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I. INTRODUCTION

Queueing theory has a large collection of so-called folk theorems, i.e., statements which are
intuitively reasonable and whose essential truth is widely accepted by workers in the field, but
whose precise range of validity is never fully explored. In fact, the vast majority of existing folk
theorems do not seem to have rigorous proofs, and are often stated in statistical equilibrium under
restricted model assumptions, such as the exponentiality of inter-arrival and service times.

A typical example of such a folk theorem emerges from the belief that “determinism minimizes
waiting time” [4,5]. Although this statement is open to interpretation, it is usually understood as
that the mean waiting time in a single server, infinite capacity work-conserving queue is minimized
for any fixed utilization by a deterministic interarrival process. Over the years, various formal
versions of this folk theorem have appeared in the literature [4,5], with some of them taking the
form of stochastic dominance results [1,2,10,11].

In this paper, we examine some folk theorems for systems of identical single server queues
operating in parallel. In particular we establish a monotonicity property in the number of servers
under the random customer assignment, and show that the round-robin customer assignment out-
performs the random customer assignment. The results are couched in terms of stochastic orderings
and hold in great generality under minimal assumptions on the distribution of the inter-arrival and
service times. The proofs are fairly simple and hold both during the transient phase and in the sta-
tistical equilibrium; the arguments are crucially dependent on the recursive nature of the equations
satisfied by the quantities of interest, and make use of various properties of stochastic orderings.

The paper is organized as follows: Some basic facts on stochastic orderings are summarized
in Section 2, where a simple comparison result is also recalled. This result formalizes the classical
statement that “determinism minimizes waiting time” and provides a unified tool for estalishing
the aforementioned properties of parallel servers. In Section 3, two different representations are
introduced for systems of identical servers operating in parallel under independent customer as-
signment proceduress. These two representations are then used in Section 3 in order to establish
precise statements of the folk theorems.

II. STOCHASTIC ORDERINGS

In this section, we introduce several notions of stochastic orderings and briefly explain their
use in generating stochastic comparisons on quantities of interest. We first present the notation
and conventions used throughout the paper.

I1.1. Notation, conventions and definitions

The set of real (resp. non-negative real) numbers is denoted by IR (resp. IR;). All the
random variables (RV’s) of interest are defined on some common probability triple (2, F, P). The
kt* component RV of any IRX-valued RV X is denoted by X*, 1 < k < K; a similar convention is
adopted for the components of any vector in IRX,

We denote by D(IRK) the collection of all probability distribution functions on IR®. We
identify an element F' of D(JRX) with an IR¥-valued RV X = (X1,..., X*) which has distribution
F, in which case

F(z) = P[X* <a',..., XK < 2] (2.1)

for all z = (21,...,2%) in IRX, and we set

m(F) = /Rn 2dF(z) = m(X) 2.2)
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whenever the first moment of F exists. Two IRX-valued RV’s X and Y are said to be equal in
law if they have same distribution, a fact we denote by X =;; Y, in agreement with the notation
introduced below.

For any two vectors z and y in IR, the ordering & < y is interpreted componentwise to read
z¥ <y, 1<k < K. A mapping f : IR — IR is said to be monotone non-decreasing (resp. non-
increasing) if @ < y in IR¥ implies f(z) < (resp. >)f(y), while it is convex if f(Az + (1 — A)y) <
Af(z)+(1=A)f(y) for all A in the interval [0, 1] and every pair of vectors z and y in IR¥. Moreover,
as customary in the literature on Queueing Theory, we define the mapping [ - ]+ : IR — IR by
[z]* = max{z,0} for all  in IR. Finally we define the Dirac delta function é(:,-) by 8(¢,j5) = 1 if
i=jand §(¢,7) =0if ¢ # j.

We are interested in notions of partial ordering on D(IRX) known as integral orderings. For-
mally, with any non-empty collection & of Borel mappings f : IRX — IR, we associate a partial
ordering <g on D(IR™) by saying that the RV X (with distribution F) is <g smaller than the RV
Y (with distribution G), noted X <s Y (or equivalently F <g G), if

E[f(X)] < E[f(Y))] (2:3)

for every mapping f : IR — IR in ®, provided the expectations in (2.3) exist.

It is clear from Stoyan’s monograph [43] that there are many interesting choices for @ in this
definition. In this paper, we concern ourselves with only two such choices, namely ®; and ®;.; ,

where
®,; = {f : IR® — IR monotone non — decreasing} (2.4)

and
Doy = Pyt n{f IR - IR convex}. (2.5)

In agreement with established usage, we substitute the notation < (resp. <icz) to <g when

® = P, (resp. & = P;,) and we read X <,;; Y (resp. X <iop Y) as saying that the RV X is
smaller stochastically (resp. in the convez increasing order) than the RV Y.

The reader is referred to the monographs by Ross [8] and Stoyan [10] for additional information
and properties of the orderings <,: and <;.;. The notation used here is the one of [2] and [9].
11.2. A basic comparison result

Theorem 1 below is well known [8, Thm. 8.6.2, pp. 274-275] [10, Thm. 5.2.1, pp. 80-81] and
provides a basic comparison result for recursions which arise naturally in the context of queueing
systems. This result is given here for easy reference since it provides a precise mathematical
underpining to the folk theorems discussed in this paper.

We start with a sequence of IR-valued RV’s {£,, n = 0,1,...}, and consider the IR-valued
RV’s {W,,, n =0,1,...} generated by the recursion

Wat1 = [Wa + Enpa]

n=0,1,...(2.6)
Wo = &.

We introduce the conditions (H1)-(H2) on the RV’s {¢,, n = 0,1,...}, where

(H1): The RV & is independent of the sequence {£n41, n=0,1,...}
(H2): The RV’s {£,41, n=0,1,...} are i.i.d. with common distribution F.

The familiar reader will immediately recognize in (2.6) a generalization of the Lindley recur-
sion which describes the evolution of successive waiting times in GI/GI/1 queues [3,6]. For such
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queueing systems, the accepted fact that “determinism minimizes waiting times” leads naturally
to the question of whether the output RV’s {W,,, n = 0,1,...} are monotone in the model data,
namely the initial condition W and the distribution F', where monotonicity is understood in some
stochastic ordering sense. More precisely, we consider the recursion (2.6) when driven by the two
sequences {f%l), n=0,1,...} and {5%2), n=0,1,...}, and denote their respective ouput sequences
by {WV, n=0,1,..} and {W?, n=0,1,...}.
Theorem 1. Let < denote either <4 or <iop. Assume (H1)-(H2) to hold for both driving sequences
{ ,(11), n=0,1,...} and {553’, n=0,1,...}. With obvious meaning to the notation, if the stochastic
comparisons

&Y <P and FO < F® (2.7)

hold, then
wi) < wd, n=0,1,...(2.8)

Proof. This result follows by induction on n from the fact that the mapping  — [z]* is monotone

increasing and convex, and from elementary properties of the stochastic orderings involved. Details
are available in [8, Thm. 8.6.2, pp. 274-275] and in [10, Thm. 5.2.1, pp. 80-81].

n

For any sequence of IR¥-valued RV’s {X,, n = 0,1,...}, we denote its weak limit by X, (as
n goes to co) whenever it exists, i.e., Xy is any IR¥-valued RV with the property that

P[Xo £ 2] =lim, P[X, < 7] (2.9)

for all z in IR® which are points of continuity for the distribution of Xs,. We call X, the stationary
version of the sequence {X,, n =10,1,...}.

Corollary. Under the assumptions of Theorem 1, the comparison
wd <wd (2.10)

holds, provided the stationary versions of {W,(Ll), n=0,1,...} and {W,(b?'), n=0,1,...} ezist.
Proof. The result (2.10) for <, follows from (2.8) and from the stability of < ; under weak limits
[10, Prop. 1.2.3, p. 6]. That (2.10) holds for <;c; is a consequence of (2.8) and of the monotone
character of the representation

W =, max{0,&", 6D 4 € Dy 46Dy i=1,2 n=0,1,...(2.11)

for the output to (2.6). Details are available in [1,2].
O

III. PARALLEL QUEUES WITH INDEPENDENT ROUTING

In this section, we consider a queueing system composed of K (> 2) identical service stations
operating in parallel. Each service station is constituted by a single server which is equipped with
its own infinite capacity buffer and which serves customers in FCFS order. Upon arrival into the
system, a customer is routed to one of the queues, with the routing decision being independent of the
state of the system. This defines the class of independent assignment procedures. Of special interest
to us in this class are the so-called random and Round-Robin assignments. The random assignment
routes an incoming customer to the k** queue with probability }—{, while the Round-Robin strategy
simply assigns the nt* customer to the k** queue if and only if n = k& (mod K).
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II1.1. Parallel GI/GI/1 queues

In order to define a system of parallel GI/GI/1 queues under independent customer assign-
ments, we start with the integrable IR,-valued RV’s {741, n = 0,1,...} and {o,, n =0,1,...},
and with the sequence of {1,..., K}-valued RV’s {v,,, » = 0,1,...}. With this last sequence we
associate a new sequence of {0,1}%-valued RV’s {u,, n =0,1,...} by setting

uf = §(vn, k), 1<k<K. n=0,1...(3.1)

These quantities are given the following interpretation: The interarrival time between the n** and
the (n+ 1)™# customers is given by 7,41 with the convention that the 0t* customer arrives at time
t = 0. The n** customer brings work to the system, the execution of which requires o, units of
time, and v, = k (or equivalently u¥ = 1) indicates that the n'® customer joins the k** queue.

We now define the performance measures of interest under the simplifying assumption that
the system is initially empty at time ¢ = 0. The IRX-valued RV’s {V,, n =0,1,...} are generated
componentwise by the recursion

+
vE [V" kg — ] 1<k<K
1 n + UpOn — Tp+1l ’ = = n = O, 1, . (32)

Vok=0.

In this model, we take the view that each customer brings a task to every queue but that only the
task executed by the server of the queue which the customer joins has (possibly) non-zero service
duration. Clearly, V¥ represents the work (expressed in remaining processing time) present in the
k** queue as the n** customer enters the system, so that V¥ is the amount of time it would have
to wait in queue before receiving service if it were assigned to the k** service station, i.e., if uf =1
The customer waiting time W,, and the system response time R,, of the nt* customer are thus given
by

K
Wn =Y ufVy n=0,1...(3.3)
k=1
and
K
Ry =o0n+ Y ukVk, n=0,1...(3.4)
k=1
respectively.

Throughout the discussion we assume (A1)-(A3) to hold, namely
(A1): The three sequences {Ty41, n = 0,1,...}, {on, n = 0,1,...} and {vs, n = 0,1,...} are
mutually independent;
(A2): The IR;-valued RV’s {r,41, » = 0,1,...} form an i.i.d. RV’s with common distribution
4;
(A3): The IRy-valued RV’s {0, n =0,1,...} form an i.i.d. RV’s with common distribution B.
The random assignment is characterized by the fact that the RV’s {v,, n =0,1,...} are i.i.d.
RV’s with common distribution given by

1
P[Vn:1]=...:P[1/n=K]=?, n=0,1...(3.5)
whereas the Round-Robin assignment is defined by
vn=%k if n=k (modK) n=0,1...(3.6)
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so that the 0** customer is routed to the K** queue.

II1.2. An alternate representation

The binary character of the assignment sequences {uX, n = 0,1,.. .}, 1 £ k £ K, suggests
another way of describing the evolution of the customer waiting times, namely by keeping track of
the actual arrivals at a particular service station. Below we develop this alternate representation
in some detail as we shall make use of it later.

For 1 < k < K, we define the integer-valued RV’s {t¥,, m = 1,2,...} as the tags of these
customers which are effectively routed to the k** queue. Formally, we set

inf {n >tk :v, =k} if this set is not empty
o= m=0,1,...(3.7)

00 otherwise

with t§ = 0. To describe the behavior of the k** queue as seen by the customers Jjoining it, we
define the sequences of IR -valued RV’s {75 ,,, m =0,1,...} and {65, m=0,1,...} by

g = Z Tntl m=0,1,...(3.8)
th <n<tk L,
and
Gy, = oy . m=0,1,...(3.9)

Note that #%, , is the time between the arrival of the m®* and (m + 1)* customers to effectively
enter the k** queue, where the m‘* customer receives a service of duration &% . From the definitions
(3.8)-(3.9), we see that the waiting times {W%, m = 1,2,...} for the customers joining the k**
queue are given simply by

Wi =VE m=1,2...(3.10)

and that they obey the the Lindley recursion

+
Wk = [v“vk o ]
S m=1,2,...(3.11)
Wi =V;.

If the Round-Robin assignment is used, then
th =mK+k, 1<k<K m=1,2,...(3.12)

Moreover, under (A1)-(A3), we see that for the random assignment, for each 1 < k < K, the RV’s
{tk ;1 —tk, m=1,2,...} areii.d RV’s with a common geometric distribution given by

1, 1
Pty —th =£+1]= 2 (1- %) m=1,2,...(3.13)

foralll=10,1,...

In view of these remarks, we see that for each 1 < & < K, the sequences {7% ,, m =
0,1,...} and {6%, m = 0,1,...} are mutually independent sequences of i.i.d. RV’s with common
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distributions fij‘ and B*, {espectiyely. In fact, it is a simple exercise to conclude that A! = ... =
A¥ := A and B' =...= B¥X .= B, with

00 £ .
. S0, (1 - %) A if random
A:{ mox(l-%) (3.14)

A*K) if Round-Robin

and _
B = B. (3.15)

Here, for £ = 1,2,. .., A9 denotes the £ fold convolution of A with itself. Consequently, the output
RV’s {Wk, m =1,2,...} to the recursion (3.11) can be interpreted as the successive waiting times
in a GI/GI/1 queue with interarrival time distribution A and service time distribution B. Under
both customer assignment, the stability condition of this single server queueing system is known
[10, pp. 74-75] to be )
1n—(i’il=—1—-1—n@<1. (3.16)
m(A) K m(d)
Theorem 2. Assume the stability condition (3.16) to hold. Then the sequence of customer waiting
times {Wy, n = 0,1,...} has a stationary version W,. Moreover, for all1 < k < K, the RV’s
{Wk, m=1,2,...} have a stationary version Weoo which is independent of k, and the relation

Woo =st Woo (3-17)

holds.

Proof. Fix 1 < k < K. Under the condition (3.16), the sequence of RV’s {W%, m = 1,2,...}
has a stationary version W¥ [3,6,10] under either assignment. However, from the discussion given
earlier and from (3.14)-(3.15), we see that this stationary version is independent of & [10, pp. 74-75]
and we therefore denote it by Wo.

Under the random assignment, we have by symmetry that
Wi =5t VI =gt ... =5 VE. n=0,1,...(3.18)

Since for each 1 < k < K, the RV’s {V,¥, n = 0,1,...} have a stationary version VX, so does the
sequence {W,, n =0,1,...} and (3.18) implies that

Woo =st Vgo =5t +ee =3t V°I°<- n = 0, 1,. ..(3.19)

In [1], the equality

~

VE = W

o0

1<k<K (3.20)

was established and the result thus follows.
Under the Round-Robin assignment, we see from (3.3), (3.10) and (3.12) that

Wa=VEig o =WE if n=mK+k 3.21
+

for some m = 0,1,...and 1 < k < K. Therefore, for each 1 < k < K, the RV’s {W, x4k, m =
0,1,...} have a stationary version independent of & given by the RV Woo introduced earlier in the
proof. Now consider a subsequence {W,,, p=0,1,...} of the sequence {W,, n = 0,1,...}, and
observe that the index set {n,, p = 0,1,...} of this subsequence contains necessarily a subsequence
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of the form {m; K +¢, i =1,2,...} for some 1 < £ < K. Consequently, the subsequence {W,,, p=
0,1,...} always contains a further subsequence that converges weakly (i.e., in law) and its 11m1t is
necessan]y Weo- As a result [10, p. 153], the sequence {Whp, n=0,1,..} has a stationary version
VZE and (3.17) holds.

O

IV. FOLK THEOREMS FOR PARALLEL QUEUES

IV.1. A monotonicity result under the random assignment

In this section, we consider the system of parallel queues under the random assignment, and
throughout the discussion, we use the superscript (K) in the notation to indicate that the quantities
of interest are defined for the system with K parallel servers. We expect that as the number K
of servers increases, system congestion should decrease; in particular, we expect the waiting and
response times (K) and R(K) to get smaller in some sense as K increases. We show below that
this intuitive fact can be given a very precise meaning in the stochastic ordering <,;.

Theorem 3. Under the assumptions (A1)-(A3), systems of parallel queues with the random cus-
tomer assignment (3.5) exhibit the monotonicity properties

WEHD < WD and  RUEHD <, RO n=01...(4.1)

for all K > 1. A stationary version of (4.1) holds whenever appropriate.

Note that elementary coupling arguments can be given to compare the system with K servers to
the one with K - L servers. The basis for this approach lies in the fact that the random assignment
can be implemented in two steps by fictitiously grouping the K - L servers into K groups of L
servers each. Indeed it is equivalent to first select randomly one of the K groups of servers (with
probability +) and then to choose at random a server within the selected group (with probability
%) Unfortunately, this elementary approach does not seem to allow for the comparison between
the systems with K and K +1 servers, and a more analytical proof based on Theorem 1 is required.

Proof. The {0,1}-valued RV’s {b%K), n=0,1,...} defined by

b5 = 6 1) n=0,1...(4.2)
form an i.i.d. sequence with
PRI =1]=1- P = 0] = % n=0,1...(4.3)

Moreover, we see from (A1)-(A3) that the IR4-valued RV’s {U,(zK), n=0,1,...} generated by the
Lindley recursion

+
vlk) = [U(K) + 5K g, — Tn+1]

u§ =

n=0,1...(4.4)

are the succesive customer wautmg times in a GI/GI/1 queue with interarrival times {r,41, n =
0,1,...} and service times {b an, n=0,1,...}.
Fix K =1,2,.... From (3.2)-(3.3), we see by symmetry that

Wi =, U0, n=0,1...(4.5)
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Under (A1), the RV’s bﬁf‘) and o, are independent, so that

1
P00, > 1] = =[1- B()]. ¢>0. n=0,1...(4.6)

We then conclude [8, Prop. 8.1.2, p. 252] that
8K, <o 8o, n=0,1...(4.7)

and therefore
WE g, 1y <o 080, — Ty n=0,1...(4.8)

under the independence assumption (A1) [8, p. 256]. Since UéK) = U(EKH)
are in place for applying Theorem 1 to the recursion (4.4) and we obtain

= 0, all the conditions

UK+ <, Ul n=0,1...(4.9)

The first inequality in (4.1) now follows upon combining (4.4) and (4.9); the second inequality is
now immediate since the RV o, is independent of both ) and wiF+Y [8, p. 256].
O

IV.2. Round-Robin vs. Random

We now compare the system of parallel queues under random customer assignment against the
same system under the Round-Robin assignment. It is intuitively perceived - and widely accepted
- that the Round-Robin assignment outperforms the random assignment since the effective arrival
stream to individual queues exhibits less statistical variability under the former assignment. This
folk result is often demonstrated when the input stream and the service times are exponentially
distributed for in that case explicit formulae are available for the mean waiting and response times
in steady state under both customer assignments. Indeed, in statistical equilibrium, the system
then behaves under the random assignment like an M|M|1 queue, while under the Round-Robin
assignment it behaves like an Ex|M|1 queue.

We show here that this folk result can be given a precise formulation in the ordering <;.,; the
validity of the statement is more general than the one usually made on the mean values, and is
independent of any distributional asssumptions on the arrival and service processes.

Theorem 4. Assume the stability condition (3.16) to hold. With an obvious meaning to the
notation, the stochastic comparison
WEER <, ., WIon (4.10)

holds.

It should be pointed out that (4.10) does not hold in the transient regime nor does it hold in
the stronger ordering <,¢, as can be seen from simple counter-examples. The proof of this result is
based on the following lemma which is a particular case of Lemma 8.6.7 in [8, pp. 278-279].

Lemma 5. Let {X,,,m = 1,2,...} be a sequence of i.i.d. IR,-valued RV’s with common distri-
bution F, and define the sequence of partial sums {Sm,m = 0,1,...} by Sm = Y pey Xm for all
m = 1,2,... with So = 0. Let a and B be integrable {m = 0,1, .. }-valued RV’s which are each
independent of the sequence {Xp,,m = 1,2,...}. The stochastic comparison o <ic; B then implies

Sa Sicz Sﬂ- (4.11)
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Proof. For any Borel mapping f : IRy — IR, we use the assumed independence to write

E[f(Sa)) = Zﬁm— 1/(m) (4.12)
where .
f(m) == E[f(5x)]- m=0,1,...(4.13)

provided these expectations exist; an expression similar to (4.12) is available for E[f(Sg)].

Whenever f : IRy — IR is monotone increasing, we see that m — f(m) is also monotone
increasing since X,,41 > 0, whence Sy, < Spq1, for all m = 0,1,.... Moreover, if f: IRy — IR is
convex, then we readily see that

E[f(Sm-l + X'm) - f(Sm—l)] S E[f(sm—-l + Xm + Xm+1) - f(Sm—l + Xm)]
m=1,2,...(4.14)

since the non-negative RV’s {X,,,m = 0,1,...} are i.i.d, and the mapping m — f(m) is thus
integer-convex, i.e.,

fm) = f(m=1) < f(m+1) = f(m). m=1,2,...(4.15)

The linear interpolation of the sequence {f(m), m = 0,1,...} is the mapping f, : IR, - IR
defined by

fo(t) = fm) + [f(m 4+ 1) = f(m)](t—m) if m<t<m+1. m=0,1,...(4.16)

With this notation, we can write (4.12) as
E[f(Sa)] = Elfe(e)] and  E[f(Sp)] = E[fe(8))- (4.17)

Whenever the mapping f : IR+ — IR is monotone increasing and convex, so is fc IRy — IR
by virtue of the remarks made earlier on the sequence {f(m), m = 0,1,...}. The assumption
& <ice B thus translates into E[f.(8)] < E[f.()], or equivalently into E[f(S,)] < E[f(S5)] upon
making use of (4.17). This complete the proof.

|

The following special case of Lemma 5 is of use in the sequel. If the RV’s a and 3 are chosen
such that « = K and E[f] = K, then K <;., 8 by Jensen’s inequality and therefore S <;cx Sp
by invoking Lemma 5.

A proof of Theorem 4. Having in mind the alternate representations developed in Section III,
we consider two auxiliary Lindley recursions, namely

+
was = (Wi g, - o2 § oL (419
WER =0
and +
Viti = [W£“”+an— ﬁi?] n=0,1,...(4.19)
=0,1,...(4.
Wran__o
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Each one of the sequences {7/}, n = 0,1,...} and {r Toils ® = 0,1,...} is a sequence of i.i.d
IR ; -valued RV’s with common distribution ARR and A"*" respectively given by

o0
RR _ *(K) ran _ i I
A A and A ; =(1-%)

‘axern), (4.20)

Moreover, each one of these sequences is assumed independent of the sequence of i.i.d RV’s {0, n =
0,1,...} the common distribution of which is simply B.

Under the stability condition (3.16), the sequences {WRR, n = 0,1,...} and {W;“",
n = 0,1,...} have stationary versions, say WER and Wren. A careful inspection of the proof
of Theorem 2 shows that

WER =, WER  and W/ =, wi3n. (4.21)

With the notation of Lemma 5, we see that ARF =, Sk and that A™" =, Sg where 3 is an
{1,2,...}-valued RV with geometric distribution given by

PB=(+1]= 1(1—}15)‘ £=0,1,...(4.22)

and the i.i.d RV’s {X,,, m = 0,1,...} have common distribution A.
By the remark following Lemma 5, we have AT® <. A™" or equivalently that

Tods Sicw Than. n=0,1,...(4.23)

Since m(ARR) = m(A™") = Km(A), we conclude from [8, Cor. 8.5.3, p. 272]

n+1 Siex — :L‘i'ri n =0, 1, .o .(4.24)
and therefore
On — Trﬁl»%l Sicz Tn — ffﬂ n=20,1,.. .(4.25)

upon invoking the independence of the arrival and service sequences [8, Prop. 8.5.4, p. 272]. A
straightforward application of the corollary to Theorem 1 now implies the comparison

WER < 0p WIon (4.26)

which is equivalent to (4.10) by virtue of (4.21).
(|

V. CONCLUSIONS

By an appropriate choice of representation, we have been able to provide simple proofs of some
well-known folk theorems of queueing theory. In particular, we have shown that the response time
of a multi-server queue with random routing is stochastically decreasing in the number of servers,
and that the equilibrium response time in a system with Round-Robin customer assignment is
smaller (in the convex increasing order) than in an identical system with random routing. We
believe that the techniques developed in this paper can be extended to allow the formalization of
many such folk theorems.
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