

∆x
(−E

n+1/2
z,i+1/2,j+1/2 + E

n+1/2
z,i−1/2,j+1/2)

−bn
y,i,j−1/2 +

∆t

∆x
(−E

n+1/2
z,i+1/2,j−1/2 + E

n+1/2
z,i−1/2,j−1/2)

}

=
bn
x,i+1/2,j − bn

x,i−1/2,j

∆x
+

bn
y,i,j+1/2 − bn

y,i,j−1/2

∆y

+
∆t

∆x∆y

{

−E
n+1/2
z,i+1/2,j+1/2 + E

n+1/2
z,i+1/2,j−1/2

+E
n+1/2
z,i−1/2,j+1/2 − E

n+1/2
z,i−1/2,j−1/2
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+E
n+1/2
z,i+1/2,j+1/2 − E

n+1/2
z,i−1/2,j+1/2

−E
n+1/2
z,i+1/2,j−1/2 + E

n+1/2
z,i−1/2,j−1/2

}

= (∇ · B)n
i,j

= 0. (3.12)

Notice that this divergence-free property is satisfied locally at each control

volume, and thus one does not require any extra numerical treatment on AMR

block structures. The next chapter will introduce a new efficient algorithm that

also controls numerical dissipations in the induction equation. This new numeri-

cal dissipation algorithm on the staggered grid will also satisfy the divergence-free

constraint locally and a new proof to that will also be presented.

3.3 Alternative Averaging Schemes

The modified flux-CT scheme by Balsara [11] evaluate the electric field directly

at the nodes (e.g., cell corners in 2D, and cell edge centers in 3D) on the staggered

grid. That is, in two-dimension, four Riemann problems are solved to obtain the

fluxes at the cell corners and the resulting four flux components are used to construct

the cell-cornered electric field directly. This method replaces the spatial averaging

scheme in equation (3.1) with the direct construction scheme. To solve four Riemann

problems at these nodal points one first needs to reconstruct four Riemann state

variables from the cell center values. These procedures are apparently expensive

computationally.

More recently, Gardiner et al. [37] introduced a systematic approach to con-
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structing a two-dimensional flux-CT algorithm which is consistent with the underly-

ing plane-parallel, grid-aligned integration algorithm. They addressed the potential

inconsistency that can arise from the simple spatial arithmetic averaging scheme of

equation (3.1) for the plane-parallel, grid-aligned flows. Such flows are, for instance,

one-dimensional flow problems that are solved on a two-dimensional grid, in which

the flow direction is parallel to one of the coordinate axes. Their approach is to

add extra terms in the base electric fields construction scheme (e.g., equation (3.1))

in such a way that the electric fields at the cell corners obey the planar symme-

try in the plane-parallel, grid-aligned flows. In other words, assuming ∂
∂x

= 0 so

that the flow direction is fixed parallel to y axis, their construction scheme yields

Ez,i+1/2,j+1/2 = Ez,i,j+1/2. As yet their scheme is consistent with the underlying

flows, it requires more computational efforts than the IEC update scheme does. In

their CT algorithm, a two-step procedure is used to update solutions from nth to

(n+1)th time step. From a practical point of view, both the Riemann problem and

the electric field construction should be solved twice for each, and it is debatable if

this more computationally expensive CT scheme is worth for the accuracy for which

they claim.

3.4 IEC Algorithm using Directional Derivatives in Electric Fields

Construction

A new electric field construction scheme is now described in this section. The

scheme uses first- and second-order directional derivatives evaluated at cell face
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centers to extrapolate the electric fields to cell corners. The cell face-centered electric

fields are available from corresponding components of the high-order Godunov fluxes

that are solutions to the Riemann problem. The superscript ∗ will be used in a

consistent way as mentioned in the previous section.

Let us start with Taylor series expansions of the cell-cornered electric field

value E
n+1/2
z,i+1/2,j+1/2 in all directions. Then one can obtain







E
n+1/2
z,i+1/2,j+1/2 = E

∗,n+1/2
z,i+1/2,j + ∆y

2

∂E
∗,n+1/2

z,i+1/2,j

∂y
+ ∆y2

8

∂2E
∗,n+1/2

z,i+1/2,j

∂y2 + O(∆y3)

E
n+1/2
z,i+1/2,j+1/2 = E

∗,n+1/2
z,i+1/2,j+1 − ∆y

2

∂E
∗,n+1/2

z,i+1/2,j+1

∂y
+ ∆y2

8

∂2E
∗,n+1/2

z,i+1/2,j+1

∂y2 + O(∆y3),

E
n+1/2
z,i+1/2,j+1/2 = E

∗,n+1/2
z,i,j+1/2 + ∆x

2

∂E
∗,n+1/2

z,i,j+1/2

∂x
+ ∆x2

8

∂2E
∗,n+1/2

z,i,j+1/2

∂x2 + O(∆x3),

E
n+1/2
z,i+1/2,j+1/2 = E

∗,n+1/2
z,i+1,j+1/2 − ∆x

2

∂E
∗,n+1/2

z,i+1,j+1/2

∂x
+ ∆x2

8

∂2E
∗,n+1/2

z,i+1,j+1/2

∂x2 + O(∆x3).

(3.13)

Taking an arithmetic average of these four Taylor expansions gives

E
n+1/2
z,i+1/2,j+1/2

=
1

4

{

E
∗,n+1/2
z,i+1/2,j +

∆y

2

(

∂E
∗,n+1/2
z,i+1/2,j

/

∂y
)

+
∆y2

8

(

∂2E
∗,n+1/2
z,i+1/2,j

/

∂y2
)

+E
∗,n+1/2
z,i+1/2,j+1 −

∆y

2

(

∂E
∗,n+1/2
z,i+1/2,j+1

/

∂y
)

+
∆y2

8

(

∂2E
∗,n+1/2
z,i+1/2,j+1

/

∂y2
)

+E
∗,n+1/2
z,i,j+1/2 +

∆x

2

(

∂E
∗,n+1/2
z,i,j+1/2

/

∂x
)

+
∆x2

8

(

∂2E
∗,n+1/2
z,i,j+1/2

/

∂x2
)

+E
∗,n+1/2
z,i+1,j+1/2 −

∆x

2

(

∂E
∗,n+1/2
z,i+1,j+1/2

/

∂x
)

+
∆x2

8

(

∂2E
∗,n+1/2
z,i+1,j+1/2

/

∂x2
) }

.

(3.14)

Gardiner et al. [37] proposed a similar (but different) approach in terms of

adding extra derivative terms in their electric field construction. Their construction

scheme includes only up to the first derivative terms which are evaluated at off-nodal

points. For instance,

E
n+1/2
z,i+1/2,j+1/2 = E

∗,n+1/2
z,i+1/2,j +

∆y

2

(

∂E
∗,n+1/2
z,i+1/2,j+1/4

/

∂y
)

, (3.15)
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where the derivative is evaluated at (i+ 1
2
, j+ 1

4
), instead of at (i+ 1

2
, j). This quarter

off-nodal point was chosen in order to reduce their scheme to a base integration

scheme for the grid-aligned, plane-parallel flows as they claim, yet it is obvious that

the choice is not a correct nodal point for Taylor expansion.

The inclusion of the directional derivative terms at this stage has several impor-

tant aspects. In the CT-type of schemes one evolves the magnetic fields (surface vari-

ables) by solving the discretized induction equations (e.g., equations (3.9)∼(3.10)),

whereas other conservative (volumetric) variables such as density, momentum, and

energy are updated by solving the underlying high-order Godunov scheme. These

two sets of variables are updated differently. This does not mean that the surface

and volumetric variables form two decoupled systems; rather, they are strongly cou-

pled via momentum, energy, and induction equations. Therefore, to accomplish

overall accurate solutions in MHD one needs to obtain high-order accuracy for both

the surface and volumetric variables. The derivative terms in equation (3.14) clearly

provide such added accuracy as compared with the base construction algorithm (See

equation (3.1)).

The new algorithm shown in (3.14), which will be called an improved electric

field construction (IEC) algorithm, is ideally a third-order in space for smooth pro-

files of the electric fields. Note that the base construction scheme only incorporates

the smooth part of the electric fields by taking the simple arithmetic averages. This

situation is improved in the IEC algorithm in such a way that the first derivative

terms reflect correct spatial changes from the cell face centers to the cell corners.

Furthermore, the second derivative terms will add proper amounts of dissipations
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to the extrapolated cell-cornered electric fields. It is well known that insufficient

dissipations will cause spurious oscillations near discontinuities in solutions.

To implement the IEC algorithm numerically it is needed to discretize the

derivative terms therein. Two different discretization methods, a central differencing

and an upwinded differencing methods, can be proposed and they will be described

in the next two sections.

3.5 Central Differencing

A second-order central differencing can be used for both first and second deriva-

tive terms in the IEC algorithm. At x interfaces (e.g., at i ± 1
2
), one can dicretize

∂E
∗,n+1/2
z,i±1/2,j

/

∂y and ∂2E
∗,n+1/2
z,i±1/2,j

/

∂y2 as

∂E
∗,n+1/2
z,i±1/2,j

∂y
=

E
∗,n+1/2
z,i±1/2,j+1 − E

∗,n+1/2
z,i±1/2,j−1

2∆y
, (3.16)

and

∂2E
∗,n+1/2
z,i±1/2,j

∂y2
=

E
∗,n+1/2
z,i±1/2,j+1 − 2E

∗,n+1/2
z,i±1/2,j + E

∗,n+1/2
z,i±1/2,j−1

∆y2
. (3.17)

Similarly, discretizations at y interfaces (e.g., at j ± 1
2
) are

∂E
∗,n+1/2
z,i,j±1/2

∂x
=

E
∗,n+1/2
z,i+1,j±1/2 − E

∗,n+1/2
z,i−1,j±1/2

2∆x
, (3.18)

and

∂2E
∗,n+1/2
z,i,j±1/2

∂x2
=

E
∗,n+1/2
z,i+1,j±1/2 − 2E

∗,n+1/2
z,i,j±1/2 + E

∗,n+1/2
z,i−1,j±1/2

∆x2
. (3.19)
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3.6 Upwinded Differencing

A finite differencing in an upwinding fashion can also be used for the derivative

terms. In fact, Gardiner et al. [37] adopted an upwinded differencing scheme for

the first-order derivative terms according to the tangential contact mode at each

interface. For instance, at x interface one can have

∂E
∗,n+1/2
z,i±1/2,j

∂y
=







1
∆y

(

E
∗,n+1/2
z,i±1/2,j − E

∗,n+1/2
z,i±1/2,j−1

)

if
vi,j+vi±1,j

2
> ε,

1
∆y

(

E
∗,n+1/2
z,i±1/2,j+1 − E

∗,n+1/2
z,i±1/2,j

)

if
vi,j+vi±1,j

2
< −ε,

1
2∆y

(

E
∗,n+1/2
z,i±1/2,j+1 − E

∗,n+1/2
z,i±1/2,j−1

)

otherwise,

(3.20)

where ε is an arbitrary small positive number. Similarly for the second derivative,

one can get

∂2E
∗,n+1/2
z,i±1/2,j

∂y2
=







1
∆y2

(

E
∗,n+1/2
z,i±1/2,j − 2E

∗,n+1/2
z,i±1/2,j−1 + E

∗,n+1/2
z,i±1/2,j−2

)

if vi,j+vi±1,j

2
> ε,

1
∆y2

(

E
∗,n+1/2
z,i±1/2,j+2 − 2E

∗,n+1/2
z,i±1/2,j+1 + E

∗,n+1/2
z,i±1/2,j

)

if
vi,j+vi±1,j

2
< −ε,

1
∆y2

(

E
∗,n+1/2
z,i±1/2,j+1 − 2E

∗,n+1/2
z,i±1/2,j + E

∗,n+1/2
z,i±1/2,j−1

)

otherwise.

(3.21)

In the same fashion, upwinding at y interface is selected according to the

velocity u in x-direction,

∂E
∗,n+1/2
z,i,j±1/2

∂x
=







1
∆x

(

E
∗,n+1/2
z,i,j±1/2 − E

∗,n+1/2
z,i−1,j±1/2

)

if
ui,j+ui,j±1

2
> ε,

1
∆x

(

E
∗,n+1/2
z,i+1,j±1/2 − E

∗,n+1/2
z,i,j±1/2

)

if ui,j+ui,j±1

2
< −ε,

1
2∆x

(

E
∗,n+1/2
z,i+1,j±1/2 − E

∗,n+1/2
z,i−1,j±1/2

)

otherwise.

(3.22)

Similarly for the second derivative, one obtains

∂2E
∗,n+1/2
z,i,j±1/2

∂x2
=







1
∆x2

(

E
∗,n+1/2
z,i,j±1/2 − 2E

∗,n+1/2
z,i−1,j±1/2 + E

∗,n+1/2
z,i−2,j±1/2

)

if ui,j+ui,j±1

2
> ε,

1
∆x2

(

E
∗,n+1/2
z,i+2,j±1/2 − 2E

∗,n+1/2
z,i+1,j±1/2 + E

∗,n+1/2
z,i,j±1/2

)

if
ui,j+ui,j±1

2
< −ε,

1
∆x2

(

E
∗,n+1/2
z,i+1,j±1/2 − 2E

∗,n+1/2
z,i,j±1/2 + E

∗,n+1/2
z,i−1,j±1/2

)

otherwise.

(3.23)
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One can immediately notice here that the upwinded differencing requires wider

stencil range (one more stencil point for each x and y-direction) than the central

differencing does. This means that the bigger size of guard cells (equivalently, ghost

cells) should be used for the upwinded differencing scheme when the scheme is

solved on parallel and/or AMR grid structures. In parallel, AMR computation, the

need for such guard cells is crucial to achieve proper boundary condition, for which

the correct boundary information is stored on the guard cells via inter-processor

communications. The guard cell exchange between processors, hence, becomes very

expensive when a computer simulation is solved on extensively parallel computer ar-

chitectures. In AMR block structures, one needs to pay an expensive price by having

extra guard cells when the level of refinement becomes progressively increased. This

parallel, AMR computing issue will be addressed in more details in Chapter 5.

As yet Gardiner et al. [37] proposed that the upwinded differencing at each

interface may work well to lead a stable, non-oscillatory integration algorithm, this

research work has not found any improvement in solutions of using the upwinding

over the central differencing. It is believed that this is because the electric field is not

the quantity that is propagated according to the contact mode in the characteristic

curves. In general, an upwinding strategy is useful when one tries to obtain the

direction of the propagation of information in a flow field along the characteristic

curves. Evidently, the electric fields in ideal MHD, E = −u × B, do not propagate

along the direction parallel to the velocity fields, nor to the magnetic fields. Rather,

they are in direction perpendicular to both the velocity and the magnetic fields.

For this physical consideration as well as the computational parallel efficiency just
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mentioned above, the IEC algorithm will choose the central differencing strategy for

discretizing the derivative terms.

The electric fields constructed in this chapter will be applied to the induction

equations (3.9) ∼ (3.10) for temporal evolutions of the divergence-free magnetic

fields. Before further proceeding to solve the induction equations, the next chapter

will be devoted to introduce and develop a new staggered dissipation-control differ-

encing algorithm (SDDA) that can be derived from a set of modified equations of

the induction equations.
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Chapter 4

A STAGGERED DISSIPATION-CONTROL DIFFERENCING

ALGORITHM (SDDA)

One does not,

by knowing all the physical laws as we know them today,

immediately obtain an understanding of anything much.

Richard Feynman

In Chapter 4, a new staggered dissipation-control differencing algorithm (SDDA)

is introduced and developed. The SDDA can be deduced from observations of mod-

ified equations for the induction equations. The main advantage of the SDDA is

that the method can handle numerical anti-dissipations to prevent a secular growth

in the magnetic field components.

As briefly mentioned in the previous chapter a strategy to control numerical

dissipation plays a crucial role in many computational simulations. Indeed, for many

applications in computer simulations, if the solution does not have enough artificial

viscosity implicitly in the algorithm, then the solution will go unstable unless more

artificial viscosity is added explicitly to the calculation. Numerical dissipation is

the direct result of the even-order derivatives that exist in the form of the modified

equation.

Ideally, one wishes that his/her numerical algorithm solves the PDE’s of
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his/her interest exactly. But in reality, when the corresponding difference equa-

tions are applied to discretize the original PDE’s, such difference equations might

not be solving the original PDE’s; rather they may be solving a set of different

PDE’s – the modified equations. This phenomenon gives rise to raise important

meanings for the derivation and display of the modified equation. In this chapter,

a new dissipation control algorithm will be established to solve the MHD induction

equations on the staggered grid by taking an approach using modified equations.

The resultant solution improvement from adopting the SDDA in MHD simulations

will be validated and studied in Chapter 6.

4.1 Modified Equations of the Induction Equations

In the previous chapter it has been shown that, in the IEC algorithm, the

second-order derivative terms are added and they explicitly control proper amount of

numerical dissipations for the electric fields. However, one should realize that these

dissipations have nothing to do with the dissipations that arise in solving the system

of the induction equations themselves. To obtain the dissipation relation connected

to the induction equations, it is suggested to examine the modified equations of the

induction equations.

Let us consider the induction equations in two-dimension:

1

∆t

{

bn+1
x,i±1/2,j − bn

x,i±1/2,j

}

=
1

∆y

{

−E
n+1/2
z,i±1/2,j+1/2 + E

n+1/2
z,i±1/2,j−1/2

}

, (4.1)

1

∆t

{

bn+1
y,i,j±1/2 − bn

y,i,j±1/2

}

=
1

∆x

{

E
n+1/2
z,i+1/2,j±1/2 − E

n+1/2
z,i−1/2,j±1/2

}

. (4.2)

First, in equation (4.1), one considers Taylor series expansions for bn+1
x,i±1/2,j , E

n+1/2
z,i±1/2,j+1/2,
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and E
n+1/2
z,i±1/2,j−1/2 as follows:

bn+1
x,i±1/2,j = bn

x,i±1/2,j +
∂bn

x,i±1/2,j

∂t
∆t +

∂2bn
x,i±1/2,j

∂t2
∆t2

2
+ O(∆t3), (4.3)

E
n+1/2
z,i±1/2,j+1/2 = E

n+1/2
z,i±1/2,j +

∂E
n+1/2
z,i±1/2,j

∂y

∆y

2
+

∂2E
n+1/2
z,i±1/2,j

∂y2

∆y2

8
+ O(∆y3), (4.4)

E
n+1/2
z,i±1/2,j−1/2 = E

n+1/2
z,i±1/2,j −

∂E
n+1/2
z,i±1/2,j

∂y

∆y

2
+

∂2E
n+1/2
z,i±1/2,j

∂y2

∆y2

8
+ O(∆y3).

Substituting equations (4.3)∼(4.5) into (4.1), one has

1

∆t

[∂bn
x,i±1/2,j

∂t
∆t +

∂2bn
x,i±1/2,j

∂t2
∆t2

2
+ O(∆t3)

]

=
1

∆y

[

−
∂E

n+1/2
z,i±1/2,j

∂y
∆y + O(∆y3)

]

.

(4.5)

Rearranging equation (4.5), one obtains

∂bn
x,i±1/2,j

∂t
+

∂E
n+1/2
z,i±1/2,j

∂y
= −

∂2bn
x,i±1/2,j

∂t2
∆t

2
+ O(∆t2, ∆y2). (4.6)

Note that this equation (4.6) just derived is the modified equation of the orig-

inal induction equation (1.6). This shows that when the difference equation (4.1) is

used for MHD simulations it constitutes a solution of different PDE, namely, equa-

tion (4.6). Comparing with the original PDE of the induction equation (1.6), equa-

tion (4.6) contains an extra dissipation term (or artificial viscosity) −∂2bn
x,i±1/2,j

/

∂t2

on the right hand side and this extra term will effectively behave as a source. Since

the sign of the dissipation term is negative, rather than positive, this artificial viscos-

ity is destabilizing the solution rather than stabilizing. This phenomenon is hence

anti-dissipative and the solution would be unstable, or at least lose accuracy, due

to the accumulations of the anti-dissipative local truncation error which is shown

to be proportional to ∆t, over the computation time. This phenomenon might be

even getting worse especially near regions of stagnation flows.
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To yield useful information, the time derivative on the right hand side of the

modified equation (4.6) can be replaced by spatial derivative, using the so-called

Cauchy-Kowalewski procedure. Differentiating equation (4.6) with respect to t, one

can obtain

∂2bn
x,i±1/2,j

∂t2
= −

∂2E
n+1/2
z,i±1/2,j

∂t∂y
−

∂3bn
x,i±1/2,j

∂t3
∆t

2
+ O(∆t2, ∆y2). (4.7)

Substituting (4.7) from (4.6), one gets

∂bn
x,i±1/2,j

∂t
+

∂E
n+1/2
z,i±1/2,j

∂y
=

∂2E
n+1/2
z,i±1/2,j

∂t∂y

∆t

2
+ O(∆t2, ∆y2). (4.8)

In general, for a simple model linear advection PDE equation, ∂u
∂t

+a∂u
∂x

= 0, one

can replace all the time derivatives in a modified equation with the spatial derivatives

by repeatedly differentiating the linear modified equation and obtain corresponding

spatial derivatives instead. By contrast, the nonlinear induction equations are not

such simple linear equations and the time derivative in ∂2E
n+1/2
z,i±1/2,j

/

∂t∂y can hardly

be replaced by the spatial derivative completely. To overcome this difficulty and

accomplish an efficient dissipation control algorithm, the current study rather keeps

the time derivative and uses that derivative information. Before proceeding to study

the numerical algorithm of the SDDA scheme in the next section, the rest of this sec-

tion will complete the discussion on deriving the modified equation of the induction

equation for the y component magnetic field.

For equation (4.2), Taylor expansions yield:

bn+1
y,i,j±1/2 = bn

y,i,j±1/2 +
∂bn

y,i,j±1/2

∂t
∆t +

∂2bn
y,i,j±1/2

∂t2
∆t2

2
+ O(∆t3), (4.9)

E
n+1/2
z,i+1/2,j±1/2 = E

n+1/2
z,i,j±1/2 +

∂E
n+1/2
z,i,j±1/2

∂x

∆x

2
+

∂2E
n+1/2
z,i,j±1/2

∂x2

∆x2

8
+ O(∆x3), (4.10)
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E
n+1/2
z,i−1/2,j±1/2 = E

n+1/2
z,i,j±1/2 −

∂E
n+1/2
z,i,j±1/2

∂x

∆x

2
+

∂2E
n+1/2
z,i,j±1/2

∂x2

∆x2

8
+ O(∆x3).

Substituting equations (4.9)∼(4.11) into (4.2), one can obtain

1

∆t

[∂bn
t,i,j±1/2

∂t
∆t +

∂2bn
y,i,j±1/2

∂t2
∆t2

2
+ O(∆t3)

]

=
1

∆x

[∂E
n+1/2
z,i,j±1/2

∂x
∆x + O(∆x3)

]

.

(4.11)

Canceling out ∆t and ∆x, and rearranging equation (4.11), one achieves

∂bn
y,i,j±1/2

∂t
+

∂
(

−E
n+1/2
z,i,j±1/2

)

∂x
= −

∂2bn
y,i,j±1/2

∂t2
∆t

2
+ O(∆t2, ∆x2). (4.12)

Notice again that the sign of the dissipation term ∂2bn
y,i,j±1/2

/

∂t2 is negative and

the term is proportional to ∆t. Thus this will effectively introduce the same anti-

dissipative phenomenon as in the case of the modified induction equation for the x

component magnetic field. Further differentiating equation (4.12) with respect to t,

one can obtain

∂2bn
y,i,j±1/2

∂t2
= −

∂2
(

−E
n+1/2
z,i,j±1/2

)

∂t∂x
−

∂3bn
y,i,j±1/2

∂t3
∆t

2
+ O(∆t2, ∆x2). (4.13)

Substituting (4.13) from (4.12), one gets

∂bn
y,i,j±1/2

∂t
+

∂
(

−E
n+1/2
z,i,j±1/2

)

∂x
=

∂2
(

−E
n+1/2
z,i,j±1/2

)

∂t∂x

∆t

2
+ O(∆t2, ∆x2). (4.14)

4.2 Difference Equations for the Dissipation-Control Algorithm

Now that the modified equations for the induction equations have been derived,

one still needs to obtain a proper discretization scheme to use the dissipation terms

in the SDDA scheme numerically. One way to achieve this is to propose an explicit,
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forward1 time centered space (FTCS) discretization for the terms ∂2

∂t∂y
E

n+1/2
z,i±1/2,j and

∂2

∂t∂x

(

−E
n+1/2
z,i,j±1/2

)

in equations (4.8) and (4.14). For the rest of the derivative terms

on the left hand side of equations (4.8) and (4.14), one should keep the original

scheme (which is FTCS in fact) as is discretized in equations (4.1) and (4.2), be-

cause the derived modified equations stem from such discretization. For comparison,

stencil diagrams of FTCS and BTCS are shown in Figure (4.1).

4.2.1 FTCS: Forward in Time Centered in Space

Equations (4.8) and (4.14) are now discretized in an FTCS manner as below.

To control the anti-dissipative effect from the term ∂2

∂t∂y
E

n+1/2
z,i±1/2,j in the x component

equation (4.8), a corresponding dissipative contribution should be made by adding

the equivalent term with an opposite sign. In practical point of view, ∂2

∂t∂y
E

n+1/2
z,i±1/2,j

∆t
2

in equation (4.8) is to be replaced with − ∂2

∂t∂y
E

n+1/2
z,i±1/2,j

∆t
2

.

First, one can discretize the derivative as follow:

−
∂2E

n+1/2
z,i±1/2,j

∂t∂y
= − ∂

∂t

1

∆y

{

E
n+1/2
z,i±1/2,j+1/2 − E

n+1/2
z,i±1/2,j−1/2

}

= − 1

∆t∆y

{(

E
n+1/2
z,i±1/2,j+1/2 − E

n+1/2
z,i±1/2,j−1/2

)

−
(

E
n−1/2
z,i±1/2,j+1/2 − E

n−1/2
z,i±1/2,j−1/2

)}

. (4.15)

Notice that the cell-cornered electric fields E
n+1/2
z,i±1/2,j±1/2 are available from the IEC

scheme (3.14). Multiplying by ∆t/2 into the above equation (4.15), according to

1It will be used that the forward in time discretization refers to an explicit method, and the

backward in time refers to an implicit method. See [51].
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Figure 4.1: Comparison of stencil diagrams for forward time centered space (FTCS)

and backward time centered space (BTCS). The circles represent the nodal points

at which the derivative is considered and the solid dots represent the nodal points

from which the forward and backward extrapolations are collected.
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(4.8), one can get

1

∆t

{

bn+1
x,i±1/2,j − bn

x,i±1/2,j

}

= − 1

∆y

{

E
n+1/2
z,i±1/2,j+1/2 − E

n+1/2
z,i±1/2,j−1/2

}

− 1

2∆y

{(

E
n+1/2
z,i±1/2,j+1/2 − E

n+1/2
z,i±1/2,j−1/2

)

−
(

E
n−1/2
z,i±1/2,j+1/2 − E

n−1/2
z,i±1/2,j−1/2

)}

. (4.16)

Rearranging equation (4.16), the final form of the x component induction equation

for the SDDA scheme now yields

bn+1
x,i±1/2,j = bn

x,i±1/2,j −
∆t

∆y

{

E
n+1/2
z,i±1/2,j+1/2 − E

n+1/2
z,i±1/2,j−1/2

}

− ∆t

2∆y

{(

E
n+1/2
z,i±1/2,j+1/2 − E

n+1/2
z,i±1/2,j−1/2

)

−
(

E
n−1/2
z,i±1/2,j+1/2 − E

n−1/2
z,i±1/2,j−1/2

)}

. (4.17)

Similarly, for the y component equation (4.14), one gets

1

∆t

{

bn+1
y,i,j±1/2 − bn

y,i,j±1/2

}

= − 1

∆x

{

−E
n+1/2
z,i+1/2,j±1/2 + E

n+1/2
z,i−1/2,j±1/2

}

− 1

2∆x

{(

−E
n+1/2
z,i+1/2,j±1/2 + E

n+1/2
z,i−1/2,j±1/2

)

−
(

−E
n−1/2
z,i+1/2,j±1/2 + E

n−1/2
z,i−1/2,j±1/2

)}

.(4.18)

Rearranging terms and multiplying by ∆t in equations (4.18), one now obtains the

final SDDA form for the y component equation,

bn+1
y,i,j±1/2 = bn

y,i,j±1/2 −
∆t

∆x

{

−E
n+1/2
z,i+1/2,j±1/2 + E

n+1/2
z,i−1/2,j±1/2

}

− ∆t

2∆x

{(

−E
n+1/2
z,i+1/2,j±1/2 + E

n+1/2
z,i−1/2,j±1/2

)

−
(

−E
n−1/2
z,i+1/2,j±1/2 + E

n−1/2
z,i−1/2,j±1/2

)}

. (4.19)

Advantages of using the FTCS method for ∂2

∂t∂y
E

n+1/2
z,i±1/2,j and ∂2

∂t∂x

(

−E
n+1/2
z,i,j±1/2

)

are threefold. First, the choice is consistent with the discretization originally used
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for the derivatives in (4.1) and (4.2). Second, the centered in space discretization

is also consistent with a physical consideration, in that the EMF is evaluated via

Stokes’ Theorem, followed by the line integrals, resulting the same formulations as

in equations (3.6)∼(3.8). Finally, the FTCS scheme as applied to ∂2

∂t∂y
E

n+1/2
z,i±1/2,j and

∂2

∂t∂x

(

−E
n+1/2
z,i,j±1/2

)

requires the smallest possible stencil size in both space and time.

In terms of the stencil range, the centered in space discretization only utilizes two

cell-cornered electric field values that are always available within each cell. Thus,

there is no need to obtain the neighboring cell’s information and the scheme is truly

local. Not only this affects computational efficiency, but also this will guarantee

to preserve the divergence-free constraint for the SDDA scheme. In other words,

for example, if other spatial discretization which requires wider stencil range such

as an upwinding method were chosen, the spatial discretization would also require

each neighboring cell’s information, which will ultimately break the symmetry rela-

tionship2 that should be guaranteed to keep the divergence-free constraint. In the

next subsection, a numerical proof will be presented which shows the SDDA scheme

developed in equations (4.17) and (4.19)indeed satisfies the divergence-free property.

One can make several useful observations in the SDDA development. The

second-order in time and space dissipation controls for the induction equations are

made available by considering the modified equations. From this study, the anti-

dissipative relationship has been well introduced and established, which has been ne-

glected in all the existing MHD algorithms. Such anti-dissipation controls have been

achieved by recovering the dissipation relationships by balancing the anti-dissipation

2The perfect cancellations of the cell-cornered electric fields as was observed in equation (3.12).
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terms with the oppositely signed dissipative terms in the modified induction equa-

tions. To incorporate the dissipation relationships, the SDDA scheme uses FTCS

differencing method to discretize the related temporal and spatial derivatives. Sev-

eral key advantages in using FTCS method were just mentioned above. The SDDA

scheme, thus, explicitly controls the anti-dissipative phenomena in the evolutions of

the cell face-centered magnetic fields. Lastly, the SDDA scheme can be incorporated

with any CT based schemes without requiring any extra overhead. The algorithmic

development achieved in the SDDA scheme will resolve undesired magnetic field

growth in the induction equations and keep the proper amount of dissipations. In

Chapter 6, it will be shown that there are crucial improvements in solutions of the

magnetic fields by using the SDDA scheme.

4.2.2 Parameterized form of the SDDA

Finally, one can further parameterize the dissipation terms in equations (4.17)

and (4.19). Let us choose a dissipation parameter 0 ≤ ν ≤ 1. The parameterized

dissipation relationships for the SDDA scheme become

bn+1
x,i±1/2,j = bn

x,i±1/2,j −
∆t

∆y

{

E
n+1/2
z,i±1/2,j+1/2 − E

n+1/2
z,i±1/2,j−1/2

}

−ν
∆t

2∆y

{(

E
n+1/2
z,i±1/2,j+1/2 − E

n+1/2
z,i±1/2,j−1/2

)

−
(

E
n−1/2
z,i±1/2,j+1/2 − E

n−1/2
z,i±1/2,j−1/2

)}

, (4.20)

bn+1
y,i,j±1/2 = bn

y,i,j±1/2 −
∆t

∆x

{

−E
n+1/2
z,i+1/2,j±1/2 + E

n+1/2
z,i−1/2,j±1/2

}

−ν
∆t

2∆x

{(

−E
n+1/2
z,i+1/2,j±1/2 + E

n+1/2
z,i−1/2,j±1/2

)

−
(

−E
n−1/2
z,i+1/2,j±1/2 + E

n−1/2
z,i−1/2,j±1/2

)}

. (4.21)
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Thus far have obtained two slightly different versions of the SDDA equations, the

first is without parameterization as found in (4.17) and (4.19), and the second

with parameterization as in (4.20) and (4.21). Otherwise mentioned differently,

the equations (4.20) and (4.21) will be generally called as the SDDA equations

throughout the dissertation.

4.2.3 Initial Condition of the SDDA Equations

Since the SDDA scheme makes use of the electric fields at previous time step,

one needs to initialize the electric fields before solving the SDDA equations. Notice

that, in general, one does not require to initialize the electric fields in the base

CT scheme. One simple choice for an initial condition of the electric fields can

be obtained by using the relationship E = −u × B directly. After initializing the

cell-centered velocity and magnetic fields, one can get

u0
i+1/2,j+1/2 =

1

4

(

u0
i,j + u0

i+1,j + u0
i,j+1 + u0

i+1,j+1

)

, (4.22)

v0
i+1/2,j+1/2 =

1

4

(

v0
i,j + v0

i+1,j + v0
i,j+1 + v0

i+1,j+1

)

, (4.23)

B0
x,i+1/2,j+1/2 =

1

4

(

B0
x,i,j + B0

x,i+1,j + B0
x,i,j+1 + B0

x,i+1,j+1

)

, (4.24)

B0
y,i+1/2,j+1/2 =

1

4

(

B0
y,i,j + B0

y,i+1,j + B0
y,i,j+1 + B0

y,i+1,j+1

)

. (4.25)

Then the cell-cornered electric fields can be initialized3 by

E0
z,i+1/2,j+1/2 = v0

i+1/2,j+1/2B
0
x,i+1/2,j+1/2 − u0

i+1/2,j+1/2B
0
y,i+1/2,j+1/2. (4.26)

3With an abuse of notation, one can let E0
z,i+1/2,j+1/2

≡ E
−1/2

z,i+1/2,j+1/2
in (4.20) and (4.21) for

n = 0.
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As for another choice to handle the SDDA equations initially, the base induc-

tion equations (3.9) and (3.10) can be solved by taking ν = 0 in (4.20) and (4.21)

to get the very first time step n = 1, and take nonzero ν for n > 1. A proper choice

of nonzero ν will be made in Chapter 6 in the test suite.

4.3 Proof of Divergence-Free Property of FTCS for SDDA

In this section, a proof of the divergence-free property for the SDDA equations

is presented. As before one assumes that (∇ · B)n
(i,j) = 0 initially at time step n.

Then

(∇ · B)n+1
i,j =

bn+1
x,i+1/2,j − bn+1

x,i−1/2,j

∆x
+

bn+1
y,i,j+1/2 − bn+1

y,i,j−1/2

∆y

=
1

∆x

{

bn
x,i+1/2,j −

∆t

∆y
(E

n+1/2
z,i+1/2,j+1/2 − E

n+1/2
z,i+1/2,j−1/2)

−ν
∆t

2∆y

[

E
n+1/2
z,i+1/2,j+1/2 − E

n+1/2
z,i+1/2,j−1/2 − E

n−1/2
z,i+1/2,j+1/2 + E

n−1/2
z,i+1/2,j−1/2

]

−bn
x,i−1/2,j +

∆t

∆y
(E

n+1/2
z,i−1/2,j+1/2 − E

n+1/2
z,i−1/2,j−1/2)

+ν
∆t

2∆y

[

E
n+1/2
z,i−1/2,j+1/2 − E

n+1/2
z,i−1/2,j−1/2 − E

n−1/2
z,i−1/2,j+1/2 + E

n−1/2
z,i−1/2,j−1/2

]}

+
1

∆y

{

bn
y,i,j+1/2 −

∆t

∆x
(−E

n+1/2
z,i+1/2,j+1/2 + E

n+1/2
z,i−1/2,j+1/2)

+ν
∆t

2∆x

[

−E
n+1/2
z,i+1/2,j+1/2 + E

n+1/2
z,i−1/2,j+1/2 + E

n−1/2
z,i+1/2,j+1/2 − E

n−1/2
z,i−1/2,j+1/2

]

−bn
y,i,j−1/2 +

∆t

∆x
(−E

n+1/2
z,i+1/2,j−1/2 + E

n+1/2
z,i−1/2,j−1/2)

−ν
∆t

2∆x

[

−E
n+1/2
z,i+1/2,j−1/2 + E

n+1/2
z,i−1/2,j−1/2 + E

n−1/2
z,i+1/2,j−1/2 − E

n−1/2
z,i−1/2,j−1/2

]}

=
bn
x,i+1/2,j − bn

x,i−1/2,j

∆x
+

bn
y,i,j+1/2 − bn

y,i,j−1/2

∆y

+
∆t

∆x∆y

{

−E
n+1/2
z,i+1/2,j+1/2 + E

n+1/2
z,i+1/2,j−1/2 + E

n+1/2
z,i−1/2,j+1/2 − E

n+1/2
z,i−1/2,j−1/2

+E
n+1/2
z,i+1/2,j+1/2 − E

n+1/2
z,i−1/2,j+1/2 − E

n+1/2
z,i+1/2,j−1/2 + E

n+1/2
z,i−1/2,j−1/2

}
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+ν
∆t

2∆x∆y

{

−E
n+1/2
z,i+1/2,j+1/2 + E

n+1/2
z,i+1/2,j−1/2 + E

n+1/2
z,i−1/2,j+1/2 − E

n+1/2
z,i−1/2,j−1/2

+E
n−1/2
z,i+1/2,j+1/2 − E

n−1/2
z,i+1/2,j−1/2 − E

n−1/2
z,i−1/2,j+1/2 + E

n−1/2
z,i−1/2,j−1/2

+E
n+1/2
z,i+1/2,j+1/2 − E

n+1/2
z,i−1/2,j+1/2 − E

n+1/2
z,i+1/2,j−1/2 + E

n+1/2
z,i−1/2,j−1/2

−E
n−1/2
z,i+1/2,j+1/2 + E

n−1/2
z,i−1/2,j+1/2 + E

n−1/2
z,i+1/2,j−1/2 − E

n−1/2
z,i−1/2,j−1/2

}

= (∇ ·B)n
i,j

= 0. (4.27)

Notice that the symmetry relationship gives perfect cancellations of the elec-

tric fields from which the divergence-free constraint is achieved. This proof also

shows that the SDDA scheme preserves the divergence-free property in a local sense,

leading to a fact that the constraint will also be easily maintained on AMR block

structures. A parallel, AMR implementation of the SDDA scheme in the FLASH

[36] computational framework will be discussed in the next chapter.

4.4 Reconstruction of Cell-Centered Fields

The dissipation controlled, divergence-free cell face-centered magnetic fields

are available by solving the SDDA equations. To update other volumetric variables

in the CT-type of Godunov based MHD solver, one now needs to reconstruct the

cell-centered magnetic fields to evaluate the upwind step of the Godunov method.

In the base CT scheme by Balsara & Spicer [9], and also many other CT schemes,

one defines the volume-averaged magnetic field components at cell centers by taking

the arithmetic average of the cell face-centered, divergence-free magnetic fields as
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(see figure 4.2),

Bn
x,i,j =

1

2

(

bn
x,i−1/2,j + bn

x,i+1/2,j

)

, (4.28)

Bn
y,i,j =

1

2

(

bn
y,i,j−1/2 + bn

y,i,j+1/2

)

. (4.29)

∗(i, j)

•
Ez

•
Ez

•
Ez

•
Ez

-

6

�?
6

G∗
◦

6
G∗
◦

�
−F∗◦

�−F∗
◦ -bx◦

6
by◦

By
6

?

Bx
- �

Figure 4.2: The 2D geometry of staggered mesh with interpolations. The upwinded

fluxes F∗ and G∗ from the high order Godunov scheme are represented with short

bold arrows and the interpolations for updating B with long thin arrows in the

figure.

In this reconstruction step, the divergence-free constraint for the cell-centered

fields is no longer to be preserved. Therefore, although the divergenceless evolu-

tion of the face centered fields are ensured after each SDDA step, the numerical

monopoles are still introduced when one solves the upwind step of the Godunov

method. This is because the upwinding procedure in the Riemann problem is based
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on the cell center values of the magnetic fields, not the cell face-centered fields. (See

also Appendix B.)

To overcome this non divergence-free issue for the magnetic fields at cell cen-

ters, Balsara [10,11] recently proposed a new reconstruction algorithm that also en-

sures the divergence-free property for the cell-centered magnetic fields. His scheme

uses

Bn
x,i,j =

1

2

(

bn
x,i−1/2,j + bn

x,i+1/2,j

)

− axx
∆x2

6
, (4.30)

Bn
y,i,j =

1

2

(

bn
y,i,j−1/2 + bn

y,i,j+1/2

)

− cyy
∆y2

6
, (4.31)

where the nonzero coefficients axx and cyy are described therein. Although this

approach has an extra advantage to guarantee the divergence-free constraint for the

cell-centered fields, it is clear from (4.30) and (4.31) that the base reconstruction

scheme in (4.28) and (4.29) are sufficient for a second-order scheme4. Thus the

USM-IEC-SDDA scheme uses (4.28) and (4.29) as a default choice.

4.5 Remarks on IEC-SDDA

Some remarks are relevant by making observations on advantages of using

the IEC-SDDA approach. First, the method provides the divergence-free fields in

real space up to computer’s round-off error. In this sense one can guarantee the

divergence-free fields in the discrete formulation at all points on the computational

domain. Keeping the divergence-free constraint in simulations is essential to com-

4In fact, it has been reported in [55] that there is no noticeable difference between the results

of using the base scheme (4.28)∼(4.29) and the new scheme (4.30)∼(4.31).
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pute correct geometries of the magnetic fields.

Second, because the divergence-free constraint is true in real space, the resul-

tant magnetic fields are physically meaningful in a continuous sense over the com-

putational domain. This is in contrast to the vector divergence-cleaning method,

in which the divergence-free properties of the fields can be viewed only at discrete

points in Fourier space.

Third, the nice local property in treating the divergence-free constraint enables

minimal inter-communication on parallel machines, and thus an extension to AMR

grid is natural to achieve.

Fourth, the issues such as extra handling with solving the elliptic Poisson

equations and associated aliasing errors (if FFTs are used for the purpose) can be

removed.

Finally, a novel way to control anti-dissipative phenomena, which are poten-

tially subject to solving the induction equations, has been well established. By

including the corresponding dissipation terms, unphysical growth of the magnetic

fields can be resolved in a very efficient way. The importance of keeping the dissi-

pation control terms will be shown to be very crucial in some MHD simulations and

such impact will be further studied in the test suite described in Chapter 6.
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Chapter 5

USM-IEC-SDDA IN FLASH3 WITH PARAMESH3

It would appear that

we have reached the limits of

what is possible to achieve with computer technology,

although one should be careful with such statements,

as they tend to sound pretty silly in five years.

Johann von Neumann, 1947

A successful implementation of the USM-IEC-SDDA scheme in the FLASH3

[36] computational framework is described in this chapter. The USM-IEC-SDDA

scheme has been extended to a parallel adaptive mesh refinement (AMR) scheme

that provides high performance computation (HPC) on massively parallel compu-

tational architectures. Special emphasis will be made on ideas that lead to preserve

the divergence-free constraint at prolongation procedures on AMR grids.

FLASH is a publicly available modular, adaptive mesh, parallel simulation

code which has been developed and evolved at the ASC/Alliances Flash Center un-

der the auspices of the Department of Energy Advanced Simulation and Computing

program. A new generation of the code, FLASH 3, recently has been developed to

provide better code architectures. Within FLASH 3, the USM-IEC-SDDA scheme

has been successfully implemented as a magnetohydrodynamics solver and will be
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publicly released in early Fall, 2006.

In the following sections, we start with brief descriptions of the FLASH code

and the PARAMESH library. As far as the purpose of this dissertation concerns,

later sections mainly focus on three important routines that are required in parallel

AMR grids for the USM-IEC-SDDA scheme: implementations of flux conservation,

electric field correction, and divergence-free preserving prolongation.

5.1 FLASH Code

The Flash code is a collection of interoperable modules that are combined

to generate different scientific applications. Examples of such applications consist

of a wide variety of astrophysical problems as well as basic physics problems. A

brief list includes X-ray bursts, magnetized galactic bubbles, classical novae, Type

Ia supernovae as for astrophysics aspects, and the cellular structure of detonation,

wind/wave interactions, and Rayleigh-Taylor instability as for basic physics aspects.

FLASH is written in a few different scientific languages. The majority is

written in Fortran 90 and the rest in C and Python. It approximately consists

of 600,000 lines of code and was awarded the 2000 Gordon Bell Award [22] in

the Special Category for achieving 0.24 TFLOPS on 6420 processors of ASCI Red

supercomputer.

The new architecture of FLASH 3 takes its primary effort to further simplify

and streamline the date management by rigorously defining module architecture

and clarifying the rules of interpolarbility between different modules. This has been
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achieved by decentralizing the database. In previous versions the solution data

was centralized and primarily owned by the database modules. Simultaneously, the

mesh modules and the IO modules have to be given unrestricted to access to the

solution data, completely violating the basic assumption of modularity. In FLASH

3, the database is decentralized in such a way that individual modules own the data

most relevant to them. The database can be accessed through the use of accessor

functions by other modules. For instance, the driver module owns the time step dt,

while any module can get the value through accessor functions, the driver reserves

the right to modify it so that it can not be accidentally changed. Other development

of FLASH 3 also includes interfaces and inheritance of the modules, and eliminates

lateral interactions between modules.

The USM-IEC-SDDA scheme has been implemented as an MHD solver of

FLASH 3. In earlier versions of FLASH, the operator splitting based 8-wave scheme

had been implemented. Successful implementation of the USM-IEC-SDDA scheme

will provide an alternative choice to the user community with a new operator unsplit,

flux-CT type of MHD solver.

5.2 Parallel Adaptive Mesh Refinement: PARAMESH

FLASH uses the PARAMESH [62] library to manage a block-structured adap-

tive grid, refining/de-refining block structures to increase/decrease resolutions only

in local regions of flow where higher resolution is needed most. PARAMESH uses a

block-structured or patch-based adaptive mesh refinement scheme that is a subset
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of the Berger-Oliger [15] type algorithm. Each block contains nd zones in d dimen-

sions, and its data structure is in 2d-tree hierarchy structure. A factor of 2 jumps in

refinement between adjacent blocks is allowed. PARAMESH provides functions to

handle mesh refinement/de-refinement, distribution of work to processors (parallel

load balancing via Morton space-filling curve) and guard cell filling.

For ensuring consistency at a jump in refinement, PARAMESH also provides

flux conservation, and vector fields (electric fields for the current study) correction

where blocks of different refinement abut one other. For correct simulations of MHD

flows, these routines should be called and performed to use consistent values of fluxes

and electric fields at adjoining block interfaces that share coarse and refined block

meshes. The next subsections will briefly describe these routines and the ways in

which they have been implemented for USM-IEC-SDDA with PARAMESH in the

FLASH 3 framework.

PARAMESH takes each block a logically Cartesian, uniformly spaced sub-

mesh, which keeps a block’s children in a nested tree data structure. Each refined

child block has a cell size one-half as large as its parent block in each spatial dimen-

sion.

The refinement criterion used by PARAMESH follows from the error estimator

used to capture shocks by Löner (1987). Löner’s estimator is a modified second

derivative, normalized by the average of the gradient over one computational cell.

The estimator, thus, has the advantage that it uses an entirely local calculation, and

can be applied to any of the solution variables or any combination of them. The

default variables (u in equation (5.1)) are density and pressure in PARAMESH. In
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multidimension, the criterion can be written as

Ei1,i2,i3 =






∑

p,q

(
∂2u

∂xp∂xq
∆xp∆xq

)2

∑

p,q

{(

| ∂u
∂xp

|ip+1/2 + | ∂u
∂xp

|ip−1/2

)

∆xp + ε ∂2|u|
∂xp∂xq

∆xp∆xq

}2






1/2

, (5.1)

where the sums are carried out over coordinate directions, partial derivatives are

evaluated at the center of the i1, i2, i3-th zone, and the constant ε is given a value

of 10−2. The last term in the denominator with ε plays as a filter, preventing

refinement of small ripples. A block is refined if maxEi1,i2,i3 > C1 and de-refined

if maxEi1,i2,i3 < C2, where the maximum is taken over each block. FLASH default

values for C1, C2 are 0.8, 0.2, respectively.

5.2.1 AMR Restriction via Flux Conservation

The high-order Godunov type based schemes use fluxes at cell interfaces to

update the cell-centered volumetric variables such as fluxes of mass, momentum and

energy. Also in the IEC algorithm fluxes are used to construct the electric fields

at cell corners. Such electric fields are then used to evolve the cell face-centered

magnetic fields in the SDDA scheme. As a consequence, the cell-centered variables

and the cell face-centered magnetic field variables are strongly tied with correct

usages of fluxes at all times in the simulations. These requirements are automatically

obtained if there is no refinement used for the simulation. By contrast, if one decides

to use adaptive mesh refinement, it is required to enforce the flux conservation to

make sure the computed fluxes at block interfaces of different refinement levels are

consistent and being used for both the fine cells and the coarse cells.

To perform flux conservation routines, one first needs to call a FLASH 3 mod-
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ule Grid_putFluxData.F90 to store the computed fluxes at the PARAMESH arrays

that are reserved for fluxes. That is, in a block computation routine one can adopt

begin block-wise computation

call Grid_putFluxData(blockID,IAXIS,xflux,datasize)

call Grid_putFluxData(blockID,JAXIS,yflux,datasize)

call Grid_putFluxData(blockID,KAXIS,zflux,datasize)

end of block-wise computation

These calls put fluxes xflux, yflux, zflux in x, y, z-directions into the PARAMESH

arrays in a direction specified by axis information, IAXIS, JAXIS, KAXIS and for

boundary cells for block having blockID.

Now the FLASH 3 flux conservation routines are to be called, viz.,

call Grid_conserveFluxes(myPE,IAXIS,level)

call Grid_conserveFluxes(myPE,JAXIS,level)

call Grid_conserveFluxes(myPE,KAXIS,level)

where myPE is an integer value which is a current processor number, and level an

integer that carries the refinement level. Upon calling Grid_conserveFluxes, the

flux in the parent that was computed by the more accurate fine zones is taken as

the correct flux through the zone interface and is passed to the corresponding coarse

face on the neighboring block. The idea of flux conservations in two-dimension is

shown in figure 5.1.
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f1
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F = f1 + f2

Figure 5.1: The 2D geometry of flux conservation. At a jump in refinement, the

sum of fluxes calculated in the fine cell (f1 + f2) replaces the flux in the coarse cell

(F). Note that PARAMESH limits the jumps in refinement to be one level between

two neighboring blocks.
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5.2.2 AMR Restriction via Electric Field Correction

Similar consideration as the flux conservation should be also made for the elec-

tric fields at the cell corners that are sharing blocks at different levels of refinements.

In FLASH 3, the flux conservation routines are readily available, for the PPM based

hydrodynamics solver uses the same conservation requirement as well. However, a

new implementation of a generic electric field correction routine is in need for the

MHD modules, and such a brief implementation to meet the purpose of the current

study is now presented in this subsection.

The arrays called bedge_face*_# are reserved in PARAMESH to store the

edge-based variables. The symbols * and # denote x, y and z directions so as to

represent data perpendicular to the *–axis and pointing in the #–direction. For in-

stances, bedge_facex_z can be used for storing data Ez(i, :, :), and bedge_facey_z

for Ez(:, j, :). Using these PARAMESH arrays, the USM-IEC-SDDA calls a generic

electric field correction routine mhd_electricFix.F90, where the routine further

calls amr_edge_average.F, e.g.,

do i=1, all_paramesh_blocks

bedge_face*_#=oldElectricField

enddo

call amr_edge_average

do i=1, all_paramesh_blocks

newElectricField=bedge_face*_#

enddo
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Figure 5.2: The 2D geometry of electric field correction. The symbol
⊙

represents

the electric field Ez pointing out of the figure and
⊗

represents the field pointing

into the figure at each cell corner.

Calling the routine amr_edge_average will sum the edge (edge in 3D, corner in

2D) data values to ensure consistent evaluation required in the circulation integrals.

In two-dimension, this routine simply becomes replacing the cell cornered electric

fields at the coarse cell by the fields at the fine cell correspondingly. As illustrated

in figure 5.2, this means

Ez,+ = ez,+,2, Ez,− = ez,−,1, (5.2)

where ez,+,1 and ez,−,2 are canceled by each other in the circulation integrals.
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5.2.3 Divergence-Free Preserving Prolongation

Lastly, the divergence-free constraint at the coarse cell must be preserved at

each refinement step. This whole regridding procedure from the parent mesh solu-

tion to the child mesh solution is called prolongation. In FLASH and PARAMESH,

several different interpolation methods can be used for prolongation. By default,

PARAMESH uses a linear interpolation to fill the cell-centered variables for newly

created blocks. In MHD, such interpolations are also in need for the face-centered

magnetic field variables. A careful choice should be made, however, for the magnetic

fields because an interpolation such as a linear interpolation scheme will not preserve

the divergence-free property for the field variables at refinement. As a result, one

definitely loses the most important constraint in the whole MHD simulations.

To accomplish this requirement, we adopt a straightforward (and the simplest)

approach in that each prolongation results in the direct injection interpolation for

the fields variables in new children blocks. The divergence-free fields at the cell

face centers of the parent blocks are subject to be injected directly to the cell face

centers of the new children blocks. This will maintain the divergence-free property

inside the grid block. Two other switches such as AMR_PROLONG_FC_DIVBCONSIST

and DIVERGENCE_FREE also must be declared in PARAMESH_PREPROCESSOR.FH in

PARAMESH to resolve possible non-zero divergence in the adjacent cells.

Balsara [10, 11] has studied a new algorithm to guarantee the divergence-free

property over a given computational grid, which naturally can be extended to each

prolongation step (e.g., see equations (4.30) and (4.31)). He proposed the quadratic
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polynomial approach that provides the divergence-free field reconstruction every-

where at the grid cells. Balsara’s scheme has not been adopted in this dissertation,

yet such implementation will remain in the future work.

5.3 Boundary Condition Via Guard Cell Exchange

In parallel/AMR computation, a boundary condition is imposed by using the

guard cell filling and exchange strategy. The boundary conditions needed to update

interior cells are stored in the guard cells. The boundary conditions of the fine

grid are defined by either external boundary conditions, or adjacent sibling blocks,

or both, or interpolations from the coarse parent grid to the fine child grid. The

number of guard cells is determined by the order the interpolation schemes and

stencils a given scheme take. For example, the explicit hydrodynamics solver with

PPM algorithm takes four guard cells in each direction.

In the USM-IEC-SDDA implementations, as seen in Chapter 3, the IEC

scheme with the central differencing requires two guard cells in each direction,

whereas three guard cells are required if the scheme uses the upwinding scheme.

It is easy to see the extra amount of guard cell exchanges due to the extra number

of guard cells. For instance, let use consider a simple d-dimensional case with N

interior cells with NG guard cells in each direction. The total number of guard cell

exchanges required per block is then (N + 2NG)d − Nd, while having extra NGα

guard cells yields (N + 2NG + 2NGα)d −Nd many guard cell exchanges. Assuming

there are NV AR variables to be exchanged, then, in general, the extra guard cell
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exchanges one should perform per each block becomes

(N + 2NG + 2NGα)d − Nd

(N + 2NG)d − Nd
× NV AR. (5.3)

One would also require double precision for each variable, for which 8 bytes of

memory space should be taken. Now to see the final outcome, one further assumes

that periodic boundary conditions are imposed in all directions, so that the guard

cell exchanges are performed for all NBLOCKS number of blocks in all direction.

Then the total extra amounts of data that should be exchanged by parallel inter-

communication between processors per one time step (assuming only one guard cell

exchange is called per each time step) are

(N + 2NG + 2NGα)d − Nd

(N + 2NG)d − Nd
× NV AR × NBLOCKS × 8bytes. (5.4)

Notice that if there is an refinement level increase between time steps, then the

above will further be increased by a factor of up to 2d in an extreme case (i.e., all

blocks are refined).

To quantify this factor, consider a typical parallel AMR choice with N =

10, NG = 2. The values of the factor (N+2NG+2NGα)d−Nd

(N+2NG)d−Nd in (5.3) as a function of

NGα and d are compared in Table 5.1.

In the above example, therefore, using the central scheme in the IEC is 1.625

times cheaper computationally than using the upwinding scheme in two-dimensional

problems. Also, the USM-IEC-SDDA MHD solver will be 2.333 times more efficient

than that of any PPM based solver, at least, in terms of the guard cell exchange

strategy.
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Factor comparison

d = 1 d = 2 d = 3

NGα = 1 1.500 1.625 1.775

NGα = 2 2.000 2.333 2.771

Table 5.1: Extra amount of work for guard cell exchanges as a function of extra

number of guard cells in each dimension. This simple example compares impacts

of parallel communications with schemes using guard cells of 2, 3, and 4 for each

direction in different dimensional problems.

In the next chapter, various results obtained by using the USM-IEC-SDDA

scheme will be discussed.
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Chapter 6

NUMERICAL RESULTS OF USM-IEC-SDDA

My goal is simple.

It is complete understanding of the universe,

why it is as it is and why it exists at all.

Stephen Hawking

Validation studies of the USM-IEC-SDDA scheme have been made in a suite of

several 1D and 2D MHD test problems. A series of numerical studies show that the

scheme is second-order accurate, and maintains the solenoidal constraint of magnetic

fields up to round-off error. Numerical issues in simulating MHD problems and the

relevance of the USM-IEC-SDDA implementation will be discussed in the chapter.

All simulations are performed using Courant numbers between 0.5 (2D) and

0.8 (1D), depending on the problem considered.

6.1 1D Results

In MHD problems in one-dimension, the normal component of the magnetic

fields is treated as a constant because of the divergence-free constraint. This makes

one-dimensional MHD problems simple, for which no efforts of preserving the divergence-

free property is required.
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6.1.1 Brio-Wu MHD Shock Tube

The 1D test problem consists of testing the Brio-Wu MHD shock tube problem

[20] on the computational domain [0, 1]. This problem is an MHD version of the

hydrodynamical Sod’s shock tube problem in the presence of non-zero values of the

magnetic fields. In this problem the Roe averages formulated in [20] are applied,

as the Brio-Wu problem is of the γ = 2 plasma flow. For this problem, the USM-

IEC-SDDA test results are compared with the solutions from the eight wave scheme

in FLASH. The problem takes the outflow boundary conditions with the initial

condition given by

Bx = 0.75, (6.1)

(ρ, u, v, w, By, Bz, p)T =







(1, 0, 0, 0, 1, 0, 1)T for x < 1
2
,

(0.125, 0, 0, 0,−1, 0, 0.1)T for x > 1
2
.

(6.2)

That there is no need to consider any divergence-free treatment for this prob-

lem, one can turn off the switches for the IEC and SDDA schemes and the whole

USM-IEC-SDDA scheme reduces to a typical cell-centered Godunov type solver.

The staggered algorithm is not required to be adopted.

In plots illustrated in figure 6.1, the USM scheme compares well with the eight

wave scheme. One of the interesting features of simulating the Brio-Wu problem is

to see five different MHD waves. In this high resolution case utilizing 800 cells over

the domain, the USM code accurately produces solutions that reflect complicated

MHD wave structures. For example, in the density plot, all five MHD waves are

indicated clearly, and they are, respectively, from left to right: a fast rarefaction

wave, a compound wave, a contact discontinuity, a slow shock and a fast rarefaction
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Figure 6.1: 1D Brio-Wu MHD shock tube problem. The USM results (red dots) are

compared with the eight wave scheme results (black lines) on an 800 resolution.
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Figure 6.2: Various tests in 1D Brio-Wu MHD shock tube problem.
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waves. The compound wave structure is captured accurately, which involves shock

and rarefaction waves of the same family moving together.

Shown in figure 6.2, two parameter tests have been performed, including (a)

a grid resolution test and (b) a slope limiter test. In figure (a), solutions on four

different domains of size N = 100, 200, 400, 800 are compared using MINMOD lim-

iter. The density is a good choice for this matter because it carries all five different

MHD waves. One can also take the highest resolution solution of size N = 800 as a

customary choice for a reference (or true) solution, as there is no analytical solution

available for this test problem. As expected, comparisons of solutions on coarse

grids (N = 100, 200) with solutions on finer grids (N = 400, 800) confirm that a

great deal of solution accuracy can be improved by increasing the grid resolution.

In figure (b), different slope limiters are tested for the density over 200 cells

in x-direction. They are MINMOD, van Leer’s, and MC (Monotonized Central-

difference) limiters. It is apparent that MC limiter produces slight undershoot and

overshoot in the solution near x ≈ 0.4 and x ≈ 0.55, respectively, which result

from the limiter’s inherent nature of a discontinuity-enhancing gradient function

(LeVeque, 1997). Same phenomena are also observed from the eight wave solutions

in figure 6.1–(a), even with using a high resolution of a size N = 800. Such behaviors

are shown to be removed by using a less aggressive limiter, e.g., MINMOD or van

Leer’s limiter. These two limiters, however, give more diffusive solutions of other

discontinuities, yet a use of high resolution will resolve this issue.
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6.1.2 1D Accuracy Study

The solution convergence rate for the Brio-Wu problem is now examined in this

section. Following Tóth [88], the relative numerical error of any arbitrary variable

W obtained on an N grid can be calculated as,

Err =

∑N
i=1 |Wi − W

high
i |

∑N
i=1 |W

high
i |

, (6.3)

where Whigh is a coarsened high resolution solution. For example, when a solution

on 800 cells is coarsened to a solution on 100 cells, solutions on every 8 cells are

averaged in a finite volume sense.

For display in figure 6.3, the density is chosen for W . A high resolution solution

of N = 1600 is coarsened to solutions of size N = 100, 200, 400, 800, with which the

computed results of size N = 100, 200, 400, 800 are compared, respectively.

As shown in figure 6.3, the USM scheme generates a faster convergence rate

(faster than the first-order convergence) as the resolution is increased. The overall

convergence rate is approximately linear, although the scheme is a second-order

accurate scheme. This is not surprising, since the order of accuracy of a method

applies only to smooth flow and not to flows containing discontinuities. In fact,

all modern shock capturing schemes are only first-order accurate in the vicinity

of discontinuities, because a fully limited second-order scheme would reduce to a

first-order scheme in regions of discontinuities.
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Figure 6.3: A convergence rate test for the Brio-Wu problem using the USM scheme.

A linear slope is given as a reference. A convergence rate is shown to be accelerated

by increasing the resolution.
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6.2 2D Results

The results of several 2D MHD test problems are discussed in this section.

The CFL number of 0.5 is chosen for stability in all test cases. Throughout multi-

dimensional cases herein, both switches of the IEC and SDDA schemes have been

turned on, as well as fully utilizing the multidimensional characteristic method in

the data reconstruction-evolution step. Their roles will be carefully pointed out and

shown to be of great important.

6.2.1 Field Loop Problem

The first test is the field loop problem [37] which has been considered to be

one of the severe test cases in multidimensional MHD. This test problem considers

two different set-ups of a weakly polarized magnetic field loop: the loop is either

being advected with the flow or being held to be stationary. The first set-up of the

advection case is much harder to achieve than the second case, the diffusion test,

in a sense that it is harder to maintain the circular shape of the advecting field

loop along the computational domain during the whole computation time. In the

second diffusion test, the only dynamics is the numerical diffusion and hence it is

easy to see how much the scheme is diffusive. In both cases, an insufficient amount

of numerical dissipation will distort the circular shape of the field loop.

This problem is taken from Gardiner & Stone [37, 82]. The computational

domain is [−1, 1] × [−0.5, 0.5], resolved on a size 256 × 148, with a doubly periodic

boundary condition. The density and pressure are set to unity everywhere. The
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velocity fields are defined as,

U = u0(cosθ, sinθ, 0) (6.4)

with the advection angle θ, given by θ = tan−1(0.5) ≈ 26.57◦. The choices for the

initial velocity were set as u0 = 0 for the diffusion test and u0 =
√

5 for the advection

test. The size of domain and other parameters are chosen in such a way that, for

the advection case, the weakly magnetized field loop will make one complete orbit

cycle by t = 1. To initialize ∇ ·B = 0 numerically, the components of the magnetic

field values are obtained by taking the numerical curls of the z-component of the

magnetic vector potential Az:

Az =







A0 (R − r) if r ≤ R,

0 otherwise

, (6.5)

and

Bx,i,j =
Az,i,j+1 − Az,i,j−1

2∆y
, By,i,j = −Az,i+1,j − Az,i−1,j

2∆x
. (6.6)

By using this initialization process, one can start with divergence-free magnetic

fields that give a maximum value of ∇ ·B on the order of 10−16. The parameters in

(6.5) are A0 = 10−3, R = 0.3 with a field loop radius r. This initial condition results

in a very high beta plasma β = 2p/B2 = 2 × 106 for the inner region of the field

loop. Inside the loop the magnetic field strength is very weak and the flow dynamics

is dominated by the gas pressure.

The first test for the advection case can be solved to final time t = 2 with a

Courant number of 0.5. The advection test truly requires the full multidimensional

MHD consideration, i.e., the inclusion of the multidimensional terms (2.18) and
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(2.19) as described in Chapter 2. Since the field loop is being advected with an

oblique angle to the x-axis of the computational domain, the values of ∂Bx/∂x and

∂By/∂y are non-zeros in general, and these terms together with the multidimensional

terms ABx,ABy should be included properly.

The dynamics of the flow advects the field loop with the advection angle to

the grid. During the evolution of the advection process a good numerical scheme

must maintain the circular symmetry at all time. The lack of numerical dissipation

will result in spurious oscillations at the loop and will break the circular symmetry.

In figure 6.4 the initial conditions of the current density, magnetic field lines (the

20 contour lines of Az are shown), and magnetic pressure are illustrated. As for

the default value, the SDDA scheme (4.20) and (4.21) with a choice of ν = 0.5 is

adopted and the IEC central differencing scheme is used.

From the results in figure 6.5, the USM-IEC-SDDA scheme maintains the

circular shapes of the flow geometry extremely well to the final time step. The first

image of the current density j is the curl of the field components and is very sensitive

to oscillations in the field components. The USM-IEC-SDDA scheme successfully

preserves the initial circular symmetry without suffering any oscillations. In the

second plot (b) it is clear that the 20 field lines are still present in the final solution,

keeping the original circular symmetry very well. There is only a slight dissipation

at the inner most center, which leads to disappearance of the smallest circular

field line. The final result (c) of the magnetic pressure Bp = (B2
x + B2

y)/2 is also

compared well with the results of Gardiner et al. [37]. The results obtained here

have led to conclude that the anti-dissipation control in the SDDA scheme plays an
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(a) Current density at t = 0 (b) Magnetic field lines at t = 0

(c) Magnetic pressure at t = 0

Figure 6.4: The initial conditions of the field loop advection problem on a 256×148

resolution.
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essential role to achieve correct amounts of numerical dissipation in the magnetic

field components.

(a) Current density at t = 2 (b) Magnetic field lines at t = 2

(c) Magnetic pressure at t = 2

Figure 6.5: The field loop advection problem at time t = 2. The value ν = 0.5 is

used.

To further amplify the role of the SDDA treatment, the results obtained with-

out turning on the SDDA switch (ν = 0) is presented in figure 6.6. In plot (b) the

magnetic pressure already suffers from strong oscillations over the entire loop even

at relatively earlier time t = 0.2. Notice also that the magnitude of the magnetic

pressure has been increased by an order of 10−1, as a consequence of the absence of
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anti-dissipation control in the scheme. The final solution in (c) is quite disastrous,

leaving no trace of the initial circular shape. The magnitude has reached up to 0.12

which is an order of 107 larger than the initial value (See the initial magnitude in

(c) in figure 6.4.)

It is preferable to see an effect of the value ν for the SDDA scheme. Let us now

consider the same advection problem using the maximum possible value of ν = 1.

This larger value clearly gives more dissipation that prevents further growth of the

magnetic field components. However, since the SDDA scheme employs the electric

field value Ez from the previous time step, the dynamics of the magnetic fields is

coupled with the behavior of the previous time step solution. This phenomenon

is seen in figure 6.7–(a) that the original circular shape evolved to an oval shape

along the direction of the advection. From this test it is desirable to set the value

to ν = 0.5 as the default choice.

In (b), one can see the result of using the upwinded differencing algorithm for

the IEC scheme. As was asserted in Chapter 3, the effect of upwinding the electric

field does not seem to improve any qualitative behavior of the solution.

The diffusion test is now considered, where the magnetic field loop remains

stationary in the domain. The only dynamics of the simulation is the numerical

dissipation and it diffuses the shape of the flow. In figure 6.8 one can observe that

the USM-IEC-SDDA scheme maintains the circular shape of the flow variables only

allowing correct amounts of minimum possible dissipation. The small hole in the

magnetic pressure reflects the small amount of diffusion that has occurred in the

scheme. Indeed, the final solutions in the diffusion test are quite equivalent as the
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(a) Magnetic pressure at t = 0.2 with SDDA (b) Magnetic pressure at t = 0.2 without SDDA

(c) Magnetic pressure at t = 2 without SDDA

Figure 6.6: Effect of the SDDA on the field loop advection test.
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(a) Magnetic field lines at t = 2 with ν = 1

(b) Magnetic pressure at t = 2 using the up-

winding scheme in IEC

Figure 6.7: A parameter test for ν is shown in (a). The larger value ν = 1 tends to

disrupt the circular shape of the magnetic field lines at time t = 2. In (b), another

test using the upwinding scheme in the IEC is also illustrated.
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initial solutions, proving that the USM-IEC-SDDA scheme works absolutely well in

controlling anti-dissipation phenomena of the scheme.

(a) Current density at t = 2 (b) Magnetic field lines at t = 2

(c) Magnetic pressure at t = 2

Figure 6.8: The first field loop diffusion problem on a 256 × 148 resolution. The

solutions at time t = 2 are presented.

The last case in the field loop problem considers another diffusion case which

will help to understand the in-plane geometry in two-dimension. For two-dimensional

MHD flows, it is important to maintain the relevant in-plane flow properties. To see
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this, one would like to consider a variant of the previous diffusion problem, where

the velocity fields can now be set as

U = (0, 0, 1). (6.7)

With this condition, one can see how the in-plane dynamics is influenced by ∇ ·B.

It has been already seen in the previous diffusion test that the in-plane diffusion of

the magnetic field is essentially negligible. Hence, on each subsequent time step the

∇ ·B error will be unchanged between time steps. This will of course proceed until

Bz becomes sufficiently large to influence the in-plane dynamics. To see this, let us

look at the induction equation for Bz component:

∂Bz

∂t
+Bz

∂u

∂x
−Bx

∂w

∂x
−w

∂Bx

∂x
+u

∂Bz

∂x
+Bz

∂v

∂y
−By

∂w

∂y
−w

∂By

∂y
+v

∂Bz

∂y
= 0. (6.8)

Notice that the fourth and eighth terms in the above equation (6.8) are the

multidimensional terms that have been taken care of in the data reconstruction-

evolution step. The terms have been treated in an unsplit fashion using the mul-

tidimensional characteristic method without applying any limiting (See equation

(2.29)). The sum of these two terms is w∇ · B = w(∆Bx,i/∆x + ∆By,j/∆y), and

hence if there is any secular growth in the ∇ · B = (∆Bx,i/∆x + ∆By,j/∆y) error,

it will change the in-plane geometry due to an unphysical growth of Bz with a rate

proportional to ∆tw∇·B. For dimensionally splitting MHD schemes, therefore, this

kind of undesirable situations are hard to be avoided, since the terms ∆Bx,i/∆x and

∆By,j/∆y are not calculated simultaneously.

Figure 6.9 shows two results obtained in the USM-IEC-SDDA scheme at the

final time step t = 2. The first plot in (a) is the numerical values of ∇ · B and the
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second plot in (b) is the z component of the magnetic fields. The 30 contour lines

were plotted in both cases, where the results seem to be no more than noise plots.

One can see that both the values of the divergence of the magnetic fields and Bz

are in the range of orders of 10−15. These two results clearly show that the USM-

IEC-SDDA scheme does correctly maintain the in-plane geometry without causing

any unphysical phenomena.

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−15

(a) ∇ ·B

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−15

(b) Bz

Figure 6.9: The second diffusion problem of the field loop at t = 2. The numerical

values of the divergence of the magnetic fields and the z component field are shown.

119



6.2.2 Orszag-Tang Problem

The second test problem is the Orszag-Tang MHD vortex problem [65]. This

test problem has been used in many papers and served as a good validation test

for two-dimensional MHD codes. The computational domain is [0, 1] × [0, 1], with

a resolution of N × N . The initial condition is given by smooth sinusoidal wave

structures,

U = u0(−sinπy, sin2πx, 0), (6.9)

B = B0(−sinπy, sin4πx, 0). (6.10)

where B0 is chosen so that the ratio of the gas pressure to the rms magnetic pressure

is equal to 2γ, where γ = 5/3. The initial density, the speed of sound and u0 are

set to unity, therefore, both the initial pressure and B0 are set to 1/γ. Periodic

boundary conditions are used for both boundaries. The final solutions are obtained

at time t = 0.5. The mixed type of the slope limiter (MINMOD+MC) was adopted

as described in Chapter 2.

The density plot on a 400 × 400 grid size at the final time t = 0.5 is shown

in figure 6.10–(a). The density plot shows that the initially smooth flow has been

developed into an increasingly complicated structure involving many discontinuous

features.

The solution accuracy study of the USM-IEC-SDDA scheme is conducted and

shown in (b). The convergence rate test uses the 2D version of the relative error
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which can be defined in the similar fashion as in 1D (6.3), viz.,

Err =

∑M
j=1

∑N
i=1 |Wi,j − W

high
i,j |

∑M
j=1

∑N
i=1 |W

high
i,j |

. (6.11)

Figure 6.10–(b) shows that the convergence rate of the USM-IEC-SDDA scheme

is faster than the rates obtained from other MHD algorithms with lower values of

error. Two compared results are the convergence rates of the projection based MHD

solver and Balsara & Spicer’s flux-CT scheme, obtained from a table-lookup in Tóth

[88]. Similarly as before, the solution on a high resolution of size 400× 400 is coars-

ened to solutions of sizes 50 × 50, 100 × 100, 200× 200 to compute the convergence

rates of these three different size solutions. Two different convergence rates of the

USM-IEC (ν = 0) and USM-IEC-SDDA (ν = 0.5) are also compared.

Tóth has concluded in [88] that the projection scheme and the Balsara-Spicer’s

flux-CT scheme are the two most accurate schemes among many other MHD schemes

he tested. This convergence test supports that the current USM scheme can generate

even faster convergence rate with noticeably lower errors. In both cases of USM-IEC

and USM-IEC-SDDA, the slopes connecting 100 × 100 and 200 × 200 tend to be

dropped with faster rates, indicating a better convergence rate of the current MHD

solver. There is also an improvement in the convergence rate by turning on the

SDDA switch.

Finally in figures 6.11 two different results of ∇ · B from the numerical di-

vergences calculated from (a) the USM-IEC-SDDA scheme and (b) the eight wave

scheme are compared. Clearly, very small errors in the numerical values of ∇ · B

are seen in (a), whereas the non-zero quantities are dominant from the eight wave
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(a) Density plot at t = 0.5
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Figure 6.10: The density plot (a) at t = 0.5 on a high resolution 400 × 400. A

comparison of the convergence rates for the Orszag-Tang problem is shown in (b).
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calculation in (b).

The numerical values of ∇·B from the eight wave calculation are shown to be

non-zero finite values, ranging from negative to positive. The USM-MHD scheme,

however, maintains ∇ ·B = 0 up to orders of 10−12 errors over the simulation time.

One can see in (b) that the locations of non-zero values of ∇ · B and the disconti-

nuities of the solution are quite identical. (See figure 6.10–(a)). This indicates that

the eight wave scheme poorly resolves the divergence-free constraint near disconti-

nuities. This is in contrast with the USM-IEC-SDDA scheme, which preserves the

divergence-free constraint extremely well allowing ∇ · B upto the order of 10−12 as

illustrated in (a).

6.2.3 Rotor Problem

The next test to consider is the rotor problem which was originally studied

by Balsara & Spicer [9], and also by many others [11, 55, 56, 60, 88]. This model

problem is to study the onset and propagation of strong torsional Alfvén waves,

which is thereby relevant for star formation.

The computational domain is a unit square [0, 1] × [0, 1] with non-reflecting

boundary conditions on all four sides. The initial conditions are given by

ρ(x, y, 0) =







10 for r ≤ r0

1 + 9f(r) for r0 < r < r1

1 for r ≥ r1

(6.12)
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(a) ∇ · B of USM-IEC-SDDA

−0.1 −0.05 0 0.05 0.1 0.15

(b) ∇ ·B of eight wave

Figure 6.11: The divergence-free properties obtained from the (a) USM-IEC-SDDA

scheme and (b) eight wave scheme.
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u(x, y, 0) =







−f(r)u0(y − 0.5)/r0 for r ≤ r0

−f(r)u0(y − 0.5)/r for r0 < r < r1

0 for r ≥ r1

(6.13)

v(x, y, 0) =







f(r)u0(x − 0.5)/r0 for r ≤ r0

f(r)u0(x − 0.5)/r for r0 < r < r1

0 for r ≥ r1

(6.14)

p(x, y, 0) = 1 (6.15)

Bx(x, y, 0) =
5√
4π

(6.16)

By(x, y, 0) = 0, (6.17)

where r0 = 0.1, r1 = 0.115, r =
√

(x − 0.5)2 + (y − 0.5)2, w = Bz = 0 and a taper

function f(r) = (r1 − r)/(r − r0). The value γ = 1.4 is used. The initial set-up is

therefore occupied by a dense rotating disk at the center of the domain, surrounded

by the ambient flow at rest with uniform density and pressure. The rapidly spinning

rotor is not in an equilibrium state due to the centrifugal forces. As the rotor spins

with the given rotating velocity, the initially uniform magnetic field in x-direction

will wind up the rotor. The rotor will be wrapped around by the magnetic field, and

hence start launching torsional Alfvén waves into the ambient fluid. The angular

momentum of the rotor will be diminished in later times. The circular rotor will

be progressively compressed into an oval shape by the build-up of the magnetic

pressure around the rotor.

Shown in figures 6.12 are the contour plots of the (a) density, (b) gas pressure,

(c) Mach number and (d) magnetic pressure at the final time t = 0.15 on a grid

resolution 400 × 400. By this final time, we can see in (d) that the Alfvén waves
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have almost reached the boundary. For all cases (a)∼(d), the 30 contour lines were

plotted. One of the important features in this rotor problem is to maintain clean

and nice contour profiles at the central part of the Mach number [88]. A scheme that

produces undershoots in pressure and the corresponding sound speed will result in

spurious peaks in the Mach number, especially at the central region. Any signatures

of such distortion of the oval contour lines can be useful to identify a poor scheme.

The USM-IEC-SDDA scheme has no such spurious signatures as clearly illustrated

in (c).

For a fair comparison as found in Tóth [88], the Mach number on a low 100×

100 resolution was computed and presented in figure 6.13. In figure 20 of the Tóth’s

work, the seven different Mach numbers obtained from the seven different MHD

schemes on the same resolution (100 × 100) were compared with each other. It is

very noticeable that the result of the USM-IEC-SDDA scheme is just as superior to

all the results therein. The results in figure 6.14 can be clearly compared with the

plot (b) in figure 6.13 of the USM-IEC-SDDA scheme, indicating that the USM-IEC-

SDDA scheme is more accurate and reliable than many other conventional MHD

schemes.

In the work of Londrillo & Del Zanna [59], a similar rotor problem has been

presented with minor changes in the flow parameters. They asserted that their

results were convincing, however, the divergence of the magnetic fields is shown

to be reached up to the order of 10−4 on their 240 × 240 calculation. The USM-

IEC-SDDA scheme, however, keeps the value to orders of 10−12 even with a lower

resolution of size 200×200. This rotor problem will also be calculated using FLASH
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(d) Magnetic pressure at t = 0.15

Figure 6.12: The rotor problem on a resolution of 400 × 400. The 30 contour lines

are plotted.
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Figure 6.13: The Mach number |v|/cs for the rotor problem on a resolution of

100×100. The 30 contour lines are shown. In (b) the circular shapes of the contour

lines are well captured even with this low resolution.
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Figure 6.14: Tóth’s results for rotor problem using several different MHD schemes

on a resolution 100 × 100. The figure was taken from [88] with permission.
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3’s parallel AMR version in later section.

6.2.4 Cloud & Shock Interaction

The next test problem considers the interaction of a high density cloud with a

strong shock wave. This problem, also known as the Dai & Woodward’s cloud-shock

problem [28], has been studied in several papers [56, 88] to test robustness of MHD

schemes. The challenge for this problem is to demonstrate supersonic flows in the

pre-shock and the post-shock regions, as well as the correct physics near the sharp

boundaries of the cloud without crashing of simulation.

The same initial condition has been adopted as presented in [88]. The flow is

solved on the computational domain of size [0, 1] × [0, 1] on a uniform N × N grid.

The results were carried out to the final time t = 0.06 with N = 400. The initial

discontinuity involves the left and right states along a line x = 0.6 parallel to the y

axis. The left and right states are,

(ρ, u, v, w, Bx, By, Bz, p) =







(3.86859, 0, 0, 0, 0, 2.1826182,−2.1826182, 167.345)

if x ≤ 0.6,

(1,−11.2536, 0, 0, 0, 0.56418958, 0.56418958, 1)

if x > 0.6.

(6.18)

The high density cloud is located on the right side of the domain, for which

the circular shape is defined by (x − 0.8)2 + (y − 0.5)2 = 0.152. The density ρ = 10

and the pressure p = 1 are fixed in the inner region. The velocity and the magnetic

fields are the same as the surrounding right state plasma values. The supersonic

inflow boundary condition is imposed along the right-most boundary at x = 1 and
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outflow boundary conditions are used for all other boundaries. A Courant number

for this test was set to 0.5.

As shown in the density plots (a)∼(d) in figure 6.15, the temporal evolutions

illustrate the disruption of the high density cloud as it enters the shock boundary

located at x = 0.6. The red areas indicate the highly strong shock regions and

they compares well with the results in [56, 88]. It was found by Tóth that the

dimensionally splitting MHD algorithm with one step TVD scheme can easily fail

due to unphysical states (e.g., negative pressure or density) produced during the

violent collision of the shock and the cloud even when the diffusive MINMOD limiter

was used. In the USM-IEC-SDDA scheme, the final time step was successfully

reached without experiencing such problems.

6.2.5 MHD Blast Wave

The spherical explosion of the MHD blast wave problem, which was first ap-

peared in Zachary et al. [95], was chosen as for the last test case in serial calculation.

The following series of explosion problems concern the formation and propagation

of strong MHD discontinuities, relevant to many astrophysical phenomena where

the magnetic field energy has dynamical effects. Moreover, with a numerical scheme

that simply fails to preserve the divergence-free constraint, it is probable to yield the

onset of unphysical states involving negative gas pressure because the background

magnetic pressure will increase the strength of the magnetic monopoles. (Refer the

earlier discussion in Chapter 1.)
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(a) Density at t = 0.0 (b) Density at t = 0.02

(c) Density at t = 0.04 (d) Density at t = 0.06

Figure 6.15: The MHD interaction between the high density cloud and shock struc-

tures resolved on 400 × 400 grid.
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This problem was solved in three different flow regimes by taking a zero mag-

netic field strength, an intermediate strength, and a strong strength. The compu-

tational domain is square with a size of [−0.5, 0.5]× [−0.5, 0.5] on a grid resolution

200 × 200. The explosion is driven by an over-pressurized circular region at the

center of the domain with the radius r = 0.1. The initial density is unity every-

where. The pressure of the ambient region is given as 0.1, while the pressure of

the inner region is 1000. Three different regimes of the uniform magnetic field in

x-direction are given as Bx = 0, 50/
√

4π, 100/
√

4π. The last two set-ups result very

low-β ambient plasmas, β = 1× 10−3 and 2.513× 10−4, respectively. Through these

low-β ambient plasmas, the explosion will emit propagations of an almost spherical

fast magneto-sonic shock with the fastest wave speeds in wave families. The flow

takes γ = 1.4 for all three flow regimes.

In the first test case (Bx = 0) as shown in figure 6.16, the computed solutions

are essentially identical to the one obtained with any other purely hydrodynamical

codes. The 30 contour plots of the density, gas pressure, velocity square, and mag-

netic pressure at the final time t = 0.01 are shown. Notice that there is only one

spherically circular symmetric hydrodynamic shock wave propagating in the out-

ward direction. The solutions obtained here are compared well with the results in

[95].

In the second set-up, illustrated in figure 6.17 with Bx = 50/
√

4π, one can

apparently see an increased anisotropic explosion behavior due to the existence of

the non-zero magnetic field strength in x-direction. With this intermediate strength

in the Bx field, the shock waves still somewhat preserve the spherically symmetric
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(a) Density at t = 0.01 (b) Gas pressure at t = 0.01

(c) Velocity square at t = 0.01 (d) Magnetic pressure at t = 0.01

Figure 6.16: The first results from the blast problem with Bx = 0.
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(a) Density at t = 0.01 (b) Gas pressure at t = 0.01

(c) Velocity square at t = 0.01 (d) Magnetic pressure at t = 0.01

Figure 6.17: The second results from the blast problem with Bx = 50/
√

4π.

135



shapes, as one can start to see the development of the elongated wave structures in

the direction parallel to the Bx field.

For the strongest magnetic strength Bx = 100/
√

4π, the explosion now be-

comes highly anisotropic. As shown in figure 6.18–(b), the displacement of gas in

the transversal direction (y-direction) is increasingly inhibited and the hydrody-

namical shocks are propagating in both positive and negative x-directions parallel

to Bx. It is also observed in plot (d) that several weak magneto-sonic waves are

radiated transverse to x-direction. This process will take place until total pressure

equilibrium is obtained at the center region.

It was also found by Balsara [11] that the strong wave propagation oblique to

the mesh can cause the unphysical negativity of the pressure variable. Such effects

will be reflected as distortions of the contours especially at the outer boundary,

where a large and unphysical drop in the pressure would take place immediately

ahead of the shock.

One can further consider the effects of the unphysical drop by taking the

logarithm with base 10 of the pressure variable. Balsara [11] recently asserted that

his new modified flux-CT scheme together with his elaborated slope limiters (e.g.,

denoted as the fast TVD limiter and genuinely multidimensional limiter therein)

performs well for this stringent blast problem. However, as clearly illustrated in

plots (a) and (b) of figure 6.19, the sudden drops of the pressure variable, especially

at the regions where the direction of the strong wave propagation makes oblique to

the mesh, are observed. In (a), for which the fast TVD slope limiter was adopted, the

distorted profiles at the outer boundary at those regions are present. These effects
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(a) Density at t = 0.01 (b) Gas pressure at t = 0.01

(c) Velocity square at t = 0.01 (d) Magnetic pressure at t = 0.01

Figure 6.18: The third results from the blast problem with Bx = 100/
√

4π.
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are not completely removed even with the use of the genuinely multidimensional

slope limiter in (b). The figures (a) and (b) are directly taken from [11] with

permission. It is quite pleasing to see that the USM-IEC-SDDA scheme shows more

crisp profiles at such regions in the outer boundary, as presented in (c). One can

also notice that Balsara’s modified flux-CT scheme is more diffusive than the USM-

IEC-SDDA scheme, exhibiting a narrower band width in y direction at the center

of the inner blast wave structure. It is also noticeable to see another exhibit of

each scheme’s diffusivity in that the overall wave structures are predicted in more

detail with the USM-IEC-SDDA scheme, while there exist only simple and flat

patterns with Balsara’s scheme. The dissipation control from the SDDA scheme

also outperforms in the pre-shock regions in both the negative and positive x axis

directions, at which the plots (a) and (b) show more diffusive features.

The current study has found that the USM-IEC-SDDA scheme does not suffer

from any types of the unphysical effects and maintains the clean profiles of the

contours. The USM-IEC-SDDA results are found to be very reliable and accurate,

as other MHD schemes are prone to generate the strong distortions of the outer

contours (See [55]). For instance, figure 6.20 shows the contour plot of the density

using the eight wave scheme, where the contour lines evidently show unphysical

peaks and distortions. In contrast, nice and clean profiles are achieved in the USM-

IEC-SDDA scheme as indicated in the plot (a) in figure 6.18.

In [55], Li has also tested several other CT-type schemes such as Balsara’s

modified flux-CT and the upwinding-CT (UTC) schemes. He pointed out that the

negativity of the pressure variable could easily be introduced especially in low-β
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(a) log10(p) at t = 0.01 (b) log10(p) at t = 0.01

(c) log10(p) at t = 0.01

Figure 6.19: Comparison of log10 of pressure for the blast problem with Bx =

100/
√

4π. The results in (a) and (b) are taken from [11] with permission. The

USM-IEC-SDDA result is shown in (c).
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Figure 6.20: Result for blast problem using the eight wave MHD schemes. The

figure was taken from [55] with permission.

simulation like this blast wave problem and found it useful to turn on the energy-

fix switch in order to overcome such issue. The situations became even worse in

the UTC-based schemes in that only several runs with some specific parameters

successfully worked, where all the other runs failed in the tests therein.

Even with fixing the negativity issue, however, there still exist distortions of

the contour lines using these schemes as indicated in figure 6.21. It can also be seen

in plots of BS2 and BS3 that there is no qualitative difference between the results of

adopting Balsara’s new reconstruction scheme as discussed in equations (4.30) and

(4.31). In all, it is quite pleasing to see that the USM-IEC-SDDA scheme performs

much better than any other schemes do in this test problem.
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Figure 6.21: Result for blast problem using the CT-based MHD schemes. Balsara

and Spicer’s base CT scheme [9] with limited slopes in both x and y directions is

denoted as BS, Balsara’s modified flux-CT scheme [11] without applying limited

slopes in the normal direction is denoted as BS2, and his modified flux-CT scheme

using the new reconstruction scheme (See equations (4.30) and (4.31).) is further

indicated as BS3. The upwinding-flux CT (UTC) scheme with a specific choice of

parameters is shown in the last plot. The figure was taken from [55] with permission.
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6.3 FLASH Parallel-AMR Tests

This section presents two results that use a parallel AMR version of the USM-

IEC-SDDA scheme, which has been implemented in FLASH 3.

6.3.1 Current Sheet and Magnetic Reconnection

The current sheet test, originally taken from Gardiner et al. [37], concerns the

magnetic reconnection process through the formation of two current sheets. This

problem, in particular, is very useful to demonstrate the sensitivity of the numerical

dissipation. In ideal MHD, the proper amount of dissipation will result in the

diffusive effects of the magnetic field geometry, leading to changes in the magnetic

field lines. As a consequence, the magnetic reconnection will take place where the

magnetic field orientation is oblique to the grid.

When the magnetic reconnection occurs it can cause the magnetic flux to

approach vanishingly small values. The loss in the magnetic energy is converted

into heat (thermal energy). This phenomenon also changes the overall topology

of the magnetic fields and hence affects the global magnetic configuration and the

propagation of MHD waves, both of immense importance in the solar wind. During

the reconnection process, the magnetic islands can be developed.

To simulate this, two current sheets are initialized in the computational domain
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[−0.5, 0.5] × [−0.5, 0.5] in such a way that,

By =







B0√
4π

if − 0.5 ≤ x < −0.25,

− B0√
4π

if − 0.25 ≤ x ≤ 0.25,

B0√
4π

if 0.25 < x ≤ 0.5,

(6.19)

where B0 = 1. The other magnetic field components Bx, Bz are set to be zeros. This

problem is resolved on the six levels of refinement. Periodic boundary conditions

are applied on all boundaries. The x component of the velocity is u = u0 sin 2πy

with u0 = 0.1, and all other components are initialized with zeros. The density is

unity and the gas pressure p = 0.1.

The temporal evolution of the By field is shown in figure 6.22, along with the

AMR block structures at each step. The changes of the magnetic fields seed the

magnetic reconnection and develop a series of magnetic islands along the two current

sheets. By the time t = 6, the signatures of small island formations are observed

and these islands are merged into the bigger islands (t ≥ 9) by continuously shifting

up and down along the current sheets. At the nodal points where the curvatures are

changing dramatically, the magnetic field lines are disconnected and reconnected.

In between these nodal points, the islands are easily developed by moving toward

the anti-node regions. The AMR results clearly show such reconnection process, in

which the merging process comes to an end until there is one big island left in each

current sheet.
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Figure 6.22: Time evolutions of By on the 6 levels of AMR grid. Time increases from

left to right and top to bottom in normal reading order. The sequence of images at

times t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The formation of the magnetic islands indicates

the reconnection process in the simulation.

144



6.3.2 Rotor Problem on Parallel AMR Grid

We finally solve the rotor problem again on the seven refinement levels of AMR

grids. The initial conditions are the same as in the previous serial run.

In figure 6.23, one can clearly see that the AMR grid resolutions are effectively

increased/decreased where there are sharp/smooth gradients of any given refinement

variable(s). The refinement variables were set to be the density and gas pressure for

this problem. At the final time step t = 0.15 the total number of AMR blocks has

reached 2, 245.

The divergence-free constraint is also correctly resolved on this AMR grid,

as shown in figure 6.24. The USM-IEC-SDDA scheme successfully preserves the

∇ · B constraint by allowing the values only up to orders of 10−11. It can be

seen that the non-zero noise peaks in ∇ · B are coherent with the locations of

solution discontinuities illustrated in figure 6.23. This phenomenon is natural since

the solution accuracy is decreased to first-order at discontinuities, and such errors

get populated as the AMR resolutions are increased in those regions.
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(a) Density at t = 0.15 (b) Gas pressure at t = 0.15

(c) Mach number at t = 0.15 (d) Magnetic pressure at t = 0.15

Figure 6.23: The rotor problem on a resolution of an AMR grid.
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Figure 6.24: The divergence of the magnetic fields on a resolution of an AMR grid.

The 7 refinement levels are used.
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Chapter 7

CONCLUSION

The most exciting phrase to hear in science,

the one that heralds new discoveries,

is not “Eureka!” but “That’s funny...”

Isaac Asimov

The multidimensional USM-IEC-SDDA scheme is introduced, developed and

studied in this dissertation. The method first uses characteristic analysis to account

for the contribution of both normal and transversal MHD fluxes. New developments

of a very efficient dissipation control algorithm (SDDA) of the staggered magnetic

fields as well as an improved electric field construction (IEC) scheme have been

well established. Overall, the results presented here give considerable confidence

in the USM-IEC-SDDA scheme for use as a robust and reliable second-order MHD

algorithm. The test results of immediate relevance to space physics problems are

particularly encouraging. The following conclusions are drawn from this research:

1. The second-order accurate multidimensional unsplit MHD algorithm has been

successfully developed on the staggered grid, with capability of maintaining the

divergence-free constraint numerically. The method preserves the numerical

MHD constraint extremely well both on a uniform grid and an AMR grid

without yielding to any evidence of numerical instability or accumulation of
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unphysical errors. As validation, the MHD tests presented in this study include

various aspects of several stringent MHD simulations in both 1D and 2D. They

consist of the evolution of a very weak magnetic field problem, strong magneto-

sonic shocks, a test for the magnetic reconnection, well-known benchmark

problems such as the Brio-Wu & the Orszag-Tang problems, the spinning rotor

problem, and the explosion problem. The USM-IEC-SDDA scheme has been

thoroughly tested and has shown to provide a confidence level in generating

the correct physics required for a wide range of MHD problems.

2. The fully multidimensional MHD scheme that handles the multidimensional

MHD terms is developed in the characteristic method. Such multidimensional

treatments have been ignored in most of the operator splitting based MHD

schemes. The approach involves correct physical consideration that many

multidimensional MHD schemes should require. In particular, for many two-

dimensional test cases, such multidimensional consideration will guarantee to

prevent the unphysical secular growth that would deviate from the in-plane

geometry. To see this phenomenon, in a two-dimensional MHD problem such

as the second field loop diffusion case, spurious numerical errors proportional to

∇·B will affect the growth in Bz, ruining the in-plane dynamics of the problem.

The current data reconstruction-evolution method resolves such issues by using

the multidimensional characteristic method in a novel way.

3. A new improved methodology to construct the electric field has been developed

in the IEC scheme, which establishes a more accurate way to obtain the electric
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field than usual base schemes (e.g., Balsara-Spicer’s flux-CT scheme). The IEC

scheme takes more directional consideration of the high-order Godunov fluxes

obtained from the duality relationship in the base flux-CT scheme.

4. The most remarkable development of the current study has been made in the

SDDA scheme for the induction equations in that a great deal of improvement

in the magnetic fields solution has been achieved, especially in the field loop

tests. Without adopting the SDDA scheme for the simulation, the circular

shapes of the field loop problem were shown to be easily destroyed. The

proper amount of the numerical dissipation in MHD schemes is important to

obtain, not only for the accuracy of solutions, but also for stability purposes

as well. In the SDDA development a new way to suppress undesirable anti-

dissipative effects that potentially exist in the induction equations has been

established.

5. A version of parallel adaptive mesh refinement of the USM-IEC-SDDA scheme

has been implemented in the new generation of FLASH. For correct imple-

mentation, the routines such as the electric field correction as well as the

divergence-free treatment on the AMR grid have been implemented. The

USM-IEC-SDDA scheme will serve as a MHD solver in FLASH 3 which will

be publicly released.

6. Extending the USM-IEC-SDDA scheme to full three-dimensions are envisioned

to be straightforward since the multidimensional issues have been addressed

in this dissertation. For further applications in space physics, the accuracy of
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the scheme, its robustness, and its divergence-free properties as demonstrated

on the test problems of interest, encourage to pursue simulations relevant to

solar wind configurations.

151



Appendix A

Eigensystem for MHD Equations

For the purpose of the current study, the eigenstructure of the quasi-linearized

matrices Â = (Âx, Ây, Âz) are presented in this Appendix. Roe & Balsara [76]

have presented a systematic study of the 1D ideal MHD eigensystem and introduced

normalizing parameters for both right and left eigenvectors to avoid difficulties as-

sociated with coinciding wave speeds. A more general 2D eigenstructure is given

here based on their study. Similar eigenstructures are also found in [70, 77, 78].

The eigensystem of the Roe matrix Â plays a key role in that the eigenvalues

λk represent the wave speeds, the right eigenvectors rk define the directions of the

wave in phase space and the left eigenvectors lk define the characteristics. The

eigenstructure of the matrix Â is composed of the following seven waves, λ−
f ≤

λ−
a ≤ λ−

s ≤ λe ≤ λ+
s ≤ λ+

a ≤ λ+
f .

One can first define the following quantities (a 2D version is presented here):

uN =







u for Âx

v for Ây

uT =







v for Âx

u for Ây

, (A.1)

BN =







Bx for Âx

By for Ây

BT =







By for Âx

Bx for Ây

, (A.2)

βN =







βx for Âx

βy for Ây

βT =







βy for Âx

βx for Ây

. (A.3)

The flux Jacobian matrices Â are decomposed into eigenvectors and eigen-

values. The eigenstructure shown here is derived from the primitive form of the
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governing equations and hence one needs to multiply the Jacobian matrices (2.3)

and (2.5) with the left and right eigenvectors when constructing the numerical fluxes

(B.2). For the eigensystem of the matrix Âx, one has

• Four magneto-acoustic waves

λ±
f = uN ± cf , (A.4)

λ±
s = uN ± cs, (A.5)

r±f =
(

αfρ,±αfcf ,∓αscsβT sgnbN ,∓αscsβzsgnbN , 0,

αs
√

ρaβT , αs
√

ρaβz, αfρa2
)T

, (A.6)

l±f =
1

2a2

(

0,±αfcf ,∓αscsβT sgnbN ,∓αscsβzsgnbN , 0,

αsa
βT√

ρ
, αsa

βz√
ρ
,
αf

ρ

)

, (A.7)

r±s =
(

αsρ,±αscs,±αfcfβT sgnbN ,±αfcfβzsgnbN , 0,

−αf
√

ρaβT ,−αf
√

ρaβz, αsρa2
)T

, (A.8)

l±s =
1

2a2

(

0,±αscs,±αfcfβT sgnbN ,±αfcfβzsgnbN , 0,

−αfa
βT√

ρ
,−αfa

βz√
ρ
,
αs

ρ

)

, (A.9)

• Two Alfvén waves

λ±
a = uN ± ca, (A.10)

r±a =
(

0, 0,±βz,∓βT , 0,−√
ρβzsgnbN ,

√
ρβT sgnbN , 0

)T
, (A.11)

l±a =
1

2

(

0, 0,±βz,∓βT , 0,−βzsgn
bN√

ρ
, βT sgn

bN√
ρ
, 0
)

, (A.12)

(A.13)
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• One entropy wave

λe = uN , (A.14)

re =
(

1, 0, 0, 0, 0, 0, 0, 0
)T

, (A.15)

le =
(

1, 0, 0, 0, 0, 0, 0,− 1

a2

)

. (A.16)

Similarly for the matrix Ây, the eigenstructure is the same except the second and

third entries as well as the fifth and sixth entries in each right and left eigenvectors

are swapped. The parameters used above are defined as follow:

bx,y,z =
Bx,y,z√

ρ
, (A.17)

ca = bN , (A.18)

c2
f,s =

1

2

(

γp + B2

ρ
±
√
√
√
√
(γp + B2

ρ

)2 − 4γpB2
N

ρ2

)

, (A.19)

α2
f =







a2−c2s
c2
f
−c2s

if b2
T + b2

z 6= 0,

1 if b2
T + b2

z → 0 &
b2N
ρ

= a2

(A.20)

α2
s =







c2
f
−a2

c2
f
−c2s

if b2
T + b2

z 6= 0,

1 if b2
T + b2

z → 0 &
b2N
ρ

= a2

(A.21)

βT,z =







bT,z√
b2y+b2z

if b2
T + b2

z 6= 0,

1√
2

if b2
T + b2

z → 0.
(A.22)
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Appendix B

Approximate Riemann Solver

A Roe-type approximate Riemann solver is implemented in the USM-IEC-

SDDA scheme using the the eigenstructure of the ideal MHD governing equations

outlined in Appendix A. Given two left and right Riemann states, UL and UR, a

numerical diffusive flux vector Φ takes of the form

Φ =
1

2

7∑

k=1

|λk|lk
∂V

∂U
· (UR − UL)

∂U

∂V
rk, (B.1)

where rk and lk are the right and left eigenvectors, and λk is the eigenvalue cor-

responding to the k-th eigenvector of a quasi-linearized flux Jacobian matrix Â.

These eigensystems are all evaluated at the corresponding averaged states. A Roe-

type approximate Riemann solver evaluates the numerical flux as

F∗(UL,UR) =
1

2

{

F(UR) + F(UL)
}

−Φ. (B.2)

Note that the first term expressing the smooth component leads to a centered two-

point formula in flux differentiation and the second is a dissipation term coming

from the upwinding procedure.
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