
ABSTRACT

Title of dissertation: REINFORCEMENT LEARNING METHODS
FOR CONIC FINANCE

Sahil Chopra
Doctor of Philosophy, 2020

Dissertation directed by: Professor Dilip Madan
AMSC

Conic Finance is a world of two-prices, a more grounded reality than the theory of

one-price. The world, however, is constructed by considering nonadditive expectations of

risks or value functions. This makes some of the optimization algorithms incompatible

with this universe, if not infeasible. It is more evident in the application of Reinforcement

Learning algorithms where the underlying principle of TD learning and Bellman equations

are based on the additivity of value functions. Hence, the task undertaken here is to mold

the recent advances in the field of Distributional Reinforcement Learning to be conducive

to learning in the setting of nonadditive dynamics. Algorithms for discrete and continuous

actions are described and illustrated on sample problems in finance.

REINFORCEMENT LEARNING METHODS FOR CONIC FINANCE

by

Sahil Chopra

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2020

Advisory Committee:
Professor Dilip Madan, Chair/Advisor
Professor Radu Balan
Professor Wojciech Czaja
Professor Mark Loewenstein
Dr. Ilya Ryzhov

Acknowledgements

First and foremost, I am indebted to Prof. Dilip Madan for taking me under his wing and

educating me on the vast world of Mathematical Finance; the puzzle that was revealed

bit by bit, chaos eventually making sense. Going to the RITs and learning mathematical

finance from him was akin to learning prose by hearing the “Bard of Avon” speak. I am

thankful not only for his continued support of my mostly stupid and occasional wild ideas,

but also for his consistent adherence to sticking to the bigger picture of it all. I also find

it very difficult imagining undertaking the shift in my research life without the academic

support and guidance that came from Prof. Madan.

I would also like thank the dissertation committee, Prof. Radu Balan, Prof. Czaja,

Prof. Loewenstein, and Dr. Ryzhov, for making invaluable revision and embellishment

suggestions. Some of the ideas would be worthy additions to the commandments of re-

search I must carry forward.

I have had the pleasure of interacting with some brilliant colleagues, and too many

of them have left an indelible mark to mention by name here. The whole experience has

been a sizable chunk of my adult life and it’s difficult to recall the exact way each and

every interaction guided me in the quest; the petal in the river gets direction from many

pebbles. I am sincerely in appreciative of all the advice, suggestions, ideas, and criticism.

Finally, I would like to thank my family; my awesome parents for providing un-

moving love and support through all my missteps and miscalculations, my sister and

brother-in-law for consistent encouragements and guidance, and my favorite human, my

niece Navya, for being the foremost source of joy in my life.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

1 Conic Finance 1
1.1 Introduction . 1
1.2 Acceptable Risks and Coherent Risk Measures 2
1.3 Pricing under two price theory . 3
1.4 Prices as Distorted Expectations . 5
1.5 Distorted expectations as sum of weighted quantiles 7
1.6 Discrete Approximation . 8
1.7 Performance Indicators . 9

2 Deep Reinforcement Learning: Background and Recent Advances 12
2.1 Introduction . 12
2.2 Background . 13
2.3 Distributional . 15
2.4 QR implementation . 19
2.5 Policy Gradient Methods . 23

3 Conic Q-learning 28
3.1 Motivation . 28
3.2 Constructing the conic value functions . 28
3.3 Bid-optimal policy . 29
3.4 Remarks on consistency . 30
3.5 Implementation . 31
3.6 Application: Pairs Trading . 32

4 Deterministic policy gradient and distorted least squares 45
4.1 Motivation . 45
4.2 Constructing the new loss function . 46
4.3 Implementation using Distributional Reinforcement Learning 47
4.4 Application of DLS: tracking an ETF . 50

5 Conclusion and further work 70

iii

List of Tables

3.1 2D Convolutional Network for Distrbutional Learning using QR 37
3.2 Convergence of 10 step moving average of mean reward for Q nets. Training done

on 8 GB NVIDIA GeForce GTX 1650. 38
3.3 Sharpe Ratio on training data. 39
3.4 Sharpe Ratio on test data. 39
3.5 Gain Loss ratio on training data. 39
3.6 Gain Loss ratio on test data. 39
3.7 Maximum Drawdown on training data. 40
3.8 Maximum Drawdown on test data. 40
3.9 Acceptability Index on training data. 40
3.10 Acceptability Index on test data. 40

4.1 Breakdown of top 10 (by cap weight in percentage) of Basket Holdings for popular

ETFs - September 2019 . 50
4.2 Dilated Convolutional Network - Actor . 55
4.3 Dilated Convolutional Network with Quantile Regression - Critic 56
4.4 Convergence of 10 step moving average of DMSE for actor nets. Training done on

4 GB NVIDIA GTX 1050 Ti. 57
4.5 Sharpe Ratio on training data. 58
4.6 Sharpe Ratio on testing data. 58
4.7 Gain Loss ratios on training data. 58
4.8 Gain Loss ratios on testing data. 59
4.9 Maximum Drawdown on training data. 59
4.10 Maximum Drawdown on testing data. 59
4.11 Acceptability Index on training data. 59
4.12 Acceptability Index on testing data. 59

iv

List of Figures

3.1 Evaluation results for neural net training 38
3.2 Acceptability indices comparison . 41
3.3 Sharpe Ratio comparison . 42
3.4 Gain-Loss ratio comparison . 43
3.5 Maximum Drawdown comparison . 44

4.1 Convergence results for neural net training - Actor 57
4.2 Acceptability indices comparison . 61
4.3 Sharpe Ratio comparison . 62
4.4 Gain-Loss ratio comparison . 63
4.5 Maximum Drawdown comparison . 64
4.6 Weight distribution comparison on training and testing dataset for λ = 0.0 65
4.7 Weight distribution comparison on training and testing dataset for λ = 0.5 66
4.8 Weight distribution comparison on training and testing dataset for λ = 0.75 67
4.9 Weight distribution comparison on training and testing dataset for λ = 1.0 68
4.10 Weight distribution comparison on training and testing dataset for λ = 1.5 69

v

Chapter 1

Conic Finance

1.1 Introduction

Much of the theoretical background with regards conic finance can be traced from “Applied

Conic Finance” by Madan and Schoutens[1]. The focus of study here are random variables

X denoting the payoff at some future date, say T. We consider these random variables X

promised at T and defined on a probability space (Ω,F , P) while assuming E[|X|] < ∞.

Such a random variable X is called a risk and we denote the set of these risks as A.

Furthermore, we associate two properties of such sets if they satisfy the corresponding

conditions:

Definition 1. A set of risks A is called

• convex if X,Y ∈ A =⇒ αX + (1− α)Y ∈ A ∀α ∈ [0, 1]

• cone if X ∈ A =⇒ cX ∈ A ∀c ∈ R+

We further define some concepts and properties related to the measures of risk on

this space.

1

Definition 2. A monetary risk measure, denoted by ρ, is a functional on A that

assigns a non-negative real number to a risk. That is,

ρ : A → R+ ∪ {0}

The higher this value ρ(X) is, the riskier the underlying asset is. In addition, this func-

tional must be

1. (Monotonic) X ≤ Y =⇒ ρ(X) ≤ ρ(Y)

2. (Cash invariant) ρ(X + c) = ρ(X) + c

1.2 Acceptable Risks and Coherent Risk Measures

We consider here risk measures introduced by Artzner et. al[2] that satisfy the corre-

sponding properties.

Definition 3 (Arztner et. al). A monetary risk measure ρ : A → R+ ∪ {0} is called

a coherent risk measure if it satisfies the following properties for any non-negative

random variables X,Y ∈ A

1. (Sub-additivity) ρ(X + Y) ≤ ρ(X) + ρ(Y)

2. (Positive homogeneity) ρ(cX) = cρ(X) ∀c ∈ R+

3. (Monotonicity) P (X ≤ Y) = 1 =⇒ ρ(X) ≤ ρ(Y)

Theorem 1 (Arztner et. al). For a given set of probability measuresM, any risk measure

ρ defined as

ρ(X) = sup
Q∈M

EQ[X] (1.1)

2

satisfies the aforementioned properties and, hence, is a coherent risk measure. The

converse is also true, that is, any coherent risk measure must be of this form.

For a convex set of probability measures M and interest rate r, we define a cone

of acceptable risks A as following

A = {Z| exp (−rT)EQ[Z] ≥ 0 ∀Q ∈M} (1.2)

Furthermore, the two primary valuation operators in the two-price economy, the bid price

and the ask price are characterized as following by Madan and Schoutens[1]

bid(X) := exp (−rT) inf
Q∈M

EQ[X] (1.3)

ask(X) := exp (−rT) sup
Q∈M

EQ[X] (1.4)

By the very properties of inf and sup, the bid and the ask price functionals are concave

and convex respectively. This above characterization of the markets as convex cones of

acceptable cash flows lends the adjective “conic” to finance.

1.3 Pricing under two price theory

We start by constructing a market model by specifying a (convex) set M of supporting

measures. The bid and the ask prices can then be calculated by taking infimum and

supremum respectively of the expectations over these support measures. We’ll shift to

using distortions instead of using infimums and supremums, by using a result of Kusuoka’s

[4]. To get there, though, we need a few more concepts and assumptions:

Definition 4. Two risks X,Y are said to be comonotone if they are completely driven

3

by one single factor. That is, if FX and FY are the corresponding cumulative distribution

functions, then there exists an r.v. U on [0, 1] such that X = F−1
X (U) and Y = F−1

Y (U).

Proposition 1. We further have that the bid/ask valuation operators are additive for

comonotone risks. That is, for comonotone risks X,Y

bid(X + Y) = bid(X) + bid(Y) (1.5)

ask(X + Y) = ask(X) + ask(Y) (1.6)

We then say that the bid and ask functionals are comonotone additive.

Definition 5. A concave function Ψ : [0, 1] → [0, 1] on a distribution is called a con-

cave distortion function. Following are the most commonly used distortion functions as

introduced in [1]

1. (MINVAR) ΨMINV AR
λ (u) = 1− (1− u)1+λ λ ≥ 0

2. (MAXVAR) ΨMAXV AR
λ (u) = u

1
1+λ λ ≥ 0

3. (MAXMINVAR) ΨMAXMINV AR
λ (u) =

(
1− (1− u)1+λ)

) 1
1+λ λ ≥ 0

4. (MINMAXVAR) ΨMINMAXV AR
λ (u) = 1−

(
1− u

1
1+λ

)1+λ
λ ≥ 0

The results in [4] lead to the following characterization of bid and ask prices in [1]

Proposition 2. Under the assumptions of a.) comonotone additivity of the bid/ask op-

erators and b) law invariance, the bid/ask prices must be nonlinear expectations under

concave distortions. That is, there must exist a concave distortion Ψ for any risk X with

distribution function FX such that its bid price is given by

bid(X) = exp (−rT)

∫ ∞
−∞

xdΨ(FX(x)) (1.7)

4

Then, using the properties of infimum and supremum, the corresponding ask price can

be calculated using the equation bid(X) = −ask(−X). In terms of integrals, that can be

written as

ask(X) = − exp (−rT)

∫ ∞
−∞

xdΨ(F−X(x)) (1.8)

Furthermore, if we have access to the density of X, the corresponding bid price formula is

bid(X) = exp (−rT)

∫ ∞
−∞

xΨ′(FX(x))fX(x)dx (1.9)

Owing to the fact that distorted expectations are also expectations under a measure

change Ψ′(FX(x)), for x nearing negative infinity or FX(x) nearing zero, we should ideally

have loss aversion by having Ψ′(u) approach positive infinity as u approaches zero. Con-

versely, as x tends to positive infinity (and FX(x) approaches one), we require that Ψ′(u)

approaches zero as u approaches one to ensure against being enticed by large gains. Some

of the concave distortions that have these properties are MINMAXVAR, MAXMINVAR

as introduced earlier. Another distortion function with these properties is the WANG-

TRANSFORM, which we skip for the time being. In the following sections, unless specified

otherwise, the choice of distortion function is fixed to be MINMAXVAR. The underlying

theory remains the same.

1.4 Prices as Distorted Expectations

On may write the standard linear expectation of a risk X as

E[X] =

∫ ∞
−∞

xdFx(x) = −
∫ 0

−∞
Fx(x)dx+

∫ ∞
0

(1− Fx(x))dx

5

A conservative alternative to expectation maximization may be the maximization

of a non-linear expectation weighted more heavily on the left hand side. Such nonlinear

expectations introduced earlier can be denoted in a general form using the notation for

distorted expectations

DΨ[X] =

∫ ∞
−∞

xdΨ(Fx(x)) = −
∫ 0

−∞
Ψ(Fx(x))dx+

∫ ∞
0

(1−Ψ(Fx(x)))dx (1.10)

If X represents a cash flow paid out at time T , then the bid price or the price paid

from the market in return for the cash flow is defined as

bid(X) = exp−rT DΨ[X] (1.11)

The price one pays to the market, or the ask price, is computed using the result that

bid(X) = -ask(-X). If we define Ψ̂(u) = 1−Ψ(1− u), then

bid(X) = exp{−rT}
(
−
∫ ∞

0
Ψ(1− F−x(x))dx+

∫ ∞
0

Ψ̂(1− Fx(x))dx

)
(1.12)

ask(X) = exp{−rT}
(
−
∫ ∞

0
Ψ(1− Fx(x))dx+

∫ ∞
0

Ψ̂(1− F−x(x))dx

)
(1.13)

6

1.5 Distorted expectations as sum of weighted quantiles

Suppose that F : (a, b) → R is an increasing function which is not necessarily strictly

increasing. Let

c := lim
x↓a

F (x)

d := lim
x↑b

F (x)

Definition 6. Given a distribution function FX , we define the inverse function F−1
X and

F−1+
X of FX as

F−1
X (p) := inf{x ∈ R|FX(x) ≥ p} = sup{x ∈ R|FX(x) < p} (1.14)

and,

F−1+
X (p) := inf{x ∈ R|FX(x) > p} = sup{x ∈ R|FX(x) ≤ p} (1.15)

for p ∈ [0, 1], where by convention, inf ∅ = +∞ and sup ∅ = −∞.

Furthermore, given some probability level p, F−1
X (p) is the pth quantile of X which will

now be denoted as q(p). That is,

qX(p) := inf{x ∈ R|FX(x) ≥ p} = sup{x ∈ R|FX(x) < p} (1.16)

This qX is now onward referred to as the quantile function of X.

Theorem 2 (Denuit et al. [5]). Given Ψ is a continuous distortion function, we can

7

re-write the distorted expectation DΨ[X] as the weighted sum of quantiles. That is,

DΨ[X] =

∫
[0,1]

F−1
X (q)dΨ(q) (1.17)

Furthermore, if Ψ is absolutely continuous, then

DΨ[X] = E[F−1
X (U)Ψ′(U)] (1.18)

where U ∼ Uniform[0, 1].

1.6 Discrete Approximation

When working in contexts where we may not have the distribution function coming from

a model, but from data, one may only be able to compute the discrete approximation of

the expectation. Say X is a random variable with the following parametric distribution

X = xi w.p. pi, i = 1, ..., n,

n∑
i=1

pi = 1.

Then the expected value of X is E[X] =
∑
xipi. To compute the corresponding distorted

expectation, we use the following algorithm[1].

1. Sort xi’s: x(1) ≤ x(2) ≤ ...x(n) with the corresponding probabilities p(1), p(2), ..p(n).

2. Compute the cumulative sum function:

F(i) =
i∑

j=1

p(j) = P (X ≤ x(i)) i = 1, ..., n

8

3. Compute the distorted probabilities for a given distortion function Ψ

p̂(i) = Ψ(F(i))−Ψ(F(i−1)) i = 1, ..., n with F (0) = 0

4. Compute the discrete sum as

DΨ[X] =

n∑
i=1

x(i).p̂(i) (1.19)

In uses where we don’t have the continuous distribution functions, but only the parametric

estimates, one may use the above algorithm to approximate the bid and the ask prices of

risks.

1.7 Performance Indicators

For each of the applications we later consider, PNLs are constructed from bootstrapped

trajectories of returns. For pairs trading, each trajectory is constructed in 5 minute inter-

vals, iterated over 79 timesteps to make a trading unit of one day. Furthermore, since our

purpose is to compare the shift in these metrics, we assume for the time being the risk

free return to be zero. For each of these PNL trajectories over the defined duration, we

denote by ri the return for day i = 1, .., N , N being the size of the sample. Then calculate

the following:

9

1.7.1 Sharpe Ratio

Assuming risk free rate to be zero, the Sharpe ratio is computed as the ratio of mean

return per day (µ) and its corresponding standard deviation (σ). Furthermore, this ratio

is annualized by multiplying the square root of 252, the approximate number of trading

days in the year.

SR =
√

252
µ

σ
(1.20)

Trading strategies Sharpe ratio around 2 are usually considered above par.

1.7.2 Gain loss ratio

To compute the gain to loss ratio, we compute the average positive return and average

negative return, and compute their ratio. That is,

average gain =

∑N
i=1 1ri>0ri∑N
i=1 1ri>0

average loss =

∑N
i=1 1ri<0ri∑N
i=1 1ri<0

GL =
average gain

average loss

Trading strategies that may net the Gain loss ratio around 1 nets us more than a fair coin

toss, and may be considered desirable.

1.7.3 Maximum Drawdwon

For each sequence of daily, we have running previous maximums (peaks) and minimums

(trough). Let P denote the peak value before the largest drop in cash flows, and L denote

10

the lowest value before new maximum is reached. Then,

MD =
P − L
L

(1.21)

Conservative traders may want to only trade strategies within 5% range of maximum

drawdown. Others, slightly more adventurous may trade 5%− 10%.

1.7.4 Acceptability index

Considering the cash flows {x1, x2, ...xN}, we use the definition of Acceptability index[1]

as the highest stress level γ under which the cash flows remain acceptable. For a given

concave distortion function Ψ, and using the previously described algorithm to compute

the approximate distorted expectation of cash flows,

AIΨ = arg max
γ>0

{DΨλ [X] ≥ 0} (1.22)

Since Ψ is assumed to be concave, a cash flow with negative expectation can never be

acceptable. By convention, we assign Acceptability Index value of −1 to that case. One

may consider values corresponding to 0.12 to 0.18 above par.

11

Chapter 2

Deep Reinforcement Learning:

Background and Recent Advances

2.1 Introduction

The fundamental principles behind reinforcement learning is setting up the problem in a

manner where there is an agent (an actor that makes the decisions) and a surrounding

environment, and the agent is allowed to improve by repeatedly interacting with the

environment based on the reward signals it receives. Usually in these settings, the aim of

the agent is to maximize the expected utility from any starting point. These interactions

can be modeled as a Markov Decision Process (MD) (X ,A,R, P, γ) as introduced in

Sutton and Barto[6], Puterman[8], Fu et al.[9]. The state space, denoted by X , is the set

of information that the agent sees, and acts upon. The action space, denoted by A is the

collection of all the actions that the agent is allowed to take for any given state. R is the

reward function. Provided by the environment, the reward function allocates a signal to

each state-action pair. P provides the state transition kernel. We denote by P (x′|x, a) the

12

probability of transitioning from x ∈ X to x′ ∈ X when action a ∈ A is taken. Finally, γ

denotes the discount factor associated with the preference for immediate rewards vs. later

rewards. In this setting, each step of the training process consists of the agent selecting

an action based on its current state and the environment responding with a reward and

the next state. The agent then learns from this interaction, and repeats the process while

updating. This iterative process continues till the agent reaches “optimality”.

2.2 Background

We now consider the agent having a certain fixed method of acting, and call it the policy

function. This policy function π : X → A maps each state x ∈ X to an action in A. For

this fixed policy π, we can define the corresponding state value function as

V π(x) := EP,π

[∞∑
t=0

γtRt(xt, at)
∣∣∣x0 = x

]
(2.1)

Similarly, we define the quality of a state action pair as the Q function as the expected

return obtained from taking action a in state x, and then following π as

Qπ(x, a) := EP,π

[∞∑
t=0

γtRt(xt, at)
∣∣∣x0 = x, a0 = a

]
(2.2)

These equations defining the value functions can further be “unrolled” and re-written in

a manner that leads to the Bellman’s equation for the value function

Qπ(x, a) = E[R(x, a)] + γEP,π[Qπ(x′, a′)] (2.3)

13

Since the objective here is to learn the optimal policy and not evaluate particular policies,

we define the optimal policy π∗ as the policy of taking actions in each state that maximize

the expected future returns. Such a policy corresponds to the following value function

Q∗(x, a) = max
π∈Π

Qπ(x, a) ∀(x, a) ∈ X ×A (2.4)

Defined this way, the above optimal Q function satisfies the Bellman optimality equation

and, hence, we have that

Q∗(x, a) = E[R(x, a)] + γEP max
a′∈A

[Q∗(x′, a′)] (2.5)

This equation has a unique fixed point in Q∗, and our algorithm for learning this optimal

value function is hence called Q-learning. The optimal policy π∗ can then be defined as

the following

π∗(.|x) = arg max
a∈A

Q∗(x, a) (2.6)

Q-learning, is then, the fixed point iteration algorithm using the aforementioned Bellman

optimality condition. Going forward, for ease of notation, we define the Bellman operator

T π and the Bellman optimality operator T as following:

T πQ(x, a) := E[R(x, a)] + γEP,π[Qπ(x′, a′)] (2.7)

T Q(x, a) := E[R(x, a)] + γEP max
a′∈A

[Q(x′, a′)] (2.8)

14

2.3 Distributional

An alternate method of formulating a policy is to consider the underlying distributions

rather than the expectations. This leads us to consider the corresponding underlying

random variables of the value functions. With some redundancy involved, let’s consider

(for a fixed policy) the random variable that is the sum of all future rewards starting

from state x and action a, and denote it by Zπ(x, a) =
∑∞

t=0 γ
tRt(xt, at) where x0 =

x, and a0 = a. Then the Q-function defined earlier is nothing but the expectation of

such a random variable. However, the hurdle here is that we can no longer rely on the

Bellman equations to obtain these distributions and, hence, must formulate alternate

ways of learning. This was tackled by the team of Bellmare, Dabney, and Munos [11], who

introduced a distributional analog of the Bellman equations, defining the corresponding

distributional Bellman operator for a fixed policy π to be

T πZ(x, a)
D

:= R(x, a) + γZP,π(x′, a′) (2.9)

2.3.1 Theory

Definition 7. Before delving into the convergence and the corresponding optimality op-

erator, we need to define a metric over distributions that is going to be useful. The p-

Wasserstein metric Wp for p ∈ [1,∞] between two distributions U and Y is given

by

Wp(U, Y) =

(∫ 1

0
|F−1
Y (ω)− F−1

U (ω)|pdω
)1/p

p ∈ [1,∞) (2.10)

and

W∞(U, Y) = sup
ω∈[0,1]

∣∣∣F−1
Y (ω)− F−1

U (ω)
∣∣∣ (2.11)

15

where F−1
Y (ω) := inf {y ∈ R : ω ≤ FY (y)}.

In the distributional context, let Z denote the space of action value distributions

with finite moments.

Z = {Z : X ×A → P(R) : E[|Z(x, a)|p] <∞ ∀(x, a) and p ≥ 1}

Then for two action-value distributions Z1, Z2 ∈ Z, we use the maximal form of the

Wasserstein metric introduced in [11].

d̃p(Z1, Z2) := sup
x,a

Wp(Z1(x, a), Z2(x, a)) (2.12)

Lemma 1. d̃p is a metric over the set of value distributions Z.

Lemma 2. The distributional Bellman operator defined above,T π : Z → Z is a γ-

contraction in d̃p. Furthermore, we can conclude using Banach’s fixed point theorem

that T π has a unique fixed point. By definition, Zπ must be the random variable that

corresponds to Qπ

{Zk}
d̃p→ Zπ 1 ≤ p ≤ ∞ (2.13)

Note: T π is not a contraction in total variation, KL divergence, or Kolmogorov distance.

The above results shows the convergence for a fixed policy π. However, we are

interested in the control setting and obtaining the optimal policy. Let Π denote the set of

all policies. As a placeholder, we can denote by

Π∗∗ = {π ∈ Π|Qπ(x, a) ≥ Qπ′∀(x, a) ∈ X ×A, and for π′ ∈ Π} (2.14)

16

The theory developed here relies on a subset of this aforementioned set of “optimal”

policies, where we get the optimal distributions through fixed point iteration and Π∗ ⊂ Π∗∗

are the policies corresponding to those. As a consequence, not all value distributions with

expectation Q∗ are optimal; they must match the full distribution of the return.

Definition 8. Let Π∗ denote the set of optimal policies. An optimal value distribution,

then, is the value distribution of an optimal policy. The set of optimal value distributions

is

Z∗ = {Zπ∗ : π∗ ∈ Π∗}

Definition 9. A greedy policy π for Z ∈ Z maximizes the expectation of Z. The set of

greedy policies for Z is

GZ := {π :
∑
a

π(a|x)E[Z(x, a)] = max
a′∈A

E[Z(x, a′)]}

The Bellman optimality operator for Q is

T Q(x, a) = E[R(x, a)] + γEP [maxa∈AQ(x′, a′)]

The corresponding distributional optimality operator for Z is any operator that imple-

ments a greedy selection rule T Z = T πZ for some π ∈ GZ where we want the sequence of

iterates Zk+1 := T Zk with Z0 ∈ Z.

Lemma 3. Let Z1, Z2 ∈ Z. Then

||E[T Z1]− E[T Z2]||∞ ≤ γ||E[Z1]− E[Z2]||∞

17

and in particular, E[Zk]→ Q∗ exponentially quickly.

Definition 10. A non-stationary optimal value distribution (NOVD) Z∗∗ is the value

distribution corresponding to a sequence of optimal policies. The set of NOVD is Z∗∗

Theorem 3. Let X be measurable and suppose that A is finite. Then

lim
k→∞

inf
Z∗∗∈Z∗∗

d̃p(Zk(x, a), Z∗∗(x, a)) = 0 ∀x, a

If X is finite, then Zk converges to Z∗∗ uniformly. Furthermore, if there is a total ordering

≺ on Π∗ such that for any Z∗ ∈ Z∗, T Z∗ = T πZ∗ with π ∈ GZ∗, π ≺ π′ ∀π′ ∈ GZ∗ \ {π},

then T has a unique fixed point Z∗ ∈ Z∗

This above result shows that we have a weak convergence under the distributional

analog of Bellman optimality equation. This can be used to then find the underlying

optimal distribution and choose the optimal policy accordingly.

18

Algorithm 1: Distributional Algorithm for Q-learning:

input: A transition x, a, r, x′, γ ∈ [0, 1]

Compute Q(x′, a′) = E[Z(x′, a′)] ∀a′

a∗ ← arg maxa′ Q(x′, a′)

Implement the distributional Bellman update

Z̃(x, a)← r(x, a) + γZ(x′, a∗)

output: Wp(Z(x, a), Z̃(x, a)) #the Wasserstein distance

2.4 QR implementation

2.4.1 Quantile Regression

Introduction

Since minimizing the Wasserstein based loss function is difficult to implement with stochas-

tic gradient descent, instead the algorithm introduced in the original paper by Bellamare

et al. [11] on distributional learning was developed for minimizing the KL divergence on

a sequence of projected distributions. The projected distributions were called C-51 (51

for the choice of atoms the distribution was projected upon). More suited to our needs,

and also shown to outperform the C-51 method is the one based on quantile regression

introduced in a follow up paper by Bellamare et al.[12]. The approach introduced here is

19

built upon estimating the approximate quantile distribution instead.

Background

Let Z be the space of value distributions with finite moments. That is, Z = {Z : X ×A →

P(R)|E[|Z(x, a)|p] <∞∀(x, a), p ≥ 1}. We now let ZQ the space of quantile distributions

for a fixed N ∈ N where N is the number of quantiles, and denote the corresponding

cumulative probabilities as τi = i
N for i = 1, ..., N , and τ0 = 0. Then, a distribution

Zθ ∈ ZQ is a mapping of each state-action pair (x, a) to a uniform probability distribution

supported on {θi(x, a)}. That is,

Zθ(x, a) :=
1

N

∑
δθi(x,a) (2.15)

The advantages of this variation of projecting include not being restricted to pre-specified

bounds in reward space, in addition to the ease of computation of distorted expectation

that we’ll later use.

We further denote by ΠW1 , for an arbitrary distribution Z ∈ Z, as the minimizer of

the 1-Wasserstein distance in the projected space.

ΠW1
:= arg min

Zθ∈ZQ
W1(Z,Zθ) (2.16)

Let Y be a distribution with a bounded first moment and U a uniform distribution

over N diracs as defined earlier with support {θ1, ...θN}. Then,

W1(Y,U) =

N∑
i=1

∫ τi

τi−1

|F−1
Y (ω)− θi|dω (2.17)

20

Lemma 4. For any τ, τ ′ ∈ [0, 1] with τ < τ ′ and cumulative distribution function F with

inverse F−1, the set of θ ∈ R minimizing

∫ τ ′

τ
|F−1
Y (ω)− θi|dω (2.18)

is given by
{
θ ∈ R|F (θ) =

(
τ+τ ′

2

)}
. Therefore, the values of {θi, ..., θN} that minimize

W1(Y,U) are given by θi = F−1
Y (τ̂i) where τ̂i = τi−1+τi

2

Lemma 5. The value of the quantile function F−1
Z (τ) for a given a distribution Z and a

quantile τ is also the minimizer of the quantile regression loss.

LτQR(θ) := EẐ∼Z [ρτ (Ẑ − θ)]

where ρτ (u) = u(τ − δ{u<0}), ∀u ∈ R

Correspondingly, the values {θi, ..., θN} minimizing W1(Z,Zθ) are also the minimizers of

the following loss function

N∑
i=1

EẐ∼Zθ [ρτ̂i(Ẑ − θi)] (2.19)

.

However, it is to be noted that the quantile regression loss is not smooth at zero.

21

So instead, to alleviate this issue, the modified Huber loss function is considered.

Lκ(u) =


1
2u

2 if |u| ≤ κ

κ(|u| − 1
2κ) otherwise

(2.20)

ρκτ (u) = |τ − δ{u<0}|Lκ(u) (2.21)

2.4.2 Implementation

Proposition 3 (Bellamare et.al[12]). Let ΠW1 be the quantile projection defined as above,

and when applied to value distributions gives the projection for each state-value distribu-

tion. For any two value distributions Z1, Z2 ∈ Z for an MDP with countable state and

action spaces

d̃∞(ΠW1T πZ1,ΠW1T πZ2) ≤ γd̃∞(Z1, Z2) (2.22)

We therefore conclude that the combined operator ΠW1T π has a fixed point Ẑπ and the

repeated application of this operator (or its stochastic approximation) converges to Ẑπ.

Additionally, since d̃p ≤ d̃∞, we conclude that the convergence occurs for all p ∈ [1,∞]

22

Algorithm 2: Quantile Regression Algorithm: Q-learning:

Require: N - number of quantiles, κ - Huber loss hyperparameter, θi(x, a) ≈

F−1
Z(x,a)(τ̂i)

input: A transition x, a, r, x′, γ ∈ [0, 1)

Compute the projection of T zj

Q(x′, a′) :=
∑

j qjθj(x
′, a′)

a∗ ← arg maxa′ Q(x′, a′)

T θj ← r + γθj(x
′, a∗) ∀j

Compute the quantile regression loss from (2.21).

ρκτ (u) = |τ − δ{u<0}|Lκ(u)

output:
∑N

i=1 Ej
[
ρκτ̂i(T θj − θi(x, a))

]

2.5 Policy Gradient Methods

2.5.1 Introduction

In the context of learning the optimal behavior in a stochastic environment modeled as an

Markov Decision Process (MDP), we explored the methods to do so indirectly through the

optimal state action value function. This may be a feasible approach for applications with

23

discrete action space. However, in applications with continuous action space, the problem

may become infeasible owing to high optimization cost of searching over the whole action

space. This challenge can then be tackled by learning the policy function directly using

the policy gradient methods. A parameterized policy πθ can be used to select an action

for each state x ∈ X , which can be improved in the course of training to pick the optimal

actions.

2.5.2 Policy Gradient Methods

We start by denoting the transition density of moving from state x to x′ in time t by p(x→

x′, t, π). And observe that the integral
∫
S
∑∞

t=1 γ
t−1p1(x)p(x, x′, t, π)dx can be written as

ρπ(x′). Since the main goal of the agent is to maximize the cumulative discounted expected

reward from a starting state x ∈ X , we can write the objective function with respect to

the policy parameter θ as the following

J(θ) =

∫
X
ρπ(x)

(∫
A
πθ(x, a)r(x, a)da

)
dx = Ex∼ρπ ,a∼πθ [Q(x, a)] (2.23)

For the objective function J(θ) where the policy function is stochastic, we can use

the following theorem from Sutton[6] in our training algorithm to learn the policy.

Theorem 4 (Stochastic Policy Gradient). For a policy π parameterized by θ, the gradient

can be written as the following:

∇θJ(πθ) =

∫
S
ρπ(s)

(∫
A
∇πθ(a|s)Qπ(s, a)da

)
ds

= Es∼ρπ ,a∼πθ [∇θ log(πθ(a|s))Qπ(s, a)] (2.24)

Since the policy gradient depends on knowing the value function, we may further

24

parameterize the value function as Qπω(a|x) and learn it simultaneously. This approach, of

learning the policy and value function simultaneously, is called the actor-critic method.

The above theorem remains unchanged for the value approximator, and training step

expands into two main steps: first, the critic updates the value function parameters ω

based on the training sample. Then the updated critic is used to compute the policy

gradient and update the parameters accordingly. This two-pronged approach of training

the interacting approximators is a quick learning tool, which can, upon culmination of the

training algorithm yield both the value function and the corresponding policy function.

Under suitable conditions, this approximator can be used to formulate the gradient as

follows:

∇θJ(πθ) = Es∼ρπ ,a∼πθ [∇θ log(πθ(a|s))Qw(s, a)] (2.25)

Things were trickier for policy gradient under the deterministic policy. It wasn’t

clear if the gradient even existed for such a policy until a proof of existence and consis-

tency was given by Silver [15]. Under the assumption of a deterministic policy function

parameterized by θ as µθ : X → A, the following theorem gives us the framework for steps

forward.

Theorem 5 (Deterministic Policy Gradient). Under suitable conditions, the gradients

∇θµθ(s) and ∇aQµ(s, a) exist and that the deterministic policy gradient exists and is

given as

∇θJ(µθ) =

∫
S
ρµ(s)∇θµθ(s)∇aQµ(s, a)|a=µθ(s) ds

= Es∼ρµ [∇θ log(µθ(s))∇aQµ(s, a)|a=µθ(s)] (2.26)

Just like before, the actor-critic method can be molded accordingly with a determin-

25

istic policy using the aforementioned theorem to compute the actor critic. This method

was illustrated in the paper by Lillicrap et al. [16] using neural net approximators for the

policy and value functions. For the corresponding critic update, the DDPG paper uses

the objective as minimization of the TD error given by

L(w) = Eρ
[(
Qw(x, a)− Tπθ′Qw′(x, a)

)2]
(2.27)

Following the development in the usage of deterministic policy, and improvement in the

results showcased in DDPG and Distrbutional DQN, the authors of D4PG[17] combined

the two concepts and introduced distributional gradient in the critic in addition to paral-

lelism. Since Qπ(x, a) = E[Zπ(x, a)], we can rewrite this using distributional Bellman and

the corresponding loss function to be minimized for the critic becomes

L(w) = Eρ
[
d
(
Zw(x, a), Tπθ′Zw′(x, a)

)]
(2.28)

where d distributional TD error introduced by Bellamare et al.[12]. Stripping away the

parallelism component, the algorithm is as follows

26

Algorithm 3: D4PG:

1. input: batch size M, trajectory length N, exploration constant ε, initial learning rates
α0 and β0, distributional learning parameter NQUANTS . Then define τj = j/NQUANTS for
j = 0, ..., NQUANTS .

2. Initialize network weights (θ, ω) at random

3. Initialize target weights (θ′, ω′)← (θ, ω)

4. for t= 1,...,T do

5. Sample M transitions (xi:i+N ,ai:i+N−1, ri:i+N−1) of length N from replay with the
priority pi

6. Construct the target distributions Yi =
(∑N−1

n=0 γ
nri+n

)
+

γNZω′(xi+N , πθ′(xi+N))

7. E[∇aZω(xi,a)]|a=πθ(xi)

=
∑NQUANTS
i=1 [τi − τi−1]∇aZω(xi,a)|a=πθ(xi)

8. Compute the actor and critic updates

δω =
1

M

∑
j

∇ωd(Yj , Zω(xj ,aj))

δθ = ∇θ
1

M

M∑
j=1

NQUANTS∑
i=1

[τi − τi−1]Zω(xi,j ,a)|a=πθ(xi,j)

=
1

M

M∑
j=1

NQUANTS∑
i=1

∇θπθ(xi,j)E[∇aZω(xi,j ,a)]

∣∣∣∣∣∣
a=πθ(xi,j)

10. Update the network parameters θ ← θ + αtδθ, ω ← ω + βtδω

11. If t = 0 mod ttarget, update the target networks (θ′, ω′)← (θ, ω)

12. If t = 0 mod tactor, replicate the network weights to the actor

13. end for

14. return policy parameters θ

Actor

1. repeat

2. Sample action a = πθ(x) + εN (0, 1)

3. Execute action a, observe reward r and state x′

4. Store (x,a, r,x′) in replay

5. until learner finishes.

27

Chapter 3

Conic Q-learning

3.1 Motivation

We go back to the de-construction and reconstruction of value functions using value dis-

tributions; for a fixed policy π, the cumulative discounted return as a random variable

Zπ =
∑∞

t=0 γ
tRt. Using this definition, we defined our standard value functions V (x) and

Q(x, a) as the respective conditional linear expectations.

In the context of conic finance, where Z(x, a) may represent a cash flow starting from

state-action pair (x, a), we are more interested in maximizing the bid price of this cash

flow. Doing so requires us to formulate the corresponding value functions a bit differently

than the standard literature.

3.2 Constructing the conic value functions

We rely on constructing the corresponding nonlinear expectations computed using conic

distortion function MINMAXVAR, and analogously define the new conic value func-

28

tions: Wλ(x) the conic value function of starting in state x,

W π
Ψλ

(x) := DΨ
λ [Zπ(x)] = DΨ

λ

[∞∑
t=0

γtRt(xt, at)
∣∣∣x0 = x

]
(3.1)

and Kλ(x, a) the conic Q function of starting with state-action pair (x, a).

Kπ
Ψλ

(x, a) := DΨ
λ [Zπ(x, a)] = DΨ

λ

[∞∑
t=0

γtRt(xt, at)
∣∣∣x0 = x, a0 = a

]
(3.2)

We denote the distortion parameter by λ to avoid confusing it with the discount rate. Since

λ = 0 corresponds to linear expectations, notice that V π(x) = W π
Ψ0

(x) and Qπ(x, a) =

Kπ
Ψ0

(x, a).

3.3 Bid-optimal policy

The big hurdle remains that in order to maximize such a non-linear expectation, the

standard approach of TD learning[7] is rendered ineffective due to the lack of additivity

of nonlinear expectations. In this case, having access to the underlying value distribution

is a possible work around to that problem.

Again, using the conic value function defined above, we can define the larger place-

holder set of “optimal” policies as

Π∗∗Ψλ = {π ∈ Π|Kπ
Ψλ

(x, a) ≥ Kπ′
Ψλ
∀(x, a) ∈ X ×A, and for π′ ∈ Π} (3.3)

The set we want to get to is Π∗ ⊂ Π∗∗, the policies corresponding optimal value distribu-

tions with expectation K∗Ψλ and matching the full distribution of the return.

Definition 11. Given the state space X , and a finite action space A, the bid-greedy

29

policy function in conic finance may be defined as picking action that maximizes the bid

price of cash flows received from that state onwards. That is,

π∗(.|x) = arg max
a

K∗Ψλ(x, a) (3.4)

where K∗Ψ corresponds to the nonlinear expectation of an optimal value distribution Z∗.

Although the underlying random variable may not be unique, we can still perceive

K∗Ψ as optimal nonlinear value function.

K∗Ψλ(x, a) = DΨ
λ [Z∗(x, a)] (3.5)

3.4 Remarks on consistency

The underlying approach here is developed here for a time-homogeneous Markov Decision

Process. There is no pre-commitment to actions at a later point, but only an adherence to

the notion of optimality defined for each state. For an application like pairs-trading, one

step transitions when considered as the full episode lead to the objective of conservatively

maximizing the reward in that step and moving on to the next state, wherein the agent

has a different concept of optimality. However, if one were to use time dependence, the

construction of our objective function would fail to be dynamically consistent as defined

by Artzner et al.[25]. If we had a random sequence of payoffs {Zt}Tt=0 dependent on the

policy over a set of consecutive periods T = {0, 1..., T}, one would like to find a policy π

so as to fulfill the following objective

max
π∈Π

D [Zπ0 + γD [Zπ1 + ...]] (3.6)

30

Future works optimizing for this objective could use the distributional analog of Bellman

update with further motivation from works by Boda et al.[26] and Shapiro[27]. One may

also explore other weaker forms of consistency discussed by Roorda and Schumacher [28].

3.5 Implementation

The risk averse Q-learning algorithm can be implemented by undertaking the distribu-

tional Bellman update, and then following the bid-greedy policy.

Algorithm 4: Distributional Algorithm for Conic Q-learning:

input: A transition x, a, r, x′, γ ∈ [0, 1]

Compute Kλ(x′, a′) = Dλ[Z(x′, a′)] ∀a′

a∗ ← arg maxa′ Kλ(x′, a′)

Implement the distributional Bellman update

Z̃(x, a)← r(x, a) + γZ(x′, a∗)

output: Wp(Z(x, a), Z̃(x, a)) #the Wasserstein distance

However, the implementation challenges require us to switch up and use the quantile

regression algorithm as defined earlier. It is computationally convenient that the distorted

expectations can be re-written in terms of the quantiles, as characterized by Dhaene et al.

[5].

31

Algorithm 5: Distributional Algorithm for Conic Q-learning using quantile regression:

Require: N - number of quantiles, κ - Huber loss hyperparameter, θi(x, a) ≈

F−1
Z(x,a)(τ̂i)

input: A transition x, a, r, x′, γ ∈ [0, 1]

Compute the projection of T zj

Kλ(x′, a′) :=
∑

j p̂jθj(x
′, a′) where p̂j = Ψ(qj)−Ψ(qj−1)

a∗ ← arg maxaK(x′, a)

T θj ← r + γθj(x
′, a∗) ∀j

Compute the quantile regression loss.

ρκτ (u) = |τ − δ{u<0}|Lκ(u)

output:
∑N

i=1 Ej
[
ρκτi(T θj − θi(x, a))

]

3.6 Application: Pairs Trading

3.6.1 Introduction

Pairs trading is a well known trading strategy in hedge funds and investment banks.

Based on a simple concept, its considered a special case of “statistical arbitrage” wherein

one takes opposite positions in two stocks simultaneously based on some predetermined

32

principle, and then unwinds the position later. The idea is that the two stocks are chosen

based on historical data displaying little deviation in their price difference (or spread).

If one believes that the deviation, over long term, is mean reverting and consistent, any

divergence in the spread can be treated as a trading signal. By buying the decreasing stock

(long position), and simultaneously selling (short position) the increasing stock, one can

hope to generate a profit when the spread reverts to the mean. Developed in the 1980’s as

a “market neutral” trading strategy, pairs trading has been a cornerstone of quant based

investment strategies, and further history can be found in Gatev et al.[23].

The implementation of this simple process can vary a lot. The two main steps i) finding

two stocks that move together, and ii) determining the entry and exit criteria can both

vary according to the trader preferences. One may devise simple tests or rules on the

historical data, or model the spread as a mean reverting stochastic process and implement

those rules on the process parameters. One such approach can be found in Elliot et al.[24]

wherein they propose a mean reverting Gaussian Markov chain model for the spread.

However, the thresholds for entry and exit strategies in addition to the problem of picking

the two stocks to trade remains an unsettled question.

As an application of RL in the conic finance universe, we consider the problem of pairs

trading. Furthermore, we choose here to be model agnostic and refrain from modeling

the spread as a stochastic process. Instead we look at solving the dilemma of picking the

stocks to trade in as well as determining the entry signal. This is done by letting our

Reinforcement Learning agent make both those decisions.

33

3.6.2 Setting up the problem

Objective

We consider the events defined on a probability space (Ω,F , P) and consider an infinite

sequence of payoffs {Zt}t≥0 over a set of consecutive periods T = {0, 1..., }. The relevant

cash flow at each time step t is the reward earned on the gross underlying notional amount.

Under this setting, our objective is be to find the policy that, in each timestep τ , maximizes

the bid price of sum of discounted cash flows from that step onwards. If the cash flows

are determined by the choice of actions a ∈ A, the pairs and positions chosen to trade in,

our objective can, hence, be written as the following:

max
at∈A

DΨ

∑
t≥τ

γt−τZt

 , ∀τ ≥ 0 (3.7)

Modeling this as a time-homogeneuos MDP, the issue of time-consistency doesn’t arise; in

a world where the uncertainty resolution may change the nature of the underlying policy,

and the agent may be retrained, the objective fulfills some sense of risk averse optimality.

The objective, then, is to maximize the bid price of the cash flows received from trading

equities over fixed horizons in each time step. Since the action space is finite, this is an apt

problem to showcase Q-learning on. In order to train this agent, we model the interaction

as an MDP (X ,A, R, P).

State space - X

The training domain of the problem is restricted to minute interval price data over eleven

stocks and ETFs; AAPL, JNJ, INTC, IBM, GE, MSFT, ORCL, XLF, XLE, XLV, XLY.

We then train various trading agents for a choice of the stress parameter λ = 0 values in

34

our objective function. The state space is encoded with the price history, represented in

three features (Close, High, Low), of these 11 holdings over the last 5 time steps. This gives

a training sample of dimension 3 × 11 × 5. Furthermore, the price history is normalized

over the feature space, across the stocks. For a given feature k, the feature value fij for

equity i and step j is encoded as

f̂ijk =
fijk∑N
i fijk

.

We consider the period 08/08/2019 - 08/16/2019 as the training period, and 08/19/2019

- 08/26/2019 as the testing period.

Action space - A

We let our agent pick the stocks and direction to trade in. For the general case of N

stocks, each action a ∈ A ⊂ RN

aij = (a1, a2, ..., aN); ak =



1, k = i

−1, k = j

0, else

Since N = 11, A is a discrete set of 110 elements. That’s is the depth of action space

in our application. We skip the exit strategy aspect and automatically unwind after 5

timesteps to maintain a pliable action space.

Reward function - R

For each action a ∈ A, we have two simultaneous equity trades in opposite directions.

We consider those actions 1 and −1 as dollars invested, so this is a zero cost trading

35

strategy. Letting rP and rN denote the net absolute returns on the underlying 1 dollar

in each direction, observe that the net return on the gross notional is (rP + rN)/2. This

is the per step reward of the state-agent interaction. Now given that r1, r2, ..., rM are the

step returns for M steps in a day, the daily return is arrived at by compounding these M

returns. That is,

r̃ =

M∏
i=1

(1 + ri)− 1 (3.8)

3.6.3 Neural Net architecture and implementation remarks

The original DQN paper by Mnih et al.[20] had great success with Atari games using

Convolutional Neural Networks. The further improvements made in the distributional

reinforcement learning literature built on that architecture, and modified only the final

layer to be atoms of projected distribution. Therefore, we stick with Conv2D neural nets

for this simple application and explore the performance. For exploration purposes, the

agent is designed to be ε−greedy. We start with ε = 1 and gradually take it to 0.01 over

half a million steps. This is helpful in solving the exploration vs. exploitation dilemma

[6].

36

DCNN(

(dconv): Sequential(

(0): Conv2d(3, 16, kernel size=(1, 2), stride=(1, 1))

(1): ReLU()

(2): Conv2d(16, 16, kernel size=(1, 2), stride=(1, 1))

(3): ReLU()

(4): Conv2d(16, 16, kernel size=(1, 2), stride=(1, 1))

(5): ReLU()

(6): Conv2d(16, 16, kernel size=(1, 2), stride=(1, 1))

(7): ReLU())

(fc): Sequential(

(0): Linear(in features=1056, out features=256, bias=True)

(1): ReLU()

(2): Linear(in features=256, out features=22000, bias=True)))

Table 3.1: 2D Convolutional Network for Distrbutional Learning using QR

3.6.4 Results

We compare the optimization performance of agents trained using conic Q-learning with

different distortion parameter values. In addition, an agent is also trained using the

standard Q-learning algorithm with all else constant.

37

Distortion parameter for Q-nets
λ td-Q 0.0 0.25 0.5 1.0

mean-reward 13.330 27.649 19.049 21.772 16.845
minutes 180.256 1505.788 1887.677 1325.482 1765.126
training steps 2275.00k 2540.44k 2577.46k 2325.35k 2469.20k

Table 3.2: Convergence of 10 step moving average of mean reward for Q nets. Training done on
8 GB NVIDIA GeForce GTX 1650.

Figure 3.1: Evaluation results for neural net training

However, it is not enough to look at the average rewards in the financial context.

The following tables and images showcase the difference in metrics of actual financial

performance. The trained neural net is then tested on the training and test datasets by

computing the trading performance on randomly sampling states, and their corresponding

actions and rewards. We consider 2000 such samples of size 50 each. Starting with

dollar capital at time t = 0, the random returns are accumulated, thereby constructing

a trajectory of daily profits and losses for 50 timesteps. These 2000 random trajectories

are then evaluated in terms of various financial metrics; we report Sharpe Ratio, Gain-

Loss ratio, Maximum Drawdown, and Acceptability indices. First, the tables provide

38

pre-specified quantile levels of each of these metrics on both the training and testing data.

Quantiles
λ 1% 25% 50% 75% 99%

TD-Q -2.292 1.503 2.964 4.149 7.044
0.0 -2.024 2.084 3.281 4.359 6.821
0.25 -2.159 2.035 3.159 4.157 7.052
0.5 -0.730 2.936 3.893 4.755 7.374
1.0 -1.525 2.231 3.368 4.305 7.087

Table 3.3: Sharpe Ratio on training data.

Quantiles
λ 1% 25% 50% 75% 99%

TD-Q -2.040 1.493 3.018 4.199 7.203
0.0 -2.241 2.034 3.319 4.375 6.927
0.25 -2.442 1.916 3.214 4.214 7.075
0.5 -0.558 2.959 3.923 4.877 7.754
1.0 -1.671 2.395 3.402 4.368 6.981

Table 3.4: Sharpe Ratio on test data.

Quantiles
λ 1% 25% 50% 75% 99%

TD-Q 0.515 1.014 1.395 1.896 3.892
0.0 0.598 1.249 1.680 2.278 4.622
0.25 0.609 1.198 1.630 2.299 4.863
0.5 0.701 1.457 2.022 2.920 6.266
1.0 0.710 1.323 1.843 2.591 5.630

Table 3.5: Gain Loss ratio on training data.

Quantiles
λ 1% 25% 50% 75% 99%

TD-Q 0.510 1.020 1.413 1.935 4.450
0.0 0.628 1.196 1.647 2.233 4.727
0.25 0.589 1.167 1.602 2.286 4.865
0.5 0.741 1.490 2.057 2.881 6.185
1.0 0.697 1.333 1.877 2.620 5.599

Table 3.6: Gain Loss ratio on test data.

It can be observed from the quantiles that there is a clear shift to the right in the

Maximum Drawdown metric, implying the fulfillment of our risk-averse objective. These

results also carry over to the test data.

39

Quantiles
λ 1% 25% 50% 75% 99%

TD-Q 0.545 1.493 2.222 3.358 7.512
0.0 0.563 1.374 1.969 2.767 5.974
0.25 0.402 0.855 1.249 1.827 4.297
0.5 0.316 0.608 0.851 1.240 2.655
1.0 0.346 0.685 0.998 1.455 3.141

Table 3.7: Maximum Drawdown on training data.

Quantiles
λ 1% 25% 50% 75% 99%

TD-Q 0.648 1.501 2.250 3.423 7.437
0.0 0.545 1.420 1.994 2.820 5.897
0.25 0.384 0.848 1.267 1.855 4.044
0.5 0.305 0.603 0.850 1.250 2.561
1.0 0.328 0.702 0.987 1.435 3.127

Table 3.8: Maximum Drawdown on test data.

Quantiles
λ 1% 25% 50% 75% 99%

TD-Q -1.000 0.065 0.138 0.219 0.475
0.0 -1.000 0.092 0.164 0.246 0.468
0.25 -1.000 0.089 0.162 0.246 0.477
0.5 -1.000 0.148 0.237 0.328 0.557
1.0 -1.000 0.101 0.183 0.264 0.497

Table 3.9: Acceptability Index on training data.

Quantiles
λ 1% 25% 50% 75% 99%

TD-Q -1.000 0.062 0.141 0.220 0.471
0.0 -1.000 0.089 0.165 0.242 0.475
0.25 -1.000 0.080 0.164 0.249 0.474
0.5 -1.000 0.154 0.237 0.327 0.554
1.0 -1.000 0.113 0.190 0.263 0.501

Table 3.10: Acceptability Index on test data.

40

(a) Training data

(b) Testing data

Figure 3.2: Acceptability indices comparison

41

(a) Training data

(b) Testing data

Figure 3.3: Sharpe Ratio comparison

42

(a) Training data

(b) Testing data

Figure 3.4: Gain-Loss ratio comparison

43

(a) Training data

(b) Testing data

Figure 3.5: Maximum Drawdown comparison

44

Chapter 4

Deterministic policy gradient and

distorted least squares

4.1 Motivation

Mean squared error (MSE), as a loss function, is one of the standard choices one may use for

training prediction and forecasting algorithms. However, there may be applications where

one may not want to be direction agnostic to the error and, instead, prefer to directionally

pursue the target. This direction specific forecasting or prediction, hence, must modify the

respective loss function. Owing to the literature by Madan and Schoutens[3], we have what

is called the distorted mean squared error. Herein, the statistical probabilities on one side

are inflated while deflating the probabilities on the other side. Done so using distortion

functions on the cumulative distribution functions, the solution to such a distorted least

squares optimization, as a consequence, is biased. We try and use actor-critic method with

distributional networks to minimize such a loss function. However, such an optimization

needs novel methods for the primal problem owing to the lack of gradient on the sorting

45

operation we end up using in our distortion application. In the following sections, we

explore the application of Policy Gradient methods using Distributional Reinforcement

Learning for those. We summarize the performance by comparing the algorithm on a

financial problem pertaining ETFs.

4.2 Constructing the new loss function

We discuss here the approach of distorted least squares as introduced Madan and Schoutens[3].

The starting point of this discussion is to consider the span of parameterized function fθ(x)

such that a sequence of target outcomes yi can be predicted based on observed features xi

as y = fθ(x))+ ε. The standard approach of solving this prediction problem is to optimize

for θ so that some scalar multiple of the mean squared distance,

1

N

N∑
i

(yi − fθ(xi))2 (4.1)

is minimized, say for some optimal θ∗. This was shown to be the minimizer of the euclidean

distance to the conditional expectation g(x) := 1
N

∑N
i yi on the manifold defined by fθ(x).

In order to obtain such a minimizer on a conditional expectation obtained using distorted

expectations, we refer to the following construction

• For a random variable Y , obtain the respective target quantiles as qi = 1
N

∑N
j 1yj≤yi

• Define the distorted weights from quantiles as wi := Ψ(qi) − Ψ(qi − 1
N), for some

concave(convex) distortion function Ψ.

46

• Define the conditional distorted expectation of Y

GΨ(Y) :=
N∑
i

yiwi (4.2)

• For the prediction problem, response variable y being estimated by a parametrized

function fθ(x), the ith residual is ri,θ = yi − fθ(xi).

The corresponding distorted least squares problem then is of minimizing, w.r.t. θ,

DMSE(θ) =

N∑
i

wi(yi − fθ(xi))2 =

N∑
i

wir
2
i,θ = DΨ(R2) (4.3)

The choice of Ψ, obviously, dictates the kind of distorted expectation we are aiming for.

The intuition is that the minimizer here, fθ∗(x), is the point on the manifold of fθ(x) that

is closest to the conditional distorted expectation, as opposed to the conditional linear

expectation. The choice of Ψ, obviously, dictates the kind of distorted expectation we are

aiming for.

4.3 Implementation using Distributional Reinforcement Learn-

ing

In this section, we demonstrate a method for approximately minimizing distorted least

squares. Upon building the general notation, and making some design choices, we explore

the results of such an approach to efficiently track an ETF.

As reviewed earlier, distributional deterministic policy gradient based actor-critic methods

give us access to the underlying distribution, which can be used to optimize for distorted

expectations. We learn the approximate value function Q(s, a) and the ideal policy func-

47

tion π(.|x) simultaneously, both represented by neural networks. We approximate the

value function as before and compute the gradients to update the policy function µθ by

gradient ascent, and then the value function. This interweaving method eventually leads

to convergence to policy µ that maximizes the objective function J , or minimizes the

distorted mean squared error. Crucial to this work was the DPG theorem since the

characterization of the gradient doesn’t need integration over action spaces and may, as a

consequence, require fewer samples to train.

48

Algorithm 6: Distributional Distorted Policy Gradient:

1. input: batch size M, trajectory length N, exploration constant ε, initial learning rates α0

and β0, distributional learning parameter NileS , and the distortion function Ψ.. Then define
τj = j/NQUANTS for j = 0, ..., NQUANTS .

2. Initialize network weights (θ, ω) at random

3. Initialize target weights (θ′, ω′)← (θ, ω)

4. for t= 1,...,T do

5. Sample M transitions (xi:i+N ,ai:i+N−1, ri:i+N−1) of length N from replay with the
priority pi

6. Construct the target distributions Yi =
(∑N−1

n=0 γ
nri+n

)
+

γNZω′(xi+N , πθ′(xi+N))

7. E[∇aZ
2
ω(xi,a)]

∣∣
a=πθ(xi)

=
∑NQUANTS
i=1 [Ψ(τi)−Ψ(τi−1)]∇a(Z

Ψ(τi)
ω (xi,a)|a=πθ(xi))

2

8. Compute the actor and critic updates

δω =
1

M

∑
j

∇ωd(Yj , Zω(xj ,aj))

δθ = −∇θ
1

M

M∑
j=1

NQUANTS∑
i=1

[Ψ(τi)−Ψ(τi−1)] (ZΨ(τi)
ω (xi,j ,a)|a=πθ(xi,j))

2

= − 1

M

M∑
j=1

NQUANTS∑
i=1

∇θπθ(xi,j)E[∇aZ
2
ω(xi,j ,a)]

∣∣∣∣∣∣
a=πθ(xi,j)

9. Update the network parameters θ ← θ + αtδθ, ω ← ω + βtδω

10. If t = 0 mod ttarget, update the target networks (θ′, ω′)← (θ, ω)

11. If t = 0 mod tactor, replicate the network weights to the actor

12. end for

13. return policy parameters θ

Actor

1. repeat

2. Sample action a = πθ(x) + εN (0, 1)

3. Execute action a, observe reward r and state x′

4. Store (x,a, r,x′) in replay

5. until learner finishes.

49

4.3.1 Further Remarks

1. Although τ are uniform and represent the probabilities of the corresponding quantile

values, we apply Ψ to it based on the λ value. This reweighting of the quantiles allows

us to use the result by Dhaene and compute the approximate distorted expectation.

2. The neural nets are trained using the ADAM algorithm.

3. The agent AgentD4PG is defined to be a noisy agent to accompany the deter-

ministic actor. Doing so ensures sufficient exploration and convergence of the corre-

sponding approximation functions.

4.4 Application of DLS: tracking an ETF

ETF trading has grown tremendously over the last decade, offering consumers an easy

way of replicating and implementing quant strategies. Some of the most frequently traded

ETFs and their top 10 composite equities are given in the table below.

SPY MSFT AAPL AMZN FB BRK/B GOOG JPM GOOGL JNJ V
21.55 4.28 3.74 3.05 1.81 1.59 1.49 1.47 1.45 1.37 1.3

XLE XOM CVX COP SLB EOG PSX OXY KMI MPC VLO
77.42 23.27 21.5 5.78 4.52 4.23 4.02 3.88 3.79 3.32 3.11

XLB LIN ECL DD APD SHW NEM PPG BLL DOW LYB
65.491 15.48 7.89 7.8 7.48 6.54 4.89 4.21 4.04 3.85 3.31

XLY AMZN HD MCD SBUX NKE LOW BKNG TJX TGT GM
65.75 21.79 11.17 7.38 5.1 4.9 3.95 3.75 2.99 2.47 2.25

XLV JNJ MRK UNH PFE ABT MDT AMGN TMO ABBV LLY
50.62 9.99 6.54 6.39 5.95 4.46 4.28 3.72 3.47 2.93 2.89

XLF BRK/B JPM BAC WFC C AXP CME USB CB GS
54.78 12.52 11.52 7.74 6.02 4.81 2.59 2.52 2.52 2.32 2.22

Table 4.1: Breakdown of top 10 (by cap weight in percentage) of Basket Holdings for popular
ETFs - September 2019

For illustration purposes, we look at the actively tracking the daily returns of the finan-

cial sector ETF XLF using its top 10 composite stocks. There could possibly be a few

50

motivating factors here: one may not want to include illiquid assets in the ETF, or there

may be deviations from market cap based considerations, or diversification risk. Addi-

tionally, one may be look to discover alpha generating strategies that directly attempt

to outperform a benchmark, an ETF in this case. For a passively managed tracker, one

could replicate the whole portfolio of stocks in the Index/Sector and weigh them accord-

ing to their market cap. Passively managing the tracker can be costly if we include all

the composite stocks, an on the other hand may have a has high error if we reduce the

number of basket holdings. Since the purpose of this discussion is to track in a direc-

tion specific manner, and not dimension reduction, we pick the top 10 composite stocks

as our basket holdings and illustrate the difference in tracking when minimizing the dis-

torted mean squared error with different distortion parameter of our distortion function.

Even then, we must preserve some characteristics of our original ETF. Once a basket of

stocks/equities have been picked to replicate, the corresponding ETF must demonstrate

a similar risk-return profile. Although, the exact definition of a similar risk-return profile

remains a party specific choice.

This tracking problem is very much like a portfolio managing problem with one key dif-

ference. Whereas in a portfolio managing problem, the objective may be to maximize a

certain risk-return profile, or to maximize a performance metric, tracking a benchmark

needs one to follow a moving target. Some funds offer embedded leverage with higher

returns on the upside, but lower return on the downside. The principal of Distorted Least

Squares allow us to further track in that specific manner, so as to match the risk-return

profile and yet (stochastically) dominate the return. Another way of looking at this may

be in the context of statistical arbitrage where one may be looking to construct a basket

of long-short positions. If one can track an ETF in a direction specific manner, one may

51

generate alpha return by holding the tracker and the benchmark in opposite directions.

4.4.1 Setting up the problem

Objective

As previously discussed in the pairs-trading section, the events are defined on a probability

space (Ω,F , P) and we consider a sequence of residuals {Zt}t≥0 over a set of consecutive

periods T = {0, 1..., }. The residuals at each time step are computed by taking the dif-

ference between weighted returns of N basket holdings Xit i = 1, .., N and the underlying

trackee return Yt at time t. The weights ai(t−1) for each of these holdings are chosen one

time step prior. The residual at time t can the be written as the following

Zt = Yt −
N∑
i=1

ai(t−1)Xit (4.4)

Under this setting, our objective is be to find the policy that, in each timestep t, minimizes

the distorted expectation of the residual squared in the next time step. If the residuals are

determined by the choice of actions a ∈ A, the weights of our tracker portfolio of basket

holdings, our objective can, hence, be written as the following:

min
at∈A

DΨ

[
Z2
t+1

]
, t = 0, .., T (4.5)

To this end, we consider setting this problem in the context of a simple one step Markov

Decision Process. By taking continuous actions in each step, we use the policy gradient

method in the distributional context and try to find the policy that yields the optimal

policy which minimizes the distorted mean square error in each step. Additionally, this

52

problem doesn’t suffer from time-consistency issues because of the static decision making

only for one state at a time, and not worrying about the future states.

State space - X

• We encode the state space with the price history, represented in three features (Close,

High, Low), of these 11 holdings (basket plus the ETF) over the last 10 time steps.

This gives a training sample of dimension 3× 11× 10.

• Furthermore, the price history is normalized over the feature space, by taking log

relative prices with respect to the pen price. For a given feature k, the feature value

fij for equity i and step j is encoded as

f̂ijk = log

(
fijk
openij

)

• We consider the period 01/02/2008 - 12/29/2017 as the training period, and 01/02/2018

- 08/30/2019 as the testing period.

Tracking the ETF is a passive enough problem that we consider daily returns and rebalance

our tracker at the end of each day. For each day , we are interested in choosing the weights

so that the cumulative return of our basket most closely mimics the ETF.

Action space - A and interaction

Let ai,t denote the weight chosen at time t for holding i. For the general case of N stocks,

each action at ∈ A ⊂ RN

at = (a1,t, a2,t, ..., aN,t);
∑

ak,t = 1

53

The action space, thus, is an N dimensional simplex.

Reward function - R

In timestep t + 1, let yt+1 denote the percentage return from the ETF. By letting ri,t+1

denote the percentage return in holding i in timestep t + 1, we see that the cumulative

return on the tracker is ŷt+1 =
∑

i ai,tri,t+1. For the state action (xt, at) we define the

residual random variable as Rt+1 := ŷt+1 − yt+1. The main objective then is to find a

policy minimizing DΨ[R2
t+1] for each t.

4.4.2 Neural Net architecture and implementation remarks

Although LSTMs have shown to be remarkable in forecasting time-series data, they are ex-

pensive to train. One alternate, as discussed by Borovykh et al.[18], is the usage of CNNs

and Dilated CNNs. In the standard literature on distributional Reinforcement Learning,

the authors at DeepMind have used CNNs (albeit, not for time series data). The network

proposed uses stacked dilated convolutions that allow it to access data in a time-sensitive

manner, a feature of Recurrent Networks that we discard. An added benefit of CNNs is

that it is well equipped to process correlated data.

54

DCNN2Actor(

(dconv): Sequential(

(0): Conv2d(3, 32, kernel size=(1, 2), stride=(1, 1))

(1): ReLU()

(2): Conv2d(32, 32, kernel size=(1, 2), stride=(1, 1))

(3): ReLU()

(4): Conv2d(32, 32, kernel size=(1, 2), stride=(1, 1))

(5): ReLU()

(6): Conv2d(32, 32, kernel size=(1, 2), stride=(1, 1))

(7): ReLU())

(fc): Sequential(

(0): Linear(in features=2112, out features=512, bias=True)

(1): ReLU()

(2): Linear(in features=512, out features=128, bias=True)

(3): ReLU()

(4): Linear(in features=128, out features=10, bias=True)

(5): Softmax(dim=None))

Table 4.2: Dilated Convolutional Network - Actor

55

DCNN2QRCritic(

(dconv): Sequential(

(0): Conv2d(3, 32, kernel size=(1, 2), stride=(1, 1))

(1): ReLU()

(2): Conv2d(32, 32, kernel size=(1, 2), stride=(1, 1))

(3): ReLU()

(4): Conv2d(32, 32, kernel size=(1, 2), stride=(1, 1))

(5): ReLU()

(6): Conv2d(32, 32, kernel size=(1, 2), stride=(1, 1))

(7): ReLU())

(fc): Sequential(

(0): Linear(in features=2122, out features=512, bias=True)

(1): ReLU()

(2): Linear(in features=512, out features=512, bias=True)

(3): ReLU()

(4): Linear(in features=512, out features=200, bias=True)))

Table 4.3: Dilated Convolutional Network with Quantile Regression - Critic

56

4.4.3 Results and performance

The training performance, as visualized below, is similar for different distortion parame-

ters. There is little impact on the convergence on either Actor or Critic net.

Distortion parameters for actor nets
λ 0.0 0.50 0.75 1.0 1.5

DMSE 0.0070 0.0087 0.0073 0.0062 0.0074
minutes 31.009 32.699 24.261 32.359 33.571
training steps 174.42k 182.97k 138.01k 180.09k 186.61k

Table 4.4: Convergence of 10 step moving average of DMSE for actor nets. Training done on 4
GB NVIDIA GTX 1050 Ti.

Figure 4.1: Convergence results for neural net training - Actor

Furthermore, we check the performance of the trained nets from a business perspec-

tive. If indeed the tracker can be trained so as to dominate the return of the ETF, a viable

trading strategy is then to buy the tracker portfolio, and sell the underlying ETF. To com-

pare the corresponding performance, we generate 2000 trajectories of length 100 each on

such trading scenarios and compare various financial metrics to gauge the performance.

As before, we start with dollar capital at time t = 0, the random returns are accumulated,

thereby constructing a trajectory of daily profits and losses for 100. These 2000 random

57

trajectories are then evaluated in terms of their Sharpe Ratio, Gain-Loss ratio, Maximum

Drawdown, and Acceptability indices. The following tables display the quantiles levels

of these metrics on both the training and testing data. We compare the performance of

running this business with different distortion parameter values. In addition, as a bench-

mark, we compare the performance (Sharpe Ratio, Gain Loss ratio, Acceptability Index,

and Maximum Drawdown) with a business that uses Ordinary Least Squares (reg).

Quantiles
λ 1% 25% 50% 75% 99%

reg -4.070 -1.787 -0.714 0.416 2.939
0.0 -3.427 -1.152 -0.110 1.035 3.485
0.5 -2.913 -0.572 0.516 1.601 4.115
0.75 -3.472 -1.054 -0.004 1.133 3.594
1.0 -3.699 -1.117 0.062 1.064 3.388
1.5 -3.389 -1.021 0.037 1.202 3.823

Table 4.5: Sharpe Ratio on training data.

Quantiles
λ 1% 25% 50% 75% 99%

reg -3.955 -1.756 -0.699 0.506 3.031
0.0 -3.104 -0.683 0.256 1.198 3.429
0.5 -2.058 0.357 1.331 2.274 4.269
0.75 -3.004 -0.517 0.409 1.331 3.439
1.0 -2.512 -0.169 0.793 1.726 3.954
1.5 -2.186 0.246 1.158 2.040 4.545

Table 4.6: Sharpe Ratio on testing data.

Quantiles
λ 1% 25% 50% 75% 99%

reg 0.451 0.723 0.879 1.068 1.730
0.0 0.516 0.853 1.049 1.258 1.969
0.5 0.622 0.891 1.061 1.249 1.851
0.75 0.539 0.841 1.008 1.197 1.839
1.0 0.597 0.875 1.042 1.252 1.966
1.5 0.535 0.820 0.992 1.196 1.797

Table 4.7: Gain Loss ratios on training data.

58

Quantiles
λ 1% 25% 50% 75% 99%

reg 0.452 0.725 0.873 1.067 1.814
0.0 0.761 0.990 1.102 1.231 1.609
0.5 0.724 0.995 1.139 1.302 1.760
0.75 0.760 0.963 1.071 1.198 1.522
1.0 0.711 0.942 1.045 1.166 1.538
1.5 0.734 0.943 1.047 1.159 1.525

Table 4.8: Gain Loss ratios on testing data.

Quantiles
λ 1% 25% 50% 75% 99%

reg 1.581 3.777 5.479 7.670 13.878
0.0 2.629 5.798 8.657 12.697 26.574
0.5 2.441 4.999 7.159 10.026 18.545
0.75 2.812 5.819 8.086 11.270 22.616
1.0 2.830 5.982 8.309 11.354 21.418
1.5 2.718 5.744 8.469 12.214 23.679

Table 4.9: Maximum Drawdown on training data.

Quantiles
λ 1% 25% 50% 75% 99%

reg 1.558 3.694 5.311 7.528 13.709
0.0 2.102 3.818 5.067 6.731 12.082
0.5 1.746 3.107 4.199 5.613 11.405
0.75 1.873 3.502 4.667 6.174 10.717
1.0 1.671 3.099 4.013 5.382 10.158
1.5 1.570 2.916 3.760 5.005 9.661

Table 4.10: Maximum Drawdown on testing data.

Quantiles
λ 1% 25% 50% 75% 99%

reg -1.000 -1.000 -1.000 0.016 0.127
0.0 -1.000 -1.000 -1.000 0.040 0.155
0.5 -1.000 -1.000 0.019 0.064 0.177
0.75 -1.000 -1.000 -1.000 0.045 0.154
1.0 -1.000 -1.000 0.002 0.042 0.150
1.5 -1.000 -1.000 0.001 0.047 0.170

Table 4.11: Acceptability Index on training data.

Quantiles
λ 1% 25% 50% 75% 99%

reg -1.000 -1.000 -1.000 0.019 0.137
0.0 -1.000 -1.000 0.009 0.044 0.132
0.5 -1.000 0.013 0.050 0.091 0.188
0.75 -1.000 -1.000 0.015 0.049 0.133
1.0 -1.000 -1.000 0.029 0.064 0.156
1.5 -1.000 0.009 0.042 0.076 0.181

Table 4.12: Acceptability Index on testing data.

59

We also display the facet grids for different metrics on training and testing data

with comparisons across distortion parameters. The shift rightward is visible in few of

the metrics and displays a gain in performance by minimizing the distorted mean squared

error vs just the mean squared error.

60

(a) Training data

(b) Testing data

Figure 4.2: Acceptability indices comparison

61

(a) Training data

(b) Testing data

Figure 4.3: Sharpe Ratio comparison

62

(a) Training data

(b) Testing data

Figure 4.4: Gain-Loss ratio comparison

63

(a) Training data

(b) Testing data

Figure 4.5: Maximum Drawdown comparison

64

(a) Training data

(b) Testing data

Figure 4.6: Weight distribution comparison on training and testing dataset for λ = 0.0

65

(a) Training data

(b) Testing data

Figure 4.7: Weight distribution comparison on training and testing dataset for λ = 0.5

66

(a) Training data

(b) Testing data

Figure 4.8: Weight distribution comparison on training and testing dataset for λ = 0.75

67

(a) Training data

(b) Testing data

Figure 4.9: Weight distribution comparison on training and testing dataset for λ = 1.0

68

(a) Training data

(b) Testing data

Figure 4.10: Weight distribution comparison on training and testing dataset for λ = 1.5

69

Chapter 5

Conclusion and further work

The previous chapters illustrate that some methods in the deep reinforcement learning

universe can be adapted to risk sensitive objective functions in conic finance. Additionally,

when measured through various metrics of trading performance, it is also shown that the

agent performs in a more risk averse manner as desired without sacrificing on the other

metrics of performance.

The scope of the work presented here, however, is limited and is only just scratching

the surface of the myriad applications of risk averse decision making in finance using

reinforcement learning. With tools and theory available, some of the following projects

are direct extensions of work already undertaken. 0ne approach is to get the parameters

of the underlying stochastic process of the data, and then use model based RL methods

to train policies. Doing so makes use of a deep library of analytical methods to frame

problems with theoretical constraints. The robustness of such methods is also proven to

be sturdier. Another way to add robustness to the training under quantile regression

methods would be use some variant of the quantile network architecture introduced by

Dabney et al.[14]. The advantage there is that instead of projecting distribution on a grid,

70

the neural net approximators can be trained to output values, as a continuous mapping,

for any given quantile. Lastly, one could explore the risk sensitive universe by considering

measure distortions, as introduced by Madan[3] instead of probability distortions. With

theoretical background set up to distort arrival rates, and proven to be more robust

distortions, one could work in a model based setting and expose the agent to measure

distorted transition kernel. A heuristic approach could already be taken in a model free

environment by distorting the buffer priorities in a prioritized replay buffer discussed by

Schaul et al.[19]. The idea is that the training data is sampled with a probability given

by a priority function. This priority function, a proxy for importance, can be distorted as

discussed.

71

Bibliography

[1] Madan, D., Schoutens, W. “Applied Conic Finance,” Cambridge Press, 2016.

[2] Artzner, P., Delbaen, F., Eber, J, Heath, D. “Coherent Measures of Risk,” Mathemat-

ical Finance, Volume9, Issue3, Pages 203-228, 1999

[3] Madan, D., Schoutens, W. “Measure Distorted Valuation for Financial Decision Mak-

ing,” preprint

[4] Kusuoka, S., “On law invariant coherent risk measures,” Advances in Mathematical

Economics, vol 3. Springer, Tokyo, 2001.

[5] Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R. “Actuarial Theory for Dependent

Risks: Measures, Orders and Models,” John Wiley & Sons, 2005.

[6] Sutton, R. S., and Barto, A.G. “Reinforcement Learning: an Introduction,” The MIT

Press, 1998.

[7] Sutton, R. S. “Learning to predict by the methods of temporal differences,” Machine

Learning, 3(1):944, 1988.

[8] Puterman, M.L. “Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming,” Wiley, 2005.

72

[9] Chang, H.S., Hu, J., Fu, M.C., Marcus, S.I. “Simulation-Based Algorithms for Markov

Decision Processes,” Springer, London, 2013.

[10] Bickel, P.J., Freedman, D.A. “Some asymptotic theory for the bootstrap,” The Annals

of Statistics, pp.11961217, 1981.

[11] Bellamare, M.G., Dabney, W., Munos, R. “A Distributional Perspective on Rein-

forcement Learning,” Proceedings of the 34th International Conference on Machine

Learning (ICML), 2017.

[12] Bellamare, M.G., Dabney, W., Rowland, M., Munos, R. “Distributional Reinforce-

ment Learning with Quantile Regression,” Proceedings of the AAAI Conference on

Artificial Intelligence, 2018.

[13] Koenker, R. “Quantile Regression,” Cambridge University Press, 2005

[14] Dabney, W., Ostrovski, G., Silver, D., Munos, R. “Implicit Quantile Networks for

Distributional Reinforcement Learning,” arXiv:1806.06923, 2018.

[15] Silver, D., Lever, G., Hess, N., Degris, T., Wierstra, D., Riedmiller, M. “Determin-

istic policy gradient algorithms,” Proceedings of the 31st International Conference on

International Conference on Machine Learning - Volume 32, Pages I-387I-395, 2014.

[16] Lillicrap, T.P, Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,

Wierstra, D. “Continuous control with deep reinforcement learning,” arXiv:1509.02971,

2015.

[17] Barth-Maron, G., Hoffman, M.W., Budden, D., Dabney, W., Horgan, D., TB, D.,

Muldal, A., Heess, N., Lillicrap, T. “Distributed Distributional Deterministic Policy

Gradients,” arXiv:1804.08617, 2018.

73

[18] Borovykh, A., Bohte, S., Oosterlee, C.W. “Conditional Time Series Forecasting with

Convolutional Neural Networks,” arXiv:1703.04691, 2018.

[19] Schaul, T., Quan, J.,Antonoglou, I., Silver, D. “Prioritized Experience Replay,”

arXiv:1511.05952, 2015.

[20] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

Riedmiller, M “Playing atari with deep reinforcement learning,” arXiv:1312.5602, 2013.

[21] Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W.,

Horgan, D., Piot, B., Azar, M., Silver, D. “Rainbow: Combining Improvements in

Deep Reinforcement Learning,” arXiv:1710.02298, 2017.

[22] Kingma, D.P., Ba, J. “Adam: A Method for Stochastic Optimization,”

arXiv:1412.6980v9 , 2014

[23] Gatev, E., Goetzmann, W.N., Rouwenhorst, K.G. “Pairs Trading: Performance of a

Relative Value Arbitrage Rule” Review of Financial Studies, Volume 19, Issue 3, Pages

797827, Fall 2006.

[24] Elliott, R.J., van der Hoek, J., Malcolm, W.P. “Pairs trading,” Quantitative Finance,

Vol. 5, Issue No. 3, Pages 271-276, June 2005.

[25] Artzner, P., Delbaen, F., Eber, J, Heath, D., Ku, H. “Coherent multiperiod risk

adjusted values and Bellmans principle,” Annals of Operations Research, Vol 152,

Pages 522, 2007.

[26] Boda, K, Filar, J.A. “Time consistent dynamic risk measures,” Mathematical Meth-

ods of Operations Research, Vol 63, pages 169186, 2006

74

[27] Shapiro, A. “On a time consistency concept in risk averse multistage stochastic pro-

gramming,” Operations Research Letters, Vol 37, Pages 143147, 2009

[28] Roorda, B., Schumacher, J.M. “Weakly time consistent concave valuations and their

dual representations,” Finance and Stochastics - Springer, Vol. 20(1), Pages 123-151,

2016

75

	Acknowledgements
	Table of Contents
	Conic Finance
	Introduction
	Acceptable Risks and Coherent Risk Measures
	Pricing under two price theory
	Prices as Distorted Expectations
	Distorted expectations as sum of weighted quantiles
	Discrete Approximation
	Performance Indicators

	Deep Reinforcement Learning: Background and Recent Advances
	Introduction
	Background
	Distributional
	QR implementation
	Policy Gradient Methods

	Conic Q-learning
	Motivation
	Constructing the conic value functions
	Bid-optimal policy
	Remarks on consistency
	Implementation
	Application: Pairs Trading

	Deterministic policy gradient and distorted least squares
	Motivation
	Constructing the new loss function
	Implementation using Distributional Reinforcement Learning
	Application of DLS: tracking an ETF

	Conclusion and further work

