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Majorana zero modes are zero-energy excitations that are their own anti-

particles, and obey non-Abelian statistics which could be harnessed for topologi-

cal quantum computation. There are many theoretical proposals to realize them

in solid state systems, but experimental realizations are confronted by a number of

non-idealities. In this thesis, we theoretically investigate such complications, thereby

suggesting improvement and directions that could be pursued. We first develop a

theoretical framework to analyze the effect of ensemble-averaged disorder on the

Majorana zero modes, generalizing the Eilenberger theory to handle 1D systems

while retaining short-distance fluctuations. We then consider disordered topological

insulator-based heterostructures, showing that extra subgap states are potentially

induced, obscuring the density-of-states signature of the Majorana zero mode. We

also analyze in depth the experimentally observed soft gap feature, suggesting that

a cleaner interface in the semiconductor-based proposal can harden the gap.

In view of some of the limitations of the proposals based on semiconductors or

topological insulators, we look into a new class of systems in which a ferromagnetic

atomic chain is put on the surface of a bulk spin-orbit-coupled superconductor. This

system is analyzed in two limits, corresponding to weak or strong inter-atomic hop-



ping on the chain. In each of these cases, the topological criteria are obtained. We

also find that in the limit of strong chain-superconductor coupling, the length scales

of the effective Hamiltonian of the chain are significantly suppressed, potentially

explaining some of the recent observations in experiments.
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Chapter 1

Introduction

The theoretical endeavor to realize non-Abelian Majorana zero modes (MZMs)

in solid state systems has a long history of nearly two decades, with the earlier works

focusing on fractional quantum Hall states [1, 2] and p-wave superconductors [3, 4].

However, experimental progress on such exotic systems has been quite slow, partly

due to the stringent experimental conditions required. The recent development of

topological superconductivity involving only conventional s-wave superconductors,

culminating in the nanowire proposal [5, 6], was therefore a welcome surprise: for

the first time, we saw the hope of generating MZM using only conventional super-

conductivity, spin-orbit coupling (SOC), and Zeeman terms.

The experimental implementation of this proposal, however, was not without

obstacles. The price we pay for avoiding the use of fractional quantum Hall states

and p-wave superconductors was the need to interface multiple materials, like su-

perconductors (SCs), semiconductors (SMCs) and even topological insulators (TIs).

The quality of each of these materials, and of the interfaces between them, both play

a role in the quality of the MZM thus obtained. The initial implementations of the

proposal [7], while being very encouraging as signatures of MZMs were found, all

suffered from non-idealities in the experiments that prevented the generation of pris-
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tine MZMs. It is therefore important to understand the origin of these non-idealities

so that further experiments could be improved.

This thesis is an attempt to develop such an understanding. Specifically, we

shall try to:

1. Develop a theoretical understanding of realistic experiments on MZMs, and

2. Explore a new alternative platform for realizing MZMs.

We now start with the background of the subject. In the first section of this chapter,

the definition of MZMs is given, and the importance of their non-Abelian statistics is

stressed. We then review the minimal models that host MZMs – the chiral topolog-

ical superconductors. Since these unconventional superconductors are hard to find

in nature, we next discuss the recently proposed heterostructures which can also

realize MZMs. While the constituent materials are not uncommon, the fabrication

of the heterostructures pose unique problems, which we shall briefly discuss.

1.1 Majorana Zero Modes and their Importance

The name “Majorana” originated from particle physics. In 1937, Ettore Majo-

rana [8] found a real solution to Dirac equation, which represents Fermionic particles

that are their own antiparticles. In operator languages, the annihilation operator γ

of the Majorana Fermion satisfies

{γi, γj} = 2δij, γ
†
i = γi, (1.1)
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where {. . . , . . .} is the anticommutator. This is quite unusual as the self-conjugacy

condition is normally only satisfied by Bosonic particles like photons and π0-mesons.

Neutrinos have been proposed to satisfy (1.1) but controversy remains.

The connection of our MZMs to the Majorana Fermions in particle physics

ends at (1.1). In addition to them we further require the MZMs to commute with

the Hamiltonian H:

[H, γi] = 0, (1.2)

where [. . . , . . .] is the commutator. This relation indicates that MZMs lead to ground

state degeneracies, as (1.2) implies that the ground state |GS〉 and the excited states

γi |GS〉 have the same energy.

To see the exact degree of ground state degeneracy in a system with 2N

MZMs γ1, γ2, . . . , γ2N [all satisfying (1.1) and (1.2)], we observe that the operators

constructed from them by

ai =
1

2
(γ2i−1 + iγ2i) (1.3)

are regular Fermionic operators which satisfy

{
ai, a

†
j

}
= δij (1.4)

{ai, aj} = 0. (1.5)

Therefore, the number operators a†iai =
1
2
(iγ2i−1γ2i + 1) are allowed to take on the

values 0 or 1 in the system, and the system has 2N degenerate ground states. There

is however a superselection rule that the total Fermion parity of an isolated system
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must be conserved, and the matrix elements of any physical operators between states

with opposite superselection sectors must vanish. The ground state degeneracy

accessible by any operations (e.g., braiding) within a system with 2N MZMs is

therefore 2N−1, and they are labeled by the eigenvalues ±1 of the operators iγ2i−1γ2i.

We now discuss the braiding property of localized MZMs. Consider 2N MZMs

localized at different positions {xi}Ni=1. When we exchange the positions of γ1 and

γ2 while maintaining the locations of other MZMs, an opposite sign is picked up by

γ1 and γ2:

γ1 → γ2 , γ2 → −γ1, (1.6)

such that the quantum number iγ1γ2 is unchanged after this relabeling. Note that

there could be an overall sign in (1.6), which is just a gauge choice. This trans-

formation is effected by the unitary operator U12 = eiθ√
2
(1 + γ2γ1) = eiθe

π
4
γ2γ1 , such

that

U12γ1U
†
12 = γ2, U12γ2U

†
12 = −γ1. (1.7)

With the rule (1.6), one can prove directly that braiding MZMs in a system

with four MZMs results in a non-Abelian transformation in the degenerate ground

4



state, given as [9]

U12 |00〉 =
1√
2
(1 + i) |00〉 (1.8)

U23 |00〉 =
1√
2
(|00〉+ i |11〉) (1.9)

U34 |00〉 =
1√
2
(1 + i) |00〉 (1.10)

where Uij describes the process where ith and jth MZMs are interchanged. This

transformation is topological, since it only depends on the topology of the braiding

operations performed. If all excited states above the degenerate ground states have

energy greater than Δ, then (1.2) and hence (1.6) and (1.8)-(1.10) is ensured if the

strength of perturbation is less than Δ and terms like iγiγj are absent. But these

can always be avoided by separating MZMs far enough, since physical Hamiltonians

always act locally. These underlie the topological protection of the system.

Although braiding of MZMs alone cannot perform sufficient unitary operations

necessary for quantum computation, they could still be useful for quantum memory.

It is therefore of great interest to realize MZMs experimentally, a topic which we

will turn to in subsequent sections.

1.2 Topological Superconductors

In the previous section we have defined MZMs and explored their physical

properties, without addressing the question of whether any physical system would

support them at all (we shall call such systems topological, and the phase in which
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MZMs exist topological phase). One can actually predict the necessary ingredients

based on the discussion in the previous section. First, the relation γ† = γ (1.1)

in the context of condensed matter system represents a quasiparticle with equal

weights of particle and hole, which suggests the need for superconductivity; Second,

since non-Abelian statistics is manifest only for braiding of single MZMs, the system

must either be spinless, or spinful but with broken time-reversal symmetry.

In this section we shall discuss three systems which satisfy the above criteria

and host MZMs. We first consider a one-dimensional (1D) spinless p-wave super-

conductor as a prototypical topological system. Although historically it was not

the first model found to host MZMs (preceded for example by fractional quantum

Hall states), it is arguably the simplest of all MZM-carrying models, comprising

of only non-interacting Fermions with an unconventional pairing term. As such,

it provides valuable intuition and has guided the subsequent search for topological

heterostructures, which we shall also cover in this section.

1.2.1 1D Spinless p-wave Superconductors

We now start our discussion on a 1D spinless p-wave superconductor, the

lattice model of which was first proposed by Alexei Kitaev in 2001 [4] as a toy

model to realize MZMs. The Hamiltonian is given by

H = −μ
N∑
i=1

a†iai −
N−1∑
i=1

(
ta†iai+1 +Δeiφaiai+1 + h.c.

)
, (1.11)
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Figure 1.1: Schematic illustration of the Kitaev Model Eq. (1.11) in the limits of

(a) μ = 0, t = Δ �= 0 (b) μ �= 0, t = Δ = 0. Adapted from Ref. [10].

where h.c. stands for Hermitian conjugation, ai annihilate the electron on site i,

μ is the chemical potential, t ≥ 0 is the nearest-neighbor hopping, and Δeiφ is the

p-wave pairing between adjacent sites.

We express (1.11) in the Majorana operators, which are given by the transfor-

mation

ai =
e−iφ/2

2
(γi,A + iγi,B) , (1.12)

where γi,A/B are two species of Majorana operators defined at the ith site. In this

basis,

H = −μ
2

N∑
i=1

(1 + iγi,Aγi,B)−
i

2

N−1∑
i=1

[(Δ + t) γi,Aγi+1,B + (Δ− t) γi,Bγi+1,A] . (1.13)

The Majorana physics of this Hamiltonian is easy to extract in two special

limits. When μ = 0 and t = Δ �= 0 [see Fig. 1.1(a)], the Hamiltonian simplifies to

H = −it
N−1∑
i=1

γi,Aγi+1,B. (1.14)

The salient feature is that the Majorana operators γ1,B and γN,A are absent from the

Hamiltonian, and therefore satisfy (1.2). They are the MZMs of the system at this
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particular choice of parameters. To extract the regime of parameters in which the

system is in the topological phase, we make the following observation: quasiparticles

and their particle-hole counterparts have energies ±E, while the energies of the

MZMs, being their own antiparticles, are pinned at zero. Therefore, for a wire

long enough that direct coupling between the MZMs at the two ends are avoided,

the MZMs must persist provided that the bulk gap does not close. Since the bulk

excitation energies of (1.11) are given by

Ebulk (k) =

√
(2t cos k + μ)2 +Δ2 sin2 k, −π < k ≤ π, (1.15)

we see that the bulk gap only closes at μ = ±2t. As we have shown that at a special

point within the regime −2t < μ < 2t MZMs exist, we can conclude that this model

is in the topological phase for −2t < μ < 2t.

At another special choice of parameters with μ �= 0 and t = Δ = 0 [see

Fig. 1.1(b)], the Hamiltonian simplifies to H = −μ∑N
i=1 a

†
iai, which is topologically

trivial (since all modes have an energy of −μ). With this we can then conclude that

the system is topologically trivial for |μ| > 2t. In summary we have thus proven

that the system is topological (and hosts MZMs) if and only if μ lies within the

bandwidth (i.e. |μ| < 2t). This fact will be useful in the discussion below.

1.2.2 Bogoliubov de-Gennes Hamiltonian and Pfaffian invariant

We have mapped out the topological phase diagram of the Kitaev model via

explicit demonstration of (non-)existence MZMs on a finite wire. There is, how-
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ever, an alternative approach to computing the phase diagram that relies on the

bulk Hamiltonian only, and we shall state the result here. With a general Hamil-

tonian H involving spin-1/2 Fermions a
(†)
σ , its quasiparticles wavefunction and en-

ergy could be found from the equation
[
H, γ†

]
= Eγ†, which, upon substituting

γ† =
∑

σ

∫
dx
(
ua†σ + vaσ

)
, gives an equation

HBdG (x)Ψ = EΨ (1.16)

where Ψ (x) =

(
u↑ (x) u↓ (x) v↓ (x) −u↑ (x)

)T

and the Bogoliubov de-Gennes

(BdG) Hamiltonian HBdG satisfies {HBdG,Ξ} = 0 (where Ξ = σyτyK and K is the

conjugation operator) for its particle-hole symmetry. In an infinite 1D system, the

4 × 4 Hamiltonian could be Fourier-transformed to Hk, from which a topological

index could be computed by

Q = sgn
∏

k∈{0,π}
Pf (HkΞ) , (1.17)

where sgn is the sign function and Pf is the Pfaffian of a matrix, defined recursively

for a 2n× 2n skew-symmetric matrix M as

Pf(M) =
2n∑
j=2

(−1)jm1jPf(M1̂ĵ), (1.18)

where m1j is j
th element in the first row of M , and M1̂ĵ denotes a matrix with the

first and the jth rows and columns removed. The Pfaffian of the 0 × 0 matrix is

defined to be one.
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TI

SC FI

Figure 1.2: Schematic illustration of the topological insulator-based heterostructure.

A SC and FI is put in proximity with the edge of a 2D TI.

When Q = −1, the system would be in its topological phase supporting odd

number of MZMs at each end of the system, while for Q = 1 the system would be

topologically trivial.

1.2.3 Topological Insulator / Superconductor / Ferromagnetic Insu-

lator Heterostructure

While the p-wave superconducting chain is mathematically simple, it is hard

to find in nature. The vast majority of superconductors found are spin-singlet, and

s-wave superconductors are the most common. In 2008 Fu and Kane [11] pointed out

that a topological phase can be constructed by inducing s-wave superconductivity

on the surface of a TI. We now present a modification of their proposed model, in

which the TI is 2D instead of 3D, and its edge with induced superconductivity and

Zeeman term is described by the Hamiltonian (see Fig. 1.2)

H =

∫
dx

[∑
σ

a†σ (−ivFσ∂x − μ) aσ + (Δa↑a↓ + h.c.) + VZ

(
a†↑a↓ + a†↓a↑

)]
,

(1.19)
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where σ = ↑/↓ = ±1 represents spin, vF is the Fermi velocity of the edge channel, μ

is the chemical potential, Δ is the induced s-wave SC pairing, and VZ is a Zeeman

term induced either by a magnetic field or a ferromagnetic insulator (FI).

To explore the topological properties of this Hamiltonian, we shall try to draw

a connection to the Kitaev model presented in Sec. 1.2.1. To this end, we consider

a uniform edge for which the Hamiltonian in k-space reads

H =
∑
k

[
vFk

(
a†k↑ak↑ − a†k↓ak↓

)
− μ

(
a†k↑ak↑ + a†k↓ak↓

)
+(Δak↑a−k↓ + h.c.) + Vz

(
a†k↑ak↓ + a†k↓ak↑

)]
. (1.20)

Since the pairing term couples the two (spin) species at opposite values of k, we

follow Ref. [12] and redefine the species by

ck =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ak↑, k > 0

ak↓, k < 0

, dk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ak↑, k < 0

ak↓, k > 0

, (1.21)

with which the Hamiltonian becomes

H =
∑
k

{
vF |k|

(
c†kck − d†kdk

)
− μ

(
c†kck + d†kdk

)
(1.22)

+

[
Δsgnk

2
(ckc−k + dkd−k) + h.c.

]
+ Vz

(
d†kck + c†kdk

)}
, (1.23)

where sgn is the sign function. This Hamiltonian describes two species of Fermions

with odd-parity (p-wave) pairing terms proportional to Δsgnk. When Vz = 0,

11



the two species becomes independent, with the c (d)-species Fermions having a(n)

“(inverted-)V”-shaped dispersion with the tip at the origin. Therefore, with any

choice of μ, exactly one of the two species of Fermions would be in its topological

phase (with μ lying within its bandwidth).

We have therefore proven that the system is always in its topological phase

if VZ = 0. Turning on VZ introduces inter-species hopping and gap out the Dirac

dispersion and for small values of μ it will fail to lie within the bandwidth of either

species of Fermions, making the system non-topological. The exact point of phase

transition is found by solving for the gap-closure point, which gives the condition

for topological phase as

|VZ | <
√
|Δ|2 + μ2. (1.24)

It might seems unnecessary to introduce the Zeeman term, and MZMs would

be present at the “end” of the system. There is a catch, however – due to the

Fermion-doubling theorem the form of kinetic term in (1.19) can only be realized

on the edge of a 2D system, and as such cannot have a termination joining the

vacuum. The minimal way to induce localized MZMs would then be to assemble a

SC/FI interface on the TI edge (Fig. 1.2), or to apply a magnetic field weak enough

such that the edge is topological in the portion in proximity with the superconductor.

1.2.4 Nanowire / Superconductor Heterostructure

The TI-base heterostructure proposal had been an important step, since the

need for unconventional superconductivity was circumvented. The drawback is the

12



Superconductor

nanowire

Magnetic field

Figure 1.3: Schematic illustration of the nanowire-based heterostructure. A

nanowire with strong SOC is put on the surface of a superconductor. A magnetic

field is applied in parallel to the wire. Adapted from Ref. [13].

need for TI, since its fabrication is experimentally challenging. In 2009 Sau et al.

[14, 13] proposed a 2D heterostructure that generate MZMs with only conventional

SMCs and SCs. This was later simplified to 1D SMC nanowire proposals [5, 6],

which we discuss here.

Consider a SOC nanowire deposited on the surface of an s-wave supercon-

ductor, and a magnetic field is applied parallel to the wire (see Fig. 1.3). The

Hamiltonian describing the electronic modes on the nanowire is

H =

∫
dxa†

(
− ∂2x
2m

− μ− iασy∂x + VZσz

)
a+

∫
dx (Δa↑a↓ + h.c.) , (1.25)

where a =

(
a↑ a↓

)T

is the vector of annihilation operators in spin space, m is

the effective mass of electrons, μ is the chemical potential, α is the strength of SOC,

VZ = gμBB is the strength of spin splitting due to magnetic field B, Δ is the s-wave

pairing induced from the superconductor, and h.c. denotes Hermitian conjugation.

We consider the limit |VZ | 	 mα2, μ = 0 and α �= 0, such that in the normal

state (|Δ| = 0) the Fermi level crosses only a single band at ±kF . We can project
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the Hamiltonian in the lower, occupied band, which yields [9], with finite Δ,

H =

∫
dx

[
a†−

(
− ∂2x
2m

− |VZ |
)
a− +

α

2 |VZ |
(Δa−∂xa− + h.c.)

]
, (1.26)

where a− annihilates the mode on the lower band. This Hamiltonian is just the

continuum version of the Kitaev chain (1.2.1) where now the bandwidth is infinite

and it is in the topological phase. As before, the topological phase boundary can

be obtained by solving for the gap closure point as |VZ | is varied. For finite values

of α, we therefore have a topological phase for

|VZ | >
√
|Δ|2 + μ2. (1.27)

At this point it should be pointed out that |VZ | can be greater than |Δ| without de-

stroying superconductivity, because it is induced from a bulk superconductor, which

does not experience a strong magnetic field provided that the Lande g-factor of the

nanowire is large. Also, we have chosen the direction of Zeeman term (proportional

to σa) to be perpendicular to the SOC term (proportional to σy) in Eq. (1.25).

If they were parallel the system is non-topological and MZMs are absent. Since

experimentally the direction of the Zeeman term can be tuned, the emergence (dis-

appearance) of MZMs as the Zeeman term is oriented perpendicular (parallel) to

the SOC term provides another experimental verification of the theory.
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1.2.5 Helical Zeeman Proposal

An important class of proposals closely related to the nanowire proposal (1.25)

has spatially rotating Zeeman terms in place of the SOC. The connection can be

made clear [10] by making the unitary transformation a → e−imασyxã on (1.25),

yielding

H =

∫
dx

{
ã†
[
− ∂2x
2m

−
(
μ+

1

2
mα2

)
+Beff (x) · σ

]
ã

+(Δã↑ã↓ + h.c.)} (1.28)

where Beff (x) = − sin (2mαx) x̂ + cos (2mαx) ẑ. This Hamiltonian describes a

nanowire subject to a Zeeman field with a helical arrangement induced by, for ex-

ample, magnets of sub-micrometer sizes [15, 16].

1.2.6 Proposals based on Shiba States

In recent years, a class of proposals that are based on Yu-Shiba-Rusinov

states [17, 18, 19] (we shall use the term “Shiba” states instead) have drawn the

attention of many researchers [20, 21, 22, 23, 24, 25, 26, 27]. These states appear

when ferromagnetic elements are deposited on the surface of s-wave SCs. Due to

TRS-breaking subgap localized are induced. When multiple Shiba states aligned

along a line, they could hybridize and form an effective 1D system. With (effective)

SOC in the system, the 1D system could be in a topological phase with MZMs.

We shall describe this class of proposals, and in particular its relation to a recent
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experiment [28] in chapters 5-7 in this thesis.

1.2.7 Other

We have presented the Hamiltonians of 1D topological systems, with MZMs

realized at the ends of the topological regions. Corresponding 2D versions of the

chiral p-wave superconductor, TI heterostructure and the SMC nanowire proposals

are straightforward to construct, yielding respectively 2D p + ip superconductor

[3], 3D TI heterostructure [11] and 2D SOC SMC heterostructure [14]. In these

systems, the MZMs are located at the vortex cores of the pairing potential Δ. If

the system has an odd number of vortices, a delocalized MZM would be present

along the boundary of the 2D plane so that the total number of MZMs of the whole

system is even.

Another direction is to consider the continuum/discretized limits of the various

models (with the exception of TI-based systems since the edge dispersion cannot

be discretized). The discretization of the nanowier proposal and the helical Zee-

man proposal is more than a step to numerical modeling; it can also bring useful

insight with which new proposals are constructed. For example, proposals based on

quantum dot arrays [29, 30] can be considered as based on the discretized version

of the nanowire, while proposals based on magnetic adatoms with spatially varying

polarization [15, 31, 32, 20, 33] can be considered as based on the discretization of

the helical Zeeman proposal.
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1.3 Experimental Signatures of Majorana Zero Modes

Since the ultimate goal is to utilize MZMs in topological quantum compu-

tation, an ideal demonstration of MZMs would be a direct measurement of their

braiding statistics. The current fabrication techniques, however, is still too primi-

tive to carry out such experiments. Therefore, we shall instead look into two indirect

probes for MZMs – the fractional Josephson effects and the zero-bias conductance

peak.

1.3.1 Fractional Josephson Effects

Consider two topological 1D systems placed next to each other, so that the

MZMs from each of their ends hybridize. The Hamiltonian describing the junction

is

HJ = −t
(
a†LNaR1 + h.c.

)
, (1.29)

where aLN (aR1) is the regular Fermion operator at the rightmost (leftmost) site of

the left (right) system, and t > 0 is the strength of tunneling between them. Using

(1.12) to project this onto the subspace that comprises of the MZMs, we have the

low-energy effective Hamiltonian

Heff = − t

2
cos

(
φL − φR

2

)
iγ1γ2 (1.30)

= −t cos
(
φL − φR

2

)(
c†c− 1

2

)
(1.31)
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where γ1 and γ2 are the localized MZMs at the ends near the junction, and c =

γ1 + iγ2 is the Fermion operator constructed from them. φL/R are the phases of the

superconductivity at the left/right systems respectively. The other MZMs that are

located at the far outer ends of the two systems do not participate in the tunneling

and are therefore not present in the Hamiltonian.

We therefore see that the effective Hamiltonian (1.31) is 4π-periodic in δφ =

φL − φR, the phase difference between the two superconductors. This leads to the

measurable quantity, the Josephson current given by [10]

IJ =
2e

�

d 〈Heff〉
d (δφ)

=
et

2�
sin

δφ

2
(2n− 1) , (1.32)

which is also 4π-periodic in δφ.

The purpose of measuring this current is two-fold. First, since the occupation

number n in (1.32) determines the sign of IJ , the readout of the qubit can also

be performed by measuring the junction current. Moreover, the detection of this

periodicity constitutes a signature of MZMs because, for a junction made of con-

ventional s-wave superconductors, the Andreev bound states are 2π-periodic in δφ

[34],

EJ = Δ

(
1− T sin2 δφ

2

)1/2

(doubly degenerate), (1.33)

where T is the transmission coefficient of the junction in the normal state. Hence

the effective Hamiltonian and the Josephson current are also both 2π-periodic in δφ.

However, it has been pointed out that [35] under certain conditions even junctions
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made of conventional superconductors can display fractional Josephson effects.

1.3.2 Zero-Bias Conductance Peak

An obvious experiment to probe MZMs is that of tunneling. Consider a lead

in tunneling contact with a MZM [36]. The Hamiltonian of the lead is

Hlead =
∑
σ

∫ 0

−∞

(
−ivFa†Rσ∂xaRσ + ivFa

†
Lσ∂xaLσ

)
, (1.34)

= −ivF
∑
σ

∫ ∞

−∞
a†σ∂xaσ, (1.35)

where aR/Lσ (x) describes right/left-moving excitations in the wire with spin σ and

Fermi velocity vF . In the second line we have used the mapping aσ (x > 0) =

aLσ (−x) and aσ (x < 0) = aRσ (x) to cast the semi-infinite lead Hamiltonian into

a chiral Fermion operator in the entire space. The most general coupling between

this Fermion field and the MZM γ at x = 0 is

Htun = −i t√
2

∑
σ

γ
[
ξσaσ (0) + ξ∗σa

†
σ (0)

]
, (1.36)

with |ξσ| = 1. By redefining spins as ψλ = 1√
2
(ξ↑a↑ + λξ↓a↓), where λ = ±, the

system’s Hamiltonian is

H = −ivF
∑
λ

∫ ∞

−∞
dxψ†

λ∂xψλ − itγ
(
ψ+ + ψ†

+

)
. (1.37)
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Therefore, the field ψ− drops out of the scattering problem. The scattering states

are found by the equation of motion method, which gives:

Eψ+ = −ivF∂xψ+ − itγ (1.38)

Eγ = −2it
[
ψ+ (0) + ψ†

+ (0)
]
. (1.39)

From this, one can solve for the scattering matrix S (E) =

⎛⎜⎜⎝ Spp Sph

Shp Shh

⎞⎟⎟⎠ which

relates the incoming and outgoing modes by

⎛⎜⎜⎝ ψ+ (0+)

ψ†
+ (0+)

⎞⎟⎟⎠ = S

⎛⎜⎜⎝ ψ+ (0−)

ψ†
+ (0−)

⎞⎟⎟⎠. Non-

zero Sph contributes to the tunneling conductance because it represents the am-

plitude of the process in which an incoming electron is reflected as an outgoing

hole, contributing a Cooper pair of charge-2e to the superconductor. Therefore, the

differential tunneling conductance is given by

G (E) =
dI

dV
=

2e2

h
|Sph (E)|2 . (1.40)

In particular, at E = 0 it is straightforward to show that S (0) =

⎛⎜⎜⎝ 0 −1

−1 0

⎞⎟⎟⎠,

describing a resonant Andreev reflection process in which perfect Andreev reflection

always occur. Therefore, a tunneling experiment would show a zero-bias conduc-

tance peak (ZBCP) of height 2e2

h
if a MZM is present.

Several remarks are in order. First, the above analysis implicitly assumed

zero temperature. At finite temperature, the ZBCP broadens and the height is
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suppressed. Second, while we have focused on the tunneling from a spinful lead to

a MZM, the conclusion that ZBCP is of height 2e2

h
(at T = 0) holds more generally

for a spinful or spinless lead, and has been discussed from many perspectives in the

literature [36, 37, 38, 39, 40, 41, 42, 43]. Last, measuring a ZBCP alone may hardly

give conclusive evidence for MZM, since similar peaks could arise from some other

physical mechanisms, like Kondo effects or weak antilocalization [44, 45]. However,

observing the ZBCP to come and go as a parameter in the Hamiltonian as the

system is tuned across (non-)topological regimes is arguably a strong evidence for

the validity of the theory.

1.3.3 Experimental Progress

We here review the experimental data of an important work by Mourik et al.

[7], which attempted to implement the nanowire proposal.

In this experiment [see Fig. 1.4(a)], SMC wires with strong SOC are put on

a superconductor. An external magnetic field, whose direction and magnitude can

be controlled, is applied parallel to the superconductor surface. A normal lead is

attached to the end of the wire. A tunnel junction is formed between the super-

conducting part and the part in contact with the lead by applying a gate near the

interface, and the tunneling current is measured.

Fig. 1.4(b) shows the variation of differential conductance as the magnetic

field is varied. We see that a ZBCP emerges as the strength of the magnetic field

is increased beyond a certain point. A further piece of evidence is provided in
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Figure 1.4: The experiment on the nanowire proposal. (a) The scanning electron

microscope image of the setup. An InSb nanowire is put in contact with normal

(N) and superconducting (S) contacts. The underlying gates (numbered 1-4) are

used to tune the chemical potential of the wire. A gate (colored green) is used to

form a tunnel barrier between the N and S contacts. (b) Differential conductance

(dI/dV ) versus bias voltage (V ) for magnetic fields ranging from 0 to 490mT (in

steps of 10mT). For clarity, traces are offset. (c) dI/dV versus V and the angle of

the magnetic field, where the magnetic field is perpendicular to the SOC direction

when Angle=0, π, and parallel to the SOC direction when Angle=π
2
, 3π

2
. (c) dI/dV

versus V and the angle of the magnetic field, where the magnetic field is always

perpendicular to the SOC direction. Adapted from Ref. [7].
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Fig. 1.4(c,d), in which the direction of the magnetic field is varied. When its direction

is parallel to the SOC [i.e. at angle= π
2
, 3π

2
in Fig. 1.4(c)], the ZBCP is absent, while

when they are perpendicular [i.e. at angle= 0, π in Fig. 1.4(c) and for all angles in

Fig. 1.4(d)] the ZBCP is most pronounced. All of these signatures are consistent

with the theory, and provide evidence that the ZBCP is indeed due to a MZM.

1.4 Experimental Complications

Experimental implementation of the nanowire proposal of Sec. 1.2.4 was con-

fronted by a number of problems, some of which are described briefly in this section.

Their theoretical treatment is given in the main part of this thesis.

1.4.1 Disorder

It is natural to ask how robust is the superconducting gap against (non-

magnetic) disorder. Anderson’s theorem states that if a Hamiltonian (with an

s-wave pairing term) has time-reversal symmetry, then any amount of disorder can-

not degrade the superconductivity gap of the system. This has implications for the

nanowire proposal and the TI-based proposal, which we describe separately below.

1.4.1.1 Nanowire Heterostructure

For the nanowire proposal in the topological phase, since a Zeeman field must

be present according to (1.27), time-reversal symmetry is absent and disorder can

have an effect on the gap. Refs. [45, 46, 47, 48] showed that disorder can pro-
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Figure 1.5: The disorder-averaged density of states for the nanowire model in its

topological phase, where the parameters are chosen as μ = VZ = 5K and Δ = 3K.

Es = �/τ characterizes the strength of disorder where τ is the mean scattering time.

Adapted from Ref. [45].

duce subgap states that cluster around zero energy, producing signatures similar to

MZMs. This effect is due to the symmetry of the system and weak antilocalization.

For example Fig. 1.5 is the results of of Ref. [45], which shows that for the nanowire

in its non-topological phase, strong disorder can induce a zero-bias peak.

Another question that could be asked about disorder is its effect on the topolog-

ical phase diagram. Ref. [49] computed the phase diagram with ensemble-averaged

disorder. Fig. 1.6 shows its result, in which γ is the scattering length of the sys-

tem. We see that increasing disorder shrinks the topological region. Interestingly,

Ref. [50] showed that for a single realization of disorder it is possible to drive a

non-topological system to topological (see Fig. 1.7).
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Figure 1.6: The topological phase diagram for the nanowire proposal as a function

of γ and B, where the parameters are chosen as μ = 0 and Δ = εSO = mα2/2.

Here disorder is introduced via static Gaussian white noise potential V (x) with

〈V (x)〉 = 0 and 〈V (x)V (x′)〉 = γδ (x− x′). Adapted from Ref. [49].

Figure 1.7: The topological phase diagram for a tight-binding model of the nanowire

proposal as a function of B and μ, where the other parameters are chosen as Δ =

0.15t and α = 0.05/a, where t is the nearest-neighbor hopping and a the lattice

constant. Here disorder is introduced via static Gaussian white noise potential V (x)

with 〈V (x)〉 = 0 and 〈V (x)V (x′)〉 = 0.06t2δ (x− x′). The green dotted (red) line

is the phase boundary computed without (with) disorder. The left (right) panel

corresponds a nanowire with length L = 100a (4000a). Adapted from Ref. [50].
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1.4.1.2 Topological Insulator Heterostructure

According to (1.24), the TI-based heterostructure does not require a Zeeman

field to drive the system into a topological phase. It is therefore widely believed [12]

that the TI-based heterostructure is totally immune to disorder and thus ideal for

hosting MZMs. However, as we have noted in Fig. 1.2, it is necessary to put an FI

in order to localize MZMs at the end of the topological region. It is of interest to

ask when such local time-reversal breaking could have an noticeable effect on the

SC gap protecting the MZM. This question is addressed in Chapter 3.

1.4.2 “Soft gap” Problem

We have alluded to this problem in previous section. Fig. 1.8 demonstrates

that all initial attempts to implement the nanowire proposal faced similar issues,

that is, there is a finite density of subgap states making the induced “gap” V-shaped.

It should be remembered that the topological protection depends on the size of the

superconducting gap in the topological system. Therefore, one must get a clean gap

in order to perform any meaningful braiding operations.

Disorder in the wire cannot be the cause, since this problem persists even

at zero magnetic field, at which point the system is time-reversal-symmetric, and

Anderson’s theorem guarantees that disorder alone cannot degrade the gap. There-

fore, the cause of this problem was not obvious, and a number of theoretical works

were devoted to explain this observation. For example, Ref. [55] suggested that the

hybridization between the SMC nanowire and the metallic lead is the cause. In
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Figure 1.8: Experimental results from four independent experimental groups that

could be directly compared with Fig. 1.4(b). Adapted respectively from (a) Ref. [51],

(b) Ref. [52], (c) Ref. [53] and (d) Ref. [54].
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Figure 1.9: Experimental results adapted from Ref. [28]. Different panels show

the contour plot of conductance as a function of position for various values of bias

voltage. The salient feature is that at zero-bias, a peak that is highly localized at

the edge of the wire emerges.

Chapter 4 we shall discuss another possible mechanism.

1.4.3 Measurement of Local Density of States

The current implementations of the nanowire proposal are capable of measur-

ing the tunneling conductance at the end of the nanowire only. To a very good

approximation, the conductance measured is proportional to the local density of

states (LDOS) at the end of the wire. To verify that the zero mode is indeed local-

ized at the end (thus consistent with the MZM picture), it is important to measure

the LDOS in the middle of the topological system. Chapters 5 and 6 discuss new

platforms in which such measurement are possible with STM.

1.4.4 Short Localization Length

In experimental setups similar to what is described in Chapters 5 and 6 of this

thesis, zero-energy end states, purportedly MZMs, were observed [28]. However, a
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strange feature of the result needs a theoretical explanation, namely the extremely

short localization of the MZMs. Since the the localization length of a MZM should

be roughly the coherence length of the system, and the induced gap is very small,

it is natural to expect a long localization length. Instead, the observed MZMs are

localized to within a few lattice units at the end of the system (see Fig. 1.9). In

Chapter 7 we shall explore a possible explanation of this phenomenon.

1.5 Outline of the Thesis

In this thesis, we critically examine the experimental aspects of realization

of MZMs in solid state systems. In Chapters 2-4, we first discuss a number of

theoretical works pertinent to the issues we discussed in this introduction. Then in

Chapters 5-7 we explore and discuss in depth a new proposal to realize MZMs.

In Chapter 2 we first consider the effects of disorder on the MZM at the end of a

1D topological p-wave SC. The theoretical treatment will generalize the Eilenberger

theory of SC, with short-ranged variations fully captured in our formalism. The

work in this chapter has led to the publication of Ref. [56].

In Chapter 3, we investigate the effects of local time-reversal-symmetry break-

ing, together with disorder, on the MZM induced in the TI-based heterostructure

. We shall find that, while the MZM on a single-channel TI edge is immune to

disorder, for a multi-channel edge subgap states could appear. The work in this

chapter has led to the publication of Ref. [57].

In Chapter 4 we revisit and investigate into the soft gap problem, which is
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present in virtually all implementations of the nanowire proposal. We numerically

consider the effects of finite temperature, magnetic/non-magnetic disorder, quasi-

particle broadening, and SC/nanowire interface inhomogeneity, and conclude that

the last one is the most probable cause of the soft gap. We also present a simple

theoretical model to treat the interface inhomogeneity, and discussed the effort of a

recent experimental group that improved the interface quality, leading to a harder

induced gap. The work in this chapter has led to the publication of Ref. [58].

In Chapters 5 and 6 we propose and discuss new platforms to realize MZMs.

In particular, we consider depositing magnetic adatoms on the surface of a SOC SC.

The advantage of this system is that the LDOS at the middle of the system can be

directly probed with STM, which was not possible in the nanowire systems. The

work in this chapter has led to the publication of Ref. [27, 59].

In Chapter 7 we discuss an issue that came up in an experimental setup similar

to what is described in Chapters 5 and 6. It was found that the zero-energy mode at

the ends of the chain has very short localization length. This may seem contradictory

to the Majorana picture since the induced gap is so small and the localization length

is inversely proportional to the induced gap. We shall point out that the substrate

(the 3D SC) can induce a renormalization of the length scale of the chain, leading

to a short localization length of the MZM. The work in this chapter has led to the

publication of Ref. [60].

In Chapter 8 we present our conclusions and discuss possible future research

directions and open problems.
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Chapter 2

Disorder in effective p-wave nanowires

The effects of disorder in 1D topological systems have been previously investi-

gated [61, 62, 63, 64, 49, 46, 65, 47, 66, 67, 45, 48, 68, 50] from a number of different

perspectives. One approach to the problem consists of introducing many realiza-

tions of disorder and ensemble-averaging at the end to extract universal properties

[46, 47, 67, 68, 45, 50]. While this approach is more akin to the experimental situa-

tion (where there is only a single realization of disorder at each setup), the end result

of the posterior disorder averaging is mostly numerical and few analytical statements

can be made. On the other hand, previous attempts of anterior disorder averaging

were mostly concerned with the properties in the bulk [61, 62, 64, 49, 63, 65, 66]. The

effects of ensemble-averaged disorder on the end MZMs were not fully investigated.

In this chapter, we undertake the task of analyzing the effects of ensemble-

averaged disorder on a topological 1D system, the idealized spinless p-wave super-

conducting wire. In particular, we treat the disorder in the self-consistent Born

approximation (SCBA) and investigate its effects on the spectral properties of the

whole system, with an emphasis on its boundary where the MZMs reside. To this

end, it is convenient to adopt a formalism similar to the Eilenberger equations [69],

but including pair-breaking effects of disorder in the theory. Our formalism differs
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from the conventional quasiclassical treatment of disordered superconductors in two

ways. First, unlike the conventional approach, we consider only weak disorder and

do not take the diffusive limit to derive the Usadel equations [70], as this would

wipe out the spectral gap in the topological system. Second, we do not start by

integrating out the fast-oscillating parts of the Green function, but instead consider

the Green function in a chiral basis and keep all its spatial dependence. This is pos-

sible only for 1D problems, and is essential to extract the exact spatial dependence

of the MZM.

We emphasize that the focus of this chapter is on the SM heterostructures

in the presence of SOC and spin splitting [11, 71, 14, 13, 5, 6] proposed to re-

alize MZMs, all of which have s-wave pairing terms induced by proximity effect

through Cooper pairs tunneling from nearby superconductors. By projecting the

Hamiltonians of these systems to their low-energy subspaces [5, 12, 10], one uni-

versally obtains effective p-wave superconductors but with model-specific pairings

and scattering strengths [see Eq. (3.1) below]. The crucial difference of this SM

Majorana nanowire from an intrinsic p-wave superconducting wire is that, since

now the pairing term is proximity-induced, it is both unnecessary and inappropri-

ate to perform self-consistent theoretical calculations because there is no intrinsic

pairing interaction in the wire itself [72]. We shall thus take the pairing strength

as a fixed parameter without solving the self-consistent gap equation following all

earlier theoretical works in the literature on this problem.
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2.1 Formalism

We consider a semi-infinite wire at x > 0 described by the linearized Hamil-

tonian

H =
∑

C=R/L

∫ ∞

0

dx
(
−ivF sCψ†

C∂xψC +ΔsCψCψC̄ + Vfψ
†
CψC + Vbψ

†
CψC̄

)
.(2.1)

Here vF is the Fermi velocity, Δ is the p-wave superconducting order parameter,

and sC = ±1 for C = R/L, where R/L denotes right/left moving electrons. Vf/b is

the forward/backward scatterings due to static quenched disorder, assumed to be

short ranged here. Coulomb disorder, which might be present in real SM nanowire

systems of experimental interest, will typically be screened by the surrounding gates,

the normal leads, the superconductor, and by the electrons in the wire themselves

leading presumably to short-ranged elastic disorder. The linearized form of disorder

in Eq. (3.1) is related to the full disorder potential U by

Vf (x) =
∑
q∼0

Uqe
iqx, (2.2)

Vb (x) =
∑
q∼0

Uq−2kF e
iqx, (2.3)

where kF is the Fermi momentum and Uq are the Fourier components of U .

The spectral properties of the system are encoded in the Nambu-Gorkov Green

function G (x, t, x′, t′) = −i
〈
T Ψ(x, t)Ψ† (x′, t′)

〉
, where Ψ =

(
ψR, ψL, ψ

†
L, ψ

†
R

)T
.

We are interested, following the spirit of the Eilenberger theory which is being
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generalized in this chapter, in the Green function defined as

g (x, ω) = vF i lim
ε→0+

[G (x, x− ε) +G (x, x+ ε)] σ3τ3 (2.4)

where σ and τ are Pauli matrices acting on the R/L space and particle-hole space,

respectively. To extract the LDOS from g, we note that since the fermion operator

is linearized in the form of ψ (x) � ψRe
ikF x + ψLe

−ikF x, the Green function of ψ (x)

is related to the Green function in the chiral basis via

G(0) (x, x′) � GRRe
ikF (x−x′) +GRLe

ikF (x+x′)

+GLRe
−ikF (x+x′) +GLLe

−ikF (x−x′). (2.5)

Therefore, the LDOS is given by

ν (x, ω) =
ν0
4

[
TrRe (gσ3τ3)− TrRe (gσ−τ3) e2ikF x

+TrRe (gσ+τ3) e
−2ikF x

]
, (2.6)

=
ν0
4
TrRe (gσ3τ3 + 2gσ+τ3 cos 2kFx) , (2.7)

where ν0 =
1

πvF
is the LDOS in the normal state and σ± = 1

2
(σ1 ± iσ2). In Eq. (2.7),

the first(second) term contains the slowly (fast) -oscillating part of the LDOS. Con-

ventional derivation of Eilenberger equations [69, 73] effectively ignores the second

term. One key aspect of our generalization is keeping these oscillatory terms which

can be done completely analytically (at least for the 1D problem of current interest).
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The equation of motion of g can be derived from the Dyson’s equations of G.

As both spatial arguments of G are set to x, we must use the two conjugate Dyson’s

equations:

(ω −HBdG − Σ)G (x, y) = δ (x− y) , (2.8a)

G (y, x) (ω −HBdG − Σ) = δ (x− y) , (2.8b)

whereHBdG = −ivFσ3τ3∂x+Δσ3τ1 and Σ is the self-energy due to ensemble-averaged

disorder Vf and Vb in Eq. (3.1). Here the derivative acting on the right is understood

as G (y, x) i
←−
∂x = −i∂xG (y, x). By collecting the terms ∂xG (x, y) and ∂xG (y, x), we

have

vF∂xg = i [ωσ3τ3 − iΔτ2 − σ3τ3Σ, g] . (2.9)

The self-energy Σ due to ensemble-averaged disorder is

Σ (x, x′) = δ (x− x′)
〈
V (x)V (x′)G(0) (x, x′)

〉
, (2.10)

where G(0) is the Green function of the unlinearized fermion operator. With the
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linearization ψ (x) � ψRe
ikF x + ψLe

−ikF x, V and G(0) becomes

G (x, x′) � GRRe
ikF (x−x′) +GRLe

ikF (x+x′)

+GLRe
−ikF (x+x′) +GLLe

−ikF (x−x′), (2.11)

V (x) � Vf (x) + Vb (x) e
2ikF x

+V ∗
b (x) e−2ikF x. (2.12)

Define strengths of disorder by

〈Vf (x)Vf (x′)〉 = Dfδ (x− x′) , (2.13a)

〈Vb (x)Vb (x′)〉 = 0, (2.13b)

〈Vb (x)V ∗
b (x′)〉 = Dbδ (x− x′) , (2.13c)

where Df/b denotes forward/backward scattering strengths, the self-energy becomes

Σ (x, x′) = δ (x− x′) {DfG (x, x′)

+Db

[
GRRe

ikF (3x−3x′) +GRRe
ikF (−x+x′) +GRLe

ikF (3x−x′)

+GRLe
ikF (−x+3x′) +GLRe

−ikF (3x−x′) +GLRe
−ikF (−x+3x′)

+GLLe
−ikF (3x−3x′) +GLLe

−ikF (−x+x′)
]}

, (2.14)

� δ (x− x′)
{
DfG (x, x′) +Db

[
GRRe

−ikF (x−x′) +GLLe
ikF (x−x′)

]}
,(2.15)

where in the last step only terms proportional to e±ikF x are retained. The linearized
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same-point self-energy is therefore

ΣRR = DfGRR +DbGLL, (2.16a)

ΣRL = DfGRL, (2.16b)

ΣLR = DfGLR, (2.16c)

ΣLL = DfGLL +DbGRR. (2.16d)

When expressed in the chiral Nambu-Gorkov basis
(
ψR, ψL, ψ

†
L, ψ

†
R

)
, we have

Σ = Dfτ3Gτ3 +
Db

2
τ3 (σ1Gσ1 + σ2Gσ2) τ3. (2.17)

With this form of Σ in Eq. (2.9), we now resolve Eq. (2.9) into components

with the observation that in the bulk of a clean system g is exactly known to be

gbulk =
−iω√
Δ2 − ω2

σ3τ3 −
Δ√

Δ2 − ω2
σ0τ2. (2.18)

Consider now a situation where Df/b are adiabatically tuned away from zero in the

bulk of the wire. By substituting Eq. (2.18) in Eq. (2.9), it can be shown that g can

only have six non-zero components:

g = g31σ3τ1 + g02σ0τ2 + g33σ3τ3

+g10σ1τ0 + g21σ2τ1 + g23σ2τ3, (2.19)
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and their equations of motions are

vF∂xg31 = 2ωg02 + 2iΔg33 +
2i

τ
g02g33, (2.20a)

vF∂xg02 = −2ωg31, (2.20b)

vF∂xg33 = −2iΔg31 −
2i

τ
g31g02, (2.20c)

vF∂xg10 = 2ωg23 −
(
i

τ
− 4i

τ̃

)
(g21g31 + g23g33) , (2.20d)

vF∂xg21 = 2iΔg23 +

(
3i

τ
− 4i

τ̃

)
g02g23 +

(
i

τ
− 4i

τ̃

)
g10g31, (2.20e)

vF∂xg23 = −2ωg10 − 2iΔg21 −
(
3i

τ
− 4i

τ̃

)
g02g21 +

(
i

τ
− 4i

τ̃

)
g10g33,(2.20f)

where we have defined τ−1 = πν0Db and τ̃−1 = πν0
1
2
(Df +Db). Substituting

Eq, (2.19) in Eq. (2.7), we have for the LDOS

ν (x, ω) = ν0 (Reg33 − Img23 cos 2kFx) . (2.21)

To completely formulate the problem, Eqs. (2.20) must be supplemented with

boundary conditions. In the bulk of the wire (x→ ∞), since the BdG Hamiltonian

is diagonal in the σ space, the resultant Green function must also be diagonal in the

σ-space. This implies that g10 = g21 = g23 = 0 at x → ∞. By setting the spatial

derivatives of Eq. (2.20) to zero, we also obtain
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ωg02 + iΔg33 +
i

τ
g02g33 = 0, (2.22a)

g31 = 0, (2.22b)

−iΔg31 −
i

τ
g31g02 = 0 (2.22c)

at x→ ∞.

To derive the boundary conditions at the end of the wire (x = 0), we note that

since the fermion operator is linearized as ψ (x) = ψR (x) eikF x+ψL (x) e
−ikF x, at the

end of wire we have 0 = ψ (0) = ψR (0) +ψL (0). This translates to the requirement

that ⎛⎜⎜⎝ 1 1 0 0

0 0 1 1

⎞⎟⎟⎠G (0, ε) =

⎛⎜⎜⎝ 0 0 0 0

0 0 0 0

⎞⎟⎟⎠ . (2.23)

Since it follows from the definition of g [Eq. (2.4)] and the Dyson’s equation for G

[Eq. (2.8)] that limε→0+ G (0, ε) = 1
2ivF

g (0) σ3τ3 +
i

2vF
σ3τ3, we have

g02 = 0, (2.24a)

g10 = 1, (2.24b)

g21 = ig31, (2.24c)

g23 = ig33 (2.24d)

at x = 0. The last condition is also consistent with the requirement that ν (0, ω) = 0
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[c.f. Eq. (2.21)].

Finally we add that since g2 = 1 in the bulk of a clean system [c.f. Eq. (2.18)]

and from Eq. (2.9) we have ∂xg
2 = 0, the normalization g2 = 1 is valid throughout

the whole system. Written in its components,

g231 + g202 + g233 + g210 + g221 + g223 = 1. (2.25)

We make two remarks before closing the discussion on the formalism. First,

note that Eqs. (2.20a)-(2.20c) do not contain the variables g10, g21, and g23. Together

with the boundary conditions Eqs. (2.22) and Eq. (2.24a), g31, g02, and g33 can thus

be solved without reference to the other three variables. These equations have been

previously derived [69, 74] by first integrating out the fast-oscillating degrees of

freedom in the problem, or equivalently [see Eq. (2.5)] by assuming that G is always

diagonal in σ-space. We have seen from Eqs. (2.24) that this cannot hold true near

the boundary, where the reflection from the end of the wire induces correlations

between left- and right-moving modes. Keeping these oscillatory terms, which are

always neglected in the usual Eilenberger theory, is crucial since our interest is in

figuring out the effect of disorder on the MZMs which reside at the boundaries (i.e.,

at the wire ends of the 1D system).

It can be seen from Eq. (2.21) that computation of LDOS using g33 alone would

miss spatially rapid oscillations near the end of the wire. Indeed, it has been pointed

out in Ref. [73] that with the reduced set of variables {g31, g02, g33}, an oscillatory

factor (∝ cos 2kFx) of the LDOS near the end of the wire is not captured. It is
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therefore necessary to solve the whole set of equations (2.20) if a spatial resolution

of the LDOS under the Fermi wavelength is desired. However, in the following

sections in this chapter, we shall only focus on {g31, g02, g33} for simplicity.

Lastly we adopt this formalism to the case of conventional s-wave supercon-

ductivity, with the linearized Hamiltonian

H0 =
∑
C,σ

∫ ∞

0

dx
[
−ivF sCψ†

Cσ∂xψCσ +ΔsψCσψC̄,σ̄

+Vfψ
†
CσψCσ + Vbψ

†
CσψC̄,σ

]
, (2.26)

where only non-magnetic disorder Vf/b is considered here. Repeating the above

procedures in solving for ∂xg
(s) and then decomposing g

(s)
s as

g(s) = g
(s)
01 σ0τ1 + g

(s)
32 σ3τ2 + g

(s)
33 σ3τ3

+g
(s)
10 σ1τ0 + g

(s)
22 σ2τ2 + g

(s)
23 σ2τ3, (2.27)

we reach the following set of differential equations:
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vF∂xg
(s)
01 = 2ωg

(s)
32 + 2iΔsg

(s)
33 , (2.28a)

vF∂xg
(s)
32 = −2ωg

(s)
01 − 2i

τ
g
(s)
01 g

(s)
33 , (2.28b)

vF∂xg
(s)
33 = −2iΔsg

(s)
01 +

2i

τ
g
(s)
01 g

(s)
32 , (2.28c)

vF∂xg
(s)
10 = 2ωg

(s)
23 − 2iΔsg

(s)
22 −

(
i

τ
− 4i

τ̃

)(
g
(s)
22 g

(s)
32 + g

(s)
23 g

(s)
33

)
, (2.28d)

vF∂xg
(s)
22 = 2iΔsg

(s)
10 −

(
3i

τ
− 4i

τ̃

)
g
(s)
01 g

(s)
23 +

(
i

τ
− 4i

τ̃

)
g
(s)
10 g

(s)
32 , (2.28e)

vF∂xg
(s)
23 = −2ωg

(s)
10 +

(
3i

τ
− 4i

τ̃

)
g
(s)
01 g

(s)
22 +

(
i

τ
− 4i

τ̃

)
g
(s)
10 g

(s)
33 , (2.28f)

and the boundary conditions that

g
(s)
10 = g

(s)
22 = g

(s)
23 = 0, (2.29a)

ωg
(s)
32 + iΔsg

(s)
33 = 0, (2.29b)

−ωg(s)01 − i

τ
g
(s)
01 g

(s)
33 = 0, (2.29c)

−iΔsg
(s)
01 +

i

τ
g
(s)
01 g

(s)
32 = 0 (2.29d)

at x→ ∞ and
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g
(s)
01 = 0, (2.30a)

g
(s)
10 = 1, (2.30b)

g
(s)
22 = ig

(s)
32 , (2.30c)

g
(s)
23 = ig

(s)
33 (2.30d)

at x = 0. A normalization condition similar to Eq. (2.25) also holds:

(
g
(s)
01

)2
+
(
g
(s)
32

)2
+
(
g
(s)
33

)2
+
(
g
(s)
10

)2
+
(
g
(s)
22

)2
+
(
g
(s)
23

)2
= 1. (2.31)

We observe that g
(s)
01 , g

(s)
32 , and g

(s)
33 can be solved from Eqs. (2.28a)-(2.28c), Eqs. (2.29b)-

(2.29d) and Eq. (2.30a) independent of the remaining components.

2.2 LDOS in the Bulk

Equations (2.20) can be understood as a generalization of the SCBA to spa-

tially inhomogeneous structures. Before we utilize it to investigate into such struc-

tures, however, it is instructive to show that our formalism in the bulk indeed reduces

to the SCBA result obtained earlier [66].

We first consider the simpler case of an s-wave superconducting wire, for which

Eqs. (2.29) and Eq. (2.31) are solved by
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Figure 2.1: (a) LDOS for a semi-infinite s-wave superconducting wire. Note the

result is position-independent, and is not affected by disorder. (b)-(d) The LDOS

of a semi-infinite p-wave superconducting wire, from the clean limit τ−1 = 0 to a

heavily disordered case τ−1 = 2Δ at (b) x → ∞ (in the bulk), (c) x = ξ0, and (d)

x = 0, respectively. For all plots, the energy spectra are broadened by η = 0.01Δ.
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g
(s)
01 = 0, (2.32a)

g
(s)
32 =

−Δs√
Δ2

s − ω2
, (2.32b)

g
(s)
33 =

−iω√
Δ2

s − ω2
, (2.32c)

independent of the disorder parameter τ . Therefore, in the s-wave case, the LDOS

in the bulk is

νs (ω) = ν0Re
[
g
(s)
33 (ω)

]
= ν0

ω√
ω2 −Δ2

s

θ (ω −Δs) , (2.33)

plotted in Fig. 2.1(a), and is unaffected by disorder as required by Anderson’s the-

orem [75].

For the case of p-wave superconducting wire in which Anderson’s theorem is

not applicable, a suppression of the gap by disorder is expected. To show this, note

that Eqs. (2.22) and Eq. (2.25) are solved by

g31 = 0, (2.34a)

g02 =
−Δ√

Δ2 − ω̃2
, (2.34b)

g33 =
−iω̃√
Δ2 − ω̃2

, (2.34c)

where ω̃ satisfies ω̃ = ω+ iω̃
τ
√
ω̃2−Δ2 . This is seen to be identical to the SCBA result of
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ω̃ = ω+ (Df +Db) πν0
iω̃√

ω̃2−Δ2 , by noting that for point scatterers Df = Db. Figure

2.1(b) is a plot of the LDOS evaluated by Eq. (2.21), for a number of disorder

strengths. The bulk gap is seen to close at about (Δτ)−1 = 1. In fact, it can be

shown that Eq. (2.34) results in a degradation of the spectral gap in the form of

[75] Egap = Δ
[
1− (Δτ)−2/3

]3/2
, and eventually destroys the gap for τ−1 > Δ. The

influence of this effect on the MZM located at the boundary of the wire is the focus

of the following sections.

2.3 LDOS Near the End of the Wire

We now investigate the effect of ensemble-averaged disorder on the LDOS near

the boundary x = 0. Before considering the case of p-wave superconducting wire in

which a MZM is present, for the sake of comparison and illustration, we first review

the case of a conventional s-wave superconducting wire in the current formalism. We

note that the solution in the bulk given by Eq. (2.32) already satisfies the boundary

conditions at the end of the wire [Eq. (2.30)]. Therefore, the LDOS is uniform

throughout the whole wire, and Fig. 2.1(a) is independent of the distance from the

boundary. Thus, as expected, the boundaries of the 1D system or the wire ends do

not produce any nontrivial effects for s-wave superconducting wires.

In the more nontrivial case of p-wave superconductor, the solution in the bulk

Eq. (2.34) cannot satisfy the boundary condition at the end [Eq. (2.24a)] and thus
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Figure 2.2: The LDOS ν (x, ω, η) = ν0Re [g33 (x, ω + iη)] plotted as a function of

position x (in units of ξ0 = vF/Δ) and energy ω (in units of Δ), where x is measured

from the end of the wire and η = 0.01Δ is the broadening parameter. The four panels

correspond to disorder strengths (a) τ−1 = 0, (b) τ−1 = 0.5Δ, (c) τ−1 = Δ, and

(d) τ−1 = 2Δ. When the system is clean, the salient features are the zero-energy

peak localized at the end and a pristine bulk gap. As disorder is introduced, the

bulk gap shrinks and the singularity is smeared out, homogenizing the LDOS of the

whole system, but the zero-energy peak at the end of the wire is still visible even at

strong disorder.
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Eqs. (2.20) must be solved directly. Without disorder, the solution is[73]

g31 =
Δe−2x

√
Δ2−ω2/vF

ω
, (2.35)

g02 =
Δ
(
e−2x

√
Δ2−ω2/vF − 1

)
√
Δ2 − ω2

, (2.36)

g33 = i
Δ2e−2x

√
Δ2−ω2/vF − ω2

ω
√
Δ2 − ω2

, (2.37)

and the other components of g can also be solved analytically but we shall not state

them here as we are ignoring variations in the length scale of k−1
F . Note that g31

is odd in frequency, indicating an odd-frequency s-wave pairing present near the

boundary [73]. The close relation between the odd-frequency pairing and MZMs

has been emphasized in the literature [76, 77].

With nonzero disorder, the problem must be solved numerically. Figures

2.1(b)-2.1(d) show the LDOS given by Eq. (2.21), evaluated in the bulk, at x = ξ0

and x = 0 for a number of disorder strengths. For the same choice of disorder

strengths, the contour plots of the LDOS are shown in Fig. 2.2. In a clean wire, a

singularity in LDOS is present at the gap edge (ω = Δ). This singularity is absent at

the end of the wire, where instead a single zero-energy MZM is present. As disorder

is introduced, the LDOS throughout the system is homogenized, with the LDOS

singularity smoothened and the bulk gap suppressed. As the disorder strength is

increased beyond the bulk-gap closing point of τ−1 = Δ, the continuum states begin

to hybridize with the MZM, but the zero-bias peak (ZBP) is distinctly visible even

under strong disorder of τ−1 = 2Δ, where in the bulk the LDOS becomes almost
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flat. It might be of interest to note that at strong disorder a suppression of the

LDOS at ω � 0 is present only at x ∼ ξ0, but is absent either in the bulk or at the

end of the wire. This can be understood as the MZM is centered at the end, its

hybridization with the continuum states is the strongest there too.

We point out as an aside that the somewhat surprising continued survival

of the zero mode even beyond the disorder-induced gap closing point obtained in

our current formal semiclassical theory has also been seen in the direct numerical

simulations recently [45]. This indicates that the end MZMs are very robust and

exist even in the gapless p-wave superconducting phase, which might be consistent

with the experimental observations where the ZBP exists even when there is no

obvious gap signature in the tunneling spectrum.

2.4 Change of Majorana Localization Length Under Disor-

der

In a clean system the MZM is exponentially localized with a decay length

equal to the coherence length lloc = ξ0 = vF/Δ. One expects disorder to modify

this localization length, which should diverge as disorder destroys the topological

phase[61]. On the one hand, the suppression of the spectral gap seems to suggest

a longer decay length if it is substituted into the formula lloc = vF/Egap. On the

other hand, in the case of s-wave superconductors, the coherence length of a strongly

disordered system is shortened to ξdis ≈ vF
√
τ/Δ, which suggests a shorter decay

length if the formula lloc = ξdis is to be trusted. Equations (2.20) allow for a
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Figure 2.3: Log-linear plot of zero-energy LDOS ν (x, ω = 0) as a function of distance

x measured from the end of a p-wave superconducting wire, with oscillations of

length scale k−1
F ignored. The steepest line corresponds to clean case τ−1 = 0 where

the MZM is most localized. The least steep line corresponds to the critical disorder

strength τ−1 = Δ where the bulk gap closes. The intermediate lines are sampled

at equally spaced τ−1 with a step size of δ (τ−1) = 0.1Δ. The inset shows the last

curve corresponding to τ−1 = Δ in log-log scale. Its slope is approximately −2.

quantitative investigation of the problem.

The decay length is extracted in the following way. The LDOS is related to

the Green function by ν (x, ω) ∝ ∑
n

ψn(x)ψ∗
n(x)

ω−En+iδ
where the summation is over all

eigenmodes with energies En. Therefore, a localized zero-energy MZM with wave

function of the form ∼ e−x/ξ will result in a decay of the LDOS as ν (x, ω = 0) ∼

e−2x/ξ, provided that the bulk gap is finite. Note that it is convenient to ignore the

fast-oscillating LDOS contributed by g23 in Eq. (2.21).

In Fig. 2.3 we plot the the zero-energy LDOS ν (x, ω = 0) in log scale, for a

range of disorder strength τ−1 up to the critical strength where the bulk gap closes.
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Figure 2.4: Plot of the localization length of the MZM as a function of disorder

strength. The black solid line shows the numerical values extracted from Fig. 2.3

by fitting the tails of the curves (at log ν(x)
ν(x=0)

< −6) with straight lines. Note that

the result is meaningful only for weak disorder (τ−1 � Δ) where the corresponding

the curve in Fig. 2.3 is approximately linear. The red dashed line is the best-fit line

of a power-law form of ξ
ξ0

=
[
1− (Δτ)−1]−0.84

.

For the clean limit τ−1 = 0, the plot is linear with a slope of −2
ξ0
, as expected since

the MZM is localized with a decay length of ξ0. When disorder is increased, the

slope decreases in magnitude and the curve deviates from a linear behavior. As the

strength is increased to the critical gap-closing value (τ−1 = Δ), the decay ceases

to be exponential and becomes power-law in nature, as is clear from the linearity of

the curve in the log-log plot shown in the inset of Fig. 2.3. A linear fit through the

log-log plot shows that the decay of the ZBP is a power law with a behavior of x−1.

To be more quantitative, the decay length ξ of the MZM could be crudely

estimated from Fig. 2.3, in the weak disorder limit (roughly when τ−1 � Δ) where

the curves are approximately linear, by fitting the curves with straight lines. We
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compute the slope m of the best-fit line of the tail of each curve in Fig. 2.3 and

extract the estimated decay length ξ of the MZM by ξ ∼ −2
m
, with the results shown

in Fig. 2.4. For the purpose of completeness, Fig. 2.4 is presented with disorder

ranging from zero to the gap-closure limit (τ−1 = Δ), but it should be cautioned

that near the gap-closure limit the notion of “decay length” is meaningless as the

decay behavior shows a crossover from exponential to power-law. To understand the

nature of the divergence at τ−1 = Δ, we fit the curve with a power-law function and

obtain ξ
ξ0

�
[
1− (Δτ)−1]−0.84

. Figure 2.4 shows that this empirical form captures

the variations of decay length very well.

2.5 Leakage of the Majorana Mode

The zero-energy MZM appears to persist even after the gap closes within our

formalism. More precisely, the LDOS at the boundary ν (x = 0, ω) has a pole at

ω = 0 for any finite values of Δ and τ . This fact could be derived directly from

Eqs. (2.20a)-(2.20c) with a perturbative treatment in Δ in the following way: in

the limit Δ � τ−1, we treat Δ as a small perimeter and expand the solution to

Eq. (2.20) perturbatively in Δ. For simplicity we shall consider only Eq. (2.20a-c)

supplemented with the boundary conditions Eqs. (2.22) and Eq. (2.24a), since the

other equations are decoupled and does not affect g33 which determines the LDOS.
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At Δ = 0 the problem is trivially solved with

g
(0)
33 = 1, (2.38a)

g
(0)
31 = g

(0)
02 = 0. (2.38b)

With small Δ, we write gJ =
∑∞

n=0 g
(n)
J Δn (for J = {33, 31, 02}) and expand

Eq. (2.20) to successive orders in Δ. To the first order in Δ, the system of differential

equations is

vF∂xg
(1)
31 = 2ωg

(1)
02 + 2i+

2i

τ
g
(1)
02 , (2.39a)

vF∂xg
(1)
02 = −2ωg

(1)
31 , (2.39b)

vF∂xg
(1)
33 = 0, (2.39c)

subjected to the boundary conditions of g
(1)
02 (0) = 0 and limx→∞ g

(1)
31 (x) = 0. This

is solved with

g
(1)
31 (x) = −e

−2xi
√

ω(ω+iτ−1)/vF√
ω (ω + iτ−1)

, (2.40a)

g
(1)
02 (x) =

ie−2xi
√

ω(ω+iτ−1)/vF

ω + iτ−1
− i

ω + iτ−1
, (2.40b)

g
(1)
33 (x) = 0, (2.40c)

which has no effect on the LDOS. We must therefore go to the second order which

gives

vF∂xg
(2)
33 = −2ig

(1)
31 − 2i

τ
g
(1)
31 g

(1)
02 , (2.41a)
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where only the equation for g
(2)
33 is given as it is relevant to the evaluation to

LDOS. Requiring limx→∞ g
(2)
33 (x) = 1

2(ω+iτ−1)2
which follows from the expansion

of Eq. (2.34c), we have

g
(2)
33 (x) = − ie

−4ix
√

ω(ω+iτ−1)/vF

2ωτ (ω + iτ−1)2
− e−2ix

√
ω(ω+iτ−1)/vF

(ω + iτ−1)

+
1

2 (ω + iτ−1)2
, (2.42)

g
(2)
33 (0) ≈ iτ

2ω
− τ 2

2
− iωτ 3

2
, (2.43)

in which an expansion in ω is performed. We therefore see that the pole at zero

energy is present even for Δτ � 1.

To see clearly the effects of gap closure on the MZM, we perform the following

procedure: as we know from the case of the clean wire that the divergence at zero-

energy comes from a single MZM, we fit the LDOS near the end of the wire and

near zero energy with a Lorentzian form:

ντ (x, ω, η) ∼
1

2π
Zτ (x)

η

ω2 + η2
+ νreg, (2.44)

where Zτ (x) is a the fitting parameter and the subscript τ indicates the dependence

on disorder strength. η is an artificial broadening parameter and νreg is the part

of the LDOS that remains non-divergent as η, ω → 0, contributed from the other

delocalized modes in the system.

On the other hand, we know that if the LDOS is contributed by a single mode

54



0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

HDtL-1

Z t

Figure 2.5: Spectral weight Zτ (defined in the text) of the zero-energy end mode

against disorder strength. The dots show the values obtained from the numerical

solution of Eqs. (2.20) for a range of disorder strengths. The solid line plots the

empirical formula Eq. (2.46).

ψ0, its exact form is

ν(0) (x, ω, η) =
1

2π

∑
λ

|ψ0λ (x)|2
η

ω2 + η2
, (2.45)

where the summation Σλ is over the four-component BdG spinor. Comparing

Eqs. (2.44) and (2.45), it is seen that the spectral weight defined as Zτ =
∫∞
0
Zτ (x) dx

is normalized to unity provided that the MZM is not hybridized with other modes.

Figure 2.5 shows the variations of Zτ as the strength of disorder is changed.

For Δτ ≥ 1, Zτ remains around unity, which is expected as the bulk gap is not

closed and the zero-energy MZM remains exponentially localized and protected by

the spectral gap (and therefore of unit spectral weight). As disorder is increased

beyond the strength where the bulk gap closes, Zτ starts to decrease below unity.
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This reduction in the spectral weight can be understood as a consequence of the

hybridization between the continuum modes in the bulk and the MZM. Interestingly,

the dependence of Zτ on disorder can be captured almost perfectly with the empirical

formula

Zτ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, Δτ ≥ 1

Δτ, Δτ < 1.

(2.46)

We note that Eq. (2.46) indicates a continuous decrease of the MZM spec-

tral weight from unity in the topologically gapped situation to a small, but not

necessarily vanishingly small, value in the gapless phase. This robustness of the

MZM spectral weight even in the presence of fairly strong disorder (which com-

pletely closers the bulk topological gap) may be the reason for the existence of the

ZBP in nanowires which do not necessarily have very high mobilities or obvious

superconducting gaps.

2.6 Conclusion

In this chapter we have derived a theory for a disordered p-wave superconduc-

tor in 1D, with the effects of disorder incorporated by SCBA. Our theory is thus

the p-wave generalization of the Eilenberger theory to 1D systems with the explicit

inclusion of disorder. A brief comparison with previous works is in order. Reference

[48] applied the Eilenberger equations to a SOC wire with proximity-induced Zeeman

term and superconductivity, but the disorder was introduced after the Eilenberger

equations were obtained and explicit disorder-averaging was performed numerically.

56



Ref. [73] adopted the Eilenberger equations to the same system investigated by us,

but the emphasis was put on the analysis of the proximity effect, and no disorder

was introduced. Moreover, short-length-scale fluctuations in the LDOS were explic-

itly ignored in Reference [73]. Our study differs from these works in that disorder is

incorporated by SCBA in the Eilenberger equations, and spatial fluctuations of the

LDOS of the order of Fermi wavelength is retained. In fact, the inclusion of both

disorder and spatial fluctuations are the main features of our theory distinguishing

it from earlier works in the literature.

We applied our formalism to a semi-infinite p-wave superconducting wire, and

found that the gap of the system in the bulk is suppressed by disorder in a way

consistent with previous studies. We then focused on the MZM located at the end

of the wire. We found that with the bulk gap being suppressed, the localization

length of the MZM increases, and diverges when the gap vanishes. In this process,

the localization behavior of the MZM changes from exponential to a power-law

decay. We also pointed out an unusual feature of the MZM under disorder in

this formalism: the LDOS shows a divergence at zero-energy at the end of wire

even at strong disorder. This is contradictory to the fact that the MZM should

hybridize with the continuum modes and its spectrum should broaden. However, we

can still extract certain manifestations of this hybridization within this formalism–

the spectral weight of the MZM decreases after the bulk gap is closed, showing a

“leakage” of the MZM to the continuum. It is interesting that we find that some

vestiges (“Majorana ghosts”) of the MZMs survive strong disorder and continue

showing up in the zero-energy LDOS even when the p-wave system has become
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essentially a gapless system due to disorder.

The results from SCBA appear qualitatively consistent with numerical solu-

tions of the LDOS [45] near the end. In these studies the ZBP, which starts as a

sharp Majorana peak, decreases in height and broadens out into a peak resulting

from Griffiths singularities [61] that is consistent with the class-D symmetry of the

system [48]. In contrast to the more exact results where the ZBP is found to broaden

into a power-law singularity, we find that the ZBP stays sharp near zero energy while

reducing in spectral weight. This discrepancy is not unexpected since the SCBA is

a mean-field theory and cannot possibly describe critical fluctuations. Furthermore,

we cannot expect to determine a sharp phase transition based on SCBA since SCBA

does not describe the localized phase of 1D metals. The disorder-induced topo-

logical superconducting phase transition in spinless p-wave superconductors occurs

when the superconducting coherence length becomes comparable to the localization

length. In summary, SCBA is found to describe qualitatively the suppression of

the Majorana ZBP despite the fact that it smears out the phase transition into a

crossover from a topological superconducting to a diffusive metallic phase.
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Chapter 3

Disorder in Multiband Topological

Insulator-based Heterostructures

One substantive advantage of the TI-based MZM proposals [11, 71, 78] over the

SMC-based proposals [5, 13, 6] is that the explicit presence of time-reversal symme-

try (TRS). By contrast, the SMC/SC hybrid topological structures hosting MZMs

do not have such symmetries and therefore are unprotected from non-magnetic dis-

order in the environment [see Fig. 3.2(a) for an illustrative example in which the

MZM is destroyed by strong disorder]. There has been little theoretical analysis

of disorder effects in the TI/SC hybrid structures. One example is Ref. [12] which

concluded that TI/SC topological systems are completely protected from all elastic

disorder effects by virtue of Anderson’s theorem [79] due to TRS. A recent study,

however, concluded that the induced p-wave superconductivity may in general be

suppressed by disorder in a 3D TI/SC structure [80].

In this chapter, we consider the experimental TI/SC structure for the existence

of bound MZMs where a FI must be deposited in order to localize the MZMs at the

system edge. The realistic structure [Fig. 6.1(a)], first proposed by Fu and Kane in

this context [11], involves the 2D TI with SC and FI layers deposited on top of it.

The FI layer in the structure breaks TRS which is essential for localizing spatially
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Figure 3.1: (a) Schematic picture of the devices: a TI in contact with SCs and an

FI . The position of MZM is marked with a red dot. The normal metal N acts as

an external lead and the FI acts as a tunnel barrier. The MZM is then detected

as a ZBCP. (b) At the interface between the metallic SC and the narrow-gap SMC

(i.e. the TI), in general band-bending at the interface leads to extra edge channels

(hashed region).
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separated topologically non-Abelian MZMs. The absolute necessity of TRS breaking

for creating isolated defect-bound MZMs is a well-established theorem [9].

In this scenario, the immunity of the local SC gap in the TI/SC/FI structure

against disorder is subtle. Although Anderson’s theorem guarantees that no impu-

rities can degrade the gap deep in the SC region where TRS applies, there is no

corresponding argument near the SC/FI interface, where the FI provides an explicit

TRS-breaking mechanism that makes the theorem inapplicable. This means that

although the MZMs separated by the SC do not hybridize, extra fermionic sub-

gap states could potentially appear locally at the SC/FI interface in the TI/SC/FI

hybrid structure.

In spite of this, we find that disorder in the SC region of the TI edge is unable

to generate any extra localized fermionic subgap states (i.e. in addition to the zero-

energy MZM itself) near the SC/FI interface [see Fig. 3.2(d)], provided that we limit

our attention only to single-channel TI edges. Thus, the TI/SC/FI hybrid system

is indeed immune to all disorder provided there is only a single active edge channel

in the system. However, disorder-induced potential fluctuations near the edge are

expected to produce bound states in addition to the 1D edge state. Such extra states

or puddles, which have been proposed to explain the temperature dependence of the

TI edge conductance [81], can be modeled using a multi-channel TI edge. In fact, in

realistic structures, we expect multi-channel 1D edges in the generic 2D TI system

due to, for example, band-bending effects which are ubiquitous near SMC surfaces.
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3.1 Model

We investigate a broad class of TI Hamiltonians by considering a multi-channel

TI edge. In addition to disorder, the extra 1D edge channels could be induced from

an intrinsically higher chemical potential near the surface [82, 83]. Also, since the

2D TI is commonly constructed from SMC with small band gaps (e.g. HgCdTe or

InAs/GaSb) [84, 85], a proximate metallic SC would unavoidably induce extra edge

channels due to band-bending [86] [see Fig. 6.1(b)].

We consider the following Hamiltonian which models a multi-channel TI edge

in proximity to SC/FI:

H =

∫
dx

{
v
∑
αss′

(pα · σss′)ψ
†
αs(x) (−i∂x)ψαs′(x)

−
∑
αβs

μαβ(x)ψ
†
αs(x)ψβs(x)

−
∑
αβiss′

μ̃j
αβ(x)ıσ

j
ss′ψ

†
αs(x)ψβs′(x)

+
∑
α

Δα(x) [ψα↑(x)ψα↓(x) + hc]

+
∑
αss′

Bα(x)σ
x
ss′ψ

†
αs(x)ψαs′(x)

}

(3.1)

Here, ψ†
αs(x) creates an electron in the αth channel with spin s =↑, ↓ at position

x, where each “channel” has a Kramers pair of bands. Note that the nature of TI

edge requires the number of channels Nch to be odd. σ = (σx, σy, σz) are the three

Pauli spin matrices, and pα is the polarization of the αth channel. The Nch × Nch
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real symmetric matrix μαβ(x) contains both the chemical potential of each channel

(diagonal entries) and inter-channel elastic scattering (off-diagonal entries), while

the anti-symmetric matrix μ̃j
αβ(x) are the coefficients for inter-channel spin-orbit

scatterings, which still respect TRS. The proximate SC and FI induce the local

pairing potential Δ(x) and the Zeeman term B(x) respectively. To model an SC/FI

interface, we choose Δ(x) = Δθ(x) and B(x) = Bθ(−x) where B = 3Δ, restricting

the analysis to an idealized case where there are no spatial fluctuations of Δ and B

on the edge [58] and no penetration of Δ and B to the FI and SC side, respectively,

since this would degrade the spectral gap at the SC/FI interface in a trivial way and

obscure our main findings. We also assume that there are no inter-channel pairings

or Zeeman gaps.

Static charge impurities and spin-orbit impurities are included through spatial

variations in μ(x) and μ̃(x), respectively. For the results below in which disorder is

included, the mean free path l is estimated to be kF l ≈ 3. If the disorder in either μ

or μ̃ is removed, the phase space of scattering is reduced, but similar results would

still apply provided that the mean free path remains the same by tuning up μ̃ or μ

respectively. Note that disorder is introduced in the SC region only since its effect

on the FI region can in principle be offset by a sufficiently strong Zeeman term.

3.2 Scattering Matrix Approach

Before presenting the results based on numerical simulations, we first analyze

the problem with a scattering matrix approach [62, 42]. We treat the SC/FI interface
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as an SC-N-FI system where the N region has a finite but vanishingly small width.

A solution in N is

ψ† = u+ψ
†
+ + u−ψ

†
− + v−ψ− + v+ψ+, (3.2)

in which the multi-component ψ± are Kramer’s pairs and the subscripts ± represents

right/left moving modes. The corresponding particle-hole-conjugated and time-

reversed solutions are:

Cψ†C−1 = v∗+ψ
†
+ + v∗−ψ

†
− + u∗−ψ− + u∗+ψ+ (3.3)

T ψ†T −1 = −u∗−ψ†
+ + u∗+ψ

†
− + v∗+ψ− − v∗−ψ+ (3.4)

Reflection matrices R relates the coefficients of
(
ψ†
+, ψ+

)
to those of

(
ψ†
−, ψ−

)
.

At the left (SC/N) interface, the particle-hole symmetry and time-reversal symmetry

are both respected, giving three equations for R:

⎛⎜⎜⎝ u+

v+

⎞⎟⎟⎠ = R

⎛⎜⎜⎝ u−

v−

⎞⎟⎟⎠ (3.5)

⎛⎜⎜⎝ v∗+

u∗+

⎞⎟⎟⎠ = R

⎛⎜⎜⎝ v∗−

u∗−

⎞⎟⎟⎠ (3.6)

⎛⎜⎜⎝ −u∗−

−v∗−

⎞⎟⎟⎠ = R

⎛⎜⎜⎝ u∗+

v∗+

⎞⎟⎟⎠ , (3.7)

from which one can derive
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R = τxR
∗τx = −RT . (3.8)

Together with the unitarity condition R†R = 1, the value of detR could be com-

puted. First note that the constraint R = τxR
∗τx requires R to take the form

R =

⎛⎜⎜⎝ ree reh

r∗eh r∗ee

⎞⎟⎟⎠, while the condition R = −RT implies that ree is antisymmetric,

and, since its dimension is odd, it is singular. Since R itself is non-singular (by the

unitarity condition), this implies that reh is invertible. The remaining conditions

R†R = 1 implies

r†ehree + rTeer
∗
eh = 0 ⇒ reer

∗−1
eh = −r†−1

eh rTee (3.9)

r†ehreh + rTeer
∗
ee = 1 ⇒ rTeer

∗
ee = 1− r†ehreh (3.10)

(3.11)

Now we evaluate detR:

detR = (−1)Nch det

⎛⎜⎜⎝ reh ree

r∗ee r∗eh

⎞⎟⎟⎠
= (−1)Nch det

(
r∗ehreh − r∗ehreer

∗−1
eh r∗ee

)
= − det

(
r∗ehr

†−1
eh

)
(3.12)

= −1 (3.13)

where we have utilized the fact that reh is invertible and Eqs. (3.9, 3.10) are consec-
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utively used in the intermediate steps. Nch = dimR/2 is the number of channels in

the model, which is restricted to be odd due to the nature of the TI edge.

At the right (N/FI) interface we have no Andreev reflection or time-reversal

symmetry, constraining the form of R̃ to be R̃ =

⎛⎜⎜⎝ r̃ee 0

0 r̃∗ee

⎞⎟⎟⎠. By the unitarity of

R̃, we have det R̃ = 1.

The zero-energy modes are found by solving det
(
1− R̃R

)
= 0, which implies

that the multiplicity of the eigenvalue −1 of −R̃R gives the number of zero-energy

modes. We now prove that −R̃R must have at least one eigenvalue being −1. To

this end we rotate R to the Majorana basis via Ω = 1√
2

⎛⎜⎜⎝ 1 1

−i i

⎞⎟⎟⎠:

ΩRΩ† = 2

⎡⎢⎢⎣ Re (ree + reh) −Im (ree − reh)

Im (ree − reh) Re (ree − reh)

⎤⎥⎥⎦ (3.14)

This matrix is real and, because it is unitary, it is also orthogonal. Similarly for

R̃ and hence −R̃R. The eigenvalues of an orthogonal matrix can only be 1, −1,

or pairs of conjugate e±iφ. Since det
(
−R̃R

)
= −1, −R̃R must have at least one

eigenvalue being −1. On the other hand, because there are no other constraints on

the problem, there could be at most Nch eigenvalues being −1, and hence, at most

Nch zero modes. In summary, 1 ≤ N0 ≤ Nch, where N0 is the number of localized

zero-energy modes.

The exact value of N0 depends on the details of the Hamiltonian, but one

can always fine-tune the Hamiltonian near the SC/FI interface by local disorder
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respecting the symmetries, such that all energies of the localized modes reach zero.

Therefore the constraint derived above implies that the number of localized states

is equal to the number of channels in the TI edge, and among them there is always

a zero-energy mode, which is the MZM.

We have therefore shown that the gap protecting the MZM is indeed robust

in the single-channel case. This is not a consequence of Anderson’s theorem as

commonly believed, but is due to the various symmetries present in the system as

elucidated by the above scattering matrix argument. Note that in the multi-channel

case, although subgap states exist, the MZM is still pinned at zero energy.

3.3 Numerical Results

In the following we numerically study how the number of subgap states N0

depends on the number of channels and other details of the interface. We start

by considering the simplest case of a TI/SC/FI interface where the TI has a single

channel. The LDOS [87, 88] at the SC/FI interface with or without disorder is

plotted respectively in Fig. 3.2(c,d). It shows that the LDOS in the subgap regime

(E < Δ) is not affected by disorder in the single-channel case. Fig. 3.2(b) shows that

the gap deep in the SC region is also completely unaffected. This is consistent with

previous results [12] and our scattering matrix analysis for the single-channel case.

This simplification, however, disappears as soon as the system has multichannel

edge states as is likely in realistic samples (Fig. 3.3).

To understand the interplay of disorder and multiple channels, we consider

67



�2 �1 0 1 2
E�Eg

L
D

oS
at

en
d

of
SM

�2 �1 0 1 2
E��

L
D

oS
in

SC
�d

ir
ty
�

�2 �1 0 1 2
E��

L
D

oS
at

In
te

rf
ac

e
�c

le
an
�

�2 �1 0 1 2
E��

L
D

oS
at

In
te

rf
ac

e
�d

ir
ty
�

�a� �b�

�c� �d�

Figure 3.2: (a) LDOS at the end of a SMC nanowire, where the dashed red line

shows the result for a clean wire while the solid blue line is for a disordered wire.

The parameters used for the BdG Hamiltonian H = ( p2

2m
+αpσy −μ)τz +Bσz +Δτx

are: μ = 0, B = 2Δ, mα2 = 2Δ. (b) LDOS deep in the SC region of the TI edge,

with disorder in SC region. (c) LDOS at the SC/FI interface on a clean TI. (d)

LDOS at the SC/FI interface on a TI edge with disorder in SC region.
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Figure 3.3: (a,b) Band structures of respectively a 5-channel and 3-channel TI

edge. Here the parameters of Eq. (3.1) is chosen as: μ = diag (2,−2, 1,−1, 0)Δ,

μ̃x = μ̃y = 0, μ̃z
α≷β = ±2Δ, pα = (+,−,+,−,+) ẑ. The Fermi level in the FI

region (EF = 0) is shown in dashed line, while that in the SC region (EF = 3Δ) is

shown in dotted line. (c,d) Their corresponding LDOS of at the SC/FI interface,

without disorder. (e,f) Their corresponding LDOS at the SC/FI interface, with a

single realization of non-magnetic disorder.

69



5-channel and 3-channel TI edge models. The parameters of Eq. (3.1) are so chosen

so that the additional channels cross the Fermi level in the SC region. It is assumed

that the FI region is gated so as to place the chemical potential in the gap of the

additional bands as well [see Fig. 3.3(a,b)]. This is necessary to obtain localized

MZMs at the interface. The LDOS at the interface for several cases are plotted in

Fig. 3.3(c,d,e,f). We typically find that each channel leads to a subgap state. The

LDOS in Figs. 3.3(c,d) show that for the interface parameters chosen, the interface

states are close to the edge of the gap away from the interface. On the other hand,

introducing disorder leads to the results in Figs. 3.3(e,f), where one sees interface

states that are bound deep inside the bulk gap. The details of the SC/FI interface,

such as the chemical potential change at the interface, can lead to scattering very

similar to disorder effects. Therefore, depending on the details of the interface it is

possible even for an interface without any explicit quenched disorder to have subgap

states in the middle of the gap. The results plotted in Figs. 3.3(c,d) correspond to a

smooth interface where such scattering is absent and therefore do not contain deep

subgap states. In contrast to the interface LDOS, the LDOS in the SC region, away

from the SC/FI interface, does not show any subgap states similar to the single

channel case. This could be understood as a consequence of TRS, by which the

application of Anderson’s theorem forbids such subgap states.

Comparing the results of the disordered SC/FI interface in the single channel

case (Fig. 3.2) and the multi-channel case (Fig 3.3) it is clear that the absence of

subgap states in the single channel case is not simply a result of Anderson’s theorem

(i.e. TRS). As mentioned in the introduction, since TRS is locally broken at the
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interface, it only protects the bulk, i.e. the region away from the SC/FI interface,

from subgap states. On the other hand, the scattering-matrix interpretation implies

that the presence of a single subgap state in the single channel case is a result of

the properties of the scattering matrix near zero energies. Time-reversal invariance

does of course play a role in determining the properties of the scattering matrix.

The scattering matrix picture also allows for the presence of extra subgap states in

the multi-channel case as seen in Fig. 3.3.

The results in Fig. 3.3 are for a typical (rather than fine-tuned) structure

of the interface (which is determined by the potentials in the various channels)

and also for typical disorder configurations and should thus be regarded as typical

results which should be qualitatively valid generically. While these results clearly

establish the generic existence of fermionic subgap states in a multi-channel TI

with disorder, the experimentally relevant question might be the likelihood of the

occurrence of these subgap states with a random disorder potential. To address this

question we calculate the disorder-averaged LDOS at the interface (Fig. 3.4). As seen

from Fig. 3.4(a,b), the superconducting gap at the SC/FI interface is not protected

against disorder and is reduced by increasing disorder strength. Interestingly, the

disorder-averaged LDOS for strong disorder is found to vanish at zero energy. This

suggests that level repulsion from the MZM prevents the extra subgap states from

approaching precise zero-energy which is consistent with conclusions from random

matrix theory [89, 63, 90]. In Fig. 3.4(c,d) we show the disorder-averaged gap in

the TI/SC edge away from the SC/FI interface. In contrast to the gap near SC/FI

interface, we find that the TI/SC gap is immune to disorder as expected since TRS
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Figure 3.4: (a,b) LDOS at the SC/FI interface, averaged over 5000 realizations of

non-magnetic disorder, for a 5-channel and 3-channel TI edge respectively. The

three curves show the results for different strengths of disorder, and the MZMs have

been removed for clarity (c,d) Their corresponding averaged LDOS deep in the SC

region.

is respected there and Anderson’s theorem applies. It is instructive to note that the

LDOS at the interface [Fig. 3.4(a),(d)] shows precisely the same soft gap behavior

widely observed in the SMC/SC nanowire hybrid systems [58, 55].

3.4 Discussion and Conclusion

The additional subgap states may have consequences for detecting and manip-

ulating MZMs at finite temperatures. One of the simplest signatures of an MZM is

the ZBCP. The voltage resolution of a tunneling conductance measurement, which
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directly probes the LDOS, is limited by the finite tunneling rate and temperature.

Low-energy subgap states as in Fig. 3.3 and Fig. 3.4 would contribute to tunnel-

ing if the energy of the subgap states is lower than either the temperature or the

tunneling-induced broadening. However, since there is a repulsion of these states

from zero energy [Fig. 3.4(a,b)], the likelihood for the states to influence the zero-

bias conductance is small unless the temperature is high and the number of channels

is large. Thus, the zero-bias effective MZM tunneling conductance peak may sur-

vive the existence of fermionic subgap states. For utilizing the MZM for topological

quantum computation, it is known that extra localized states do not affect the phase

of manipulation [91]. However, the additional subgap levels could have an influence

for the readout schemes that rely on measuring single-particle spectra [92], because

this requires eliminating the TR-breaking region to hybridize the two MZMs to fi-

nite energies. In spite of this, the TI/SC structure has an advantage in regards

to robustness against disorder, since disorder cannot degrade the SC gap deep in

the SC region (if this happens, the two MZMs at the ends would hybridize and

becomes regular Fermionic mode). Also, the potential-fluctuation-induced subgap

states show a repulsion from zero energy, without any complications arising from

weak antilocalization [44, 45].

Experimentally, the conductance of a TI edge was measured as 2e2/h [85],

which might appear to contradict our assumption of multiple edge channels. How-

ever, the simple relation Nch = G
(2e2/h)

between conductance G and the number

of channels Nch is valid in the clean limit only. With disorder, the conductance

should be analyzed using random matrix theory of the edge transmission matrix
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[93]. Since the multi-channel TI edge belongs to the symplectic class with an odd

number of channels, only one channel remains delocalized [94]. A conductance

measurement with a length scale greater than the localization length would then

produce G = 2e2/h even if many channels are present. Therefore, the conductance

measurement alone cannot rule out the presence of multiple channels.

To conclude this chapter, we have studied the effects of multiple channels and

disorder near an SC/FI interface on the edge of a 2D TI in the context of MZM

in the system. We find that a number of localized states, equal to the number of

channels, appears at the SC/FI interface. One of these states is the zero-energy

MZM while the energies of the other states depend on the specific details of the

system. Adding disorder in the SC region leads to a distribution in the energies of

these extra localized states, potentially reaching the subgap regime. However their

effect is less detrimental than those in the SMC/SC nanowire structures since they

are repelled from zero energy and are localized at the boundary.
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Chapter 4

Soft superconducting gap in semiconductor

Majorana nanowires

An ubiquitous feature of all Majorana experiments involving proximity-induced

superconductivity has remained ignored in the literature despite a great deal of ac-

tivity in the field: the measured G(V ) is extremely “soft” in both the high-field

topological phase (where the ZBP exists) and in the zero-field or the low-field trivial

phase (where there is no ZBP). In fact, the soft gap feature, which is clearly a prop-

erty of the SMC-SC hybrids quite independent of the MZM physics, is prominent

in the data with the subgap conductance being typically only a factor of 2-3 lower

than the above-gap conductance, implying the existence of rather large amount of

subgap states whose origin remains unclear. We believe that without a thorough un-

derstanding of this ubiquitous soft gap, our knowledge of the whole subject remains

incomplete.

In this Chapter, we develop a minimal theoretical model that may generally

explain the soft gap that is observed ubiquitously in the current Majorana experi-

ments [7, 51, 52, 54]. We systematically consider the effects due to: (a) non-magnetic

and (b) magnetic disorder in the nanowire; (c) temperature; (d) dissipative quasipar-

ticle broadening arising due to various pair-breaking mechanisms such as poisoning,
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coupling to other degrees of freedom (e.g. phonons or normal electrons in the leads)

or due to electron-electron interactions; and (e) inhomogeneities at the SC-nanowire

interface due to imperfections (e.g. roughness and barrier fluctuations) that may

arise during device fabrication. Since the soft gap occurs universally in the exper-

iment at all parameter values, we consider only the non-topological zero-magnetic

field situation here because this is where the gap should be the largest and the

hardest. We solve our model numerically by exact diagonalization of the Hamilto-

nian, and complement the study using the Abrikosov-Gor’kov formalism [95] for a

simplified model of a SMC nanowire with a spatially-fluctuating pairing potential.

Our results point to the inhomogeneities at the SMC-SC interface [i.e. mech-

anism (e)] as the main physical mechanism producing the soft gap. This indicates

that improving the quality of the SC-SMC interface should result in a harder induced

gap and in a simpler physical interpretation of the Majorana experiment. However,

our conclusions are not restricted to Majorana nanowires and might be useful for a

correct interpretation of the experimental results in many SMC-SC hybrid systems.

4.1 Theoretical Model

We consider a 1D SMC nanowire of length Lx placed along the x-axis and

subjected to SOC, Zeeman field along its axis, and proximity-induced s-wave pairing

due to a proximate bulk SC.

Discretization of the Hamiltonian in the continuum results in a tight-binding
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model defined on a Nx-site lattice [96],

Ĥw = −t
∑
〈ij〉,s

c†iscjs + iα
∑
i,ss′

[
c†isσ

y
ss′(ci+1s′ − ci−1s′)

]

−
∑
i,ss′

c†is [μi − BZσ
x − bi · σ] cis′ +

∑
i

[
Δic

†
i↑c

†
i↓ + h.c.

]
. (4.1)

Here, c†is creates an electron with spin s =↑, ↓ at site i, α = αR/2a =
√
Esot

parametrizes the Rashba SOC strength, where Eso = m∗
eα

2
R/2 is the SOC energy

scale, αR is the Rashba velocity and a is the lattice constant. BZ is the Zeeman

energy, and σ = (σx, σy, σz) is the vector of Pauli matrices. We use for the nanowire

Lx = Nxa = 2μm, m∗
e = 0.015me, Eso = 50μeV, and temperature T = 70mK [7].

We assume a one-band model with Nx = 500, t = 676μeV, and α = 0.07t.

Static non-magnetic disorder in the nanowire is included through a fluctuating

chemical potential μi = μ0 + δμi around the average value μ0. Static magnetic

disorder may be present in the sample due to contamination with magnetic atoms

or due to the presence of regions in the nanowire acting as quantum dots with an

odd number of electrons. Here, we neglect the quantum dynamics of the impurity

spins and model its effect as a randomly oriented inhomogeneous magnetic field

bi [97].

The effects of the proximate bulk SC on the nanowire are modeled in Eq.

(4.1) by an effective locally-induced hard gap Δi. The locality of the induced pair-

ing interaction is justified because the coherence length of the bulk SC is typically

much shorter (ξSC ≈ 3nm in NbTiN alloys) than the Fermi wavelength of the SMC
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nanowire (λF ≈ 102nm). The assumption of an induced hard gap is justified if the

SC-nanowire interface is in the tunneling regime. This seems to be a reasonable

assumption since the experimentally reported induced gaps are much smaller than

the parent bulk SC gaps [7, 51, 52], a fact that typically occurs in low-transmittance

interfaces [98, 99, 96] (As a word of caution, the experimental evidence for this iden-

tification is still limited and other explanations cannot be completely ruled out). In

the tunneling regime, the quantity γi = ρ0t
2
⊥,i � ΔSC, where ρ0 is the LDOS of

electrons in the nanowire at the Fermi energy in the normal phase, t⊥,i is the local

tunneling matrix element at the nanowire-SC interface at site i, and ΔSC the bulk

parent gap in the SC. Then, the bulk SC is known to induce a hard gap in the

nanowire, Δi ≈ γi [98, 96]. A more general treatment of the SC-nanowire interface

that takes into account higher orders in t⊥,i (i.e., highly transparent interfaces) is

outside the scope of this thesis, and we refer the reader to the well-known bibliog-

raphy on the subject [100, 101, 102].

Inhomogeneities at SMC-SC interfaces are known to occur generically due to

sample fabrication procedures, and their effects have been extensively studied (see

e.g. Refs. [103, 101]). In our model, we take into account these inhomogeneities

through local spatial fluctuations in t⊥,i, which effectively give rise to spatial fluctu-

ations in the induced s-wave SC pairing Δi in Eq. (4.1). We assume t⊥,i = t0⊥e
−κδdi ,

where δdi denotes the fluctuation in the width of the nanowire-SC barrier and κ is a

phenomenological constant with units of inverse length that parametrizes the energy

barrier of the nanowire-SC interface. Such a functional form is expected due to fluc-

tuations in the overlap of evanescent wavefunctions. Then, the induced SC pairing
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is Δi = Δ0e
−2δβi , where the dimensionless parameter δβi = κδdi characterizes the

roughness of the interface, and Δ0 is the induced SC pairing in the absence of the

interface inhomogeneity (we take the value Δ0 = 250μeV from Ref. [7]). Note that

our model for interface fluctuations is generic and only incorporates the inevitable

presence of potential fluctuations at the interface separating the SC metal and the

nanowire.

The different disorder mechanisms are taken into account by introducing Gaussian-

distributed random variables δμi, bi = (bxi , b
y
i , b

z
i ), and δβi with zero means and

variances given by 〈δμiδμj〉 = W 2
μδij,

〈
bpi b

q
j

〉
= W 2

b δijδpq, and 〈δβiδβj〉 = W 2
β δij,

respectively. To model the interface inhomogeneity, we coarse-grain the interface in

patches of length 5a and assume that δβi is uniform within each patch, but varies

randomly from patch to patch with a standard deviation ofWβ. Note that assuming

a Gaussian distribution in δβi results in a different probability distribution function

for Δi

P (Δi) =
1

2Δi

√
2πWβ

exp

[
− 1

8W 2
β

ln2

(
Δi

Δ0

)]
. (4.2)

The relevant experimental quantity is the tunneling differential conductance

G (V ) at an end of the nanowire, which is related to the LDOS [7, 51, 52, 104].

We calculate G (V ) using the tunneling formalism by coupling the nanowire to a

contact lead [105, 13, 41]. The Hamiltonian of the combined system is Ĥ = Ĥw +

ĤL + Ĥt, where ĤL =
∑

ks εkd
†
ksdks is the Hamiltonian describing the lead and

Ĥt = tL
∑

ks d
†
ksc1s + h.c. is the tunneling Hamiltonian coupling site i = 1 of the

nanowire to the lead via a tunneling matrix element tL. The tunneling conductance
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at site i = 1 reads

G (V, T ) = −2πe2t2LρL

∫ ∞

−∞
dωρw1 (ω) f ′ (ω − eV ) , (4.3)

where f (x) is the Fermi distribution function, ρL is the lead density of states at the

Fermi energy, and V is the voltage at which the lead is biased with respect to μ0.

Here, ρw1 (ω) is the LDOS in the nanowire (including both spin projections) at site

i = 1 in the presence of the lead, which we calculate as ρwi (ω) = − 1
π
Im gwii (ω). Here

gwij (ω) is the retarded Green’s function of the nanowire in real-space representation,

which in the limit tL → 0 becomes

gwij (ω) =
∑
ns

u
(0)∗
is,nu

(0)
js,n

ω − E
(0)
n + iγL,n

+
v
(0)∗
is,n v

(0)
js,n

ω + E
(0)
n + iγL,n

, (4.4)

with E
(0)
n and {u(0)is,n, v

(0)
is,n} being, respectively, the eigenvalues and eigenvectors re-

sulting from the diagonalization of the BdG Hamiltonian corresponding to Eq. (4.1).

To include the presence of the lead, we solve the equation of motion for gwij (z) in

the presence of Ĥt [106]. The term γL,n is the self-energy, which in the limit tL → 0

becomes γL,n = −iπρLt2L
∑

s

(
|u(0)1s,n|2 + |v(0)1s,n|2

)
.

4.2 Numerical Results

We now present the numerical results for G (V ). We use μ0 = −338μeV,

and set the temperature to T = 70mK [7] unless otherwise stated. In Fig. 4.1(a)

we present the effect of static disorder on G(V ). We take Wμ = 0 (blue curve) to
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Figure 4.1: Differential conductance for electron tunneling into an end of the SMC

nanowire for BZ = 0. Various pair-breaking mechanisms are considered: (a) static

disorder, (b) magnetic disorder, (c) temperature and (d) quasiparticle broadening.

Wμ = 0.8Δ0 (red curve) in equal steps of 0.2Δ0. The plots are offset in steps of

0.1 for clarity. As expected from Anderson’s theorem [79, 97], our results show that

the subgap density of states is not affected by the presence of static non-magnetic

disorder, thus rendering this an unlikely mechanism for the observed subgap conduc-

tance. We note as an aside that in our numerical results for the topological phase,

which are not shown here, the effect of non-magnetic disorder is stronger than in

the zero magnetic field non-topological phase since Anderson’s theorem does not

apply in the topological phase. In fact, the non-magnetic disorder in the topological

phase behaves very similarly to the magnetic disorder in the non-topological phase
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discussed below.

The effect of magnetic disorder is shown in Fig. 4.1(b). We have taken

Wb = 0, 0.27Δ0, 0.54Δ0, 0.68Δ0 and 0.81Δ0 (blue to red curves). In this case,

we find a substantial modification in the subgap conductance. In particular, a

soft superconducting gap, similar to the one observed in Ref. [7], is obtained for

Wb = 0.81Δ0 (red curve). According to the Abrikosov-Gor’kov theory [95, 97],

the amount of magnetic disorder needed to produce a soft gap is Δ0τb ∼ 1, where

τb = 2t2(1− (μ/2t)2)/3vFW
2
b is estimated from our tight binding parameters. Such

a large amount of magnetic disorder is unlikely to be present in the nanowire used

in the experiments.

The thermal pair-breaking effect is considered in Fig. 4.1(c) [c.f. Eq. (4.3)].

We vary the temperature from T = 0.027Δ0 (blue curve) to T = 0.35Δ0 (red curve)

in equal steps of 0.054Δ0 [0.027Δ0 ≈ 78mK]. Although a considerable amount of

thermally-induced subgap conductance is obtained for T = 0.35Δ0 (red curve),

this value is much larger than the reported experimental temperature Texp = 70

mK, and cannot by itself explain the experimental features. We note that the blue

curve corresponds to T = 78mK � Texp, for which there is no appreciable subgap

conductance.

In Fig. 4.1(d), we consider the effect of a finite quasiparticle broadening by

introducing a shift in the frequency ω → ω + iγN in Eq. (4.4), where γN is a phe-

nomenological quasiparticle broadening. This broadening can in principle arise due

to coupling of electrons in the nanowire to a source of dissipation, e.g. presence of

(unconsidered) normal contacts, quasiparticle poisoning due to tunneling of normal
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Figure 4.2: Differential tunneling conductance in the presence of SC-nanowire inter-

face inhomogeneity and quasiparticle broadening. In (a), we use Wβ = 0.8 and fix

BZ = 0. In (b), we vary BZ while fixing γN , and model interface inhomogeneity via

a spatially fluctuating Δi = Δ0 + δΔi, with a Gaussian-distributed random compo-

nent obeying 〈δΔiδΔj〉 = W 2
Δδij and WΔ = 0.2t. Disorder average is done over 50

and 500 samples in (a) and (b), respectively.

electrons into the nanowire, and scattering with phonons and/or other electrons.

Quasiparticle lifetime effects were considered in a similar way in the context of BCS

superconductors by introducing a phenomenologically broadened density of states

ρ(ω, γN) = Re
[
(|ω| + iγN)/[(|ω| + iγN)

2 + Δ2
0]

1/2
]
[107]. In Fig. 4.1(d) we vary

γN from γN = 0.027Δ0 (blue curve) to γN = 0.35Δ0 (red curve) in equal steps of

0.054Δ0. We see that even for the largest values of γN (i.e. γN ∼ 0.35Δ0 corre-

sponding to the red curve), a remnant of the hard SC gap is still present. Therefore,

this effect alone is incapable of explaining the substantial gap softening observed in

the experiments.

While all of the above-mentioned mechanisms are likely to be present to some

extent in a realistic setup, our results indicate that it is unlikely that they can

individually explain the experimentally observed soft gap. Moreover, even after
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combining all the effects of non-magnetic and magnetic disorder, quasiparticle de-

cay rate of order 0.1Δ0, and temperature of 70mK, we found that obtaining a soft

gap that qualitatively agrees with experiments requires magnetic disorder strength

of Δ0τb ∼ O(1), which seems to be unrealistic. This leads us finally to the effect

of inhomogeneities at the nanowire-SC interface (see Fig. 4.2). We now argue that

a reasonable amount of interface inhomogeneity, together with quasiparticle broad-

ening, gives a soft gap that is in good qualitative and semi-quantitative agreement

with the experimental findings, thus rendering the combination of these two effects

as the most likely candidate for the soft gap. In Fig. 4.2(a), we take Wβ = 0.8

while fixing BZ = 0 and varying γN as indicated. We observe a large amount of

subgap contributions, with a noticeable “v-shaped” tunneling conductance around

V = 0. We see that γN ∼ 0.1Δ0 is sufficient to obtain a soft gap reminiscent of

the experimental findings [7, 51, 52, 54]. The v-shaped soft gap is obtained only

in the presence of both the interface fluctuations and quasiparticle broadening, and

an unrealistic magnitude for either of these pair-breaking mechanisms is needed to

reproduce the soft gap in the absence of the other. In Fig. 4.2(b), we show the effect

of finite magnetic fields (in the non-topological regime) at fixed γN = 0.14Δ0. Here,

we model the interface inhomogeneity via a spatially fluctuating Δi = Δ0 + δΔi,

with a Gaussian-distributed random component obeying 〈δΔiδΔj〉 = W 2
Δδij and

WΔ = 0.2t. Realistic experimental temperature of T = 70mK has almost no effect

on the results of Fig. 4.2.

An order-of-magnitude estimate for the dimensionless parameter δβi can be

obtained based on known experimental parameters. The width of the nanowires
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Figure 4.3: Analytical results for ρ̄w1 (ω)/ρ0, the averaged LDOS obtained from an

Abrikosov-Gor’kov theory for various values of Δ0τΔ, and (a) γN = 0 and (b) γN =

0.11Δ0.

used in Ref. [7] was quoted as 100nm ± 10nm. Assuming that the fluctuations

in the SC-nanowire barrier width is of order the wire width fluctuations, we take

δdi ≈ 5nm. The phenomenological barrier parameter κ can be estimated using the

interface energy barrier U0 via κ ≈
√

2m∗
eU0/�. Using an estimate for U0 based on

a Nb-InGaAs junction [108], we take U0 ≈ 0.2 eV. With an effective mass for the

InSb wire, m∗
e ≈ 0.015me, we obtain δβi ∼ 1. This order of magnitude estimate is

consistent with the standard deviation Wβ = 0.8 used in this thesis.

4.3 Analytical Results

A minimal analytical model that provides an insight into the effects of a fluctu-

ating SC pairing on G(V ) can be obtained from the continuum model corresponding

to Eq. (4.1) in the absence SOC, Zeeman field and other types of disorder, and as-

suming the SC pairing itself to be a Gaussian variable Δ(x) = Δ0 + δΔ(x) with

variance 〈δΔ(x)δΔ(x′)〉 = W 2
Δδ (x− x′). We use the theoretical framework of the
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Abrikosov-Gor’kov (AG) theory [95, 97] to obtain the averaged electron Green’s

function ḡwij(ω).

Let us consider the Dyson’s equation for the Green function in the presence

of fluctuating pairing potential:

Gkk′ = G
(0)
k δkk′ +

∑
p

G
(0)
k Vkk′G

(0)
k′

+
∑
p

G
(0)
k VkpG

(0)
p Vpk′G

(0)
k′ (4.5)

+
∑
pp′

G
(0)
k VkpG

(0)
p Vpp′G

(0)
p′ Vp′k′G

(0)
k′ + . . . (4.6)

where G
(0)
k = (zτ0 − ξkτ3 −Δ0τ1)

−1 is the Green function for the superconducting

wire with uniform Δ0, and Vkp = (δΔ)k+p τ1 is the fluctuation in pairing potential.

τi are the Pauli matrices acting on the particle-hole space. If we consider a Gaussian

white noise for Δ0:

〈δΔk〉 = 0 (4.7)

〈δΔkδΔk′〉 = W 2
Δδk,−k′ (4.8)

then the fluctuation-averaged Green function can be evaluated with cumulant ex-

pansion:

Ḡkδkk′ = G
(0)
k δkk′ +

∑
p

G
(0)
k τ1G

(0)
p τ1G

(0)
k′ 〈δΔkpδΔpk′〉

+
∑
pp′

G
(0)
k τ1G

(0)
p τ1G

(0)
p′ τ1G

(0)
p′ τ1G

(0)
k′

×〈δΔkpδΔpp′δΔp′p′′δΔp′′k′〉+ . . . (4.9)
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Ḡk = G
(0)
k +W 2

ΔG
(0)
k τ1

(∑
p

G(0)
p

)
τ1G

(0)
k′

+W 4
ΔG

(0)
k τ1

(∑
p

G(0)
p

)
τ1G

(0)
k τ1

(∑
p

G(0)
p

)
τ1G

(0)
k′

+W 4
ΔG

(0)
k τ1

(∑
pp′

G
(0)
k−pτ1G

(0)
k−p−p′τ1G

(0)
k−p

)
τ1G

(0)
k

+W 4
ΔG

(0)
k τ1

(∑
pp′

G
(0)
k−pτ1G

(0)
k−p−p′τ1G

(0)
k−p′

)
τ1G

(0)
k

+ . . .

≡ G
(0)
k +G

(0)
k ΣkḠk (4.10)

Note that this expression is formally exact, provided we include all higher order

processes. We now consider the following approximation for the self-energy: Σk =

W 2
Δ

∫
dp
2π
τ1Ḡpτ1. This corresponds to the “non-crossing approximation” where terms

like
(∑

pp′ G
(0)
k−pτ1G

(0)
k−p−p′τ1G

(0)
k−p′

)
are ignored. This is a good approximation if

kFvF τΔ 	 1, where τ−1
Δ = πW 2

Δρ0 is the scattering rate and ρ0 is the density of

states at the Fermi point for the wire with uniform Δ.

For notational convenience we rewrite the fluctuation-averaged Green function

as

Ḡk = (zτ0 − ξkτ3 −Δ0τ1 − Σ) −1

=
(
z̃τ0 − ξ̃kτ3 − Δ̃τ1

)
−1 (4.11)

where z̃ = z − Σ0 , ξ̃k = ξk + Σ3 and Δ̃ = Δ0 + Σ1 . Here the self energy is split
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into its components: Σ = Σ0τ0 + Σ3τ3 + Σ1τ1 .

The self-energy can be readily evaluated as

Σk = W 2
Δ

∫
dp

2π

z̃ + Δ̃τ1

z̃2 − ξ2p − Δ̃2

=
−1

2τΔ

z̃ + Δ̃τ1√
Δ̃2 − z̃2

(4.12)

Substituting this expression into Eq. (4.11) yields the renormalization of the energy

and pairing potential:

z̃ = z +
1

2τΔ

z̃√
Δ̃2 − z̃2

(4.13)

Δ̃ = Δ0 −
1

2τΔ

Δ̃√
Δ̃2 − z̃2

(4.14)

The density of states in the presence of pairing potential fluctuation is obtained

by

ρ(ε) =
−1

π
Im

∫
dk

2π
TrḠ(z → ε+ i0)

≈ ρ0Im
u√

1− u2

= ρ0 (Δ0τΔ) Imu (4.15)

where we have defined u ≡ z̃/Δ̃ and the relation z
Δ0

= u
(
1− (Δ0τΔ)−1

(1−u2)1/2

)
is used in

the last step. The gap in the quasiparticle spectrum is the smallest ω at which u

acquires an imaginary part. For the function z(u) for real u, the maximum value of
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z, beyond which u becomes complex, is [75]:

Egap = θ [Δ0τΔ − 1]Δ
(
1− (Δ0τΔ)

−2/3
)
3/2 (4.16)

To compute the LDOS near the end of a semi-infinite wire, we introduce an

impurity Vimp = Uδ(r)τ3 at r = 0 of a infinite wire. Taking the limit U → ∞ will

cut the wire into two halves. Consider now the Dyson’s equation for the fluctuation-

averaged Green function in the presence of the impurity:

Ḡimp (r, r) = Ḡ (r, r) + Ḡ (0, r)Uτ3Ḡimp (0, r)

Ḡimp (0, r) = Ḡ (0, r) + Ḡ (0, 0)Uτ3Ḡimp (0, r)

=
[
1− Ḡ (0, 0)Uτ3

]−1
Ḡ (0, r)

∴ Ḡimp (r, r) = Ḡ (0) + Ḡ (r) τ3
[
U−1 − Ḡ (0) τ3

]−1
Ḡ (−r)

where Ḡ (r) =
∫

dk
2π
eikrḠk. Hence the Green function in the presence of a boundary

is Ḡb (r, r) = Ḡimp (r, r)
∣∣
U→∞ = Ḡ (0) − Ḡ (r)G(0) (0)−1 Ḡ (−r). The LDOS at r is

then −1
π
ImTrḠb (r, r).

Despite the mathematical similarity of the formalism to the (more usual) case

of scattering induced by magnetic impurities in s-wave SCs, here we are only con-

sidering SC pairing fluctuations as the pair-breaking mechanism. In Fig. 4.3(a), we

show the results for ρ̄w1 (ω)/ρ0, the averaged LDOS at the end of the nanowire, which

is the main quantity determining G(V ) at T = 0 [cf. Eq. (4.3)]. In each plot, the

black to purple curves correspond to (Δ0τΔ)
−1 = 0 to 1.5 in equal steps of 0.25.
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Here, τ−1
Δ ≡ πW 2

Δρ0 is the scattering rate induced by SC pairing fluctuations.

For Δ0τΔ ≤ 1, the quasiparticle gap vanishes (brown curve). To make con-

tact with our numerical results in Fig. 4.2, in Fig. 4.3(b) we consider a finite

γN = 0.11Δ0, for the same values of Δ0τΔ as in Fig. 4.3(a). The quasiparticle

decay rate γN has the effect of broadening the sharp edge features present in the

LDOS when γN = 0. Again, we see that fluctuations in the induced SC pairing

together with quasiparticle broadening gives the characteristic v-shaped LDOS in

the subgap regime (e.g. cyan and green curves). Our AG theory shows that in-

terface inhomogeneity, encoded in the quantity τΔ, can directly explain a soft gap

and, therefore, provides a reasonable microscopic origin for the “spin-flip” term in

the Usadel equation. A similar gap softening in SC-metal junctions was described

using the framework of the Usadel equation with a phenomenological spin-flip term

in Ref. [109].

We note that pairing fluctuations in the parent SC may also play a role here

since they will also induce pairing fluctuations inside the nanowire [110]. However,

given the universality of the soft gap behavior in SMC-SC hybrid structures, which

appears independently of the material being used for the parent SC, and under the

reasonable assumption of an average low-transparency SC-nanowire interface (i.e.

γi � ΔSC), we believe that the soft gap behavior is mainly caused by the interface

fluctuations.
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4.4 Summary

To summarize, we have studied the effect of different pair-breaking mecha-

nisms likely present in SMC-SC Majorana nanowires, and systematically analyzed

their influence on the subgap tunneling conductance in order to explain the exper-

imentally observed soft gap behavior. While we cannot completely rule out some

of these mechanisms (i.e. magnetic scattering, thermal and dissipative broaden-

ing), quantitative considerations point to the interface fluctuations at the SMC-SC

contact leading to inhomogeneous pairing amplitude along the wire as the primary

physical mechanism causing the ubiquitous soft gap behavior. Our finding indi-

cates that materials improvement leading to optimized SMC-SC interfaces should

considerably ameliorate the proximity gap in the hybrid structures.

Despite the simplicity of our analytical model, the Abrikosov-Gor’kov theory

qualitatively explains the results of our numerical simulations and provides useful

insight into the physics involved.
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Chapter 5

Majoranas in ferromagnetic chains on

spin-orbit-coupled superconductors: Weak

inter-atomic coupling limit

Apart from the “soft gap” issue which we have studied in details in the previous

chapter, a common feature of the experimental realizations [7, 51, 52, 53, 54] of the

nanowire proposal is that the conductance can only be measured from the end

of the wire. While the ZBCP indicative of the MZM could be picked up by the

measurement, it cannot confirm that the MZM is localized at the end of the wire,

since the LDOS at the middle of the wire is not measured.

Much attention has recently been directed at an alternative proposal, where a

topological band arises from the overlapping Yu-Shiba-Rusinov states [17, 18, 19],

or Shiba states for short, in a chain of magnetic impurities with helical spin order

on the surface of a superconductor [15, 20, 33, 21, 22, 23, 24, 111, 25, 112, 113]. The

helical spin texture plays a critical role combining the effect of the SOC and external

field in the nanowire proposal. Topological states are similarly predicted in metallic

systems with coexisting superconductivity and helical magnetic order [16, 31, 114].

A significant advantage of the Shiba chain proposal is that it is possible to unam-
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biguously image the MZMs using scanning tunneling microscopy (STM), which can

be positioned at anywhere along the wire, in contrast to relying on the end trans-

port measurements of nanowire systems. Although critical to ensuring a topological

state, the helical order also represents the main experimental difficulty since it is

impossible to control externally. The helical order is stable when the magnetic ions

are placed on a quasi-1D substrate [21, 22, 23], but for the physically-relevant case

of a planar surface, the chain is generically unstable towards a ferromagnetic or

antiferromagnetic configuration [26]. A pair-breaking effect in the superconducting

state might nevertheless restore the stability of the helical order [112], but disorder

effects may still turn out to be a strong detrimental factor [26].

The prospect of unambiguously verifying the existence of MZMs in a Shiba

chain motivates the search for a way to realize a topological state in this system with-

out relying upon an intrinsic helical ordering of the impurity spins. There has been

a spurt in the activity [28, 115, 116] on topological superconductivity and emergent

MZMs in ferromagnetic chains fabricated on the surface of bulk superconductors. In

particular, a report of impressive STM experiments [28] has just appeared claiming

the generic observation of MZMs at the ends of Fe chains on superconducting Pb. It

should be stressed, however, that the connection of this experimental work with the

aforementioned Shiba chain proposals is not apparent, since the inter-atomic hop-

ping strength between the Fe atoms could be much stronger than the hybridization

energies between the induced Shiba states.

We now attempt to develop a theoretical understanding of such systems, tak-

ing the weak and strong inter-atomic hoppings between the Fe atoms in the current
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and the following chapter, respectively. In this chapter, where the inter-atomic hop-

pings are weak (compared with the hybridization energy among the Shiba states),

the dynamics of electrons take place mostly within the Shiba states. It is then ap-

propriate to “integrate-out” the Fe atoms, yielding SC with induced Zeeman terms

on its surface. A second important feature to note is that the bulk SOC in the

SC, together with the local inversion-symmetry breaking on its surface, lead to a

Rashba-like SOC term for its surface Hamiltonian. To model this system, we con-

sider a 2D Rashba-coupled SC with a chain of local Zeeman terms. We analytically

construct a tight-binding model for the Shiba states valid in the limit of “deep”

impurities, when the impurity band lies close to the middle of the superconducting

gap. Although the SOC does not affect the Shiba states for an isolated impurity,

it dramatically alters the results for the chain. Specifically, spin-flip correlations in

the bulk superconductor, induced by the antisymmetric SOC, mix the two branches

of the impurity band when the polarization of the impurity spins is transverse to

the SOC along the chain. This can be interpreted as a triplet pairing amplitude in

a Kitaev-like model, and is thus responsible for the topologically nontrivial state.

A magnetic polarization parallel to the SOC, on the other hand, produces no such

mixing but instead results in an asymmetric dispersion with trivial topology. We

construct a phase diagram, demonstrating that a topological state is possible for

infinitesimal SOC strength. The analysis below closely follows that of [24], where

a similar tight-binding model for the impurity band was obtained for a chain with

spiral magnetic texture embedded in a 3D superconductor.
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5.1 Model

A bulk 2D singlet s-wave superconductor with Rashba SOC is described by

the Hamiltonian H =
∑

k Ψ
†
kȞkΨk where

Ȟk = τ̂z ⊗ (ξkσ̂0 + lk · σ̂σσ) + Δτ̂x ⊗ σ̂0 . (5.1)

Here τ̂μ (σ̂μ) are the Pauli matrices in Nambu (spin) space, and Ψk = (ck,↑, ck,↓, c
†
−k,↓,−c†−k,↑)

T

is the spinor of creation and annihilation operators. We have adopted the notation

that ˆ. . . and ˇ. . . indicate 2× 2 and 4× 4 matrices, respectively. The non-interacting

dispersion is given by ξk = �
2k2/2m − μ where m is the effective mass and μ the

chemical potential, the Rashba SOC is parametrized by lk = λ(kyex − kxey) =

λk(sin θex − cos θey) where λ is the SOC strength, and Δ is the superconducting

gap.

The SOC lifts the spin degeneracy in the normal state, resulting in the dis-

persions ξk,± = ξk ± |lk|, where the plus (minus) sign corresponds to the positive

(negative) helicity band. As time-reversal symmetry remains intact, however, in

the superconducting phase there is only pairing between states in the same helicity

band. The bulk Green’s function can then be written as Ǧk(ω) =
1
2
{Ǧ+

k (ω)+Ǧ
−
k (ω)},

where

Ǧ±
k (ω) = (ωτ̂0 + ξ±τ̂z +Δτ̂x)⊗ (σ̂0 ± sin θσ̂x ∓ cos θσ̂y)

×
(
ω2 − ξ2± −Δ2

)−1
, (5.2)
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is the Green’s function in each helicity sector. Note that the SOC produces nor-

mal spin-flip and triplet pairing terms in the Green’s function. [117] For clarity we

suppress the momentum index in the dispersion of the helical bands, i.e. ξk,± ≡ ξ±.

5.2 Single impurity

We first consider a single (classical) magnetic impurity with spin S at the

origin, interacting with the electron states with exchange strength −J . We include

this in our model by addingHimp = −JS·[Ψ†(0)τ̂0⊗σ̂σσΨ(0)] to the bulk Hamiltonian,

where Ψ(r) =
∫

d2k
(2π)2

Ψke
ik·r. We aim to solve the Bogoliubov-de Gennes equation

(H + Himp)ψ(r) = ωψ(r) for the impurity bound states, i.e. for energy |ω| < Δ.

By straightforward manipulation, [24] the spinor of the bound state at the impurity

ψ(0) satisfies the equation

{
1̌ +

∫
d2k

(2π)2
Ǧk(ω)JS · (τ̂0 ⊗ σ̂σσ)

}
ψ(0) = 0 . (5.3)

To evaluate this equation, we split the Green’s function into positive and negative

helicity components and then convert the integral over the momentum to an integral

over the appropriate dispersion ξ± and the angle θ

∫
d2k

(2π)2
Ǧ±

k (ω) ≈
N±
2π

∫ D

−D

dξ±

∫ 2π

0

dθǦ±
k (ω) , (5.4)

where Nν = (m/2π�2)[1 ∓ λ̃/(1 + λ̃2)1/2] is the density of states of the ν = ±

helicity band at the Fermi level, λ̃ = λm/�2kF is the ratio of SOC splitting to the
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Fermi energy and gives a dimensionless measure of the SOC strength, kF the Fermi

wavevector in the absence of SOC, and D → ∞ is a cutoff. The symmetric cutoff

in Eq. (5.4) is used for simplicity; Although it implies particle-hole symmetry of

the normal dispersion, relaxing this assumption does not qualitatively change our

results. The resulting integral is

∫
d2k

(2π)2
Ǧ±

k (ω) ≈ − πNν√
Δ2 − ω2

(ωτ̂0 ⊗ σ̂0 +Δτ̂x ⊗ σ̂0) (5.5)

Due to the isotropic δ-function structure of the potential, the integrals involving the

spin-flip and triplet pairing terms in the Green’s function vanish, and Eq. (5.3) there-

fore has exactly the same form as a magnetic impurity in an s-wave superconductor

without SOC, [17, 18, 19, 24] specifically

{
1̌− α√

Δ2 − ω2
[ωτ̂0 +Δτ̂x]⊗ (eS · σ̂σσ)

}
ψ(0) = 0 , (5.6)

where α = π
2
(N+ +N−)JS, S = |S|, and eS = S/S. The solutions of this equation

occur at ω = ±ε0, where ε0 = Δ(1 − α2)/(1 + α2). The form of the corresponding

spinors ψ±(0) is dictated by the orientation of the impurity spin. Parametrizing

S = S(cos η sin ζ, sin η sin ζ, cos ζ), these spinors can then be written [24] up to

unimportant normalization constant as

ψ+(0) =

⎛⎜⎜⎝ χ↑

χ↑

⎞⎟⎟⎠ , ψ−(0) =

⎛⎜⎜⎝ χ↓

−χ↓

⎞⎟⎟⎠ , (5.7)
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where

χ↑ =

(
cos ζ/2 , eiη sin ζ/2

)T

, (5.8)

χ↓ =

(
e−iη sin ζ/2 , − cos ζ/2

)T

. (5.9)

5.3 Ferromagnetic chain

The above analysis can be extended to a chain of ferromagnetically-aligned

impurity spins, with the impurity Hamiltonian now written as

Himp = −J
∑
j

S · [Ψ†(rj)τ̂0 ⊗ σ̂σσΨ(rj)] , (5.10)

where rj is the position of the jth impurity. We have suppressed the site index

of the spins since they all point in the same direction. Without loss of generality,

we assume that the chain runs along the x-axis, and so rj = xjex. After similar

manipulations as in the single impurity problem, the BdG equations for the subgap

Shiba states on the chain can be written

{
1̌− α√

Δ2 − ω2
[ωτ̂0 +Δτ̂x]⊗ (eS · σ̂σσ)

}
ψ(xi)

= −
∑
j �=i

J̌(xij)eS · (τ̂0 ⊗ σ̂σσ)ψ(xj) (5.11)

where xij = xi − xj and the matrix J̌(xij) is defined
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J̌(xij) = JS

∫
d2k

(2π)2
Ǧk(ω)e

ikxxij

=
JS

2

{
[I−1 (xij) + I+1 (xij)]τ̂z ⊗ σ̂0 + ω[I−3 (xij) + I+3 (xij)]τ̂0 ⊗ σ̂0

+Δ[I−3 (xij) + I+3 (xij)]τ̂x ⊗ σ̂0 + [I−2 (xij)− I+2 (xij)]τ̂z ⊗ σ̂y

+ω[I−4 (xij)− I+4 (xij)]τ̂0 ⊗ σ̂y +Δ[I−4 (xij)− I+4 (xij)]τ̂x ⊗ σ̂y
}
.(5.12)

We have expressed this in terms of the integrals

Iν1 (x) =
Nν

2π

∫ D

−D

dξ

∫ 2π

0

dθ
ξeikν(ξ)x cos θ

ω2 − ξ2 −Δ2
, (5.13a)

Iν2 (x) =
Nν

2π

∫ D

−D

dξ

∫ 2π

0

dθ
ξeiθeikν(ξ)x cos θ

ω2 − ξ2 −Δ2
, (5.13b)

Iν3 (x) =
Nν

2π

∫ D

−D

dξ

∫ 2π

0

dθ
eikν(ξ)x cos θ

ω2 − ξ2 −Δ2
, (5.13c)

Iν4 (x) =
Nν

2π

∫ D

−D

dξ

∫ 2π

0

dθ
eiθeikν(ξ)x cos θ

ω2 − ξ2 −Δ2
, (5.13d)

where kν(ξ) = kF,ν+ξ/�vF,ν , while kF,ν = kF [(1+λ̃
2)1/2−νλ̃] and vF,ν = (�kF/m)(1+

λ̃2)1/2 are the Fermi vector and velocity for the ν helicity band, respectively. In the

limit of D → ∞, these integrals evaluate to

Iν1 (x) = πNνIm
{
J0((kF,ν + iξ−1

ν )|x|) + iH0((kF,ν + iξ−1
ν )|x|)

}
, (5.14)

Iν2 (x) = −iπNν sgn(x)Re
{
iJ1((kF,ν + iξ−1

ν )|x|) +H−1((kF,ν + iξ−1
ν )|x|)

}
, (5.15)

Iν3 (x) = − πNν√
Δ2 − ω2

Re
{
J0((kF,ν + iξ−1

ν )|x|) + iH0((kF,ν + iξ−1
ν )|x|)

}
, (5.16)

Iν4 (x) = − sgn(x)
iπNν√
Δ2 − ω2

Im
{
iJ1((kF,ν + iξ−1

ν )|x|) +H−1((kF,ν + iξ−1
ν )|x|)

}
,(5.17)
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where Jn(z) and Hn(z) are Bessel and Struve functions of order n, respectively, and

ξν = �vF,ν/
√
Δ2 − ω2. Note that Iν1 (x) and I

ν
3 (x) are even functions of x, whereas

Iν2 (x) and I
ν
4 (x) are odd. In the limit of kF,ν |x| 	 1, we can use asymptotic forms

valid for large values of the argument close to the positive real axis, giving

Iν1 (x) ≈ πNν

√
2

πkF,ν |x|
sin
(
kF,ν |x| − π

4

)
e−|x|/ξν +

2Nν

kF,ν |x|
, (5.18)

Iν2 (x) ≈ iπNν sgn(x)

√
2

πkF,ν |x|
sin
(
kF,ν |x| − 3π

4

)
e−|x|/ξν + sgn(x)

2iNν

(kF,νx)2
,(5.19)

Iν3 (x) ≈ − πNν√
Δ2 − ω2

√
2

πkF,ν |x|
cos
(
kF,ν |x| − π

4

)
e−|x|/ξν , (5.20)

Iν4 (x) ≈ − sgn(x)
iπNν√
Δ2 − ω2

√
2

πkF,ν |x|
cos
(
kF,ν |x| − 3π

4

)
e−|x|/ξν . (5.21)

The non-oscillating component is valid up to O((kF,ν |x|)−3).

In contrast to the single-impurity system considered above, the presence of

SOC makes a significant difference to the BdG equations for the multi-impurity

problem: while the first line of Eq. (5.12) is identical to the result found in [24], the

second line is only present for nonzero SOC. This line contains explicitly magnetic

terms ∝ σ̂y, reflecting the orientation of the SOC vector lk||ey for k pointing along

the magnetic chain.

5.4 Tight-binding model

We do not attempt a general solution of Eq. (5.11), but instead consider the

analytically-tractable limit of dilute “deep” impurities, as discussed in [24]. Specifi-
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cally, we assume that α ≈ 1, so that the energy ε0 of the isolated Shiba state lies close

to the center of the gap, and that the spacing a between impurities is sufficiently

large that the impurity band formed from the hybridized Shiba states lies entirely

within the superconducting gap. Linearizing the BdG equations Eq. (5.11) in the

energy ω and the coupling between impurity sites, we obtain after straightforward

manipulation

Δ [eS · (τ̂0 ⊗ σ̂σσ)− ατ̂x ⊗ σ̂0]ψ(xi) + Δ
∑
j �=i

eS · (τ̂0 ⊗ σ̂σσ) lim
ω→0

J̌(xij)eS · (τ̂0 ⊗ σ̂σσ)ψ(xj)

= ωψ(xi) (5.22)

This equation is now projected into the Shiba states [Eq. (5.7)] at each site,

to obtain a BdG-type equation for the impurity band

H̃(i, j)φj = ωφi (5.23)

where φi = (ui,+, ui,−)T is the vector of the wavefunctions for the + and − Shiba

states at site i and

H̃(i, j) =

⎛⎜⎜⎝ Aij +Bij Cij

C∗
ji −Aij +Bij

⎞⎟⎟⎠ (5.24)
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where

Aij = ε0δij +
1

2
JSΔ2 lim

ω→0

[
I+3 (xij) + I−3 (xij)

]
, (5.25)

Bij =
1

2
JSΔ2 sin η sin ζ lim

ω→0

[
I−4 (xij)− I+4 (xij)

]
, (5.26)

Cij = − i

2
JSΔ

(
cos2 ζ

2
+ sin2 ζ

2
e−2iη

)
× lim

ω→0

[
I−2 (xij)− I+2 (xij)

]
. (5.27)

Note that the integrals in these expressions are to be regarded as vanishing for i = j.

The effective tight-binding Hamiltonian Eq. (5.24) is the central result of this

chapter. Due to the antisymmetry of the integrals Iν2 (x) in the off-diagonal terms,

it can be interpreted as describing superconducting spinless fermions, recalling the

Kitaev model, [4] albeit with long-range hopping and pairing terms. The properties

of this system depend crucially on the SOC in the bulk superconductor and the

polarization of the impurity spins. Specifically, the pairing term Cij is only present

for non-vanishing SOC, and when the polarization of the ferromagnetic chain has a

component perpendicular to the y-axis. Examining Eq. (5.12), we observe that the

pairing term originates from the spin-flip correlations in the host superconductor

induced by the SOC. A polarization component along the y-axis contributes an

antisymmetric hopping Bij in the presence of SOC. This echoes the asymmetric

dispersion of a SOC electron gas in the direction of an applied magnetic field, and

its appearance here is due to the triplet pairing correlations in the bulk Green’s

function Eq. (5.2).

A similar tight-binding model was derived in [24], but there the odd-parity
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pairing term arose from the spiral magnetic texture of the impurity chain. This

mechanism for generating a pairing term is still valid in the presence of the SOC

considered here. Examining the interplay of spiral spin texture and SOC is an

interesting topic which we leave to later work.

5.5 Topological properties

To conclude we examine the topology of the impurity band. For an infinite

chain with uniform spacing a of the impurities, we define the Fourier transform of

the Hamiltonian Eq. (5.24)

H̃(k) =

⎛⎜⎜⎝ A(k) + B(k) C(k)

C∗(k) −A(k) + B(k)

⎞⎟⎟⎠ (5.28)
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where A(k) =
∑

j A0je
ikja, etc. Using the asymptotic forms for the integrals, the

analytical expressions for these quantities in the limit kF,νa	 1 are obtained as

Iν2 (k) = Nν

√
π

2kF,νa

{
e−3πi/4Li1

2

(
ei(kF,νa+ka)−a/ξν

)
− e3πi/4Li1

2

(
ei(−kF,νa+ka)−a/ξν

)
−e−3πi/4Li1

2

(
ei(kF,νa−ka)−a/ξν

)
− e3πi/4Li1

2

(
ei(−kF,νa−ka)−a/ξν

)}
+

2iNν

(kF,νa)2
{
Li2
(
eika
)
− Li2

(
e−ika

)}
, (5.29)

Iν3 (k) = − Nν√
Δ2 − ω2

√
π

2kF,νa

{
e−πi/4Li1

2

(
ei(kF,νa+ka)−a/ξν

)
+eπi/4Li1

2

(
ei(−kF,νa+ka)−a/ξν

)
+ e−πi/4Li1

2

(
ei(kF,νa−ka)−a/ξν

)
(5.30)

+eπi/4Li1
2

(
ei(−kF,νa−ka)−a/ξν

)}
,

Iν4 (k) = − iNν√
Δ2 − ω2

√
π

2kF,νa

{
e−3πi/4Li1

2

(
ei(kF,νa+ka)−a/ξν

)
+e3πi/4Li1

2

(
ei(−kF,νa+ka)−a/ξν

)
− e−3πi/4Li1

2

(
ei(kF,νa−ka)−a/ξν

)
(5.31)

−e3πi/4Li1
2

(
ei(−kF,νa−ka)−a/ξν

)}
,

where Lis(z) is the polylogarithm of order s. The Hamiltonian Eq. (5.28) is in

Altland-Zirnbauer symmetry class D, and for a fully-gapped system it is therefore

characterized by the Z2 topological invariant [4]

Q = sgn{A(0)A(π/a)} . (5.32)

The system is topologically nontrivial for Q = −1; conversely, Q = 1 indicates a

trivial state.

To demonstrate that our model supports a topologically nontrivial state, in Fig. (5.1)
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Figure 5.1: Topological phase diagram for the effective model as a function of kFa

and λ̃. The topological regions are shaded according to the magnitude of the gap,

while the non-topological regions are left blank. Red lines indicate the boundary

between topological and non-topological phases. We have chosen ε0 = 0 for the

isolated impurity level and ξ0 = 5a for the superconducting coherence length at

λ̃ = 0, which ensures that the impurity band remains within the superconducting

gap. The impurity spins point in the x-z plane. The large values of kFa allow us to

utilize the asymptotic expressions for the entries in Eq. (5.28).
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we present a phase diagram as a function of the dimensionless SOC λ̃ and the pa-

rameter kFa, which gives a measure of the Fermi surface volume or alternatively the

spacing of the chain. We consider only a polarization in the x-z plane. In the topo-

logically non-trivial regions, we plot the minimum gap magnitude, demonstrating

the existence of a fully gapped state; the non-topological regions are left white. The

most important aspect of this phase diagram is that a topological state is revealed

to be possible even for infinitesimal SOC. Remarkably, the excitation spectrum can

display a substantial gap even for very small SOC strength λ̃ � 1. We emphasize

that our analysis is only valid for ε0 sufficiently close to zero, and so other methods

are required to comprehensively survey the phase diagram.

5.6 Summary

In this chapter we have studied the appearance of a topological impurity band

when a ferromagnetic chain of classical spins are embedded in a 2D singlet s-wave

superconductor with Rashba SOC. To this end, we have derived an effective tight-

binding model for the overlapping Shiba states of the impurities. When the spins

are polarized perpendicular to the SOC along the chain, an odd-parity pairing term

is induced in the effective Hamiltonian, thus realizing a Kitaev-like model with

generically non-trivial topology. This is an alternative route to a topological Shiba

chain which do not rely upon helical spin texture. [15, 20, 33, 21, 22, 23, 24, 111,

25, 112, 113] This is a significant result, as the stability of the helical spin texture

is debated. [112, 26] In contrast, the SOC mechanism examined here is intrinsic to
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the superconductor surface. This implies that topological phases are possible for

a much wider variety of impurity spin configurations than hitherto realized, which

grants the Shiba chain proposal additional robustness and lends strong theoretical

support to experimental efforts to detect MZMs in such a setting. As revealed by our

calculated quantum phase diagram Fig. (5.1), however, the topological phase in the

ferromagnetic Shiba chain system is not generic. Some fine-tuning of the system is

therefore required in order to observe topological MZMs through the measurement,

for example, of ZBCPs in tunneling spectroscopy experiments.

Although we have confined ourselves to the analytically-tractable limit of a

dilute chain of deep impurities, we expect that our results are of more general valid-

ity since they rely only upon the low-energy form of the Green’s function. We have

also neglected complicating factors such as particle-hole asymmetry in the normal

state dispersion, the suppression of the superconducting gap close to the impurity

spins, and the 3D nature of the superconducting host. These issues must certainly

be accounted for when modeling a realistic system, but can only be addressed using

large-scale computer simulations. Nevertheless, none of these effects should inval-

idate the mechanism giving rise to the topological state of our basic model which

arises simply from the interplay between ferromagnetism, superconductivity, and

SOC.
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Chapter 6

Majoranas in ferromagnetic chains on

spin-orbit-coupled superconductors: Strong

inter-atomic coupling limit

In this chapter we continue on our theoretical exploration of the system con-

sidered in the previous chapter, with ferromagnetic chains of atoms (Fe) on SOC SC

(Pb). We now focus on the other limit where the hoppings between the Fe atoms

are much stronger than the hybridization energies between the Shiba states. In this

case, the dynamics of the itinerant electrons happen at the ferromagnetic chains,

and there it is more appropriate to “integrate-out” the SC, focusing on the chains

instead of the SC (as was done in the previous chapter). Another difference is that

now we will not use an effective Rashba-coupled surface Hamiltonian like the one

we had used in the previous chapter. Instead, we shall develop a phenomenological

model in which the the bulk SOC in the SC, together with the local inversion-

symmetry breaking due to the surface of the SC, leads to additional terms in the

effective Hamiltonian of the chain of atoms.

Before developing our model, we first review the classification of topological

superconductors [118, 119, 120, 121]. In a 1D class-D topological superconductor,

108



e.g., the nanowire proposal [5, 6], if a pair of MZMs are spatially superimposed

on each other, they would mix and split to finite energies, becoming low-energy

fermionic subgap states [122]. In this class of topological superconducting systems,

therefore, the number of MZMs (n) can be either zero or one. This results in a

greatly reduced parameter space in which to look for experimental signatures of

MZMs. In the nanowire heterostructure, for example, ZBCPs are expected only

when the number of bands crossing the Fermi energy is odd [123, 124], a condi-

tion difficult to control experimentally. Similarly, previous proposals for realizing

a MZM in ferromagnet-superconductor heterostructures [125, 126] have the strin-

gent requirement that only one of the spin-split bands in the ferromagnet has a

Fermi surface. In the system we explore in this chapter, as we shall show below,

the system is in class BDI due to the presence of a chiral symmetry. The num-

ber of MZMs in this class can be any positive integer, which results in a greatly

enhanced parameter space in which MZMs are realized. Although only when n is

odd does the Majorana multiplet follow non-Abelian braiding statistics, a robust

ZBCP in STM experiments should occur generically for any value of n. Of course,

for the purpose of establishing topologically protected degenerate states that may

be used to establish non-Abelian braiding [3], it is necessary for the Majorana to be

non-degenerate i.e. n = 1, and therefore the generic ZBCP signature here cannot

necessarily be identified with a non-Abelian Majorana “particle”. Our conceptual

new finding that robust MZMs may reside generically (i.e. without fine-tuning)

in superconductor-ferromagnet heterostructures, protected by a chiral symmetry, is

the important new result.
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Figure 6.1: (a) Schematic diagram of our device. A ferromagnetic chain is placed

on the surface of an s-wave superconductor, in which strong SOC and mixing of

orbitals of opposite parity produce a pairing state with intra-orbital spin-singlet

Cooper pairs and inter-orbital spin-triplet pairs. Tunneling of these pairs into the

chain generates effective spin-singlet and spin-triplet pairing potentials, respectively,

as shown in (b). For a ferromagnetic chain with spin-splitting that exceeds the

spin-singlet pairing potential, only the induced triplet pairing potential can gap the

spectrum. In this case the system is in a topologically nontrivial state characterized

by two unhybridized MZMs at each end, which can be imaged by STM. When the

ferromagnetic chain is in the half-metal regime as shown in panel (c), however, only

a non-Abelian single MZM is realized at each end. If the spin-splitting of the chain

states is much smaller than their bandwidth, however, the situation (b) dominates

the parameter space.

6.1 The System

A ferromagnetic chain (e.g. Fe), which is a single atom in width, is placed

on the surface of a bulk s-wave superconductor, as shown schematically in Fig. 6.1.

We emphasize that, in contrast to arrays of magnetic atoms on the surface of a

superconductor, the ferromagnetic chain is expected to have a bandwidth that is

orders of magnitude larger than the superconducting pairing potential. We ignore

the SOC within the ferromagnetic chain, but instead account for the existence of

strong inversion-symmetric SOC in the bulk of the host superconductor. By inte-
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grating out the bulk superconductor we show that the effective Hamiltonian of the

ferromagnetic chain [Eq. (6.31) below] is in the chiral BDI class with an integer

invariant, allowing an integer number n of MZMs localized at the chain ends. If

the ferromagnetic chain has only one pair of spin-split sub-bands, n can be equal to

zero, one, or two, but for any non-zero n (a condition that is realized in most of the

parameter space (Fig. 6.2)) STM measurements at the chain ends should reveal a

pronounced ZBCP. The ZBCP is in fact generic in our model, occurring in a wide

region of the experimentally-accessible parameter space as shown in Fig. 6.2 and 6.3.

No such peak is expected from the regions of the chain away from the ends where the

MZMs are localized. In practice the effective chiral symmetry in the ferromagnetic

chain should only be approximate, resulting in a finite energy width of the ZBCPs

for n > 1.

6.2 Effective Hamiltonian of the chain.

6.2.1 Pseudospin Basis

The superconductor used in our device must satisfy two key conditions: (i)

there is strong SOC [26], although inversion symmetry is not necessarily broken

in the bulk, and (ii) orbitals of different parity both make a significant contribu-

tion to the states near the Fermi surface. The requirement that the orbitals have

opposite parity can be relaxed, but this condition makes the following argument

more transparent. The first condition implies that spin is not a good quantum

number in the superconductor, but the presence of time-reversal (T ) and inversion
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(I) symmetry means that the doubly-degenerate eigenstates at each momentum k

can be labeled by a pseudospin index ς = ±, such that T |k, ς〉 = ς| − k,−ς〉 and

I|k, ς〉 = | − k, ς〉. A conventional s-wave superconducting gap then corresponds to

a pseudospin-singlet pairing state. To satisfy the second condition, we assume that

the states near the Fermi surface are composed from two orbitals, say s and p ≡ pz,

which are symmetric and antisymmetric under inversion, respectively. The general

form of the pseudospin state is then

|k, ς〉 =
∑
σ=↑,↓

[Bs,ςσ (k) |s,k, σ〉+Bp,ςσ (k) |p,k, σ〉] , (6.1)

where Bs,ςσ (k) and Bp,ςσ (k) are the coefficients of the s- and p-wave orbitals, re-

spectively. Regarding the coefficients in Eq. (6.1) as 2× 2 matrices in ς − σ space,

one can derive a number of conditions. First, the normalization of the states in

Eq. (6.1) requires that

ŝ0 = B∗
s (k)B

T
s (k) + B∗

p (k)B
T
p (k) . (6.2)

The pseudospin index ς = ± transforms as a spin under time-reversal (T ) and

inversion (I) symmetries. From

T |k, ς〉 = σ| − k,−ς〉, I|k, ς〉 = | − k, ς〉, (6.3)

T |s,k, σ〉 = σ|s,−k,−σ〉, I|s,k, σ〉 = |s,−k, σ〉, (6.4)

T |p,k, σ〉 = σ|p,−k,−σ〉, I|p,k, σ〉 = −|p,−k, σ〉, (6.5)
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we deduce the relations obeyed by the coefficients

Bs (k) = Bs (−k) = ŝyB
∗
s (−k) ŝy , (6.6a)

Bp (k) = −Bp (−k) = ŝyB
∗
p (−k) ŝy . (6.6b)

In these equations ŝμ are Pauli matrices in the ς − σ space. We additionally require

that the pseudospin index behaves like a spin under mirror reflection in the planes

perpendicular to the three Cartesian axes:

Mx |k, ς〉 = |Mxk,−ς〉 , My |k, ς〉 = iς |Myk,−ς〉 , (6.7)

Mz |k, ς〉 = ς |Mzk, ς〉 ,

Mx |s,k, σ〉 = |s,Mxk,−σ〉 , My |s,k, σ〉 = iσ |s,Myk,−σ〉 , (6.8)

Mz |s,k, σ〉 = σ |s,Mzk, σ〉 ,

Mx |p,k, σ〉 = |p,Mxk,−σ〉 , My |p,k, σ〉 = iσ |p,Myk,−σ〉 , (6.9)

Mz |s,k, σ〉 = −σ |p,Mzk, σ〉 ,

from which we can derive

Bs (k) = ŝμBs (Mμk) ŝμ , μ = x, y, z , (6.10a)

Bp (k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ŝμBp (Mμk) ŝμ μ = x, y

−ŝμBp (Mμk) ŝμ μ = z

(6.10b)

where Mμ are reflection operators for the plane perpendicular to the μ-axis.
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6.2.2 Green’s function in orbital-spin basis

Expressed in the basis Ψpseudo(k) = (ck,+, ck,−, c
†
k,−,−c†k,+)T , where ck,ς is the

annihilation operator for the state with momentum k and pseudospin ς, the pseu-

dospin Green’s function of the bulk superconductor is the 4× 4 matrix

Gpseudo(k, ω) =
ωτ̂0 + ξkτ̂z +Δ0τ̂x
ω2 − ξ2k −Δ2

0

(6.11)

where ξk is the normal state dispersion, Δ0 is the superconducting gap, and τ̂μ are

the Pauli matrices in Nambu space. From Eq. (6.1) we have the relation

Ψpseudo(k) =

⎛⎜⎜⎝ B̌∗
k 0

0 B̌∗
k

⎞⎟⎟⎠Ψorb(k) (6.12)

where

Ψorb(k) =
(
sk,↑ , sk,↓ , pk,↑ , pk,↓ , s

†
−k,↓ ,−s†−k,↑ , p

†
−k,↓ ,−p†−k,↑

)T
(6.13)

is the spinor of creation and annihilation operators in the orbital-spin basis, where

sk,σ (pk,σ) destroys an electron with momentum k and spin σ in the s (p) orbital,

and

B̌k =

(
B̂s(k) B̂p(k)

)
(6.14)

114



is a 2 × 4 matrix, with B̂s(k) and B̂p(k) as defined above. Using equation (6.12),

we express the Green’s function in the orbital basis as

Gorb(k, ω) =

⎛⎜⎜⎝ B̌T
k 0

0 B̌T
k

⎞⎟⎟⎠Gpseudo(k, ω)

⎛⎜⎜⎝ B̌∗
k 0

0 B̌∗
k

⎞⎟⎟⎠ , (6.15)

where Gorb(k, ω) is an 8× 8 matrix. It is important to note that since this Green’s

function is obtained from the pseudospin Green’s function Gpseudo(k, ω), it is only

valid close to the Fermi energy. The full orbital-spin Green’s function contains terms

from the additional band composed from the s and p orbitals, but since this band

is assumed to lie far away from the Fermi surface we ignore them.

6.2.3 Proximity-Induced Self-energy

The chain is placed on the (001) surface of the superconductor. The tunneling

between the chain and the superconductor is assumed to be local and independent of

spin, and is therefore most transparently formulated in terms of tunneling between

the chain atoms and the adjacent orbitals of the superconductor. We assume the

form

Htun =
∑

r∈chain

∑
σ

{
f †
r,σ[tssr,σ + tppr,σ] + H.c.

}
(6.16)

where ts and tp are the tunneling matrix elements for the two orbitals, assumed real,

and fr,σ, sr,σ and pr,σ are the annihilation operators for the site r in the chain and

in the superconductor’s s and p orbitals, respectively. The tunneling Hamiltonian

implicitly accounts for the surface inversion-symmetry breaking: if the odd-parity
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orbital is odd with respect to mirror reflection in the surface plane, then tunneling

from the chain sites into both the even- and odd-parity orbitals of the underlying

superconductor can have a local component (see Fig. (6.1)). Since we are interested

in the physics of the chain, our strategy is now to “trace out” the superconductor

from the description of the problem.

The proximity effect in the chain due to the superconductor is fully accounted-

for by the self-energy

Σ(x, x′;ω) = TGorb(x, x
′;ω)T†, (6.17)

where the 4× 8 matrix T describes the tunneling between the orbital-spin states of

the superconductor and the ferromagnetic chain

T =

⎛⎜⎜⎝ ts1̂ tp1̂ 0 0

0 0 −ts1̂ −tp1̂

⎞⎟⎟⎠ . (6.18)

For simplicity, we approximate the Green’s function of the superconductor at the

surface by the bulk Green’s function equation (6.15). This is a reasonable approxi-

mation for the conventional superconductors considered here. We hence obtain

Σ(x, x′;ω) =

∫
d3k

(2π)3
TGorb(k, ω)T

†eikx(x−x′)

=

∫
d3k

(2π)3
Σ(k, ω)eikx(x−x′) (6.19)
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After straightforward manipulation, we find

Σ (ω; r, r′) =

∫
d3k

(2π)3
eik·(r−r′)T (k)GSC (ω;k)T (k)†

= (1− Z)ω + Ztτz + Zλ · στz

+ZΔτx + ZΔ(t) · στx, (6.20)

where Z, t, λ, Δ and Δ(t) are functions of ω and r − r′:

Z = 1−
∫

d3k

(2π)3
1

ω2 − ξ2k −Δ2
SC

M1, (6.21)

Ztr,r′ =

∫
d3k

(2π)3
eik·(r−r′) ξk

ω2 − ξ2k −Δ2
SC

M1, (6.22)

Zλr,r′ · σ =

∫
d3k

(2π)3
eik·(r−r′) ξk

ω2 − ξ2k −Δ2
SC

M2, (6.23)

ZΔr,r′ = −
∫

d3k

(2π)3
eik·(r−r′) ΔSC

ω2 − ξ2k −Δ2
SC

M1, (6.24)

ZΔr,r′ · σ = −
∫

d3k

(2π)3
eik·(r−r′) ΔSC

ω2 − ξ2k −Δ2
SC

M2, (6.25)

where M1 ≡ t2sB
T
s B

∗
s + t2pB

T
p B

∗
p and M2 ≡ t2sB

T
s B

∗
p + t2pB

T
p B

∗
s . The terms in M1 de-

scribe tunneling processes involving only one of the orbitals in the superconductor,

while the terms in M2 arise from tunneling processes involving both orbitals. It is

seen from Eq. (6.20) that terms involvingM1 modifies the dispersion and introduces

singlet pairing correlations, while terms involving M2 introduce spin-triplet pairing

correlations into the ferromagnetic chain. We therefore generally expect that there

will be triplet Cooper pairs with spin parallel to the magnetization, and so a gap ap-

pears in the spin-split states of the ferromagnetic chain, see Fig. 6.1(b). By contrast,
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the spin-singlet pairing due to tunneling of intra-orbital Cooper pairs is unable to

overcome the large exchange splitting. The proximity effect also renormalizes the

bare dispersion and produces a SOC, but these effects are small and will be ignored.

6.2.4 Effective Hamiltonian

We now consider the self-energy of the ferromagnetic nanowire in more detail.

Assuming that the nanowire lies along the x-axis, in the absence of the supercon-

ductor it can be modeled by the tight-binding Hamiltonian

H = tint
∑
nσ

(
a†nσan+1,σ + h.c.

)
−μ
∑
nσ

a†nσanσ +B
∑
nσ

σa†nσanσ . (6.26)

where tint is the hopping intrinsic to the nanowire (not mediated by the super-

conductor), μ is the chemical potential, and B is the (spontaneous) ferromagnetic

exchange field (written out as an intrinsic magnetic field, rather than as an exchange

splitting, in order to maintain the explicit analogy to the SMC nanowire platforms

where B is an extrinsic magnetic field).

Including the self-energy due to the proximate superconductor, the eigenener-

gies of the nanowire are given by the poles of the Green function

Gwire (ω) =
1

ω −HBdG − Σ (ω)
=

Z−1

ω −Heff (ω)
(6.27)

where HBdG is the BdG Hamiltonian of the bare nanowire Eq. (6.26), and in the
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second equality we have rearranged terms such that the effect of frequency renormal-

ization is captured by Z, and Heff contains no terms proportional to ωτ̂0. Explicitly,

Heff (ω; xm, xn) = Z−1tint (δm,n+1 + δm,n−1) τ̂z

−Z−1μδm,nτ̂z + Z−1Bδm,nσ̂z

+tm−nτ̂z + λm−n · στ̂z

+Δm−nτ̂x +Δ
(t)
m−n · στ̂x. (6.28)

The subscript m − n indicates that the quantities in Eq. (6.20) are evaluated at

nanowire sites with relative coordinates r − r′ = (xm − xn) ex.

In general, the physics of the nanowire is extracted from the Green function

Gwire (ω) including the frequency-dependent self-energy. Since we are interested only

in the zero-energy Majorana mode and energy scales ω � Δ0, however, we may take

Heff (ω = 0) as our effective BdG Hamiltonian with no loss of generality.

To make further analytical progress we need to assume specific forms of Bs

and Bp. We take

Bs (k) = cos θŝ0, (6.29a)

Bp (k) = sin θek · (ŝy,−ŝx, iŝ0) , (6.29b)

where ek = k/|k|. This choice is consistent with the symmetries of the pseudospin

states Eq. (6.1), and leads to an analytically tractable result which captures the

essential physics we wish to explore. Other choices lead to qualitatively similar
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results.

Using Eq. (6.29) we calculate the full frequency-dependent forms of Z, t, λ,

Δ and Δ(t). At zero energy they take the relatively compact forms

Z = 1 +
Γ

ΔSC

, (6.30a)

tn>0 =
Γ

Z

cosnã

nã
e−n/ξ̃, (6.30b)

λn>0 · σ = −iσyg sin 2θ
Γ

Z

cosnã+ nã sinnã

n2ã2
e−n/ξ̃ (6.30c)

Δn =
Γ

Z

sinnã

nã
e−n/ξ̃ (6.30d)

Δ
(t)
n>0 · σ = iσyg sin 2θ

Γ

Z

sinnã− nã cosnã

n2ã2
e−n/ξ̃ , (6.30e)

where we have introduced dimensionless variables Γ = πν
(
t2s cos

2 θ + t2p sin
2 θ
)
, g =

πνtstp, ã = kFalat, and ξ̃ = ξ/alat, in which ν and ξ are respectively the Fermi-level

density of states and the coherence length of the superconductor, and alat is the

lattice constant of the tight-binding model of the nanowire [Eq. (6.26)].

Although these expressions are quite complicated, we can nevertheless make

some generic observations. Firstly, we note that the renormalization of the dispersion

and the singlet pairing potential arise only from the intra-orbital tunneling processes

(i.e. only terms ∝ t2s/p appear). On the other hand, the inter-orbital processes are

responsible for the SOC and the triplet gap. The opposite parity of the s and

p orbitals is crucial in obtaining these terms; tunneling into orbitals of the same

parity could only give even-parity contributions to the self-energy. Furthermore,

we observe that the induced SOC vector is always parallel to the triplet d vector,

120



i.e. λn ‖ Δ
(t)
n . We expect that the pairing terms are generally much larger than

the normal-state corrections, however, due to the factor of ξk in the integrals of the

latter. We henceforth ignore tn and λn in constructing the effective Hamiltonian.

Neglecting corrections beyond nearest-neighbor pairing, we obtain the effective

Hamiltonian of the chain

Heff
chain (kx) = (−2t cos kx − μ) τ̂z + Γ · σ̂

+
(
Δ+ Δ̃ cos kx

)
τ̂x + Δ̃(t) sin kxσ̂y τ̂x , (6.31)

where σ̂μ and τ̂μ are the Pauli matrices in spin and Nambu space, respectively.

The first line of the Hamiltonian describes the bare ferromagnetic chain with direct

inter-atom hopping t, chemical potential μ, and a Zeeman splitting Γ · σ̂σσ due to

ferromagnetism which is comparable to the Fermi energy in the wire. The last line

gives the induced superconducting gaps with both singlet (Δ and Δ̃) and triplet

(Δ̃(t)) pairing potentials. The latter corresponds to a state where the triplet pairs

have vanishing spin component along the y-axis which can gap the spin-split bands

as long as Γ has a component in the x-z plane.

The key experimentally-relevant quantity is the LDOS, which can be directly

measured using STM. The LDOS at position x is defined as

ν (x, ω) =
−1

2π
ImTr

[
ω + iδ −Heff

chain (x, x)
]−1

(1 + τ̂z) . (6.32)

Throughout this chapter we fix t = 10Δ and Δ̃ = Δ̃(t) = 0.2Δ, and study how
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Figure 6.2: Topological phase diagram of the chain. The BDI topological index Q is

defined in equation (6.34) calculated for Heff
chain as a function of the Zeeman splitting

Γz and the chemical potential. The Green region (roughly Γz > μ̃/2) has Q = 1

while the blue region (roughly Γz < μ̃/2) has Q = 2, indicating the existence of one

and two MZMs at each end of the chain, respectively.

the topology of the system varies as a function of μ and ΓΓΓ. We emphasize that

our results are generic and qualitatively independent of the precise choice of these

parameters.

6.3 Topological properties of the chain.

For obtaining the topological classification of Heff
chain we note that it satisfies the

particle-hole symmetry
{
Heff

chain, Ξ̂
}

= 0, where Ξ̂ = σyτyK and K is the complex-

conjugate operator. If we further assume that the y component of Γ is zero, Heff
chain

is real and hence it has the chiral symmetry
{
Heff

chain, Ĉ
}
= 0 where Ĉ = σyτy. In this
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case, Heff
chain belongs to the BDI topological class and is endowed with a topological

index Q equal to the number of zero-energy MZM modes (n = Q) localized at its

ends. To compute Q, we first rotate Heff
chain to the basis in which Ĉ is diagonal, by

Û = e−iπ
4
τxσy , such that

H̃eff
chain = ÛHeff

chainÛ
† =

⎛⎜⎜⎝ 0 Akx

AT
−kx

0

⎞⎟⎟⎠ , (6.33)

whence Q is computed by

Q =
1

π

∫ π

0

dkx
d arg (detAkx)

dkx
. (6.34)

In Fig. 6.2 we plot Q against μ̃ and Γz, where Γ is taken as Γ = Γzez such

that the chiral symmetry is respected (the chiral symmetry is respected as long as

Γ is in the (x-z) plane), and μ̃ = μ+2t is defined from the bottom of the non-spin-

split bands. Note that for approximately Δ < Γz < μ̃/2, we have Q = 2 while for

Δ, μ̃/2 < Γz we have Q = 1, indicating, in both cases, the existence of MZMs at the

chain ends. This can be understood in the following way: in the large Zeeman spin-

splitting (“half-metal”) limit, the effects of the singlet pairing terms Δ and Δ̃ on

the Bogoliubov-de Gennes spectrum are suppressed due to a large Fermi momenta

mismatch between the two spin species. Then, with the triplet pairing Δ̃(t), the

system becomes effectively an equal-spin-pairing triplet superconductor with non-

zero Δ↑↑ and Δ↓↓, which can be viewed as two copies of the Kitaev p-wave chain

spatially superimposed on each other [127]. If μ̃ is such that both spin channels are
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Figure 6.3: (a) The LDOS at the ends of the semi-infinite ferromagnetic chain as

a function of the chemical potential μ̃ from the bottom of the bands, for Γz = 3Δ.

The LDOS has a strong ZBP that for roughly μ̃ < 2Γz indicates a single MZM

from the chain ends, while for μ̃ > 2Γz the ZBP implies a pair of MZMs localized

at each ends protected by chiral symmetry. (b) the LDOS at the chain ends as a

function of the Zeeman splitting for μ̃ = 10Δ. For roughly Γz < μ̃/2 (Γz > μ̃/2)

the ZBP in LDOS signifies two (one) MZMs at each end that can be accessed in

STM experiments. The insets shows the LDOS at the middle of the chain, which

has a spectral gap in the topological regions. We indicate the transitions between

the different topological sectors by the vertical dashed lines, and use arbitrary units

for the LDOS in these plots.
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occupied, we get Q = 2 (two MZMs at each end of the chain), while if μ̃ is such

that only one channel is occupied, we get Q = 1 (an MZM at each end). Since

most itinerant ferromagnets are not half metals, and the induced singlet gap Δ is

likely much smaller than μ̃, we expect that the Q = 2 phase is of greatest practical

relevance.

In Fig. 6.3(a,b) we plot the LDOS at the ends of the semi-infinite ferromag-

netic chain as a function of μ̃ and Γz, respectively. It can be seen that the LDOS

generically has a pronounced ZBP that can be accessed in STM measurements near

the chain ends. For the Zeeman splitting μ̃ > 2Γz the ZBP is due to a pair of

MZMs localized at the same ends and protected from splitting by the topological

chiral symmetry. For μ̃ < 2Γz the ZBP implies a single MZM that should follow

non-Abelian braiding statistics. No such ZBP is observed in LDOS calculated for

the middle of the chain, although the superconducting gap in the chain closes at

the topological transitions at which the integer Q (and thus the number of MZMs

at the chain ends) changes, see the inset of Fig. 6.3(a,b).

6.4 Discussion and Conclusion

While the above results demonstrate that it is not necessary to fine-tune the

chemical potential or Zeeman spin-splitting to generate a ZBP in LDOS (and con-

sequently a ZBCP in STM measurements) at the ends of the ferromagnetic chain,

a component of Γ perpendicular to the x-z plane breaks the chiral symmetry. To

assess the effects of misalignment of the Zeeman splitting (which can, for example,

125



be generated by a suitably applied external magnetic field), we plot in Fig. 6.4 the

LDOS against θ, where now we choose Γ = 3Δ (sin θey + cos θez). The zero-energy

LDOS peak at the end of the chain splits into two peaks at finite energy by a non-

zero θ only in the phase Q = 2. As θ is tuned up, the magnitude of the splitting

first increases, then decreases, and finally vanishes with a concomitant disappear-

ance of the localized peak. This can be understood from the observation that the

y-component of Γ has an additional effect of suppressing the spectral gap of the

system, and since the splitting is bounded by the size of the spectral gap, the size

of the splitting can never reach a large value. Therefore, the splitting of the zero-

energy LDOS peak due to a misalignment of the Zeeman term is always small. No

such splitting should be observable in the phase with Q = 1. This is because in

these regions of the phase diagram, each end of the chain hosts a single MZM, and

thus the ZBCP persists. Although the system is no longer in class BDI, it reduces

to a class-D topological superconductor with zero or one MZM at each end.

In conclusion, we consider a ferromagnetic chain deposited on the surface of

a bulk s-wave superconductor with strong SOC. We establish the generic existence

of a ZBP in the LDOS at the ends of the chain in this system. The ZBP in the

LDOS should be accessible in STM experiments which should reveal a pronounced

ZBCP from the chain ends but not from the regions away from the ends. We show

that the ZBCP is due to the existence of one (odd) or two (even) MZMs localized at

the same end protected by a topological chiral symmetry. In this picture an STM

experiment on the ends of a ferromagnetic chain deposited on the surface of a bulk

superconductor (with strong SOC) will almost always show a pronounced ZBCP,
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Figure 6.4: (a) LDOS at one end of the semi-infinite ferromagnetic chain as a

function of θ in the phase Q = 2, where μ̃ = 15Δ and Γ = 3Δ (sin θey + cos θez).

Since the y-component of Γ breaks chiral symmetry, the pair of MZMs at each end

mix and split for finite θ, but the splitting is small and visible only on a small energy

scale shown in the inset. (b) The LDOS at the chain end plotted against θ for Q = 1

where μ̃ = 2.5Δ and Γ is the same as above. Since there is now a single MZM at

each end the ZBP does not split. Although the system is no longer in class BDI, it

is still a class-D topological superconductor with zero or one MZM at each end. We

use arbitrary units for the LDOS in these plots.
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indicating the existence of one or two MZMs at each end depending on the relative

magnitudes of the ferromagnetic moment and the chemical potential.
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Chapter 7

Substrate-induced Majorana renormalization in

topological nanowires

In this chapter, we attempt to explain a peculiar feature observed in experi-

mental setups [28] which might be described by our model in the previous chapter.

More specifically, the observed localization length (or equivalently the SC coherence

length ξ) of the purported MZMs in such system was extremely short (of the order

of nm). On the other hand, it is often assumed to be of the order of the supercon-

ducting coherence length, ξ ∼ vF/Δ, where vF and Δ are respectively the Fermi

velocity and the induced SC gap in the chain. Since the estimated SC gap in the

Fe adatom chains on Pb substrates studied in Ref. [28] is very small (∼ 0.1meV),

this was expected to lead to a long coherence length of ξ > 100 nm (assuming no

substrate-induced renormalization) which would be much larger than the typical

length of the adatom chains (5− 50 nm) used in Ref. [28].

Ref. [128] studied this problem for a helical spin texture on the SC, and sug-

gested that the substrate might greatly suppress the MZM localization length. This

immediately brings up the question of whether such a phenomenon is also opera-

tional in the nanowire proposals, where we note that their experiments [7, 52, 129,

51, 53, 54] have so far been simply interpreted on the basis of the standard ξ ∼ vF/Δ
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formula with no substrate-induced coherence length suppression. One possible rec-

onciliation for this is simply by assuming that the ferromagnetic chain is strongly

tunnel-coupled to the substrate superconductor, while the SMC nanowire is not.

but we want to avoid such an ad hoc assumption.

In this chapter, to set a context, we start by discussing the localization length

of MZMs in the Kitaev chain [4] in various parameter regimes. Following this,

we consider the proximity effect of the bulk superconductor, which we show below

induces a self-energy on the wire. The local part of it has the form of

Σ (ω; r, r) ∼ − Γω

ΔSC

τ̂0 + Γτ̂x, (7.1)

where Γ is the parameter determining the strength of the proximity coupling. As

we argue in Sec. 7.4, the proximity parameter Γ ∼ (kFR)
−3EF , where kF ∼ 10 nm−1

and EF ∼ 1 eV are respectively the Fermi wave-number and the Fermi energy in the

superconductor, and R is the radius of the nanowire. In mesoscopic SMC nanowire

geometries R ∼ 20nm leading to Γ ∼ 0.1meV ∼ ΔSC , and this fits into the simple

picture for the proximity effect where the frequency dependence can be ignored.

Atomistic ferromagnetic wires are qualitatively different since R ∼ 0.5nm for these

wires and the estimated Γ ∼ 1eV. This clearly puts the analysis in the regime

Γ 	 ΔSC , which is the strongly renormalized limit [72]. Establishing this key

difference between the MZMs in SMC and atomistic nanowires is a main goal of this

chapter.
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7.1 Majorana decay length in the Kitaev Chain

Let us first consider the prototypical and simplest model of a topological su-

perconductor supporting MZMs, the Kitaev chain. This is a 1D tight-binding model

of spinless fermions with p-wave pairing, described by the Hamiltonian

Hw = −t
∑
j

(
a†jaj+1 + h.c.

)
− μ

∑
j

a†jaj

+Δp

∑
j

(ajaj+1 + h.c.) , (7.2)

where t is the hopping between lattice sites, μ the chemical potential, and Δp is the

pairing potential. As shown by Kitaev [4], this model supports unpaired MZMs at

its boundaries for |μ| < 2 |t|, with a MZM localization length that is given by

ξ = max
λ=±1

(∣∣∣∣∣log
∣∣∣∣∣λ
√
μ2 − 4t2 + 4Δ2

p − μ

2 (t+ |Δp|)

∣∣∣∣∣
∣∣∣∣∣
)−1

. (7.3)

We plot the localization length in Fig. 7.1 as a function of the hopping amplitude for

different values of μ. Note that ξ is defined only for |t| > |μ| /2, where the system

is in the topologically non-trivial regime with a MZM at each end. At |t| = |μ| /2

the localization length diverges, indicating a topological phase transition into the

topologically trivial regime at |t| < |μ|/2.

There are two special limits of interest. At the special point μ = 0 and |t| =

|Δp|, the localization length vanishes and the MZM is localized precisely at the end

site of the chain [4]. We emphasize that in this fine-tuned case the localization of the
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Figure 7.1: MZM localization length (ξ) given by Eq. (7.3) as a function of di-

mensionless hopping strength (|t/Δp|) for various values of the chemical potential

(|μ/Δp|). For |t| < |μ|/2 the system is in the non-topological phase without MZMs,

and ξ is undefined in this regime. ξ diverges at |t| = |μ|/2, indicating the topolog-

ical phase transition. For |t| 	 |μ|, ξ is well-approximated by |t/Δp|, which is the

standard coherence length formula for superconductors.
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MZM is completely independent of the size of the energy gap, providing a concrete

example of a situation where a small gap could in principle also be associated with

a small localization length. The other situation of interest is the physically realistic

limit |t| 	 |Δp|, where the bandwidth far exceeds the superconducting gap [38].

Here the localization length ξ, expressed to lowest order in Δp, reproduces the

familiar form of a superconducting coherence length as discussed in the Introduction,

ξ =

∣∣∣∣ tΔp

∣∣∣∣ = vF
2Egap

, (7.4)

where Egap = |Δp|(1 − μ2/4t2)1/2 and vF = 2|t|(1 − μ2/4t2)1/2 are the spectral gap

and Fermi velocity, respectively. Since |t| 	 |Δp|, the localization length ξ 	 1

and the Majorana decay length is parametrically larger than the lattice constant

(taken to be the unit of length here). On the other hand, it is clear that if for some

reasons one can realize a Kitaev chain with |t| ∼ |Δp|, as has been proposed for a

quantum dot array [29], then the MZM decay length is of order a few lattice sites

only, qualitatively similar to the fine-tuned case.
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7.2 Effective Kitaev models

In the previous chapter we have derived the effective Hamiltonian for the

atomistic wire, given by

Heff (ω; xm, xn) = Z−1tint (δm,n+1 + δm,n−1) τ̂z

−Z−1μδm,nτ̂z + Z−1Bδm,nσ̂z

+tm−nτ̂z + λm−n · στ̂z

+Δm−nτ̂x +Δ
(t)
m−n · στ̂x. (7.5)

where

Z = 1 +
Γ

ΔSC

, (7.6a)

tn>0 =
Γ

Z

cosnã

nã
e−n/ξ̃, (7.6b)

λn>0 · σ = −iσyg sin 2θ
Γ

Z

cosnã+ nã sinnã

n2ã2
e−n/ξ̃ (7.6c)

Δn =
Γ

Z

sinnã

nã
e−n/ξ̃ (7.6d)

Δ
(t)
n>0 · σ = iσyg sin 2θ

Γ

Z

sinnã− nã cosnã

n2ã2
e−n/ξ̃ , (7.6e)

where

Γ = πν
(
t2s cos

2 θ + t2p sin
2 θ
)
, (7.7)

g = πνtstp, ã = kFalat, and ξ̃ = ξ/alat, in which ν and ξ are respectively the

Fermi-level density of states and the coherence length of the superconductor.

In the limit of large exchange field (|B| 	 |λn| , and |B| 	 |Δn|) , the effects
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of the SOC and s-wave pairing terms are suppressed. The model (7.5) thus reduces

to two copies of the Kitaev model, albeit with long-range hopping. To make con-

nections with Sec. 7.1, we first ignore the long-ranged part of the self-energy which

is beyond nearest neighbors, yielding (second quantized) effective Hamiltonians for

spin-up (+) and spin-down (−) species

H
(±)
0 = −

(
Z−1tint + t1

)∑
j

(
a†jaj+1 + h.c.

)
−Z−1 (μ∓ B)

∑
j

a†jaj

±Δ
(t)
1

∑
j

(ajaj+1 + h.c.) . (7.8)

The induced hopping integral and pairing potential are given by

t1 =
Γ

Z

cos ã

ã
e−1/ξ̃ , (7.9)

Δ
(t)
1 = g sin 2θ

Γ

Z

sin ã− ã cos ã

ã2
e−1/ξ̃ . (7.10)

From Eq. (7.4), the localization length for the MZMs in these Hamiltonians (valid

in their topological phase) is thus

ξwire =
Z−1tint + t1

Δ
(t)
1

=
ṽ
(±)
F

2E
(±)
gap

(7.11)
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where the renormalized Fermi velocity and excitation gap are

ṽ
(±)
F = 2

(
Z−1tint + t1

)√
1− (μ∓ B)2

4 (tint + Zt1)
2 , (7.12)

E(±)
gap = Δ

(t)
1

√
1− (μ∓ B)2

4 (tint + Zt1)
2 . (7.13)

Note that the localization length is the same for the spin-up and -down sectors. From

Eq. (7.11) we observe that if one ignores the renormalization of the Fermi velocity

and uses instead its intrinsic value, v
(±)
F = 2tint[1−(μ∓ B)2 /4t2int]

1/2, to estimate the

localization length as ξ = v
(±)
F /2E

(±)
gap , the result would overestimate the true value by

a factor of v
(±)
F /ṽ

(±)
F > 1. If the coupling between the wire and the superconductor is

weak (i.e. Γ � ΔSC , tint), the velocity is only weakly renormalized and ṽ
(±)
F ≈ v

(±)
F .

However, when Γ is comparable to ΔSC or even tint, the discrepancy between the

renormalized and the bare Fermi velocity is huge. For large enough Γ and hence

Z, the coherence length could be close to zero even though the induced triplet gap

is small. Whether or not this strong velocity renormalization, leading to sharply-

localized MZMs in the topological nanowire, is present in the experiment of Ref. [28]

can only be determined empirically since the microscopic details about Γ are simply

not known in the experimental system. What is clear, however, is that there is a

well-defined physical mechanism, namely, a very strong tunnel-coupling between the

superconductor and the nanowire, which would lead to a strong renormalization of

the effective Fermi velocity and a concomitant suppression of the MZM localization

length in the nanowire even if the induced topological gap is small. We note that the
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existence of the strong renormalization effect has already been invoked for the Fe/Pb

system by Peng et al. using a helical magnetic chain model for the nanowire [128].

7.3 Effects of non-local hopping and pairing

As we mentioned in the introduction, the substrate-induced enhancement of

the Majorana localization length is accompanied by a power-law decay of the MZMs

[24]. This power-law decay of the MZMs, if large, limits the validity of the enhanced

exponential localization. To understand and estimate this effect we write the Hamil-

tonian in the large tunneling limit as

H = H0 + δH (7.14)

where H0 is given in Eq. (7.8) and δH contains the hopping and pairing terms in

Eq. (7.5) involving sites separated by two or more lattice spacings. Let ψ0 denote

the MZM that is localized at the end of the wire with a localization length given by

Eq. (7.11). With the non-local perturbation δH(±) the state acquires a correction:

ψ0 → ψ̃0 = ψ0 + δψ0 where

δψ0 = − 1

H0

PδH |ψ0〉 , (7.15)

where P = 1−|ψ0〉 〈ψ0|. We can now qualitatively see the localization behavior of ψ̃0

including the long-range self-energy correction: the unperturbed part ψ0 ∼ e−x/ξwire

(where x is the distance measured from the boundary) is still localized with a length
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ξwire, while the correction δψ0 has a long tail since δH scales as ∼ e−x/ξ/x where ξ

is the coherence length of the bulk superconductor. Therefore

ψ̃0 ∼ αe−x/ξwire + β
e−x/ξ

kFx
, (7.16)

where ψ0 is approximated as αe−x/ξwire , α is a normalization constant, and β is a

parameter determined from the perturbation theory. Strictly speaking, the localiza-

tion length of ψ̃0 is max {ξwire, ξ}. However, the second term in Eq. (7.16) is now

qualitatively similar to the wave-function of a Shiba state bound to magnetic impu-

rities and appears in experiments to be localized on a scale of k−1
F [130] instead of the

true localization length ξ. In this case β is perturbatively small, further obscuring

its signature in experiments. Thus the experimentally measured localization length

would still be ξwire even with longer-range hopping in Eq. 7.5. Since for practical

purposes the dominant localization length of the non-local part is essentially k−1
F

and is small, the non-local term δH can be safely ignored. We note, however, that

independent of whether α 	 β or β 	 α in Eq. (7.16), the resultant Majorana

wavefunction is strongly localized at the wire end (x = 0) with either a strongly

suppressed localization length ξwire or 1/kF , both of which are much smaller than

the bare MZM localization length ξ without any substrate renormalization effect

(provided, of course, one is in the strong tunnel coupling regime). In Ref. [116],

Dumitrescu et al. recently took into account the second term in Eq. (7.16) as caus-

ing the suppressed MZM localization in ferromagnetic chain systems whereas Peng

et al. [128] mostly considered the first term in discussing MZM localization in helical
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magnetic chains. In principle, both terms could be important, but their qualitative

effects are similar, both leading to a strongly suppressed MZM localization in the

nanowire in the strong tunnel-coupled regime. But, the second term in Eq. (7.16),

with its power law decay, may have implications for the non-Abelian braiding ex-

periments, and may severely limit the usefulness of the resultant MZMs in carrying

out topological quantum computation although for practical purposes the MZMs

appear strongly spatially localized at the wire ends.

7.4 Relating quasi-1D models to 1D models

We have established above that as long as the nanowire is strongly tunnel-

coupled to the superconductor (so that the condition Γ > tint,ΔSC applies), the

MZM localization length would be strongly suppressed compared with the standard

bare coherence length formula due to the Fermi velocity renormalization caused by

the substrate. This renormalization effect appears to be independent of the nature

of the nanowire and, therefore, should affect both ferromagnetic nanowires and SMC

nanowires equally (as long as the tunnel coupling defined by Eq. (7.7) is large). We

now show that this is not the case, and there is good reason to believe that the

ferromagnetic chain system of Ref. [28] could be much more strongly renormalized

by the substrate than the SMC nanowire systems [7, 52, 129, 51, 53, 54].

While we are assuming a strictly 1D limit for the nanowire, a more realistic

model would treat the nanowire as quasi-1D and as a result the parameters such as

ts and tp in the 1D model [for example, defining Γ in Eq. (7.7)] are really effective
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parameters that have a strong dependence on the radius of the nanowire in a quasi-

1D geometry. Since we are interested in understanding the scaling behavior with

nanowire radius, we will assume a simple model of a 3D cylindrical lattice nanowire

(with the wire transverse cross-sectional width being much smaller than the wire

length). The 3D (i.e. quasi-1D) wave-functions and the strictly 1D wavefunctions

ψwire,1D are related by a transverse wavefunction factor as

ψwire,3D (ρ, z, φ) =
a

R
Jm

(
km

ρ

R + a

)
eimφψwire,1D (z) (7.17)

where km is a zero of the Bessel function (Jm) so that the wave-function satisfies

ψwire,3D(R + a, z, φ) = 0 and a is the lattice constant of the wire. Note that the

boundary condition on the lattice is such that the wave-function at a distance a

outside the wire vanishes. In the limit that a� R the wave-function ψwire,3D at the

boundary is written as

ψwire,3D (R, z, φ) =
a2

R2
kmJ

′
m (km) e

imφ

√
1

πL
sin
(nπz
L

)
. (7.18)

The 1D hopping matrix elements ts,p enter the formalism through the param-

eter Γ defined in Eq. 7.7. To simplify our analysis we split Γ = Γs cos θ
2 + Γp sin θ

2

where Γs = πνt2s and Γp = πνt2p. The self-energy of these individual orbitals arise

from microscopic 3D tunnelings t̃s,p, which must be used together with the 3D den-

sity of states ν and the 3D wavefunction ψwire,3D (R, z, φ). In addition, for the

purpose of our estimate, we will make a simplifying assumption that the density of
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states of the SC in the normal state ν is local at each site on the surface of the wire.

With these assumptions, the 3D generalized form for Γs,p is a similar form to Eq. 7.7,

except for a sum over the surface of the wire. This sum can be approximated by an

integral as

Γs,p =

∫
Ra−1dφdz|ψwire,3D (R, z, φ) |2πt̃2s,pkFa/EF

= κπt̃2skFa
4/EFR

3, (7.19)

where κ is a dimensionless number resulting from the Bessel function. To obtain

the above result we have used the lattice form for the LDOS in 3D ν ∝ πa3k3F/EF .

The hopping t̃s,p, which is proportional to the bare hopping in the wire can be

parametrized by a dimensionless parameter ζs,p and written as t̃s,p = ζs,p�
2/2m∗a2,

where m∗ is the effective mass. Using this parametrization we obtain the estimate

for Γs,p as

Γs,p = κζ2s,p

(
λF
R

)3

EF . (7.20)

Now we are in a position to compare the scale of Γ for the SMC nanowire and

the ferromagnetic chain. Qualitatively speaking, on a ferromagnetic chain of atoms

(as in Ref. [28]) where R is much smaller as compared with the SMC nanowire (as

in Ref. [7]), Γ is expected to be much larger [note that the dependence on R is

R−3 in Eq. (7.20)]. Quantitatively, assuming R ∼ λF would be of order 0.5 nm for

the ferromagnetic Fe chain in Ref. [28] we estimate Γ ∼ EF ∼ 1eV (if we ignore

the factors of κ ∼ ζs,p ∼ 1). On the other hand, for the same parameters for
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the SMC nanowire except the mode confinement radius R ∼ 20nm we expect the

self-energy parameter Γ is of order 0.1meV in the SMC. This huge difference in

Γ between the SMC nanowires used in [7] and the ferromagnetic chains used in

[28] may explain why the MZM might be strongly localized (delocalized) in the

ferromagnetic (SMC) nanowires even if both systems manifest the same induced

superconducting gap (∼ 100μeV). This difference ultimately arises, keeping all the

other parameters similar, from the difference in the transverse quantization size in

the two 1D systems with the wire radius ratio being roughly a factor of 40 between

the two, leading to a localization length difference which could in principle be as

large as a factor of 403 ∼ 64000! In reality, this is an overestimate of the difference

in the MZM localization in the two situations since the bare Fermi velocity in the

SMC is typically a factor of 100 or so smaller than that in the ferromagnetic metallic

chain, which leads to a factor of 64000/100 ∼ 640 difference in the MZM localization

length between the SMC nanowire [7, 52, 129, 51, 53, 54] and the ferromagnetic wire

[28] systems even if both systems have exactly the same induced superconducting

gap (∼ 0.1meV). This roughly a factor of 500 difference is in quantitative agreement

with the conclusion of Ref. 21 where the MZM localization length is inferred to be

< 1 nm whereas in the SMC nanowire case the MZM localization length is the same

as the bare coherence length in the nanowire (∼ 100 nm). Thus, the difference

between MZM localization in the two systems arises entirely from the difference in

the nanowire transverse confinement radius in SMC versus metals.
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7.5 Conclusion

In summary, we have established that the nanowire-on-superconductor hybrid

systems can potentially have very short Majorana localization length even when the

induced topological superconducting gap is very small in the nanowire by virtue

of the substrate-induced strong renormalization of the effective nanowire parame-

ters (for example, the Fermi velocity and the gap) because of the strong frequency

dependence of the relevant self-energy function determining the proximity-induced

pair potential in the nanowire. We have shown that this renormalization goes as

R−3, where R is the effective nanowire confinement size in the transverse direction

determining how 1D the system really is (with R going to zero limit being the true

1D nanowire limit). This provides an explanation for why the Majorana localiza-

tion length could be very small in metallic nanowires on superconductors, while very

large for the SMC nanowire: the metallic nanowire has R ∼ 0.5 nm while the SMC

nanowire has R ∼ 20 nm. The huge difference in the radii of the two systems leads

to a large difference in the renormalization effect induced by the substrate. The

substrate-induced suppression of the Majorana localization length may have impli-

cations for recent efforts [28] to observe localized MZMs in fairly short (1-10 nm)

ferromagnetic Fe chains on superconducting Pb substrates using STM spectroscopy,

providing a possible explanation [128] for how the MZM may be spatially highly

localized on a sub-nm length scale near the ends of the Fe adatom chain in spite of

a very small induced superconducting gap.
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Chapter 8

Conclusion and Outlook

We now summarize our findings in this dissertation and discuss possible future

directions.

In the first Chapter, we motivated the search for MZMs by demonstrating

that they obey exotic braiding statistics. We reviewed some of the proposals for

realizing such modes in chiral p-wave SCs, TI-based heterostructures, SMC-based

heterostructures, and Shiba states.

In Chapter 2, we adapted the quasiclassical Eilenberger theory to analyze the

effects of ensemble-averaged disorder on the MZMs at the ends of a chiral p-wave

superconductor. The salient feature of our theory was that all short-length-scale

fluctuations are retained, and the diffusive limit was not taken. We found that,

within our formalism, the ZBP in the LDOS associated with MZMs still remain after

the bulk gap is closed by disorder. This was attributed to the fact that Eilenberger

theory could not handle localization physics.

In Chapter 3, we analyzed the effect of non-magnetic disorder on the MZMs

induced at the SC/FI interface on a multi-channel 1D TI edge. We found that extra

subgap states could be induced. We also analyzed the case where only a single

channel is present, and found that in this case the robustness of the spectral gap
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protecting the MZM is ensured by various symmetries in the system.

In Chapter 4, we investigated the issue of “soft gap” universally present in

all experimental setups of the nanowire proposal. We looked into different positive

causes (like magnetic scattering, thermal and dissipative broadening) and concluded

that the most likely explanation was the interface fluctuations at the SMC-SC con-

tact.

In Chapter 5-7, we considered a system with a chain of ferromagnetic atoms

deposited on the surface of a SOC superconductor. This problem was addressed in

two special limits. First, in Chapter 5, we assumed negligible inter-atomic hopping

among the ferromagnetic atoms. The problem was then reduced to a chain of hy-

bridized Shiba states on the surface of a Rashba-coupled 2D SC. The conditions for

entering a topological phase was analytically derived, with a representative topo-

logical phase diagram computed. Then, in Chapter 6-7, we took the opposite limit

where the inter-atomic hoppings among the ferromagnetic atoms are much larger

than the hybridization energies between the induced Shiba states. In Chapter 6,

with a two-orbital phenomenological model for the SOC SC, we demonstrated how

the local inversion symmetry-breaking at its surface could induce SOC and triplet

pairing terms in the ferromagnetic chain. The resultant topological phases for the

effective Hamiltonian for the chain was discussed. Lastly, in Chapter 7, we empha-

size that in the strong (chain-SC) coupling limit, a significant renormalization of

length scales results in the chain. This was used to explain the observed extremely

short localization length of MZMs in experiments [28] described by this model.

We now discuss possible future research directions. The experimental realiza-
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tion of MZM is still at its primitive stage, and much experimental effort is required

to improve the quality of experimental data. Our result can provide helpful guidance

for such endeavors. For example, Ref. [131] has a setup with significantly improved

SMC-SC interface resulting in a hard SC gap on the SMC. Theoretical analysis of

their future experimental result with SOC and Zeeman terms put in to the wire is

important. On the other hand for the Shiba-based proposal, a big problem is dis-

tinguishing between the MZMs and the Shiba states, both of which are zero-energy

modes localized at the end of the chain [132]. A possible way for this is to utilized

spin-polarized STM to probe for specific spinorial structure unique to MZMs.
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