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Infectious hematopoietic necrosis virus (IHNV) is a pathogen of major economic 

importance to the aquaculture industry.  The long-term goal of our work is to develop a safe 

and effective recombinant IHNV vaccine and possibly use IHNV as a virus vector to 

express foreign genes. To achieve this goal, the complete genome of IHNV 220-90 virulent 

strain was sequenced and characterized. Subsequently, a full-length cDNA clone of IHNV 

was generated by constructing the full length cDNA clone, between the cytomegalovirus 

(CMV) promoter and the autocatalytic hammerhead and hepatitis delta virus ribozymes. 

Transfection of a full-length plasmid, along with the supporting plasmids resulted in the 

recovery of infectious rIHNV-220-90. Characterization of the rIHNV-220-90 showed that 

its growth characteristics in tissue culture were comparable to those of the parental virus.  



The possible role of IHNV proteins in virulence was explored to some extent. For this, the 

entire genome of attenuated virus (IHNV-61) was sequenced and compared with its virulent 

strain. The comparative sequencing analysis studies revealed that majority of differences 

were located in the glycoprotein gene. The M and G genes, and the trailer region between 

virulent and attenuated viruses were exchanged; recombinant chimeric viruses were 

recovered and studied for their pathogenicity in rainbow trout. The results obtained from in 

vivo studies indicate that the glycoprotein plays a major role in IHNV virulence in fish, 

whereas the M gene and trailer region play a negligible role in virulence of IHNV. The 

potential of rIHNV to serve as a viral vector was explored by expressing the VP2 protein of 

IPNV and hemagglutinin-estrase (HE) protein of ISAV. The recovered rIHNV-VP2 and 

rIHNV-HE viruses stably expressed the VP2 and HE proteins respectively for at least five 

serial passages and showed characteristics comparable to that of the parental virus, except 

that there was a one-log reduction in the virus titer. These results demonstrated that the 

established reverse genetics system can be utilized effectively to examine the molecular 

determinants of virulence, pathogenesis, and new approaches for vaccine development. 
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Chapter 1 

Introduction 

 

Infectious Hematopoietic Necrosis Virus (IHNV), a fish rhabdovirus, is the 

causative agent of infectious hematopoietic necrosis. IHNV causes an acute, systemic and 

virulent disease in salmonid species (Wolf, 1988, Tordo et al., 2005). The causative virus 

now exists in many wild and farmed salmonid stocks in the Pacific Northwest region of 

North America (McAllister, 1979). The disease was first reported in 1953 in Washington 

state as a cause of death in sockeye salmon (Oncorhynchus nerka) (Rucker et al., 1953). 

In 1970’s, the disease eventually spread to rainbow trout fry on Honshu Island in Japan 

(Sano, 1976). It has also spread to Europe and some Asian countries (Bovo et al., 1987; 

Laurencin, 1987). It now represents a major threat to aquaculture all over Europe. 

Clinical infections are most common in young fish, particularly fry and juveniles. 

Infectious hematopoietic necrosis can have a major economic impact on farms that rear 

young rainbow trout or salmon; the cumulative mortality rates on these farms can reach 

90-95%.  

 
IHNV is a member of the rhabdovirus family which also includes other pathogens 

such as vesicular stomatitis virus (VSV) and rabies virus (RV). A unique feature 

distinguishing IHNV from vesicular stomatitis virus (VSV) and rabies virus (RV) is a 

low optimal growth temperature (12-15°C), corresponding to the natural habitat of its 

piscine host, a slow growth rate and lower yields of progeny virus (Leong et al., 1981).  

 



 

Ultrastructurally, rhabdoviruses display a bullet-shaped morphology with 

glycoprotein spikes projecting from the viral envelope. The rhabdovirus genome consists 

of an unsegmented single-stranded RNA of approximately 11-12 kb with negative 

polarity (Hill, 1975; Kurath and Leong, 1985). The gene organization of the IHNV is 3’-

N-P(M1)-M(M2)-G-NV-L-5' (Kurath et al., 1985; Kurath and Leong, 1985). IHNV was 

reported to produce six mRNAs rather than five mRNAs as is found for the other 

rhabdoviruses analysed to date (Kurath et al., 1985; Kurath and Leong, 1987). These five 

mRNAs encode the viral structural proteins; RNA polyrnerase (L), envelope glycoprotein 

(G), nucleocapsid protein (N), phosphoprotein (P) and matrix protein (M). The sixth 

IHNV mRNA encodes a unique so-called non-structural protein (NV), which is 

synthesized in infected cells but appears to be excluded from mature virions (Kurath et 

al., 1985; Kurath and Leong, 1985, 1987). 

 
A major characteristic of rhabdovirus genomes is the presence of a conserved 

polyadenylation sequence present at the termini of the individual protein-coding genes. 

These genes are separated by intergenic regions: each of them comprises a transcription 

termination/polyadenylation signal and a transcription initiation signal, which allows the 

transcription of the genes into individual mRNAs, separated by an untranscribed 

intergenic dinucleotide. In IHNV, the sequence AGAYAG/C(A)7 is found at the termini 

of the genes, which is similar to respective sequences at the ends of the N, P, M and G 

genes of VHSV (Bernard et al., 1990; Benmansour et al., 1994; Thiry et al., 1990), VSV 

(Rose, 1980) and RV (Tordo et al., 1988). Another common feature in non-segmented 

negative stranded RNA virus genomes is the presence of complementary nucleotide 

motifs at the 3' and 5' ends of the genome.  
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Prior to this study, complete nucleotide sequences of IHNV were available for 

only two strains (Morzunov et al., 1995; Schütze et al., 1995). Knowledge of the entire 

genome sequence is a prerequisite for the genetic manipulation of the virus. The ability to 

introduce genetic changes directly into negative-stranded RNA viral genomes has proved 

to have important applications in the field of molecular biology of viruses and also in the 

development of attenuated vaccine strains. Because of the negative-sense nature of their 

RNA genomes, the ability to utilize standard molecular biological techniques to study the 

replicative cycles of negative-sense RNA viruses was once impossible. However, major 

breakthroughs in reverse-genetics technology using rabies and influenza viruses allowed 

investigators for the first time to genetically manipulate the genomes of these important 

human and animal pathogens (Luytjes et al., 1989; Schnell et al., 1994). 

 
 
The most successful approach is the plasmid-complemented virus rescue system 

or the reverse genetics system. This approach is based on the co-transfection of different 

plasmids, one encoding the viral antigenome and others encoding the viral polymerase 

complex (N, P and L proteins), under the control of T7 promoter. These transfections are 

done in permissive cells that express the T7 RNA polymerase or cells infected with a 

recombinant vaccinia virus, which expresses the T7 RNA polymerase. Numerous 

negative-sense RNA viruses have been recovered through this plasmid-complemented 

rescue system (rabies virus, Schnell et al., 1994; vesicular stomatitis virus, Lawson et al., 

1995; human respiratory syncytial virus, Collins et al., 1995; measles virus, Radecke et 

al., 1995; Sendai virus, Garcin et al., 1995; rinderpest virus, Baron and Barrett, 1997; 

parainfluenza virus, Hoffman and Banerjee, 1997; bovine respiratory syncytial virus, 
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Buchholz et al., 1999 and Yunus et al., 2001; Newcastle disease virus, Peeters et al., 

1999 and Krishnamurthy et al., 2000; human metapneumovirus, Biacchesi et al., 2004). 

 
Using this reverse genetics system, manipulation of the negative strand RNA 

virus genome not only helps us to investigate the functions of the virus genes and 

proteins but also to insert foreign genes into viral genome. In addition, by introducing 

genetic mutations into individual viral genes, the function of an individual gene and its 

role in pathogenesis can be studied in greater detail. Several studies on rhabdovirus 

pathogenesis demonstrated involvement of envelope glycoproteins in the viral 

pathogenesis (Clarke et al., 2007; Flanagan et al., 2000): (i) G protein plays a major role 

in synthesis of neutralizing antibodies in infected animals (Boudinot et al., 1998; 

Lorenzen et al., 1990 and 2000), (ii) targeted mutations on G allow attenuation of 

virulence (Bearzotti et al., 1995; Gaudin et al., 1999; Kim et al., 1994), (iii) G is the viral 

protein responsible for attachment to the cell membrane receptors (Bearzotti et al., 1999). 

The glycoprotein and the matrix protein of virulent rabies virus were exchanged with 

counterparts of avirulent strain, which led to attenuation of virulent virus 

(Pulmanausahakul et al., 2008). At least two functions for M protein in an IHNV 

infection are: down regulation of host transcription and the induction of programmed cell 

death (Chiou et al., 2000).  The glycoprotein induces neutralizing antibodies and plays a 

role in the virulence of fish rhabdoviruses (Kim et al., 1994; Benmansour et al., 1997). It 

was demonstrated that NV protein of IHNV is essential for replication and also for 

pathogenesis (Thoulouze et al., 2004). 
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For the purpose of developing a live attenuated viral vaccine, one requires the 

knowledge of the molecular determinants of virulence, which may affect the host range 

and tissue tropism. A detailed understanding of these factors will facilitate efforts to 

ensure the safety of such vaccines (Vlaycheva and Chambers, 2002). Since RNA 

polymerases lack proofreading ability, the replication of RNA viruses is characterized by 

high mutation rates, which leads to rapid adaptation to their growth environment 

(Domingo, 1997). This has historically been exploited to generate live attenuated 

vaccines. On the other hand, unrecognized adaptive mutations occurring during 

propagation of viruses in the laboratory can be a source of misleading results and 

erroneous conclusions regarding the viral life cycle in the natural host. Therefore, it is of 

fundamental importance to understand the molecular processes of virus adaptation to 

particular host cells (Mandl et al., 2001). Previous studies have shown that IHNV field 

isolates tend to lose their virulence after serial passage in cell culture (Leong, 1988). 

However, the molecular determinants of viral cell adaptation and attenuation have not 

been studied in detail. Mammalian rhabdoviruses, like most RNA viruses, are 

characterized by a high mutation rate (Holland et al., 1982). As a consequence, they are 

liable to high intra-strain variability, also described as quasispecies (Holland et al., 1992; 

Benmansour et al., 1992; Domingo et al., 1993). Emmenegger et al., 2003 demonstrated 

that the mutant spectra of natural IHNV populations are very homogeneous and the 

overall mutant frequency of IHNV within its host is one of the lowest reported for RNA 

viruses. Therefore, to study the molecular determinants of IHNV virulence, a cloned 

virus generated by the reverse genetics approach would be ideal. Passage of recombinant 

virus in cell culture and characterization of its genomic sequence would allow one to 
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identify markers of virulence and cell adaptation. Moreover, by comparing the sequences 

of an attenuated and a virulent isolate, we can make chimeric viruses by exchanging the 

corresponding coding region(s) of the two isolates, and identify putative amino acids 

involved in virulence of IHNV. 

 
Development of a reverse genetic system for IHNV would lead to the possibility 

of not only studying the functions of each IHNV gene in an authentic virus system, but 

also other aspects of basic knowledge in IHNV molecular biology. More importantly, 

establishment of a rescue system will create the ability to directly create mutations into 

the cDNA and hence help in engineering a recombinant live-attenuated vaccine 

candidate. This would be particularly important for IHNV infections in the US, since 

there are no effective vaccines currently available to control this emerging fish pathogen. 

This study is, thus, proposed to establish an improved rescue system for full-length IHNV 

strain 220-90 and to study role of IHNV proteins in pathogenesis, keeping in perspective 

the long term implications and advantages of using such a system in studying the 

molecular biology of IHNV and generating a better vaccine for control of IHNV 

infections in the US and other countries.  
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1.1 Research objectives 

 

The specific objectives of the present study are: 

 
1. To determine the entire genome sequences of IHNV strains 220-90, IHNV-06 

(virulent, passaged 6 times in cell culture) and IHNV-61 (attenuated, passaged 61 

times in cell culture) 

2. To develop an improved reverse genetic system for IHNV  

3. To determine the basis for virulence of IHNV by constructing chimeras between 

virulent and attenuated viruses and evaluating their pathogenicity in fish 

4. To develop recombinant IHNV as a vector to express foreign proteins 
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Chapter 2 

Review of literature 

2.1 History, Nomenclature and Classification 

 
According to Wolf's (1988) historical discussion, IHNV probably dates back to 

the late 1940's and 1950's when severe epizootics were reported in young salmon in some 

hatcheries in the pacific salmon- producing region of North America (Rucker et al., 1953; 

Watson et al., 1954). It is generally accepted that these early reports of probable viral 

diseases were caused by the same agent that was later named IHNV by Amend et al 

(1969). IHNV is an economically important pathogen of salmon and trout (Amend, 

1975). The virus is enzootic in river systems throughout western North America and has 

spread to Asia and Europe by movement of infected fish and eggs (Winton, 1991). The 

associated disease is severe, with mortality approaching 100% in some outbreaks. The 

disease continues to significantly impact commercial and recreational fishing activities as 

well as efforts to rebuild threatened or endangered fish stocks (Busch, 1983; Traxler, 

1986; Winton, 1991).  

 
Initially Genus, piscivirus, was proposed for IHNV and other fish rhabdoviruses, 

viral hemorrhagic septicemia virus (VHSV) and Hirame rhabdovirus (HIRRV). Later 

Morzunov et al., (1995) and Bjorklund et al. (1996) suggested the name 

Aquarhabdovirus for a new genus incorporating these viruses, to reflect their aquatic 

origin. The denotation Novirhabdovirus was first introduced in 2000 in the seventh report 

of the International Committee on Taxonomy of Viruses (ICTV) (Walker et al., 2000). 
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The term “novi-” stands for the “non-virion (NV)” gene, an additional unique gene, 

localized between the G and L genes, which is specific for this genus (Hoffmann et al., 

2005). To date, all members of the Novirhabdovirus genus are fish pathogens.  

 
Although IHNV is a serologically homogenous virus, it can be separated into one 

variable and four distinct groups based on the relative size and molecular weights of their 

proteins (Leong et al.. 1981). Winton et al., (1989) further classified IHNV isolates into 

four serological groups using monoclonal antibody but concluded that these groups were 

related to geographical origin rather than host species, virulence or date of isolation. 

Partial or whole nucleotide sequences of G and NV genes have been used for genotyping 

of worldwide IHNV isolates. Analyzing these two genes, Nichol et al. (1995) confirmed 

correlation between IHNV genotypes and their geographic origin. Subsequently, partial G 

gene sequence analysis of 323 IHNV North American isolates revealed 3 major IHNV 

genogroups designated U, M and L for the upper, middle and lower portions of IHNV 

geographical range in North America (Garver et al., 2003; Kurath et al., 2003). The 

genogroup U includes isolates from Alaska, British Columbia, Washington coastal 

watersheds and the Columbia River basin; the genogroup M includes isolates from the 

Columbia River basin and Idaho; and the genogroup L includes isolates from California 

and the southern Oregon coast. Enzmann et al. (2005) showed that all investigated 

European IHNV isolates formed one clade most closely related to the M genogroup. 

Recent studies (Nishizawa et al., 2006; Kim et al., 2007) indicated that several Japanese 

and Korean IHNV isolates constitute new JRt (Japanese Rainbow trout) genogroup. More 

recently, two additional genogroups for European and Japanese isolates were identified 

(Enzmann et al., 2005, Nishizawa et al., 2006). It is interesting that the genogroup of 

9  



 

European isolates shared a common source with the American genogroup M (Enzmann et 

al., 2005), while the genogroup for Japanese isolates was closely related to the American 

genogroup U (Nishizawa et al., 2006). Thus, at present, a total of five genogroups 

correlating with the geographic areas has been identified among worldwide isolates of 

IHNV. 

 
2.2 Virion 

 Virions consist of an envelope and a nucleocapsid. Virions are bullet-shaped and 

measure 45-100 nm in diameter; 100-430 nm in length (Hill, 1975). Surface projections 

are densely dispersed, distinctive spikes that cover the whole surface except for the quasi-

planar end. Capsid/nucleocapsid is elongated with helical symmetry. The nucleocapsid is 

cross-banded with a length of 700 nm; width of uncoiled 20 nm, or 30-70 nm. IHNV is a 

rhabdovirus consisting of an outer protein coat and a single-stranded RNA (molecular 

weight, 3.7 x 106) core (Hsu et al., 1985; Koener et al., 1987; Lorenzen et al., 1999; 

Meyers and Winton, 1996).  

2.3 Genome organization 
 
 IHNV genome RNA is enwrapped in a helical form with the nucleocapsid (N) 

protein and packaged within the virion together with the RNA-dependent RNA 

polymerase large protein (L) and the phosphoprotein (P). Analysis of the Round Butte 

strain (from Oregon) showed that IHNV has an approximately 11-kb genome which 

contains 6 genes (Kurath and Leong, 1985). R-Loop mapping experiments revealed that 

the 6 virus genes are located along the genome in the 3' to 5' order: The gene order of 

IHNV is 3’- leader-N-P-M-G-NV-L-trailer-5’ (Schutze et al., 1996) and the proteins are; 
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nucleocapsid (N), polymerase-associated phosphoprotein (P or M1), matrix protein (M or 

M2), surface glycoprotein (G), a unique non-virion protein (NV) and virus polymerase 

(L) (Kurath et al., 1985). The G protein is the major antigen and is responsible for the 

serological properties of the virus (Hill, 1975; McAllister and Wagner, 1975). The small 

NV protein is absent in prototype rhabdoviruses which are known to infect mammals, and 

is of unknown function (Kurath and Leong, 1985). 

2.4 Viral proteins 

 
 Purified infectious hematopoietic necrosis (IHN) virus contains five structural 

proteins which were designated L, G, N, P and M. The IHN viral polypeptides have 

molecular weights estimated to be 157, 72, 40, 25, and 20 kiloDaltons (kDa), respectively 

(Mcallister and Wagner, 1975). 

 

2.4.1 Nucleocapsid (N) protein 
 

The N gene is the first ORF, extending from nt 175-1350, contains 391 amino 

acids with a deduced molecular mass of 42 kDa (Schutze et al., 1995). The N protein is 

the major structural protein of the virus and connected tightly with the RNA to form an 

RNase-resistant nucleocapsid, which serves as the template for both transcription and 

replication to occur. During each step of the replication reaction, both plus- and minus-

strand RNAs are concomitantly enwrapped by the newly synthesized nucleocapsid (N) 
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Fig. 2.1. Schematic diagram of rhabdovirus particle N: Nucleocapsid protein, P: 

Phosphoprotein, L: Large polymerase protein, M: Matrix protein, E: Envelope and RNA-

negative-sense RNA genome. (The figure is adapted from 

http://www.mcb.uct.ac.za/tutorial/calgary_files/ and modified) 
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Fig. 2.2. Electron micrograph of negatively stained infectious hematopoietic necrosis 

virus (IHNV 220-90 strain) particles obtained from supernatant of infected EPC cells. 

When viewed under an electron microscope, virion is seen as bullet-shaped particles. (A) 

the bullet-shape of the virus. (B) tightly coiled encased genomic RNA striations 

(ribonucleoprotein). (C) G protein spikes in the outer membrane bilayer.  

12  



 

protein (Blumberg et al., 1981; Wertz et al., 1987) to form the ribonucleoprotein (RNP) 

complex.  This encapsidated genomic RNA is also associated with the phosphoprotein P 

and represents the template used by the polymerase protein L to produce the six mRNAs 

and the full-length antigenomic RNA. Together with two major proteins, polymerase (L) 

and phosphoprotein (P), the genome N-RNA complex constitutes the transcribing 

ribonucleoprotein particle (RNP). N, P and L are the minimal set of proteins required for 

transcription and replication of the Rhabdoviridae (Stillman et al., 1995). A universal 

phylogenetic tree of the Rhabdoviridae can best be constructed by using sequences of the 

reasonably conserved N protein gene (Hoffmann et al., 2005).  

2.4.2 Phosphoprotein (P) protein 
 
 
  The second ORF contains 690 nucleotides with a coding capacity for a 26 kDa 

protein consisting of 230 amino acids. The protein is phosphorylated to varying degrees, 

the most highly phosphrylated forms of which apparently have the greatest potential for 

supporting transcription (Emerson et al., 1987; Kingsford and Emerson; 1980). It 

structurally stabilizes L protein to bind to the N-RNA template to form the active L-P2 

holoenzyme (Ding et al., 2006). P protein forms a specific complex with N and prevents 

N protein from binding to cellular RNAs (Howard and Wertz 1989; Masters and 

Banerjee, 1988). For VSV, the P protein forms a tripartite complex with the L and N 

proteins to form the replicase complex to transcribe the genome and antigenome RNAs 

end to end with concomitant encapsidation of RNA by the N protein (Qanungo et al., 

2004). 
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2.4.3 Polymerase (L) protein 

 
 

The sixth ORF is the largest gene predicted in the IHNV genome. It is capable of 

encoding a 1986 amino acid protein of approximately 225 kDa (Schutze et al., 1995). 

The presence of highly conserved motifs A, B, C and D located between aa 558 and 832, 

which are typical for L proteins of viruses with a non-segmented single-stranded genomic 

RNA of negative polarity show that this ORF encodes the polymerase (L) (Tordo et al., 

1992). The L protein is the largest viral protein and the least abundant of all structural 

proteins.  

2.4.4 Glycoprotein 

 
 
 The surface glycoprotein (G) is the antigen that determines the serological 

properties of a rhabdovirus (Hill, 1975). The glycosylated G proteins from VHSV and 

IHNV, respectively, are the targets of neutralizing antibodies (Coll, 1995). This N-

glycosylated class I transmembrane protein, which forms trimeric peplomers on the virion 

surface (Gaudin et al., 1992), exhibits several remarkable features common to all the 

rhabdoviruses: (i) G is the only protein responsible for the synthesis of neutralizing 

antibodies in infected animals (Lorenzen et al., 1990; Boudinot et al., 1998), (ii) targeted 

mutations on G allow attenuation of virulence (Bearzotti et al., 1995; Gaudin et al., 1999; 

Kim et al., 1994), (iii) G is the viral protein responsible for attachment to the cell 

membrane receptors (Bearzotti et al., 1999), and (iv) G possesses a very short 

cytoplasmic tail which probably interacts with other internal proteins such as N and/or M. 
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2.4.5 Matrix protein 
  

The third ORF located between nts 2263 and 2850 encodes the IHNV matrix 

protein (M or M2). The resulting protein consists of 195 amino acids with a calculated 

molecular mass of 22 kDa (Schutze et al., 1995). The virion contains 2000 copies of the 

M protein (Thomas et al., 1985), which binds the nucleocapsid to the envelope and 

condenses the nucleocapsid into a tightly coiled helical nucleocapsid-M protein (NCM) 

complex that gives the virion its bullet-like shape (Barge et al., 1993; Lyles et al., 1996; 

Newcomb and Brown, 1981; Newcomb et al., 1982). Within the virion, the RNP is coiled 

to form a tight helix and is associated with the matrix protein, which is beneath the lipid 

bi-layer acquired from the host. Mebatsion et al. (1999) have shown that the M protein of 

rabies virus (RV) interacts with G and is probably responsible for recruiting the G protein 

into the virus, necessitating the conservation of specific amino acids in the G cytoplasmic 

tail. For vesicular stomatitis virus (VSV), the M protein has been shown to be solely 

responsible for the cytopathic effect typically seen as rounding of polygonal cells in 

culture (Blondel et al., 1990). Most recently, Ahmed and Lyles (1998) have shown that 

VSV M protein is capable of suppressing the transcription directed by each of the three 

RNA polymerases (RNAP): RNAPI, RNAPII, and RNAPIII. It was demonstrated that M 

acts in IHNV infection by shutting down host transcription and triggering programmed 

cell death (Chiou et al., 2000). 

2.4.6 Non-Virion (NV) Protein 
 
 
 The first indication of the presence of a new genus within the rhabdoviruses was 

the discovery of an additional gene located between the G and L encoding sequences in 
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IHNV (Kurath and Leong 1985; Kurath et al. 1985). This gene encodes a nonstructural 

non-virion protein, designated NV, whose product was identified in infected cells but was 

absent from purified virions (Schutze et al. 1996). In vitro translatable messenger RNA 

for the NV protein has been isolated from IHNV infected cells, although no 

corresponding protein has so far been detected in virus-infected cells (Kurath et al., 1985; 

Kurath and Leong, 1985, 1987; Schtitze et al., 1995). Genome organization is, therefore, 

different from those of other rhabdoviruses such as rabies virus (RV) of the genus 

Lyssavirus, where only a non-transcribed pseudogene is present between the G and L 

genes (Tordo et al., 1986), or vesicular stomatitis virus (VSV) of the genus Vesiculovirus, 

where only genes for the five structural proteins have been detected (Rose, 1980). The 

function of the NV protein is not clearly known, but the conservation of an open reading 

frame in diverse virus species and strains may be indicative of a significant biological 

role. As an approach to demonstrate a biological role of NV, fish cells transiently 

transfected with a plasmid expressing the NV gene were found to undergo cell rounding, 

suggesting a possible interaction between NV protein and the cytoskeleton (Chiou et al., 

2000). Johnson et al., (2000), applying a reverse genetics system to the snakehead 

rhabdovirus (SHRV), a warm-water fish Novirhabdovirus, have generated a recombinant 

virus containing a targeted nonsense mutation in the NV gene. In cell culture, this 

recombinant virus exhibited the same behavior as the wild-type (wt) virus, indicating that 

NV does not play a crucial role for in vitro replication. On the other hand, growth of NV 

deleted IHNV was severely impaired and the virus was non-pathogenic in fish 

(Thoulouze et al., 2004). These results indicate that NV protein has a crucial biological 

role for optimal replication of IHNV in cell culture. 
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2.5 IHNV Replication Cycle 

 
The rhabdoviral cycle of infection occurs by series of events in the following order: 

adsorption, penetration and uncoating, transcription, translation, replication, assembly 

and budding.   

2.5.1 Attachment  
 
 IHNV is shed from infected fish and spread through water-borne contact. The 

most probable route of transmission is through the gills, but studies have indicated that 

the esophagus and cardiac stomach may also be ports of entry for the virus (Chilmonczyk 

and Monge, 1980; Helmick et al., 1995). The first stage of IHNV replication is cellular 

attachment through the interaction of the viral glycoprotein G with the appropriate cell 

surface receptor (Coll, 1995a; Koener et al., 1987; Lorenzen et al., 1999). Although the 

IHNV cellular receptor is not known, studies conducted with other rhabdoviruses, 

including fish viral hemorrhagic septicemia virus (VHSV) and mammalian vesicular 

stomatitis virus (VSV) and rabies virus, have indicated that membrane phospholipids are 

involved in mediating infection (Coll, 1997; Estepa and Coll, 1996a, 1996b; Estepa et al., 

1999; Nunez et al., 1998; Schlegal et al., 1983). The phospholipid-binding region of 

glycoprotein G has been characterized and shown to consist of hydrophobic amino acid 
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Fig. 2.3. Infectious hematopoietic necrosis virus (IHNV) life cycle. The G protein spikes 

bind to receptors on the surface of host cells and the viruses enter the cell by endocytosis 

and fusion with the membrane of the vesicle. Transcription occurs in a sequential start-

stop fashion during which the polymerase transcribes the genome to produce mRNA. Six 

monocistronic mRNAs are produced, capped at the 5' end and polyadenylated at the 3' 

end and each containing the leader sequence from the 3' end of the vRNA at the 5' end of 

the message. Virions are assembled around the tightly coiled nucleoprotein core, and bud 

from the plasma membrane of the cell. 
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heptad repeats that bind phospholipid in a pH-dependent manner (Coll, 1995b and 1977). 

Bearzotti et al. (1999) demonstrated that antibodies recognizing fibronectin were able to 

block VHSV infection in fish cell cultures. They found that fibronectin specifically 

interacts with fish rhabdovirus and very high abundance of fibronectin in the rainbow 

trout muscle allowed them to hypothesize that rhabdoviruses infect fish following a two-

steps: (i) passive entry of rhabdovirus into fish across the skin mucus and (ii) direct 

interaction to fibronectin of the superficial muscle, which is in close contact with the skin. 

The presence of a novel form of zebrafish fibronectin (FN2) on the cell surface increased 

the cell’s susceptibility to infection by IHNV (Liu and Collodi, 2002). 

 

2.5.2 Penetration 

 
 
 For rhabdovirus fusion with cellular membranes, the G protein trimeric spikes find 

and bind to their target cells and, once the viruses are endocytosed, fuse with the internal 

cellular membranes at low pH. However, the molecular mechanisms involved in 

rhabdovirus fusion are not well understood (Coll, 1999; Durrer et al., 1995; Gaudin et al., 

1999). In many enveloped viruses, after the virus particle is internalized by a receptor-

mediated endocytosis mechanism (Carneiro et al., 2002), viral and cell membrane fusions 

are triggered by the decrease of the endosomal pH (Kielian and Jungerwirth, 1990). 

Conformational changes are induced by the low pH in the viral glycoproteins (Gaudin et 

al., 1995; Weissenhorn et al., 1999) to cause fusion. Uncoating occurs in the cytoplasm 

where replication takes place. 
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2.5.3 Transcription 
 
 Two modes of RNA synthesis are distinguished. Transcription starts at the 3' end 

of genomic RNP and involves sequential production of monocistronic mRNAs from 

genomic RNPs. Replication initiates at the 3' ends of both genomic and antigenomic 

RNPs and produces full-length RNPs. The genomic regions of IHNV and VHSV which 

contain the sequences for encapsidation, initiation of replication and transcription, and 

packaging are located at the 3’ and 5’ terminal ends of the genomes and are designated as 

leader and trailer, respectively. For vesicular stomatitis virus (VSV), the prototype 

rhabdovirus, Smallwood and Moyer (1993) and Li and Pattnaik (1999) demonstrated that 

optimal transcription of the genome requires the authentic 3’-terminal nucleotides which 

serve as a promoter region.  It has long been known from studies on VSV that 

rhabdovirus mRNAs are sequentially transcribed starting from the 3'-terminal genome 

promoter (Abraham and Banerjee 1976; Ball and white 1976). Due to dissociation of the 

polymerase at each gene border, a progressive loss towards the 5' end is observed. This 

results in a gradient of transcripts following the gene order (Iverson and Rose 1981). 

Notably, the gene order of natural rhabdoviruses is conserved with the N and P genes 

needed in stoichiometric amount for RNP formation, at the first two 3' proximal 

positions, whereas the catalytic L protein is encoded by the most 5' terminally located 

gene (Conzelmann 1998; Pringle 1997). Due to transcript gradient, N mRNAs are the 

most abundant and L mRNAs are the least abundant viral mRNAs. This unique feature of 

Mononegavirales gene expression can modulate the level of expression of a transgene by 

changing the relative distance from the 3' promoter (Wertz et al., 2002).  
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2.5.4 Replication  
 
 
 The viral polymerase L binds at the genomic promoter at the 3’end (leader region) 

of the encapsidated negative-sense genomic RNA for synthesis of subgenomic mRNAs 

or complete antigenomic copies of the virus genome. This is the first step in virus 

replication. The second step, the production of the negative-sense genome, uses the 

antigenomic copy of the virus genome and the antigenomic promoter at the 5’end (trailer 

region). Continued protein synthesis is required for the maintenance of genome 

replication (Pearlman and Huang, 1973). Unlike the template for primary transcription, 

which is the negative-strand RNP complex, the template for genome replication is the 

positive-strand RNP complex. The conversion of negative-strand RNP to positive-strand 

RNP is presumably mediated by a switch of the RNA polymerase from the transcriptive 

to the replicative mode. Since free positive-strand genome-length RNA is not found in 

infected cells, the concomitant association of the N protein with the growing positive-

strand genome RNA seems to be a plausible mechanism of positive-strand nucleocapsid 

formation (Soria, et al., 1973). The newly synthesized positive-strand RNP then serves as 

the template for replication, and amplification of negative-strand RNP ensues. Since the 

positive-strand RNP does not contain signals for transcription, this serves exclusively as a 

template for replication. Again, the N protein serves a vital role in the assembly of the 

full-length negative-strand genome RNA into RNP.  
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2.5.5 Assembly and Budding 

 
 
 The following steps outline the rhabdovirus assembly and budding (Lyles et al., 

1996).  (i) The first step is formation of the nucleocapsid core through binding of N 

protein to genomic (or antigenomic) RNA while the RNA is being synthesized. N protein 

polymerization on the nascent RNA occurs in the cytoplasm through an exchange 

reaction in which P protein is released from N:P dimers as N associates with the 

sugarphosphate backbone of the RNA. Some cytoplasmic M protein may associate with 

the newly formed RNPs, but this is not sufficient for complete condensation into 

skeletons. (ii) While RNPs are forming in the cytoplasm, G protein in the plasma 

membrane localizes to, or forms, sites (i.e., microdomains) that are favorable for the 

initiation of budding and RNP condensation by M protein. Such sites favorable for 

budding must be formed soon after delivery of G to the cell surface since virus budding 

commences as soon as 2-3 h post-infection. (iii) When sufficient amounts of M protein 

have accumulated in the cytoplasm and a sub-population has localized to the inner leaflet 

of the plasma membrane, nucleocapsids become localized to the plasma membrane and 

are condensed into tightly coiled structures (skeletons) via interaction with M protein. 

The condensation of RNPs occurs at regions of the plasma membrane containing locally 

high concentrations of G protein, which results in formation of the bud site. These G-

enriched microdomains may favor membrane curvature and virion extrusion. (iv) 

Interaction of M-RNPs with the bud site and the progressive condensation of the RNP 

core results in evagination of the membrane in which envelopment of the underlying 

condensed RNP core occurs via recruitment of both soluble and membrane-associated M 
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into the condensing skeleton. Thus, condensation of RNPs by M protein results in 

formation of bullet-shaped protrusions extending from the plasma membrane (Lyles et 

al., 1996). (v) Cellular components, such as Nedd-4 or a related ubiquitin ligase, or other 

as of yet undefined proteins, associate with the PY motif of M which either directly or 

indirectly result in fission and release of mature virions. 

2.6 IHNV infections 
 

2.6.1 Prevalence of IHNV 

 
 
 The first reported epidemics of IHNV occurred in the United States at 

Washington and Oregon fish hatcheries during the 1950s (Rucker et al., 1953). By 1973 

outbreaks of IHNV in rainbow trout had occurred in Minnesota, South Dakota, Montana, 

Idaho, Washington, West Virginia, and Colorado (Amend et al., 1973, Wolf et al., 1973; 

Plumb, 1972). Subsequently, IHNV spread to Alaska (in 1974), throughout the Hagerman 

Valley to Idaho (1977 to 1980), and then was found in salmonids of the Columbia River 

(early 1980s), and finally was detected in the Pacific Northwest (Kurath, et al., 2003). In 

1971, the virus spread to Japan and subsequently to Taiwan, China, and Korea (Sano et 

al., 1977). IHNV was detected in the common Mayfly (Callibaetis sp) by Shors and 

Winston (1989). Probably due to the expanding commercial sale of infected eggs and 

fish, IHNV was introduced to Europe, where it was for the first time recorded in France 

and Italy in 1987 (Laurencin, 1987; Bovo et al., 1987), followed by detection in Belgium 

in 1989 and 1990, in Germany in 1992 (Enzmann et al., 1992), and in Switzerland in 

1993 (Knuesel et al., 2003). In 1991, the first outbreaks of IHN were recorded in 
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hatcheries for juvenile rainbow trout and masu salmon (O. masou) in Kangwon Province, 

Korea (Park et al., 1993), Japan (Kimura and Yoshimizu, 1991), and Taiwan (Chen et al., 

1983). The first outbreak of IHN in Austria was recognized in 1994, reported by Weber 

(Office International des Epizooties, [OIE]) and mentioned by Bergmann et al. (2002). 

IHNV was also detected in farmed rainbow trout in Iran (Fallahi et al. 2003) and in 

salmonid farm in Croatia (Vardic et al., 2007). 

2.6.2 Disease in Fish 
 
 

The host range of IHNV includes Atlantic salmon (Salmo salar) (Mulcahy and 

Wood, 1986), chum salmon (O. keta), Chinook salmon (O. tshawytscha) (Follet et al., 

1987), cutthroat trout (O. clarki) (Follet et al., 1997), Brook trout (Salvelinus fontenalis 

(LaPatra et al., 1993), and brown trout (Salmo trutta) (LaPatra and Fryer, 1990). The 

disease is seen mainly in the young and juvenile stages of salmonids while the adults are 

more resistant and may become carriers (LaPatra, 1998). Transmission of virus was 

demonstrated via water, feed and contaminated eggs. It was concluded that adult carriers 

are the reservoir of infection and that transmission occurs primarily when carriers shed 

virus and expose susceptible fish or eggs (Amend, 1975). The potential for epizootics is 

highest at 10°C and the disease does not occur naturally above 15°C (Amend, 1970; 

Watson, et al.,1954). In cell culture, however, the virus replicates and causes cytopathic 

effects at temperatures up to 18°C (Amend et al., 1969; Wingfield et al., 1969). The 

principal clinical signs of disease are darkened body color, ascites, exophthalmia and 

petechial hemorrhages internally and externally. Severe electrolyte and fluid imbalance 

caused by renal failure (Amend and Smith, 1974) and degeneration and necrosis of the 
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hematopoietic tissues in the kidney and spleen is thought to be actual cause of mortality 

(OIE, 2000; Wolf, 1988). Depending on the fish species and environmental conditions, 

IHNV epizootics may result in mortalities of more than 90% under artificial culture 

conditions (Pilcher and Fryer, 1980).  

2.6.3 Current control strategies 
 
 

Effective vaccines have long been requested by the fish farmers, but due to 

limited experimental success with traditional killed or attenuated virus vaccines as well as 

with products based on recombinant proteins, no approved vaccines against these viruses 

are generally available (Lorenzen and Olesen, 1997; Winton, 1997). Amend (1976) and 

Nishimura et al., (1985) reported having success with vaccination of rainbow trout using 

killed preparations of IHNV. The vaccine was most effective when delivered by injection 

but hyper-osmotic immersion was capable of stimulating limited immunity. Traditional 

strategies as well as recombinant protein vaccines have had limited success at controlling 

these diseases (Lorenzen et al., 1999; Lorenzen and Olesen, 1997; Winton 1997). Fryer et 

al., (1976) developed an attenuated strain of INHV by passing the virus multiple times in 

steelhead trout cell cultures. LD50 studies revealed that the attenuation reduced the 

virulence approximately 100-fold. This vaccine proved to be effective in eliciting 

protective immunity with only 5% mortality in the vaccinated group and 90% in the 

controls. It was also shown that one preparation was capable of giving protection when 

delivered by immersion; however some residual virulence was seen in some trout (Fryer 

et al 1976). These results prompted researchers to halt further experiments as the 
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commercial industry expressed concern about difficulties of licensing an attenuated live 

vaccine (Fryer et al., 1976).  

 
The DNA vaccine based on the glycoprotein gene of IHNV induces a non-specific 

anti-viral immune response and long-term specific immunity against IHNV (Purcell et 

al., 2006). Genetic immunization or the direct administration of antigen-encoding DNA 

into animals is one of the latest technologies being exploited in the design of better viral 

vaccines.  The administration of the DNA results in low level expression of the antigen 

and the subsequent induction of antigen-specific host immunity (Fynan et al., 1995; 

Rabinovich et al., 1994; Johnston and Tang, 1994; Vogel and Sarver, 1995).  For viral 

vaccines, this approach offers many advantages:  (i) The viral antigen is correctly folded 

and glycosylated by the host cell, (ii) The presentation of the antigen induces both humor 

and cellular immune responses (Ulmer et al., 1993; Wang et al., 1993; Xiang et al., 

1995), (iii) The vaccine is safe from the reversion problems inherent to live, attenuated 

viral vaccines.  Furthermore, unlike subunit vaccines that require potentially toxigenic 

oil-based adjuvants to boost immunogenicity, genetic immunization requires only the 

delivery of properly constructed DNA plasmids to the nucleus of host cells.    

2.7 Sequencing 

  
 The complete genomic sequences of IHNV were determined in 1995 in parallel 

by Schutze et al. (1995) and Morzunov et al. (1995). These two sequences (GenBank 

accession numbers X89213 and L40883, respectively) are the only complete genomic 

IHNV sequences available to date. Genetic analysis and phylogenetic studies of IHN 

viruses have previously been performed mostly on American fish samples; only a few 
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Asian or European IHNV isolates have been investigated thus far (Emmenegger et al., 

2000; Emmenegger and Kurath, 2000; Enzmann et al., 2005; Garver et al., 2003; Kurath 

et al., 2003; Nichol et al., 1995; Nishizawa et al., 2006; Troyer et al., 2000; Troyer and 

Kurath, 2003). These analyses exhibited surprisingly low genetic diversity within the 

IHNV G genes. A 303-nucleotide long part within the IHNV G gene, the so-called “mid-

G” region that contains putative antigenic determinants (Huang  et al., 1996), has been 

found to be valuable for IHNV phylogenetic analyses (Emmenegger et al., 2000; 

Emmenegger and Kurath, 2000; Garver et al., 2003; Kurath et al., 2003; Troyer et al., 

2000; Troyer and Kurath, 2003).  In general, the phylogenetic relationship of IHN viruses 

was found to correlate with the geographic origin of virus isolates rather than with host 

species or with temporal factors (Troyer and Kurath, 2003). A limited correlation with 

host species was described by Kurath et al. (2003), and time-related divergences between 

Japanese isolates before and after the 1980s were observed by Nishizawa et al. (2006). 

2.8 Reverse genetics 

 
The first rhabdovirus ever recovered was rabies virus SAD B19 strain by Schnell 

et al. (1994) using a recombinant vaccinia virus (vTF7-3) expressing T7 RNA 

polymerase. After that, RC-HL strain was recovered by Ito et al. (2001) and HEP-Flurry 

strain by Inoue et al. (2003) using a RNA Pol II system. The other important mammalian 

rhabdovirus, VSV Indiana serotype, was recovered by Lawson et al., 1995, Whelan et al., 

1995 and Harty et al., 2001. Among fish rhabdoviruses, IHNV was recovered by 

Biacchesi et al. (2000) and SHRV by Johnson et al. (2000) using a vaccinia virus-driven 

T7 RNA polymerase expression system. 
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As shown in Fig. 2.4, a full-length cDNA of the IHNV antigenome was 

assembled from subgenomic overlapping cDNA fragments and cloned in a transcription 

plasmid between the T7 RNA polymerase promoter and the autocatalytic hepatitis delta 

virus ribozyme. Recombinant IHNV (rIHNV) was recovered from fish cells at 14°C, 

following infection with a recombinant vaccinia virus expressing the T7 RNA polymerase 

(vTF7-3) and cotransfection of pIHNV together with plasmids encoding the 

nucleoprotein N (pT7-N), the phosphoprotein P (pT7-P), the RNA polymerase L (pT7-L), 

and the nonvirion protein NV (pT7-NV) (Biacchesi et al., 2000).  

 
It was demonstrated that the growth of NV-deleted recombinant IHNV (rIHNV-

ΔNV) in cell culture was severely impaired but that a normal growth of rIHNV-ΔNV can 

be restored when NV is provided in trans by using fish cell clones constitutively 

expressing the NV protein. These results indicated that the NV protein has a crucial 

biological role for optimal replication of IHNV in cell culture (Thoulouze et al.., 2004). 

On the other hand, NV-knockout recombinant SHRV exhibited the same behavior as the 

wild-type (wt) virus, indicating that NV does not play a crucial role for in vitro replication 

(Johnson et al., 2000). A recombinant virus expressing viral hemorrhagic septicemia 

virus (VHSV) G and M instead of IHNV G and M (rIHNV-Gvhsv, rIHNV-Mvhsv) was 

generated and was shown to replicate as well as the wild-type rIHNV in cell culture 

(Biacchesi et al., 2001).  
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Fig. 2.4 Vaccinia virus based recovery of recombinant IHNV. EPC cells were initially 

infected with vaccinia virus expressing T7 RNA polymerase and followed by transfection 

of the antigenome plasmid along with four expression plasmids encoding N, P, NV and L 

proteins of IHNV. 
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2.9 Molecular basis of antigenic variation and virulence in IHNV 

 
Since RNA polymerases lack proofreading ability, the replication of RNA viruses 

is characterized by high mutation rates. In addition, RNA viruses have large population 

sizes, high replication rates and short generation times. All these properties are 

responsible for the extremely high genetic variability of RNA virus populations (Moya et 

al., 2000). These result in the emergence of new populations that are more adaptable to 

the environment, and could escape the surveillance of host immune system. 

 
 The IHNV G protein has been shown to be the major viral protein capable of 

eliciting neutralizing antibodies and stimulating protective immunity in young fish 

(Engelking and Leong, 1989). However, in recent years there appears to be evidence for 

increasing serological variation among IHNV isolates, with distinct neutralizing profiles 

(Winton et al., 1989, Groberg et al., 1990, LaPatra et al., 1991, Ristow and Arnzen de 

Avila, 1991). Whether some of these variants are indeed unique serotypes has not been 

thoroughly investigated and this information will be essential for development of an 

effective vaccine. Additionally, knowledge of antigenic variation among isolates of 

IHNV is important for epizootiological studies, development of accurate diagnostic tests, 

fish health management, and understanding the biology of the virus. It will be important 

to determine the nucleotide sequence of the gene coding for the G protein of the antigenic 

variants and to determine conserved immunogenic regions that could be targeted as 

candidate vaccines. It will also be important to identify potential mutations that may 

produce major antigenic changes and to determine the ability of the virus to develop 

mutations to escape protective effects of a vaccine. 
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Viral virulence is the relative ability of a virus to produce disease or lesions in a 

host. It is dependent on various host and virus factors, including changes in viral tissue 

tropism and alteration in the level of viral replication and transcription. Changes in viral 

virulence resulting from mutations in viral gene products have been observed in many 

viral systems. Many viral genome characteristics can influence viral pathogenesis and 

virulence, such as viral envelope and capsid proteins; core, matrix, and nonstructural 

proteins; and noncoding regions of the viral genome (Tyler and Fields, 1996). A single 

amino aicd change from glutamic acid to glycine at position 218 in G protein of avirulent 

RB-1 strain of IHNV resulted in an apparent change in the distribution of the virus in fish 

(Kim et al., 1994). This shows an altered IHNV G may affect viral pathogenesis by 

changing its tissue tropism. In one class of mutants, the complete loss of pathogenicity 

was correlated with a single amino acid change at glycoprotein position 333 from 

arginine to isoleucine or glutamine (Dietzschold et al., 1983, Seif et al., 1985). The 

change in pathogenicity has been attributed to changes in the distribution of RV antigen 

which may have affected the movement of the virus to the brain (Kucera et al., 1985; 

Lafay et al., 1991). 

 
Sequence analysis of IHNV isolates demonstrated a maximum nucleotide 

diversity of 4.40%, which confirms the suggestion that the IHNV genome has undergone 

only a few variations (Kolodziejek et al., 2008). Previous sequence comparisons carried 

out by Garver et al. (2003) revealed only 30 different sequence types with a maximum 

nucleotide diversity of 7.3% among 120 IHNV isolates from infected fish in the 

Columbia River. The maximum genetic diversity found throughout the geographic range 

of IHNV was 8.6% (Kurath et al., 2003). A later study by Enzmann et al. showed that the 
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European isolates varied from each other in the G gene by only 0 to 2.3% (Enzmann et 

al., 2005), whereas the maximum nucleotide diversity among the Japanese isolates was 

4.5% (Nishizawa et al., 2006). A possible explanation for the highly conserved genome 

may lie in the acute nature of IHNV infection. Most of the viral samples analyzed were 

collected at the endpoint of acute-phase infections, therefore, the quasispecies of the virus 

population could be characterized as homogenous. It is possible that IHNV populations at 

chronic stages of infection may be more diverse (Emmenegger et al., 2003). Potential 

explanations for the relatively low extent of genetic variation exhibited by IHNV 

compared to mammalian rhabdoviruses included a lower optimal temperature and thus a 

slower replication rate, a relatively short duration of actively replicating virus in an 

infected population, a lower level of immune selection because salmonids have a less 

sophisticated immune system, and finally the potential presence of vector(s) and/or 

reservoirs of IHNV that maintain and transmit isolates over time but place additional 

constraints upon variation (Oshima, 1991). 

2.10 Rhabdovirus vectors 

 
Rhabdoviruses has been utilized not only to express foreign genes but also to be 

used as a vaccine vector. The modular nature of their genomes makes it easy to engineer 

foreign genes (Conzelmann et al., 1998). Homologous RNA recombination has not been 

demonstrated for non-segmented negative-sense RNA viruses, which contributes to the 

stability of these vectors (Lamb and Kolakofsky, 1996; Palese et al., 1996).  

 
Recombinant vesicular stomatitis virus (VSV) based vectors expressing foreign 

proteins are currently being explored as vaccines. VSV has a number of advantageous 
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features for use as a vaccine vector. It has a very high level of gene expression as well as 

rapid and extremely efficient replication in vitro. In particular, the three VSV 

glycoprotein exchange vectors were each engineered to express the simian 

immunodeficiency virus (SIV) Gag protein and HIV-1 envelope protein from additional 

genes. Three sequential immunizations of rhesus monkeys by the combined IM and oral 

routes induced a vigorous HIV-specific cytotoxic T lymphocyte (CTL) response and 

protection against a subsequent challenge with simian-human immunodeficiency virus 

(SHIV) (Rose et al., 2001). VSV also has been used to express the SARS-CoV S spike 

glycoprotein from a foreign gene and a single intra-nasal (IN) immunization of mice 

provided essentially complete protection against an IN challenge with SARS-CoV 

(Kapadia et al., 2005). VSV bearing the HA glycoprotein of human influenza A virus 

was highly immunogenic and protective against an otherwise lethal challenge in mice 

(Roberts et al., 1998). VSV also has been evaluated as a vaccine vector against a number 

of prevalent human viruses, including papillomavirus (Reuter et al., 2002), hepatitis C 

virus (Buonocore et al., 2002), HRSV (Kahn et al., 2001) and measles virus (Schlereth et 

al., 2003). VSV is a natural pathogen of cattle, horses, and swine (Letchworth et al., 

1999) but human infections also do occur from contact with infected animals (Fellowes et 

al., 1955; Hanson et al., 1950). The major drawback for VSV is that, at present, there is 

little or no experience with its administration to humans. The central nervous system 

involvement observed with rodents and with a human case warrants caution.  

 
Rabies virus (RV) causes deadly neurological disease in numerous animal species 

and humans. Studies with mice have demonstrated the immunogenicity of RV vectors 

expressing the HIV envelope or Gag protein, or the SARS-CoV S protein, from added 
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genes (Faber et al., 2005; McGettigan et al., 2001a and 2001b). The immunization of 

rhesus monkeys with highly attenuated rabies-based vaccine vectors expressing SIV Gag 

protein and HIV-1 envelope protein, followed by a boost with similar vaccine constructs 

in which RV G protein was replaced with that of VSV, resulted in a strong HIV-specific 

CTL and antibody response and protection against SHIV (McKenna et al., 2006). 

However, whether attenuated derivatives could be used in humans is unclear, given the 

high neurovirulence of the parent virus. 
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Chapter 3 

Molecular characterization of the virulent infectious 
hematopoietic necrosis virus (IHNV) strain 220-90 

3.1 Abstract 

 
Infectious hematopoietic necrosis virus (IHNV) is the type species of the genus 

Novirhabdovirus, within the family Rhabdoviridae, infecting several species of wild and 

hatchery reared salmonids. Similar to other rhabdoviruses, IHNV has a linear single-

stranded, negative-sense RNA genome of approximately 11,000 nucleotides. The IHNV 

genome encodes six genes; the nucleocapsid, phosphoprotein, matrix protein, 

glycoprotein, non-virion protein and polymerase protein genes, respectively. This study 

describes the molecular characterization of a virulent strain of IHNV 220-90 and its 

phylogenetic relationships with available sequences of IHNV isolates worldwide. The 

complete genomic sequence of 220-90 strain was determined from the DNA of six 

overlapping clones obtained by RT-PCR amplification of genomic RNA.  The complete 

genome sequence of 220-90 comprises 11,133 nucleotides (GenBank GQ413939) with 

the gene order of 3’-N-P-M-G-NV-L-5’.  These genes are separated by conserved gene 

junctions, with di-nucleotide gene spacers. The first 15 of the 16 nucleotides at the 3’- 

and 5’-termini of the genome are complementary, and the first 4 nucleotides at 3’-ends of 

the IHNV are identical to other novirhadoviruses. Sequence homology and phylogenetic 

analysis of the glycoprotein genes show that 220-90 is 97% identical with most of the 

IHNV strains.  Molecular characterization of the complete genome of IHNV virulent strain 

220-90 reveals its relationship with North American and other strains. It will be helpful in 
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studying the pathogenesis of IHNV using a reverse genetics approach and developing 

efficient control strategies. 

3.2 Introduction 

 
The infectious hematopoietic necrosis virus (IHNV) is probably one of the most 

important fish viral pathogens causing acute, systemic and often virulent disease in both 

wild and cultured salmon and trout (Wolf, 1988; Winton, 1991). The first reported 

epidemics of IHNV occurred in sockeye salmon (Oncorhynchus nerka) fry at 

Washington and Oregon fish hatcheries during the 1950s (Rucker et al., 1953; Guenther 

et al., 1959; Wingfield et al., 1969). IHNV is native to salmonids of the Pacific Northwest 

region of North America and its current geographical range extends from Alaska to 

northern California along the Pacific coast and inland to Idaho (Wolf, 19881; Bootland 

and Leong, 1999). IHNV has spread to Asia and Europe, most likely due to the 

movement of infected fish and eggs (Winton, 1991). 

 
 As for all the Rhabdoviridae, the genome of IHNV consists of a single-stranded 

negative-sense RNA. The gene order of IHNV is 3’-leader-N-P-M-G-NV-L-trailer-5’ 

(Kurath et al., 1985). The negative-strand RNA genome is connected tightly with the 

nucleoprotein N and forms the core structure of virion. This encapsidated genomic RNA 

is also associated with the phosphoprotein P and polymerase protein L, which is involved 

in viral protein synthesis and replication. Their genome codes for five structural proteins, 

a nucleoprotein (N), a polymerase-associated protein (P), a matrix protein (M), an RNA-

dependent RNA polymerase (L) and a surface glycoprotein (G), and a nonstructural 

protein (NV). 
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To date, the complete nucleotide sequence for IHNV has been determined only 

for two strains (Schütze et al., 1995; Morzunov et al., 1995). In this study, we 

characterized the entire genome of the IHNV virulent strain 220-90, which was recovered 

from acutely infected juvenile rainbow trout (Oncorhynchus mykiss) (LaPatra et al., 

1991)  To understand the molecular characteristics of IHNV virulent strain 220-90, we 

thoroughly analyzed the entire genomic sequences and compared it with other IHNV strains 

and rhabdoviruses.  

3.3 Materials and Methods 

 
Cells and Viruses 

The IHNV strain 220-90 was kindly provided by Scott LaPatra, Clear Springs 

Foods Inc., Idaho, USA. IHNV 220-90 strain was initially recovered from acutely 

infected juvenile rainbow trout during routine examinations of hatchery-reared fish, 

conducted from 1990 to 1992 in the Hagerman Valley, Idaho, USA (LaPatra et al., 1991). 

Specimens for virus isolation were collected when mortality increased above 200 fish 

day-1. Viruses were isolated and identified by methods previously described (Amos, 

1985). The epithelioma papulosum cyprini (EPC) cell line from common carp Cyprinus 

carpio (Fijan et al., 1983) was used for the isolation, propagation, and identification of 

IHNV isolates. Cells were propagated in minimum essential medium (MEM) 

supplemented with 10% fetal bovine serum and 2mM L-glutamine (ATCC, Manassas, 

VA). For routine cell propagation, the EPC cells were incubated at 28ºC.  To propagate the 

virus, the cells were infected and incubated at 14ºC until cytopathic effects were complete. 
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The supernatant was collected 5 days post-infection, clarified and stored at -80oC for 

further processing. 

 
RNA extraction and amplification  

  
           Viral RNA was extracted from cell culture supernatant using Qiagen RNAeasy kit, 

according to manufacturer’s instructions (Qiagen, Valencia, CA), and stored at -20°C. 

The consensus PCR primers were designed using published IHNV genome sequences 

(Genbank accession numbers X89213; L40883) from the National Center for 

Biotechnology Information (NCBI). The complete genome sequences were aligned, and 

highly conserved sequence segments were identified and used to design overlapping 

primers. The oligonucleotide primers used in this study are listed in Table 3-1. First 

strand synthesis was carried out in a tube containing 5µl of RNA, which was denatured at 

70°C for 10 min in the presence of DMSO (3µl), 1 µl forward gene-specific primer, 1µl 

of 25 mM dNTPs and snap-cooled on ice for 1 min.  The reaction mixture containing 2µl 

of 10X RT buffer, 2µl of 0.1M DTT, 4µl of 25mM MgCl2, 1µl of Superscript III RTTM, 

and 1µl of RNase OUTTM was incubated at 50°C for 1 h.  PCR amplifications were 

carried out using a pfx50TM PCR kit (Invitrogen, Carlsbad, CA), according to 

manufacturer’s instructions. Briefly, the following mixture was used for PCR 

amplification: 3µ1 of cDNA, 2µl of primer mix; 5µl of 10x PCR buffer [100 mM Tris-

HCl (pH 9.0), 500 mM KC1, 1% Triton X-100], 2µ1 of 25 mM MgCl2, 0.5ul of pfx50 

polymerase, and 37µ1 of DEPC water, to make a final volume of 50 µ1. Reaction was 

carried in a thermal cycler (MJ Research Inc., Waltham, MA), using the following 

program: denaturation at 94°C for 30sec; annealing for 30sec at 60°C; and extension at 
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68°C for 2 min. The RT-PCR products were separated by agarose gel electrophoresis and 

purified using a QIAquick gel extraction kit (Qiagen, Valencia, CA).  

 
In order to identify the 3’-terminal region of the genomic RNA, poly (A) tail was 

added to the 3’-end with poly (A) polymerase enzyme, according to manufactures’ 

instruction (Applied Biosystems, USA). Tailing reaction was carried in a tube containing 

30μl of RNA, 26μl of nuclease-free water, 20μl of 5X poly (A) polymerase buffer, 10μl 

of 25 mM MnCl2, 10μl of 10 mM ATP, and 4μl of E. coli poly (A) polymerase. The 

reaction mixture was incubated at 37°C for 1 hr and then RNA was purified using a 

Qiagen RNAeasy kit, according to manufacturer’s instructions. The cDNA synthesis and 

polymerase chain reaction were conducted as described above, using an oligo (dT) primer 

(5’-GCGGCCGCTTTTTTTTTTTTTTTTTTTTT-3’) for the first-strand synthesis, 

followed by PCR with the IHNV-specific primer NheR (5’- 

CGTTTCTGCTAGCTTGTTGTTGG-3’). The 5’-terminal of genomic RNA was 

identified by rapid amplification of the 5’-end, using a 5’RACE kit (Invitrogen, Carlsbad, 

USA), according to manufacturer’s instructions.  

 
Cloning and sequencing 
 

 The purified RT-PCR products were cloned into a pCR2.1 TOPO® TA vector 

(Invitrogen, CA). Plasmid DNA from various clones was sequenced by dideoxy chain 

termination method, using an automated DNA sequencer (Applied Biosystems Inc., 

Foster City, CA). Three independent clones were sequenced for each amplicon to exclude 

errors that can occur from RT and PCR reactions.  
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Table 3-1. Primers used in this study 

IHNV primers Sequences Position 
IHNV 1F GTATAAGAAAAGTAACTTGAC 1-21 
IHNV 1R CTTCCCTCGTATTCATCCTC 2097-2078 
IHNV 2F GCAGGATCCCAAGAGGTGAAG 2033-2053 
IHNV 2R GGAACGAGAGGATTTCTGATCC 3819-3818 
IHNV 3F CAGTGGATACGGACAGATCTC 3767-3787 
IHNV 3R CTTGGGAGCTCTCCTGACTTG 5579-5559 
IHNV 4F GTACTTCACAGATCGAGGATCG 5523-5544 
IHNV 4R CGGGGACTCTTGTTCTGGAATG 7147-7128 
IHNV 5F CGTACCAGTGGAAATACATCGG 7098-7119 
IHNV 5R CAGGTGGTGAAGTAGGTGTAG 9018-8997 
IHNV 6F GAGGGAGTTCTTTGATATTCCC 8931-8952 
IHNV 6R ATAAAAAAAGTAACAGAAGGGTTCTC 11130-11105 
IHNV NheR CGTTTCTGCTAGCTTGTTGTTGG 525-503 
IHNV 1MF ACAGAAGCTAACCAAGGCTAT 729-749 
IHNV 2MF AGATCCCAATGCAGACCTACT 2610-2630 
IHNV 3MF GTATCAGGGATCTCCATCAG 4322-4341 
IHNV 4MF GATACATAAACGCATACCACA 6113-6133 
IHNV 5MF TCAGAGATGAAGCTCAGCAA 7546-7565 
IHNV 6MF AACACCATGCAGACCATACTC 9559-9579 
IHNV 5’End CGATATTGAAGAGAAAGGAATAAC 10692-10715 
Oligo (dT) GCGGCCGCTTTTTTTTTTTTTTTTTTTTT  
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Table 3-2. Information about the infectious hematopoietic necrosis virus (IHNV) isolates 

used in this study for comparison and phylogenetic analysis 

S.No Strain Country Host GenBank no. 
N protein 

1.  SRCV USA Chinook salmon AY442517 
2.  RB-76 USA Steelhead trout AY442516 
3.  RB-1 USA steelhead trout U50402 
4.  IHNV-PRT Korea rainbow trout AY673683 
5.  LWS-87 USA Chinook Salmon AY4425157 
6.  LR-80 USA Chinook Salmon AY442514 
7.  LR-73 USA Chinook Salmon AY442513 
8.  HO-7 USA Steelhead × Rainbow Juvenile AY442512 
9.  CST-82 USA rainbow trout AY442511 
10.  Col-85 USA Chinook  AY442510 
11.  Col-80 USA Steelhead  AY442509 
12.  Carson-89 USA Chinook AY442508 
13.  193-110 USA Rainbow AY442507 
14.  LB91KI USA Salmon AY438975 
15.  Strain K France  X73872   

P protein 
16.  IHNV-PRT Korea rainbow trout AY673685  
17.  Strain K France  X73872   

M protein 
18.  HV7601 Japan  AB231685   
19.  IHNV-PRT Korea rainbow trout AY673686   
20.  Strain K France  X73872   

G protein 
21.  IHNV-PRT Korea rainbow trout AY673684  
22.  LR-73 USA Chinook Salmon L40877 
23.  LR-80 USA Chinook Salmon L40878 
24.  Carson-89 USA Chinook L40872 
25.  RB-1 USA steelhead trout U50401 
26.  RB-76 USA Steelhead trout L40880 
27.  193-110 USA Rainbow L40871 
28.  HO-7 USA Steelhead × Rainbow Juvenile L40876 
29.  LWS-87 USA Chinook Salmon L40879 
30.  HV7601 Japan  AB231686 

31.  Auke77 USA sockeye salmon DQ164099 

32.  CST-82 USA rainbow trout L40875 
33.  FF030-91 USA rainbow trout DQ164103 
34.  Cro/05 Croatia rainbow trout EU219616 
35.  Fs62/95 Germany  AY331664 
36.  Fs42/95 Germany  AY331663 
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37.  FsVi100/96 Germany  AY331666   
38.  332 Germany  AY331657 
39.  FsK/88 Germany  AY331665 
40.  FR0031 USA Chinook Salmon DQ164102 
41.  SRCV USA Chinook salmon L40881 
42.  Col-80 USA Chinook  L40873 
43.  Col-85 USA Steelhead  L40874 
44.  RtUi02 Korea rainbow trout AB288207 
45.  G4 Japan rainbow trout AF244128 
46.  Strain K France  X73872   

NV Protein 
47.  IHNV-PRT Korea rainbow trout AY673687   
48.  LR-73 USA Chinook Salmon L40877 
49.  LR-80 USA Chinook Salmon L40878 
50.  Carson-89 USA Chinook L40872 
51.  RB-1 USA steelhead trout U47846 
52.  RB-76 USA Steelhead trout L40880 
53.  193-110 USA Rainbow L40871 
54.  HO-7 USA Steelhead × Rainbow Juvenile L40876 
55.  fs8 Germany  AY780893 
56.  LWS-87 USA Chinook Salmon L40879 
57.  HV7601 Japan  AB231659 

58.  CST-82 USA rainbow trout L40875 
59.  Cro/05 Croatia rainbow trout EU219617 
60.  Fs42/95 Germany  AY780896 
61.  Fs62/95 Germany  AY780897 
62.  FsVi100/96 Germany  AY780898 
63.  SRCV USA Chinook salmon L40881 
64.  Col-85 USA Steelhead  L40874 
65.  Strain K France  X73872   

Complete genome 
66.  WRAC USA Chinook salmon L40883 
67.   France rainbow trout X89213  

Rhabdoviruses Complete Genome 
68.  Rhabdovirus GenBank no. 
69.  Bovine ephemeral fever virus (BEFV) NC_002526 
70.  European bat lyssavirus (Bat) NC_009527 
71.  Northern cereal mosaic virus (Cereal) NC_002251 
72.  Lettuce necrotic yellows virus (Lettuce) NC_007642 
73.  Maize Fine streak virus NC_005974 
74.  Maize mosaic virus (MMV) NC_005975 
75.  Mokola virus NC_006429 
76.  Orchid fleck virus (OFV) NC_009609 
77.  Rabies virus NC_001542 
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78.  Siniperca chuatsi rhabdovirus NC_008514 
79.  Spring viremia of carp virus (SVC) NC_002803 
80.  Sonchus yellow net virus (SYN) NC_001615 
81.  Taro vein chlorosis virus (Taro) NC_006942 

C82.  Tupaia rhabdovirus NC_007020 
83.  Vesicular stomatitis virus (VSV) NC_001560 
84.  Viral hemaorrhagic septicemia virus GQ385941 
85.  Hirame rhabdovirus (HIRRV) NC_005093 
86.  Snakehead rhabdovirus (SHRV) NC_000903 

 

 
This table shows the name of IHNV strains, countries or places from which strains were 

isolated and their Genbank accession numbers. These data were taken from National 

Center for Biotechnology Information (NCBI) website.  
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Fig. 3-1. Genetic map of IHNV genome and cDNA clones that were used for the sequence analysis. The location and relative 

size of the IHNV ORFs are shown; the numbers indicate the starts and ends of the respective ORFs. Six cDNA fragments (F1 

to F6) were synthesized from genomic RNA by RT-PCR. The primers used for RT-PCR fragments are shown at the end of 

each fragment. The RNA genome is 11,133 nucleotides long and contains a leader (L) and trailer (T) sequences at its 3’-end 

and 5’-end respectively.  The coding regions of N, P, M, G, NV and L genes are separated by intergenic sequences, which have 

gene-start and gene-end signals. 



Sequence and phylogenetic tree analysis 

The assembly of contiguous sequences and multiple sequence alignments were 

performed with the GeneDoc software (Nicholas et al., 1997). The pair-wise nucleotide 

identity and comparative sequence analyses were conducted using Vector NTI Advance 

10 software (Invitrogen, CA) and BLAST search, NCBI. Phylogenetic analyses were 

conducted using the MEGA4 software (Tamura et al., 2007). Construction of a 

phylogenetic tree was performed using the ClustalW multiple alignment algorithm and 

Neighbor-Joining method with 1000 bootstrap replicates. 

Database accession numbers 

The complete genome sequence of IHNV 220-90 strain has been deposited in 

GenBank with the accession no. GQ413939. The accession numbers of other viral 

sequences used for sequence comparison and phylogenetic analysis are listed in Table3-2.  

3.4 Results 

 
The complete nucleotide sequence of 220-90 

 
The entire genome of IHNV 220-90 strain was amplified as six overlapping 

cDNA fragments that were cloned, and the DNA was sequenced (Fig. 3-1). The complete 

genome sequence of 220-90 comprises 11,133 nucleotides (nts) and contains six genes 

that encode the nucleocapsid (N) protein, the phosphoprotein (P), the matrix protein (M), 

the glycoprotein (G), the non-virion (NV) protein, and the large (L) protein (Fig. 3-1), 

The gene order is 3’-N-P-M-G-NV-L-5’, like other novirhabdoviruses. The genomic 

features and predicted proteins of 220-90 are given in Table 3-3. 



 

 

 

Table 3-3. Genomic features and protein characteristics of IHNV 220-90 

 

 

 

S.No Gene Start End 5’UTR ORF 3’UTR Total 
Lengtha

Protein 
Size 
(aa) 

MW b

1. Leader 1 60    60   
2. N 63 1430 112 1176 80 1638 391 42.3 
3. P 1433 2199 33 693 41 767 230 26.0 
4. M 2202 2945 53 588 103 744 195 22.0 
5. G 2948 4567 51 1527 42 1620 508 56.6 
6. NV 4570 4938 26 336 7 369 111 13.2 
7. L 4941 11031 76 5961 54 6091 1986 225.0 
8. Trailer 11032 11133    102   

 

 

a Total length of a gene including 5’UTR, ORF and 3’UTR 

b Predicted molecular weight of proteins in kilo Dalton (kDa) 

 

 

 

 

 

 

 

 

46  



 

All the genes are separated by untranslated sequences that are called gene 

junctions. The untranslated regions at the 3’ and 5’ ends are called the ‘leader’ and 

‘trailer’, respectively.  

 
ORF 1 or Nucleocapsid (N) protein gene 
 

 
 The first ORF, extending from nts 175-1350, contains 391 residues and it 

encodes nucleoprotein (N) with a deduced molecular mass of 42 kDa. The N gene starts 

with the conserved sequence (CGUG) and has the putative polyadenylation signal 

(UCUUUUUUU). The 5’-untranslated region of 174 nts is followed by the first AUG 

codon of the 1176 nts open reading frame (ORF). Comparison of the published IHNV 

nucleoprotein sequences with IHNV 220-90 shows that it is 98% identical to the 193-110, 

HO-7 and LR-80 isolates (Table 3-4). The ORF 1 has 5’ untranslated region of 112 nts 

(from putative gene start to AUG) and 3’ untranslated region of 80 nts (from stop codon 

to the gene end). 

 
ORF 2 or Phosphoprotein (P) gene 
 

The P gene of 220-90 is 767 nts long and encodes a protein of 230 amino acids 

(aa) with a predicted MW of 26.0 kDa (Table 3-3). The predicted P protein contains 6 

serine, 5 threonine and 1 tyrosine residues, identified as possible phosphorylation sites 

using NetPhos 2.0 server (http://www.cbs.dtu.dk/). The IHNV-P protein has an amino 

acid sequence identity of 6-16% with rhabdoviruses and among novirhabdoviruses, 35% 

with viral hemorrhagic septicemia virus (VHSV), 65% with Hirame rhabdovirus 

(HIRRV), and 30% with snakehead rhabdovirus (SHRV) (Table 3-5). 
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Table 3-4. Percent (%) amino acid identity of genomic proteins of Rhabdoviridae family 

members with IHNV strain 220-90a 

 
 

Rhabdoviruses 3’ 
Leader¥ N P M G NV L 5’ 

Trailer¥
Complete
genome¥

BEFV 45 12 9 6 13 - 13 35 31 

Cereal 34 13 8 6 7 - 12 31 30 

Euro Bat 37 7 14 6 17 - 15 42 35 

Maize  33 11 7 10 6 - 13 36 30 

Lettuce 34 14 16 5 10 - 13 32 30 

MMV 36 15 16 10 9 - 13 35 33 

Mokola 40 6 12 7 17 - 15 47 34 

Orchid  10 8 6 8 - 12   

Rabies 37 7 11 6 15 - 14 48 35 

Siniperca 43 7 8 11 12 - 14 26 32 

Spring 40 8 7 6 14 - 14 29 34 

Taro 33 16 12 10 10 - 13 36 32 

Tupaia 36 8 6 6 15 - 15 29 30 

VSV 44 7 7 7 14 - 14 45 34 

Yellow 35 10 9 9 8 - 13 35 30 

HIRRV 64 62 65 74 74 53 84 71 72 

SHRV 44 42 30 35 39 10 58 36 55 

VHSV 41 40 35 36 38 16 60 29 56 
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aBEFV, Bovine ephemeral fever virus; Bat, European bat lyssavirus; MMV, Maize 

mosaic virus; Cereal, Northern cereal mosaic virus; Lettuce, Lettuce necrotic yellows 

virus; OFV, Orchid fleck virus; SYNV, Sonchus yellow net virus; SVC, Spring viremia 

of carp virus; Taro vein chlorosis virus (TaVCV); VSV, Vesicular stomatitis virus; 

VHSV, viral hemaorrhagic septicemia virus, HIRRV, Hirame rhabdovirus; SHRV, 

Snakehead rhabdovirus.  

¥ only nucleotide sequences were used for analysis 

-Viruses belongs to Novirhabdovirus genus are in bold letters 
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Table 3-5.  Percent (%) nucleotide or amino acid identity of IHNV untranslated regions 

and proteins with other IHNV strainsa

 

IHNV Strains 3’ 
Leader¥ N P M G NV L 5’ 

Trailer¥

193-110 - 98 
 - - 97 96 - - 

332 - - - - 97 - - - 
Auke77 - - - - 97 - - - 
Carson-89 - 96 - - 97 - - - 
Col-80 - 95 - - 96 - - - 
Col-85 - 95 - - 96 - - - 
Cro/05 - - - - 97 96 - - 
CST-82 - 97 - - 97 96 - - 
G4 - - - - 96 - - - 
IHNV-PRT - 93 95 98 95 95 - - 
FR0031 - - - - 96 - - - 
FF030-91 - - - - 96 - - - 
Fs42/95 - - - - 97 97 - - 
Fs62/95 - - - - 97 - - - 
FsK/88 - - - - 97 - - - 
FsVi100/96 - - - - 97 - - - 
HO-7 - 98 - - 97 97 - - 
HV7601 - - - 98 97 97 - - 
J04321 - 95 - - - - - - 
LB91KI - 96 - - - - - - 
LR-73 - 95 - - 97 96 - - 
LR-80 - 98 - - 97 97 - - 
LWS-87 - 96 - - 97 - - - 
WRAC 96 97 98 98 97 96 98 96 
RB-76 - 96 - - 97 - - - 
RB-1 - 96 - - 97 97 - - 
RtUi02 - - - - 94 - - - 
SRCV - 95 - - 96 - - - 
Strain K - 97 97 98 97 97 98 - 
X89213 96 97 97 98 97 97 98 95 

a more than 95% identities are shown in bold letters  

 ¥ only nucleotide sequences were used for analysis 
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ORF 3 or Matrix (M) gene 
 
 

The M gene of 220-90 is 744 nts long and encodes an M protein of 195 aa 

residues with a predicted MW of 22.0 kDa (Table 3-3). The M protein has an amino acid 

sequence identity of 5-10% with rhabdoviruses and among novirhabdoviruses 36% with 

VHSV, 74% with HIRRV, 35% with SHRV (Table 3-5). A 5’-untranslated region of 53 

nts is followed by an ORF and succeeded by 103 nts 3’ UTR. The deduced amino acid 

sequence of 220-90 M protein was compared with the other rhabdoviruses and the result 

is shown in Table 3-5. 

 
ORF 4 or glycoprotein (G) gene 

 
The gene for the G protein is located between 2948 and 4567 nts from the 3’-end 

of the viral genome. A 3’ UTR of 51 nts is followed by an ORF (nts 1524) that encodes a 

polypeptide of 508 aa residues, with a calculated MW of 56.6 kDa, and  succeeded by 42 

nts 3’ UTR.   The predicted G protein contains 20 serine, 6 threonine and 6 tyrosine 

residues, identified as possible phosphorylation sites using NetPhos 2.0 server 

(http://www.cbs.dtu.dk/). Four putative N-glycosylation sites were identified at amino 

acids 56-59 (NASQ), 400-403 (NNTT), 401-404 (NTTI) and 438-441(NETD) and one 

O-glycosylation were identified at amino acid position 492. We compared the G protein 

of 28 IHNV strains from different parts of the world. The regions between amino acid 

positions 32-52, 131-204, 289-369, 380-416 are highly conserved. The regions between 

amino acids 247-257 and 269-276 have a greater genetic diversity than any other part of 

the G protein. The IHNV glycoprotein has the following domains: signal peptide at N-

terminal (1-20aa), ectodomain (21-459aa), transmembrane domain (460-482 aa) and 
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endodomain (483-508 aa), which were predicted by SignalP server 

(http://www.cbs.dtu.dk/services/SignalP/). 

 
ORF 5 or Non-virion (NV) protein gene 

 
The NV protein gene is located between 4570 and 4938 nts from the 3’-end of the 

viral genome. It encodes a polypeptide of 111 aa residues, with a calculated molecular 

mass of 13.2 kDa. The predicted NV protein contains 1 serine, 2 threonine and 1 tyrosine 

residues, identified as possible phosphorylation sites using NetPhos 2.0 server 

(http://www.cbs.dtu.dk/). The function of NV protein is not clearly known. NV is a non-

structural protein of novirhabdoviruses, which could be detected only in cell culture 

infected with the virus (Kurath and Leong, 1985). 

 
ORF 6 or Polymerase (L) gene 

 
ORF 6 encodes the largest protein, the polymerase, which starts at position 5017 

and ends at position 10977. It encodes a polypeptide of 1986 aa residues, with a deduced 

molecular mass of 225.0 kDa. The L protein contains 67 serine, 38 threonine and 9 

tyrosine residues as possible phosphorylation sites. The predicted RNA-dependent RNA 

polymerase (RdRp) domain is situated between residues 18 and 1159. The deduced L 

protein of IHNV is only 12-15% identical to the L protein of other rhabdoviruses, and it 

exhibits very close identity with other novirhabdoviruses [60%, 84%, and 58% identities 

with VHSV, HIRRV and SHRV, respectively (Table 3-5)]. 



Table 3-6. Comparisons of the gene junctions of the IHNV genome with that of other Novirhabdoviruses 

 

The gene junctions shown here are negative sense RNA sequences of respective viruses. IHNV, Infectious haematopoietic 
necrosis virus; SHRV,Snakehead rhabdovirus; VHSV,viral hemaorrhagic septicemia virus; HIRRV, Hirame rhabdovirus

Type 
Species Gene Junctions 

 N/P P/M M/G 

IHNV UCUAUCUUUUUUU AC CGUGAUAUCACG UCUGUCUUUUUUU AC CGUGCGUUCACA UCUGUCUUUUUUU AC CGUGAAAACACG 

SHRV UCUAUCUUUUUUU GC CGUGCUCUCACG UCUGUCUUUUUUU AC CGUGCUCUCACG UCUGUCUUUUUUU AC CGUGCUCUCACG 

VHSV UCUAUCUUUUUUU GC CGUGCUAAUAUU UCUAUCUUUUUUU GC CGUGCUGACAAG UCUAUCUUUUUUU AC CGUGUAAACACA 

HIRRV UCUAUCUUUUUUU AC CGUGCAAACACA UCUAUCUUUUUUU AC CGUGCAAUCACA UCUAUCUUUUUUU AC CGUGUAAACACA 

 G/NV NV/L  

IHNV UCUGUCUUUUUUU GC CGUGUAAACACG UCUAUCUUUUUUU AC CGUGAAAACACG  

SHRV UCUGUCUUUUUUUU GC CGUGAUAUCACG UCUAUCUUUUUUU GC CGUGCAUUACACG  

VHSV UCUAUCUUUUUUU AC CGUGGAAAUACU UCUAUCUUUUUUU AC CGAGAAAACAAC  

HIRRV UCUAUCUUUUUUU GC CGUGUAUACAGA UCUAUCUUUUUUU AC CGUGAACACACG  



 

 

 

3'/N : 
N/P  : 
P/M  : 
M/G  : 
G/NV : 
NV/L : 
L/5' : 

UCCUUUUUCUUUUUCCACCGUG
GGAUCUAUCUUUUUUUACCGUG
GGUUCUGUCUUUUUUUACCGUG
GGUUCUGUCUUUUUUUACCGUG
UGGUCUGUCUUUUUUUGCCGUG
GGGUCUAUCUUUUUUUACCGUG
GGAUCUAUGUUUUUUUACCGAG

 
 
 
 
 
 
 

GE GS IG Gene Junctions

A 

B 

 

 

 

 

 

 

 

 
 

Fig. 3-2. Comparisons of the gene junctions of the genome of the IHNV 220-90 

A) The seven identified gene junctions of IHNV in the negative sense of the genomic 

RNA are shown. 3’/N-at the junction of 3’leader and nucleocapsid gene; N/P- at the 

junction of nucleocapsid and phosphoprotein gene; P/M- at the junction of 

phosphoprotein and matrix gene; M/G-at the junction of matrix and glycoprotein gene; 

G/NV- at the junction of glycoprotein and non-virion gene; NV/L-at the junction of non-

virion and polymerase gene; L/5’- at the junction of polymerase gene and 5’ trailer. GE-

Gene end; IG-Intergenic di-nucleotide; GS-Gene Start. The stop codon of NV ORF is 

merged with gene end sequence and is shown in red box. 

B)  Complementarity of the 3’- and 5’-ends of the IHNV genome. The genomic RNA 

sequences are shown. The first 15 out of 16 nucleotides of 3’ end terminus are 

complementary with 5’end terminus nts. There is an extra uracil (U) residue at the 5’ 

termini of the RNA 
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The Genomic termini and untranslated sequences 

 
Rhabdoviruses have conserved untranslated regions between open reading frames 

for optimal translation of viral proteins (Schnell et al., 1996). These sequences consist of 

a putative transcription stop/polyadenylation motif (UCURUCU7) which signals 

reiterative copying of the U sequences to generate poly (A) tail to the mRNA. This 

sequence is followed by an intergenic di-nucleotide AC or GC which are not transcribed, 

and a putative transcription start signal, CGUG (Fig 3-2A). The gene junctions of 

different novirhabdoviruses are shown in Table 3-6. 

 
The untranslated region of 3’ leader and 5’ trailer are 60 nts and 102 nts in length, 

respectively. The 3’leader of 220-90 is 63% A/T rich, whereas 5’ trailer is 60% A/T rich.  

Like other rhabdoviruses, the genomic termini of IHNV 3’-terminal nucleotides exhibit 

complementarities to the nucleotides of 5’-terminus of the genomic RNA (Fig 3-2B).  

The complementary nature of genomic termini involves the formation of a panhandle 

structure, which is important for replication of rhabdoviruses. We found an additional 

uracil (U) nucleotide at the 5’-end of the genome (Fig 3-2B). 

 
Homology and phylogenetic analysis 

 Phylogenetic trees were generated from the nucleotide sequences of the ORFs and 

of the complete genome. The complete genome and gene proteins of IHNV were also 

compared with different members of Rhabdoviridae family. The identities of 220-90 

strain with rest of the rhabdoviruses were determined by Vector NTI program and the 

results are shown in Tables 3-4 and 3-5. Among novirhabdoviruses, HIRRV is closely 

related to IHNV and has an identity of 72%. Comparison of the UTRs and protein coding 
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sequences of 220-90 strain with novirhabdoviruses shows that non-virion protein is 

highly variable than any other region of the genome (Table 3-5). The 3’- and 5’- UTRs 

are more conserved among Rhabdoviridae family members than protein coding genes 

(Table 3-5). The complete genome comparison of 220-90 with other two available 

sequences of IHNV strains reveals 96% identity with WRAC, and 95% with French 

strain (X89213). 

 
The phylogenetic tree analysis of sequences of nucleocapsid (N), matrix (M), 

phosphoprotein (P), and non-virion protein (NV) of various IHNV strains are shown in 

Fig. 3-3. Phylogenetic analysis of the N gene shows clustering of 220-90 with HO-7, 

193-110 and LR-80 and maintains 98% identity with those strains. Among the available 

sequences, WRAC strain exhibits very close identity (98%) with 220-90 for both P and 

M genes. All the strains display 98% identity with the 220-90 M gene, which 

demonstrates the highly conserved nature of M gene.  When the NV genes were 

compared, 220-90 strain shows 95-97% identity with other IHNV strains. Previously, the 

North American IHNV isolates were genogrouped as U, M and L based on glycoprotein 

sequences (Kurath et al., 2003). Phylogenetic tree of the G genes displays that 220-90 

strain belongs to the M genogroup (Fig.3-4).  
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Fig. 3-3. Phylogenetic tree analysis of sequences of nucleocapsid (N), matrix (M), 

phosphoprotein (P), and non-virion protein (NV) of various IHNV strains. Information 

about the IHNV strains used in this analysis is described in Table 3-2. IHNV 220-90 

strain is marked with blue diamond. Phylogenetic tree analysis was conducted by 

neighbor-joining method using 1000 bootstrap replications. The scale at the bottom 

indicates the number of substitution events and bootstrap confidence values are shown at 

branch nodes.  
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Fig. 3-4. Phylogenetic relationship of full-length glycoprotein (G) sequences of 28 IHNV 

strains with that of 220-90. Genogroups are depicted by vertical lines as described by 

[15]. Brackets indicate the three major genogroups, U, M and L. IHNV 220-90 (blue 

diamond) is grouped under M genogroup. Data of virus isolates used here are available in 

Table 3-2. Phylogenetic tree analysis was conducted by neighbor-joining method using 

1000 bootstrap replications. The scale at the bottom indicates the number of substitution 

events and bootstrap confidence values are shown at branch nodes. 
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3.5 Discussion 

 
 

A virulent IHNV strain 220-90 was isolated from the hatchery-reared juvenile 

rainbow trout during 90’s in the Hagerman Valley, Idaho, USA (LaPatra et al., 1991). 

IHNV is endemic throughout the Pacific Northwest region of North America, with range 

extending from Alaska to northern California along the Pacific coast and inland to Idaho. 

It causes systemic disease in both wild and cultured salmon and trout (Wolf, 1988; 

Winton, 1991). The disease typically occurs in rainbow trout fry maintained in the 

multiple outdoor rearing units of rainbow trout farm facilities (LaPatra et al., 1991). 

 
 To date, the complete genome sequences are available for only two IHNV strains 

(Schütze et al., 1995; Morzunov et al., 1995). Previously, only the G protein gene 

sequence for 220-90 strain was determined. To fully understand the molecular 

characteristics of a virulent IHNV, we determined the complete nucleotide sequence of 

220-90 strain.  The genome is 11,133 nts long and the gene organization (N, P, M, G, NV 

and L) is similar to all members of the Novirhabdovirus genus. The termini of the viral 

genome have conserved sequences at the 3’-end (CAUAU) and at the 5’-end (GUAUA) 

as other members of Novirhabdovirus genus. Out of first 16 nucleotides of the 3’-

terminus, 15 nucleotides are complementary to 5’-terminus of the genome (Fig 3-2B), 

which forms the panhandle structure that may be involved in replication (Wertz et al., 

1994). We found an additional uracil (U) nucleotide at the end of the 5’-trailer region, 

which was not reported previously in IHNV. The length of the 3’-leader of 220-90 is 60 

nts, which is similar to HIRRV but slightly shorter than VHSV and SHRV (53 nts). 

IHNV has the second longest 5’ trailer (120 nts) than other novirhabdoviruses, such as 
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VHSV (116 nts), SHRV (42 nts), and HIRRV (73 nts). Even though the length of 3’-

leader is consistent between the members of genus Novirhabdovirus, the length of the 5’-

trailer is highly variable (from 42nt to 116nt). It is possible that the difference in the 

length of trailer sequences may have some functional significance, which remains to be 

seen. 

 
All the genes of VHSV start with a conserved gene start sequence (-CGUG-) like 

other novirhabdoviruses, followed by an ORF and conserved gene-end sequence 

(A/GUCUAU/ACU7). All the genes end with 7 uracil (U) residues, which are 

polyadenylation signal for polymerase when it transcribes a gene. Polymerase adds poly 

(A) by stuttering mechanism (Banerjee et al., 1987). After this poly (A) signal, there are 

two conserved intergenic di-nucleotides (G/AC), which are untranscribed and act as 

spacers between two genes. Polymerase skips these two nucleotides to next gene start 

sequence and starts transcribing next gene (Banerjee et al., 1987). Transcription of 

rhabdovirus mRNAs is regulated by cis-acting signals located within the 3′ leader region 

and untranslated region between each gene ORF (Banerjee et al., 1987; Barr et al., 1997, 

2001; Whelan and Wertz, 1999). In case of NV, the stop codon of NV gene is merged 

with gene-end sequences (Fig 3-2A). Transcription of rhabdovirus mRNAs is regulated 

by cis-acting signals located within the 3′ leader region and untranslated region between 

each gene ORF (Banerjee et al., 1987; Barr et al., 1997, 2001; Whelan and Wertz, 1999). 

The Kozak context for each gene was compared, as shown in Fig. 3-5. At position -3, all 

the genes have adenosine (A) nucleotide, except the ORF of N gene.   
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  *            ** Gene 

N  :
P  : 
M  : 
G  : 
NV : 
L  :

AGAGCGATGA
ACAACAATGT
GAGAGCATGT
AAAACAATGG
GAGACAATGG
CAGAAGATGG

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 3-5. Kozak context of each gene of IHNV 220-90 

 

Sequences shown here are positive sense antigenome. 

* Conserved adenosine (A) at position -3 

** Start codon (ATG) 
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We observed that aa residues between 1-22, 106-150 and 206-268 are highly 

conserved in the N protein, whereas residues 30-31, 41-43, 177-181, 203-205 and C-

terminal region from residue 312 are variable. Phylogenetic analysis of the N protein 

shows grouping of 220-90 with LR-80, HO-7 and 193-110 strains, with an identity of 

98%. Phylogenetic tree of the P protein shows clustering of 220-90 with WRAC strain, 

having an identity of 98%. The matrix (M) protein is an important structural component 

of virion, forming a layer between the glycoprotein containing outer membrane and the 

nucleocapsid core. Matrix protein of IHNV is highly conserved (Table 3-4). IHNV strains 

used in this study exhibit very close (98%) identity with 220-90. In phylogenetic analysis 

of M protein, WRAC, strain K and French (X89213 strains form a cluster, which is 99-

100% identical to each other, and 98% identical to 220-90. Matrix protein of rhabdovirus 

is involved in viral assembly, condensation of nucleocapsid, formation of bullet-shaped 

virion (Newcomb and Brown, 1981; Mebatsion et al., 1999) and induces apoptosis by 

shutdown of host cell machinery in infected cells (Finke and Conzelmann, 2005; Kassis 

et al., 2004). Because it is highly essential for assembly and release of virion, the matrix 

protein maintains highest homology among IHNV along with the polymerase protein.  

The non-virion protein (NV) of 220-90 shows identity of 95-97% with other 

IHNV strains. The NV protein of IHNV is conserved than counterpart of VHSV, which 

showed high genetic diversity (Ammayappan and Vakharia, 2009a). It was demonstrated 

that NV-knockout IHNV replicated very slowly in cell culture and was non-pathogenic in 

fish (Thoulouze et al., 2004). On the contrary, NV-knockout SHRV replicated very well 

as wild-type virus and it was shown that NV protein of SHRV is not essential for 

pathogenesis (Alonso et al., 2004). These studies suggested that each species of 
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Novirhabdovirus genus has its own characteristics and one can not ignore the importance 

NV in pathogenesis. The conserved nature of NV and its importance for growth and 

pathogenesis suggests that NV is highly essential for IHNV. The L protein displays the 

highest level of sequence homology among members of various genera of Rhabdoviridae 

family (Table 3-5). All the available L sequences for IHNV strains show highest 

conservation (98%) as that of matrix protein. The L protein is packaged into the virus 

particle and is involved in both transcription and replication (Banerjee et al., 1987). 

 
Genomic comparison of IHNV strains isolated from various marine species from 

different parts of the world sheds light on the correlation of genetic sequences with viral 

tropism and pathogenicity. The glycoprotein (G) is believed to be involved in virulence 

and tropism because it’s involvement in viral attachment and cell entry (Bearzotti et al., 

1995). Comparison of glycoproteins of various IHNV strains has shown long blocks of 

conserved region (data not shown).  The regions between residues 8-22; 32-52; 131-214; 

289-369; and 380-416 are highly conserved and the rest is showing genetic variations, 

which are scattered all over the protein. The major neutralizing epitopes have been 

mapped to two antigenic sites for IHNV, at amino acid residues 230-231 and 272-276 

(Huang, 1993; Kim et al., 1994). In this analysis, we found no amino acid substitutions at 

positions 230-231 among 28 strains compared. On the other hand, residues 270-276 are 

highly variable, which supports earlier findings (Huang, 1993; Kim et al., 1994), and 

suggests that the involvement of this site in antigenic variation and virulence.  
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A wide sequence analysis of mid-G region (303 nts) within the glycoprotein gene 

of 323 North American IHNV isolates revealed a maximum nucleotide diversity of 8.6%, 

indicating low genetic diversity overall for this virus (Kurath et al., 2003). The North 

American IHNV isolates are genogrouped as U, M and L by phylogenetic analysis and 

these genogroups vary in topography and geographical range (Kurath et al., 2003). The 

phylogenetic analysis of the glycoprotein of 220-90 (Fig. 3-4) shows clustering with LR-

80, FF030-91, 193-110 and HO-7 strains, which exhibits that 220-90 belongs to the M 

genogroup.  
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Chapter 4 

Efficient recovery of infectious hematopoietic necrosis virus 

(IHNV) using a vaccinia-virus-free reverse genetics system 

 

4.1 Abstract 

 
 Reverse genetics system is a powerful tool to study the function of a particular 

gene. The currently available reverse genetics system for Novirhabdovirus is based on 

vaccinia-driven T7 RNA polymerase expression. An efficient system for recovery of 

infectious hematopoietic necrosis virus (IHNV) entirely from cloned cDNAs was 

developed utilizing cellular RNA polymerase II machinery for transcription. A full-length 

cDNA clone of IHNV, flanked by hammerhead ribozyme and hepatitis delta ribozyme 

sequences, was assembled in an expression plasmid under the control of cytomegalovirus 

(CMV) promoter. Transfection of this full- length plasmid along with supporting 

plasmids (N, P, NV and L) into the epithelioma papulosum cyprini (EPC) cells resulted in 

the recovery of recombinant IHN virus. The authenticity of the recovered recombinant 

virus was confirmed by the presence of artificially-introduced restriction sites in the 

genome. A recombinant IHNV expressing a foreign gene - enhanced green fluorescent 

protein - was also recovered successfully. The recombinant IHNVs showed similar 

growth characteristics as the parental virus in cell cultures. The newly developed vaccinia 

virus-free reverse genetics system described for IHNV is highly efficient and applicable 

for the recovery of any Novirhabdovirus. 
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4.2 Introduction 

 
 

 Infectious hematopoietic necrosis virus (IHNV) is a negative-sense RNA virus 

belonging to the Novirhabdovirus genus of the Rhabdoviridae family (Walker et al., 

2000). The genome of IHNV is composed of approximately 11-kb, single-stranded RNA 

which contains six genes (Kurath and Leong, 1985) and are located along the genome in 

the 3' to 5' order: 3'-N-M1-M2-G-NV-L-5', nucleocapsid protein (N), polymerase-

associated phosphoprotein (P or M1), matrix protein (M or M2), surface glycoprotein 

(G), a unique non-virion protein (NV) and virus polymerase (L) (Kurath et al., 1985).  

 
 A method of recovering negative-strand RNA viruses from the full-length cDNA 

clones was first developed with rabies virus by Schnell et al., (1994). This method 

involved expressing a full-length positive-strand (anti-genomic) RNA copy of the virus 

genome under the control of T7 RNA polymerase (T7 RNAP) promoter. The genome was 

expressed in a cell line along with the viral nucleocapsid (N), phosphoprotein (P) and 

polymerase (L) proteins. Abundance of T7 RNA polymerase was supplied by the 

recombinant vaccinia virus (vTF7-3) expressing T7 RNA polymerase (Fuerst et al., 

1986). After this recovery, many negative-strand viruses were recovered based on similar 

technique, namely vesicular stomatitis virus (VSV) (Lawson et al., 1995), measles virus 

(Radecke et al., 1995), Sendai virus (Garcin et al., 1995), respiratory syncytial virus 

(Collins et al., 1995), parainfluenza virus (Hoffmann and Banerjee, 1997), rinderpest 

virus (Baron and Barrett, 1997), Newcastle disease virus (Peeters et al., 1999) and many 

other viruses.  
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 To avoid helper virus, researchers developed cell lines which constitutively 

express T7 RNAP. One of these cell lines was first used successfully for the recovery of 

measles virus from cDNA (Radecke et al., 1995). Later, the BSR-T7/5 (BHK-21 cell 

line) was generated to express T7 RNAP in cell culture (Buchholz et al., 1999) and it was 

used successfully to recover bovine respiratory syncytial virus, and many other viruses, 

such as Newcastle disease virus (Romer-Oberdorfer et al., 1999), VSV (Harty et al., 

2001) and rabies virus (Ito et al., 2003). 

 
 In the meantime, a different kind of reverse genetics system was developed which 

employed cellular RNA polymerases for transcription of viral cDNA. This system was 

initially developed for the influenza A virus (Neumann et al., 1999; Fodor et al., 1999; 

Hoffmann et al., 2000) which utilized a cellular RNA polymerase I. These systems were 

completely free of T7 RNAP and had significantly improved the recovery and study of 

the negative-strand RNA viruses. Use of autocatalytic ribozymes for efficient cleavage 

and production of exact termini was initially demonstrated by Le Mercier et al. (2002), 

for negative-strand minigenome. They demonstrated that extra nucleotides at the viral 

distal end affected the efficiency of viral rescue. Effectiveness of RNA polymerase II 

system, in conjunction with ribozymes [(hammerhead ribozyme (HHRz) and hepatitis 

delta virus ribozyme  (HdvRz)], to rescue Mononegavirales was very well demonstrated 

by Martin et al., (2006) for Borna disease virus (BDV) and measles virus (MV). This 

system was utilized efficiently to recover RNA viruses; Thogoto virus (Wagner et al., 

2001), rabies virus (Inoue et al., 2003), and infectious bursal disease virus (Qi et al., 

2007). 
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 For the recovery of rhabdoviruses, transfection of a full-length cDNA plasmid 

itself is not sufficient. To initiate viral replication cycle, minimal viral proteins namely, 

the nucleocapsid (N) protein, the phosphoprotein (P) and the viral RNA polymerase (L) 

should be provided in the form of supporting plasmids, along with the full-length cDNA 

plasmid (Schnell et al., 1994). A first reverse genetics for Novirhabdovirus was 

developed by Johnson et al., (2000), for snakehead rhabdovirus (SHRV) which was 

followed by the recovery of IHNV by Biacchesi et al., (2000). These systems utilized a 

vaccinia virus expressing T7 RNAP to rescue the recombinant viruses. Here, we have 

developed a system to rescue Novirhabdoviruses, which is completely free of vaccinia 

helper virus and T7 RNAP. In the present study, to generate recombinant IHNV (rIHNV) 

virus, we constructed a plasmid containing full-length cDNA copy of the virulent IHNV 

(strain 220-90), which is flanked by HHRz and HdvRz sequences. The viral cDNA is 

under the control of cytomegalovirus (CMV) immediate-early promoter and is 

transcribed by cellular RNA polymerase II upon transfection. This system is more 

efficient and convenient to recover any Novirhabdovirus.  

4.3 Materials and methods 

 
Cells and virus 
 
 A virulent 220-90 strain of IHNV, isolated from rainbow trout, was kindly 

provided by Dr. Scott LaPatra, Clear Springs Foods Inc., Idaho, USA (LaPatra et al., 1991). 

RNA was extracted from this virus and used for cloning of the viral genome as well as 

individual N, P, NV and L genes. The epithelioma papulosum cyprini (EPC) cells were 

used for virus propagation (Fijan et al., 1983). The cells were grown at 28°C in minimal 
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essential medium (MEM) supplemented with 10% fetal bovine serum and 2 mM L-

glutamine. For preparation of virus stocks, confluent EPC cells were infected with the 

wild-type IHNV at a multiplicity of infection (MOI) of 0.001 in MEM with 2% fetal 

bovine serum. After 1 h of adsorption, the inoculum was removed, and the cells were 

incubated at 14°C until extensive cytopathic effect (CPE) was observed. The supernatant 

was collected 5 days post-infection (p.i), clarified and stored at -80oC for further 

processing. 

 
RNA extraction and amplification  

  
           Viral RNA was extracted from cell culture supernatant, using a Qiagen RNAeasy 

kit according to manufacturer’s instructions, and stored at -20°C. The oligonucleotide 

primers used in this study are listed in Table 4-1. First strand synthesis was carried out in 

a tube containing 5µl of RNA, which was denatured at 70°C for 10 min in the presence of 

DMSO (3µl), 1 µl forward gene-specific primer, 1µl of 25 mM dNTPs, and snap-cooled 

on ice for 1 min.  The reaction mixture containing 2µl of 10X RT buffer, 2µl of 0.1M 

DTT, 4µl of 25mM MgCl2, 1µl of Superscript III RTTM, and 1µl of RNase OUTTM was 

incubated at 50°C for 1 h.  PCR amplifications were carried out using a pfx50TM PCR kit 

(Invitrogen, CA), according to manufacturer’s instructions. Briefly, the following mixture 

was used for PCR amplification: 3µ1 of cDNA, 2µl of primer mix; 5µl of 10x PCR 

buffer [100 mM Tris-HCl (pH 9.0), 500 mM KC1, 1% Triton X-100], 2µ1 of 25 mM 

MgCl2, 0.5ul of pfx50 polymerase, and 37µ1 of DEPC water, to make a final volume of 

50 µ1. Reaction was carried out in a thermal cycler (MJ Research Inc., Waltham, MA), 

using the following program: denaturation at 94°C for 30sec; annealing for 30sec at  
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Table 4-1. Primers used in this study 
 

 
Primers Sequencesa,b,c Position 

 IHNV Primers  

1-21 IHNV 1F GTATAAGAAAAGTAACTTGAC 

2083-2063 IHNV PstR ATCCTCCTCTGCAGCCCGAAT 

2063-2083 IHNPstF ATTCGGGCTGCAGAGGAGGAT 

3788-3767 IHNSnaBR CGAGATCTGTACGTATCCACTG 

3767-3786 IHNSnaBF CAGTGGATACGTACAGATCT 

5579-5559 IHNV 3R CTTGGGAGCTCTCCTGACTTG 

5523-5544 IHNV 4F GTACTTCACAGATCGAGGATCG 

7132-7111 IHNKpnR GAATGGTACCATCCCGATGTAT 

7111-7132 IHNKpnF ATACATCGGGATGGTACCATTC 

8997-9017 IHNV 5R CAGGTGGTGAAGTAGGTGTAG 

5’end IHNV HDVR GAGATGCCATGCCGACCCGTGTATAAAAAAAGTAAC 

5’end IHNV HDVF GTTACTTTTTTTATACACGGGTCGGCATGGCATCTC 

 T7tNotR GCGGCCGCATGCTTTCAGCAAAAAACC 

IHNV HHF1 AGACTAGTCTTTTCTTATACCTGATGAGTCCGTGAGGACG
AAAC  

IHNV HHF2 GAGCTCGTTTAGTGAACCGCTTTTCTTATACCTGATGAG
TCCGTGAGGACGAAAC  

Supporting plasmid 
primers   

175-191 IHNV N EcoF GAATTCGCCACCATGACAAGCGCACTCAG 

135-1331 IHNV N NotR GCGGCCGCTCAGCGGAATGAATCGGAGT 

1466-1481 IHNV P EcoF TGAATTCGCCACCATGTCAGATGAAGAGG 

2158-2141 IHNV P NotR GCGGCCGCTATTGACCTTGCTTCAT 

4596-4616 IHNV EcoNVF GGAATTCGCCACCATGGACCACCGCGACATAAAC 

4931-4910 IHNV XbaNVR GTCTAGACTATCTGGGATAAGCAAGAAAG 

5017-5037 IHNV L NheF TGCTAGCCACCATGGACTTCTTCGATCTTGAC 

10977-10962 IHNV L NotR GCGGCCGCCTATTGTTCGCCTAGT 

 T7 RNAP plasmids  

T7 RNAP NLSF TGCTAGCCACCATGCCAAAAAAGAAGAGAAAGGTAGAA
AACACGATTAACATCGCTAAGAAC  

T7 RNAP NotR TGCGGCCGCTTAATCACTTACGCGAACGCGAAGTCCGAC
TC   

 

arestriction sites are in italics, bKozak context is underlined, csome primers has extra 

nucleotides ahead of restriction sites for the purpose of restriction digestion 
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60°C; and extension at 68°C for 2 min. The RT-PCR products were separated by agarose 

gel electrophoresis and purified using a QIAquick gel extraction kit (Qiagen, CA). 

 
Cloning and sequencing 

 The purified RT-PCR products were cloned into a pCR2.1 TOPO® TA vector 

(Invitrogen, CA). Plasmid DNA was sequenced by dideoxy chain termination method, 

using an automated DNA sequencer (Applied Biosystems, CA). All the DNA sequence 

analyses were performed by the Center of Marine Biotechnology (COMB), University of 

Maryland Biotechnology (UMBI) core facility, which houses an ABI 3130 XL Genetic 

Analyzer having 16-capillary electrophoresis channels (Applied Biosystems, CA). 

Construction of a full-length clone of IHNV 

 A full-length cDNA copy of the IHNV RNA genome was constructed by 

assembling six overlapping cDNA fragments generated through RT-PCR by standard 

cloning techniques, as described (Biacchesi et al., 2000). The clones were ligated serially 

by natural or artificially created unique restriction sites (Fig. 4-1). The hammerhead 

ribozyme (HHRz) cDNA sequence (5’CTGATGAGTCCGTGAG 

GACGAAACTATAGGAAAGGAATTCCTATAGTC3’) and hepatitis delta virus 

ribozyme (HdvRz) sequence (5’ GGGTCGGCATGGCATCTCCACCT 

CCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACAGACGTCCACTCGGATGG

CTAAGGGAGAGCCA 3’) were fused with fragment 1 (F1) and fragment 6 (F6) 

respectively by overlapping PCRs.  

72  



 

 

 

 

 

 

 

 

N P M G NV L

PstI  
(2071) 

SnaBI 
(3778)

SacI* 
(5569)

KpnI 
(7125)

EcoRI* 
(8956) 

 NheI 
(511) 

BsrGI* 
(10820) 

CMV/T7 T7Φ 

HdvRzF1 
F2 F3

F4 F5
F6 

pIHNV-220-90

N P M G NV L

 SpeI PstI

 KpnI 

 NotI 

 NheI/SpeI  NotI 

F1 

F2+3+4

F5+6 

HHRz

Fig 4-1.    Vector construction. Locations of the six cDNA fragments used to construct 

the full-length IHNV genomic clone and relevant restriction sites. Six overlapping cDNA 

fragments covering the entire IHNV genome were assembled by ligation into the 

modified multiple cloning site of the pSmart plasmid using the SpeI, NheI, PstI, SnaBI, 

KpnI, EcoRI, BsrGI and  NotI restriction enzyme sites. Assembly was done by 3 steps ((i) 

Topo cloning of six fragments (F) separately and addition of hammerhead ribozyme 

(HHRz) at the 5’ end of F1 and hepatitis delta ribozyme (HdvRz) at the 3’end of F6; (ii) 

Construction of F2+3+4 and F5+6; (iii) Assembly of full length clone by ligating there 

major constructs (F1 thru’ F6)). Restriction site lines (dotted vertical lines) indicate 

restriction sites that were designed into the primer or present naturally (*) at the indicated 

genome positions. -CMV/T7, cytomegalovirus immediate-early enhancer & promoter / 

T7 RNA polymerase promoter; T7Φ/SV40 poly(A), T7 transcription termination and 

SV40 late poly adenylation signal. 
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Fig. 4-2.   Schematic of the five plasmids used to produce recombinant IHNV in EPC 

cells. CMV, Cytomegalovirus immediate-early enhancer/promoter; T7, T7 RNA 

Polymerase Promoter; HHRZ-hammerhead ribozyme; δΦ, hepatitis delta virus ribozyme 

and T7 termination; SV40 poly(A), SV40 late polyadenylation signal; Amp, ampicillin 

resistance gene; ROP, Repressor of primer (lowers plasmid copy number); Ori, origin of 

replication; f1 ori, Phage f1 region.pIHNV-220-90 is the full-length plasmid of IHNV 

220-90 strain and the pN, pP, pNV, and pL are helper plasmids for the expression of 

nucleoprotein, phosphoprotein, non-virion protein, RNA-dependent RNA polymerase 

respectively. Restriction sites shown in the full length plasmid serves as genetic tags 

except NotI and in the supporting plasmids were used for insertion of respective ORFs 

into pCI vector. Approximate size of plasmids with its name is shown in the middle of 

each plasmid. 
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 The subcloning of fragments was initially carried out in pSmart® vector (Lucigen, 

WI), which was modified (TopoSmart) such that it would contain multiple cloning sites 

of TOPO® TA vector. From these subclones, a full-length clone of IHNV was assembled 

in the pCI vector (Promega, WI) as follows. A PstI site present in the intron region of pCI 

vector (down stream of CMV promoter) was deleted by mutational PCR for the ease of 

cloning. A T7 transcription termination signal, taken from pQE-TriSystem vector 

(Qiagen), was added to the F6 fragment containing the HdvRz sequence by PCR.  To 

assemble a full-length clone, the F1 fragment was double digested with SpeI and KpnI 

restriction enzymes, and cloned between NheI and KpnI sites of the pCI vector. Second, 

the F2, F3 and F4 fragments were ligated serially in a separate Toposmart vector, and the 

ligated, single F2+3+4 fragment was excised by digesting it with PstI and KpnI enzymes, 

and subcloned between the unique PstI and KpnI sites of pCI vector harboring F1 

fragment. Like wise, fragments 5 and 6 were ligated in a different TopoSmart vector and 

then subcloned into the pCI vector by digesting with KpnI and NotI restriction enzymes. 

Finally, a full-length plasmid of pIHNV-220-90 was obtained (Fig. 4-2), and its DNA 

completely sequenced for its integrity using an automated DNA sequencer (Applied 

Biosystems, CA).   

Construction of supporting plasmids 

 
 Using a full-length clone of pIHNV-220-90 as a template, the open reading 

frames (ORFs) of N (1,176 bp), P (693bp), NV (336bp), and L (5,958bp) genes were 

amplified by PCR using respective primer pairs (Table 4-1). A Kozak consensus 

sequence was incorporated in front of the start codon of each ORF, as shown in Table 4-2  
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Table 4-2.  Plasmids used to transfect EPC cells and generate IHNV  
 
 
S.No Plasmidsa Promotersb Kozak 

Sequence 
1. pIHNV-220-90* CMV/T7 NA 
2. pIHNV-EGFP* CMV/T7 NA 
3. pN CMV/T7 GCCACCATGA 
4. pP CMV/T7 GCCACCATGT 
5. pNV CMV/T7 GCCACCATGG 
6. pL CMV/T7 GCCACCATGG 
7. pT7NLS CMV/T7 GCCACCATGG 
 
aPlasmids used in this study to recover IHNV 220-90  

bPromoter(s) present in each plasmid. 

*Plasmid has hammerhead ribozyme at the 5’-end and hepatitis delta virus ribozyme at 

the 3’-end of cDNA.  

-pIHNV-220/90 is the full-length plasmid of IHNV 220-90 strain and the pN, pP, pNV, 

and pL are helper plasmids for the expression of nucleoprotein, phosphoprotein, non-

virion protein, RNA-dependent RNA polymerase. 

-pIHNV-EGFP is the full-length plasmid of IHNV 220-90 strain, which contains EGFP 

ORF along with extra transcription unit between P and M genes 

-pT7NLS- phage T7 RNA polymerase plasmid containing a nuclear localization signal 

-N/A - Not Available 
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(Kozak, 1987). The N and P ORF was cloned between EcoRI and NotI restriction sites, 

whereas the NV ORF was between EcoRI and XbaI sites, and the L ORF was cloned 

between NheI and NotI restriction sites of the pCI vector (Promega) by digesting with 

appropriate restriction enzymes (Fig. 4-2). The DNA from the resulting pN, pP, pNV, and 

pL support plasmids was sequenced using an automated DNA sequencer (Applied 

Biosystems, CA). 

Construction of T7 RNA-polymerase expression plasmid 

 The T7 RNA-polymerase expressing plasmid, pT7NLS, which contains eight 

amino acids nuclear location signal (NLS) derived from the SV40 large T antigen, was 

constructed according to Wu and Rupprecht (2008).  The T7 RNAP gene was amplified 

from the pTF7-3 plasmid (ATCC, VA) with respective primers T7 RNAP NLSF and T7 

RNAP NotR (Table 4-1). Amplified T7 RNAP gene was cloned between NheI and NotI 

restriction sites of a pcDNA3.1 (+) (Promega, WI) vector.  The transcription of pT7NLS 

is under control of both the cytomegalovirus (CMV) immediate-early promoter and the 

T7 promoter. 

 
DNA transfection and virus recovery 

 
 The plasmids pIHNV-220-90 (1 µg), pN (0.5µg), pP (0.2 µg), pL (0.2 µg), and 

pNV (0.15 µg) were diluted in 500ul µl Opti-MEM® medium (Invitrogen, CA). Next, 

Lipofectamine™ LTX reagent (Invitrogen, CA) was added slowly, according to 

manufacturer’s instructions, and incubated for 30 min at room temperature. The plasmid 

– Lipofectamine reaction mixture was added to the EPC monolayer in a six-well plate 

77  



 

without replacing the growth medium. The transfection mixture was removed after 8 h of 

incubation at 28o 
C, and the transfected cells were washed and maintained in Eagle’s 

MEM (ATCC, VA) containing 10% fetal bovine serum at 14°C for 5 days. Cell 

monolayer was observed for the development of virus-induced cytopathic effect (CPE) 

and also expression of EGFP (cells transfected with the EGFP plasmid). After 5 days of 

incubation, the cells were submitted to three cycles of freeze-thawing. Supernatant was 

clarified by centrifugation at 8,000 x g in a microcentrifuge, and used to inoculate fresh 

cell monolayers in T-25 flasks at 14°C. The supernatant was harvested and clarified for 

further processing of the recombinant viruses.  

 
RT-PCR and confirmation of the genetic tags 

 
 RT-PCR was performed on the RNA extracted from the recovered viruses to 

confirm the presence of artificially introduced genetic markers. Briefly, the viral RNA 

was extracted from partially purified virus obtained after ultracentrifugation (collected 

from 26% sucrose cushion), using RNeasy® Mini Kit (Qiagen). RT-PCR was performed 

to verify the presence of NheI, PstI, SnaBI and KpnI restriction sites that were artificially 

introduced during the cloning process. Restriction analysis of the PCR products was 

carried out on a 1% agarose gel. The obtained RT-PCR products were also subjected to 

DNA sequencing to confirm the presence of artificially introduced genetic tags.  

 
Construction of pIHNV-EGFP plasmid 
 
 
 The EGFP ORF was amplified from pIRES2-EGFP (Promega, WI) plasmid using 

EGFP-specific primers (Table 4-1). An additional transcription unit, comprising of 
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untranslated regions between the P and M ORFs, was fused at the C-terminus of EGFP 

ORF. Without introducing any restriction sites, EGFP ORF was inserted (with additional 

transcription unit) between PstI and XhoI restriction sites between P and M genes. The 

PstI-SapI fragment was excised from the full-length pIHNV construct by restriction 

enzyme digestion and replaced it with the modified PstI-SapI fragment derived from the 

F2+F3+F4 plasmid construct. 

 

Virus titration  

  
 To analyze the growth characteristics of rIHNVs, confluent EPC cells were 

infected with the recombinant virus stocks at an MOI of 0.01. Infected cell cultures were 

removed at different time intervals and stored at -70°C; the supernatants were centrifuged 

and titrated on EPC cells by plaque assay, as described previously (Burke and Mulcahy, 

1980) with modification. Briefly, the confluent monolayers of EPC cells, grown in six-

well plates, were infected with serially diluted supernatants from virus stock. After a 1-h 

incubation at 14°C, the cells were washed once by PBS and overlaid with 0.75% 

methylcellulose (Difco) in Eagle MEM containing 10% FBS. After 5 days of incubation 

at 14°C, the overlays were removed and the cells were fixed and stained with a solution 

containing 25% formalin, 10% ethanol, 5% acetic acid, and 1% crystal violet for 5 min at 

room temperature. After rinsing of the cells with distilled water, the plaques were 

counted.  

 
Experimental fish infection 

 Virulence comparisons of wild type and recombinant viruses were performed in 

fingerlings of rainbow trout using the method of LaPatra et al. (1994). Briefly, duplicate 
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25 fish groups of rainbow trout (O. mykiss) juveniles (mean mass 12·0 g) were infected by 

intra-peritoneal injection in 105 PFU/ml of representative IHNV isolates. Mock-infected 

control groups were injected with cell culture media only. Fish mortalities were recorded 

over a 2 weeks period of time. 

4.4 Results 

 
Construction of full-length cDNA clone of IHNV Genome 
 
 
 We constructed an infectious clone of IHNV-220-90 by inserting the 11,134 

nucleotides of IHNV-220-90 genome and the sequences of HHRz and HDVRz into the 

pCI vector (Promega, WI). The IHNV 220-90 strain was isolated from rainbow trout and 

maintained in Scott E LaPatra lab (La Patra et al., 1991). The complete genome of IHNV 

220-90 strain sequence has been taken from GenBank (accession number GQ413939). 

The complete IHNV RNA genome was amplified by RT-PCR as six fragments using 

overlapping primers. All the six fragments were assembled together in a mammalian 

expression vector, pCI as depicted in Fig 4-1. Some mutations resulting in altered amino 

acids were corrected by mutational PCR. With silent mutation, unique restriction sites 

(NheI, PstI, SnaBI and KpnI) were introduced into the full length clone. The nucleotide 

differences between cDNA clone and wild type virus is listed (Table 4-3). The plasmid is 

under the control of both CMV and a T7 RNAP promoter. To favor the virus rescue and 

efficiency, full length cDNA was fused with self-cleaving ribozyme sequences at both the 

ends. This allows precise cleavage at the termini of RNA and leaves authentic 3’ and 5’ 

viral RNA ends.  
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Table 4-3. Nucleotide differences between the wild-type IHNV and cloned cDNA 
 
 

S.No Nucletide 
position 

Wild 
typea

Full length 
cloneb

Amino acid 
change 

Gene 
involved 

Restriction 
sites 
createdc

1.  516 T A silent N NheI 

2.  2071 G T Silent M 

3.  2074 G A Silent M PstI 

4.  2989 T C Silent M/G* NA 

5.  3778 G T Silent G SnaBI 

6.  6570 C T Silent L NA 

7.  7125 C T Silent L KpnI 

8.  10230 A G Silent L 

 

NA 

 
a Nucleotides naturally present at indicated positions in the wild type IHN virus 

b Differences in the cDNA sequence are due to creation of restriction sites or simply 

mutations in the genome sequence. 

c Restriction sites listed were artificially introduced by silent mutation for cloning purpose 

as well as genetic tags. 

*Untranslated region between the ORFs M and G. 

NA-not applicable 
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Expression of T7 polymerase in EPC cells 
 
 

To evaluate the boosting effect of T7 RNA polymerase on viral rescue from 

cDNA plasmids, T7 RNAP expressing plasmid (pT7NLS) was constructed. The T7 

RNAP gene was amplified from pTF7-3 plasmid and subcloned into the vector 

pcDNA3.1.  A nuclear localization signal derived from the SV40 large T antigen (Bruce 

et al., 1987; Kalderon et al., 1984) was added to the T7 RNA polymerase at its N- 

terminus.  The efficiency of such construct was demonstrated for the recovery of rabies 

virus (Wu and Rupprecht, 2008). The T7NLS plasmid is an autogene, transcription of 

which is controlled by its own product (Brisson et al., 1999; Bruce et al., 1987). After T7 

RNAP is produced in the cytoplasm, a majority of the T7 RNAP is transported to the cell 

nucleus, and the transfected full-length and helper plasmids in the nucleus are transcribed 

by both T7 RNAP and cellular RNA polymerase II.  

 
To test the T7 RNAP activity, a reporter vector was constructed by cloning the 

EGFP gene downstream of the T7 promoter.  Cotransfection of the T7NLS RNAP and 

EGFP plasmids into the EPC cells yielded green fluorescence, which was absent in the 

control cells transfected with EGFP plasmid alone (data not shown).  

 
Supporting plasmids 

 
 The ORF of all the supporting plasmids (pN, pP, pNV and pL) were amplified by 

PCR from the full-length clone and subcloned into the expression vector pCI (Fig. 4-2). 

The vector, pCI, was selected to express all the proteins because it contains both 

cytomegalovirus promoter, which has been shown to be highly active in fish cells (Lopez 
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et al., 2001; Anderson et al., 1996), and a T7 promoter to utilize T7 RNAP. A Kozak 

consensus sequence was included in front of the start codon of each ORF to provide an 

optimal sequence context for protein translation (Kozak, 1987). Expression of the 

corresponding IHNV proteins from supporting plasmids was checked by analysis of in-

vitro translated products (TNT-T7-coupled system) by sodium dodecyl sulfate-

polyacrylamide (SDS-PAGE) gel electrophoresis (data not shown). 

 
3.4 Rescue of recombinant IHNV from cloned cDNA 

  
Transfection experiments were carried out on the EPC cell monolayers in six-well 

plates at 28°C. Cells were transfected with a mixture of full-length and supporting 

plasmids and then shifted to 14°C after 8hr. Initially we observed some rounded cells due 

to transfection reagents, but because this is vaccinia free system, the CPE produced by 

recombinant viruses was evident as early as 72 hrs post-transfection. There was 

absolutely no need for additional passages to confirm the recovery of rIHNVs. High titer 

viruses were produced at transfection level itself (Table 4-4). To verify that the rescued 

viruses that were derived from the cDNA plasmids, genomic RNA extracted from the 

pelleted virus was subjected to RT-PCR and restriction enzyme digestion. 
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Table 4-4.   Titers of viruses recovered after transfection of EPC cells with different 
combinations of plasmids 
 
 
pIHNV-
220-90 

pIHNV-
EGFP 

pN pP pNV pL pT7NLS Virus 
titer 

(PFU/ml)
+ - + + + + - 8.5 x 105

+ - + + + + + 8.7 x 106

- + + + + + - 2.3 x 105

- + + + + + + 3.1 x 106

+ - + + - + - 5.2 x 105

+ - - + + + - 1.1 x 103

+ - + + + - + NA 
- + + + + - + NA 

 
 
EPC cells (6x105 cells/well in six-well plates) were transfected with the indicated 

plasmids. Supernatants of the transfected cell culture were collected after 5 days and the 

virus was titered by plaque assay.  

-Plasmid pIHNV-220-90 is a full-length clone of IHNV 220-90 strain and pN, pP, pNV, 

and pL are the helper plasmids for expression of nucleoprotein, phosphoprotein, non-

virion protein, RNA-dependent RNA polymerase. 

-pT7NLS- phage T7 RNA polymerase plasmid containing a nuclear localization signal  

-pIHNV-EGFP is a full-length plasmid of IHNV 220-90 strain containing EGFP ORF 

(along with extra transcription unit) between the P and M genes. 

(+) plasmids included in the transfection procedure. 

(-) plasmids excluded in the transfection procedure. 

NA- Not available as virus was not recovered. 
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Negative-control PCRs were performed with recombinant virus RNA which had 

not been reverse transcribed. All four restriction sites that were introduced during cloning 

were present and cut by the respective restriction enzymes (Fig. 4-3).  In addition, 

sequence analysis of the amplified fragment confirmed the existence of genetic markers 

(Fig. 4-4).  These results show that the recovered viruses were indeed derived from the 

cDNA plasmids. The efficiency of recovery from different experiments was calculated by 

titrating the recovered viruses in EPC cells (Table 4-4). A high tittered rIHNV was 

rescued from almost all wells which didn’t require further amplification. The expression 

of recombinant IHNV proteins was confirmed by Western blot analysis (Fig.4-5).  

 
The rescue efficiency was improved when T7NLS plasmid was co-transfected 

with IHNV plasmids (Table 4-4). The recombinant virus, IHNV-EGFP, was rescued from 

the cDNA as described in materials and methods, and the expression of the EGFP gene 

was confirmed by fluorescent microscopy (Fig. 4-6). In order to optimize the transfection 

conditions for recovering the virus, we performed several transfections with different 

amount and ratio of supporting plasmids and full-length plasmid. Even though we found 

that increasing the concentration of pIHNV-220-90 and pN plasmids improves the 

recovery of virus and increase the virus titer, it was concluded that the optimal 

transfection conditions were 1.0 µg of full-length plasmid, 0.5 µg of pN, 0.2 µg of pP, 0.2 

µg of pL, and 0.15 mg of pNV plasmids. Our results demonstrate that the pNV plasmid is 

not essemtial for virus recovery (Table 4-4).   
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Fig 4-3. Gel analysis of the RT-PCR products used to identify recombinant IHNV 
 
Reverse transcriptase PCR (RT-PCR) was done with the RNA of wild-type and 

recombinant IHNV (rIHNV) extracted from the pelleted virus. Primers covering 

restriction sites were used for RT-PCR. The four RT-PCR products of wild-type IHNV 

and rIHNV (approximate sizes 2100, 1696, 1387 and 1387) were electrophoresed on 1% 

agarose gel. These RT-PCR products were digested with restriction enzymes NheI (lanes 

1 and 5), Pst I (lanes 2 and 6), SnaBI (lanes 3 and 7), and KpnI (lanes 4 and 8). Lane M; 

molecular size marker; lanes 1-4, wild-type IHNV; lanes 5-8, rIHNV. The RT-PCR 

products of rIHNV were cut by respective restriction enzymes, whereas the wild-type 

were not cut. The sizes of the products (approximate): NheI (518bp and 1579bp); PstI 

(574bp and 726bp); SnaBI (572bp and 1128bp); KpnI (325bp and 385bp). The sizes of 

the molecular marker are indicated on the left. 
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Fig 4-4. Identification of genetic markers in the genome of rIHNV 

 Chromatograms showing the nucleotide sequence of RT-PCR products generated from 

the wild-type (wtIHNV) and recombinant IHNV (rIHNV) 220-90 genomes which were 

sequenced across each of the four tags (rectangular mini boxes). The nucleotides (circled) 

were modified during the cloning procedures to accommodate NheI, PstI, SnaBI and 

KpnI restriction sites that served as genetic markers. Two nucleotides were mutated to 

create PstI site. All the mutations to create restriction sites were silent. 
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Fig 4-5. Western blot analysis of recombinant IHNV proteins 

EPC cells were infected with the rescued rIHNV 220-90 at an MOI of 0.1 or mock 

infected. Five days later or after completion of CPE, supernatants were collected, 

clarified and ultra centrifuged using 26% sucrose cushion. The pellet was loaded onto 

10% SDS-polyacrylamide gel. IHN viral proteins were detected by Western blotting 

using polyclonal antibodies against wild-type IHNV. Lane1: Mock infected Lane2: 

rIHNV Lane M: Molecular weight marker (molecular weight in kDa is shown on the 

right) 
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Fig 4-6. Cytopathic effect of recombinant IHNV in the EPC cells 

 
EPC cells were infected with (A) recombinant IHNV (rIHNV) and (B) recombinant 

IHNV expressing EGFP (rIHNV-EGFP) (A) The IHNV induced cytopathic effect (CPE); 

rounding of cells and foci of dead cells (shown by black arrows) in infected EPC 

monolayer. (B) Expression of the EGFP gene in cells infected with rIHNV-EGFP. EPC 

cells were examined under UV-light microscope at 405 nm; cells infected with rIHNV-

EGFP yielded green fluorescence. 
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3.5 Biological characteristics of the rescued IHNVs 
 
 

Growth kinetics of wild-type and recombinant viruses were done in EPC cells by 

plaque assay, as described (Burke and Mulcahy, 1980).  The cells were stained with 

neutral red, and the plaques were counted. The replication efficiency of the recombinant 

viruses appeared to be no different from that of the wild-type virus (Fig. 7). The 

morphology and size of plaques produced by rIHNVs and wild-type viruses were 

compared. The plaques from all these viruses had approximately the same size and 

appearance, indicating that the growth characteristics of recombinant viruses in cell 

culture were not significantly different (data not shown). 

 

 Virulence comparisons of the wild type and rIHNVs were performed in 

fingerlings of rainbow trout (Fig. 8). The rIHNV caused approximately 10% less 

mortality than the wild-type IHNV. This slight virulence difference between wild-type 

IHNV and rIHNV is probably because of the quasispecies nature of the wild-type virus. 

The recombinant IHNV carrying EGFP gene (rIHNV-EGFP) causes only 5% less 

mortality than that of rIHNV.  This result shows that insertion of a foreign gene does not 

affect the virulence of virus drastically. 
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Fig 4-7. Growth kinetics of the recombinant IHN viruses in EPC cells.  

 
EPC cells were infected (at 0.01 MOI) with the wild-type IHNV (♦), recombinant IHNV 

(rIHNV) (■), or recombinant IHNV expressing EGFP (rIHNV-EGFP) (▲). The cell 

culture supernatant was collected at 12hr intervals post-infection. Supernatants were 

serially diluted and each dilution (100 μl) was used for infection of cells in 12-well 

plates. After 1 h of virus adsorption, supernatants were removed from the wells and then 

overlaid with 0.75% methylcellulose. The infected cells were incubated at 14°C for 7 

days or until the development of countable plaques. Then, the cells were stained with 

neutral red and the plaques were counted. 
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Fig 4-8. Virulence comparison of the recombinant viruses in trout 
 
 

Juvenile trout (n = 50; mean mass, 3.0 g) were infected by intra-peritoneal injection with 

105 PFU/ml of the wild-type IHNV (wt IHNV), the recombinant IHNV (rIHNV), the 

recombinant IHNV expressing EGFP gene (rIHNV-EGFP) or mock infected. Mortalities 

were recorded every day for 2 weeks and are expressed as a percentage of cumulative 

mortality. Mock-infected trout were treated under the same conditions. 
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4.5 Discussion 

 
  
 IHNV, belonging to genus Novirhabdovirus, was first recovered successfully by 

Biacchesi et al., (2000) using recombinant vaccinia virus expressing the T7 RNA 

polymerase (vTF7-3). SHRV, another Novirhabdovirus was recovered by Johnson et al., 

(2000) also using the vTF7-3 vaccinia system, and by Alonso et al., (2004) using EPC 

cell line stably expressing T7 RNA polymerase. In this present study, we exploited 

cellular RNA polymerase II to drive the expression of CMV promoter-driven plasmids. 

This is the first report of successful recovery of non-mammalian rhabdovirus using 

vaccinia- and T7 RNA polymerase-free system.  

 
In this study, we describe the recovery of IHNV entirely from cloned cDNA, 

using vaccinia/T7RNAP-free system. Recombinant IHNV, derived from the virulent 

strain 220-90, was generated after transfection of EPC cells with CMV-driven plasmids 

allowing simultaneous expression of antigenomic copy of IHNV RNA, and N, P, NV and 

L proteins. The recombinant IHNV, which showed growth characteristics 

indistinguishable from the wild-type virus, possesses four genetic tags that were 

introduced into the cDNA copy. A similar approach has been used to generate infectious 

virus from cloned full-length cDNA of other nonsegmented negative-strand RNA viruses 

(Wagner et al., 2001; Inoue et al., 2003; Martin et al., 2006). 

 
The CMV promoter is a strong eukaryotic promoter and can be recognized 

efficiently by cellular RNA polymerase II. It was demonstrated that protein expression 

was very high when CMV promoter was used to express gene of interest in the EPC cell 

line when compared to T7 promoter (Lopez et al., 2001). Similarly, the efficiency of 
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RNA polymerase II was higher than that of T7 RNA polymerase (Inoue et al., 2003). The 

viral full-length antigenomic RNA is made with authentic 5’- and 3’- terminal ends by 

flanking ribozyme mediated autocatalytic cleavage. As the cis-acting elements, 

hammerhead ribozyme (HHRz) and hepatitis virus ribozyme (HdvRz) can raise the 

efficiency of virus rescue. The cellular RNA polymerase II itself can help the recovery of 

virus if all the plasmids were cloned under the control of the CMV promoter. To test, 

whether inclusion of T7 RNAP expressing plasmid will increase the efficiency of viral 

recovery, T7NLS RNAP plasmid was co-transfected with viral plasmids. We found that 

viral titer was one log higher in wells in which pT7NLS plasmid was included. Even 

though T7 plasmid increase the efficiency of recovery, it is absolutely not essential for 

the IHNV rescue because transfection of IHNV plasmids itself produced very high titered 

virus (Table 4).  

The optimal transfection conditions and the ratio of full-length plasmid to the 

helper plasmids determined in the present study could be optimized for other fish cell 

lines also. IHNV usually grows at lower temperature (14°C), which is not an optimal 

temperature for vaccinia virus infection and T7 RNA polymerase transcription. For 

efficient production of T7 RNAP and transcription, the EPC cells have to be kept at 

higher temperatures (Biacchesi et al., 2000). Both high temperature and vaccinia virus 

toxicity hinders the efficient recovery of IHNV. The major advantage of this CMV-based 

system is that the transfection could be done at optimal temperature for EPC cells and 

after reasonable time, the cells could be transferred to 14°C. Even after the cells are 

transferred to 14°C, the CMV-driven transcription will continue but at slower rate. This 

not only increases the chances of virus recovery but also the titer of recovered viruses.  
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The identity of the recombinant viruses was verified by RT-PCR using viral 

genomic RNA extracted from pelleted virus and sequencing. Analysis of PCR products 

by restriction digestion and sequencing verified both that the RNA was indeed IHNV and 

that the mutations were maintained. It was suggested that when vaccinia helper virus is 

used for viral recovery, it makes homologues recombination between the full-length 

plasmid and transfected supporting plasmids. This leads to correction of nucleotides 

which are deliberately mutated in the viral genome and loss of restriction site markers 

(Biacchesi et al., 2000; Garcin et al., 1995). This hinders further mutational studies on 

viral genome. These drawbacks have been overcome by this vaccinia virus-free recovery 

system. In this study, the recovered viruses maintained all the restriction sites which were 

introduced as genetic markers. 

 
Earlier studies demonstrated that expression of one or two foreign genes did not 

significantly affect the biological properties of rhabdoviruses. (Mebatsion et al., 1996;  

Schnell et al.,  1996; Haglund et al., 2000; Biacchesi et al., 2000; Alonso et al., 2004). 

Our findings also showed that the insertion of EGFP as a foreign gene between the P and 

M ORF does not affect the replication of the recombinant virus drastically. The 

recombinant viruses, rIHNV and rIHNV-EGFP, developed in this study showed similar 

growth characteristics in tissue culture as those of its wild-type parental virus (Fig. 7). 

The CPE induced by both wild-type IHNV and rIHNV in cultured EPC cells were very 

similar and the plaques formed by rIHNV in EPC cells were also indistinguishable in size 

and shape from those of the parental virus (data not shown).  
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 Although it is feasible to rescue viruses using vaccinia expressing T7 RNAP as a 

helper-virus, it may be problematic, particularly when developing a vaccine for 

commercial use. It warrants stringent purification processes to remove all traces of 

vaccinia virus to ensure vaccine purity. To circumvent dependence on helper-virus, 

researchers developed continuous cell lines that stably express T7 RNAP. Several 

recombinant viruses were recovered using cell line constitutively expressing the T7 

RNAP (Buchholz et al., 1999; Enterlein et al., 2006; Finke and Conzelmann, 1999; Harty 

et al., 2001; Volchkov et al., 2001; Alonso et al., 2004). Although stable cell lines 

expressing T7 RNAP helps in recovery of recombinant viruses without vaccinia virus, 

there are limitations to this approach. The major limitation is cell lines that express T7 

RNAP to support rescue can be difficult to develop and maintain. 

 

The low fidelity of T7 RNA polymerase and failure to remove extra nucleotides at 

the termini of antigenomic RNA may interfere with the virus rescue. These drawbacks 

could be circumvented by RNA polymerase II-based reverse genetics system and by self 

cleaving ribozymes (HHRz and HdvRz), respectively. This strategy was successfully 

used to rescue rabies virus (Inoue et al., 2003), Borna disease virus (Martin et al., 2006; 

Yanai et al., 2006) and measles virus (Martin et al., 2006). These studies demonstrated 

that CMV promoter system allows much more efficient production of rIHNVs compared 

with the conventional T7 polymerase driven system (Biacchesi et al., 2000). Coupled 

with the markedly enhanced recovery rates, this new system makes production of 

recombinant Novirhabdovirus much easier than conventional T7 vaccinia system in fish 

cell line. This recovered virus can be engineered to carry foreign genes or immunogenic 
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epitopes of other fish pathogens and hence can be effectively used as a multivalent virus-

vectored vaccine in aquaculture.  

 
IHNV is an important model system for Novirhabdoviruses and this plasmid-

based rescue system could facilitate further investigations into the molecular aspects of 

IHNV replication. This newly developed recovery system for IHNV entirely from cDNA 

is a powerful tool to decipher not only IHNV genome, but also rest of the species of 

Novirhabdovirus. In this study, we achieved an important milestone in the reverse 

genetics of Novirhabdovirus by implementing a vaccinia/T7RNAP-free system. This 

system abolishes the drawbacks of the T7 RNAP based system; mainly, (i) efficiency of 

virus recovery is higher than the T7 based system (ii) avoids vaccinia virus contamination 

with stock virus (iii) effective vaccine production for commercial use (iv) no special 

handling of the cell line and helper virus is needed (v) mutational studies could be carried 

out without worrying about vaccinia virus recombination (vi) eliminates the burden of 

making and maintaining T7 RNAP expressing cell lines. 
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Chapter 5 

Molecular determinants of virulence in Infectious 

Hematopoietic Necrosis Virus 

5.1 Abstract 

 
 Infectious hematopoietic necrosis virus (IHNV) loses its virulence when passaged 

in cell culture. However, the molecular basis of virulence in IHNV and its adaptation to 

cell culture is not known. In this study, virulence of IHNV field strain 220-90 (IHNV-06) 

and its cell culture adapted counterpart, IHNV-61, was compared in rainbow trout and it 

was found that IHNV-06 causes 71% mortality, whereas the cell culture adapted causes  

16% mortality. To identify the genes involved in virus attenuation, complete genome 

sequences of both virulent and cell culture adapted strains were analyzed. Comparison of 

the complete nucleotide and deduced amino acid sequences of these viruses reveals major 

amino acids substitutions in the glycoprotein gene and minor changes in the matrix 

protein gene and 5’-trailer sequence.  To determine the gene(s) or nucleotides responsible 

for virulence or virus attenuation, chimeric rIHNV-06/61G, rIHNV-06/61M, and rIHNV-

06/61T were generated, in which glycoprotein and matrix protein genes, and trailer 

sequence of the virulent virus was replaced with the attenuated one, respectively.  In vitro 

analysis showed that these chimeric viruses have similar growth and replication kinetics 

in the cell culture as the recovered rIHNV-06. In vivo studies demonstrated that fish 

inoculated with rIHNV-06/61M and rIHNV-06/61T viruses induced similar cumulative 

mortality (26%) in rainbow trout as the parent rIHNV-06.  However, fish mortality 

caused by rIHNV-06/61G was reduced to 4% when the glycoprotein of virulent virus was 
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swapped with the attenuated one. These results demonstrate that the molecular 

determinants of virulence in IHNV reside in the glycoprotein gene. 

5.2 Introduction 

 
 Infectious hematopoietic necrosis virus (IHNV) is an important rhabdoviral 

pathogen of salmonid fish that causes a large economic impact on commercial fish farms 

as well as hatcheries (Winton, 1991). IHNV is a member of the genus Novirhabdovirus, 

within the family Rhabdoviridae (Tordo et al., 2005). It has a linear single-stranded, 

negative-sense RNA genome of approximately 11 kb, with six genes encoding five 

structural proteins and one non-structural protein (Kurath et al., 1985; Schütze et al., 

1995; Morzunov et al., 1995).  The virus replicates in the cytoplasm and produces six 

monocistronic mRNAs, which are capped and polyadenylated. The virions comprise of 

nucleoprotein, N; a polymerase-associated protein, P; an RNA-dependent RNA 

polymerase, L; a matrix protein, M; and a glycoprotein, G.  The gene order of IHNV is 

3’-N-P-M-G-NV-L-5’. The negative-strand RNA genome is connected tightly with the 

nucleoprotein N and forms the core structure of virion. This encapsidated genomic RNA 

is also associated with the phosphoprotein P and polymerase protein L, which are 

involved in the viral protein synthesis and replication.  

 
Since IHNV is a RNA virus, the replication of RNA viruses is characterized by 

high mutation rates. In addition, RNA viruses have large population sizes, high 

replication rates and short generation times. All these properties are responsible for the 

extremely high genetic variability of RNA virus populations (Moya et al., 2000).  Viral 

virulence is the relative ability of a virus to produce disease or lesions in a host. It is 
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dependent on various host and virus factors, including changes in viral tissue tropism and 

alteration in the level of viral replication and transcription. Many viral genome 

characteristics can influence viral pathogenesis and virulence, such as viral envelope and 

capsid proteins; core, matrix, and nonstructural proteins; and noncoding regions of the 

viral genome (Tyler and Fields, 1996). Previous studies have shown that few amino acid 

changes in the G protein of IHNV or VHSV would result in an apparent change in the 

virulence and distribution of the virus in fish (Kim et al., 1994; Bearzotti et al., 1995). 

This demonstrates that an altered G may affect viral pathogenesis by changing its tissue 

tropism. 

 
Earlier studies have demonstrated that virulent strains of IHNV lose their 

virulence potential after serial passage in cell culture (Fukuda et al., 1989; Michael, 1974; 

Leong et al, 1988). However, the molecular basis for cell adaptation and attenuation is 

not known because none of these viruses were cloned and characterized by nucleotide 

sequence analysis. In this study, virulence of IHNV-06 (passaged 6 times in cell culture) 

and its cell culture adapted counterpart IHNV-61 virus (IHNV 220-90 passed 61 times in 

cell culture), was compared in rainbow trout and it was found that the IHNV-06 causes 

high mortality, whereas the cell culture adapted caused low mortality. While it is possible 

to study the evolution of viruses and its impact on viral pathogenicity by comparing 

genomic sequences of heterologous strains, the analysis of homologous strains provides a 

unique opportunity to understand specific genes likely to be involved in virulence and 

pathogenicity. To identify genes or putative residues that might be associated with the 

viral virulence or cell adaptation, we have carried out a comparative analysis of newly 

determined complete genome sequences of the virulent and attenuated viruses of IHNV 
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220-90 strain. We utilized an IHNV reverse genetic system developed in our laboratory 

to make chimeric viruses by substituting the virulent virus candidate genes with that of 

attenuated virus. The growth kinetics and pathogenicity of the recombinant viruses were 

studied. 

 
5.3 Material and methods 

Virus and cells 
 
 
 The virulent (IHNV-05) and attenuated (IHNV-60) viruses of IHNV 220-90 strain 

were kindly provided by Dr. Scott LaPatra, Clear Springs Foods Inc., Idaho, USA. These 

viruses were amplified one more time in cell culture to make stock viruses. The 

Epithelioma papulosum cyprini (EPC) cells were used for virus propagation (Fijan et al., 

1983). The cells were grown at 28°C in minimal essential medium (MEM) supplemented 

with 10% fetal bovine serum and 2 mM L-glutamine. For preparation of virus stocks, 

confluent EPC cells were infected with the IHNV at a multiplicity of infection (MOI) of 

0.01 in MEM with 2% fetal bovine serum. After 1 h of adsorption, the inoculum was 

removed, and the cells were incubated at 14°C until extensive cytopathic effect (CPE) 

was observed. The supernatant was collected 5 days post-infection (p.i), clarified, and 

stored at -80oC for further processing. 

 
RNA extraction and amplification  

  
           Viral RNA was extracted from cell culture supernatant and stored at -20°C using 

Qiagen RNAeasy kit, according to manufacturer’s instructions. The oligonucleotide 

primers used in this study are listed in Table 5-1. First strand synthesis was carried out in 
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a tube containing 5µl of RNA, which was denatured at 70°C for 10 min in the presence of 

DMSO (3µl), 1 µl forward gene-specific primer, 1µl of 25 mM dNTPs and snap-cooled 

on ice for 1 min.  The reaction mixture containing 2µl of 10X RT buffer, 2µl of 0.1M 

DTT, 4µl of 25mM MgCl2, 1µl of Superscript III RTTM, and 1µl of RNase OUTTM was 

incubated at 50°C for 1 h.  PCR amplifications were carried out using a pfx50TM PCR kit 

(Invitrogen, CA), according to manufacturer’s instructions. Briefly, the following mixture 

was used for PCR amplification: 3µ1 of cDNA, 2µl of primer mix; 5µl of 10x PCR 

buffer [100 mM Tris-HCl (pH 9.0), 500 mM KC1, 1% Triton X-100], 2µ1 of 25 mM 

MgCl2, 0.5ul of pfx50 polymerase, and 37µ1 of DEPC water, to make a final volume of 

50 µ1. Reaction was carried in a thermal cycler (MJ Research Inc., Waltham, MA), using 

the following program: denaturation at 94°C for 30sec; annealing for 30sec at 60°C; and 

extension at 68°C for 2 min. The RT-PCR products were separated by agarose gel 

electrophoresis and purified using a QIAquick gel extraction kit (Qiagen, CA). 

 
Cloning and sequencing 

 The purified RT-PCR products were cloned into a pCR2.1 TOPO® TA vector 

(Invitrogen, CA). Plasmid DNA was sequenced by dideoxy chain termination method, 

using an automated DNA sequencer (Applied Biosystems, CA). All the DNA sequence 

analyses were performed by the Center of Marine Biotechnology (COMB), University of 

Maryland Biotechnology (UMBI) core facility, which houses an ABI 3130 XL Genetic 

Analyzer having 16-capillary electrophoresis channels (Applied Biosystems, CA). 
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Table 5-1. Oligonucleotides used to create marked restriction sites in the full-length 
IHNV clonea. 

 

Primers Sequence Position 
P/M PciF AAATCCAAGAGACATGTCAAACGAGAGC 2227-2254
P/M PciR GCTCTCGTTTGACATGTCTCTTGGATTT 2254-2227
M/G PacF GTTAATTAACATGCCATCCCTCACTCAC 2842-2869
M/G PacR GGCATGTTAATTAACTATTTTTCCTTCC 2856-2829
M/G SmaF CCCGGGCAAAACAATGGACACCATGA 298-3011 
M/G SmaR TTGTTTTGCCCGGGCTCTGCGAGTTGCGTT 2999-2970
G/NV SacIIF TAACCGCGGTCAATCTTCACCTCTT 4523-4547

ATTGACCGCGGTTAGGACCGGTTTGCCA G/NV SacIIR 4536-4509

 

aRestriction enzyme sites are in italics. 
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Construction of chimeric plasmids 

 A full-length cDNA clone of virulent IHNV 220-90 strain made earlier was 

utilized for this study to recover chimeric viruses. In this study, we also constructed full- 

length cDNA clone of attenuated virus, IHNV-61 by assembling six overlapping cDNA 

fragments generated through RT-PCR by standard cloning techniques, as described 

earlier (Ammayappan and Vakharia, 2009b). Two restriction sites, PciI and PacI, were 

introduced at the beginning and end of the M protein ORF, respectively. Likewise, two 

more restriction sites, SmaI and SacII, were introduced at the beginning and end of the G 

protein ORF respectively by overlapping PCR using primers listed in Table 5-1. The 

IHNV-61 M and G ORF was amplified with PciF/PacR and SmaF/SacIIR primers 

respectively, and digested with the respective restriction enzymes. The digested 

fragments were used to replace the G and M ORFs from the IHNV-06 cDNA clone and 

this creates pIHNV-06/61G and pIHNV-06/61M constructs, respectively. The trailer 

region of the virulent strain was replaced with the attenuated virus by digesting with 

BsrGI and NotI restriction enzymes, and this gives rise to pIHNV-06/61T construct. All 

the DNAs from full-length clones were sequenced completely for its integrity using an 

automated DNA sequencer (Applied Biosystems, CA).  

DNA transfection and virus recovery 

 
 The full-length plasmid (1 µg), pN (0.5µg), pP (0.2 µg), pL (0.2 µg), and pNV 

(0.15 µg) were diluted in 500ul µl Opti-MEM® medium (Invitrogen, CA). Subsequently, 

Lipofectamine™ LTX reagent (Invitrogen, CA) was added slowly, according to 

manufacturer’s instructions, and incubated for 30 min at room temperature. The plasmid 
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and Lipofectamine mixture was added to the EPC monolayers in six-well plates without 

replacing growth medium. The transfection mixture was removed after 8 h of incubation 

at 28o 
C, and the transfected cells were washed and maintained in Eagle’s MEM (ATCC, 

VA) containing 10% fetal bovine serum at 14°C for 5 days. Cell monolayer was observed 

for the development of virus-induced cytopathic effect (CPE). After 5 days of incubation, 

cells were submitted to three cycles of freeze-thawing. Supernatant was clarified by 

centrifugation at 8,000 x g in a microcentrifuge and used to inoculate fresh cell 

monolayers in T-25 flasks at 14°C. The supernatant was harvested and clarified for 

further processing of the recombinant viruses.  

 
RT-PCR  

 
 RT-PCR was performed on the RNA extracted from the recovered viruses to 

demonstrate the presence of the chimeric genes. Briefly, the viral RNA was extracted 

from partially purified virus obtained after ultracentrifugation (collected from 26% 

sucrose cushion), using RNeasy® Mini Kit (Qiagen).  Part of the RNA genome was 

amplified by RT-PCR using primer pairs covering M, G and trailer regions. The obtained 

RT-PCR products were then subjected to DNA sequencing to confirm the presence of the 

chimeric genes. Control reactions without RT were included to show that the PCR 

products were derived from RNA and not from transfected plasmid DNA.  

 
Virus titration  
  
 

Recombinant viruses were titrated on EPC cells by plaque assay, as described 

previously (Burke and Mulcahy, 1980) with modification. Briefly, the confluent 
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monolayers of EPC cells, grown in six-well plates, were infected with serially diluted 

supernatants from virus stock. After a 1-h incubation at 14°C, the cells were washed once 

by PBS and overlaid with 0.75% methylcellulose (Difco) in Eagle MEM containing 10% 

FBS. After 5 days of incubation at 14°C, the overlays were removed and the cells were 

fixed and stained with a solution containing 25% formalin, 10% ethanol, 5% acetic acid, 

and 1% crystal violet for 5 min at room temperature. After rinsing the cells with distilled 

water, the plaques were counted.  

 
Growth curves in cell culture 

 
To analyze the growth characteristics of rIHNVs, confluent EPC cells were 

infected with the recombinant virus stocks at an MOI of 0.01. Supernatants were 

collected at indicated time points post-infection and replaced by an equivalent volume of 

fresh medium. The collected samples were stored at -80°C, and titrated later in parallel by 

plaque assay. Each growth curve is based on the average of the virus titers from two 

infected monolayers. 

 
Experimental fish infection 

 Virulence determinations were performed using the method of LaPatra et al. 

(1994). Briefly, groups (25 fish/group) of rainbow trout (O. mykiss) in duplicate (mean 

mass 12·0 g) were challenged by intraperitonial injection of 103 to 105 PFUs of 

representative IHNV isolates. Mock-infected control groups were exposed to cell culture 

media only. Experimental groups were held separately in 19 l aquaria at 15 °C which 

received ultra-violet light treated spring water, and fish were monitored minimum for 21 

days.  
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5.4 Results 

 
Fish studies of virulent and cell culture adapted IHN viruses 

 
Fish studies were performed using the method of LaPatra et al. (1994) as 

described in the material and methods section. Rainbow trout juveniles were infected by 

intraperioneal injection of 105 PFUs of the virulent and cell culture adapted IHN viruses. 

The cumulative percent mortality in fish is shown in Fig. 5-1, which indicates that the 

virulence of cell culture adapted virus, IHNV-61, was reduced from 71% to 16%, 

compared to its parent virulent virus, IHNV-06. 

 
Sequences of cell-adapted IHNV variants 

 
 To determine the molecular basis of virus adaptation in cell culture, and possible 

mechanism for virus attenuation, the serially passaged IHNV-61’s genome was 

sequenced in its entirety.  At the indicated passage, the viral RNAs were extracted, 

amplified by RT-PCR and their products were directly sequenced. The nucleotide and 

deduced amino acid sequences of both virulent and attenuated strains were compared.  

Table 5-2 shows the differences in the nucleotide sequences between the two viruses and 

resulting amino acid substitutions.  The matrix protein gene shows 4 nucleotide 

differences that resulted in only one amino acid substitution, whereas glycoprotein gene 

shows 53 nucleotide differences, which are scattered all over the gene, and resulted in 17 

amino acid substitutions. There are minor nucleotide differences in the UTRs between P 

and M (1 nt) and between M and G (5 nts) genes. There are 4 nucleotides differences in 

the trailer region between the virulent and cell culture adapted virus (IHNV-61). 
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Fig. 5-1. Virulence comparison of virulent and cell culture adapted IHNV 220-90 in 

trout.  Juvenile trout were infected by intra-peritoneal injection with 105 PFU/ml of the 

wild-type IHNV (wtIHNV-06), cell culture adapted IHNV (wtIHNV-61), or mock 

infected. Mortalities were recorded every day for 4 weeks and are expressed as a 

percentage of cumulative mortality. Mock-infected trout were treated under the same 

conditions as for other virus infected trout. 
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Table 5-2.  Nucleotide and deduced amino acid differences between the virulent and 

attenuated viruses of IHNV 220-90 strain. 

 
 
 
 
 
 
 Nucleotide ORF differences 

Amino Acid 
differences 

N 0 0 
UTR 0 NA 

P 0 0 
UTR 1 NA 

M 4 1 
UTR 5 NA 

G 53 17 
UTR 0 NA 
NV 0 0 

UTR 0 NA 
L 0 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Trailer 4 NA 
 
 
 

UTR-untranslated region, NA- not applicable  
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Recovery of chimeric viruses 

  
 In order to identify the genes involved in virus attenuation, we constructed 

chimeric viruses, rIHNV-06/61M, rIHNV-06/61G and rIHNV-06/61T in which the ORF 

of matrix and glycoprotein genes and trailer region of the virulent virus were replaced 

with the counterparts of attenuated strain, respectively. Unique restriction sites were 

created at the beginning and end of the M and G ORFs by overlapping PCR for the ease 

of swapping the fragments. By using the established reverse genetics method in our 

laboratory, full-length plasmids were cotransfected with pN, pP, pNV, and pL supporting 

plasmids into the EPC cells and incubated for 5 days at 14°C. The recombinant viruses 

were amplified by few cell passages and used for further studies.  The genomic RNAs of 

the recovered viruses were analyzed after RT-PCR amplification and sequence analysis 

of the RT-PCR products confirmed the presence of chimeric sequences (data not shown). 

 
Characterization of chimeric IHNVs in vitro  

  To investigate whether the M and G proteins or trailer region are involved in the 

viral adaptation in vitro, EPC cells were infected with each virus at MOI of 0.01, and the 

virus titer was analyzed by plaque assay. Figure 5-2 depicts the growth curve of each 

virus in EPC cells at different time points post-infection. All the viruses exhibiting typical 

CPE of IHNV at 36 hrs post-infection in EPC cell culture reached maximal virus 

production, approximately at 84 hrs p.i (Fig. 5-2). The recombinant rIHNV-06, rIHNV-

61 and chimeric viruses did not exhibit significant differences in their replication kinetics 

in EPC cells, albeit the growth of rIHNV-06 is slightly lower than rIHNV-61 (Fig. 5-2).  

 

110  



 

 

 

 

0

1

2

3

4

5

6

7

12 24 36 48 60 72 84 96

Infection time (hr)

Vi
ru

s 
tit

er
 lo

g1
0(

PF
U/

m
l)

rIHNV-06
rIHNV-61
rIHNV-06/61G
rIHNV-06/61M
rIHNV-06/61T

 
 
 
 
 
 
 
 
Fig. 5-2. Replication kinetics of the recombinant IHNVs in cell culture. Monolayers of 

EPC cells were infected with the indicated viruses at MOI of 0.01, harvested at the 

indicated time points, and infectious titers were determined by plaque assay. 
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Plaque phenotype of IHNV chimeras  

 To determine the role of viral proteins in plaque phenotype, the chimeric and 

recombinant parental viruses were subjected to plaque assay on EPC cells, and analyzed 

9 days post-infection. The cells were then stained with crystal violet, and the plaque sizes 

and morphology were compared (data not shown). The plaques of all the three chimeric 

and two parental viruses had approximately the same size and appearance, indicating that 

the biological activity of chimeric viruses in tissue culture cells was not substantially 

altered.  

Virulence studies in trout 
 

The abilities of all of the recombinant viruses to replicate in vivo and to induce 

disease symptoms in trout were compared. Duplicate groups of 25 juvenile trout (mean 

weight, 12 g) were infected by intra-peritoneal injection of 103 PFUs of the rIHNV-06, 

rIHNV-61, rIHNV-06/61M, rIHNV-06/61G, and rIHNV-06/61T or mock infected. 

Mortalities were recorded every day for 4 weeks after virus exposure. As shown in Fig. 

5-3, rIHNV-06 is more pathogenic for trout since the cumulative percent mortality 

(CPM) reached a plateau of 26% by 1 month p.i. Trout infected with these viruses 

developed typical symptoms of IHNV infection, and fish mortality started at day 7. In 

contrast, trout infected with the rIHNV-61 had a delayed mortality (started at day 10), 

and the CPM reached a plateau of 4% by 1 month p.i. The chimeric virus, rIHNV-

06/61G, in which the virulent glycoprotein gene was swapped with the attenuated one, 

induced CPM of only 4% by 1 month p.i, which is similar to the attenuated recombinant 

rIHNV-61. The pathogenicity of other two chimeric viruses, rIHNV-06/61M and rIHNV-

06/61T, was similar to that of virulent recombinant rIHNV-06. 
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Fig. 5-3. Percent cumulative mortality caused by the recombinant viruses in trout. 

Juvenile rainbow trout were inoculated by intraperitoneal injection with 103 PFUs of 

rIHNV-06, rIHNV-61, rIHNV-06/61M, rIHNV-06/61G or rIHNV-06/61T or mock-

infected with PBS. Mortalities were recorded every day for 4 weeks and are expressed as 

a percentage of cumulative mortality.  
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5.5 Discussion 

 
Since RNA polymerases lack proofreading ability, the replication of RNA viruses 

is characterized by high mutation rates, which leads to rapid adaptation to their growth 

environment. This has historically been exploited to generate live attenuated vaccines. On 

the other hand, full understanding of the molecular processes of virus adaptation to 

particular host cells would ensure that no unrecognized adaptive mutations occur during 

propagation of virus in cell culture, which could be a source of misleading results and 

erroneous conclusions regarding the viral life cycle in the natural host (Mandl et al., 

2001). Cell-adapted viruses often confer reduced virulence in natural host animal. It 

would be of great interest to assess virulence of these cell-adapted and chimeric viruses in 

fish to identify specific residues important for virulence of IHNV. 

 
In this study, we compared the virulence of IHNV strain 220-90 (IHNV-06) and 

its cell culture adapted counterpart, IHNV-61 (passaged 61 times in cell culture) in 

rainbow trout and found that the IHNV-06 induced CPM of 71%, whereas the cell culture 

adapted caused only 16% CPM. This fish experiment clearly indicates the attenuation of 

virus after serial passages in cell culture. Previous studies have shown that IHNV field 

isolates tend to lose their virulence after serial passage in cell culture (Fukuda et al., 

1989; Michael, 1974; Leong et al., 1988). However, there was no complete sequence data 

to reveal the molecular basis of this process. Therefore, we determined the complete 

nucleotide and deduced amino acid sequences of both IHNV genomes to identify the 

molecular determinants of virulence. In earlier studies, (Ammayappan and Vakharia, 

2009c), we determined the complete genome sequence of virulent IHNV 220-90 and in 

this study we also sequenced the entire genome of attenuated virus IHNV-61 for 
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comparison. Determination of the entire genome sequences of both viruses is necessary 

for the development of infectious clones of IHNV and to make chimeric viruses. 

 
Comparison of the nucleotide and deduced amino acid sequences of the virulent 

and attenuated IHNV 220-90 strains revealed minor substitutions in the matrix protein 

gene (1 aa), UTRs (P/M-1 nt; M/G-5nts) and trailer sequence (4 nts), and major 

substitutions (53 nts) in the G protein gene (Table 5-2).  The majority of nucleotide 

changes in the G gene is synonymous and resulted in only 17 amino acid substitutions. 

The presence of an excess of non-synonymous mutations (those which result in a 

predicted amino-acid change) compared to the number of synonymous mutations (those 

which are silent) in a gene or region of a gene has been interpreted as evidence for 

positive selection acting on that region (Nei and Gojobori 1986; Hughes and Hughes 

1995; Seibert et al., 1995). Earlier studies have shown that when 72 IHNV isolates from 

Haggerman Valley, Idaho were sequenced for its 303 nt region (mid-G) of the 

glycoprotein (G) gene (from nt 686 to 988), amino acids at positions 252, 256 and 270 

each had an excess of non-synonymous mutations (Troyer and Kurath, 2003). In this 

study, glycoprotein gene exhibited maximum substitutions that are scattered all over the 

glycoprotein. Therefore, the precise residues involved in virulence and cell culture 

adaptation could not be identified. Hence, we utilized the reverse genetics approach to 

identify the molecular determinants of virulence.  

 
Using infectious clones of IHNV, we were able to produce chimeric viruses of 

IHNV by substituting the M and G protein genes and trailer sequence of the virulent 220-

90 strain with that of the attenuated one. To recover all the recombinant and chimeric 
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viruses, we used supporting plasmids pN, pP, pNV and pL of the virulent strain. RT-PCR 

and sequencing of the M, G and trailer region of the chimeric viruses were performed. 

Sequence analysis of the swapped regions of recombinant viruses showed the presence of 

chimeric genes. Surprisingly, the recovered viruses, rIHNV-06 and rIHNV-61, and 

chimeric viruses, rIHNV-06/61M, rIHNV-06/61G and rIHNV-06/61T, showed no 

difference in growth kinetics in cell culture.  

 
To evaluate the pathogenicity of recombinant chimeric viruses in trout, groups of 

fish (25 fish/group, in duplicate) were injected intraperitoneally with 103 PFUs of the 

recombinant viruses.  Fish injected with recombinant rIHNV-06 showed CPM of 26% at 

28 days p.i., whereas fish injected with the rIHNV-61 exhibited only 4% CPM (Fig. 5-3). 

These results are as expected since rIHNV-06 was derived from the virulent virus 

(IHNV-06) that causes higher mortality than the cell culture adapted virus, IHNV-61.  

The chimeric rIHNV-06/61G in which the virulent G gene is exchanged with the 

attenuated one induced CPM of 4%.  These results demonstrate that the virulence 

determinants of rIHNV-06 were lost (due to swapping) and the rIHNV-06/61G displayed 

pathogenesis which is comparable to that of the rIHNV-61. It is important to note that the 

virulence of the other two chimeric viruses, rIHNV-06/61M (virulent matrix gene is 

replaced with attenuated one) and rIHNV-06/61T (virulent 5’ trailer is replaced with 

attenuated one), was between 22-26% CPM, suggesting that the matrix gene and 5’-

trailer are not involved in the virulence of IHNV. 

 
In earlier studies, virulent and mildly virulent strains were compared only for their 

glycoprotein gene sequences, especially the ‘mid-G’ region. Kim et al. (1994) proposed 
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that substitutions in the IHNV escape mutants at residues 78 and 218 were responsible for 

altered tissue tropism and loss of virulence. Bearzotti et al. (1995) demonstrated that as 

few as two concomitant amino acid substitutions in antigenic regions at residues 140 and 

430 of the glycoprotein are sufficient to reduce the virulence of the VHSV in fish. To 

demonstrate that the glycoprotein is the sole determinant of virulence in IHNV, we 

exchanged the G protein of virulent virus with attenuated one, which results in the loss of 

virulence in rIHNV-06. However, we could not pinpoint the residues involved in 

virulence of IHNV. Therefore, mutational studies should be carried out on non-

synonymous residues which have potential to be involved in pathogenesis. Sequence 

analysis of the virulent and attenuated viruses revealed no amino acid substitutions in the 

polymerase gene, suggesting that polymerase protein is not involved in the virulence and 

adaptation of IHNV to cell culture. In conclusion, we have demonstrated that the G 

protein carries the determinants for IHNV virulence and cell culture adaptation. 
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Chapter 6 

 Recombinant Infectious Hematopoietic Necrosis Virus as a 

Vector 

6.1 Abstract 

 
The two major pathogens of fish, infectious pancreatic necrosis virus (IPNV) and 

infectious salmon anemia virus (ISAV) cause disease in juvenile trout and salmon. 

Currently there are no efficient vaccines available for these diseases. Using the reverse 

genetics approach, we constructed a recombinant infectious hematopoietic necrosis virus 

(IHNV) vector from an attenuated vaccine strain of 220-90 to express the host-protective 

immunogen VP2 of IPNV and hemagglutinin-esterase (HE) of ISAV. The gene encoding 

the VP2 protein of the IPNV was inserted into the most 3'-proximal locus of a full-length 

IHNV cDNA, whereas the HE ORF was inserted between the N and P genes for high-level 

expression. We successfully recovered the recombinant IHNVs expressing the VP2 

(rIHNV-VP2) and HE protein (rIHNV-HE) using a vaccinia virus-free reverse genetics 

system. The recombinant viruses, rIHNV-VP2 and rIHNV-HE, are genetically stable 

after at least five serial passages in cell culture and expressed high levels of VP2 and HE 

proteins. Our results indicate that recombinant IHNV could be a suitable vector to 

express immunodominant proteins of fish pathogens. The in vivo challenge studies are 

yet to be carried for rIHNV-VP2 and rIHNV-HE to investigate the efficiency of these 

viruses in protecting the fish against IPNV and ISAV, respectively. 
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6.2 Introduction 

 
 
 Infectious pancreatic necrosis virus (IPNV) is the causal agent of a highly 

contagious and destructive disease of juvenile rainbow and brook trout as well as Atlantic 

salmon (Wolf, 1988). Highly virulent strains of IPNV can cause greater than 90% 

mortality in hatchery stocks less than 4 months old. Survivors of infection can remain 

lifelong asymptomatic carriers of the virus, and these carriers serve as reservoirs of 

infection, shedding virus in their urine, feces, and reproductive products (McAllister et 

al., 1987).   

 IPNV is the prototype virus of the Birnaviridae family and belongs to the 

Aquabirnavirus genus (Dobos, 1995a). The IPNV genome consists of two segments of 

double-stranded RNA that are surrounded by a single-shelled icosahedral capsid (Dobos, 

1976). The larger of the two genomic segments, segment A encodes a 106-kDa precursor 

protein in a single large open reading frame (ORF) which is cotranslationally cleaved by 

the viral nonstructural (NS) protease to generate mature VP2 and VP3 structural proteins 

(Dobos, 1977, Duncan et al., 1987). The genomic segment encodes VP1, a 94-kDa minor 

internal protein, which is the virion-associated RNA-dependent RNA polymerase (Dobos, 

1995b; Duncan et al 1991). VP2 is the major outer capsid protein of virion, and type-

specific neutralizing antibody is produced against this protein (Dobos, 1995b, Nicholson, 

1993). It is also involved in the cell attachment (Granzow et al 1997; Kuznar et al., 

1995). 

 Many attempts have been made to express the structural proteins of IPNV as 

subunit vaccines for the control of this disease. It has been demonstrated that the 

recombinant VP2 protein expressed in different expression systems provided significant 
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protection against the disease (Manning and Leong, 1990; Shivappa et al., 2005; Allnutt 

et al., 2007). However, those efforts have not been translated for practical use, due to 

limitations of the delivery systems and these vaccines are not completely effective.  

 
 Infectious salmon anemia virus (ISAV) is a pathogen of economic importance 

affecting Atlantic salmon (Salmo salar) in Norway, Scotland, the Faeroe Islands, Canada, 

and the United States (Lovely et al., 1999; Mullins et al., 1998; Rodger and Richards, 1998; 

Schyth et al., 2003; Thorud and Djupvik, 1988) and Coho salmon (Oncorhynchus kisutch) 

in Chile (Kibenge et al., 2001). ISAV is the type species of the genus Isavirus belonging to 

the Orthomyxoviridae. The ISA virus (ISAV) has a negative-stranded RNA genome 

consisting of eight single-stranded segments that range from 1.0 to 2·3 kb (Mjaaland et al., 

1997) and the virions have two surface glycoproteins; haemagglutinin-esterase (HE) 

protein encoded by segment 6 and fusion (F) protein encoded by segment 5. ISAV HE 

has been shown to possess both haemagglutinating and receptor-destroying activity; the 

latter has been suggested to be an acetylesterase (Falk et al., 1997). Eliassen et al. (2000) 

demonstrated that ISAV replicates in a manner similar to the influenza viruses. Immunoblot 

analyses indicated that ISAV HA, in contrast to influenza virus HA, is not post-

translationally cleaved (Krossøy et al., 2001). The presently available whole virus 

inactivated vaccine that is used in Maine, USA, and Canada does not fully protect against 

the virus (Kibenge et al., 2003). It was suggested that the HE protein is the major 

determinant of virulence in ISAV (Cunningham et al., 2002; Nylund et al., 2003; Plarre et 

al., 2005). The immunization studies against ISA using plasmids expressing the ISA virus 

HE demonstrated only moderate protection after challenge with ISA virus, with relative 

percent survival of 39.5 and 60.5 % in two parallel groups (Mikalsen et al., 2005). For over 
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25 years, ISAV has caused major disease outbreaks in the Northern hemisphere, and 

remains an emerging fish pathogen because of the asymptomatic infections in marine 

wild fish and the potential for emergence of new epidemic strains (Kibenge et al., 2009). 

 
 Infectious hematopoietic necrosis virus (IHNV) is a pathogen of major economic 

importance to the aquaculture industry.  It causes infectious hematopoietic necrosis (IHN) 

disease in cultured trout and salmon worldwide, and is the most important viral disease of 

salmonid in the Northern hemisphere.  Epizootics of IHNV are particularly devastating in 

rainbow trout hatcheries, and it infects primarily the juvenile stages of fish and also 

adults (Busch 1983.)  IHNV is a nonsegmented negative-strand RNA virus from the 

Rhabdoviridae family, genus Novirhabdovirus. The genome of IHNV contains six open 

reading frames (ORF) in the order 3'-N-P-M-G-NV-L-5' (Kurath et al., 1985).  

 
We recently recovered IHNV from a full-length cDNA clone using a vaccinia 

virus-free reverse genetics system (Ammayappan and Vakharia, 2009b). This DNA-

based recovery system for IHNV makes it possible to genetically engineer infectious 

virus. The highly efficient expression of viral and foreign proteins via negative-strand 

RNA virus vectors may have additional biotechnological applications. It is also possible 

that purification of expressed proteins could be made easier if they were incorporated into 

the extracellular virus particles. IHNV is an especially useful system because the virus 

can be grown to very high titers in fish cells and it is easily purified in large quantities. 

The major advantage of rhabdoviruses is the modular nature of their genomes which 

makes it easy to incorporate additional genes with extra transcription unit. The foreign 

genes can be engineered in any positions along the genome depending upon the need for 
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the level of expression and can be controlled by selecting an upstream or downstream 

location to insert the additional gene (Conzelmann et al., 1998). Earlier studies have 

shown that recombinant IHNV could be used as a vector to express foreign genes 

(Biacchesi et al., 2000; Ammayappan and Vakharia, 2009b). In this report, we describe 

the recovery of recombinant attenuated strain of IHNV 220-90 strain expressing the VP2 

of IPNV and the HE of ISAV, respectively. 

6.3 Materials and methods 

 
Virus and cells 
 
 An attenuated strain of IHNV 220-90 (IHNV-61) was used for cloning of the full-

length cDNA copy of the IHNV genome. IHNV-61 was kindly provided by Dr. Scott 

LaPatra, Clear Springs Foods Inc., Idaho, USA. The infectious pancreatic necrosis virus 

(IPNV) Buhl strain and infectious salmon anemia virus (ISAV) Maine-2003 strain were 

maintained in our laboratory. The epithelioma papulosum cyprini (EPC) cells were used 

for IHNV propagation (Fijan et al., 1983). The cells were grown at 28°C in minimal 

essential medium (MEM) supplemented with 10% fetal bovine serum and 2 mM L-

glutamine. For preparation of IHN virus stocks, confluent monolayers of EPC cells were 

infected with the virus at a multiplicity of infection (MOI) of 0.01 in MEM with 2% fetal 

bovine serum. After 1 h of adsorption, the inoculum was removed, and the cells were 

incubated at 14°C until extensive cytopathic effect (CPE) was observed. The supernatant 

was collected 5 days post-infection (p.i), clarified and stored at -80oC for further 

processing. 
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RNA extraction and amplification  

 
      Viral RNA was extracted from cell culture supernatant, using a Qiagen RNAeasy kit 

according to manufacturer’s instructions, and stored at -20°C. The oligonucleotide 

primers used in this study are listed in Table 6-1. First strand synthesis was carried out in 

a tube containing 5µl of RNA, which was denatured at 70°C for 10 min in the presence of 

DMSO (3µl), 1 µl forward gene-specific primer, 1µl of 25 mM dNTPs, and snap-cooled 

on ice for 1 min.  The reaction mixture containing 2µl of 10X RT buffer, 2µl of 0.1M 

DTT, 4µl of 25mM MgCl2, 1µl of Superscript III RTTM, and 1µl of RNase OUTTM was 

incubated at 50°C for 1 h.  PCR amplifications were carried out using a pfx50TM PCR kit 

(Invitrogen, CA), according to manufacturer’s instructions. Briefly, the following mixture 

was used for PCR amplification: 3µ1 of cDNA, 2µl of primer mix; 5µl of 10x PCR 

buffer [100 mM Tris-HCl (pH 9.0), 500 mM KC1, 1% Triton X-100], 2µ1 of 25 mM 

MgCl2, 0.5ul of pfx50 polymerase, and 37µ1 of DEPC water, to make a final volume of 

50 µ1. Reaction was carried out in a thermal cycler (MJ Research Inc., Waltham, MA), 

using the following program: denaturation at 94°C for 30sec; annealing for 30sec at 

60°C; and extension at 68°C for 2 min. The RT-PCR products were separated by agarose 

gel electrophoresis and purified using a QIAquick gel extraction kit (Qiagen, CA). 
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Table 6-1. Oligonucleotides used for insertion of foreign genes in the IHNV genome 
 
 

Primers Sequences 

VP2R GCTGTTTGTGT TCATGCCTTTGAGGTTGGTAGGT 

VP2F TTAACGCCACCATG AGCACATCCAAGGCAAC 

VP2 5’R CATGGTGGCGTTAATTAA TCTGTCTCTCAGGTGTCG

N Start N/PR GTCAT GGTGGCGGTTTGAGTTGAAAAGCAC 

N Start N/PF CTCAAACCGCCACC ATGACAAGCGCACTCAGA 

N/P IGF TGAACACAAACAGCCCCCCTT 

HEN/PR GGCTGTTTGTGTTCAAGCAACAGACAGAATT 

HEPstF TCTGCAGAAACCGCCACCATGGCACGATTC 

N/P PstR TGTTGTGGTTTCTGCAGAAAAGCACTATA 

N/P PstF TATAGTGCTTTTCTGCAGAAACCACAACA 

500R CTTCACGATCGTTTCTGCTAGCTTGTTG 

1F GTATAAGAAAAGTAACTTGAC 

1R CTTCCCTCGTATTCATCCTC 

900F CCTTCTAGAGGATCTGTGCAT 
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Fig. 6-1. Construction of the pIHNV-VP2 and pIHNV-HE plasmids. A 1,329 nt fragment 

containing a IPNV-VP2 ORF was inserted into the non-coding region immediately before 

the N ORF. The untranslated region (UTR) between 3’ proximal of IHNV genome and N 

ORF (174nts) was fused at the N-terminus of the VP2 ORF. The UTR between the N and 

P ORFs was amplified and ligated with the VP2 ORF at the C-terminus. The pIHNV-61 

was engineered by site-directed mutagenesis to introduce a PstI restriction enzyme site 

between the N and P genes, where the HE protein ORF was inserted.  The UTR (115nts) 

between the N and P ORFs was amplified and fused with ISAV-HE ORF at the C-

terminal. A PstI restriction enzyme site was introduced by PCR at both the ends of this 

cassette for cloning purpose.  
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Cloning and sequencing  

 The purified RT-PCR products were cloned into a pCR2.1 TOPO® TA vector 

(Invitrogen, CA). Plasmid DNA was sequenced by dideoxy chain termination method, 

using an automated DNA sequencer (Applied Biosystems, CA). All the DNA sequence 

analyses were performed by the Center of Marine Biotechnology (COMB), University of 

Maryland Biotechnology (UMBI) core facility, which houses an ABI 3130 XL Genetic 

Analyzer having 16-capillary electrophoresis channels (Applied Biosystems, CA). 

Construction of full-length plasmid 

 The attenuated strain of IHNV 220-90, IHNV-61 was used produce recombinant 

viruses. Briefly, a full length cDNA copy of the IHNV RNA genome was constructed by 

assembling six overlapping cDNA fragments generated through RT-PCR by standard 

cloning techniques. The clones were ligated serially by natural or artificially created 

unique restriction sites as described earlier (Ammayappan and Vakharia, 2009b). Full-

length clone was sequenced completely for its integrity using an automated DNA 

sequencer (Applied Biosystems, CA). The VP2 ORF (1,329 nt; GenBank access number, 

AF343573) was amplified from IPNV Buhl strain RNA by RT-PCR with specific primers 

(Table 6-1). An additional transcription unit comprises of untranslated regions between 3’ 

proximal of IHNV genome and N ORF (174nts) was fused at the N-terminus of VP2 

ORF. The untranslated region between the N and P ORFs was amplified and ligated with 

the VP2 ORF at the C-terminus. Without introducing any restriction sites, VP2 ORF was 

inserted with additional transcription unit at the 3’-end of the genome before N gene (Fig 
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6-1). This completed the full-length IHNV cDNA plasmid carrying VP2 ORF of IPNV 

(pIHNV-VP2). 

 The hemagglutinin-estrase (HE) ORF (1,185nts; GenBank access number, 

AY059402) was amplified from ISAV Maine-2003 strain RNA by RT-PCR with specific 

primers (Table 6-1). An additional transcription unit comprises of untranslated regions 

between the N and P ORFs (115nts) was fused at the C-terminus of HE ORF. The PstI 

restriction site was included in the PCR primers (Table 6-1), such that both ends of the 

HE ORF with additional transcription unit have PstI restriction sites. Then the HE ORF 

was inserted with additional transcription unit at the PstI restriction site which was 

created earlier in the full-length clone at the beginning of the P ORF ahead of start codon 

(Fig 6-1). This completed the full-length IHNV cDNA plasmid carrying HE ORF of 

ISAV (pIHNV-HE).  

DNA transfection and virus recovery  

 
 The plasmids pIHNV-220-90 (1 µg), pN (0.5µg), pP (0.2 µg), pL (0.2 µg), and 

pNV (0.15 µg) were diluted in 500ul µl Opti-MEM® medium (Invitrogen, CA). Next, 

Lipofectamine™ LTX reagent (Invitrogen, CA) was added slowly, according to 

manufacturer’s instructions, and incubated for 30 min at room temperature. The plasmid 

– Lipofectamine reaction mixture was added to the EPC monolayer in a six-well plate 

without replacing the growth medium. The transfection mixture was removed after 8 h of 

incubation at 28o 
C, and the transfected cells were washed and maintained in Eagle’s 

MEM (ATCC, VA) containing 10% fetal bovine serum at 14°C for 5 days. Cell 

monolayer was observed for the development of virus-induced cytopathic effect (CPE) 
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and also expression of EGFP (cells transfected with the EGFP plasmid). After 5 days of 

incubation, the cells were subjected to three cycles of freeze-thawing. Supernatant was 

clarified by centrifugation at 8,000 x g in a microcentrifuge, and used to inoculate fresh 

cell monolayers in T-25 flasks at 14°C. The supernatant was harvested and clarified for 

further processing of the recombinant viruses.  

 
RT-PCR  

 RT-PCR was performed on the RNA extracted from the recovered viruses to 

demonstrate the presence of the VP2 and HE ORFs. Briefly, viral RNA was extracted 

from partially purified virus on 26% sucrose cushion, using RNeasy® Mini Kit (Qiagen) 

and RT-PCR was performed using primers specific for IHNV, which cover VP2 and HE 

ORFs respectively. The obtained RT-PCR products were then subjected to DNA 

sequencing to confirm the presence of VP2 and HE ORFs. Control reactions without RT 

were included to show that the PCR products were derived from RNA and not from 

transfected plasmid DNA.  

 
Western blot analysis 
 
 

To confirm expression of the recombinant proteins, Western blot analysis was 

performed using infected cell culture lysate. After CPE was complete (4-5days), the 

flasks were subjected to one cycle of freeze-thawing. The cell culture supernatant was 

clarified by low-speed centrifugation and the proteins were pelleted by ultra-

centrifugation at 70,000 x g for 2 h. The pelleted materials were resuspended in TNE 

buffer and the expression of proteins was checked by fractionating on a 10% SDS-PAGE.  

The gel was transferred to nitrocellulose (NC) membrane by electroblotting. The NC 
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membranes were blocked with 5% skim milk and incubated at 37°C for 1 hour with 

polyclonal antibody against IPNV and ISAV, respectively. After washing three times 

with PBST buffer (PBS pH 7.4 with 0.1% Tween-20), the NC membrane was incubated 

with alkaline phosphatase-labeled secondary antibody (KPL, Gaithersburg, MD). 

Detection was obtained using the colorimetric substrate Fast red and Napthol in 0.1 M 

Tris-Cl buffer pH 8.0. 

 
Virus titration  

  Virus titration was carried out in the EPC cells by plaque assay, as described 

previously with modification (Burke and Mulcahy, 1980). Briefly, the confluent 

monolayers of EPC cells, grown in six-well plates, were infected with serially diluted 

supernatants from virus stock. After a 1-h incubation at 14°C, the cells were washed once 

by PBS and overlaid with 0.75% methylcellulose (Difco) in Eagle MEM containing 10% 

FBS. After 7 days of incubation at 14°C, the overlays were removed and the cells were 

fixed and stained with a solution containing 25% formalin, 10% ethanol, 5% acetic acid, 

and 1% crystal violet for 5 min at room temperature. After rinsing  the cells with distilled 

water, the plaques were counted.  

 
Virus growth characteristics in cell culture 

 
Multiple-step growth characteristics of the recombinant viruses were compared 

with those of the parental virus. Briefly, EPC cell monolayers were infected with 0.01 

MOI of the rIHNV, rIHNV-VP2 and rIHNV-HE viruses. Supernatants were collected at 

indicated time points post-infection and replaced by an equivalent volume of fresh 

medium. The collected samples were stored at -80°C, and titrated later in parallel by 
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plaque assay. Each growth curve is based on the average of the virus titers from two 

infected monolayers. 

 
6.4 Results 

Construction of cDNA encoding IHNV antigenomic RNA containing the foreign 

epitopes 

 
 The full-length cDNA clone of attenuated strain of IHNV 220-90, IHNV-61 was 

used as a base vector to express IPNV major coat protein VP2 and also ISAV 

neutralizing glycoprotein HE. The VP2 protein ORF was inserted at the 3’ proximal of 

the genome ahead of the nucleocapsid protein gene. The UTR (174nts) between 3’ 

proximal of IHNV genome and N ORF  and the UTR between the N and P ORFs was  

amplified and fused with IPNV VP2 ORF. This cassette was used to replace the 174 

nucleotide long 3’UTR of IHNV genome and this replacement introduced an additional 

ORF of VP2 and N/P UTR. The insertion of this VP2- transcription cassette in between 

3’terminus and N ORF, to yield the rIHNV-VP2 cDNA, increased the length of the 

encoded antigenome to a total of 12,578 nucleotides. While the wild-type IHNV encodes 

6 major subgenomic mRNAs, the recombinant virus rIHNV-VP2 would encode 7 major 

subgenomic mRNAs. The strategy of cDNA construction is shown in Fig. 6-1. The HE 

protein ORF was inserted between the N and P genes. The UTR (115nts) between the N 

and P ORFs was amplified and fused with ISAV HE ORF at the C-terminal. A PstI 

restriction enzyme site was introduced by PCR at both ends of this cassette. This cassette 

was inserted at the PstI site which was created earlier in the IHNV full-ength clone at the 

beginning of P ORF start codon (Fig 6-1). This insertion introduced an additional ORF 
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and additional N/P UTR, and increased the length of the encoded antigenome to a total of 

12,434 nucleotides. 

 
Recovery of infectious virus 
 
 
 The strategy for producing infectious IHNV from cDNA-encoded antigenomic 

RNA was described in detail in the Methods section. It involves the coexpression in EPC 

cells of the five cDNAs encoding the antigenomic RNA and the N, P, L and NV proteins, 

which are necessary and sufficient for viral RNA replication and transcription. All these 

plasmids are under the control of CMV promoter and the cDNA expression was driven 

by cellular RNA polymerase II. Transfection experiments were carried out in EPC cell 

monolayers in six-well plates at 28°C. Cells were transfected with a mixture of full-length 

and supporting plasmids and then shifted to 14°C after 8hr incubation. The recombinant 

viruses were amplified by few cell passages and used for further studies.    

 
Analysis of the gene insertions by RT-PCR  

 
 RT-PCR was used to confirm the presence of the VP2 and HE genes in the 

predicted location of the genome of recombinant IHNV. The cell supernatant was 

pelleted through 26% sucrose and the genomic RNA was extracted from pelleted 

recombinant viruses. Two primers that flank the site of insertion of VP2 and also HE 

were chosen. As shown in Fig. 6-2, RT-PCR of the rIHNV virus (lane 2 and 4) yielded a 

single band that corresponded to the predicted fragments of ~600 and ~1200 nucleotides, 

which would represent approximately the first 600nts of the IHNV genome and 1200nts 

comprise of partial N and P genes, respectively without additional foreign sequences.   
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Fig. 6-2. Gel analysis of the RT-PCR products used to confirm the presence of the VP2 

and the HE genes in the genome of rIHNV-VP2 and rIHNV-HE, respectively. Reverse 

transcriptase PCR (RT-PCR) was carried out from the RNA extracted from pelleted 

recombinant IHNV (rIHNV) or rIHNV expressing IPNV-VP2 protein or rIHNV 

expressing HE protein of ISAV. RT-PCR was performed using primers specific for 

IHNV, which covers VP2 and HE ORFs, respectively. The product of lanes 1 and 2 is the 

result of 1F and 500R primers; lanes 3 and 4 is the result of 900F and 1R primers which 

are specific for the IHNV genome. Lane 1, control reaction without RT. The sizes of the 

molecular marker are indicated on the left. The larger RT-PCR products from rIHNV-

VP2 (2.1 kb) (lane 3) and rIHNV-HE (2.8 kb) (lane 5) confirmed the presence of the VP2 

and HE genes, compared to the smaller RT-PCR products (0.6 kb and 1.2 kb, lanes 2 and 

4, respectively) from rIHNV. 
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Analysis of rIHNV-VP2 viral RNA yielded a single product whose electrophoretic 

mobility corresponded to that of the predicted ~2100 nucleotide fragment (lane 3), which 

would represent the first 174 UTRs, VP2 ORF, UTR N/P ORF and ~350 nts from N 

ORF. At the same time, analysis of rIHNV-HE viral RNA yielded a single product with 

predicted ~2800 nucleotide fragment (lane 5), which would represent the last ~450nts of 

N ORF, N/P UTR, HE ORF, and first ~630nts of P ORF. When PCR analysis was 

performed without the RT step, no band was seen (lane 1), confirming that the analysis 

was specific to RNA. Thus, the RT-PCR analysis confirmed the presence of the VP2 

ORF and also HE ORF inserts at the predicted locations of the genomic RNA of the 

recombinant IHNVs.  

 
Expression of the VP2 and HE proteins by recombinant IHNVs 
 
 
 To examine the expression of VP2 and HE proteins by the rIHNVs, EPC cells 

were infected with rIHNV-VP2 and rIHNV-HE viruses at an MOI of 1. The cell culture 

supernatant was collected after completion of CPE and subjected to low speed 

clarification. The clarified supernatant was ultracentrifuged and the pellets were 

resuspended in TNE buffer. The viral proteins were separated on a two separate SDS-

10% polyacrylamide gels. The proteins were transferred to a nitrocellulose membrane, 

and the membranes were treated with polyclonal antibodies against ISAV and IPNV, 

respectively. The supernatant of rIHNV-VP2 and rIHNV-HE infected cells showed 

strong bands corresponding to the VP2 and HE proteins, respectively (Fig. 6-3). In 

addition to the 42kDa HE protein band, two other less intense major protein bands were 

noticed which probably represents a tightly bound dimer or broken part of dimer that 
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could not be separated by the SDS-PAGE dissociation buffer, as described earlier 

(Krossøy et al., 2001). 

 
Growth kinetics of recombinant viruses and plaque morphology 

 
The efficiency of replication of recombinant viruses in tissue culture was 

compared in a multi-step growth cycle. Duplicate monolayers of cells were infected with 

each virus, and samples were taken at 12-h intervals and quantitated by plaque assay. The 

replication efficiency of the recombinant viruses appeared to be lower than that of the 

wild-type virus (Fig. 6-4). This analysis showed that the production of rIHNV-VP2 and 

rIHNV-HE viruses (relative to that of rIHNV virus) was delayed and reached a maximum 

titer which was 1 log lower. EPC cells were infected with rIHNV or rIHNV-VP2 or 

rIHNV-HE viruses and incubated for several days until the appearance of plaques. The 

cells were then fixed and stained with crystal violet, and the plaque morphology was 

compared. The plaque sizes of the rIHNV-VP2 or rIHNV-HE viruses were comparatively 

smaller than that of rIHNV virus (Fig. 6-5). However, the microscopic appearance of 

plaques for all these viruses was approximately the same (data not shown). These results 

indicate that even though the biological activity of recombinant viruses carrying 

additional genes in cell culture was different, the change was not drastic. 
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Fig. 6-3. Western blot analysis of the recombinant IHNV expressing foreign proteins. 

EPC cells were infected with the rescued rIHNV-VP2, rIHNV-HE and rIHNV viruses at 

an MOI of 1.0. Five days later or after completion of CPE, supernatants were collected, 

clarified and subjected to ultracentrifugation. The pellet was loaded onto 10% SDS-

polyacrylamide gel. Expression of foreign proteins was detected by western blotting 

using polyclonal antibodies against wild-type IPNV and ISAV, respectively. A) 

Expression of the VP2 protein (~50kDa) of IPNV, B) Expression of the HE protein 

(~42kDa) of ISAV. Lane M: Molecular weight marker (molecular weight in kDa is 

shown on the right) 

135  



 

136  

0

1

2

3

4

5

6

7

12 96

Vi
ru

s 
tit

er
 lo

g1
0(

PF
U/

m
l)

24 36 48 60 72 84

Infection time (h)

rIHNV
rIHNV-VP2
rIHNV-HE

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig .6-4. Growth kinetics of recombinant viruses in EPC cells. EPC cell line was infected 

(at 0.01 MOI) with the recombinant IHNV (rIHNV) (♦), recombinant IHNV expressing 

VP2 protein (rIHNV-VP2) (■), or recombinant IHNV expressing HE protein (rIHNV-

HE) (▲). The cell culture supernatant was collected at 12hr intervals after post-infection. 

Supernatants were serially diluted and each dilution (100 μl) was for infection of 12 well 

plates. After 1 h of virus adsorption, supernatants were removed from wells and then 

overlaid with 0.75% methylcellulose. The infected cells were incubated at 14°C for 7 

days or until the development of countable plaques. 
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Fig. 6-5. Plaque morphology of recombinant rIHNV, rIHNV-VP2 and rIHNV-HE in EPC cells.EPC cells were infected with 

recombinant viruses by absorption for 1 hr. Cells were rinsed and immobilized with overlay medium containing 0.75% 

methylcellulose. At 9 days post-infection, the cells were fixed and stained with crystal violet. 



6.5 Discussion 

 
 
 Vectored vaccines facilitate a live-vaccine approach that does not involve the 

complete pathogen. Many negative-strand RNA viruses with non-segmented genomes 

have potential for use as vaccine vectors. The modular nature of their genomes makes it 

easy to engineer foreign genes (Conzelmann et al., 1998). Many researchers 

demonstrated that foreign genes could be expressed stably for several passages 

(Bukreyev et al., 1996; Mebatsion et al., 1996; Schnell et al., 1996; Hasan et al., 1998; 

He et al., 1997). Homologous RNA recombination has not been demonstrated for non-

segmented negative sense RNA viruses, which contributes to the stability of these vectors 

(Lamb and Kolakofsky, 1996; Palese et al., 1996). Rhabdoviruses has been utilized not 

only to express foreign genes but also to be used as a vaccine vector (Rose et al., 2001; 

Kapadia et al., 2005; Buonocore et al., 2002; Reuter et al., 2002; Schlereth et al., 2003; 

Faber et al., 2005; McGettigan et al., 2001a; McKenna et al., 2006). 

 
IHNV is particularly well suited to the development of a rhabdovirus vaccine 

vector for fish pathogens for several reasons. (i) IHNV grows to very high titers in fish 

cell lines especially EPC, which allows cost-effective and easy manufacture of the 

vaccine, (ii) IHNV recombinants expressing foreign proteins are therefore likely to grow 

to high titers and to produce the foreign proteins at high levels, (iii) IHNV is a 

rhabdovirus, its modular nature of genome which encodes only six proteins, allows easy 

expression of immunogeneic foreign proteins, and (iv) IHNV naturally infects trout and 



 

salmon which are the common host for many fish viruses. Thus, IHNV would be a 

suitable vector for expressing immunodominant proteins of fish pathogens. 

 
 VP2 is the major outer capsid protein of IPNV and is responsible for the 

production of type-specific neutralizing antibody (Dobos, 1995b; Nicholson, 1993). HE 

protein is one of the two major envelop proteins of ISAV and produced neutralizing 

antibodies against ISAV (Falk et al., 1998; Cunningham et al., 2002; Nylund et al., 2003; 

Plarre et al., 2005).  Since VP2 and HE are the major neutralizing epitopes, they should be 

delivered in a native conformation which is critical for correct antigen processing and 

presentation. The expression systems currently being used to express fish viral proteins 

are not efficient simply because of their higher temperature or incompatible cell line 

nature. This results in misfolding, conformational instability and inefficient glycosylation 

of proteins (Cain et al., 1999; Lecocq-Xhonneux et al. 1994; Lorenzen and Olesen 1997; 

Alonso et al., 2004).   Research on rhabdovirus G proteins suggests that glycosylation 

may be critical for neutralizing antibody formation (Machamer and Rose 1988, Prehaud 

et al., 1989). Since ISAV and IPNV grow at low temperature (15 and 20°C, respectively), 

the immunogenic proteins should be expressed at low temperature to maintain the epitope 

conformation and to stimulate appropriate immune response. IHNV is an ideal vector to 

express these immunogenic proteins because it grows at 14°C in EPC cells. Various 

attempts (Christie, 1997; Shivappa et al., 2005; Allnutt et al., 2007) to develop a vaccine 

against IPNV have not yielded consistent results. Thus, at present, no commercial 

vaccine is available that can be used with confidence to immunize fry of salmon and 

trout. In case of ISAV, although autologous vaccines are used in certain areas, no product 
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is currently licensed for general use. Hence, it is essential to develop a novel vaccine for 

mass vaccination of small fish. 

 
In this study, we expressed VP2 protein of IPNV at the 3’ proximal location of 

IHNV genome before the N protein ORF and HE protein of ISAV in between the N and 

P genes. Western blot analysis shows high level expression of VP2 and HE proteins (Fig. 

6-3). At the same time, the replication kinetics shows (Fig. 6-4) that the rIHNV-VP2 and 

rIHNV-HE viruses grow at least one log lower than its parental virus (rIHNV). The 

presence of the additional gene slightly retarded the virus replication and resulted in a 

one-fold decrease in virus yield during multi-cycle growth. The transcriptional 

attenuation at the border between the IHNV genome and the additional genes could also 

be responsible for reduced virus replication, as demonstrated earlier (Hassan et al., 1998; 

Bukreyev et al., 1996). The viral expression of VP2 and HE proteins was stable at least 

for five serial passages. The results from standard passages, in each of which the virus 

underwent numerous rounds of replication, suggested a high degree of functional stability 

of the inserted gene, in accordance with other foreign gene expression systems reported 

for non-segmented negative-strand RNA viruses (Schnell et al., 1996a, 1996b; Mebatsion 

et al., 1996; Bukreyev et al., 1996). 

 
The recombinant IHNV viruses carrying VP2 and HE proteins (rIHNV-VP2 and 

rIHNV-HE) have several advantages over the existing IPNV and ISAV vaccines. The 

recombinant viruses will be highly economical for the aquaculture industry in terms of 

mass vaccination by water-borne route which would reduce the cost of vaccination. Since 

there is no live IPN or ISA virus is given, there is no danger of virus carriers or reversion 
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in virulence. Finally, it was reported that the NV protein of IHNV is associated with viral 

pathogenesis and essential for viral replication (Thoulouze et al., 2004). It was also 

demonstrated that elimination of the NV protein expression in IHNV rendered the virus 

attenuated but still immunogenic and that the attenuated IHNV vaccine strain could be 

administered in water (Romero et al., 2008). Therefore, the recombinant virus can be 

tailored with ease for live mass vaccination. Thus, the recombinant virus described here 

for the protection of IHNV, IPNV and ISAV will be highly beneficial to the aquaculture 

industry. However, their practical use still needs to be evaluated, particularly with regard 

to factors such as safety, route of delivery and efficacy. 
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Chapter 7  

Conclusions and future studies 

 

7.1 Conclusions 

 
 With the ultimate goal of producing a recombinant live-attenuated vaccine to 

control IHNV infections, we have established a reverse-genetics system for IHNV 220-90 

strain. Information about the complete genomic sequence of IHNV-220-90 is however 

essential for genetic manipulation. Hence, in this study, prior to the development of the 

virus rescue system, we determined the unknown sequences (except G gene) of IHNV-

220-90. The complete genomic sequence of 220-90 strain was determined by RT-PCR of 

genomic RNA from six overlapping clones. The complete genome sequence of 220-90 

comprises 11,133 nucleotides (GenBank GQ413939) with the gene order of 3’-N-P-M-G-

NV-L-5’.  These genes are separated by conserved gene junctions, with di-nucleotide 

gene spacers. The nucleotides at the 3’- and 5’-termini show complementarity as the 

other novirhabdoviruses.  

 
The complete genomic sequence of IHNV 220-90 determined by us was utilized 

to establish a reverse genetics system for IHNV. A first reverse genetics for 

Novirhabdovirus was developed by Johnson et al., 2000, for snakehead rhabdovirus 

(SHRV) which was followed by the recovery of IHNV by Biacchesi et al., 2000. These 

systems utilized vaccinia virus expressing T7 RNAP to rescue the recombinant viruses.  

Hence, there remains a need for development of methods for production of recombinant 

novirhabdoviruses where such methods are independent of the need for T7 RNAP and 
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independent of a vaccinia helper virus. The present study provides a method for 

production of recombinant rhabdoviruses which is completely free of vaccinia helper 

virus and T7 RNAP. The methods include use of a plasmid containing a full-length 

cDNA copy of the virulent IHNV (strain 220-90), flanked by hammerhead ribozyme 

(HHRz) and hepatitis delta virus ribozyme (HdvRz) sequences. The viral cDNA is under 

the control of cytomegalovirus (CMV) immediate-early promoter and is transcribed by 

cellular RNA polymerase II upon transfection. This provides a more efficient and 

convenient method for recovery of any Novirhabdoviruses. 

 
IHNV is one of the detrimental diseases affecting salmonids and always a major 

threat to aquaculture.  No licensed commercial vaccines aimed at mass vaccination of the 

juveniles are available. Fish surviving infection with IHNV are generally resistant to re-

infection and often possess IHNV neutralizing antibodies. The ability of the virus to elicit 

an immune response in salmonids suggests that vaccine development may be feasible and 

provide an effective method of disease control. The development of vaccines against 

IHNV has focused on killed or live whole virus preparations (Nishimura et al., 1985; 

Leong et al., 1988), recombinant subunit vaccines (Gilmore et al., 1988), synthetic 

peptide (Emmenegger et al., 1977) and DNA vaccines (Anderson et al., 1996). Killed and 

live virus vaccines provide protection but regulatory concerns, cost of production and 

residual virulence has inhibited commercial licensing. The situation has prompted 

development of recombinant subunit vaccines expressing epitopes of the glycoprotein of 

IHNV in bacteria (Gilmore et al., 1988; Xu et al., 1991, Leong and Fryer, 1993), or 

baculovirus (Koener and Leong, 1990; Cain et al., 1999) but with limited experimental 

success. Therefore, it is necessary to develop a highly stable and efficient IHNV vaccine.  

143  



 

 To achieve this goal, it is necessary to identify the role of each viral protein in 

pathogenesis and virulence. The development of reverse genetics techniques has made 

possible to investigate host interaction and pathogenicity of negative-strand RNA virus at 

a molecular level in greater detail. Particularly, genetic manipulation of the viral RNA 

genome can be performed at the cDNA level and infectious virus can be recovered and 

studied in greater detail for their virulence and pathogenesis. With the help of a reverse 

genetics system, we have investigated the role of the G protein in IHNV pathogenesis. 

Since the G protein of IHNV is a envelop protein which is involved in viral attachment 

and cell entry, studying the role of G gene is important to understand the molecular basis 

of the viral virulence. Using the reverse genetic system of a virulent IHNV strain 220-90, 

we exchanged the G gene with the attenuated strain, IHNV-61 and then studied those 

chimeric recombinant viruses for their replication and pathogenesis. Our studies 

demonstrated that the G protein of IHNV plays a major role in the virulence of IHNV. 

 
 To demonstrate the vector potential of rIHNV-220-90, we recovered recombinant 

IHNV expressing EGFP (rIHNV-EGFP) as a foreign protein through our improved 

reverse genetics technique. The recovered recombinant virus showed growth properties 

similar to that of the wild-type virus in tissue culture, but the titer of the EGFP-expressing 

virus was slightly reduced when compared to rIHNV. The rIHNV-EGFP virus expressed 

EGFP stably for at least ten serial passages in cell culture. These results demonstrated 

that the recovered recombinant IHNV in this study could be used as a vector to stably 

express foreign proteins. Therefore, we further explored the vector potential of IHNV 

220-90 by expressing immunogenic proteins of two important fish viruses. The infectious 

pancreatic necrosis virus (IPNV) and the infectious salmon anemia virus (ISAV) are two 

144  



 

of the notifiable fish diseases listed by OIE. We expressed VP2 protein, which is the 

major coat protein of IPNV and HE protein, which is the immunodominant envelop 

protein of ISAV using recombinant IHNV. The VP2 protein was expressed from the very 

3’ proximal of the IHNV genome and HE protein was expressed between the N and P 

genes. The growth properties of these recombinant viruses showed that they grew one log 

titer lower and produced smaller size plaques than their parental recombinant virus. The 

rIHNV-VP2 and rIHNV-HE viruses expressed VP2 and HE proteins stably for at least for 

five serial passages in cell culture, which demonstrated that IHNV could be used as a 

vaccine vector to express immunodominant proteins of other fish pathogens. 

 

The major findings of this research are: 

1. The complete sequence of IHNV 220-90 strain is determined. It consists of 

11,133 nucleotide long single-stranded negative-sense genome and contains six 

genes in the order: 3’-N-P-M-G-NV-L-5’. 

2. The complete sequence of attenuated strain of IHNV 220-90 (IHNV-61) is also 

determined and compared with the virulent strain. The glycoprotein gene has 

majority of differences and contains 17 amino acid substitutions, and M protein 

has one amino acid substitution.  

3. Recombinant IHNV 220-90 was successfully recovered entirely from cDNA by 

reverse genetics approach. An efficient method of virus recovery for IHNV is 

established by rescuing recombinant virus using vaccinia virus-free system. This 

system utilized cellular polymerase II to drive cytomegalovirus (CMV) promoter 

plasmids.  
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4. The chimeric viruses produced by swapping of the M and G protein genes and 5’ 

trailer between the virulent and attenuated strain, demonstrated that molecular 

determinants of virulence resides mainly in the glycoprotein gene.  

5. The vector potential of IHNV was explored by expressing VP2 protein, which is 

the major coat protein of IPNV and HE protein, which is the immunodominant 

envelop protein of ISAV, and demonstrated that IHNV could be used as a vaccine 

vector to express immunodominant proteins of various fish pathogens. 

7.2 Future studies 

 
The role of an individual viral gene can be easily studied in the context of 

infectious virus, as opposed to studying the gene function in isolation. Desired mutations 

or deletions can be introduced in the IHNV genome with relative ease and the role of 

viral promoters, transcription signals, non-coding regions, and the intergenic sequences 

can be investigated in detail. 

 
In tissue culture, IHNV infection causes the shutdown of host protein synthesis 

(Hsu et al., 1986; Leong et al., 1983) and cytopathology characterized by cell rounding 

and cell death. Persistent infection has also been established in fish cells infected with 

IHNV (Engelking and Leong, 1981). It was demonstrated that over-expression of matrix 

protein alone causes inhibition of host transcription and down regulation of host protein 

synthesis which are common functions of the matrix proteins of the Rhabdoviridae family 

(Chiou et al., 2000). Mutations in viral genes required for cytopathic effects are often 

involved in the establishment of persistent infections (Black and Lyles, 1992). Similar 

mechanisms may also apply to the many negative-strand RNA viruses in which matrix 
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protein is known to establish persistent infections (Ayata et al., 1989; Cattaneo et al., 

1988; Roux and Waldvogel, 1982). One of the major concerns in IHNV infection is the 

survivors are long-term carriers of the virus and no determination has been made on 

whether vaccination also prevents the formation of a virus-carrier state in the survivors. 

Therfore, it is of paramount importance to develop a vaccine that will prevent carrier 

formation. It is an attractive hypothesis that the establishment of persistence could be 

circumvented by mutating the M protein of IHNV and it could be achieved by reverse 

genetic technology established for IHNV. 

 
Additional studies using N, P, NV and L genes of other virulent and avirulent 

strains will also provide more insight towards the critical role of these genes in IHNV 

pathogenesis. This information can be applied to attenuate the virulence of a virus to a 

less pathogenic form without altering its immunogenicity that can be used as a novel 

efficient vaccine against IHNV. 

 
The in vivo challenge studies should be done for rIHNV-VP2 and rIHNV-HE to 

investigate efficiency of these viruses in protecting fish against IPNV and ISAV, 

respectively. This will demonstrate the efficieny of recombinant IHNV in terms of 

vaccine vector for fish pathogens. The vector potential of IHNV should be explored for 

not only fish pathogens but also for mammalian pathogens as a non-replicating vector 

vaccine. The IHNV vector potential could be further explored in the sense of protein 

expression system. When mammalian or baculovirus or yeast expression systems are 

used to express proteins at low temperature, there would be no proper folding or 

glycosylation, which makes the protein of interest inefficient in terms of function and 
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yield. This could be easily avoided by IHNV expression system, which is very efficient 

and convenient to express temperature-sensitive proteins for vaccination, diagnostic or 

other experimental purposes. 

 
IHNV belongs to genus Novirhabdovirus which contain an additional gene coding 

for a small non-virion (NV) protein of unassigned function localized between the G and L 

genes, which is specific for this genus (Hoffmann et al., 2005). It was demonstrated that 

NV gene deleted rIHNV replicated very poorly in cell culture and also non-pathogenic in 

fish (Thoulouze et al., 2004).  This earlier study shed light on the essential role of NV 

gene in replication and pathogenesis. However, the exact mechanism of NV gene is yet to 

be demonstrated. There are many possible functions for this protein; may control the rate 

of transcription and replication; may be helpful in release of virion from the cell surface; 

may be involved in apoptosis pathways; or may be involved in the modulation of immune 

system in host. All these questions have to be answered and thoroughly investigated to 

understand molecular mechanism of this protein in IHNV replication and pathogenesis 

and to develop better vaccine for infectious hematopoietic necrosis disease. 

 

With the help of structural information of IHNV, improvements in efficiency of 

reverse genetic system for IHNV, and functional genomic study in fish and fish cells, 

further knowledge of the viral disease process, virus-host interaction and host protection 

will be gained. Based on these future studies, safe and stable live attenuated vaccines 

would be developed. 
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