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Leaf Area Index (LAI) is an important structural property of surface vegetation. Many 

algorithms use LAI in regional and global biogeochemical, ecological, and 

meteorological applications. This dissertation reports several new, improved methods to 

estimate LAI from remotely sensed data.  

 

To improve LAI estimation, a new atmospheric correction algorithm was developed for 

the Enhanced Thematic Mapper Plus (ETM+) imagery. It can effectively estimate the 

spatial distribution of atmospheric aerosols and retrieve surface reflectance under 

general atmospheric and surface conditions. This method was validated using ground 

measurements at Beltsville, Maryland. Several examples are given to correct AVIRIS  



 
 
 

(Airborne Visible/Infrared Imaging Spectrometer), MODIS (Moderate Resolution 

Imaging Spectroradiometer) and SeaWiFS (Sea-viewing Wide Field-of-view Sensor) 

data using the new algorithm.  

 

Next, a genetic algorithm (GA) was incorporated into the optimization process of 

radiative transfer (RT) model inversion for LAI retrieval. Different ETM+ band 

combinations and the number of “genes” employed in the GA were examined to evaluate 

their effectiveness. The LAI estimates from ETM+ using this method were reasonably 

accurate when compared with field measured LAI.  

 

A new hybrid method, which integrates both the RT model simulation and the non-

parametric statistical methods, was developed to estimate LAI. Two non-parametric 

methods were applied, the neural network ((NN) algorithms and the projection pursuit 

regression (PPR) algorithms. A soil reflectance index (SRI) was proposed to account for 

variable soil background reflectances. Both atmospherically corrected surface 

reflectances and raw top-of-atmosphere (TOA) radiances from ETM+ were tested. It was 

found that the best way to estimate LAI was to use the red and near infrared band 

combination of surface reflectance. In an application of this hybrid method to MODIS, 

the PPR and NN methods were compared. MODIS LAI standard products (MOD15) 

were found to have larger values than my results in the study area.  
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Chapter 1  Introduction 

 

Leaf area index (LAI), defined as the total one-sided green leaf area per unit ground 

surface area, describes an important structural characteristic of vegetation. Remote 

sensing provides a very effective means of rapidly-obtaining LAI over a large area. 

Currently, LAI is estimated from remotely sensed data through its statistical relationship 

with spectral vegetation indices, by physical model inversion and other methods. With 

the availability of some new sensors, it is necessary to test existing methods and find out 

if the development of new methods is needed. Although some remote sensing teams are 

providing LAI products, LAI accuracy is still unclear as large-scale validation work has 

not been done. Some primary validation results have shown the accuracy of existing LAI 

products cannot meet the requirements of various applications. For example, the current 

LAI products need improvement in terrestrial carbon cycle modeling (Cihlar et al., 

2000). My primary objective was to develop new algorithms to improve the estimation 

of LAI from remotely sensed data. The results obtained with these algorithms were 

validated with ground measurements. 

  

1.1 Importance of leaf area index (LAI) 

 

The plant canopy acts as a critical interface between the atmosphere and terrestrial 

biosphere. Considering the abundance of global vegetation, there is an enormous variety 

of canopy shapes, sizes, and attributes. Characterization of vegetation in terms of LAI, 

rather than species composition, is a critical simplification of different terrestrial 



 2

ecosystems worldwide (King, 1999). Because these leaf surfaces are the primary sites of 

energy and mass exchange, important processessuch as canopy interception, 

evapotranspiration, and gross photosynthesisare directly proportional to LAI (Chen, 

1996a).  

 

McNaughton and Jarvis (1983) demonstrated that LAI is important in determining 

canopy-scale estimates of evapotranspiration. Gholz (1982) and Grier and Running 

(1977) related LAI to the site water balance of mature coniferous forest communities in 

western Oregon. Functional relationships exist between LAI and net primary production 

(Gholz, 1982) and stemwood production (Schroeder et al., 1982) of temperate coniferous 

forests. McLeod and Running (1988) correlated LAI to volume growth of ponderosa 

pine (Pinus ponderosa) stands in western Montana. In perennial biomes such as forests, 

LAI reflects climatic optima; warm, wet climates produce forests of high LAI, while 

colder, drier climates produce lower LAI (McLeod and Running, 1988), so it could be 

used to measure the magnitude of the biogeochemical cycling of a vegetation type. LAI 

changes seasonally in crops and annual vegetation types, and the seasonal increase in 

LAI provides a good crop development monitor. Several reports (Botkin, 1986; Wittwer, 

1983) identify LAI as the single most important variable for characterizing vegetation 

energy and mass exchange for global-scale research. 

 

LAI is a required input to many models that quantify terrestrial photosynthesis (Running 

and Coughlan, 1988), hydrological balance (Bonan, 1993), global carbon cycle (Prince 

and Goward, 1995), and circulation processes (Sellers et al., 1986). Table 1.1 show 
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several regional and global programs which require LAI for agricultural, hydrological or 

climatic research. In this table, horizontal resolution (Hor Res), observing cycle (Obs 

Cycle), accuracy and delay of availability are all expressed as optimum/threshold values. 

 

FPAR (fraction of absorbed photosynthetically active radiation) is another important 

biophysical variable. FPAR is frequently used to translate satellite data such as  

 

Table 1.1 Observational requirements for leaf area index. 

 
Requirement Hor Res 

(km) 
Obs 
Cycle
(day) 

Accuracy
(%) 

Delay 
(day) 

Confidence Applications 

WMO 0.01-10 5-7 5-10 1-5 Reasonable Agricultural 
Meteorology 

WMO 10-50 7-30 5-20 1-7 Tentative Regional NWP 
WMO 0.01-10 7-24 5-20 1-5 Reasonable Hydrology 
WMO 50-100 7-30 5-20 1-7 Tentative Global NWP 
GCOS 0.1-1 10-30 20-100 10-30 Tentative Terrestrial 

Climate 
GTOS 0.1-1 10-30 20-100 10-30 Tentative Terrestrial 

Climate 
GCOS: Global Climate Observing System 
GTOS: Global Terrestrial Observing System 
NWP: Numerical Weather Prediction 
WMO: World Meteorological Organization 
(http://alto-stratus.wmo.ch/sat/stations/_asp_htx_idc/Requirementsearch.asp) 

 

NDVI (Normalized Difference Vegetation Index) into estimates of primary production. 

Asrar et al. (1992) found that FPAR is curvilinearly related to LAI, approaching the 

asymptote at an LAI of 6. LAI and FPAR are two basic quantities used in regional 

climate simulations. This dissertation focuses on LAI and its estimation from remotely 

sensed data.  
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In the laboratory, LAI is often calculated from the measured specific leaf area (SLA) 

(Gower et al., 1992). In the field, LAI could be obtained directly or indirectly: Direct 

methods measure LAI through litterfall or destructive sampling; indirect methods 

estimate LAI via measurements of canopy transmittance. Using the Beer-Lambert Law,  

which assumes that leaf inclination angles are spherically and randomly distributed and 

that the foliage is distributed randomly in space (Jarvis and Leverenz, 1983), canopy 

transmittance can be converted to LAI. The LAI-2000 is an instrument commonly used 

to indirectly estimate LAI (Deblonde et al., 1994; Lang, 1987). Hemispherical 

photographs and TRAC (Tracing Radiation and Architecture of Canopies) are two other 

methods that are often used, especially for forest canopies (Chen and Balck, 1991; Chen 

and Cihlar, 1995). Direct measurements are more accurate at a point scale and are often 

used in LAI validation. However, they are very labor-intensive and thus impractical for  

large regions. Indirect measurements of LAI, useful for quantifying small patches of 

vegetated areas (Kucharik et al., 1998), are subject to substantial errors due to their 

influence by shoot structures, dead branches and stems. For example, the LAI-2000 

could overestimate green LAI of canopies that contain numerous dead branches. In 

general, all laboratory and field LAI estimations are limited for global research needs 

and are primarily used for calibrating and validating other methods.  

 

1.2 Current optical remote sensing methods for LAI estimation 

 

Satellite remote sensing provides a unique way to obtain LAI over large areas (Prince, 

1999). Various data from new satellites that are or are going to be available will bring a 
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new era of LAI mapping (Table 1.2). There is a wealth of research into methods for the 

estimation of LAI using different optical remote sensing instruments. Algorithms for 

retrieving LAI from Landsat Multispelctral Scanner (MSS) (Yin and Williams, 1997), 

NOAA Advanced Very High Resolution Radiometers (AVHRR) (Privette et al., 1996), 

and Landsat TM (Fassnacht et al., 1997; Kuusk, 1998) have been developed. MODIS 

and MISR (Multiangle Imaging SpectroRadiometer) science teams also provide LAI 

products based on their methods (Diner et al., 1999; Knyazikhin et al., 1999). LAI data 

can also be obtained from ADEOS-POLDER and SPOT 4-VEGETATION.   

 

Table 1.2 Some representative instruments/teams that are using remote sensing to 
estimate LAI.* 

 
Instruments Res. 

(km) 
ObsCy. Agency 

 
HTTPs 

MODIS 1 8d NASA modis.gsfc.nasa.gov 
MISR 1.1 2d NASA www-misr.jpl.nasa.gov 
MERIS 0.3 3d ESA Envisat.esa.int/instruments/meris 
GLI 1 16d Japan sharaku.eorc.nasda.go.jp/ADEOS2/index.html
POLDER 6 41d CNES  
VEGETATION 1 1d Multi-

country 
www.spot-vegetation.com 

Panchromatic 
imager camera 
(PIC) 

0.01 7d NEMO, 
US 
Navy 

www.tec.army.mil/tio/nemo.htm 

Imaging               
spectrometer 

0.03 7d CSIRO, 
Australia

www.atnf.csiro.au/pasa/15_2/ryder/paper/ 

* http://alto-stratus.wmo.ch/sat/stations/satsystem.html 
 

However, LAI accuracy from sensors in Table 1.2 still cannot meet the requirements in 

Table 1.1. Even for MODIS, MISR and POLDER, the accuracies of the LAI products 

have not been well documented. For example, the current MODIS LAI product could 
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vary as much as ±25% from field-measurements*. My studies (introduced later in this 

dissertation) have found even greater errors. Investigations are also needed to address 

issues such as improving the LAI estimation accuracy at high LAI values for better 

understanding of the terrestrial carbon cycle (Cihlar et al., 2000). The following sections 

discuss general methods estimating LAI from remotely sensed data. 

 

1.2.1 Empirical relationships based on vegetation indices 

 

Early leaf reflectance measurements of visible and infrared energy identified a strong 

correlation between a red and near-infrared transmittance ratio and measured LAI 

(Jordan, 1969). Recognition that reflectance measurements offer the opportunity to 

“scale up” from the plot level to larger areas has sustained interest over the last three 

decades in developing empirical algorithms relating LAI to surface reflectance and to 

spectral vegetation indices (VI) derived from reflectance (Turner et al., 1999). 

Reflectances in red and near-infrared wavebands have been used to formulate various 

vegetation indices as indicators of the conditions of vegetated surfaces (Asrar et al., 

1984; Jordan, 1969; Kaufman and Tanré, 1992; Liu and Huete, 1995; Roujean and 

Bréon, 1995). Vegetation indices were designed to maximize sensitivity to the 

vegetation’s characteristics while minimizing confounding factors such as soil 

background reflectance, directional, and atmospheric effects.  

 

The most commonly used vegetation indices utilize the information contained in red and 

near-infrared (NIR) canopy reflectances or radiances. They are combined in the form of 
                                                 
* http://alto-stratus.wmo.ch/sat/stations/_asp_htx_idc/ParamInst.asp 
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ratios: ratio vegetation index (RVI) (Pearson and Miller, 1972) or normalized difference 

vegetation index (NDVI) (Rouse et al., 1974).   

 

                                                         RVI=RED/NIR                                                    (1.1) 

                                           NDVI = (NIR-RED)/( NIR+RED),                                    (1.2) 

 

where RED and NIR represent spectral reflectances in the red and near-infrared regions. 

Although these indices enhance the contrast between soil and vegetation and minimize 

the effects of illumination conditions, they are sensitive to optical properties of soil 

background. For a given amount of vegetation, darker soil substrates result in higher 

vegetation index values (Elvidge and Lyon, 1985; Huete et al., 1985).  

 

The perpendicular vegetation index (PVI) refers to the perpendicular distance from a 

point corresponding to canopy reflectance in red-NIR space and the line joining points 

for soil reflectance (Richardson and Wiegand, 1977). Experimental and theoretical 

investigations show that PVI is also affected by optical properties of soil background; 

brighter soils result in higher index values for a given quantity of incomplete vegetation 

cover (Huete, 1988 ; Huete et al., 1985). For this reason some new indices, which are 

less influenced by soil brightness, have been proposed, for example, the weighted 

difference vegetation index (WDVI) (Clevers, 1989), soil adjusted vegetation index 

(SAVI) (Huete, 1988), and the transformed soil adjusted vegetation index (TSAVI) 

(Baret et al., 1989) .  
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A common procedure to estimate LAI is to establish an empirical relationship between 

VI and LAI by statistically fitting observed LAI values to the corresponding VI. Among 

proposed LAI-VI relations are the following forms (Asrar et al., 1985a; Asrar et al., 

1985b; Baret, 1995; Best and Harlan, 1985; Curran, 1983; Peterson et al., 1987; Price 

and Bausch, 1995): 

 

                                                      LAI=Ax3+Bx2+Cx+D                                               (1.3) 

                                                             LAI=A+BxC                                                      (1.4) 

                                                         LAI=−1/2Aln(1-x)                                                (1.5) 

                                                               LAI=f(x),                                                        (1.6) 

 

where x is either a vegetation index or the reflectances derived from remotely sensed 

data. Coefficients A, B, C, and D are empirical parameters and vary with vegetation 

types. The last equation is a generic function of any form. Given a set of coefficients, the 

equations can be applied to remotely sensed images to map the spatial LAI distributions. 

These relationships were confirmed using reflectance model simulation (Sellers, 1985). 

Chen (1996a) showed that the RVI is the best for estimating LAI in boreal forests. White 

(1997) showed that the NDVI provided the best estimate of LAI in his study site (conifer 

forests).  

 

The advantage of the VI approach is its simplicity and ease of computation. However, 

the VI approach only uses very limited amounts of spectral information, generally red 

and infrared bands, though there is rich spectral information provided by current remote 
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sensing instruments. The proposed LAI-VI equations have diversified forms. These 

equations vary not only in mathematical form (linear, power, exponential, etc.), but also 

in their empirical coefficients, depending primarily on vegetation types. To use this VI 

approach operationally, an LAI-VI equation must be established for each vegetation 

type, which requires substantial LAI ground measurements and corresponding remote 

sensing data. Because there is no universal LAI-VI equation applicable to diverse 

vegetation types, it is difficult to use this approach for large-scale remote sensing 

images. Moreover, the vegetation indices approach a saturation level asymptotically for 

LAI ranging from 2 to 6, depending on conditions (Ahlrichs and Bauer, 1983; Best and 

Harlan, 1985; Chance, 1981; Daughtry et al., 1980). 

 

Another limitation of this approach is the sensitivity of VI to non-vegetation related 

factors such as soil background properties (Huete, 1989), atmospheric conditions 

(Kaufman, 1989; Vermote et al., 1990), topography (Holben and Justice, 1980; Justice et 

al., 1981), and bi-directional surfaces (Burgess and Pairman, 1997; Deering, 1989; 

Roujean et al., 1992). The effects from soil background variations and atmospheric 

conditions may be decreased to some extent by developing improved vegetation indices 

(Clevers, 1989; Huete, 1988; Kaufman and Tanré, 1992; Qi et al., 1994).  

 

1.2.2 Canopy reflectance model inversion 

 

Canopy reflectance models relate fundamental surface parameters (e.g., LAI, leaf optical 

properties) to scene reflectance for a given sun-surface-sensor geometry. During the last 
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three decades, roughly, a large of number of surface bidirectional reflectance distribution 

function (BRDF) models have been developed (Goel and Thompson, 2000; Myneni et 

al., 1989). Some models (sometimes called parametric models) are based on simple 

mathematical functions of reflectance distribution (Rahman et al., 1993; Roujean et al., 

1992; Walthall et al., 1985). Others are physical radiative transfer models and have been 

used to estimate plant morphological and optical properties (Goel, 1988; Qin and Liang, 

2000).  

 

1.2.2.1 Canopy radiative transfer models 

 

Canopy radiative transfer models may be grouped into four model classes: geometric, 

turbid medium, hybrid, and computer simulation.  

 

Geometric models simulate heterogeneous scenes with geometric objects (e.g., cones, 

spheroids, ellipsoids, cubes) protruding from a surface (e.g. Jasinski, 1990; Li and 

Strahler, 1985; Otterman, 1984). Optical behavior of the objects is constant or 

simplified. Reflectance anisotropy is determined primarily by the fractions and spatial 

orientation of shaded and sunlit surfaces (both canopy and ground) for a particular sun-

target-sensor geometry. Representative geometric models are used by Li et al. (1996; 

1986) and by Jupp et al. (1986), who use a spheroid-on-a-stick shape. Geometric models 

have been inverted to retrieve canopy structural (Li and Strahler, 1985; Woodcock et al., 

1997) and optical information (Chen et al., 2000; Otterman et al., 1987). 
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Turbid-medium models simulate a canopy with a cloud of infinitesimal platelets having 

the optical properties of plant organs (most commonly leaves). The models generally 

include single and multiple scattering; the former is determined quasi-analytically, while 

the latter must be approximated. The canopy architecture is described at the leaf level 

through LAI and LAD (leaf angle distribution). A widely used model in this category is 

the SAIL model (Verhoef, 1984) which was later modified to include hotspots and 

specular reflection (Goel and Kuusk, 1992). These models, best suited for dense 

canopies with small vegetation elements, have successfully simulated RT in mature 

agricultural crops. Drawbacks of the turbid-medium approach include the absence of 

scattering behavior caused by the finite size of actual scattering elements, which cause 

phenomena such as shading and the non-random orientation of scattering elements, (e.g., 

leaf clumping) which cannot be simulated by a uniform, turbid medium and thus makes 

them inappropriate for many canopies. Recent advances (Kuusk, 1994; Myneni and 

Ganapol, 1991; Ross and Marshak, 1989; Verstaete et al., 1990) have compensated for 

these shortcomings. Many turbid-medium models have been inverted to estimate LAI 

and other parameters (Goel, 1988; Kuusk, 1991; Kuusk, 1994; Liang and Strahler, 

1994a; Liang and Strahler, 1994b; Nilson and Kuusk, 1989; Privette et al., 1994; 

Verstaete et al., 1990). 

 

Hybrid models combine the spatial heterogeneity of geometric models and the realistic 

radiative transport treatment of turbid-medium models. This permits the simulation of 

gap probabilities and path-length distributions, along with single and multiple scattering 

(Li et al., 1995; Norman and Welles, 1983). However, multiple scattering is not 
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rigorously treated by these models (Goel and Thompson, 2000). In addition, the model 

complexity may result in a relatively high computational time. Thus, little operational 

application of these models has been reported in the literature. 

 

Computer simulation models use the positions and orientations of various vegetation 

elements to describe the canopy. One model type uses Monte Carlo methods which 

rigorously trace photo interactions with an arrangement of discrete scatterers within the 

canopy (Govaerts and Verstraete, 1998; Ross and Marshak, 1988). Although 

computationally expensive, these models accurately simulate within-canopy spatial 

heterogeneity (e.g., organ size distribution, leaf clumping, gaps) and scene-scale 

heterogeneity (e.g., topography) that other models must either neglect or approximate 

with quasi-empirical formulations. While several models have been developed (Boreal et 

al., 1991; Goel et al., 1991; Ross and Marshak, 1988), their computational expense 

reduces the likelihood that they will be adopted for inversion applications (Antyufeev 

and Marshak, 1990). 

 

1.2.2.2 Model inversion 

 

To calculate canopy biophysical parameters, the canopy RT model has to be solved. 

Model inversion has been mainly applied over the directional distribution of reflectance 

(Pinty et al., 1990). The general reflectance model inversion problem may be stated as 

follows: given a set of empirical reflectance measurements, determine the set of canopy 

biophysical variables such that the computed reflectances best fit the empirical 
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reflectances (Myneni et al., 1995). The fit of the empirical data is determined by a merit 

function, ε2, defined as  

 

                                             ∑∑
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where ijr  is the observed directional reflectance for a given viewing and solar angle 

geometry, ijr̂  the simulation model estimate, n the number of reflectance samples, B the 

number of spectral bands, and Wi represents the weight. A penalty function may be used 

to limit the independent parameter space to physically possible values. The ability to 

correctly determine target parameter space through model inversion, therefore, depends 

on the dataset ijr̂ , the model’s likeness to physical reality and the chosen-optimization 

algorithm’s ability to minimize ε2 over the parameter space. 

 

There are several methods for minimizing the merit function and the choice of a 

particular method depends on the mathematical properties of the function to be 

minimized. Some of these methods have been used for retrieving LAI, for example, the 

downhill simplex method used by Privette (1994), the conjugate direction set method 

used by Kuusk (1991), and Pinty’s (1990) quasi-Newton method. These methods do not 

require evaluation of function derivatives for minimization. They are particularly 

appealing for complex, nonlinear formulations, as in canopy reflectance modeling.  
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The look-up table (LUT) method provides a simple solution to the traditional inversion 

problem. It makes use of the precomputed model reflectances from a large range of input 

parameters (Kimes et al., 2000) and thus can speed up the inversion process 

significantly. The LUT method is used by the MODIS science team to estimate LAI 

from a three-dimensional radiative transfer model (Knyazikhin et al., 1998a). This 

method is easy to use since most of the complications lie in generating the database. The 

accuracy of the LUT method is dependent upon the accuracy of biophysically-based RT 

models.  

 

Canopy reflectance models have been applied to both spectral and directional 

dimensions (Bicheron and Leroy, 1999; Goel, 1988; Kuusk, 1995a; Privette et al., 1994; 

Roujean et al., 1997; Walthall, 1997). Model inversion has been mainly applied to the 

estimation of directional distribution of reflectance. For example, Liang and Strahler 

(1993b) presented a parametric model based on a rigorous canopy radiative transfer 

equation which is realistically sensitive to angular variation in sky radiance. Inversion of 

this model retrieved LAI very well (absolute difference<0.2 m2/m2).  

 

There are some major limitations in operational use of a canopy modeling approach. The 

main deficiencies of most radiative transfer models are their complexity and difficulty in 

parameter inversion, which is a major barrier when using large satellite images. This is 

the reason why only simple radiative transfer models such as turbid-medium or 

geometric optics have been used (Weiss and Baret, 1999). Some models may have 

multiple solutions, given a set of remote-sensing measurements, and the inversion may 
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not always converge (Jacquemoud, 1993). Some of these models are suitable for crops 

and grass land (Gao and Lesht, 1997; Kuusk, 1995a), while some are more applicable for 

forest because they take into account the canopy’s geometric structure (Li and Strahler, 

1992; Rosema et al., 1992).  

 

1.2.3 Nonparametric methods 

 

Neural network algorithms are commonly used, nonparametric methods in remote 

sensing parameter retrieval. They provide a very efficient tool to establish the 

relationship between the simulated reflectance field and the corresponding biophysical 

variables of interest (Baret et al., 1995; Baret and Fourty, 1997; Jin and Liu, 1997; 

Smith, 1993). Smith  first trained a back-propagation neural network to invert a simple 

multiple scattering model to estimate leaf area index from reflectance at three 

wavelengths and then subsequently applied the trained network to satellite observations. 

He reported error estimates under 30% and indicated that the method appeared to be 

much less sensitive to initial guesses for the parameters than other inversion techniques. 

Gong et al. (1999) employed an error back-propagation feed-forward neural network 

program to invert LAI and LAD from a canopy reflectance model (Liang and Strahler, 

1993a). The test results showed that a relative error between 1% and 5% or better was 

achievable for retrieving one parameter at a time or two parameters simultaneously. 

 

Projection pursuit regression (Friedman and Stuetzle, 1981) is a new method for 

nonparametric multiple regression. The procedure models the regression surface as a 
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sum of general smooth functions of linear combinations of the predictor variables in an 

iterative manner. It can be simply described (Friedman and Stuetzle, 1981) as:  

 

                                                     ∑
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α                                                   (1.8) 

 

where X, Y are the explanatory and predicted vectors, respectively, for vectors α, and a 

dimension M chosen by the user. It uses an additive model on predictor variables formed 

by projecting X in M carefully chosen directions. The projection pursuit regression is 

more general than standard stepwise and stagewise regression procedures, because it 

does not require the definition of a metric in the predictor space. Compared with the 

previously described LAI-VI equations (see 1.2.1), the projection-pursuit regression 

method makes a transform of VI first and then conducts the regression analysis. This 

method has not yet been used to estimate biophysical parameters from remotely sensed 

data. Therefore, it is very attractive to explore this method in the estimation of LAI. 

 

1.3 Objectives of this study 

 

This thesis seeks to develop new and improved methods for the estimation of LAI from 

remotely sensed data. Several topics will be addressed. First, raw satellite observation 

data were transformed into surface reflectance with a new atmospheric correction 

method. Second, the surface reflectance was used to derive surface LAI using a genetic 

algorithm optimization algorithm. Third, a hybrid RT inversion method was developed 
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and applied to Landsat ETM+ and Terra MODIS to retrieve LAI. The general outline is 

shown in Figure 1-1.  

 

1.3.1 Development of new atmospheric correction algorithm 

 

Atmospheric correction has been shown to significantly improve the accuracy of image 

classification and surface parameter estimation (Liang, 2003b). It is indispensable when 

one estimates surface parameters from satellite data which represent the combined 

radiance from surface and atmosphere. To derive surface biophysical properties from 

satellite measurements, the signals produced by the ground must be uncoupled from 

those by the atmosphere. Without such corrections, only correlative models can be 

developed to derive biophysical properties, unless one assumes that atmospheric effects 

are insignificant (Ouaidrari and Vermote, 1999). 

 

Analytical decoupling of the atmosphere and the surface effects on reflectance is a 

challenging problem. Vegetation indices such as the NDVI (Tucker, 1979) significantly 

reduce the atmospheric effect because of its normalization effect (Kaufman and Tanré, 

1992). Further reductions of atmospheric effects, including cloud effects, can be 

achieved by temporal compositing techniques in which several consecutive images are 

examined, and the value corresponding to the maximum vegetation index for each pixel 

is chosen (Holben, 1986; Kaufman, 1987; Kaufman and Tanré, 1992; Tanré et al., 1992). 
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One of the most popular methods is the ‘dark-object’ algorithm, which has been used for 

correcting surface radiance data from several satellites (Chavez, 1988). However, this 

method usually fails if there are no dense vegetation canopies or other dark objects in the 

imagery. To overcome this limitation, a new algorithm was developed for general 

atmospheric and surface conditions.  

 

1.3.2 Development of new LAI inversion methods 

 

Following the atmospheric correction, improved LAI estimation algorithms were 

developed. The first step was to find an algorithm which avoids the initial guess in the 

optimization and can find optimal results. Secondly, the advantages of both the physical 

RT inversion method and the non-parametric retrieval method were combined by 

developing a hybrid method.  

 

An evolutionary algorithm was explored instead of the current optimization methods. 

The evolutionary algorithm makes use of the concept of natural selection among variants 

formed by genetic mutation and recombination (Goldberg, 1989). Genetic algorithms 

(GA) have been applied to a variety of remote sensing optimization problems in recent 

years (Jin and Wang, 2001; Zhuang and Xu, 2000). A linking interface was created in 

order to incorporate GA into the RT model inversion process. The GA-based inversion 

method was compared with current optimization algorithms, which will be explored 

later. 
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Figure 1-1 Flowchart of the LAI estimation processes.  
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Non-parametric methods showed very good relationships between surface reflectance 

and LAI. Neural network methods are more often used than projection pursuit regression 

(Friedman and Stuetzle, 1981). To take advantage of both RT inversion methods and 

non-parametric methods, a hybrid inversion method was developed. A large amount of 

field data was obtained for the non-parametric training. In addition, there is also a large 

amount of satellite data in the study area. The hybrid method was tested first with the 30 

meters resolution Landsat ETM+ data. Subsequently, the method was extended to 

estimate LAI from Terra MODIS data. 

  

1.3.3 Validation of LAI products 

 

The algorithms were tested with different methods. The purposes of this validation were 

to: 1) Test the ability of satellite data to estimate LAI at different spatial scales; 2) 

Investigate the uncertainties and suitability of applying algorithms developed at point 

scale to local and regional scales; and 3) Compare the LAI values derived from remotely 

sensed data that have different spatial and spectral resolutions. 

 

The NASA Earth Observation System (EOS) science teams have special validation 

programs (e.g. MODIS land team, MODLAND) for their products. In the MODLAND 

validation, general approaches involve either airborne or higher resolution satellite data, 

or both, coupled with ground-based measurements. Intensive study sites form a major 

component of the MODLAND validation plan, and they have evolved into the EOS 
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Land Validation Core Sites (Cohen and Justice, 1999; Justice et al., 1998a; Morisette et 

al., 2002). NASA’s Airborne Science Program provides airborne platforms to carry 

NASA sensors such as the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), 

and EOS sensor simulators.  

 

The LAI estimation algorithm was developed from point-scale RT simulation and was 

applied to pixel-based remote sensing data. It should be noted that differences exist 

between the parameters obtained at points (high-resolution) and averages for areas (low-

resolution). Numerical experiments have shown that the retrieved LAI values from the 

satellite imagery could be quite different from the true LAI values if the surface is highly 

heterogeneous (Liang, 2000). Therefore, it is critical to examine whether the retrieved 

LAI values from low-resolution satellite data are equivalent to that upscaled from high-

resolution ones.  

 

The experimental site was the USDA Beltsville Agricultural Research Center (BARC) 

located in Beltsville, Maryland. This site, listed as one of the initial 24 NASA EOS land 

validation core sites (Morisette et al., 2002), is adjacent to the NASA Goddard Space 

Flight Center (GSFC) (39.03°N, 76.85°W). Detailed ground records include vegetation 

structural and optical characteristics and crop management information. Remotely 

sensed data in the study area include Landsat 7 ETM+, Terra MODIS, and SeaWiFS, 

etc. The GSFC operates a sunphotometer which provides the solar and atmospheric data. 
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Intensive validation work was carried out using the data collected in this study area. LAI 

estimated with these methods was compared with more conventional methods such as 

the LAI-VI relationships and some RT inversion methods. 

 

1.4 Structure of the dissertation 

 

The central objective of this research was to improve the estimation of LAI from 

remotely sensed data. After reviewing existing methods, the directions for this 

dissertation were pointed out in this chapter. A new atmospheric correction algorithm is 

introduced in Chapter 2. In Chapter 3, a new optimization method is explored by 

integrating RT models and genetic algorithms. A novel hybrid LAI estimation method is 

put forward in Chapter 4. This hybrid method is applied to estimate LAI from MODIS 

data in Chapter 5. Validation of LAI was not designed as a separate chapter, but was 

embedded in each relevant chapter. The final chapter summarizes the dissertation. 
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Chapter 2  Development of New Atmospheric Correction 
Algorithm 

 
 
2.1 Introduction 

 

As discussed in Chapter 1, satellite remote sensing plays a crucial role in the estimation 

of LAI at various spatial and temporal resolutions. However, use of remote sensing data 

to derive vegetation information is always hindered by the inherent non-vegetation 

information, such as atmosphere, which is also in the signal. Atmospheric correction 

becomes, therefore, indispensable and significantly improves the accuracy of surface 

parameter (e.g. LAI) estimation (Liang et al., 2001).  

 

Conventional atmospheric correction algorithms always include some major 

assumptions which limit their general application. For example, histogram matching 

methods assume that the surface reflectance histograms in both clear and hazy regions 

are identical and thus perform poorly if the spatial distribution of aerosols varies 

dramatically (Richter, 1996a; Richter, 1996b). The commonly used dark-object methods 

need to detect pixels with very low reflectance (such as densely vegetated surfaces or 

water) and are, therefore, inappropriate in winter or non-vegetated regions (Kaufman and 

Sendra, 1988; Popp, 1995). The main objective of this chapter is to develop a new 

atmospheric correction technique that can handle general atmospheric and surface 

conditions. 
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This chapter begins with a general review of atmospheric correction methods in section 

2.2, and then discusses the new methodology in section 2.3. The new method is applied 

to different remote sensing images such as ETM+, AVIRIS, MODIS and SeaWiFS. 

Field-measured data are used to validate the algorithm.  

 

2.2 Existing atmospheric correction algorithms 

 

All methods reported in the literature are roughly classified into the following groups: 

ground-based, image-based and atmospheric model-based methods. There is no distinct 

boundary among them. In fact, they are often used in an integrated fashion. 

 

2.2.1 Ground-based methods 

 

The ground-based methods rely on prior knowledge of surface reflectance for an image 

area. Atmospheric correction is performed by transforming image digital numbers (DN) 

into surface reflectance (ρ) through a linear regression: 

  

                                                   DNgb ×+=ρ                                                         (2.1) 

 

where g and b are coefficients usually derived from sampled coherent surface reflectance 

and raw DN data. If surface measurements are not available, a priori reflectance values 

can be assigned to some ground objects (e.g. water bodies or wet soils) before using 

equation (2.1). 
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Ground-based reflectance measurements are crucial to the calibration of satellite sensors 

(Slater et al., 1987). The ground-based method assumes that the surface is Lambertian 

and the atmosphere is homogeneous. Its major limitation is that it requires simultaneous 

surface measurement which is often realistically impossible. 

 

2.2.2 Image-based methods 

 

Liang et al. (2001) have provided a review of current image-based methods. A well 

known one is the so-called “dark-object subtraction (DOS)” method. Dark-object 

subtraction techniques require a histogram examination of each band to determine the 

“take-off point”the point separating shadowed and illuminated pixels (Chavez, 1988). 

Chavez (1988) provided an improved dark-object technique, which incorporates two 

factors: the wavelength dependence of atmospheric scattering and the relative 

radiometric sensitivities of the sensor's channels.  

 

The main advantage of the image-based method is that it does not require in situ field 

measurements of surface reflectances and/or atmospheric optical depths or simulated 

atmospheric parameters. However, DOS algorithms require the existence of extensive 

dark objects such as dense vegetation, water and wet soils in the scene, and they do not 

work well for non-vegetated surfaces. Moreover, the DOS technique is not acceptable 

for many applications, especially those dealing with medium to bright reflectance values 

(Myneni et al., 1995).  
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2.2.3 Atmospheric model-based methods 

 

Atmospheric correction can also be made with a coupled atmosphere and surface model 

based on the physical principles of solar flux transfer in an atmosphere-land surface 

system (Fraser and Kaufman, 1985; Lee and Kaufman, 1986; Tanré et al., 1979). Model-

based methods attempt to perform explicit atmospheric correction by using atmospheric 

radiative transfer (RT) models. Generally, two steps are involved in this kind of model. 

The first step converts satellite-generated digital numbers to at-satellite radiances using 

instrument calibration coefficients. Next, at-satellite radiance is converted to surface 

reflectance by correcting for atmospheric effects (Moran et al., 1992).  

 

Simplified model-based methods rely on assumptions, rather than measurements, of 

atmospheric conditions, but have varying degrees of accuracy (Dozier and Frew, 1981; 

Otterman and Fraser, 1976; Singh, 1988). One example of this is to convert at-satellite 

radiance to apparent reflectances (ρ′), directly, using (Tanré et al., 1987) 

 

                                                          FI 0/'' µπρ =                                                      (2.2) 

 

where I′ is the radiance measured at the sensor level, F is the solar flux, and µ0=cosθ0 in 

which θ0 is the solar zenith angle.  
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ρ′ differs from ρ (in 2.1) because of two main atmospheric effects: absorption by 

atmospheric gases (principally water vapor and ozone) in the visible and near-infrared 

range and scattering by aerosols and molecules. For a flat and Lambertian surface under 

a horizontally homogeneous atmosphere, the relationship between the apparent and 

surface reflectances can be expressed by  

 

                                        )1/()()(' 0 STT svsa ρθθρρρ −+=                                        (2.3) 

 

where ρ′, ρa, ρs are planetary, atmospheric, and surface spectral reflectance, respectively. 

T(θ0) is the total transmittance of the atmosphere from the sun to the pixel, and T(θv) 

from pixel to the sensor. S is spherical albedo of the atmosphere.  

 

The model-based approach is more general than empirical methods such as the dark-

object subtraction technique. The main deficiencies in the radiative transfer equation are 

its complexity and difficulty in parameter inversion. If the codes to solve the RT 

equations are used in conjunction with field measurements of atmospheric optical depth, 

the resulting reflectances are notably accurate (Holm et al., 1989; Moran et al., 1990). 

However, it is rather difficult, and sometimes not possible, to provide the aerosol optical 

depth data to solve equation (2.3).  

 

As I have mentioned above, these methods are not independent of each other, but are 

integrated in practical applications. For example, the dark-object algorithm requires 

some basic assumptions about ground surface reflectances (Richter, 1997). Some 
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enhanced “dark-object” algorithms have combined the use of radiative transfer models 

for removing the atmospheric effects (Chavez, 1996; Kaufman, 1989; Kaufman and 

Tanré, 1996). Liang et al. (1997) successfully combined the dark-object algorithm and 

the lookup table approach for atmospheric correction of Landsat TM imagery over land.  

 

2.3 New methodology 

 

A new atmospheric correction algorithm was developed to overcome the limitations of 

previously discussed, existing atmospheric correction methods. Remote sensing images 

are often contaminated by atmospheric aerosols, clouds and cloud shadows. 

Conventional methods are useful for processing horizontally homogeneous haze. 

However, for heterogeneously distributed haze, they are problematic. A cluster match 

method was explored to handle this problem. The general procedure is illustrated in 

Figure 2-1. There are two major steps in this method. The first step, estimating the 

spatial distribution of aerosol loading, and the second, correcting the adjacency effects, 

are described in two subsections.  

 

2.3.1 Processing heterogeneous haze 

 

It is assumed that the image is only partly affected by haze. The first step of this 

algorithm is to delineate the clear and hazy regions based on the visible bands. 

Currently, there are several convenient methods to delineate hazy regions (Cahalan et al., 

2001; Richter, 1996a; Zhang et al., 2002). In my study, a cluster analysis of the visible 
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Figure 2-1 Flowchart of the new atmospheric correction algorithm. VIS: visible bands; 

AOT: aerosol optical thickness. 
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bands (band 1, 2, and 3 for ETM+) is performed. The image is classified into between 

ten and twenty primary clusters. These clusters are then aggregated into a few major 

classes (e.g. clouds, hazy areas, shadows, and clear regions), visually. A haze mask is 

then generated.  

 

In equation (2.3), there are three unknowns: the atmospheric reflectance, the total 

transmittance and the atmospheric spherical albedo. To solve this equation, MODTRAN 

(Berk et al., 1999) is used to simulate the top of atmosphere (TOA) radiances for 

different atmospheric profiles and aerosol loadings and these are placed in a look-up 

table (LUT). The three unknowns are then determined for different atmospheric 

visibilities (Liang, 2001). My experiments show that a visibility of 50 km can well 

characterize the atmospheric conditions of the clear image. This visibility value works 

very well after retrieving and checking the initial minimum reflectances for different 

surfaces such as water body, dark forest, and wet soil. Thus, the aerosol optical depths 

are determined and the surface reflectances are retrieved for clear regions. 

 

In some cases, near infrared bands are contaminated by haze. The algorithm starts an 

ancillary histogram-matching module to correct the aerosol effects in the infrared bands. 

The clear region determined above is used as a reference for the hazy region. Their 

respective reflectance histograms are assumed to be the same. The idea is to predict the 

reflectance of the hazy regions in visible bands by haze-free regions of the same cluster. 

This prediction is carried out on a cluster-by-cluster basis (hence its name: cluster 

matching). An unsupervised cluster analysis is conducted for the clear near infrared 
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bands for the whole scene. In this process, the number of clusters needs to be 

determined. Experiments with several cluster numbers (20, 30, 50, and 80) found no 

significant differences. For any given cluster, the surface reflectance in the haze region is 

assumed the same as that of the clear region. Therefore, the mean reflectance value of 

the clear region is used for the hazy region of the same cluster in the first step. 

 

A spatial smooth operation is needed because the variations of aerosols are much 

smoother than the TM/ETM+ resolutions. In this study, a typical moving window of 5×5 

was found to produce very good results in the spatial smoothing. The aerosol data were 

used to search the look-up table and interpolate the best coefficients. The surface 

reflectance can be finally retrieved with the aerosol map and equation (2.3).  

 

Besides correcting aerosol scattering, attempts were made to remove the effects caused 

by cloud shadows. Because of the strong atmospheric scattering in the shorter 

wavelengths, shadows are more distinct in the near-infrared bands than the visible bands. 

This fact is important for the algorithm to process the shadow regions based on the same 

rationale used for the hazy regions. This time, the shadows are identified from 

unsupervised classification of the near infrared bands. The cluster analysis and cluster 

matching processes are performed for the visible bands. The average reflectance of the 

clear region is used for the shadow region of the same cluster. The look-up table 

constructed before is used here to derive the aerosol distribution map and estimate 

primary surface reflectance. 
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In this procedure, the surface properties of each cluster in the hazy region are assumed to 

be the same as the clear region. There are other ways to construct a relationship between 

the hazy and clear regions. The neural network (NN) method was found to be of limited 

use. The clear region was divided into training and test subregions. The trained NN, 

using data from the training subregion, shows that non-linear relationships exist between 

bands 4, 5, 7 and bands 1, 2, 3 (r > 0.98). However, there was a considerable amount of 

scatter in the test subregion. Different parameters of the NN were tried; they all 

performed poorly. Both radiance and reflectance data sets were used in the experiment 

and predicted the same poor results. In fact, reflectance data gave poorer results. 

 

2.3.2 Correcting surface adjacency effects 

 

The adjacency effect is caused by multiple reflections between the atmosphere and land 

surface. In high-resolution images, the pixel values over a heterogeneous landscape are 

affected by their neighboring pixels resulting in typically hazy images without contrast. 

This problem has been extensively investigated (Kaufman, 1989). Adjacency effect 

correction methods can be grouped into two broad categories: (1) using the atmospheric 

point spread function (PSF); and (2) developing empirical formulae. 

 

The PSF describes the physical, optical and electronic properties during the remotely 

sensed data acquisition process. If the PSF of a scene is known, the inverse function can 

be used to correct the data to spatially specific surface reflectances. Different methods 

have been explored to calculate the atmospheric PSF, such as the Monte-Carlo 
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simulations (Miesch et al., 1999; Reinersman and Carder, 1995) or radiosity simulations 

(Borel and Gerstl, 1992). However, calculating the atmospheric PSF is computationally 

intensive. A deconvolution calculation is necessary to reconstruct the real image and it 

requires considerable computer resources. For high-resolution satellite imagery (e.g., 

ETM+ or SPOT), the validity of using the atmospheric PSF method is still questionable 

because a simple deconvolution cannot account for multiple reflections between the 

atmosphere and the surface. 

 

Because of the difficulty of the PSF method, empirical methods are often used. Pinilla 

Ruiz (2002) approximated the PSF with linear step functions and devised a set of 

deconvolution filters for each image from its PSF. Some researchers simplified the 

process by taking into account only several neighboring pixels for calculating the 

effective reflectance (Singh and Cracknell, 1986). Popp (1995) calculated the 

contribution of the environment surrounding a pixel using  
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where Ai and AF are reflectances before and after adjacency processing for pixel i, s is 

the pixel size, ζ is the approximated environmental contribution,  δR and δA are the 

optical depths of Rayleigh scattering and aerosols, HR and HA are the respective scaling 
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heights of Rayleigh scattering and aerosols, and Nn is the total number of surrounding 

pixels considered.   

 

Equation (2.4) is much easier compared with conventional PSF methods and produces a 

reliable result (not reported here). However, its application involves significant 

computation, especially for the iterative transfer fraction in (2.5). In addition, the 

accuracy of this algorithm relies on the acquisition of ancillary data (aerosol loading, 

water vapor content, aerosol type, vertical profiles, etc.) and their accuracies. Those 

ancillary data are usually difficult to estimate without field measurements.  

 

Based on extensive numeric simulation using a three-dimensional radiative transfer 

model (Liang et al., 2001), a simple convolution function g(s) was developed to produce 

the effective reflectance 
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where ρ(s) is the reflectance calculated without accounting for the adjacency effect and s 

is the distance (km) from the central pixel. The fitted empirical function is 
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Figure 2-2 Relative contribution of the neighboring pixels from equation (2.7). The 
aerosol optical depth (τ) is from May 11, 2000. The six lines are for band one to six 
downward. 
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where τ is the aerosol optical depth, and  
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One can see that equations (2.6), (2.7) and (2.8) are significantly easier to implement 

than (2.4) and (2.5). These equations are general and suitable for all the spectral bands. 
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In practice, they are very effective to process high-resolution images over a large area 

(Liang et al., 2001).   

 

The first term of the right side of (2.7) represents the contribution from background 

pixels, and the second term represents the contribution from the central pixel and its 

nearest neighbors. An example of the normalized functions of (2.7) is illustrated in 

Figure 2-2. One can see that the adjacency effect degrades as the distances to the central 

pixel increase. Among the six ETM+ bands, the visible bands are more affected by the 

adjacency effect than the near-IR bands.  

 

2.4 Results and validation 

 

2.4.1 ETM+ results  

 

The new method was used to correct ETM+ images over the study area at BARC. The 

surface reflectance values after atmospheric correction are represented in Figure 2-3. 

This image was acquired on July 28, 1999. The image size was 1500×1500 pixels. The 

atmospheric correction was performed by assuming a Lambertian and homogeneous 

surface and a standard rural atmosphere. Figure 2-3b shows the reflectance image after 

removing hazy and cloudy regions. Figure 2-3c is the image after removing shadows. 

The results demonstrate a great improvement compared with the original reflectance 

image (Figure 2-3a). All haze, thin clouds and shadows have been effectively removed. 

A difference 
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A        A’ 

B         B’ 

              
  (a). Top of atmosphere reflectance.              (b). Removing the hazy & cloud region. 

   
(c). After shadow processing.                     (d). Difference image of (a)-(c), band 1 

 
 

Figure 2-3 False color composite (RGB432) and difference images of Landsat ETM+ 
reflectances at the BARC study area (July 29, 1999). White/blue polygons in (a) are 
hazy/shadow regions, respectively.  Lines AA’ and BB’ are used in Figure 2-4.    
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image is shown in Figure 2-3d which clearly displays the areas that are greatly improved 

after correction.   

 

Figure 2-4 provides a more detailed look at the study area at BARC. The image of 

512×512 size was acquired on May 11, 2000. Some large shadow patches were removed 

after processing. Two transects were selected to quantitatively examine the atmospheric 

correction effects for both 1999 and 2000. Line AA’ crosses a developed area and was in 

a cloud shadow in 2000 (Figure 2-4a). Line BB’ goes through a forest and was in a hazy 

region in 1999  (Figure 2-3a). Statistical comparison of the ETM+ images before and 

after atmospheric correction shows that in the shadow region, the reflectance increased 

for band 4 (NIR) after atmospheric correction (Figure 2-4c). In the haze region, surface 

reflectance decreased for band 1 (blue) (Figure 2-4d). Quantitative comparison of the 

atmospherically corrected ETM+ reflectances and field-measured reflectances will be 

investigated in the following subsection. 

 

2.4.2 Validation 

 

In the study area at BARC, large amounts of field data were collected, spanning years, to 

validate the atmospheric correction algorithm. After visually examining the atmospheric 

correction, the estimated ETM+ reflectance is compared with the field-measured 

reflectance for different land cover types. One example is given in Figure 2-5. 

The atmospherically corrected reflectances are represented with crosses at the ETM+ 

central wavelength. They were obtained from the average reflectance of each plot. At  
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(a)                                                            (b) 

  

 

pixels 

AA’: Band 4 (NIR) 

   (c) 
 

pixels 

BB’: Band 1 (blue) 

(d) 

Figure 2-4 False color composite of ETM+ (RGB432) before (a) and after (b) 
atmospheric correction The image was acquired on May 11, 2000 and has a size of 
512×512.  (c) the NIR reflectance profiles of line AA’. (d) the blue band reflectance 
profiles of line BB’.  
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Figure 2-5 Comparison of retrieved surface reflectance from ETM+ (crosses) and 
measured (lines) reflectance at different sites on May 11, 2000. The solid line is the 
mean ASD reflectance and the dotted line is ± one standard deviation away from the 
mean.
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these sites, the average ASD (Analytical Spectral Devices (ASD), 2000) measurements 

are shown with solid lines in the figure. ASD measures the reflectance over 350-2500 

nm wavelengths. The solid line is the mean reflectance, and the two dashed lines 

represent the mean reflectance plus and minus one standard deviation. The gaps are the 

absorption bands where ASD sensors do not work because of high noise. In this figure, 

we can see that the retrieved ETM+ reflectances match well with the ASD 

measurements. Most ETM+ reflectances are within the one standard deviation range of 

the ASD measurements. The only exception is on asphalt. Because the ETM+ pixels are 

mixed with surrounding forests, they differ greatly from the point asphalt measurements.  

 

Figure 2-6 compares the two sets of reflectances at ETM+ bands. The ASD 

measurements are integrated into the corresponding ETM+ bands using the ETM+ 

sensor spectral response function. Both reflectances agree quite well with each other (all  

R2 are larger than 0.883). The absolute errors are not larger than 0.041 and the relative 

errors are less than 10%. This result is very satisfactory considering the many 

uncertainties (e.g., aerosol scattering model, measurement errors and surface 

heterogeneity) in the atmospheric correction process.   
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Figure 2-6 Comparison of the retrieved ETM+ reflectance and the aggregated ASD 
measured reflectance acquired on four dates: May 11, 2000 ( ), Oct 2, 2000 ( ), Apr 
28, 2001 ( ) and Aug 2, 2001( ). 
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Surface reflectance (Jul 28, 1999)

 

Figure 2-7 Comparison of the surface reflectance of ‘invariant’ objects from three ETM+ 
bands of May 11, 2000 and July 28, 1999. 

 

 

Some ground objects have very stable spectral characteristics over time, which can be 

used for verifying the atmospheric correction algorithm. Figure 2-7 compares the 

reflectances of those invariant objects acquired at two dates (July 28, 1999 and May 11, 

2000). The two reflectance images were registered together and nine plots were selected 

in total on each image including conifer forest plots (2), lake plots (2), highway 

intersection (sandy pavement) (1), Beltsville airport (concrete) (2) and asphalt plots (2). 

The mean reflectance of a 3×3 pixel window for each plot was calculated and compared. 

These invariant objects show strong agreement with each other. The maximum deviation 

is about 0.02. The residual standard error is 0.011, and the R2 is 0.969. 
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2.5 Extensions to other areas and sensors 

 

The above descriptions demonstrate that the new atmospheric correction algorithm 

worked well for ETM+. The cluster-match atmospheric correction method is especially 

advantageous for processing images acquired in winter when the dark-object methods 

fail because there is usually no dense vegetation available. Figure 2-8 shows some true 

color composite ETM+ imagery of agricultural fields before and after atmospheric 

correction. These three images are of 600×600 pixels acquired in South Dakota (row 31/ 

path 30) on November 17, 1999. The solar zenith angle was 63.51º and the azimuth 

angle was 162.83º. Correcting these images is challenging because there are no field-

measured aerosol data or water vapor content in this region. Thus, a clear visibility value 

(50 km) was used to represent the general aerosol characteristics of the clear regions. 

The aerosol patterns in these images were very different. After correction, most of the 

hazy regions were cleaned up. The results could be validated quantitatively using ground 

measurements for this area. 

 

The algorithm was extended to other sensors such as the airborne AVIRIS, spaceborne 

MODIS and SeaWiFS. These three sensors have very different spectral and spatial 

characteristics than ETM+. Since the new algorithm is particularly advantageous for 

processing heterogeneously distributed aerosols, three hazy images were obtained. 

AVIRIS and SeaWiFS produced images over the core study area, while the MODIS 

image came from northeast China since an ideal test image was hard to acquire for the 

study area.  
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Figure 2-8 Examples of three ETM+ scenes (Nov 17, 1999) before (left column) and 
after (right column) atmospheric correction.  The images are of true color composites 

(RGB321). 

 



 46

2.5.1 AVIRIS 

 

AVIRIS is a hyperspectral optical sensor that delivers the calibrated images of the 

upwelling spectral radiance in 224 contiguous spectral bands with wavelengths from 400 

to 2500 nanometers (Green et al., 1998). The AVIRIS image was acquired on May 11, 

2000 over the study area. The ground resolution was 20 meters. The AVIRIS data 

provide abundant near-infrared and middle IR radiometric information which greatly 

helps atmospheric correction. It was found that this method works very well in the study 

area (Figure 2-9). Figure 2-9a&c are raw images contaminated by heavy haze. The haze 

masked residential areas, roads, parking structures and other constructed areas. After 

processing with the new atmospheric correction method, these ground targets cleared 

remarkably (Figure 2-9b&d). The corrected images are useful for hyperspectral analysis 

and urbanization research. 

 

2.5.2 MODIS 

 

MODIS has one more near-IR band (1.63-1.65 µm) than ETM+ (Justice et al., 1998b). 

This helps the algorithm in the cluster-analysis and cluster-match procedures by 

providing more consistent classification. Figure 2-10 shows an example over the 

northeastern coast of China, acquired on May 7, 2000. The image is of 400×400 at 1 km 

resolution. Figure 2-10a&b compare the blue band imagery (band 3) before and after 

atmospheric correction. Figure 2-10c&d compare the standard false-color composite 

images using band 2, 1 and 4 as red, green and blue. The differences are significant, 
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(a)                                              (b) 

  

(c)                                            (d) 

Figure 2-9 AVIRIS images (May 11, 2000) of the BARC study area. (a) and (b) are band 
14 (500nm) before and after atmospheric correction using the cluster match method 
respectively. (c) and (d) are band 26 (618 nm) before and after processing. The image is 
512 (lines) × 614 (columns). 
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(a)                                                  (b)  

  

(c)                                                  (d)  

 

Figure 2-10 MODIS band 3 (blue) before (a) and after (b) atmospheric correction, and 
false color composite image (RGB214) before (c) and after (d) correction. The image 
size is 400×400. 
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particularly over blue band: haze and thin clouds have been effectively removed in the 

corrected imagery. The image color has been visually enhanced after processing. If 

surface reflectances were available, the correction could be evaluated quantitatively.  

 

The MODIS standard LAI algorithms do not process cloud and haze areas such as in this 

example, because of the algorithm’s limitations. Figure 2-10 shows that these small 

clouds and haze can be removed and thus these MODIS data can still be used to retrieve 

LAI.  

 

2.5.3 SeaWiFS 

 

SeaWiFS is designed for observing ocean productivity. It has eight bands total, six in the 

visible spectrum*. The rich visible information helps the algorithm in hazy/clear region 

demarcation. Unfortunately, there are only two near-IR bands. Theoretically, more near-

IR bands will help identify ground cover types in the clustering analysis. Because 

SeaWiFS imagery has a much coarser spatial resolution, the number of clusters used in 

this algorithm can be smaller than for ETM+ imagery. Figure 2-11 shows an image of 

the Washington, DC area acquired on November 6, 2000. The black/white image is band 

2 (blue), and the color imagery is composited using bands 7, 5 and 3 as red, green and 

blue. The hazy area in the lower part of the image has been effectively removed. 

Because of the lack of IR bands in the cluster analysis and fewer 

cluster numbers, the image reveals some patchy effects after correction. Therefore, 

further improvements are still needed for SeaWiFS correction.
                                                 
* http://seawifs.gsfc.nasa.gov/SEAWIFS.html 
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(a)                                                     (b) 

  
(c )                                                   (d) 

 
 

Figure 2-11 SeaWiFS band 2 (blue) before (a) and after (b) atmospheric correction, and 
false color composite image (RGB753) before (c) and after (d) correction. The image 
size is 512×512. 
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2.6 Summary 

 

A new atmospheric correction algorithm has been developed and applied to correct some 

remotely sensed images in this study. A cluster analysis was conducted using infrared 

bands. The mean reflectance of the visible bands in a clear region was used to represent 

the reflectance of the same cluster in a hazy region. The aerosol optical thickness of the 

hazy region was estimated using the look-up table created with MODTRAN. The aerosol 

map was smoothed with an average filter. Afterwards, the surface reflectance was 

calculated with atmospheric radiative transfer function (2.3). 

 

The results of the application of this method to ETM+ imagery have shown that this 

method works very well. All haze, thin clouds and shadows can be removed effectively 

after correction. Validation with surface measured reflectance proved that this new 

algorithm can be used to accurately retrieve surface reflectance (R2≥0.883).  

 

This algorithm has been extended to correct AVIRIS, MODIS and SeaWiFS imagery. 

Although there are no ground data to evaluate the accuracy of the correction algorithms, 

visual examples in this chapter have shown that the corrected images have been greatly 

improved. More near-IR bands facilitate the algorithm in the cluster-analysis process.  

 



 52

Chapter 3  LAI Retrieval Using a Genetic Algorithm  
 

3.1 Introduction  

 

In the first chapter, LAI estimation methods through canopy radiative transfer (RT) 

model inversion were reviewed. Conventional inversion methods determine the set of 

canopy biophysical parameters such that the computed reflectances optimally fit the 

measured ones (Myneni et al., 1995). Some optimization methods were introduced in 

that chapter. These methods are generally available in standard software libraries (e.g. 

Press et al., 1992) and are commonly used for complex, nonlinear formulations, such as 

in canopy reflectance modeling. One of their major limitations is multiple solutions at 

local minima, leading to large inaccuracies in the estimation of biophysical parameters. 

Moreover, the inversion may not always converge (Jacquemoud, 1993). These 

limitations motivated me to examine new inversion methods.   

 

Genetic algorithms (GA) have been applied to a variety of optimization problems in 

remote sensing. The fundamental concept of GA is based on natural selection among 

variants formed by genetic mutation and recombination (Goldberg, 1989). Genetic 

algorithms have been developed for retrieval of land surface roughness and soil moisture 

(Jin and Wang, 2001). Lin and Sarabandi (1999) used GA as a global search routine to 

characterize the input parameters (such as tree density, tree height, trunk diameter, and 

soil moisture) of a forest stand. The inversion was tested with measured single-polarized 

SAR (Synthetic Aperture Radar) data. Zhuang and Xu (2000) tried to retrieve LAI from 

thermal infrared multi-angle data using GA. But the resulting LAI values differed greatly 
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from field data (retrieved 2.9 vs. field 1.4). A genetic algorithm was applied to the 

numerical optimization of a crop growth model using AVHRR data (de Wit, 1999). The 

‘synthetic’ model output was compared with the ‘measured’ AVHRR signal and the 

goodness-of-fit was used to adjust the crop model parameters to find a better set of 

parameters. Renders and Flasse (1996) compared the conventional optimization methods 

(Quasi-Newton and Simplex methods) and the GA method, and designed new hybrid 

methods to combine the advantages of different optimization methods.  The new 

methods were tested with simulated data based on the model of Verstraete et al. (1990) 

but they were not tested and applied in any practical remote sensing scenario. 

 

For a conventional optimization inversion algorithm, the final solution is often affected 

by the initial values. Therefore, “the solution obtained through an iterative process is 

reliable only if the space of initial conditions is sufficiently scanned” (Bicheron and 

Leroy, 1999). The most significant advantages of the GA are that it avoids the initial 

guess selection problem and provides a systematic scanning of the whole population and 

several acceptable local solutions such that a global optimum solution could be 

identified. To my best knowledge, no work has been done to retrieve LAI from a canopy 

RT model with a GA optimization method. In this chapter, a GA is explored to invert 

LAI from a widely used canopy RT model (Kuusk, 1995b; Kuusk, 2001). In contrast to 

previous GA optimization in remote sensing applications, this study: 1) makes use of 

reflectances derived from high resolution, atmospherically corrected Landsat ETM+ 

data; 2) uses reflectance data to construct the merit function because they can be directly 

measured from ground and indirectly estimated from satellite measurement; 3) retrieves 
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LAI using a genetic algorithm from a canopy RT model; 4) validates the LAI values 

with field measurements, which many studies lacked.  

 

This chapter begins with an introduction of the genetic algorithm and the canopy RT 

model. It is followed by a description of the experimental plans. The results are 

presented in section 3.4. A brief summary is given at the end of the chapter.  

 

3.2 The genetic algorithm and the radiative transfer model 

 

My objective is to estimate LAI using a GA in conjunction with a canopy RT model 

from field-measured reflectance and the retrieved ETM+ spectral reflectance. In this 

section, the GA and the canopy RT models are introduced. GA simulates the process of 

natural selection and evolutionary genetics. A detailed description of GA can be found in 

Goldberg (1989) and Davis (1991). A typical algorithm is composed of a number of ad 

hoc steps, including:  

 

1) Determination of the parameter space (e.g., x1, x2, …); 

2) Development of an arbitrary encoding algorithm to establish a one-to-one 

relationship between each chromosome and the discrete points of the parameter 

space (e.g., x1: 1~10, x2: 1-100, …); 

3) Random generation of a trial set of parameters known as the initial population 

(e.g., x1=3.5, x2=57, …); 
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4) Selection of high-performance parameters according to the objective function 

known as natural selection (e.g., x1 and x2 are selected); 

5) Mating and mutation of the parameters for the next generation (e.g., x1=3.2, and 

x2=53 work best); 

6) Repeat of steps 4 and 5 until the convergence is reached (x1, x2 values are the 

solutions). 

 

A simple GA model includes reproduction, crossover, and mutation. These genetic 

operations alter the composition of ‘offspring’ during reproduction. A complete GA also 

needs other parameters, such as population size, probabilities of applying genetic 

operators, etc. Determining these GA operators and parameters can be a highly difficult 

and time-consuming task. The definition of an optimum set varies from task to task. 

Investigation of the variability of these parameters is not intended. Thus, a trial-and-error 

process was carried out in this experiment to get the more suitable values for some 

parameters. For others, existing settings will be used which have been reported to work 

well across a variety of applications.  

 

The genetic software used in this study, GENESIS (Grefenstette, 1990), is a package 

frequently mentioned in the GA literature. GENESIS is easy to use and it provides 

default parameter settings that are robust for a variety of applications. In the GA, each 

chromosome could be represented with binary or real numbers. Using the real number is 

more popular and was applied in this experiment. The chromosome is composed of 

genes. Each gene (or free parameter) takes a range of floating point values, with a user-
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defined output format. The existing settings in GENESIS are used in the experiment, 

which work reasonably well across a variety of applications (Clark and Cañas, 1995).  

 

Many canopy RT models have been inverted to obtain the land surface biophysical 

parameters (Goel and Kuusk, 1992; Kuusk, 1994; Liang and Strahler, 1994b; Privette et 

al., 1994; Verhoef, 1984; Verstaete et al., 1990). I focus on the popular Markov chain 

reflectance model (MCRM) developed by Dr. Kuusk (Kuusk, 1995b; Kuusk, 2001). The 

MCRM calculates the angular distribution of the canopy reflectance for a given solar 

direction from 400-2500nm (Kuusk, 1995b). This model incorporates the Markov 

properties of stand geometry into an analytical multispectral canopy reflectance model 

(Nilson and Kuusk, 1989). The inputs of the forward MCRM are summarized in Table 

3.1.  The solar zenith angle θi represents the value when the ETM+ data were acquired. 

Jacquemoud et al. (1996) provide the leaf water content and leaf dry matter content 

(protein, cellulose and lignin). For ETM+ data, only nadir viewing angle was considered. 

In this case, the sensitivity of the inversion to the hot-spot parameter SL (=0.15) is very 

low. Two leaf angle distribution parameters are set to zero (e=0; θm=0), assuming a 

spherical leaf orientation. Therefore, there is no dependence on the leaf angle θm (Kuusk, 

1995a). Six free parameters were identified: LAI, Sz, Cab, N, rs1 and rs2. Their effective 

ranges are displayed in Table 3.1. The MCRM calculates the nadir reflectance with the 

spectral resolution of 5 nm. 
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Table 3.1 Input parameters to the canopy radiative transfer model, MCRM. 

 
Parameters Symbol Values 

External parameters   
 Solar zenith angle θi 27.8º, 46.6º, 31.4º, and 30.2º 
 Angstrom turbidity factor τ 0.1 
Canopy structure parameters   
 Leaf area index* LAI 0 ~ 10.0 
 Leaf linear dimension/canopy height 

ratio,  
SL 0.15 

 Markov parameter describing clumping* Sz 0.4 ~ 1 
 Eccentricity of the leaf angle distribution E 0.0 
 Mean leaf angle of the elliptical LAD θm 0.0 
Leaf spectral and directional properties   
 Chlorophyll AB concentration (ug/cm2) * Cab 20 ~ 90 
 Leaf equivalent water thickness (cm) Cw 0.01 
 Leaf protein content (g/cm2) Cp 0.001 
 Leaf cellulose and lignin content (g/cm2) Cc 0.002 
 Leaf structure parameter* N 1 ~ 3. 
Soil spectral and directional properties (Price, 1990) 
 Weight of the 1st Price function* rs1 0 ~ 1.0 
 Weight of the 2nd Price function* rs2 -1.0 ~ 1.0 
 Weight of the 3rd, and 4th Price function rs3, rs4 0.0 

         * free parameters 
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3.3 Experimental study 

 

The approach sought the best match between the measured reflectance and the computed 

values by a canopy RT model. Figure 3-1 shows the general scheme of this study. 

GENESIS was coupled with the MCRM for automatic exchange of input and output data 

files between the two models. The strategy behind the optimization scheme was based 

on creating the reflectance values using the MCRM model. A random number generator, 

which sets the values within user-defined minimum and maximum values, generated the 

initial values for land surface biophysical parameters (Table 3.1). For each pair of 

biophysical parameters, the MCRM model was run and the model output used in the 

genetic algorithm for optimization processing. A goodness-of-fit between the measured 

and simulated reflectances was calculated using Eq. (1.7), which served as the merit 

function. 

 

3.3.1 Surface reflectance and LAI measurements 

 

Atmospheric correction of the satellite images has been shown to significantly improve 

the accuracy of image classification and surface parameter estimation (Liang et al., 

2001; Rahman, 2001). A new atmospheric correction algorithm has been described in 

Chapter 2 and was applied to carry out atmospheric correction for the four Landsat 

ETM+ images (May 11, 2000, Oct 2, 2000, Apr 28, 2001 and Aug 2, 2001). The field  
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Figure 3-1 Flowchart of the approach to estimate LAI with a genetic algorithm 
optimization method. 
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validation results showed that the cluster-match method works very well for all the 

Landsat ETM+ data.   

 

During each of the four Landsat overpasses, field measurements were carried out in the 

study area at BARC. Several field plots were selected, which are typical, homogeneous,  

and 200-300 meters on each side. The surface reflectance was measured with the 

Analytical Spectral Devices (ASD) (Analytical Spectral Devices (ASD), 2000). In each 

plot, about 50-100 points along several random transects were measured. The average 

reflectance of these points was used to represent the mean reflectance of that plot. The 

LAI of the plots was measured with an LAI-2000 Plant Canopy Analyzer (LAI-COR, 

1991) around satellite overpass time. For each plot, about 5-20 or more random points 

were measured and the average of these was used to represent the mean LAI of that plot.  

Some typical land cover types were measured, such as alfalfa, wheat, corn, grasses, 

soybean, and forest (Table 3.2).  

 

Field LAI measurement has some limitations. First, the Beer-Lambert Law is used to 

convert the gap-fraction data (the ratio for each ring’s above- and below-canopy 

radiation value) measured by LAI-2000 to LAI values assuming that the foliage is black 

and only skylights are seen by the sensor beneath the canopy. Actually, no real canopy 

conforms exactly to this assumption. Second, field LAI measurement is usually affected 

by foliage clumping, stems and fruits. The LAI value could change as the season 

progresses through senescence and normal maturation of the canopy. Third, for the 

forest sites, the measured LAI is actually the apparent LAI because it includes trunks and 
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branches. LAI-2000 could overestimate the LAI of canopies containing numerous dead 

branches (Denison and Russotti, 1997). 

 

Table 3.2 has also shown the range of coefficient of variance (CV, standard deviation 

divided by mean value) for each date. Of the 51 plots, only three plots have a CV larger 

than 0.40. Of all the nine different cover types (Table 3.2b), the maximum CV (0.38) 

was observed for the alfalfa plot on Aug 2, 2001. The CV values for all other cover types 

were less than 0.27. This shows that the field plots were generally homogeneous. LAI 

performance among different vegetation types is complicated by seanonal changes. In 

this study, more points for hairy vetch and other high LAI fields are still needed. 

 

For the forest sites, a strategic random sampling method was applied. At each forest site, 

at least 2 plots were randomly picked. In each plot, five points were identified. They 

were the center point and then 15 meters north, east, south and west from the center. For 

more accurate measurements, take into account the influence of shoot structure, dead 

branches and stems (Chen, 1996b). In this study, the leafless LAI of trunks and branches 

of the same sites was measured on Mar 20, 2001 when the deciduous trees were leafless 

(mean leafless LAI=1.41). Thus, the green LAI (LAIg, denoted as LAI in this 

dissertation) was calculated using the difference between summer and winter 

measurements. 
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Table 3.2 Field LAI measurements at BARC. (a) shows the mean, standard deviation 
(std) and coefficient of variation (CV), number of points, and cover typea of each plot. 
(b) shows the mean CV and the total number of plots (in brackets) of each cover type for 
the four dates. 

 
(a) 

Mean Std CV Points Type Mean Std CV Points Type 
May 11, 2000  Apr 28, 2001 

0.97 0.386 0.399 6 G 4.80 0.193 0.040 5 G 
1.34 0.412 0.308 6 G 4.17 0.890 0.214 7 W 
1.23 0.042 0.034 3 G 4.98 0.544 0.109 7 W 
4.50 1.519 0.337 5 W 1.46 0.360 0.247 3 G 
6.41 0.243 0.038 5 W 2.31 0.528 0.229 6 G 
5.67 0.647 0.114 5 H 1.42 0.247 0.174 6 G 
6.59 0.752 0.114 5 H 2.82 0.624 0.221 7 G 
1.07 0.329 0.307 15 F 1.42 0.637 0.449 7 G 
3.15 0.329 0.104 15 F 1.24 0.501 0.405 8 G 
2.08 0.584 0.280 15 F 3.39 0.314 0.093 8 B 
2.05 0.397 0.193 20 F 1.55 0.319 0.207 11 F 
2.52 0.315 0.125 20 F 1.77 0.261 0.148 10 F 

Oct 2, 2001  Aug 2, 2001 
5.11 0.326 0.064 27 S 2.18 0.483 0.222 12 O 
3.57 1.352 0.379 22 S 2.44 0.492 0.202 12 C 
2.72 0.417 0.153 6 C 1.77 0.504 0.284 12 C 
3.20 0.686 0.214 11 C 1.11 0.421 0.378 9 A 
2.62 0.590 0.225 18 C 1.38 0.527 0.381 10 C 
2.79 0.569 0.204 5 C 2.47 0.567 0.230 5 C 
4.47 0.826 0.185 18 G 0.63 0.172 0.271 6 C 
5.53 0.730 0.132 18 G 3.20 0.551 0.172 7 G 
5.36 0.865 0.161 17 A 2.04 0.272 0.134 15 F 
1.61 0.456 0.283 15 F 2.07 0.277 0.134 10 F 
2.76 0.327 0.118 14 F 2.90 0.586 0.202 10 F 
1.75 0.671 0.383 15 F 3.83 0.283 0.074 15 F 
1.80 0.807 0.448 30 F      
2.52 0.315 0.125 20 F      
3.31 0.299 0.090 21 F      

 
(b)          
  A B C F G H O S W 
May 11, 2000    0.202(5) 0.247(3) 0.114(2)   0.188(2)
Oct 2, 2000 0.161(1)  0.199(4) 0.241(6) 0.159(2)   0.222(2)  
Apr 28, 2001  0.093(1)  0.178(2) 0.252(7)    0.162(2)
Aug 2, 2001 0.378(1)  0.274(5) 0.136(4) 0.172(1)  0.222(1)   
   aA: alfalfa; B: Barley; C: corn; F: deciduous forest; G: grass; H: hairy vetch; O: Orchard grass; S: 
soybean; W: wheat. 
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Figure 3-2 Two examples of simultaneous ASD-measured surface spectral reflectances 
(lines) and the atmospherically corrected reflectances from ETM+ (crosses).  Vertical 
line segments denote the standard deviation of the ETM+ reflectances. Dashed lines are 
one standard deviation away from the mean reflectances (solid line).
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Figure 3-2 illustrates two examples of the atmospherically corrected (using the new 

method described in Chapter 2) ETM + reflectance and the ASD-measured surface 

reflectance. These two have the lowest and highest CV among ASD measured 

reflectances. The solid lines are the mean reflectance, and the two dashed lines 

correspond to mean reflectance ± one standard deviation. Grass1 was denser (LAI=4.22) 

and its radiometric information was very stable. It was one of the most homogeneous 

fields where the ASD measurements were taken with a CV of 0.0748. In contrast, grass2 

was sparser (LAI=1.42) and had a comparatively high CV (0.5978).  

 

 
The ETM+ pixels were extracted from the homogeneous test sites manually. Normally, 5 

to 15 pixels were used based on different field sizes. The one standard deviation range of 

the corresponding ETM+ pixels are also shown in Figure 3-2 with vertical line segments. 

The CVs of the ETM+ reflectance for these two grass fields are 0.1952 (grass1) and 

0.0493 (grass2) respectively. From Figure 3-2, we can see that the retrieved ETM+ 

reflectances in all six bands match well with the ASD measurements. In building 

equation (1.7), the mean values of the ASD measurements were used, keeping in mind 

that some points may have higher deviation than others. Of course, the number of bands 

(B in 1.7) will be less than 420 if noise gaps exist. 

  

3.3.2 Experiments with different reflectance data sets 
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For clarification, the LAI values derived by the GA method are denoted by LAI-GA. 

The experiments were conducted for three scenarios with different n and B values in 

equation (1.7).  

• Invert LAI from Landsat ETM+ bands (n=51, B=1~6) 

Among the field measurements, 51 mean LAI values were obtained from different 

large homogeneous sites (Table 3.2). For these 51 plots, canopy reflectances were 

derived from atmospheric correction of ETM+ six reflective bands. The model 

calculated spectral reflectance (5 nm) was integrated into six ETM+ bands using 

their sensor spectral response functions. LAI values were retrieved using all six 

ETM+ bands (B=6), NIR band, red band, and both red and NIR bands (B=1~2). 

Previous inversion of the MCRM (Kuusk, 1995b) using NIR band reflectance 

showed much better results than using the red band reflectance. The best results 

were obtained when both red and NIR bands were used (Kuusk, 1995b).  

• Invert LAI from field measured ASD reflectance (n=14, B=420) 

There were 14 homogeneous plots where LAI and field reflectance data were 

measured simultaneously. The field measured ASD reflectance ranges from 350-

2500nm with the spectral resolution of 1 nm. Because the model outputs 

reflectance at the spectral resolution of 5 nm, the ASD reflectance data were 

aggregated to 5nm to match the MCRM results. Thus, B=420 in this case. 

• Invert LAI from Landsat ETM+ (n=900, B=6) 

The GA method was applied to retrieve LAI from a 30×30 pixel area of an ETM+ 

image (n=900). LAI-GA was compared with the results derived by the Powell 

inversion method in MCRM. 
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3.3.3 Strategies to fix free parameters and select ETM+ bands 

 

In practice, the number of genes is very crucial in inversion. Some studies have found 

that the inversion is more robust if the number of free parameters is small (Kimes et al., 

2000). For accurate inversions, the number of free parameters that significantly impact 

the canopy reflectance ought to be minimal (Kimes et al., 2000). Some parameters that 

change less rapidly need to be fixed (Kimes et al., 2000). In this study, starting from 6 

free parameters, three parameters (Sz =0.8, Cab =50 and N=1.8) were then fixed one after 

another. The fixed values represent the general conditions of the study area in the 

inversion experiments. 

 

The experiment starts by using all six genes and six ETM+ bands. Figure 3-3 shows the 

preliminary GA optimization results for Sz, Cab and N. The distribution of the 

corresponding merit function (1.7) is also illustrated in the last row. It is noticed that the 

value of ε2 tends to decrease with increasing LAI, which means it is easier to reach 

global optima at higher LAI. This may be because of the more reliable reflectances from 

ETM+ and RT simulation for higher LAI. This figure does not include LAI and the two 

soil parameters as they will be discussed in section 3.4.  

 

The first row of Figure 3-3 displays the distribution of the retrieved Sz and LAI values. 

Their statistical values (mean, standard deviation and CV) were also calculated. From 

Figure 3-3 and its statistics, it is easy to determine that the Sz is the least variable 
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parameter in the test site. With NIR only, a stable Sz value (0.8) can be achieved with the 

lowest CV (0.1286). Other parameters, such as Cab and N change more rapidly over the 

area. In this case, Sz =0.8 was chosen to represent the general status of the study area and 

it was fixed in later inversions. It is inevitable to introduce some uncertainties during this 

kind of simplification. Further validation of the Sz value would require instantaneous 

field measurements. After Sz was fixed, the similar GA optimization procedure was 

conducted to fix the subsequent Cab (50) and N (1.8); and thus, the number of genes was 

reduced from 6 to 5, 4 and 3. 

 

It is reasonable that when the number of free parameters is decreased, the retrieved Cab 

and N values may differ from what they were in the previous inversion. Because the 

field LAI is available, the retrieved LAI performance was observed as a subsidiary 

criterion, besides ε2, to determine the optimal fixing values for Sz, Cab and N. During 

these optimization processes, some of the necessary GA characteristics were kept the 

same, such as population size (50), crossover rate (0.6), mutation rate (0.001), and total 

trials (1000). 
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Figure 3-3 The distribution of Sz, Cab, N and ε2(E^2) (rows) as derived with the GA 
optimization method. The four columns are using: all six ETM+ bands, RED+NIR, NIR 
only, and red only, respectively.  
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3.4 Results and analysis 

 

3.4.1 Using the retrieved ETM+ reflectance 

 

The estimated LAI values derived from Landsat ETM+ reflectances were compared with 

field measurements. The results of the LAI-GA using all free parameters are displayed in 

Figure 3-4. The effects of fixing Sz, Cab and N and using five, four and three genes were 

examined and they are presented in Figure 3-5 through Figure 3-7, respectively. Figure 

3-4 through Figure 3-7 show the standard deviation of the retrieved LAI-GA. The 

standard deviation of the field LAI values is shown only in Figure 3-4. The variations of 

the field measured LAI values for other cases (G5, G4 and G3) are not shown in the 

figures because the results would be similar and redundant. At each plot, at least 5 

samples were measured and their average value was used to represent the field LAI 

value. The R-square and the root mean-square error (RMSE) between the LAI-GA and 

field LAI are also displayed. The LAI-GA for different vegetation types are illustrated 

with different symbols in subplots (e)~(h) of each figure.  

 

From these figures, we can see that LAI can be well retrieved using all six Landsat 

ETM+ bands (R2>0.73 and RMSE<1.47). The best results (R2=0.776, RMSE=1.064) 

were obtained from both red and NIR bands using 3 genes (Figure 3-7b). The result 

shown in Figure 3-7b was used later to test the algorithm for a slightly larger ETM+ area 

(Figure 3-10). LAI-GA likely overestimates when field LAI > 4 using all six bands 
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(Figure 3-4a, Figure 3-5a, and Figure 3-6a), but that is not the case if only NIR band is 

used. Inversion of this model using both red and NIR band reflectance has provided a 

very good estimation of LAI (R2>0.71, and RMSE<1.06). In G3, using all six bands 

performs more poorly than using red and NIR bands only. The inversion looks fine using 

the NIR band only, but very bad when using the red band alone. With red band only, 

LAI-GA is likely to overestimate field LAI. No matter the number of genes used, use of 

the NIR band always provides much better results than the red band. Kuusk (1995b) also 

reported this. In other research: Privette et al. (1996) also used NOAA AVHRR NIR 

band only to invert LAI as the NIR band is more sensitive to canopy structural 

parameters. 

 

In Figure 3-4e, LAI-GA match well with the field measured data except for a couple of 

hairy vetch points. In addition to the hairy vetch, higher deviation was also observed for 

a grass and soybean point whose measured LAI are larger than 4.0.  For both six bands 

and NIR only, LAI-GA overestimate higher field LAI points for G6, G5 and G4. Since 

only one fifth of field LAI are larger than 4.0, more higher LAI plots are needed in this 

study for a better examination of the GA performance over different vegetation types.  
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Figure 3-4 Comparison of LAI-GA with field LAI. LAI-GA is estimated from Landsat 
ETM+ images using: a) all six bands; b) red and near infrared band only; c) NIR band 
only; and d) red band only. Symbols for a)~d): May 11 ( ) and Oct 2 ( ) 2000 and Apr 
28 ( ) and Aug 2 ( ) 2001. The one standard deviation of field LAI and LAI-GA are 
shown with line segments.  R^2: R square. 6 genes (LAI, Sz, Cab, N, rs1 and rs2) were 
used.  (e)~h) compare LAI of different cover types, alfalfa (∇), barley, hairy vetch and 
orchard grass (×), corn ( ), deciduous forest ( ), grass ( ),  soybean (+), and wheat 
( ). 
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Figure 3-5 Comparison of field LAI with LAI-GA derived from Landsat ETM+ with 
five genes (LAI, Cab, N, rs1 and rs2) fixing Sz=0.8. (a)~(d) compare LAI of different 
dates. One standard deviation of LAI-GA is shown. (e)~(h) compare LAI of different 
cover types. Symbols: refer to Figure 3-4.  
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Figure 3-6 Comparison of field LAI with LAI-GA derived from Landsat ETM+ with 
four genes (LAI, N, rs1 and rs2) fixing Sz=0.8 and Cab=50. (a)~(d) compare LAI of 
different dates. One standard deviation of LAI-GA is shown. (e)~(h) compare LAI of 
different cover types. Refer to Figure 3-4 for symbols. 
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Figure 3-7 Comparison of field LAI with LAI-GA derived from Landsat ETM+ with 
three genes (LAI, rs1 and rs2) fixing Sz =0.8, Cab =50 and N=1.8. (a)~(d) compare LAI of 
different dates. One standard deviation of LAI-GA is shown. (e)~(h) compare LAI of 
different cover types.  Refer to Figure 3-4 for symbols. 
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It is instructive to examine these figures more closely. One advantage of GA is that it 

reaches the global minimum of the merit function while providing the local minimum 

values simultaneously. A typical GA output looks like Table 3.3 for one point. Column 

ε2 provides a number of (10 in this study) local minimum values, while the italicized row 

stands for the global minimum ε2. Each LAI-GA point in the figures is denoted as the 

value at the local minimum of the merit function. As seen in Figure 3-4 to Figure 3-7 

and Table 3.4, LAI-GA values have much larger variations at higher LAI (≥3). The only 

exception is at G3 with red band only when LAI-GA varies larger at lower values (<3). 

LAI-GA varies the highest when only the red band is used, then followed by the NIR 

band, red and NIR, and all six bands, which indicates the general trend of the solutions. 

For example, in G6, the standard deviations for all LAI-GA points are 1.624, 0.553, 

0.237 and 0.169 for red, NIR, both red and NIR, and six bands.  

 

Table 3.3 An example of a genetic algorithm output (six genes). 

   

LAI-GA Sz Cab N rs1 rs2 ε2 Generations No. trials 
2.53 0.95 65 3.41 0.06 -0.02 8.16E-03 26 791 
2.53 0.43 67 3.19 0.02 -0.08 7.81E-03 30 900 
2.53 0.96 68 3.41 0.06 -0.02 8.22E-03 27 826 
2.61 0.44 68 2.58 0.02 -0.08 7.69E-03 24 750 
2.58 0.95 67 3.48 0.03 -0.02 8.09E-03 31 929 
2.59 0.94 65 3.5 0.02 -0.08 7.90E-03 22 686 
2.58 0.95 69 3.5 0.02 -0.08 7.94E-03 21 658 
2.61 0.44 68 2.58 0.02 -0.08 7.70E-03 32 963 
2.59 0.96 48 3.5 0.02 -0.08 8.28E-03 23 722 
2.58 0.95 69 3.48 0.02 -0.08 7.97E-03 17 542 
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Table 3.4 The mean standard deviation of the LAI-GA and field LAI for different 
number of genes (6, 5, 4 and 3) and band combinations.   

 
 

Gene 
number 

Band 
combinationLAI-GA<3 LAI-GA≥3 All LAI-GAs 

G6 6 Bands   0.088   0.347   0.169 
 RED+NIR   0.117   0.574   0.237 
 NIR   0.32   0.938    0.553 
 RED   1.175   1.827   1.624 
G5 6 Bands   0.074   0.385   0.161 
 RED+NIR   0.056   0.174   0.085 
 NIR   0.258   0.554   0.34 
 RED   1.049   1.561   1.469 
G4 6 Bands   0.065   0.468   0.197 
 RED+NIR   0.05   0.275   0.109 
 NIR   0.358   0.836   0.507 
 RED   0.552   1.277   1.015 
G3 6 Bands   0.058   0.084   0.065 
 RED+NIR   0.034   0.06   0.041 
 NIR   0.299   0.379   0.318 
 RED   0.397   0.291   0.352 
Field LAI:  
               0.427 (LAI<3), 0.568 (LAI≥3) and 0.487 (all LAI) 
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If all six bands or both red and NIR bands are used, the variation of LAI-GA appears 

smaller than the field measured LAI values. Biases between LAI-GA and measured LAI 

may occur because of: 1) the heterogeneity of the ground types as they were assumed 

homogeneous in LAI measurement; 2) the scale differences between the field LAI 

(averaged point measurement) and the LAI-GA derived from ETM+ pixel (30 m); and 3) 

inaccuracies in the optimization algorithm or the canopy RT model and other factors.  

 

Fixing Sz, Cab, and N does improve the results.  For example, the R-square value 

increases from 0.743 to 0.763 when the number of genes decreases from 6 to 3 when 

using all six bands. Greater improvement could be seen when using both red and NIR 

bands (from 0.71 to 0.776). Decreasing the number of free parameters increases stability 

of retrieving LAI values, especially for higher LAI values (Figure 3-4 to Figure 3-7 and 

Table 3.4). For example, the standard deviation of 43.1% LAI-GA is greater than 0.1 for 

G6 when the red band or NIR band was used (Figure 3-4b), but only 7.8% for G3 when 

both the red and NIR bands were used (Figure 3-7b). The lowest deviations were 

observed for G3, 0.065, 0.041, 0.318 and 0.352 when using six bands, both red and NIR 

bands, NIR band and red band. In addition, decreasing the number of genes will 

significantly improve computational efficiency.  

 

Figure 3-8 represents the LAI values for different ground types. The LAI values were 

derived from the results of Figure 3-5b. In the BARC area, LAI values vary between 

1.54 (grass) and 4.25 (hairy vetch). The mean LAI for deciduous forest is 1.74. These 

results are valuable for looking into the LAI of different land cover types.  
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3.4.2 Using field measured reflectance data 

 

To further test the proposed approach using hyperspectral data, the seasonal ground-

based radiometric measurements were used to estimate LAI using equation (1.7) and 

compared with simultaneous in-situ LAI measurements. At these sites, fourteen pairs of 

ground radiometric and LAI measurements were available to form direct comparisons. 

The proposed approach appears to have produced good estimates of LAI within this 

region. The estimated LAI-GA agrees well with the in-situ measurements (Figure 3-9, R2 

= 0.611, 0.65, 0.563, and 0.66; RMSE=2.621, 2.464, 2.895 and 1.181), but did not meet 

the expectation that ground-measured reflectance data would provide the best results, 

since they were supposed to be the “true” reflectance. The R-square value was lower 

than the results from B=2 (Figure 3-7b). This could be partly because of the way that the 

reflectances were measured. In the field, the ASD sensor was pointed at the canopy 

within less than 2 meters above the canopy. In this case, only part of the canopy was 

located within the ASD field of view (FOV); therefore, the spectral measurement may 

not have represented the whole canopy for some crops. Noise may also be caused in the 

water absorption bands within the total 420 bands.  There was no general trend how the 

gene number affects the inversion accuracy for these points. The R-square values for G5 

and G3 were very close (0.65 and 0.66); however, the lowest RMSE (1.181) was 

obtained for 3 genes. Figure 3-9e~h show that LAI-GA overestimates field LAI for hairy 

vetch and some high LAI points for G6, G5 and G4. This agrees with its performance 

with the ETM+ bands (Figure 3-4~Figure 3-7). 
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Figure 3-8 Retrieved LAI-GA values for different ground types (A: alfalfa; B: barley; C: 
corn; F: deciduous forest; G: grass; H: hairy vetch; O: orchard grass; S: soybean; W: 
wheat). The numbers above the bars are one standard deviation.  
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Figure 3-9 Comparison of LAI-GA (solid points) with field measured LAI. LAI-GA was 
derived from field ASD-measured reflectance data collected at BARC, USDA. The LAI 
derived from ETM+ 6 bands (hollow points) are also shown. (a)~(d) compare LAI of 
different dates. (e)~(h) compare LAI of different cover types. Refer to Figure 3-4 for 
symbols. 
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The common points for both ETM+ and ground reflectance measurements were found. 

The LAI values derived from ETM+ (6 bands) are shown as hollow symbols in Figure 

3-9. Generally speaking, the 6 ETM+ bands have very similar results to the 

hyperspectral ASD measurements. This suggests that many of the ASD bands are 

redundant for LAI retrieval. From their R-square and RMSE value, ASD works a little 

better than ETM+ for G6, G5 and G3. The only exception is in G4 when ETM+ 

produces a higher correlation and lower RMSE with field LAI. Because of the limited 

number of points, more ground-based reflectance and LAI measurements are needed for 

more conclusive results. This approach is useful for other similar hyperspectral remotely 

sensed data, such as the EO1 Hyperion data. 

 

3.4.3 Comparison with other methods 

 

It is interesting to compare the GA optimization with other methods mentioned in the 

introduction section. For example, the LUT method does not have the initial guess 

selection problem and the solution is searched over the whole space of canopy 

realization. Nonetheless, as pointed out in the introduction, the LUT method treats the 

continuous numerical optimization problems as discrete. In this way, the accuracy of the 

database that the LUT needs is based on the coding accuracy of the input parameters.  

 

In this chapter, the GA-based inversion method was compared with the Powell algorithm 

in IMCR (Inversion of the Markov Canopy Reflectance model) provided by Kuusk 

(2001). The Powell algorithm is often used when there are a large number of free 
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parameters. It is noted that the GA method does not require the initial guess of the 

parameters while the Powell method does. The initial values are determined based on a 

priori field knowledge. For comparison, an example of the VI approach was also 

presented at the end of this section. 

 

The LAI maps (30×30 pixels) for Apr 28 and Aug 2, 2001 (Figure 3-10) were generated 

with both GA and Powell optimization methods. The LAI-GA and LAI-Powell maps 

were made with the same conditions as Figure 3-7b. The spatial patterns of the two 

methods were very similar, although the absolute LAI values may differ. The brown 

points were either bare lands or roads, the gray/white areas being houses; yellow and 

green pixels were either crops or forests. The estimated LAI-GA values ranged from 

0.12 to 6.02 on Apr 28 and from 0.26 to 3.85 on Aug 2. However, most LAI on Apr 28 

(Figure 3-10) is below 4.0. There are only 6 dense grass pixels whose LAI-GA is greater 

than 4.0.  

 

To further examine the similarity and differences between the two approaches, the LAI 

data are compared in Figure 3-11. Statistical analysis indicated that there was no 

significant difference between the LAI maps generated with the GA optimization  
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Figure 3-10 Comparison of LAI maps generated for (a) Apr 28 and (b) Aug 2, 2001 
using GA method; (c) Apr 28 and (d) Aug 2, 2001 using the Powell inversion algorithm. 
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Figure 3-11 Comparison of LAI retrieved with GA optimization method (LAI-GA) and 
with the Powell inversion algorithm (LAI-Powell) for (a) Apr 28 and (b) Aug 2, 2001.  

 

 

method and the Powell method. LAI-GA tends to be greater than LAI-Powell, especially 

when LAI>3. The results of Apr 28 (R2=0.973) agree better with LAI-Powell than that of 

the Aug 2, 2001 (R2=0.864). This may be because of the low LAI on Apr 28 where 

92.1% pixels are less than 2.0 (mean LAI=1.33). On Aug 28, LAI increases (mean 

LAI=2.17) and only 35.8% are less than 2.0. 

 

As mentioned in the Chapter 1, many relationships have been established between VIs 

and LAI (Baret and Guyot, 1991). The most commonly used vegetation indices are RVI 

and NDVI. In this study, it is difficult to use the LAI-VI method as it involves nine 

ground cover types on different dates (Table 3.2). Figure 3-12 shows the LAI-NDVI 

scatterplot with several fitted curves. NDVI approaches a saturation level for LAI>4. 

Generally, both the polynomial and power function fit the LAI-NDVI poorly. This also 

necessitates the effort to look into the GA for retrieving LAI.  
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Figure 3-12 LAI-NDVI relationships.  Polynomial and power functions are used to 
correlate NDVI and LAI. 
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3.5 Summary 

 

In this work, the GA optimization methods have been explored for retrieving LAI from 

Landsat-7 ETM+ images and the field measured reflectance. The Markov chain model  

of canopy reflectance (Kuusk, 2001) was used to simulate surface reflectance. Both 

reflectance data derived from ETM+ image after atmospheric correction and from field 

measurement were used to construct the merit function.  

 

Six free parameters, LAI, Sz, Cab, N, rs1, and rs2  (see Table 3.1), were considered in the 

retrieval. Different ETM+ band combinations were tested, i.e., with all six bands, both 

NIR and red bands, NIR band, and red band. The retrieved LAI was in agreement with 

the measured LAI. Overall, the best results were obtained with three genes (LAI, rs1, and 

rs2) from ETM+ red and NIR bands (R2=0.776, RMSE=1.064). Generally speaking, the 

results meet the Global Climate Observation System (GCOS) and the Global Terrestrial 

Observation System (GTOS) requirements, which need an accuracy of ±0.2~1.0 for 

terrestrial climate modeling (CEOS/WMO, Dec, 2001). The results were also reasonable 

when only the NIR band was used, but appeared unacceptable when just the red band 

was used. 

 

Starting from six, the number of free parameters was reduced by fixing the least 

dispersed ones.  Four cases were tested, with six, five, four and three genes by fixing Sz, 

Cab and N successively. In this study, reducing the number of genes does change the 

inversion accuracy. It can be seen from Figure 3-4 to Figure 3-7 that the LAI-GA’s 
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accuracy changes with the number of genes. As expected, LAI values have large 

variations over the study area. The retrieved LAI-GA values tend to be more stable with 

fewer genes, demonstrated by the decreasing standard deviation. Considering the 

computational efficiency, three genes and both red and NIR bands were used to map the 

LAI in the study area. The results using the Powell minimization algorithm were 

compared with the LAI-GA. The difference between LAI-GA and LAI-Powell is very 

small for lower LAI (<3), and increases when LAI>3. 

 

The GA optimization method provides an alternative to invert the RT models in remote 

sensing. The advantage of GA is two-fold: first, it scans all the initial conditions and 

provides several possible solutions for detailed examination of the global optimum 

solution, thus it avoids the inaccuracies introduced by conventional minimization 

algorithms; second, it only runs the forward RT model with constrained parameter space 

and is straightforward in the optimization process. Experiments are needed to test this 

method in more complicated areas. For similar research, it is suggested that the 

minimum number of genes using both the red and NIR bands be utilized.  
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Chapter 4  LAI Retrieval from ETM+ with a Hybrid Approach 
 

4.1 Introduction 

 

The application of the genetic algorithm in the optimization process of the RT model 

inversion was described in the previous chapter. Existing RT model inversion with an 

iterative process is both time consuming and difficult to use on regional and global 

scales (Kimes et al., 2000). Nonparametric methods (see 1.2.3) can speed up the 

inversion process significantly, but they are still dependent upon the accuracy of 

biophysically-based RT models. In addition, although they are easy to use, they have not 

been generalized to handle arbitrary directional and spectral combinations (Kimes et al., 

2002). My objective is developing an improved hybrid approach which integrates the 

advantages of RT methods and nonparametric methods while avoiding their limitations. 

Both the artificial neural network (NN) approach and the projection pursuit regression 

(PPR) approach were tested in this hybrid approach. This chapter discusses the 

integration of RT and NN methods and their application in ETM+. The extension of this 

method to MODIS and the integration of RT and PPR will be introduced in the next 

chapter. 

 

The process of an NN inversion may be outlined as follows: 1) given a set of empirical 

environmental, leaf, canopy and soil parameters, determine the set of canopy 

reflectances with a forward RT model; 2) initiate the NN training (or learning) process 

with part of the look-up table obtained in the first step, and find the relationship between 

the input data and the output reflectances; 3) check the NN training with the other part of 
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the LUT data or ground measurements; and 4) apply the trained and checked NN model 

to a new scenario to predict the input parameters. The LUT must be general enough to 

include all the possible variations. 

 

In this chapter, two LAI retrieval schemes with an NN method are examined and applied 

to retrieve LAI from Landsat ETM+ imagery. The first scheme retrieves LAI from the 

atmospherically corrected surface reflectances; the second one from the top-of-

atmosphere raw radiances detected by the ETM+ sensor. The second approach was 

suggested by Smith (1993) who used the TOA reflectance to estimate LAI with a neural 

network method. No atmospheric correction was applied, instead, the effective green-

band reflectance at the TOA was used by Smith (1993) to estimate LAI. Turner et al. 

(1999) have also tested the applicability of using raw radiance values when they assessed 

LAI-VI relationships across vegetation types. In their study (Turner et al., 1999), the VIs 

were derived from raw digital numbers (DN), radiances, TOA reflectances, and 

atmospherically corrected reflectances, respectively. It is meaningful, therefore, to test 

the relationship between TOA radiance and surface LAI with the neural network 

method. Similar ideas, proposed by Liang (2003a), estimated land surface broadband 

albedo directly from MODIS imagery.  

 

For each scheme, a database was created through RT model simulation. The structures of 

these two databases were identical except for the fact that the second database 

incorporated atmospheric effects. Previous research, as well as my tests, has identified 

soil background reflectance as one of the most sensitive parameters affecting LAI 
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inversion. In most of the current NN training experiments, randomly selected soil 

reflectance was used to construct the LUT. It is believed that the use of more realistic 

soil reflectance data would greatly improve LAI estimates. This chapter makes use of 

soil reflectance derived from satellite data to drive the RT model, construct the LUT and 

train the neural network. For comparison with other soil reflectance options, three 

companion soil reflectance scenarios were tested.  

 

The following section introduces the RT model and the principles of the neural network 

method. The concept of the soil reflectance index (SRI), database construction and the 

neural network training procedure are then discussed. The predicted LAI with both 

reflectance and radiance derived from ETM+ data will be described and validated with 

field measurements in the results and analysis section. 

 

4.2 Background 

 

4.2.1 Creating the LUT with a RT model 

 

Creating an appropriate LUT is the first step in the use of the NN algorithm to retrieve 

surface biophysical parameters. The RT models relate the fundamental surface 

parameters (e.g., LAI and leaf optical properties) to scene reflectance for a given sun-

surface-sensor geometry. As mentioned before, the main deficiency of the radiative 

transfer equation is the inherent complexity of its parameter inversion, a major barrier 

when large amounts of satellite data are used. Like the previous chapter, Kuusk’s 
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(1995b) Markov chain reflectance model (MCRM) was used. Details about the model 

were described in section 3.2. In MCRM, soil spectral and directional properties are 

described by a spectral model (Price, 1990) in which four parameters give the proportion 

of each of the four spectral terms, rs1, rs2, rs3, and rs4. In 

 

 

Table 4.1 Parameter values used to establish the canopy reflectance database.   

 

 

Parameters Values Sources 

Solar zenith angle 10°, 20°, 30°, 40°, 50°, 60°, and 70° 

Angstrom turbidity factor 0.1 (Kuusk, 1995a)

Leaf area index 0 ~ 10.0 by 0.1 

Leaf linear dimension/canopy height 

ratio  

0.15 (Kuusk, 1995a)

Markov parameter describing clumping 0.8 (Chap. 3)

Eccentricity of the leaf angle distribution 0.0 (Kuusk, 1995a)

Mean leaf angle of the elliptical LAD 0.0 (Kuusk, 1995a)

Chlorophyll AB concentration 50 (Chap. 3)

Leaf equivalent water thickness 0.01 (Jacquemoud et al., 1996)

Leaf protein content 0.001 (Jacquemoud et al., 1996)

Leaf cellulose and lignin content 0.002 (Jacquemoud et al., 1996)

Leaf structure parameter 1.8 (Chap. 3)

Weight of the 1st Price function  0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 

0.8, 1 

Weight of the 2nd Price function 0.02 (Bicheron and Leroy, 1999)

Weight of the 3rd, and 4th Price function 0.0 (Bicheron and Leroy, 1999)
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this study, a nadir viewing angle simulated the view of Landsat ETM+. A series of solar 

zenith angle (θ1) values were tested. The Angstrom turbidity factor was set to 0.1 

throughout this chapter. The Markov parameter, chlorophyll content and the leaf 

structure parameters are derived from results in chapter 3. All input parameters are listed 

in Table 4.1. 

 

The soil reflectance is my particular interest here. Soil reflectance, especially for small 

LAI values, is one of the most sensitive parameters. When LAI increases (>3), the 

importance of the soil background decreases (Bicheron and Leroy, 1999). Different 

researchers have used various ways to deal with the soil reflectance in RT model 

simulations. These methods can be grouped into four categories. The first group uses the 

field measured soil reflectance data. For example, the soil reflectance in one of the 

studies (Smith, 1993) was obtained from field measurements corresponding to medium-

dark and medium-bright soils. When Abuelgasim et al. (1998) inverted the geometric 

optical model of Li and Strahler (1992), sunlit background reflectance in the red band 

was chosen to represent the typical reflectance observed in this region (0.24 ~ 0.31). Qi 

et al. (2000) also used measured soil optical properties to invert the SAIL model. The 

second approach uses the soil reflectances from a soil spectral library. For example, 

Broge and Leblanc (2001) used minimum and maximum soil reflectances from some 

representative soils to create the LUT. The third approach uses the randomly generated 

soil reflectances. For example, Kimes et al. (2002) defined a soil parameter (S), and soil 

reflectances in green, red and NIR bands were calculated as S×0.2, S×0.25 and S×0.3, 

respectively. The final group uses reflectances derived from the soil line. For example, 
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the soil reflectance in the red band is randomly generated (0.02 ~ 0.40) (Baret et al., 

1995) where the soil reflectance for the NIR was deduced using the soil line 

(ρNIR=1.253ρR+0.030). It should be noted that the soil line need to be obtained a priori 

(Baret et al., 1995).  

 

Generally, using field-measured soil reflectance is the most accurate approach if the data 

are available. Reflectances from a soil spectral library may not represent real conditions 

in the field. Randomly generated or soil line reflectances are appropriate when they are 

applied to a particular soil background because they are derived from empirical 

observations. The soil reflectance index (SRI) that will be introduced and used in this 

study is determined from the soil line derived directly from satellite imagery.  

 

4.2.2 Neural network method 

 

As introduced in 1.2.3, neural networks provide a very efficient tool to establish the 

relationship between the simulated reflectances and the corresponding biophysical 

variables of interest (Baret et al., 1995; Baret and Fourty, 1997; Jin and Liu, 1997; 

Smith, 1993). For example, Smith  inverted a simple multiple scattering model to 

estimate LAI from reflectances at three wavelengths which were subsequently used to 

train an NN that was applied to satellite observations. However, previous work (Gong et 

al., 1999; Qi et al., 2000; Smith, 1993) makes use of the simulated database from a RT 

model in both training and checking processes; i.e., part of the simulated data are used 

for training and the rest for testing. A significant disadvantage of checking with 
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simulated data is that the simulated data may not be representative of the real 

environmental conditions. It is more desirable to apply the training results to reflectance 

data derived from satellite observations, and calibrate the results with field-measured 

data.   

 

The training process is usually computationally intensive. Because some of the satellite 

bands are closely related, only those bands that have the largest information content are 

applied in the training iteration. The commonly used bands are green, red, and NIR. 

NDVI has also been used in many studies. The benefit of using NDVI is that it 

exemplifies the inherent information in both red and NIR bands through the division 

operation. Because NDVI integrates the information content of both red and NIR, Smith  

only used green band (0.55 µm) reflectances and NDVI in the input training process. 

Simulations were made using three POLDER spectral bands (green, red and NIR) with 

the central wavelengths at 443, 670, and 865 nm, respectively (Kimes et al., 2002). 

Some researchers use both red and NIR wavelengths in the training process (Baret et al., 

1995), while others use red, NIR and NDVI (Qi et al., 2000). The effect of different band 

combinations (NDVI as a separate band) will be examined later. 

 

4.3 Methodology 

 

A description of the study area, field LAI and reflectance measurements is provided in 

section 3.3.1. Fifty one LAI field measurements were obtained for different large 

homogeneous sites. For each LAI point, surface reflectances were derived from the 
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atmospherically corrected Landsat ETM+ data (see Chap 2). Because the conventional 

empirical vegetation index approach, such as using NDVI, was not appropriate for this 

study area (section 3.4.3), the hybrid approach to retrieve LAI was investigated. 

 

4.3.1 The soil reflectance index (SRI) 

 

The concept of soil reflectance index evolved from soil lines. The linear relationship 

between red and near infrared bare soil reflectances describe the soil line, which is 

widely used for the interpretation of remotely sensed data (Baret et al., 1993). Some 

authors assume that all the soil types might be represented by a unique “global” soil line, 

while Huete (1984) points out that specific soil lines better describe the optical 

properties of individual soil types. The formula for a soil line follows 

 

                                                        βαρρ += RNIR                                                     (4.1) 

 

where ρR, ρNIR are the reflectances in the red and near infrared bands, respectively, and 

α, β are the slope and intercept of the soil line that vary from one time to another. In this 

study, the soil line parameters for each date were determined from the red-NIR spectral 

space. Table 4.2 shows the soil line parameters for various dates. The intercept (β) is not 

a single point; instead, a buffer range is given (a more descriptive name might be soil 

pixel ‘strip’). All pixels located in this buffer zone are treated as soil pixels. Figure 4-1 is 

a soil pixel strip obtained from the May 11, 2000 image.  
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To calculate the SRI, the minimum and maximum reflectances of the soil line must be 

calculated first, which are derived from the mean values of the lower and upper cluster 

of the soil pixels, using: 
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where ρ1, ρ2 are the minimum and maximum reflectances derived from the soil line. 

{S1} and {S2} are the lower and upper clusters of soil pixels used to calculate ρ1 and ρ2. 

ρGmin, ρGmax are the global minimum and maximum reflectances from the soil line. L1, L2 

are two boundary percentiles. The lower and upper percentiles for calculating the 

minimum and maximum reflectances are listed in Table 4.2. For this analysis, both S1 

and S2 were identified manually in R-NIR space (Figure 4-1), but they are not too 

difficult to be determined automatically. For simplification, S1 and S2 were decided 

based on the red band reflectance with equation (4.3).
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Figure 4-1 Reflectance of soil pixels in red and NIR bands. S1 (or S2) are a set of pixels 
within radius L1 (or L2) from the two dark points which are global minimum (ρGmin) and 
maximum (ρGmax) reflectance, respectively. 
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Table 4.2 Soil line parameters extracted from various dates. L1 and L2 are the lower and 
upper percentiles of the reflectance of pixels in band 3 to calculate the minimum and 
maximum soil reflectances used for SRI.  

 

Dates Slope (α) Intercept (β) L1 L2 

May 11, 2000   1.0   0.02~0.08    0.01 0.02 

Oct 2, 2000   1.03   0.008~0.08 0.02 0.02 

Apr 28, 2001   1.1   0.008~0.08 0.01 0.02 

Aug 2, 2001   1.05 0.008~0.08   0.01 0.02 

 

 

Having determined the soil line from the R-NIR space, the SRI is defined as  
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= sSRI                                                     (4.4) 

where ρ1 and ρ2 are the minimum and maximum red reflectances, respectively, on the 

soil line determined in (4.2), and ρs is the soil reflectance in the red band. Consequently, 

the soil background reflectance for each pixel can be calculated by  

 

                                                  SRIiiiis *)( 121 ρρρρ −+=                                         (4.5) 

 

where ρi1, and ρi2 are the minimum and maximum soil reflectances, respectively, at band 

i.  
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The soil reflectance index is a new concept introduced in this study. My objective is to 

represent the soil reflectance in a simple way by using the SRI. In so doing, the MCRM 

model only needs minor modifications and its computation will be simplified. 

 

4.3.2 Companion methods to calculate soil reflectance  

 

In addition to the SRI method introduced above, other methods can be used to calculate 

the soil reflectance depending on various application scenarios. In the following part, 

some of them will be elaborated on.  

 

1) Scenario 1 (SN1): MCRM has two spectral soil parameters (rs1 and rs2) and two 

directional soil parameters (rs3 and rs4). The soil reflectance reads 

 

                  )cos1(*))()((),,,( 2
2

2
14213111121 θθφθθλϕλϕφθθλρ sssss rrrr +++=           (4.6)  

 

where λ, θ1, θ2, and φ are the wavelength, sun and view zenith angles, and the relative 

azimuth between the sun and view angles, respectively. ϕ1 and ϕ2 are the two first basis 

functions of Price (1990). In Table 4.1, the rs2, rs3 and rs4 values are fixed (Bicheron and 

Leroy, 1999). Only the view angle at nadir (θ2=0; φ=0) was considered. Soil reflectance 

is primarily controlled by rs1 (0 ~ 1.0).  
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2) Scenario 2 (SN2): In this scenario, the soil reflectance is based on the minimum and 

maximum soil reflectances measured in the field. It has been shown that the range of 

reflectance values for a given soil because of different soil moisture conditions is often 

greater than that found between soils of different taxonomic classes (Muller and 

Décamps, 2001). For a particular soil type, soil moisture content governs the magnitude 

of the soil spectral reflectance, whereas the overall shape of the spectral reflectance 

curve seems to be unaffected by varying moisture conditions. Soil reflectance is 

calculated with  

 

                                                  RIiiiis *)( 121 ρρρρ −+=                                           (4.7) 

 

where ρi1 and ρi2 are the minimum (wet soil) and maximum (dry soil) reflectance at band 

i. A reflectance index (RI) is used to define the magnitude of the soil spectral reflectance 

between the minimum and maximum reflectances. The major soil types in the BARC 

area are Codorus and Othello. The soil reflectance database of Codorus (Figure 4-2) was 

created from topsoil samples as part of a study by Daughtry (2001) and was used in this 

study. The wet and dry soil reflectances reported here were measured in the laboratory.  

 

3) Scenario 3 (SN3): For simplification, soil reflectance is assumed to be constant over 

the spectrum, and the magnitude of the reflectance changes with soil moisture. Among 

the five representative mineral soil reflectance spectra (Stoner, 1979), the iron-

dominated soil (high ion content, fine texture) is the only one that has very little 

variation over the spectrum. It is not my contention that this scenario represents all soil 
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types. Its purpose is to test the viability of the NN method. In this simulation, soil 

reflectance varies from 0 to 1.0. 

 

 

 

 

 

 

Figure 4-2 Spectral reflectance of Codorus soil at a range of relative water contents 
(RWC) from oven dry (RWC = 0.0) to water saturated (RWC = 1.0).  RI (reflectance 
index) represents the magnitude between the minimum and maximum reflectances. 
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4.3.3 Creating the databases 

 

Together with SRI, Kuusk’s forward model MCRM was run with variable θ1 and LAI 

for the three comparison scenarios which required modifications to the MCRM soil 

reflectance calculation. SN1 makes use of the default rs1 in Kuusk’s model. For SN2, 

SN3, and SRI, the canopy model code needed to be revised. SN2 uses the measured 

minimum and maximum reflectance data. SN3 assumes a common soil reflectance 

(varies within 0~1.0) for all bands. SRI, derived from the soil line of the red-NIR spectral 

space, reflects the instantaneous soil reflectance acquired from satellite data. Besides soil 

reflectance, all other parameters were the same for the four cases (SRI, SN1, SN2 and 

SN3). The parameters were fixed with the following values: SL =0.15, Cn=0.95, Cw=0.01 

cm, Cp=0.001 g/cm2, Cc=0.002 g/cm2, rs2=0.02 and an assumed spherical leaf orientation 

(e=0; θm=0) (Table 4.1). The output is nadir reflectance in the 400-2500 nm range with a 

spectral resolution of 5 nm. The reflectance was integrated into Landsat ETM+ bands 

with the sensor spectral response function. Four LUTs were constructed from the 

reflectance simulations for neural network training and prediction. 

 

The second database was based on the TOA radiance. In order to explicitly model the 

physical state of the land surface, the surface bidirectional reflectance distribution 

function (BRDF) was used. Earlier studies (Coulson et al., 1966; Koepke and Kriebel, 

1978) found significant differences between radiances at TOA over natural surfaces and 

their Lambertian-model equivalent, even though their albedos were equal. Other studies 
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(Lee and Kaufman, 1986; Tanré et al., 1983) which investigated the interactions between 

the atmosphere and an underlying non-Lambertian surface also found that the use of the 

Lambertian assumption could result in a considerable amount of error in an upward 

radiance calculation from satellite. 

 

For database 2, the TOA radiance, Lt, is simulated using an approximate expression 

(Qiu, 2001) 
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Where Lp is the atmospheric path radiance, Tp is the atmospheric transmittance of the 

atmosphere between the ground surface and the sensor, F is the downwelling radiative 

flux above the surface of zero reflectance, S is the fraction of surface radiance reflected 

by the atmosphere back to the surface, and ρe is the effective spectral reflectance of the 

surface expressed by: 
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ρL is regarded as the equivalent Lambertian albedo (Qiu, 2001) and ρ  is approximated 

by the hemispherical albedo of the surface as in (Vermote et al., 1997). τ is the aerosol 

optical thickness, and µs is the cosine of the solar zenith angle. 

 

There are two types of coefficients in (4.8)atmosphere related (Lp, S, Tp and F) and 

surface related (ρe  and ρ ). Atmospherically related coefficients were calculated using 

an atmospheric RT model (MODTRAN 4.0) based on a Lambertian assumption. Five 

atmospheric visibility values (2, 5, 10, 50 and 200 km) were used to reflect different 

aerosol loadings. The mid-latitude rural atmospheric profile was applied. The 

atmospheric water vapor content varied from 0.0 to 3.0 cm (0.0, 0.5, 1.0, 2.0, and 3.0 

cm). A range of solar zenith angles (SZAs) are simulated from 10° to 70° at a 10° 

increment. Surface coefficients were determined from the BRDF simulationregardless 

of atmospheric conditionsbecause surface BRDF is an intrinsic property of the surface 

(Qiu et al., 2001). The parameters ρe  and ρ  were derived from the MCRM model with 

minor modifications. After determining Lp, S, Tp and F, the TOA radiance was calculated 

by (4.8). 

  

4.3.4 Estimating LAI with the NN method 

 

Different ETM+ band combinations can be used to invert LAI from a RT model with the 

NN method. All data points in the two databases were used to train the NN. ETM+ 

reflectance, radiance and field-measured LAI were used in the verification process. The 
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training and checking data sets included reflectances in the green, red, NIR and middle 

infrared (MIR) spectral region as well as computed NDVI (Table 4.3 for database 1). 

The green, red, NIR and MIR band radiances were also used for the training and 

checking of database 2. (NDVI for database 2 was calculated using red and NIR 

radiances) The R-square value and RMSE were calculated for different scenarios and 

SRI for each band combination. I did not exhaust all possible band combinations, but did 

evaluate the most commonly used. 

 

The computations were performed using the Splus neural network tool (Venables and 

Ripley, 1994). After identifying the best band combination, the training process was 

conducted with the corresponding LUT and field measurements were used for 

verification. The best band combination was used to map LAI from the ETM+ imagery. 

 

4.4 Results and analysis 

 

4.4.1 LAI retrieval from ETM+ surface reflectance 

 

In Table 4.3, all RMSEs<1.0 are italicized. For SN1, all of the RMSEs are greater than 

1.0. For SN2, three combinations have a RMSE<1.0, while for SN3, six band 

combinations had that value. The best results were observed for the SRI which had seven 

RMSE<1.0. Including NDVI improved the retrieval accuracy to some extent. For 

example, the R2/RMSE for the band combinations of (2, 3), (2, 4), and (2, 5) are 

0.55/1.64, 0.75/1.67, and 0.01/2.04; while R2/RMSE for (2, 3, NDVI), (2, 4, NDVI), and 
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(2, 5, NDVI) are 0.76/0.91, 0.75/1.07, and 0.50/1.52, respectively. Because NDVI 

incorporates the information content of bands 3 and 4, the R2/RMSE of (3, 4) and (3, 4, 

NDVI) were almost the same. In addition, the introduction of the green band (i.e., band 

2) did not improve the results. The R2/RMSE for (3, NDVI) and (4, NDVI) decreased 

from 0.80/0.85 and 0.80/0.80 to 0.76/0.91 and 0.75/1.07 when band 2 was used. 

Moreover, poor results (RMSE<1.0) were obtained when band 5 was used and 

unacceptable results occurred when more than four bands (NDVI as a separate band) 

were used.  

 

4.4.2 LAI retrieval from ETM+ raw radiance 

 
The results of LAI retrieval from the ETM+ raw radiance are displayed in Table 4.4 

(RMSE<1.5 are italicized). In contrast to the results shown in Table 4.3, there is no 

combination for SN1 whose RMSE is less than 1.5. This implies that SN1 may not be 

appropriate for TOA radiance calculation. In addition, only one RMSE was less than 1.5 

for the TOA radiance with SN2. This is not surprising because the laboratory-measured 

soil reflectance did not fully represent actual field conditions. Errors were also 

introduced because database 2 was calculated from an empirical equation (4.8). For SN3, 

there is only one combination (4, NDVI) with an RMSE<1.5. The best results are seen 

with the combination of band 4 (NIR) and NDVI (R2=0.74, RMSE=1.17) for the SRI 

case which suggests that this band combination should be used for estimating LAI from 

TOA radiance. These results may be explained by the fact that visible bands are 

significantly affected by atmospheric conditions,
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Table 4.3 Comparison of R2 and RMSE for different neural network scenarios and the 
application of the soil reflectance index (SRI). Band combinations use surface 
reflectances simulated from MCRM.  

SN1 SN2 SN3 SRI Band 

combination R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

2, 3 0.4023 1.6349 0.2101 2.7 0.6075 1.6784 0.5522 1.6389

2, 4 0.7722 1.032 0.6236 1.7824 0.8361 0.725 0.7536 1.6655

2, 5 0.1054 2.3065 0.0161 4.2217 0.0447 2.1306 0.0139 2.0362

2, NDVI 0.7459 1.1813 0.7264 1.087 0.7196 1.2436 0.7378 0.9916

3, 4 0.8081 1.1332 0.6816 1.3071 0.8137 0.9254 0.8015 0.8095

3, 5 0.3062 2.6583 0.0245 3.1032 0.0716 2.0174 0.1333 1.9811

3, NDVI 0.8013 1.1285 0.7383 1.1772 0.8101 0.9192 0.7952 0.8508

4, 5 0.6078 19.161 0.7158 18.095 0.7803 3.7898 0.8196 4.9209

4, NDVI 0.8115 1.1009 0.7967 0.9494 0.816 0.8942 0.8021 0.8048

5, NDVI 0.5332 2.145 0.0261 3.2974 0.5214 1.7316 0.5452 1.5214

2, 3, 4 0.4571 1.2638 0.7709 0.9387 0.7925 0.9132 0.7742 0.9551

2, 3, 5 0.3488 20.071 0.0401 9.285 0.2154 3.651 0.0581 5.3729

2, 3, NDVI 0.561 1.4124 0.7399 1.0352 0.7319 1.3805 0.7597 0.9063

2, 4, 5 0.0552 14.559 0.0725 13.155 0.0151 11.36 0.2765 17.423

2, 4, NDVI 0.2106 2.7003 0.0901 2.6999 0.8247 0.8444 0.745 1.066

2, 5, NDVI 0.6934 1.6588 0.3775 2.0413 0.4265 1.7554 0.4953 1.5194

3, 4, 5 0.0038 40.357 0.3078 32.144 0.0689 12.806 0.5972 19.22

3, 4, NDVI 0.8071 1.106 0.7996 0.9806 0.8141 0.9019 0.8051 0.8022

3, 5, NDVI 0.051 8.7336 0.3346 2.1553 0.2037 2.0226 0.3095 2.6856

4, 5, NDVI 0.6387 31.337 0.0377 2.28 0.0705 7.1147 0.2002 27.52

2, 3, 4, 5 0.029 26.226 0.2964 10.917 0.1435 5.2947 0.3338 7.2955

2, 3, 4, NDVI 0.3378 1.4478 0.2846 2.7 0.0042 2.7001 0.6949 1.2642

2, 3, 5, NDVI 0.2933 6.4625 0.3254 2.2912 0.0002 2.0724 0.7848 1.2787

2, 4, 5, NDVI 0.5788 1.6387 0.5299 20.077 0.6317 8.4994 0.0872 27.467

3, 4, 5, NDVI 0.7551 18.533 0.4793 25.14 0.0916 1.8153 0.7141 3.2424

2, 3, 4, 5, NDVI 0.2053 18.157 0.0818 12.027 0.145 6.5945 0.159 2.6857

 



 

Table 4.4  Same to Table 4.3 , but using TOA radiance in band combinations. 

SN1 SN2 SN3 SRI Band 

combination R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

2, 3 0.1700 5.2625 0.0223 40.4603 0.0822 67.5674 0.0438 29.2868

2, 4 0.0391 2.0105 0.0002 2.3056 0.0648 2.1652 0.1048 2.2036

2, 5 0.0702 4.3581 0.0712 3.0718 0.0690 2.3562 0.0816 2.2777

2, NDVI 0.5557 2.1632 0.5397 24.3915 0.2150 22.6303 0.4674 3.4295

3, 4 0.4003 2.1518 0.6235 1.3118 0.6955 1.6551 0.4408 1.7748

3, 5 0.0052 2.2525 0.0312 2.8464 0.0826 2.6193 0.0159 2.3495

3, NDVI 0.6699 1.9020 0.5193 2.4603 0.5755 1.8780 0.3285 1.9902

4, 5 0.0090 6.0347 0.0027 5.6974 0.0174 7.4843 0.0004 55.4644

4, NDVI 0.2131 2.3706 0.6385 1.5869 0.7372 1.2019 0.7442 1.1701

5, NDVI 0.0010 2.1486 0.0307 2.6477 0.0303 2.5607 0.0603 2.6699

2, 3, 4 0.0156 1.7759 0.0121 2.0391 0.0568 1.7057 0.0012 1.9701

2, 3, 5 0.0307 4.0950 0.0040 5.3889 0.0833 84.7633 0.0932 3.0354

2, 3, NDVI 0.0891 2.9434 0.6875 11.2830 0.4711 75.9847 0.0447 68.7834

2, 4, 5 0.0479 5.3905 0.0694 4.4210 0.0885 4.5779 0.0079 4.9147

2, 4, NDVI 0.5549 2.2269 0.4978 2.6760 0.6466 3.9618 0.6875 2.8680

2, 5, NDVI 0.0219 17.4510 0.4069 9.7468 0.0049 8.7707 0.5951 10.6470

3, 4, 5 0.0462 6.0392 0.0094 4.9709 0.0098 11.2123 0.0013 5.5459

3, 4, NDVI 0.6377 1.8139 0.5693 1.7601 0.3793 1.7854 0.5496 1.7832

3, 5, NDVI 0.0180 5.5558 0.1570 1.9513 0.6091 1.6705 0.5330 1.4873

4, 5, NDVI 0.0000 4.3379 0.0021 27.1991 0.5849 1.9930 0.5401 3.0628

2, 3, 4, 5 0.0659 5.1442 0.1017 3.7472 0.0097 6.4394 0.1030 3.4869

2, 3, 4, NDVI 0.1840 2.5507 0.1762 2.0701 0.3513 15.2807 0.0490 2.4762

2, 3, 5, NDVI 0.1361 5.8437 0.0120 162.7613 0.0383 159.8680 0.0343 108.8274

2, 4, 5, NDVI 0.0148 6.0143 0.1189 44.0487 0.0681 55.9402 0.5703 59.6755

3, 4, 5, NDVI 0.0615 5.4126 0.4532 80.8209 0.0944 45.6471 0.2572 37.4586

2, 3, 4, 5, NDVI 0.0001 4.6033 0.0014 45.7972 0.0001 129.6289 0.0086 28.8632
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while infrared bands are not. Moreover, NDVI is not significantly affected by 

atmospheric effects because these factors are normalized out in the process of 

calculation (Kaufman and Tanré, 1992). 

 

Similar to database 1, the results of database 2 were very poor when the combination 

used more than 4 bands. The effect of adding NDVI varies with different band 

combinations. For most cases, using NDVI did not improve the results. The introduction 

of green band radiance deteriorated the results to some extent and the effect of band 5 

was also negativeall RMSEs >1.5 when band 5 was used. 

 

For SN2, SN3 and SRI, database 1 performed much better than database 2. It is not 

surprising that LAI could be better estimated from atmospherically corrected surface 

reflectance data than from raw TOA radiances. Similar results were reported by Turner 

et al. (1999) who used both reflectance and radiance to calculate VIs and found that the 

LAI-VI relationships based on reflectance data were stronger than those based on 

radiance data. In this analysis, a perfect atmospheric correction has been assumed for 

database 1. Yet, if it is believed that atmospheric correction introduced large 

uncertainties to the surface reflectance, the second scheme might be a better solution.  

 

The best results were obtained from (3,4) in database 1 with the SRI method. Therefore, 

Landsat ETM+ reflectances in the red and NIR were picked to map LAI with the trained 

NN. The strategy behind this selection was based on choosing the best R2 and RMSE as 

well as considering computation efficiency. This result was also obtained by Baret et al. 
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(1995). All simulated points in the LUT were used to train the NN which was then 

applied to Landsat ETM+ red and NIR reflectances to predict LAI.  

 

4.4.3 Validation 

 

To validate the proposed approach, the NN derived LAIs were compared with field 

measurements. Figure 4-3 shows that the SRI method performs well (R2=0.801, 

RMSE=0.811) in estimating LAI. The constant soil reflectance approach in SN3 also 

performs well (R2=0.814, RMSE=0.925). When LAI>4.0, both SN1 and SN2 tend to 

underestimate LAI for the two hairy vetch points and a wheat point (Figure 4-3e~h). 

Using SN1 seems unrealistic, and SN2 is not representative for this study area. Although 

Kuusk (1998) mentioned that MCRM may not work well for forests, most of the 

retrieved forest LAIs agreed well with the field-measured green LAIs (Figure 4-4) for 

LAI<3. There is a strong bias for high LAI (>3), possibly caused by the saturation of the 

forest reflectance.  Among the four options, the largest deviation is seen in SN2 (Figure 

4-4). 

 

Errors caused by model simulation, sensor calibration or measurement should be taken 

into account. To test the sensitivity of the neural network approach to uncertainty in the 

input reflectance, three bias levels (±15%, ±10% and ±5%) were generated for 

evaluation. The relative errors were added to the ETM+ surface reflectance and TOA 

radiance dataset. The relative R2 and RMSE differences were calculated between the 

biased and the original datasets 
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Figure 4-3 Comparison of LAI-NN with field LAI. LAI-NN is estimated from Landsat 
ETM+ images with the neural network methods for four different soil reflectance 
options: a) SN1; b) SN2; c) SN3; and d) SRI. Symbols: May 11 ( ) and Oct 2 ( ) 2000 
and Apr 28 ( ) and Aug 2 ( ) 2001. (e)~h) compare LAI of different cover types, 
alfalfa (∇), barley, hairy vetch and orchard grass (×), corn ( ), deciduous forest ( ), 
grass ( ),  soybean (+), and wheat ( ). R^2: R square. The solid line is the 1:1 line, 
and the dashed one the regression line. 
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Figure 4-4 Comparison of retrieved forest LAI-NN values retrieved with SN1 ( ), SN2 
( ), SN3 (∆) and the SRI (•), respectively, with measure LAI. The intercepts of the 
dashed lines are ±1.  
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(R′-R)/R 

where R and R′ are the R2 or RMSE obtained using the original and biased datasets, 

respectively. Table 4.5 lists the relative R2 and RMSE differences using SRI. This table 

includes band combinations that performed wellbands 3 and 4 for surface reflectance 

and 4, NDVI for TOA radiance.  

 

For the surface reflectance, the R2 nearly keeps constant across different noise levels. 

The RMSE values are lower at low noise levels and are a little biased when the absolute 

biases are greater than 10%. This indicates that this approach is robust to different 

reflectance noise levels and thus lends itself to practical applications. On the other hand, 

the noise has significant effects on LAI estimated from TOA radiance. All R2 are much 

lower than the original values for different bias levels. The RMSE is lower at low noise 

levels but increases quickly when noise increases. This is an indication that using TOA 

radiance may be unrealistic for LAI estimation if there are too many uncertainties.  

 

4.4.4 Comparison with the genetic algorithm results 

 

It is interesting to compare the LAI results from both the GA optimization method in the 

previous chapter and the NN approach developed in this chapter. The results are shown 

in Figure 4-5. This scatterplot compares the LAI values from both the neural network 

method and GA method for two days (Apr 28 and Aug 2, 2001). The results from the 

two approaches generally agree well with each other (R2=0.943 and 0.883 for the two  



 
 

Table 4.5 Relative R2 and the RMSE differences for different bias levels. Band (3,4) is 
used for surface reflectance and (4, NDVI) for TOA radiance.  

 
Bias levels -15% -10% -5% +5% +10% +15% 

R2 0.0034   0.0035  0.0021  -0.0026  -0.0045  -0.0053  (3,4) 

 RMSE 0.1282   -0.0051  -0.0521  0.1711 0.4091   0.6973  

R2 -0.9219   -0.8547  -0.7469  -0.6293 -0.7174   -0.7729  (4,NDVI) 

RMSE 0.8336 0.7151 0.6228 1.3337 3.2187 6.1858   

 
 
 
 
 
 

 
 

Figure 4-5 Comparison of LAI derived from the neural network method (LAI-NNT) and 
the genetic algorithm (LAI-GA) of two 30×30 pixels regions in Figure 3-10. (a) Apr 28, 
2001; (b) Aug 2, 2001. 
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dates, respectively). The RMSE is less than 0.26, very small compared with the 

measurement uncertainties. For both dates, LAI-NNT is larger than LAI-GA for higher 

LAI values (>3). 

 

In retrieving LAI with the genetic algorithm, the surface background reflectance is the 

same as scenario 1 (SN1) in this chapter (equation 4.6). The new SRI concept developed 

in this chapter was not applied in the GA experiments in the previous chapter. In 

addition, the neural network simulation work in this chapter used some results (e.g. Sz, 

Cab and N) derived from the previous GA optimization outputs to represent the general 

conditions of the study area. While further work is needed for the GA method, it is 

believed that that the neural network is more practical in its current stage. 

 

4.4.5 LAI mapping 

 

NN training results from the SRI (Figure 4-3) were used to estimate LAI for four Landsat 

ETM+ images (Figure 4-6). The May 11, and Oct. 2, 2000 images are 512 × 512 and 600 

× 600 pixels, respectively. The Apr. 28, and Aug. 2, 2001 images are 300 × 300 each. In 

Figure 4-6, brown areas were either bare land or roads, and the gray-white areas were 

construction sites. The yellow and green pixels were either crops or forests. The LAI 

maps correspond well with local landscape characteristics. Statistics from the LAI maps 

are shown in Table 4.6. May 11, 2000 and Aug. 2, 2001 have the highest mean LAI 

values. The LAI standard deviation of May 11, 2000 is greater than that of Aug. 2, 2001, 

possibly due to variability caused by differing planting and emergence dates. Most areas 
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have LAI values less than 4.0 (Table 4.6). However, some dark green pixels on the Apr. 

28, 2001 LAI-NN map were dense grasses with an LAI-NN greater than 6.0. Because 

this method seems to provide accurate estimates of vegetation amounts throughout the 

growing season, this approach could be applied to a large area for regional LAI mapping 

(see an example in Figure 4-7). Large area LAI estimation is valuable for comparison 

with LAI products from other sensors such as MODIS (next chapter) or MISR. 

 

4.5 Summary 

 

This chapter has demonstrated how a hybrid approach (RT+NN) can be used to retrieve 

LAI from the Landsat 7 ETM+ surface reflectance and TOA radiance. The NN was 

trained with two databases to estimate LAI from atmospherically corrected surface 

reflectance (database 1) and raw TOA radiance (database 2). Database 1 was constructed 

with a canopy RT model and database 2 with the combined atmospheric and canopy RT 

models. A soil reflectance index (SRI) was proposed to account for soil background 

reflectance.  To define the SRI, the shape of the soil-line in the red-NIR spectral space is 

needed. SRI minimizes the number of parameters involved in computing the soil spectral 

reflectance.  

 

The results show that LAI can be obtained through the NN approach from both surface 

reflectance and TOA radiance. The outputs were compared with field-measured LAI 

datasets from four different dates. The surface reflectance approach resulted in an 
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Figure 4-6 LAI maps generated with the neural network method from ETM+ 
reflectances. (a) May 11, 2000; (b) Oct 2, 2000; (c) Apr 28, 2001; (d) Aug 2, 2001.  
Band (3, 4) and SRI are used in the NN training. 
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Figure 4-7 LAI distribution estimated using the proposed hybrid approach with ETM+ 
for Apr 28, 2001 over the Washington, DC area. White box shows the Figure 4-6c area. 
Size: 1500 by 1500 pixels.  
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Table 4.6 Statistics of the LAI-NN estimated from the four ETM+ reflectances.   

 
Dates Minimum Maximum Mean 

LAI 

Standard 

deviation 

LAI<4 pixels 

(%) 

May 11, 2000     0.0     6.39        2.28     1.31         91.43 

Oct 2, 2000     0.0     6.44     1.54     0.76         99.5 

Apr 28, 2001     0.0     6.22     1.57     0.68         99.45 

Aug 2, 2001     0.0     8.81     2.26     0.97         98.15 

 

 

 

R2=0.801 and RMSE=0.811 using input bands 3 and 4. When the TOA radiance of band 

4 and NDVI were used, the results were not as good: R2=0.74, RMSE=1.17. Estimating 

LAI from TOA radiance does, however, have the advantage of avoiding performing a 

complicated atmospheric correction process. In general, bands 3 and 4 are recommended 

for estimating LAI from ETM+ surface reflectance, while band 4 and NDVI are 

recommended if TOA radiance is used. The sensitivity experiment showed that this 

approach is very robust, especially when surface reflectance is used.  
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Chapter 5  Mapping LAI from MODIS Using a Hybrid Inversion 
Method  

 
 
5.1 Introduction 

 

In Chapter 4, a hybrid approach (RT+NN) was developed to estimate LAI from high 

resolution Landsat ETM+ data. Its applicability to MODIS, still unknown, requires 

further experiments and validation work. Therefore, the objective of this chapter is to 

explore the hybrid method to estimate LAI from moderate resolution sensors, such as 

MODIS. In addition, two nonparametric algorithms, NN and PPR will be compared in 

this chapter. 

 

The MODIS science team is producing an LAI product systematically. The land biome 

type classification is indispensable for this algorithm. It makes use of predefined leaf 

optical and structural properties for each biome type. Thus, the accuracy of the algorithm 

is dependent on the accuracy of the land cover classification. Another well-recognized 

limitation in the MODIS LAI algorithm is its inclusion of pre-defined soil reflectances 

(Knyazikhin et al., 1998b). In Chapter 4, a soil reflectance index (SRI) derived from the 

satellite image was developed to represent the soil reflectance when the satellite 

overpasses. Thus, the intensive computation using canopy RT simulation is greatly 

simplified. 

 

Several validation techniques have been used to determine the uncertainties of land 

surface products, such as comparisons with in situ data, with products from other 
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sensors, trend analysis, and application analysis (Morisette et al., 2002; Privette et al., 

1998). It is also crucial to compare the LAI products with those derived from other 

independent methods.  

 

The hybrid algorithm is presented in the following sections. It starts with a brief 

summary of the study area and experiment data. After the ETM+ data preprocessing, the 

SRI is determined from the ETM+ reflectance image. With inputs of different plant and 

environment parameters, a big database is simulated for nonparametric training. The 

trained results are then used in the prediction step to produce LAI maps from MODIS 

data. The experimental design is illustrated in Figure 5-1. 

 

5.1.1 The MODIS LAI algorithm 

 

The operational MODIS LAI algorithm makes uses of vegetation maps as a priori 

information to constrain the vegetation structural and optical parameter space (Myneni et 

al., 1997). Six major biomes were used: Grasses and Cereal Crops (biome 1), Shrubs 

(biome 2), Broadleaf Crops (biome 3), Savannas (biome 4), Broadleaf Forests (biome 5) 

and Needle Forests (biome 6). For each land pixel, numerical solutions of the three-

dimensional canopy radiative transfer equation are used to model the bi-directional 

reflectance factors (BRF) of the biomes for varying sun-view geometry and canopy/soil 

patterns (Knyazikhin et al., 1998a; Knyazikhin et al., 1998b). A look-up table is 

constructed which includes a suite of representative canopy variables and  
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Figure 5-1 Work flow of the hybrid approach to estimating leaf area index with remote 
sensing imagery. 
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soil characteristics of each biome. The present version of the LUT contains 25 patterns 

of effective ground reflectances evaluated from the soil reflectance model of 

Jacquemoud et al. (1992). By comparing the observed and modeled BRFs, LAI is 

retrieved. The solution is usually not unique; therefore, the mean values of LAI averaged 

over all acceptable values and their dispersions are taken as the retrievals and their 

uncertainties (Knyazikhin et al., 1998a; Knyazikhin et al., 1998b). Should this main 

algorithm fail, a back-up algorithm is triggered to estimate LAI using NDVI. The backup 

algorithm makes use of the pixel NDVI and a unique NDVI-LAI relationship for each 

biome. The LAI product has a value between 0.0 and 8.0 assigned to each 1-km cell of 

the global gridded database.  

 

The MODIS LAI algorithm has been prototyped with various sensors such as POLDER, 

LASUR, Landsat Thematic Mapper (TM), and SeaWiFS data (Tian et al., 2000; Wang et 

al., 2001; Zhang et al., 2000). It is noted that the operation and accuracy of the MODIS 

LAI algorithm is based on other MODIS upstream products. First of all, this algorithm is 

based on six biome types; misclassification will lead to accumuated errors in the final 

LAI products. Second, the accuracy of this algorithm is also dependant on the daily 

atmosphere-corrected spectral BRDF in the solar spectrum (MOD09). More importantly, 

some variables, such as the soil refelctance, leaf reflectance and transmittance, need to 

be fixed with a priori constants. However, most of these variables vary dramatically. 

Fixing them with constants will bring large uncertainties (Walthall et al., 2000).  
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5.2 Methodology 

 

5.2.1 Data preparation  

 

In the study area at Beltsville, Maryland, two clear Landsat ETM+ images were obtained 

on April 28 and August 2, 2001, respectively (path 15/row 33). They represent two 

different vegetation growing states. In late April, the vegetation and crops are in the 

typical early-spring growing season. In early August, crops are in the middle-late 

growing season. ETM+ and MODIS are in the same orbit, about 45 minutes apart, on 

Landsat 7 and Terra, respectively. The MODIS imagery over the test site was acquired 

on the same day as ETM+. The MODIS imagery had a very small viewing angle (<1° 

for both images at the 10×10 km core site or <8° over the ETM+ coverage). Hence, both 

ETM+ and MODAGG reflectance were treated as nadir view. The solar zenith angles 

(SZA) were 31.41° and 30.19° for the two ETM+ images respectively, and 27.22° and 

25.55° for the MODIS images.  

 

In the MODIS land data production sequence, the Level 2G (MOD09) and level 3 data 

are accumulated to create the LAI/FPAR products as well as other land data products 

(Justice et al., 2002). The MODIS Level 2G (MOD09) data are daily, cloud-cleared, and 

atmospherically-corrected surface reflectances. The level 3 MODAGG data are 1 km 

intermediate products aggregated and binned daily from the MOD09 1-7 channels. The 

MODAGG data are used as the primary input for the MOD43B BRDF/Albedo product 

(MOD43B), the nadir BRDF adjusted reflectance (NBAR or MOD43B4), and the 16-



 125

day enhanced vegetation index product (MOD13A2). MODAGG is directly used to 

produce the MODIS LAI products because it has the required projections and spatial 

resolution. These constitute very sound reasons to utilize the MODAGG data to test the 

new approach.   

 

5.2.2 Atmospheric correction, aggregation and registration of ETM+ imagery 

 

Atmospheric correction of the clear ETM+ imagery was undertaken using the methods 

in Chapter 2. After the ETM+ reflectance data were calibrated with field-measured 

reflectance, they were aggregated into the MODIS resolutions. The ETM+ data from 

band 3 and band 4 in the study area were spatially averaged using commercial image 

software to generate data of 240-, 510-, and 990-m resolutions, close to the MODIS 250, 

500 and 1000m resolutions. This aggregation was accomplished by simply averaging 

every 8× 8, 17×17, and 33×33 ETM+ pixels. The spatial averaging was just a 

simplification of the complicated spatial convolution and resampling process to 

aggregate ETM+ imagery to MODIS sensor resolution (Barker et al., 1992). The 

aggregated 510m resolution ETM+ imagery was then registered with the 1 km MODIS 

imagery by manually selecting the common ground control points (GCP), such as rivers, 

coastal lines and other distinct ground features. It is clear that the accuracy of validation 

depends to a large extent on the accuracy of the spatial registration. In this study, an 

average registration error of less than one MODIS pixel was achieved for both month’s 

images.    
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While the overall mean value remains invariant, the spatial aggregation results in a 

decreased variance, and thus leads to the discrepancy within different ground cover 

types. This is accompanied by an increased number of mixed pixels and in the degree of 

spatial mixture within pixels when the spatial resolution becomes coarser. It is noted that 

I did not average high-resolution LAI data, but the reflectance data. This is mainly 

because of the different spatial scaling characteristics of reflectance and LAI. Unlike the 

surface reflectance, the situation is quite different for the LAI in the scaling process. 

Liang’s (2000) work has shown that LAI values retrieved from coarse-resolution 

remotely sensed data are not always equal to the true LAI values if the surface is highly 

heterogeneous. The simulation work conducted by Tian et al. (2003) also indicates that 

LAI retrieval errors at coarse resolution are inversely related to the proportion of the 

dominant land cover in the mixed pixel. Those simulations indicate that one cannot 

simply average and aggregate the high-resolution LAI values and compare them with 

coarse resolution LAI. In this study, LAI inaccuracies were still unavoidable even when 

first averaging reflectances and then performing LAI retrievals. The error increases 

correlative to decreasing resolution because of the nonlinear relationship between LAI 

and reflectances (Liang, 2000; Weiss et al., 2000).   

 

5.2.3 Determining the soil reflectance index 

 

In the previous chapter, the concept of soil reflectance index (SRI) was proposed based 

on the “soil line.” The SRI is a simplification of the complex soil radiometric properties 

and can be directly derived from the satellite data. One merit of the SRI is that it is based 
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on the soil line parameters obtained from the instantaneous red-NIR reflectance space. 

Examples of the red-NIR reflectance scatterplot are shown in Figure 5-2. The intercept 

(β) is not a single value. Instead, a buffer range is given. All pixels located in this buffer 

zone are treated as soil pixels. Figure 5-2 shows examples of the soil pixel stripe (within 

dashed lines) obtained from the aggregated ETM+ and MODAGG data.  

 
As discussed above, upscaling reflectance from the 30m resolution (ETM+) to the 1 km 

resolution (MODIS) is highly linear (Liang, 2000). Therefore, the 30m ETM+ 

reflectance was averaged to the MODIS products of 1 km without introducing any 

significant errors. A typical red-NIR reflectance scatterplot would look like Figure 5-2, 

resembling a slant ‘V’ shape. Figure 5-2 illustrates the spectral space of red and near-

infrared reflectances (Red-NIR) for different spatial resolutions. The study area, a typical 

heterogeneous surface, includes several common land cover types, such as vegetation 

(forests, grasses and crops), built-up areas, bare soils and water bodies. The soil line can 

easily be drawn manually from this figure. When the red-NIR space was scaled from 

high-resolution to moderate and low resolution, the ‘V’ shape changed accordingly 

because of the pixel mixing. This process was nonlinear and resulted in an averaging 

filter effect for all pixels, i.e, the dark surface objects appeared brighter and bright 

surface objects darker. While the distribution of the NIR reflectance remained similar for 

different resolutions, the degradation of the red reflectance was very distinct when the 

resolution decreased. This should be attributed to the dissolution of the soil pixels into 

their neighboring vegetated pixels. This decrease in red reflectance is particular to this 

study site because the scaling process is dependent on the mixed pixel element fraction. 

Most likely, other trends of red-NIR shrinking could be seen at other sites. 
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Figure 5-2 The scatterplot of the red (x) and near-infrared (y) reflectances for ETM+ and 
MODAGG imageries. The ETM+ scatterplots are of different resolutions (240m, 510m, 
750m and 990m). The strip within the dashed lines shows the soil pixels. 
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The direct consequence of the red-NIR pixel mixing is that it makes soil line 

identification difficult to impossible. Without proper pixel unmixing, it is unrealistic to 

draw a soil line as in the high-resolution red-NIR space. For the current study, the 

coherent high-resolution ETM+ red-NIR space was used as an alternative, keeping in 

mind that the scaling of surface reflectance could be treated as linear. The soil and 

vegetation reflectances of a certain pixel were treated as invariable whatever the pixel’s 

resolution. However, their fractions change relative to variable resolutions. According to 

this rationale, the soil reflectance index, and thus the soil reflectance derived from the 

ETM+ imagery (30 m), were used as inputs in the RT simulation process. 

 

Note that the MODIS and ETM+ bands have different spectral response functions. To 

relate the ETM+ reflectance bands to the MODIS reflectance bands, statistical relations 

have been established based on extensive surface reflectance spectra of different cover 

types (Liang, 2001). These reflectance spectra were integrated with both MODIS and 

ETM+ sensor spectral response functions and a simple linear regression was then 

performed. For brevity, the empirical formulae (Liang et al., 2002a) to predict MODIS 

spectral band reflectance from ETM+ spectral band reflectance were not listed here. 

Once the soil reflectance index and the soil reflectance were determined from the 

coherent ETM+ imagery, the soil reflectance needed in MODIS simulation was 

calculated using these formulae.   

 

Although not illustrated here, I did try to locate an empirical soil line from the 

MODAGG red and NIR reflectance scatterplot. The low-right strip pixels in the red-NIR 
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space were treated as soil pixels (within the dashed lines in Figure 5-2e&j). Obviously, 

this method will result in a soil line with a high slope and a very low intercept. It is very 

interesting to note that the final retrieved LAI values were not totally unrealistic using 

this empirical soil line. There are two possible reasons for this behavior. The first is that 

the soil reflectance may have a very insignificant effect on the total reflectance in the 

coarse resolution pixel. Because of pixel mixing, the soil element in a coarse pixel does 

not contribute as much reflectance to the mixed pixel as in the high-resolution imagery. 

Second, it is expected that soil lines will rotate and shift when spatial resolution changes. 

In this study, the soil line rotates counter-clockwise with the decreasing reflectance of 

the mixed pixels when the spatial resolution decreases (Figure 5-2). Those right-hand 

strips of pixels are not pure soil pixels any morethey simply have more ‘soil’ than 

other pixels. One can then determine the soil reflectance index directly from MODIS 

data in the future, even if its accuracy may be questionable. A better soil line can be 

obtained from the 250m MODIS Level 2 band 1 and 2 surface reflectance data. In 

principle, the SRI obtained in this way should be more realistic and practical for 

simulating canopy reflectance. This will be further explored in the future.  

 

To the best of my knowledge, all current soil lines need to be determined manually. 

Research for this dissertation did not yield any published methods for automated soil line 

identification. In this and other similar studies, a semi-automated soil line identification 

method was attempted based on the pixels’ red-NIR reflectance shape. More effort is 

needed in this direction. 
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5.2.4 Creating the database with the radiative transfer model 

 

The MCRM model (Kuusk, 2001) simulates two-layer crop canopies based on the 

homogeneous model MSRM (Kuusk, 1994) and on the Markov chain reflectance model 

(Kuusk, 1995b). The MCRM was run with variable solar zenith angles (SZA: 20, 30, 35, 

40, 45, 50, 55, 60), LAI (0.1~10 by 0.1) and different SRI values (0.01, 0.05, 0.1, 0.15, 

0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0). Please note that the SRI was derived from the soil 

line of the simultaneous ETM+ red-NIR space. The leaf orientation was assumed 

spherical. Other parameters were fixed with the same values as in section 4.2. All 

chlorophyll A + B (40, 50 ug/cm2), the Markov parameter (0.8) and the leaf structure 

parameter (1.8) were fixed with the GA-optimized values in Chapter 3. These values 

were thought to be representative of the general conditions over the study site.  

 

The time required to precompute the database is proportional to the number of spectral 

channels. The high spectral resolution (set to 5 nm) of the MCRM output was used 

initially. However, using such a high spectral resolution, integrating ETM+ spectral band 

response function becomes very time-consuming. Instead, the MCRM code was tuned so 

as to yield the reflectances at the ETM+ central wavelength only. Thus, the computation 

is much more efficient while attaining a comparable accuracy. 

 

5.2.5 Nonparametric training and prediction 
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Both the neural network (NN) method and the projection pursuit regression (PPR) 

methods were briefly outlined in section 1.2.3. Once the simulated database is ready, 

these two non-parametric methods are applied to train the datasets and predict LAI from 

the remotely sensed data.  

 

The training process is usually computationally intensive. Because some of the satellite 

bands are closely related, only those bands which have the most information are usually 

applied in the training iteration. Commonly used bands include green, red, NIR, and the 

NDVI, either as single bands or in combinations (Baret et al., 1995; Kimes et al., 2002; 

Qi et al., 2000; Smith, 1993). Obviously, different MODIS band combinations could be 

used to invert the LAI from the simulated database. In another similar study, different 

band combinations were tested to determine their effect on the final LAI accuracy 

estimated from EO1 ALI data (Liang et al., 2002b). In this study, only the MODIS red 

(band 1) and NIR (band 2) band were used in the training and the next prediction 

processes. This is similar to the strategy applied in the MODIS LAI algorithms. In 

addition, my previous tests have shown that use of the red and NIR can have an 

equivalent accuracy with relative computational simplicity compared with that using all 

bands.   

 

As in other studies (Gong et al., 1999; Qi et al., 2000; Smith, 1993), the training process 

was carried out with the simulated database. However, training with only the simulated 

databases may not represent the real environment and can lead to anomalous results in 

the final LAI map. To overcome this problem, some real image pixels were added to the 
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database before training. The bare ground points are especially necessary because they 

have zero LAI (or at least very low) and are easily over fitted. Please note that I did not 

include LAI=0.0 in the simulation process in the above section. In this study, the 

nonvegetated pixels (bare soils, constructed areas, seashores, etc.) were extracted from 

MODIS surface reflectance data using NDVI (<0.3), and band 6 and 7 as the thresholds. 

Bare ground reflectances and LAI (=0.0) were added to the database in the training step 

to represent the true natural conditions.  

 

Many statistical software producers provide NN and the PPR packages. Here, both were 

performed with the Splus package (Venables and Ripley, 1994). The same simulated 

database was used in both the PPR and NN training processes. The training process 

created an input-output relationship between reflectance and LAI. After training, the 

aggregated ETM+ and the MODAGG red (band 1) and NIR (band 2) reflectances were 

used to map LAI based on the trained input-output relationship. 

 

5.3 Results 

 

Figure 5-3 shows a color composite image of the LAI derived from the MODIS 

products, the aggregated ETM+ and the MODAGG in the Chesapeake Bay region. This 

figure also depicts the registration results between the aggregated ETM+ and the 

MODIS data. The ETM+ image is diamond-shaped and covers the center of the 

rectangle.  

 



 134

The MODIS LAI algorithm relies on the major biome information for its priori canopy 

physiological parameters (Knyazikhin et al., 1998a; Knyazikhin et al., 1998b). A biome 

type map (Figure 5-4) was obtained from the NASA EOS Data Gateway (EDG). These 

data were used to produce the MODIS standard LAI map (Figure 5-5). From its 

classification system, there are three major vegetation types in the map, broadleaf forest 

(50.3% of vegetation), broadleaf crops (26.9% of vegetation), and needleleaf forest 

(10.2% of vegetation). There are some grasses and cereal crops but they only occupy 

3.5% of the vegetation. Except all these vegetation pixels, there are some shrubs and 

savanna pixels and unvegetated pixels.  

 

MODIS and MODAGG LAI values are displayed in red and blue, respectively, within 

the rectangle. Figure 5-5 shows the MODIS standard LAI product retrieved from both 

the main (RT) method and the empirical backup method on May 1, 2001 and Aug 5, 

2001. The MODIS LAI quality control (QC) mask was employed. In this figure, all 

water, barren, permanent wetlands/marshes, and built-up areas are filled with zero 

values. Moreover, all clouds and shadows were excluded in the subsequent comparison 

work. Table 5.1 compares the minimum, mean, and maximum LAI estimated by 

different approaches. LAI values derived from the main RT method and the empirical 

backup method were also compared in this table. The main RT method and the empirical 

produce nearly the same results (Table 5.1). At the beginning of the growing season 

(Figure 5-5a), most LAI values ranged between 5~6.9 (Table 5.1), with exceptions 

located on the east peninsula and in the northwest mountains (LAI: 2~4). In the middle 

of the growing season (Figure 5-5c), nearly all areas had a very large LAI (between 
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5~6.9, green in the figure). According to my field experience, these LAI values from 

both dates seem too large. In addition, there is not much difference (mean 

difference=0.2) between May 1 and Aug 5, 2001. I have also compared the specific LAI 

mean values for different biome types and for the two LAI retrieval algorithms. The 

MODIS LAI products were all found larger than the other MODAGG and ETM+ results. 

 
 
 
 
 
 

Table 5.1 Statistics of the MODIS LAI products, LAI estimated from the aggregated 
ETM+ data and from the MODAGG data. The minimum (Min), mean and maximum 
(Max) values of the neural network (NN) and the projection pursuit regression (PPR) 
methods are shown for the two dates. The two mean values correspond to pixels with the 
main RT method and backup method, respectively. 

 
 

Apr 28, 2001  Aug 2, 2001  
Min Mean  Max  Min Mean  Max 

MODIS LAI*   0.2 5.6/5.6 6.9  0.6 6.0/6.0 6.9 
NN 0.1 1.9/1.9 8.2  0.1 2.6/2.6 8.6 ETM+ LAI 
PPR 0.1 2.0/2.0 8  0.1 2.7/2.8 7.9 
NN 0.1 1.9/1.9 5.1  0.1 2.8/2.9 8.9 MODAGG 

LAI PPR 0.1 2.1/2.1 5.1  0.1 3.0/3.1 8.3 
    * The MODIS LAI data were of May 1 and Aug 5, 2001 respectively. 
 



 136

 
 

Figure 5-3 Presentation of the registration of the MODIS LAI product (red), the 
aggregated ETM+ LAI (green) and the MODAGG LAI (blue) of the study area. The 
ETM+ (the smaller lozenge region) and MODAGG data are of Aug 28, 2001. The 
MODIS LAI product is of May 1, 2001. 

 

 
 

Figure 5-4 MODIS biome types for LAI products. Color numbers: 0, Water or 
unclassified; 1, Grasses/Cereal crops; 2, Shrubs; 3, Broadleaf crops; 4, Savannah; 5, 
Broadleaf forest; 6, Needleleaf forest. 
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          (a)                                                  (b) 

  
            (c)                                                    (d) 

 

 

Figure 5-5 MODIS LAI products for (a) May 1, 2001 and (c) Aug 5, 2001. (b) and (d) 
depict the MODIS LAI algorithms for the two dates. Red (yellow) color represents that 
the main radiative transfer method (the empirical backup method) is used. 



 138

5.3.1 LAI maps from MODAGG 

 

LAI maps for Apr 28 and Aug 2, 2001 were generated from MODAGG data using the 

neural network and the projection pursuit regression methods (Figure 5-6). The 

estimated LAI values ranged from 0.1 to 5.1 on Apr 28, and from 0.1 to 8.9 on Aug 2 

with the NN method (zero values were masked). Their mean LAI values increased from 

1.6 to 2.7. The PPR method produced very similar results as those of the NN approach, 

and both results agree well with each other spatially. The regional land cover maps 

(Hansen et al., 2000) show that those high LAI values correspond to broadleaf forests. 

Temporal dynamics of the forest LAI distribution are visually distinct in Figure 5-6. On 

Apr 28, most of the green patches were located in the central and southwest side of the 

image, while on Aug 2, the green patches shifted toward the northwest mountain areas.  

 
 
5.3.2 LAI maps from aggregated ETM+   

 

The LAI maps from the aggregated ETM+ imagery are shown in Figure 5-7 with a 

spatial resolution of 510m. The spatial pattern of the LAI map generated by the neural 

network (Figure 5-7a&c), is similar to that generated by the PPR approach (Figure 

5-7b&d). The color gradient of the ETM+ LAI maps differs from that of the MODAGG 

results. More regions become greener from Apr 28 to Aug 2, which means 
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(a)

(d)(c)

(b)

 

Figure 5-6 LAI estimated from MODAGG data (1 km). The top two are for Apr 28, 
2001 and the bottom two Aug 2, 2001. (a) and (c) are from the neural network 
algorithm; (b) and (d) are with the projection pursuit regression method. LAI legend 
same as Figure 5-5. 
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 that the LAI has increased. This trend is also shown statistically. Table 5.1 shows that 

the estimated mean LAI increased from 1.7 to 2.5 with the NN and from 1.8 to 2.6 with 

the PPR. The statistical results of Table 5.1 represent slightly different areas for ETM+ 

and MODAGG because of their different resolutions and spatial coverage. For example, 

the maximum LAI estimated from ETM+ (8.2/8 for NN/PPR) was larger than 

MODAGG (5.1/5.1). Nevertheless, the LAI statistics have followed reasonable temporal 

dynamics of the vegetation in the study area. Note that the SZA has a 5 degree difference 

between the ETM+ and MODIS images.   

 

5.3.3 Comparison of LAI distributions  

 

To further compare the results from this approach with those from the MODIS standard 

products, the histograms of the coherent MODIS LAI, ETM+ LAI and MODAGG LAI 

are compared in Figure 5-8. In this figure, the MODIS QC mask has been applied to 

exclude the filled values (≥249). A common mask was used to delineate the same 

geographic region for all three datasets. The MODAGG LAI (Figure 5-8G to J) agreed 

well with ETM+ LAI (Figure 5-8C to F). Their histograms closely resemble one another, 

although their absolute LAI values may differ. The NN and the PPR produce nearly 

identical results as shown by their LAI distributions. This suggests that the NN and PPR 

are two easy and operational techniques to estimate LAI from MODIS images. However, 

it is found that MODIS LAI products have significantly more 
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(a) (b)

(c) (d)  
 

 

Figure 5-7 LAI estimated from aggregated ETM+ reflectance (510 m). The top two are 
for Aug 28, 2001 and the bottom two Aug 2, 2001. (a) and (c) are from the neural 
network algorithm; (b) and (d) are with the projection pursuit regression method. LAI 
legend same as Figure 5-5. 
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pixels peaked at the high end and less pixels in the middle range of LAI in comparison to 

the ETM+ and MODAGG LAI outputs. This led to very high MODIS LAI mean values 

(5.9 and 6.1 in Table 5.1) although their LAI ranges are reasonable in view of the field 

LAI. Extensive ground measurements demonstrate that typical LAI values in this study 

area are about 1.2~3.5 for corn, 2.5~5.5 for soybeans, 2.0~5.0 for grasses, and 2.1~3.6 

for mixed forests. It is noted that there are several dense wheat fields having high LAI 

values (above 6.0). The LAI derived from ETM+ and MODAGG are representative of 

the mean and seasonal LAI characteristics over this study area. Some of the maximum 

ETM+ and MODAGG LAI are larger than 8.0, which are treated as outliers in this study. 

A close examination of these pixels is needed in the future to identify the causes. 

 

5.4 Discussion and summary 

 

In this chapter, two non-parametric regression methods, the neural network (NN) and the 

projection pursuit regression (PPR) were integrated with radiative transfer (RT) to 

estimate LAI from MODIS reflectances. To simplify the RT simulation process, a soil 

reflectance index (SRI) calculated from ETM+ image was used to compute the MODIS 

soil reflectance in the RT simulation process.  

 

To compare the MODIS LAI products with ones from ETM+, the ETM+ reflectance was 

aggregated to 510m resolution and registered with the MODIS imagery. The NN and the 

PPR methods establish the relationships between the simulated canopy reflectance 
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Figure 5-8 Histogram comparison of the MODIS LAI products and LAI derived from 
MODAGG and aggregated ETM+ data. The two columns represent the results of two 
dates (Apr 28 and Aug 2, 2001 respectively). (A-B) MODIS LAI products; (C-D) From 
ETM+ with NN method; (E-F) From ETM+ with PPR method; (G-H) From MODAGG 
with NN method; and (I-J) from MODAGG with PPR method. 
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and the biophysical parameters (LAI in this case). Applying the relationship to 

MODIS reflectance data, LAI is derived and compared with results from the aggregated 

ETM+ reflectance.  

 

The same MODAGG data as used by the MODIS instrument LAI algorithm were used 

to produce LAI with the alternative approaches (NN and PPR). LAI maps generated with 

the MODAGG data were very similar to those using the aggregated ETM+ data. 

Seasonal dynamics of LAI are clearly illustrated in the two days. In the MODIS image, 

the LAI ranged between 0.2~6.9, which matches the ground-measured LAI values very 

well. However, the MODIS LAI mean values (around 6) were found to be larger than 

those from the other two datasets in the study area (Table 5.1). Because the initial work 

was based on two days for a specific location, general conclusions should be made only 

after further analysis at other sites.  

 

The NN and PPR produced almost identical results. Therefore, the NN and PPR provide 

two practical approaches to estimate LAI from MODIS images. Experimental tests in the 

study area demonstrate that nonparametric algorithms can be used as an independent 

validation tool for the MODIS LAI product. One of the advantages of the nonparametric 

methods is that they do not require a priori biome information and image segmentation 

(Tian et al., 2002). Other information requirements, such as canopy structure, are the 

same as for the MODIS LAI algorithms. The only weakness is that the training process 

may be lengthy.   
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To gain improved understanding of the usefulness and limitations of non-parametric 

methods at other landscapes, especially in sparsely-vegetated sites, more extensive 

experiments are needed. One issue concerning the relating of remote sensing reflectance 

to LAI is saturation, problematic because canopy reflectances do not change with 

increasing LAI. The algorithm introduced in this chapter did not address this issue 

specifically. Field-measured LAI could be as high as 6 (or greater) in some dense wheat 

fields. The MODIS LAI algorithm quantifies these situations by introducing a solution-

distribution function which can be used when this algorithm is extended to other sites.  
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Chapter 6  Conclusion 
 

LAI defines the leaf area that interacts with solar radiation and is responsible for carbon 

exchange with the atmosphere. Over the past decades, remote sensing techniques have 

been widely applied to derive LAI (Plummer, 2000). The research presented in this 

dissertation investigated several new algorithms to improve the estimation of LAI from 

remote sensing data. When the images (e.g. ETM+ or MODIS) were partly hazy, the 

new atmospheric correction algorithm was very crucial to removing the haze and 

producing improved images for LAI estimation. A new genetic algorithm (GA) was 

explored and shown to be very effective in the optimization process of a radiative 

transfer (RT) model inversion. The preliminary GA results were used in the next hybrid 

LAI estimation process. The hybrid LAI algorithm successfully estimated LAI from both 

ETM+ and MODIS images. Clearly demonstrated was that surface reflectance provides 

better LAI estimation than the digital numbers or radiances of raw imagery. LAIs 

estimated with the hybrid method were validated in the study area and the results were 

very accurate. More detailed summaries on these topics are provided in the following 

sections.  

 

6.1 A new atmospheric correction algorithm for ETM+ 

 

The purpose of atmospheric correction is to transform the remotely sensed data obtained 

at the top of the atmosphere into surface reflectance, and thus improve the biophysical 

parameter estimation. Some conventional atmospheric correction methods are useful for 

homogeneous atmospheric conditions under different types of assumptions (e.g. 
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existence of invariant objects or dark objects). However, they cannot effectively correct 

heterogeneous aerosols in general atmosphere and surface conditions. 

   

A new atmospheric correction algorithm was presented to retrieve surface reflectance  

from Landsat 7 ETM+ imagery. The basic idea was to identify surface clusters using the 

infrared bands (band 4, 5 and 7 for ETM+) less contaminated by aerosols. This new 

algorithm avoids the preconditions required by existing algorithms. The most 

characteristic parts of this algorithm are to account for heterogeneous aerosol scattering 

effects in a scene and to correct the surface adjacency effects using a simple analytical 

formula. Therefore, it is useful for general atmospheric and surface conditions. 

 

Validation with simultaneous surface measurements indicated that this new algorithm 

produced very accurate results with relative differences less than 10%. This algorithm 

was extended to correct AVIRIS, MODIS and SeaWiFS imagery, all having different 

spectral and spatial characteristics from ETM+ imagery. For other sensors with 

hyperspectral and multi-angular viewing capabilities, investigations are needed to test 

the validity of the algorithm. Future study will focus on correcting multitemporal 

images.  

 

6.2 Application of genetic algorithm in the optimization of RT model inversion 

 

LAI estimation through the inversion of a radiative transfer model is a common practice 

in remote sensing application. The objective here was to minimize the merit function. 
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Currently, there are several methods (such as the downhill simplex method and the 

conjugate direction method) used in the minimization process. However, these methods 

are very complicated for parameter inversion. Some models may have multiple solutions 

and some cost functions may not converge. A new optimization approachgenetic 

algorithm (GA)was proposed in this dissertation to optimize the merit function in the 

RT inversion process. With the GA optimization method, it only needs to run the 

forward RT simulation process. In addition, the genetic algorithm will automatically 

scan all ranges of the initial variables.  

 

Different from current RT inversion algorithms, GA optimization was performed with 

randomly generated values for land surface parameters. A goodness-of-fit was calculated 

and was used to make adjustments in RT model parameters to find the best sets of 

parameters. In this study, six free parameters (LAI, Markov parameter, Chlorophyll 

A&B concentration, leaf structure parameter, and two soil parameters) were considered 

in the initial retrieval. Reducing the number of genes could improve the inversion’s 

accuracy. The combination of both red and near-IR bands produced results as good as 

when using six ETM+ bands, while significantly reducing the computation. The best 

results were obtained with three genes (LAI, and two soil parameters) from ETM+ red 

and NIR bands (R2=0.776, RMSE=1.064). The NIR band alone can be used to get a 

reasonablly good LAI estimation, but the red band cannot be used individually. The GA 

results were compared with the Powell minimization algorithm. The difference between 

these two algorithms was very small for lower LAI (<3), and increased when LAI>3. 
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In this study, the GA optimization model and RT model were integrated through an 

exchange of both input and output data files between the two models. The GA 

optimization process was still computationally intensive although reducing the number 

of free parameters helped. To solve this problem, more efficient GA optimization 

algorithms and GA-RT coupling methods are necessary. The computation time must be 

radically reduced before this method can be extended for regional LAI mapping. 

 

6.3 LAI retrieval with a hybrid method from ETM+ 

 

Both statistical methods and physically based RT methods have been used for LAI 

inversion. Statistically methods are mainly based on vegetation indices. They are simple 

to use, but there is no universal formula for different vegetation types and thus it is 

difficult for large-scale application. Although physically based and more accurate, the 

RT methods are very complicated for parameter retrieval. Non-parametric statistically 

methods, mainly the neural network and projection pursuit regression algorithms, have 

provided an efficient tool to relate the biophysical variables of interest to the simulated 

reflectances. 

 

I have proposed a new hybrid method to combine the advantages of both RT simulation 

and non-parametric retrieval methods and to estimate LAI from multispectral remote 

sensing data. The NN algorithms were integrated with RT and were used to retrieve LAI 

from both ETM+ surface reflectance (database 1) and TOA radiance data (database 2). 

Database 1 was constructed with a canopy RT model and database 2 with the combined 
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atmospheric and canopy RT models. A soil reflectance index, derived from the soil line, 

was proposed to account for the soil background reflectance.   

 

LAI was successfully estimated with the new hybrid approach from both surface 

reflectance and TOA radiance. The outputs were compared with field-measured LAI 

datasets from four different dates. The best results were found with the combination of 

red and NIR bands of the surface reflectances (R2=0.801 and RMSE=0.811). If the TOA 

radiances were used, the results were not so good (R2=0.74, RMSE=1.17). In general, 

red and NIR bands are recommended for estimating LAI from ETM+ surface 

reflectances, while NIR and NDVI are recommended if TOA radiances are used. The 

sensitivity test showed that this approach was very robust, especially when surface 

reflectance was used. With this method, LAI derived from the high-resolution ETM+ 

image could be used to validate LAI products from some low-resolution sensors (e.g. 

MODIS, MISR and POLDER).  

 

6.4 LAI retrieval from MODIS data with a hybrid approach 

 

Presently, the MODIS team estimates LAI with the look-up table (LUT) method. The 

LUT method speeds the inversion process significantly, but its accuracy still depends on 

the input variables and RT models. The new hybrid approach developed for ETM+ was 

thus extended to estimate LAI from MODIS data. Besides NN, another non-parametric 

method, the projection pursuit regression (PPR) method, was also integrated with the RT 



 151

method. To simplify the RT simulation process, a soil reflectance index calculated from 

the coherent ETM+ image was used to calculate the MODIS soil reflectance.  

 

For comparison with MODIS standard LAI products, the ETM+ reflectance was 

aggregated to 510m resolution and registered with the MODIS imagery. In the first step, 

the simulated canopy reflectance and the biophysical parameters trained the NN and 

PPR. Applying the trained results to MODIS reflectance data, LAI was derived and 

validated with results from the aggregated ETM+ reflectance data.  

 

The MODIS aggregated data (MODAGG) were used to produce LAI with the hybrid 

approach (both NN and PPR). LAI maps generated from the MODAGG data were 

similar to those from the aggregated ETM+ data. Seasonal dynamics of LAI were clearly 

illustrated in the two tested dates. In the MODIS land products, the LAI ranged between 

0.2~6.9, which matches the ground LAI ranges. However, the MODIS LAI mean values 

(around 6) were larger than results from both ETM+ and MODAGG. The final 

conclusion will be made after more work is done.  

 

The NN and PPR had nearly identical results. Because the simulated databases have 

already taken into account various canopy/leaf and environment parameters, the non-

parametric multiple regression has the advantage to abridge the number of input 

variables needed in the MODIS LAI algorithms.   
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Table 6.1 Comparison of the GA optimization methods, the hybrid approach the MODIS 
LAI algorithm. 

 
 GA method Hybrid approach MODIS LAI 

algorithm 
A priori information 
requirement 

Low Medium Medium 

Computational 
demands 

High Low Medium 

Accuracy over the 
study area 

Medium High Low 

 
 
6.5 Algorithm comparison 

 

Table 6.1 compares the input information requirement, computational demands and 

accuracy of the GA method, the hybrid approach and the MODIS LAI algorithms.  

As to the input information requirement, the genetic optimization algorithm needs a few 

input data. During the optimization process, the GA will determine the optimal value for 

each free parameter. The hybrid approach needs to fix some variables in the simulation 

process, because uncertainties will be caused by too many free variables. The MODIS 

LAI algorithm also needs some a priori information such as the biome type and the soil 

background information.   

 

The computational demands for both the hybrid approach and the MODIS LAI 

algorithm lie in the RT simulation process. Once the databases are ready, the prediction 

process is straightforward. The GA does not need any complicated RT simulation, but 

the current optimization strategy is computer intensive. This also limits its practical 

application. 
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In the study area, the highest accuracy is obtained with the hybrid LAI estimation 

approach (R2=0.801 and RMSE=0.811 for ETM+). The GA also works very well 

(R2=0.776, RMSE=1.064 for ETM+). From the results in this chapter, it is obvious that 

the MODIS LAI product overestimated the LAI in the study area.  

 

6.6 Issues for further research 

 

In the hybrid LAI estimation approach, the soil line was determined from the whole 

image, but it should be instructive to look into different soil lines at different parts of the 

image when landscapes are very heterogeneous. Further, I have mostly considered nadir-

view images in this study. In multiple viewing angles (MVA) simulations, the soil 

reflectance is very crucial, and the significance of the SRI needs further evaluation. 

However, MVA provide the capability of viewing the same ground are from different 

directions and may improve the retrieval accuracy of land surface parameters. Therefore, 

it is worthwhile to extend the hybrid approach to MVA observations. 

 

One issue of relating remote sensing reflectance to LAI is the saturation problem, or, in 

other words, the canopy reflectance will not change with increasing LAI. The MODIS 

LAI algorithms quantify these situations by introducing a solution distribution function 

for the saturation domain. This approach can also be used in minimizing the saturation 

effect when this algorithm is extended to other sites.  
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This study area in this dissertation is a middle-latitude temperate agricultural site. For 

general application, it is necessary to test the hybrid approach for other vegetation types. 

Currently, the new method is tested for boreal forests in Canada and semi-arid rangeland 

in Arizona. My preliminary results show that the hybrid approach works reasonably well 

over these areas. 

 

The LAI product will ultimately be used for different ecological and other land surface 

process models. One attractive application field is with the crop growth models for crop 

yield estimation. LAI and other biophysical parameters derived from remotely sensed 

data can meet the needs of crop models for crop monitoring and prediction. Crop models 

simulate LAI for a whole growing season, while the remotely sensed LAI product are 

just snapshots. LAI estimated from remote sensing observations can be used to tune the 

environmental parameters used in the crop model and thus improve the crop yield 

estimation. Assimilation of LAI to crop models is currently underway. 
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