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A Josephson junction (JJ) couples the supercurrent flowing between two weakly

linked superconductors to the phase difference between them via a tunnel barrier,

giving rise to a current-phase relation (CPR). While a sinusoidal CPR is expected

for conventional junctions with insulating weak links, devices made from some ex-

otic materials may give rise to unconventional CPRs and unusual Josephson effects.

Here, I experimentally investigate three such cases.

In the first part of the thesis, I fabricate JJs with weak links made of the

topological crystalline insulator Pb0.5Sn0.5Te and compare them with JJs made from

its topologically trivial cousin, PbTe. I find that measurements of the AC Josephson

effect reveal a stark difference between the two: while the PbTe JJs exhibit Shapiro

steps at the expected values of V = nhf/2e, Pb0.5Sn0.5Te JJs show more complicated

subharmonic structure. I present the skewed sinusoidal CPR necessary to reproduce

these measurements and discuss a potential origin for this alteration.

Next, I investigate the proximity-induced superconductivity in SnTe nanowires



by incorporating them as weak links in Josephson junctions. I report indications of

an unexpected breaking of time-reversal symmetry in these devices, including obser-

vations of an asymmetric critical current in the DC Josephson effect, a prominent

second harmonic in the AC Josephson effect, and a magnetic diffraction pattern

with a minimum in critical current at zero magnetic field. I analyze how multiband

effects and the experimentally visualized ferroelectric domain walls may give rise to

a nonstandard CPR in the junction.

Finally, I measure JJs with weak links made of the topological insulator

(BiSb)2Te3. Under low frequency RF radiation, I observe suppression of the first

and third Shapiro steps, consistent with the fractional AC Josephson effect. This

could indicate a 4π periodic component in the junction’s CPR, potentially implying

the presence of Majorana bound states. However, not all of the devices showed this

behavior; some devices show suppression of only the first step, while others show

distortions to the AC Josephson effect which differ upon repeated measurements,

possibly indicating other nonequilibrium effects at play. I discuss this behavior and

possible topologically trivial sources of step suppression found in the literature.
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Chapter 1: Introduction

1.1 Superconductivity

The phenomenon of superconductivity was discovered in 1911 by H. K. Onnes,

who observed a vanishing electrical resistance in mercury when it was cooled below

4K [1, 2]. This state of zero resistivity below a critical temperature Tc would be

discovered in 30+ chemical elements and in hundreds of alloys and compounds over

the next century.

Superconductors are more than a stunning display of zero resistance. For

comparison, consider the theoretical behavior of electrons in a perfect conductor in

the presence of a time varying magnetic field. In this system, electrons must obey

−eE = mev̇ = meJ̇/ne, where me is the electron mass, −e is the electron charge,

and n is the number density of superconducting carriers. Equivalently,

E = λ2J̇, where λ2 =
me

ne2
; (1.1)

applying Faraday’s law, this becomes

∇× J̇ = −ne
2

me

Ḃ. (1.2)
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Using the Ampere-Maxwell law and vector identities, and neglecting the displace-

ment current, we can transform Eq. 1.1 to read∇2Ḃ = Ḃ/λ2, which has the solution

Ḃ(z) = Ḃ(0)e−z/λ. Hence, Ḃ decreases exponentially with distance z into the mate-

rial, leaving a constant B below a characteristic penetration depth λ. If a material

that is subject to an external B transitions to become a perfect conductor, the field

will be frozen inside and cannot be changed.

Yet, this is not the case for superconductors. In 1933 Meissner and Ochsenfeld

demonstrated that instead, B goes to zero inside a superconductor [3, 4]. This

phenomenon, termed the Meissner effect, involves the expulsion of magnetic field

lines from the interior of a material as it transitions to the superconducting state.

The Meissner effect was described phenonemologically by the London brothers

in 1935 [5]. In order for Maxwell’s equations to yield the Meissner effect, they

replaced Eq. 1.2 for a perfect conductor with the relation

∇× J = −ne
2

me

B. (1.3)

If we proceed mathematically in the same way as before, we now find that

∇2B = − 1

λL
B, where λL

2 =
me

µ0ne2
. (1.4)

This has the solution B(z) = B(0)e−z/λL and gives the exponential decay of mag-

netic fields in the interior of a superconductor. This decay is characterized by the

penetration depth, which the Londons estimated to be on the order of 10−7m. It

2



varies between materials and depends on temperature. As expected, for depths

significantly beyond λL, B approaches zero, in agreement with the Meissner effect.

With the particular gauge choice such that ∇ ·A = 0, Eqs. 1.4 and 1.3 can be

combined into a single “London Equation” which relates the supercurrent density

to the magnetic vector potential:

J = −ne
2

me

A. (1.5)

The Londons concluded that “in contrast to the customary conception that in a

supraconductor [sic] a current may persist without being maintained by an electric

or magnetic field, the current is characterized as a kind of diamagnetic volume

current, the existence of which is necessarily dependent upon the presence of a

magnetic field.” [6]. In other words, perfect diamagnetism is a fundamental property

of superconductors. Indeed, it is more fundamental than perfect conductivity, which

does not explain the Meissner effect.

Although the London equations form a useful framework for describing the

behavior of superconductors in electromagnetic fields, they do not provide a micro-

scopic explanation of the phenomenon. In imagining a path toward such a theory,

the authors remarked, “suppose the electrons to be coupled by some form of inter-

action. Then the lowest state of the electrons may be separated by a finite distance

from the excited ones” [5]. This was a remarkable insight, but the nature of this

interaction would remain unknown for the next two decades.

The mechanism of electronic coupling (for conventional superconductors) was
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finally elucidated by Bardeen, Cooper, and Schrieffer (BCS) in 1957 [7]. They

proposed a small, phonon-mediated attractive potential between electrons near the

Fermi surface, causing them to bind together into “Cooper pairs” of two electrons

with opposite spin and momentum [8]. Since pairs of electrons are bosons, these

Cooper pairs are able to condense into the same lowest energy state–the BCS ground

state–which is separated from the excited states by energy gap 2∆. The London

equations follow naturally from this formulation.

BCS theory provided a compelling picture of superconductivity as a macro-

scopic quantum phenomenon. Since they occupy the same ground state, electron

pairs in the condensate are characterized by a rigid macroscopic wavefunction which

is insensitive to flaws in the lattice, thus realizing perfect conductivity. Above Tc,

thermal breakup of the Cooper pairs returns the material to the normal state.

A more comprehensive discussion of BCS theory can be found in Refs. [9–11].

The BCS theory was remarkably successful in describing superconductivity in met-

als, and its authors received the Nobel Prize in 1972. But phonon-mediated pairing

was shown to be not the only type of pairing mechanism when superconductivity

at high temperatures was discovered in the 1980s. The pairing mechanisms in these

complex materials are still unclear, and today we regard superconductors which do

not conform to a phonon-mediated pairing model as “unconventional.”

Superconductors may further be characterized as type I or type II. In the

former, an external magnetic field is screened entirely (on the scale of the London

penetration depth) from the interior of a bulk superconductor until a critical field

is reached and the material abruptly enters the normal state. In type II supercon-

4



ductors, above a lower critical field Hc1, there exists a mixed state where the field

may partially penetrate the superconductor, complicating the phase diagram. Only

above an upper critical field Hc2 does the material transition fully to the normal

state. I should note at this point that I use conventional, type I superconductors to

build the devices used in my research, so henceforth I will focus my discussion on

these.

In the remainder of this section, I briefly discuss the Ginzburg-Landau (GL)

formulation [12], which approaches superconductivity through Landau’s theory of

second order phase transitions. Gorkov showed that the Ginzburg-Landau model

can be derived from BCS theory [13] after making suitable approximations. The GL

equations are useful for understanding many experimental phenomena, particularly

Josephson junctions (JJs) and macroscopic order. The quantity of interest is the

complex order parameter Ψ(r) = Ψ0(r)eiϕ(r), interpreted as the superconducting

wavefunction, which should be nonzero below Tc and zero above Tc. GL assumed the

existence of a functional F [Ψ(r)] that gives the difference in free energy between the

normal and superconducting states. Near Tc (where the order parameter vanishes)

the Ginzburg-Landau free energy should obey an expansion of the form

F (Ψ,Ψ∗,A) = α|Ψ|2 +
β

2
|Ψ|4 +

1

4m∗
|(−i~∇ + 2e∗A) Ψ|2 +

B2

8π
, (1.6)

where m∗ and e∗ are the mass and charge, respectively, of the superconducting

carriers, B is the magnetic field, and A is the vector potential. This free energy can

be best understood as representing a charged Bose superfluid whose fundamental
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components are Cooper pairs (i.e., e∗ = 2e and m∗ = 2me). The vector potential A

in the functional couples the charge of the pairs to the electromagnetic field. The

final term is the energy of the magnetic field. By minimizing F with respect to A

and using ∇×B = µ0J, one can find that the supercurrent density is characterized

by

J =
~nse∗

m∗

(
∇ϕ− e∗

~
A

)
; (1.7)

which reduces to the London Eq. 1.2 in the limit of a uniform superconducting phase

(∇ϕ→ 0). Furthermore, the first term in Eq. 1.7 impliles that a non-uniform phase

ϕ results in current flow, and vice versa. This is the incredible consequence of the

global phase coherence of the Cooper pairs: variation of the quantum mechanical

perameter ϕ results in the development of a macroscopic current in the condensate.

1.2 The Josephson Junction

Josephson was the first to recognize that if two superconductors are separated

by a weak link such as a thin insulating barrier, the phase difference between them

would lead to current flow in the junction without a corresponding voltage drop [14].

Such a situation is represented in Fig. 1.1.

Fig. 1.1: Diagram of a Josephson Junction (JJ). The superconductors on the left and right
are separated by a weak link, forming the junction. The tails of the Ginzburg-Landau
order parameters on each side tunnel into the weak link and overlap.
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As indicated in the Figure, the wave functions of the Cooper pairs on each

side of the barrier can be written as ΨL = Ψ1e
iϕL and ΨR = Ψ2e

iϕR , for the left and

right sides respectively, where ϕ is the phase of the superconducting condensate and

Ψ1,2 are constants. Since the square of the wave function, |Ψ2|, is equivalent to the

electron density n, these can also be written as

ΨL = n
1/2
L eiϕL and ΨR = n

1/2
R eiϕR . (1.8)

The time-dependent Schrödinger equation can then be applied, giving

i~
∂ΨL

∂t
= ~TΨR and i~

∂ΨR

∂t
= ~TΨL, (1.9)

where ~T is a measure of the transfer interaction through the weak link. Using

Eq. 1.8, these can be transformed into

∂ΨL

∂t
=

1

2
n
−1/2
L etϕL

∂nL
∂t

+ iΨL
∂ϕL
∂t

= −iTΨR (1.10)

and

∂ΨR

∂t
=

1

2
n
−1/2
R etϕR

∂nR
∂t

+ iΨR
∂ϕR
∂t

= −iTΨL. (1.11)

Multiplying Eq. 1.10 by n
1/2
L e−tϕL gives us

1

2

∂nL
∂t

+ inL
∂ϕL
∂t

= −iT (nLnR)1/2ei(ϕR−ϕL), (1.12)
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and multiplying Eq. 1.11 by n
1/2
R e−tϕR gives

1

2

∂nR
∂t

+ inR
∂ϕR
∂t

= −iT (nLnR)1/2e−i(ϕR−ϕL). (1.13)

Equations 1.12 and 1.13 can be separated into four equations by setting their real

and imaginary parts equal to each other:

∂nL
∂t

= 2T (nLnR)1/2 sin(ϕR − ϕL);
∂nR
∂t

= −2T (nLnR)1/2(sin(ϕR − ϕL)); (1.14)

∂ϕL
∂t

= −T
(
nR
nL

)1/2

cos(ϕR − ϕL);
∂ϕR
∂t

= −T
(
nL
nR

)1/2

cos(ϕR − ϕL). (1.15)

For the case where nL = nR (i.e. the two superconductors are identical), these

can be simplified again, yielding

∂ϕL
∂t

=
∂ϕR
∂t

. (1.16)

Upon examining Eq. 1.14, we can recognize that −∂nL/∂t = ∂nR/∂t, and that these

terms represent a current flow from one side of the junction to the other. Thus, the

current flow I through the junction is just

I(ϕ) = I0 sinϕ, (1.17)

where ϕ = (ϕR−ϕL) is the phase difference between the two superconductors,
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and I0 is a constant proportional to the transfer interaction T . Equation 1.17 is the

first Josephson equation.

If a steady voltage V is applied across the junction, Eq. 1.18 instead becomes

i~
∂ΨL

∂t
= ~TΨR − eVΨL and i~

∂ΨR

∂t
= ~TΨL + eVΨR. (1.18)

Proceeding mathematically the same way as before, we can obtain the second

Josephson equation, which predicts that a steady applied voltage V causes a winding

of the phase:

dϕ

dt
=

2eV

~
. (1.19)

Hence, a fixed DC voltage across the junction produces an alternating current with

frequency 2eV/~. This is called the AC Josephson effect.

Andreev later proposed a different microscopic picture of supercurrent flow

across a JJ. In Andreev’s description, the supercurrent is mediated by the process

of Andreev reflection, where an electron colliding with a weak link barrier is retrore-

flected into a hole with opposite momentum. The hole travels until it collides with

the opposing barrier, where it likewise converts back to an electron. This allows

for the transfer of Cooper pairs across a junction. Andreev’s approach is particu-

larly useful in understanding tunneling in junctions that have relatively transparent

barriers or superconducting channels.

In practice, for typical voltages the Josephson frequency is quite high and

can be difficult to measure directly. Instead, it is easier to drive the junction with

microwave or radio frequency (RF) radiation while also applying a DC voltage. For
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a combination of AC and DC voltages across the junction of the form

V = VDC + V1 cos (ωt), (1.20)

the phase difference across the JJ will be given by

ϕ =

∫
2eV

~
dt = ϕ0 +

2eVDC
~

t+
2eV1

~ω
sin (ωt). (1.21)

Substituting into the first Josephson equation, the total current is

I =
∞∑
−∞

(−1)nJn

(
2eV1

~ω

)
sin

(
ϕ0 +

2eVDC
~

t− nωt
)
, (1.22)

where Jn(x) is the nth order Bessel function of the first kind. Examining Eq. 1.22,

one can see that if

VDC =
n~ω
2e

, n = 0, 1, 2..., (1.23)

there will be a DC component. Experimentally, the AC Josephson effect manifests

as plateaus in the junction’s current-voltage profile which occur at voltages that are

integer multiples of ~ω/(2e). These plateaus are called Shapiro steps [15]. Because

Eq. 1.23 relates frequency to voltage in terms of only fundamental constants, this

effect has been of great importance to metrologists and is the basis for the voltage

standard [16].

Typical superconductor-insulator-superconductor JJs have barriers that are

not relatively transparent, and this yields CPRs which follow the simple sinusoidal
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form of Eq. 1.17. In some types of JJs, however, the junction may possess a CPR

that is non-sinusoidal. One possible result of this deviation is the appearance of

subharmonic structure in Shapiro measurements, so that the voltage plateaus (steps)

manifest at fractional values of the expected voltages n~ω/(2e). That is, in addition

to integer values, n may be 1/2, 1/3, etc. In single junctions, these fractional steps

may only appear systematically if the CPR is not a pure sinusoid [17].

Thus far we have considered ϕ to be constant spatially over the cross-sectional

area of the junction, but this is generally not the case in large junctions or in the

presence of a magnetic field. Indeed, in the presence of gauge field A, we must

replace ϕ with the gauge invarient phase difference

φ = ϕL − ϕR −
2e

~

∫ R

L

A · dl, (1.24)

where ϕL and ϕR are the phases of the two superconductors and the integral is taken

from the left superconductor, through the barrier, to the right superconductor. This

has major consequences for the case of a wide (i.e. not point-like) junction (see Fig.

1.2).

Since the order parameter must be single-valued to be physically meaningful,

the total change in φ as we pass around the closed loop must equal 2πn. Upon

enforcing this condition and adding up the phase around the loop shown in Fig. 1.2,

one can find that

φ(x)− φ(x+ dx) =
2πΦ

Φ0

, (1.25)
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Fig. 1.2: Schematic of a wide JJ with effective barrier thickness teff = t+ 2λL. Bz is directed
out of the page, and dx is taken to be very small.

where Φ = Bzteffdx is the total magnetic flux enclosed in the loop, t is the barrier

thickness, teff = 2λL + t is the effective barrier thickness, and Φ0 = h/(2e) is the

superconducting flux quantum. Rearranging this, we can obtain

dφ

dx
=

2π

Φ0

Bzteff . (1.26)

Integrating Eq. 1.26 and using Eq. 1.17 reveals that the supercurrent density

in the extended junction is given by

J = Jc(z, x) sin

(
2π

Φ0

teffBzx+ φ0

)
, (1.27)

where φ0 is an integration constant. Hence, a uniform magnetic field Bz produces

a spatial variation in φ, which then results in a sinusoidal variation of the current

density along the length of the junction.

Of course, the macroscopic observable in a typical electrical measurement is
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not the current density J but rather the total current through the junction. Under

the assumption that the critical current density Jc(z, x) is uniform, one can find the

maximum Josephson supercurrent in the device to be

I(Φ) = Ic

∣∣∣∣∣sin
πΦ
Φ0

πΦ
Φ0

∣∣∣∣∣ . (1.28)

Fig. 1.3: A standard Fraunhofer-like magnetic diffraction pattern of a uniform Joseph-
son junction; Figure from Ref. [18].

Plotting 1.28 results in a fraunhofer-like diffraction pattern, shown in Fig. 1.3.

This is analogous to the single-slit diffraction pattern in optics, where interference

results from the wavelike character of light. In the junction, it is the phase of the

macroscopic order parameter that causes quantum interference [19]. Observation

of this magnetic diffraction pattern was a key experimental confirmation of the

Josephson effect.
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1.3 The Tilted Washboard Potential

In this section, which loosely follows Chapter 6.3 of Ref. [10], I will discuss how

I modeled the dynamics of Josephson junction behavior. This is most commonly

accomplished using the resistively and capacatively shunted junction model (RCSJ),

with the equivalent circuit depicted in Fig. 1.4. Here, C is the total capacitance

from the junction electrodes, while R represents the ohmic resistance which may be

due to an actual resistor connected across the junction, or to loss from quasiparticles

tunneling across the junction, or to other dissipation processes. For simplicity I will

assume R is frequency and voltage independent, although many situations can arise

where this is not the case.

Fig. 1.4: The RCSJ circuit model, which includes an ideal JJ shunted by resistance R and
capacitance C.

When the junction is current-biased, the total current passing through the

three parallel elements of the circuit can be written as

I = C
∂V

∂t
+
V

R
+ Ic sin(φ). (1.29)

Using Eq. 1.19, and introducing the time scale τ = (2eIc/~C)1/2t = ωpt, this can be
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rewritten in terms of the phase to obtain an inhomogeneous nonlinear second order

differential equation

I

Ic
=
d2φ

dτ 2
+

1

Q

dφ

dτ
+ sin(φ). (1.30)

Here, ωp = (2eIc/~C)1/2 is the Josephson plasma frequency, and Q = ωpRC is the

quality factor of the junction.

Fortunately, Eq. 1.30 has a helpful mechanical analog. Indeed, Eq. 1.30 is

just the equation of motion of a particle with mass m = (~/2e)2C moving in the

φ-direction along a “washboard”-like potential

U(φ) = − ~
2e
Ic cos(φ)− ~I

2e
φ (1.31)

while being subjected to linear damping. The potential U(φ) is plotted in Fig. 1.5.

You can picture the phase particle as moving along the washboard surface under

the influence of gravity, with its movement being opposed by a “drag force” given

by (
1

R

)(
~
2e

)2
dφ

dt
. (1.32)

The bias current I modifies the angle of the washboard’s tilt.

1.4 Topological Insulators and Topological Crystalline Insulators

Topological materials form the final critical part of my experimental research.

Topology is the branch of mathematics that deals with objects or spaces that

may be transformed into one another via continuous deformation – that is, to pre-
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Fig. 1.5: Tilted washboard potential for the RCSJ model with zero current bias (upper
curve) and nonzero bias (lower curve); Figure from Ref. [20].

serve the topological class of an object, it may be stretched and squeezed like rubber

but it cannot be cut or broken. The classic example for a shared topological invari-

ant is “donut = coffee cup”; meaning that it is possible to smoothly transform a

torus-shaped surface into a coffee cup-shaped surface, since both have one hole. To

make the bridge to topology’s application in condensed matter physics, consider the

example of a loop and a trefoil knot (see Fig. 1.6). It is not possible to convert

the trefoil knot into the loop without cutting the string; therefore, their topological

invariants are not the same.

Similarly, a topological insulator (TI) is a material that does not share an in-

variant with a conventional insulator (e.g. the vacuum is a conventional insulator).

This means that joining a TI to a conventional insulator necessitates a transforma-

tion at their interface. The interface between two materials is analogous to making

a cut in a trefoil knot so that the rope ends can be joined into a simple loop. The

result is the appearance of surface states at the interface which are topologically

protected, i.e. insensitive to scattering and disorder. Thus, a TI acts as an insulator

16



Fig. 1.6: The trefoil knot and the simple loop are topologically nonequivalent. This helpful
figure is from Ref. [21].

in the bulk but has a metallic surface.

In general, TI surface states are protected by time-reversal symmetry. It is also

possible for a topological material to instead have surface states that are protected by

crystal, or mirror, symmetry; and these are called topological crystalline insulators

(TCI)s. In this dissertation, I will describe my experimental results on both types

of topological insulators.

When a TI comes into contact with a superconductor, the proximity effect

causes superconductivity to leak into the TI, forming a “topological superconductor”

which is expected to be capable of hosting Majorana fermions, particles that are

their own antiparticles. Fundamental interest in these new particles, the prospect of

applying them in topological quantum computing, and unusual properties of these

particles (Majoranas follow non-Abelian statistics) have driven much relevent work

in this field.
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Chapter 2: Device Fabrication and Measurement

2.1 Electron Beam Lithography and Metal Deposition

In this Chapter, I will give a detailed walkthrough of the experimental pro-

cesses I used to make and measure the devices I studied in this thesis. All of the

devices were fabricated using electron beam lithography (EBL); a schematic of the

lithography process is shown in Fig. 2.1. First, I prepared the substrates: for

PbSnTe devices, I used GaAs, and for SnTe nanowires the substrate was Si/SiO2.

In both cases I received these chips with the TI already grown on top of them by

exceptional collaborators. In order to control the exact locations of the devices I

wanted to write–for example, so that my JJs landed precisely on top of the ran-

domly dispersed nanowires–I first created some 10 µ× 10 µm gold squares to use as

alignment marks. The marks, which I patterned in a grid with each mark 200 µm

away from its adjacent neighbors, can be seen in Fig. 2.2(a).

To make these marks, I cleaned my samples in a beaker of acetone for 5

minutes, then cleaned them in isopropyl alcohol (IPA) for 5 minutes. I blow dried

the surfaces with high purity nitrogen, and then I set the samples onto a hot plate

for 5 minutes at 185°C. With the substrates clean, I spin-coated a layer of 950k A4

poly(methyl methacrylate) (PMMA) for a resist. I set the spin coater for 5000 rpm
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Fig. 2.1: The device fabrication process: e-beam exposure to the spun sample, followed by
development, metal deposition, and liftoff.

for one minute, and when it was done, I gave the resist layer a quick eyeball check to

ensure that the coating looked even. When I was satisfied with the spin, I returned

the samples to the 185°C hotplate and baked them for 15 more minutes. At this

point, the chips were ready to be loaded into the Elionix ELS-G100 100 kV Electron

Beam Lithography System. My standard dose for lithography was 1050 µC/cm2.

To make alignment marks, I used a beam current of 100 nA.

Once my samples were inside the Elionix, I selected the alignment mark pat-

tern I had at the ready, which I had previously designed using the AUTOCAD

computer-aided design software. The CAD file told the electron beam where to

trace. Exposure to the beam broke the PMMA polymer into smaller chains of

molecules that could be dissolved by a solvent, which in my case was a 1:3 mixture

of methyl isobutyl ketone and IPA. When the samples had been removed from the

Elionix, I poured the solvent into a beaker, then picked up each one with my tweez-
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ers and swirled it around in the mixture for one minute. Once the minute passed, I

squirted off the surface of the chips with IPA from a squirt bottle, and then dried

them with high purity nitrogen.

The next step was metal deposition using an AJA electron beam evaporator.

In an evaporator, electrons are accelerated toward a tungsten crucible containing the

desired material, which is consequently heated, causing the material to evaporate

onto a waiting substrate. For the alignment marks, I performed an in situ Ar etch at

50 W for one minute after loading the samples into the chamber. Then, I deposited

4 nm of Ti followed by ∼70 nm of Au. The Ti acted as a sticking layer between the

Au and the substrates.

Once I removed the samples from the evaporator, it was time for lift off. I

placed them into a covered beaker of n-methyl pyrrolidone (Remover PG) and left

them for 3 or more hours on a hot plate set to 60°C. When the time passed, the metal

layer looked crinkly and was ready to be removed by a few seconds of sonication.

If the samples were sensitive, however–for example, if they were nanowire samples

where sonication might cause the wires to fly off the chip–I instead squirted the

surface of the chips with acetone and IPA until the unwanted metal was removed.

When satisfied, I rinsed the samples again with acetone and IPA, and dried them

with nitrogen.

At this point, the alignment marks were finished, and I could repeat the lithog-

raphy process, this time patterning the actual devices using the marks as a position-

ing guide. My junctions were made with either 70 nm or 200 nm of deposited Al.

For the thinner 70 nm devices (akin to the JJs in Chapter 3), the spinning process
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Fig. 2.2: Optical micrographs of patterned junctions. (a) Images of a series of JJs that I
patterned atop a SnTe nanowire, taken using an optical microscope immediately after
the development step. The pattern is shown at both 10x and 100x magnification. The
gold alignment marks have dimensions of 10 µm × 10 µm. (b) The same pattern after
the metal deposition and liftoff steps, at 100x magnification.

was exactly the same as that described above. For the thicker 200 nm devices (akin

to the JJs in Chapter 4), it was necessary to add a second layer of PMMA after the

first was finished–this time, I spun 950k A4 PMMA at 5000 rpm for one minute. I

then baked the samples for an additional 15-20 minutes on the 185°C hotplate.

I used a dose of 1050 µC/cm2 for the device patterning. Since the devices had

much finer features than the alignment marks, it was necessary to reduce the beam

current for these writes to allow for greater precision. The junctions themselves,

as well as the nearby leads (that is, any part of the pattern in an area of a few

microns surrounding the JJs) were written with the fine 100 pA beam. The leads

towards the outsides of the patterns, which did not require as much precision, could

be written at 1 or 5 nA to speed up the process.

I developed the samples the same way as described above, and then loaded

21



them into an AJA International sputtering system. Similarly to before, I first per-

formed an in situ Ar etch at 50 W for one minute, and then I sputtered a sticking

layer of ∼4 nm of Ti. I used aluminum as my superconductor. Before depositing

it, I brought the substrate heater to 200°C, since I found that heating during this

time greatly improved the electrical contact between the Al and the TI in my final

devices. I sputtered either 70 nm or 200 nm of Al according to my needs. Lift off

was performed exactly the way I described for the alignment marks.

Working Josephson junctions that I created had a spacing between the super-

conducting leads of around 80 nm. For this reason, the lithography process needed

to be very precise; else the leads of the JJ ended up either too far apart, or shorted

together.

Figure 2.2 displays example optical images of a developed pattern in PMMA,

followed by the device that resulted.

2.2 Measurement Techniques

To measure a completed junction, I stuck the sample (usually about 4 mm ×

4 mm in size) onto a small carrier using dried PMMA to hold it in place. I used

an ultrasonic wire-bonder with aluminum thread to create electrical connections

between the carrier and the leads of the patterned devices. Then, I used vaccuum

grease to stick the small carrier into a larger carrier designed to connect to the

dilution refrigerator, and bonded from the small carrier to the large carrier. I did

this because I wanted the bonds that connected to the actual device to remain
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undisturbed, even if I ended up needing a second measurement of the sample. An

image of a sample bonded to the carriers is shown in Fig. 2.3(a).

Fig. 2.3: Loading devices into a dilution refrigerator. (a) Wire-bonded devices on a chip
carrier. (b) One of the lab’s dilution refrigerators with the outer vacuum cylinders
removed, showing the position of the loaded carrier.

With the devices connected, I loaded them into a dilution refrigerator as shown

in Fig. 2.3(b). The refrigerator exploited the properties of the superfluid and nor-

mal fluid phases of 3He and 4He mixtures to cause the system to cool. This process

allowed us to reach base temperatures of around 50 mK. Once cold, I applied a cur-

rent bias and/or RF radiation to the superconducting devices, and I measured their

differential resistance under various conditions using a standard lock-in amplifier

technique.
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Chapter 3: A Skewed Current-Phase Relation in Josephson Junc-

tions with Weak Links of PbSnTe

3.1 Introduction

Here I report on the fabrication and measurement of Josephson junctions that

were made using both Pb1−xSnxTe (topologically nontrivial) and PbTe (topological

trivial) as weak link materials between the two aluminum leads. The contents of

this chapter have been published in Physical Review Letters [22]. I characterized

these junctions by measuring DC I − V curves, the ICRN product and its temper-

ature dependence, the magnetic diffraction pattern, and the AC Josephson effect.

The most striking deviation I found between the topologically-trivial and nontrivial

junctions occured under microwave radiation: in addition to finding Shapiro steps

observed at DC voltage values consistent with nhf/2e, the TCI JJs also exhibited

steps at fractional values, consistent with a strongly nonsinusoidal current-phase

relation (CPR). As I discuss below, I confirmed through numerical simulations of

the AC Josephson effect in a resistively-shunted junction model that such subhar-

monics can be produced if the CPR is not sinusoidal. The subharmonic structure I

report here was only found in weak-link materials with low mobility, and I discuss
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the origin of this phenomena in terms of helical states predicted to exist in this a

TCI.

3.2 Methods

Pb0.5Sn0.5Te and PbTe weak-link Josephson junctions with a width of 1µm

and length between 50 and 120 nm were patterned using electron-beam lithography

(see the inset of Fig. 3.1). The deposition of the electrodes defining the junctions

began with an in-situ Ar rf plasma etch for 60 s at 50 W, followed by sputtering

of Ti/Al (3 nm/ 70 nm). During the deposition of the aluminum, the substrate

was heated to 100oC. The Pb0.5Sn0.5Te or PbTe films were then removed through a

reactive ion etch of Ar/H2 (20:2) over the entire surface, except underneath the Al,

in between the Al leads (the Josephson junction), and in a 2µm region on the left

and right side of the Al, which were protected by a PMMA mask. An SEM image

of a completed device is shown in the inset of Fig. 3.1. Completed devices were

then cooled to 50 mK and I measured the differential resistances R = dV/dI as a

function of current I (Ibias between 1-10 nA) with a lock-in amplifier. A total of 14

junctions showing superconducting properties were measured, two of which were in

detail demonstrated in this chapter (see the supplementary information for Ref. [22]

for additional data). Tunneling spectroscopy was obtained by sweeping a DC current

source, resulting in the plots of R vs. IDC at different temperatures T (see Fig. 3.1.

The current at which R(IDC) changes from zero to the peak values determined the

switching current of the junction, which I assumed to be a reasonable measure of
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the critical current. The ICRN product (RN is the normal state resistance of the

junction) rises from zero at T=500 mK to ∼ 10 µV at base temperature (see Fig.

3.1).

SC

Pb   Sn Te
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(Ω
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I    (μA)DC
20 4-2-4
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450mKSC

0
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Fig. 3.1: Device 1: Temperature dependence of the differential resistance R versus
current I , where superconducting features appear below T=500 mK. The peaks in R
occur at values IDC = IC. (Inset, upper left) shows a scanning electron micrograph of
a device similar to the ones studied in this chapter, showing two superconducting (SC)
aluminum leads (dark grey) and the TCI material Pb1−xSnxTe (green). The scale bar
shown in white is 1 µm. The spacing between the two SC leads is 100 nm. (Inset, upper
right) Schematic of the band structure of Pb1−xSnxTe where 4 Dirac cones appear across
the X point in k-space [23].

3.3 Results and Discussion

3.3.1 The magnetic diffraction pattern

Application of a perpendicular magnetic fieldB normal to the substrate surface

of Device 1 allowed for a variation of the superconducting phase difference across

26



-4

4

15100

2

-2

B (mT)

R 
(Ω

)

I    (μA)DC 2 4-2-4

20

0

I  
  (
μ

A)
D

C

(a)

(b)
5

B=0
B=5 mT

B=2.75 mT
B=7.25 mT

Fig. 3.2: The magnetic diffraction pattern for Device 1. (a) Plot of R(B, IDC), revealing a
Fraunhofer-like pattern consistent with a (nearly) uniform supercurrent across the width
of the device. (b) One-dimensional cuts in the data from (a) at B=0, 5.00 mT (black)
and 2.75, 7.25 mT (green), where the latter two show the variation in R between at the
first and second minimum in IC.
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the width of the junction. A plot of R as a function of IDC and perpendicular

magnetic field is shown in Fig. 3.2(a). In conventional junctions with a sinusoidal

CPR and a uniform critical current density across the device, a Fraunhofer pattern

in the magnetic-field dependence of R is expected [24]. A good Fraunhofer pattern

was useful for eliminating the possibility that the supercurrent in Fig. 3.1 was from

an electrical short between the superconducting leads. The observed pattern was

consistent (at least approximately) with the current density being uniform over the

width of the device. In particular, Fig. 3.2(a) shows a pattern that is reminiscent of

a Fraunhofer pattern except for two important deviations: the width of the central

lobe is not twice the width of the other two, and while IC → 0 at the second minimum

(B=7.25 mT), it remains finite at the first minimum (B=2.75 mT). For more clarity,

cuts of R at B=0, 2.75, 5.00, and 7.25 mT are shown in Fig. 3.2(b). The observed

deviation of the magnetic-field dependence from a Fraunhofer pattern is consistent

with observations of other 3D topological insulators [25, 26], and has been used

in the past to argue for the presence of nonsinusoidal current-phase relations [27].

However, a simple modification to allow for the critical current density to smoothly

vary along the width of the device can also produce a similar modification of the

Fraunhofer pattern. Hence, measurements of this type cannot extract a unique CPR.

Also visible in Fig. 3.2(b) is a small amount (∼10%) of hysteresis as a function of

IDC. Since we the Stewart-McCumber parameter to be small in junctions with this

geometry [28], we ascribe this hysteresis to self heating of the electrons [29].
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3.3.2 Subharmonics in the AC Josephson effect
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Fig. 3.3: Device 1: comparison of Pb0.5Sn0.5Te and PbTe characteristics at f=3 GHz
and applied RF power of -6.75 dBm. (a) Plot of R vs I showing minima at expected
values for Shapiro steps and at half integer values. Numerically integrated I − V data
(red) shows Shapiro steps at nhf/2e=n∗6.2µV and additional features at fractional
values of 1

2 and 3
2 . (b) By comparison, a PbTe device showing only integer values of the

Shapiro steps, both in R (black) and I − V (red).

For a sinusoidal current-phase relation, a microwave voltage at frequency f

applied to the junction produces steps in the I − V curves at voltages nhf/2e [30].

These steps will appear as minima in the differential resistances R. Fig. 3.3(a)
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(black curve) shows R vs IDC for an applied microwave frequency of 3 GHz. Well-

defined minima of R can be observed at values of nhf/2e. In Fig. 3.3 I also show

I − V curves generated from a numeric integration of the differential resistance.

The steps in I associated with the minima in R are clearly seen in th I − V curves

(Fig. 3.3(a), red). The deepest minima in R, corresponding to steps at intervals

of hf/2e=6.2 µV, are in agreement with expectations. Besides these pronounced

minima, there is additional structure. Structure between the conventional minima

can be caused by higher harmonics in the CPR, including fractional values of the

AC Josephson effect. The integrated I − V shows small subharmonic features at

hf/4e and 3hf/2e, demonstrating that these junctions may not have a conventional

sin(ϕ) CPR.

To investigate whether the half integer steps arise from a non-topological prop-

erty of the weak link, I also fabricated junctions from the topologically trivial mate-

rial PbTe. Figure 3.3(b) shows my measurements of R vs I under 3 GHz radiation.

I observed a conventional Shapiro step behavior with no obvious dips in between the

integer minima. The I − V curve (red) shows only plateaus at multiples of 6.2 µV,

which is consistent with the current-phase relation arising primarily from a single

sin(φ) term. Measurements of this PbTe junction at higher powers and frequencies

also showed only integer Shapiro steps.

Further information on the CPR of the Pb0.5Sn0.5Te device is revealed by

plotting the power dependence of the subharmonic structure. Figure 3.4(a) shows

a plot of R for conventional applied RF powers P between -27.25 and -9 dBm,

for f=2.2 GHz. Conventional Shapiro steps are seen at integer multiples of hf/2e
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(labeled by number in white) and follow a Bessel function power dependence, as

expected [30]. In addition, different subharmonic structure is observed between

different primary plateaus (indicated by white arrows). For example, at certain

values of P , a single dip is observed between steps 0 and 1, while at the same power

two dips are seen between steps 3 and 4. This secondary structure follows a more

complicated pattern: as a function of power and IDC, one or sometimes two minima

were seen.

A line cut showing R vs IDC (see Fig. 3.4(b)) taken at P=-15 dBm (grey line)

shows the intricate behavior observed in R. If only the fundamental and a second

harmonic existed in the CPR so that IS ∝ sin(ϕ)+sin(2ϕ), only a single dip in R

would be present between conventional Shapiro steps. This is not the case, and this

suggests even higher order terms may be present.

3.3.3 Theory and simulations

My AC Josephson effect data suggests that multiple harmonics are present

in the CPR of the Pb0.5Sn0.5Te junctions. Deviations from a sinusoidal CPR in

low-capacitance weak link junctions are expected when the weak link has channels

of high transparency [31]. Recently, such deviations of the CPR have been seen in

junctions made from one-dimensional nanowires with strong spin-orbit coupling [32],

graphene [33], and the three-dimensional topological insulator HgTe [34]. Common

to these three are the high values of the electronic mobility, and each experimental

report cited highly-transmitting electronic channels as the underlying cause of the

skewed CPR. This feature serves in stark contrast to the measured Hall mobility in
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the devices under study in this paper; for example, our observed mobility is ∼250

times less than the reported mobility of the 3D TI HgTe [34].
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Fig. 3.4: Power dependence of the AC Josephson effect in Pb0.5Sn0.5Te junctions. (a)
Shapiro map taken at f=2.2 GHz. In addition to the main Shapiro steps (black regions
indicated by white numbers), structure in between the primary steps is seen (indicated
by white arrows). (b) A line cut of R vs IDC taken along the grey line in (a). (c)
Simulation of the RSJ model using a CPR for KO-2 theory for a ballistic Josephson
junction, simulated over a similar range of parameters as the data in (a). The saw-tooth
behavior of the CPR is necessary to mimic the data. (Inset) A plot of the CPR for the
KO-2 theory (solid line) is compared to a pure sine wave (dashed line). (d) A line cut
of the simulated differential resistance δR vs IDC qualitatively reproduces that observed
in the experiment.

To confirm that a current-phase relation possessing higher harmonics can yield

results that are similar to the data shown in Fig. 3.4(a), I performed a numerical

integration of the resistively shunted junction (RSJ) model [30] (see the supplemen-

tary info for Ref. [22] for details of the simulations). The simulations were done

for the CPR as a function of transparency of the weak link, where higher trans-

parency results in a more skewed CPR [29, 31]. For example, Fig. 3.4(c) shows

results from the simulation of the RSJ model using a current-phase relation with

unity transparency:

IS(ϕ) =
π∆

eRN

sin(ϕ/2)

(
tanh

∆cos(ϕ/2)

2kBT

)
. (3.1)
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This CPR is shown in the inset of Fig. 3.4(c), plotted using an estimated value for

∆ of kB∗500 mK. This temperature corresponds to that at which the ICRN product

deviates from zero.

While not all the features I see in the data are captured by the simulation, a

side-by-side comparison of the line cuts of the experimental data and the simulation

(Fig. 3.4(d), from cut taken along the grey line of Fig. 3.4(c)) shows qualitative

agreement, reproducing the key features of the subharmonic structure. The most

important distinguishing features of this CPR are the appearance of peaks centered

between successive integer Shapiro steps and the unequal values of consecutive dips

seen in the one-dimensional cut of the simulation (Fig. 3.4(d)). I only found these

features in simulations that had a strongly-skewed current-phase relation resulting

from the existence of higher harmonics in IS(ϕ) [35]. However, I was not able

to account for all of the observed behavior despite a rather comprehensive search

through different types of possible current-phase relations (e.g. a CPR for diffusive

systems) [35]. A feature that conventional or skewed CPRs fail to capture is fine

structure in the power dependence of the subharmonic structure (see, for example,

the region highlighted by the red box in Fig. 3.4(a)). Whereas our data shows

subharmonic lines crossing, simulations with conventional CPRs that I examined

always yielded lines that never crossed.

Given the low Hall mobility of our samples, what might be the origin of elec-

tronic modes with high transmission? Recent experimental work by Sessi et al.

investigating the surface of the TCI (Pb,Sn)Se has revealed one-dimensional, topo-

logical spin-filtered channels existing on step edges that break translational symme-
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try (called odd step edges) [36]. These 1D states only exist when the material is

doped in the topological regime and they argue that this is a phenomena general to

TCIs, not just the material under study. Such 1D modes have been been reported in

another TCI material, Bi2TeI [37], and in a weak topological insulator Bi14Rh3I9 [38]

– of which TCIs are a subclass. These observations are consistent with these high

transmission channels being a general feature of TCIs. In particular, the existence

of such step-edge conducting channels would account for the skewed CPR and the

measured differences between Pb1−xSnxTe and PbTe. The density of odd step edges

in our samples can be estimated from the crystallographic offset of the GaAs wafer

used to grow the Pb1−xSnxTe, resulting in ∼5 per 100 nm. This number represents

the minimum number, since steps edges can also be produced during growth. Each

1D mode is expected to contribute e∆0

~ ≈ 10 nA [39], so at least 500 nA of the

critical current could come from these modes. If not all the critical current comes

from 1D modes, the rest will likely come from the bulk, which I expect may have

a more conventional CPR. To check whether the subharmonic features survive an

additional bulk supercurrent, I simulated a combination of a conventional sinusoidal

CPR and the CPR from Eq. 3.1, and the subharmonic features survive.

3.4 Conclusion

In this chapter I described the fabrication and measurement of JJs with weak

links made from the topological crystalline insulator Pb1−xSnxTe . I described the

properties of these junctions, and compared them to JJs fabricated with weak links
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of PbTe, a similar material that is topologically trivial. The most striking differ-

ences were be seen in measurements of the AC Josephson effect: JJs made with

Pb1−xSnxTe exhibited a rich subharmonic structure, consistent with a skewed CPR.

This structure was absent in JJs fabricated from PbTe. I discussed the possible

origin of this effect and how this novel behavior may be arising from a topologically

nontrivial surface state.
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Chapter 4: Josephson Detection of Time Reversal Symmetry Break-

ing Superconductivity in SnTe Nanowires

4.1 Introduction

For conventional JJs, the sinusoidal current-phase relation IS(φ) = ICsin(φ)

necessitates a statement of time reversal symmetry, which is reflected in the anti-

symmetric property IS(φ) = −IS(−φ) of the CPR [31]. However, the CPR needs

not be a sinusoid, as I discussed in Chapter 3. An example is the case of JJs were

made with with weak links made of Pb0.5Sn0.5Te. In these JJs, higher order pro-

cesses arising from multiple Andreev reflections can add higher harmonics to the

CPR. Nevertheless, time-reversal symmetry in these junctions still holds.

JJs have also been created with superconductors or weak links which possess

broken time reversal symmetry (BTRS). These include JJs made with ferromagnetic

weak links [40,41] or with spin-orbit coupled materials in the presence of a magnetic

field [42]. Other possible BTRS materials include those that maintain time-reversal

symmetry in the normal state but break this symmetry upon entering the super-

conducting state, including multicomponent superconducting states in multiband

materials [43, 44], grain boundaries in d-wave superconductors [45, 46] and in topo-
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logical p-wave superconductors, including possibly Sr2RuO4, although the nature of

superconductivity in this material is still disputed [47]. Junctions comprised of these

materials exhibit common characteristics that arise from BTRS. First, the measured

critical current that depends on the sign of the current through the junction. Second,

the CPR is dominated by a second harmonic, a result of either the presence of trans-

port channels that are out of phase – so called “0” and “π” supercurrent channels

– or a Josephson coupling that vanishes in the first order. This asymmetric critical

current and dominant second harmonic have been predicted and/or measured in JJs

with materials containing ferromagnetism [40,41,48–51] or spin-orbit interaction in

the presence of a magnetic field [52, 53], d-wave superconductors [45], multiband

superconductors [54–59], and topological (p-wave) superconductors [60–63].

Below I detail signatures of BTRS in JJs with weak links of SnTe nanowires,

focusing on a critical current which depends on the direction of current flow, an

anomalous magnetic diffraction pattern (MDP), and a strong second harmonic in the

CPR. These JJs share many of the properties of exotic superconducting junctions.

The research I discuss in this Chapter was published in NPJ Quantum Materials [64].

My coauthors and I demonstrate how the combined effect of the multiple bands

present at the Fermi energy and existence of ferroelectric domain walls in SnTe can

explain the two signatures of BTRS in these JJs. Multiband superconductivity

and the new Josephson effects can be used to investigate a host of unconventional

superconductivity properties including fractional vortices [65, 66], topological su-

perconductivity in multiband materials [67–69], and new types of Josephson-based

devices in proximity-induced multiband and ferroelectric superconductors [43,44].
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4.2 Methods

The SnTe nanowires measured in this study were synthesized by metal-catalyzed

chemical vapor deposition using a single-zone furnace. SiO2/Si substrates decorated

with 20 nm-wide gold nanoparticles were used as growth substrates. SnTe and

Sn source powders were mixed and placed at the center of a horizontal quartz tube

with 1-inch diameter while the growth substrates were placed upstream in the quartz

tube, 10-13 cm away from the center. The furnace was heated to 600oC and remained

at the temperature for 1hr with an Ar carrier gas at a flow rate of 20 s.c.c.m. The

furnace was allowed to cool naturally to room temperature. The resulting sam-

ples contained SnTe microcrystals, nanoplates, and nanowires. I characterized the

atomic structure and chemical composition by transmission electron microscopy and

energy dispersive X-ray spectroscopy. Additional details of the synthesis reactions

and microcharacterizations of SnTe nanowires can be found in previous reports [70].

For this study, I selected SnTe nanowires with cross-sectional lengths of <∼300 nm.

The nanowires were examined using transmission electron microscopy (TEM)

by P. Liu, H-J Han, M.-G. Han, Y. Zhu, and J. J. Cha, who looked to determine

the wires’ atomic structure and chemical composition. These experiments were

carried out using Gatan’s liquid-He cryo holder (HCTDT 3010) and JEOL JEM-

ARM200CF at 200 kV at Brookhaven National Laboratory. SnTe nanowires were

drop-casted onto Cu-mesh TEM grids overlaid with a thin carbon support film. The

TEM sample was cooled from room temperature to 12 K by cooling the cryo holder

with liquid helium. The temperature sensor measures the temperature of the holder;
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thus, the actual temperature of the sample may be ∼ 5–10 K higher.

I fabricated the Josephson devices on ∼ 5 mm x 5 mm Si/SiO2 chips with SnTe

nanowires dispersed atop them. First, a pattern of equally spaced alignment marks

is written using our lab’s Elionix ELS-G100 100 kV Electron-Beam Lithography

System with a dose of 1600 µC/cm2. After a 60s in situ Ar plasma etch at 50 W,

I deposited Ti/Au (5 nm/70 nm) using e-beam evaporation. After lifting off the

alignment marks, I selected ideal SnTe wires using an optical microscope. Then, I

wrote the Josephson devices atop these wires using a dose of 1600 µC/cm2. Following

development, the samples then underwent a 60 second in situ argon plasma etch at

50 W, followed by the sputtering of Ti/Al (4.5 nm/200 nm). To get samples with

measurable supercurrents at base temperature, I had to heat the sample during the

deposition of aluminum to 100°C.

I carried out low-temperature transport measurements in dilution refrigerators

with electron temperatures of < 50 mK. DC electrical leads were heavily filtered to

remove high frequency noise above 10 kHz. The lock-in measurements were carried

out using a 1 nA excitation at 13 Hz. Radio frequency radiation up to 7 GHz was

supplied to one of the electrical leads via a synthesizer through a bias-tee located

on the chip carrier.
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Fig. 4.1: The DC Josephson Effect for Device 2. (a) Differential resistance r as a function of
DC bias current IDC in different sweep directions. The bias sweeps show no hysteresis
and two nonidentical critical currents I+C and I−C and peak heights h+C and h−C . The
curves are offset for clarity. Inset: SEM image of a JJ consisting of two aluminum
superconductors coupled via a SnTe nanowire. The white scale bar is 1µm. (b) Simulated
differential resistance r(IDC , β) calculated from the resistively-shunted junction model,
where the best fit of parameters (A, β) are (0.6,−0.9π). The resulting CPR is plotted
in (c).

4.3 Results and Discussion

4.3.1 Broken symmetry in the DC Josephson effect

I measured the Josephson effect in Device 2, a SnTe nanowire JJ, using lock-

in detection of the differential resistance r = dV/dI as a function of the applied

DC current (IDC) and AC current (measured in power P ). Figure 4.1(a) shows

my results in r(IDC) at a temperature of T ∼ 25 mK and P = 0. There is no

dependence of r(IDC) on the direction of current sweep (i.e. there is no hysteresis),

indicating the junction is overdamped [24]. Unlike conventional overdamped JJs,
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I observed different values of IC for positive (I+
C ) and negative (I−C ) IDC . Sweeps

of IDC in both directions confirmed that the difference in I+
C and I−C was always

present. The measured critical currents I−C = 1.1 µA and I+
C = 0.92 µA gave a

critical current asymmetry of I−C /I
+
C ≈ 1.2. These sweep-direction-invariant effects

are not predicted for conventional JJs [24]. Further, I also measured asymmetric

heights of the peaks in r, with the peak larger for I−C . The measured peak heights

h−C = 65.9 Ω and h+
C = 45.2 Ω gave a peak height asymmetry of h−C/h

+
C ≈ 1.46.

M.T.W. and S.S.K. performed numerical simulations of the resistively-shunted

junction model (Fig. 4.1(b)) to determine a CPR that could give rise to this

asymmetric critical current. Conventional JJs possess a CPR that is both in-

version and π-translation antisymmetric, a result of time-reversal symmetry. We

found that the only way to reproduce r(IDC) curves that were not symmetric in

IDC was to break both of these symmetries: we accomplish this with the CPR

IS = IC [(sin(φ) + η sin(2φ)] + A [sin(φ+ β) + η sin(2(φ+ β))]. This CPR is com-

prised of two terms, each containing a first and second harmonic, that are offset by

a phase β. The parameter A determines the relative strength of the two terms in

the CPR. The parameter η is the strength of the second harmonic terms, which is

expected to be significant in the BTRS state for multiband materials [57,58].

The presence of a strong second harmonic was be confirmed by measuring the

AC Josephson effect (see Fig. 4.3) and a value of η = 0.9 was extracted by comparing

these measurements with simulations. Values for A and β were chosen to best

match the experimentally determined asymmetries I−C /I
+
C ≈ 1.2 and h−C/h

+
C ≈ 1.46:

A = 0.6, and β = −0.9π. The CPR for these values is shown in Fig. 4.1(c). As
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expected, it possesses BTRS, i.e. I(φ) 6= −I(−φ). The essential feature of this CPR

is the two inequivalent minima/maxima, which occur at different values of IS. It is

these features which give rise to the differences in I+
C , I

−
C and h+

C , h
−
C .

4.3.2 An anomalous magnetic diffraction pattern

The magnetic diffraction pattern (r(IDC , B)) for Device 3 is shown in Fig.

4.2, where B is applied perpendicularly to the sample substrate. Unlike the MDPs

of typical Josephson junctions, SnTe JJs displayed a local minimum of the critical

current at zero applied magnetic field. The peak in IC occurs at B=16 mT, which,

when using the area of the junction (defined as the junction length plus twice the

penetration depth), corresponds to a flux through the device of ∼ Φ0/4 (where Φ0

is the quantum of flux). This contrasts with magnetic diffraction patterns that have

been observed in JJs with weak links of bulk TCIs [22], TIs [26, 71, 72], and strong

spin-orbit 1D wires [73], where a maximum in IC at B=0 is still observed. Our

MDPs more closely resemble those for superconductor-ferromagnet-superconductor

[74] and d-wave domain wall [75] JJs. Measurements in a parallel field did not

produce this effect, ruling out spin-orbit or phase-coherent effects as being the origin

of the rise in IC away from B=0.

I note that magnetic diffraction patterns have previously been observed in

JJs with broken time-reversal symmetry. It is interesting to compare the MDP of

ferromagnetic JJs [49] with the MDP of our junctions. A minimum at B=0 can be

obtained from two supercurrents that are out of phase with each other, consistent

with our calculated CPR. For this magnetic diffraction pattern to occur, there must
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Fig. 4.2: Magnetic diffraction pattern of a SnTe nanowire JJ (Device 3).

be some spatial variation along the lateral direction (perpendicular to supercurrent

flow) of the magnitude of “0” and “π” supercurrent channels. This can occur, for

example, from a lateral variation of the coupling J , or from lateral variations of the

chemical potential, or from tunneling coupling near a domain wall. Self consistent

calculations of the s − s± proximity effect [76] have demonstrated the sensitivity

of the dominance of “0” and “π” channels on the chemical potential and tunnel

couplings. I will discuss the possible presence of such channels in our samples later

in this Chapter.

4.3.3 Strong half-steps in the AC Josephson effect

In this section, I discuss my observations of a modified AC Josephson effect

in Device 2. The presence of a second harmonic component – such as in the BTRS
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state [57,58] – results in additional steps at values of half integer multiples of hf/2e.

A plot of r(IDC , P ) is shown in Fig. 4.3(a), taken at f=5 GHz. In addition to dips

in r observed at the expected integer values (labeled in white), prominent features

at half-integer values are also apparent. This is more clearly seen in line cuts of Fig.

4.3(a) taken at P=-11.8 dBm (see Fig. 4.3(b). In addition to the dips in r (grey

curve) at integer values, clear dips at half integer values also occur. In fact, the

drop in r at n = 1/2 is nearly equal to that at n = 1. In addition, the integrated

voltage V =
∫

(dV/dI)dI versus IDC curve is shown in blue. The plateaus measured

in the I(V ) curve are nearly equal in strength, consistent with the contributions of

the first and second harmonic in the CPR being approximately equal. From this, I

extracted a value of η = 0.9 for the CPR which I used in the numerical simulations

shown in Fig. 4.1(b).

The Shapiro diagram shown in Fig. 4.3(a) also has two other signatures that

indicate nearly equal contributions from the first and second harmonic terms. First,

the width of the zeroth step does not go to zero (indicated by the two white vertical

lines), as expected for the zeroth order Bessel function. However, it does go to zero

at the next minimum. Second, while the width in IDC of the half integer steps is

modulated with power P , including regions of P where the step width goes to zero

(as expected), the width modulation is less pronounced on the integer steps. These

differences occur for a CPR that has both first and second harmonic terms (see

details in simulations in the supplementary information section of Ref. [64]).

Subharmonic steps are expected for underdamped junctions and for over-

damped junctions with a skewed CPR. Our junctions are overdamped; hence we
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Fig. 4.3: AC Josephson Effect at ∼ 50 mK. (a) In addition to integer Shapiro steps, labeled
in white, fractional Shapiro steps appear between the integer steps in this false color
plot of r(IDC, P ). (b) r(IDC) (grey) and integrated voltage V (IDC) (blue) taken at an
applied RF frequency f = 5 GHz, P = -11.8 dBm. The first 1/2 integer step occurs
with a nearly equal intensity to the first integer step.

do not need to consider the former case. Skewed CPRs in overdamped junctions

produce fractional Shapiro steps, but the strength of these steps is typically much

reduced compared to the integer steps. For comparison, consider the the AC Joseph-

son effect in Pb0.5Sn0.5Te, discussed in Chapter 3. The CPR we used to reproduce

this data was that of a ballistic JJ, which has the greatest amount of skewness

amongst the likely candidate CPRs. Yet, it produces dips at fractional values that

are an order of magnitude smaller than the integer value dips. Therefore, I also

ruled out a skewed CPR as the source of the observed effect.
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4.3.4 Multiband effect and ferroelectric distortion in SnTe

SnTe is not known to possess ferromagnetic correlations. It has a strong

spin-orbit coupling, but the effects observed here are at near-zero magnetic field.

Thus, Zeeman splitting or the effects of spin-orbit coupling in magnetic fields cannot

explain our observation. Although SnTe is a topological crystalline insulator, as-

grown SnTe nanowires have a Fermi energy buried in the valence band [77,78]; hence,

transport properties should be dominated by the bulk electronic states. Doped via

Sn vacancies, superconducting SnTe has properties that agree well with BCS theory.

Yet it has been shown that multiband effects are essential in the description of

superconductivity in this material [79].

In my samples, superconductivity arises via the proximity effect, which has a

very different character when the proximitized material has multiple bands. Nanowires

of SnTe(100) have a rock salt structure that produces two effective bands in the elec-

tronic structure of SnTe. Figure 4.4(a) shows an illustration of the proximity effect

at the interface between a material with two bands and an aluminum superconduc-

tor, with superconducting correlations introduced into each band via couplings J1

and J2. In addition, coupling between the bands, J , facilitated by scattering must

also be taken into account. When all three couplings are present, the superconduct-

ing phase on each band can become unequal. It is at this interface and under the

influence of these three couplings that time reversal symmetry is broken.

The proximity effect between an s-wave superconductor and a multiband ma-

terial shares similarities with a junction between an s-wave superconductor and an
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s± superconductor. Theoretical investigations of junctions between s-wave and s±

superconductors have found BTRS [44, 54, 55]. The manifestations of BTRS are

two-fold. First is the creation of a canted state (see Fig. 4.4(d)) [54–57], where a

nonzero angle forms between the phase of the bands and the phase of the supercon-

ductor. Three possible phase angle configurations are shown: for J � (J1, J2) (see

Fig. 4.4(b)), J � (J1, J2) (see Fig. 4.4(c)) and J ∼ (J1, J2) (see Fig. 4.4(d)). In

the case where J � (J1, J2) and J ∼ (J1 = J2), a novel superconducting state is

formed. The result of this canting is the generation of chiral currents in momentum

space [54,55] – a result of the Josephson currents produced by the difference in phase

angle between different bands – and these give rise to BTRS.

This theoretical picture cannot, however, completely explain the results I show

in this Chapter. A key discrepancy is that the curve in Fig. 4.1(c) has two min-

ima in r occurring at different values of IS. These unequal minima are key to

replicating the experimental results. Previous theoretical predictions dictate that

these two minima be equal, a result of the two phase angle configurations in Fig.

4.4(d) being time-reversal-symmetric partners [55]. Instead, in my system there is

a low-temperature ferroelectric distortion that plays an important role, both in cre-

ating unequal magnitude in the phase angles in the two bands and because of the

phase accumulated when an electron or hole crosses a domain wall between different

ferroelectric domains.

The phase angles in the canted state are determined by the coupling via J1 and

J2 to the Al superconductor, which is in part determined by the density of states

at the Fermi energy in the SnTe nanowire. Bulk and thin film SnTe are known
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Fig. 4.4: Proximity effect in a 2-band System. (a) The two bands in SnTe are coupled to the
order parameter with phase φS in aluminum via an external pairing field for J1, J2. The
interband coupling J is facilitated by scattering of carriers between bands. θ1 and θ2
are the phases of individual order parameters in the two bands. (b-d) The competition
between the coupling strengths J and J1,2 results in different relative phases between
two bands: (b) When J � J1,2, the phases tend to align with each other. (c) When
J � J1,2, the phases of two bands are out of phase by π. (d) In the intermediate regime
J ∼ J1,2, the phases are canted (shown for the case J1 = J2). The two degenerate states
in the BTRS case are shown.

to undergo a ferroelectric transition at low temperatures, where the cubic phase

changes to a rhombohedral phase [80], causing an unequal density of states at the

Fermi energy in the two bands of SnTe [81, 82]. Transport measurements of SnTe

nanowires have shown kinks in the resistivity curves as a function of temperature,

indicative of a ferroelectric transition [77]. It is important to establish the presence of

ferroelectric distortion in nanowires, since such a distortion will produce an unequal

density of states in each band. The density of states in each band after ferroelectric
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distortion can be estimated from the electronic density n. Although I could not

extract the electronic density n from Hall measurements on nanowires, I can get

estimate n from Hall measurements on 2D platelets of SnTe grown under similar

condition; this gives n∼ 1021 cm−3 [77, 78] and a Fermi energy of 330 meV. The

ferroelectric distortion pushes one valence band down in energy by 300 meV [82]

and both bands are occupied with the relative size of the density of states differing

by a factor of ∼3 between the large and small pocket.

To confirm the presence of a ferroelectric distortion, we cooled down SnTe

nanowires to 12 K in an in situ cryo transmission-electron-microscope (TEM). This

allowed us to image the ferroelectric transition and the microstructure of the ferro-

electric domains in the SnTe nanowires at low temperature. At room temperature,

the SnTe nanowire showed uniform contrast in the bright-field TEM image (see

Fig. 4.5(a)); but at 12 K, dark bands appeared along the nanowire perpendicular

to the long axis (see Fig. 4.5(b)). These bands were absent at room temperature,

and mark walls between two ferroelectric domains that emerge at low temperature.

We confirmed this interpretation by examining the electron diffraction pattern from

the nanowire. In SnTe, the ferroelectric transition is accompanied by a cubic-to-

rhombohedral structural transition. As the nanowire was cooled, the cubic electron

diffraction at room temperature changed to show two sets of diffraction patterns,

rotated by an angle of ∆α ∼1.2o, consistent with the two expected ferroelectric

domains (see Fig. 4.5(c)). The cubic-to-rhombohedral phase transition occured

at 80 K for this nanowire, as all the dark bands suddenly disappeared above this

temperature.
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Fig. 4.5: Effect of Ferroelectric Distortion on Proximity Effect and Josephson Current.
(a-b) TEM images of a SnTe nanowire at T=290 K and T=12 K, respectively. The scale
bar in the upper right corner of each image is 50 nm. The dark bands perpendicular to
the growth direction, indicated by red lines in (b), are domain walls separating different
polarization directions. Scale bars in the upper right corner of each image are 50 nm. (c)
The cubic lattice at room temperature undergoes a transition to a rhombohedral lattice
at T=80 K with two domains. (d) Unequal phase angles for the two ferroelectric domains.
e) The four-channel supercurrent flow across a domain wall. The two interband channels
Iij behave like conventional “0”-junctions, while the intraband channels Iii behave like
“π”-junctions.

The ferroelectric domain walls are important when considering the supercur-

rent flow through the JJ. Domain walls between superconducting order parameters

are known to cause modifications to Josephson currents. For example, complete

destruction of the magnetic diffraction pattern has been ascribed to the coexistence

of many energetically degenerate p-wave superconducting domains [47]. Also, mo-

tion of the walls between different metastable positions can produce a fluctuating

critical current [83–85]. In some SnTe devices, I observed a similarly fluctuating
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critical current.

In the presence of domain walls, the CPR can be calculated using the phase

angles, which can be determined by the proximity effect. There will be four su-

perconducting channels across a wall: two intraband and two interband chan-

nels [44, 55]. The four calculated CPRs are Iij(φ) = iij sin(φ + θRj − θLi ) for all

pairs of i, j = 1, 2, where θ
L(R)
i(j) are the phase angles of the ith(jth) band on the

left(right) side of the domain wall and iij = 2e~∆L
i ∆R

j /m. Two conclusions can

be drawn from a density of states that differs by a factor of ∼3 on the two val-

leys. First, the valley with the larger pocket will have a phase angle near zero,

while the smaller pocket is near π [56, 57]. Hence, θL1 , θ
R
2 ∼ 0 and θL2 , θ

R
1 ∼ π

(Fig. 4.5(d)), giving rise to two “0” interband (i 6= j) and two π intraband

(i = j) supercurrent channels (Fig. 4.5(e)) [44, 55]. The presence of compet-

ing 0 and π channels yields a large second harmonic, consistent with the anoma-

lous magnetic diffraction pattern I observed. Further, we can use the density of

states to estimate the magnitude of the proximity-induced superconducting gaps

∆L,R
1,2 = 3∆R,L

2,1 ≡ 3∆0. The relative magnitude of the “0” and “π” supercurrent

components is then: i12 + i21 = (2e~/m)(∆L
1 ∆R

2 + ∆L
2 ∆R

1 ) = 2e~/m(10∆0) and

i11 + i22 = 2e~/m(∆L
1 ∆R

1 + ∆L
2 ∆R

2 ) = 2e~/m(6∆0). The ratio is 0.6. Both the phase

and the relative amplitude agree well with the values for A and β obtained from

fitting to the AC Josephson data. An additional graphical representation of electron

and hole trajectories across a domain wall is shown in Fig. 4.6.
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Fig. 4.6: Electron and hole trajectories across a domain wall. (a) Four supercurrents
present across a domain wall. The lower diagram shows the phase angles on either side,
expected when the coupling to one band is stronger. (b-c) A comparison of electron/hole
trajectories across the domain wall. Bands 1(2) are indicated in blue(purple) and the size
of the circle indicates the density of states at the Fermi level. Electron(hole) trajectories
are shown in solid(dashed) lines, and arrows indicate the direction of propagation. (b)
For trajectories which involve no interband scattering at the domain wall or an even
number of scattering events, no net accumulation of phase occurs at the wall. Hence,
supercurrents generated by these trajectories produce a CPR with no phase offset. (c)
For an odd number of scatterings, a net phase is accumulated for transport across the
domain wall.

4.4 Conclusion

In summary, in Chapter 4 I discussed my measurements of the combined ef-

fects of proximity-induced multi-band superconductivity and ferroelectric distortion

on the dynamic properties of JJs made from SnTe nanowire weak links. I described

my observations of four unusual JJ behaviors – the asymmetric critical currents,

asymmetric peak heights, a strong second harmonic and an anomalous magnetic

diffraction pattern – within the theoretical framework. I note that ferroelectric dis-

tortion offers new possibilities for controlling the flow of supercurrents, where mod-

ification of the density of states or ferroelectric transition temperature by electric

fields and strain can be used to modulate the supercurrent and the offset phase in

the device. The manifestation of multiband and multicomponent superconductivity

in our devices offers experimental access to the phase induced on individual bands.
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This may allow future investigations of the order parameter in novel superconduc-

tors [43,44] and the determination of topology in the superconducting state [67–69].
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Chapter 5: Modifications to the AC Josephson Effect Observed in

Josephson Junctions with Weak Links of (BiSb)2Te3

The contents of this chapter are under review at Physical Review X . The arXiV

preprint of this work can be found in Ref. [86].

5.1 Introduction

The surface of a three-dimensional topological insulator hosts a non-degenerate

band of massless Dirac fermions [87]. Proximity to an s-wave superconductor is pre-

dicted to mediate p+ip pairing in the topological surface state, a consequence of the

spin texture of the Dirac band. A Josephson junction with a TI weak link should

support gapless Andreev bound states (ABSs) that are one-dimensional Majorana

fermions [88]. Majorana bound states (MBSs) would impart a 4π-periodic com-

ponent to the junction’s current-phase relationship, which would coexist with the

2π-periodic component from the spectrum of conventional ABSs at higher energies.

In principle, 4π periodicity can be detected via the fractional AC Josephson effect:

the junction current oscillates at half the normal Josephson frequency for a given

voltage, or, equivalently, DC junction voltage is twice as large for a given frequency

of AC current. Because of this, under radio frequency (RF) irradiation, the MBSs
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will comtribute to Shapiro steps at V = nhf/2e for only even n.

Claims for the observation of the fractional AC Josephson effect have been

made in a variety of topological systems, including nanowires with spin-orbit cou-

pling [89, 90], strained 3D HgTe [91], 2D HgTe [92, 93], Dirac semimetals [94],

Bi2Se3 [95], and Bi2Se3 [96, 97]. Among these works, only in 2D HgTe has sup-

pression of odd Shapiro steps beyond the first been observed [92]. Suppression of

the first Shapiro step, however, can result from trivial effects in Josephson junctions,

including Joule heating [95] and underdamping [98]. Therefore, the suppression of

higher odd Shapiro steps is a crucial step in eliminating the ambiguity surrounding

claims of 4π periodicity. In addition, Landau-Zener transitions (LZTs) can suppress

the expression of the first and higher odd Shapiro steps, but only in devices with

near-unity interface transparency between superconductor and weak link [99]. This

offers a possibly clear-cut way to rule out this mechanism.

Fabricating high-quality Josephson junctions with TI weak links is technically

challenging. A number of groups have demonstrated superconducting contact to

exfoliated flakes from single crystals of Bi2Se3-class topological insulators [100–107].

Yet even were Majorana physics confirmed, lack of scalability and reliable repro-

ducibility of the exfoliation process would limit the impact of that approach. A

thorough study will require statistical analysis of data from many devices. Simi-

larly, the technological goal of a scalable topolgical quantum computing architecture

based on Majorana fermions, will require the presence of Majorana modes in a TI

film grown at wafer scale by molecular beam epitaxy (MBE) or another suitable

technique. Progress in MBE-based platforms has been hampered by poor supercon-
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ductor/TI interface quality and the difficulty in protecting fragile Bi2Se3-class films

during device fabrication.

In this Chapter, I discuss lateral Josephson junctions that the Goldhaber-

Gordon group fabricated through the self-formation of a superconducting Pd-Te

layer, as pioneered by Bai et al [108]. Using a variety of imaging techniques and

low-frequency electrical measurements, I show that this fabrication process yields a

superconductor/TI interface with moderate transparency, while minimizing damage

to the TI film and approximately matching the work-function between the supercon-

ductor and the TI. Under radio-frequency (RF) excitation, I observed suppression of

the 1st and 3rd Shapiro steps in one device, and suppression of the 1st step in other

devices. However, some devices showed continued Shapiro step behavior. I argue

that these observations are not the result of Landau-Zener transitions or junction

hysteresis, but do support the presence of Majorana bound states in the junctions.

Further theoretical exploration of non-equilibrium effects in these systems is needed

to understand what other effects may be present, particularly in light of the variation

in results among similar devices.

5.2 Methods

Two challenges must be overcome to develop superconductor/TI heterostruc-

tures: achieving sufficient electrical transparency of the interface and preserving

the topological character of the TI. Both must be solved to observe Majorana

physics. The former, a well-known problem from superconductor/semiconductor
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structures [109–113], is required to achieve a pairing gap in the topological sur-

face states via the proximity effect. The latter problem is specific to topological

matter, and is particularly difficult due to the susceptibility of Bi2Se3-class mate-

rials to unwanted doping; a TI’s Fermi level must lie within the bulk bandgap so

that the topological surface states are not shunted by trivial bulk states. In MBE-

grown films, the Fermi level is commonly tuned by adjusting the composition of

ternary (BixSb1−x)2Te3 (BST) and quarternary (BixSb1−x)2(SeyTe1−y)3 alloys, com-

pensating for charged disorder including Te vacancies, Sb-Te anti-site defects, and

interfacial defects [114–116]. However, fabricating devices from such films can in-

troduce additional disorder, destroying the delicate charge balance or introducing

mid-gap defect states. Furthermore, charge transfer from the superconductor can

substantially dope the TI, unless the work functions of the two are closely matched.

Two recent developments have enabled highly transparent superconductor/TI

interfaces and, in turn, realization of the Josephson effect in MBE-grown TI films.

One approach is to grow the TI and superconductor structures entirely in situ using

stencil lithography to facilitate patterning. This approach led to the observation

of a suppressed first Shapiro step [96]. Here, I describe a second approach: the

self-formation of a superconducting Pd-Te layer using laterally-patterned ex situ

deposition of Pd [108]. Although chemical reactions with deposited metal can be

problematic [117] (for example, depositing Al on Sb2Te3 might create a barrier layer

of AlSb, a ∼ 2 eV bandgap semiconductor), here the reactivity between Pd and Te

is desired.

Our devices were based on an 8 quintuple layer thick (Bi0.4Sb0.6)2Te3 (BST)

57



film grown by MBE on a GaAs substrate. We patterned PMMA e-beam resist masks

for Josephson junctions using a low-voltage electron beam lithography process de-

veloped to impart minimal beam damage to the TI film. The lateral Josephson

junctions were fabricated by depositing 11 nm Pd on a resist-masked BST film in

an electron beam evaporator, forming a superconducting Pd-Te alloy (with residual

Bi and Sb) in exposed regions, while the BST weak link was masked. After de-

positing the Pd and performing liftoff, we etched away unwanted areas of BST by

Ar ion milling. In some devices, the etched region abutted the Josephson junction

weak link, terminating its transverse extent. In other devices, a region of BST film

surrounding the weak link was left unetched. We noticed no difference in electronic

transport. Our methodology and the junction geometries are described further in

the supplementary materials of Ref. [86].

The junctions had geometric lengths of roughly L = 160 nm (parallel to current

flow; measured by scanning electron microscopy) and widthW = 2 µm (transverse to

current flow). Throughout this Chapter, critical temperatures, fields, and currents

are defined by the condition R = RN/2, where RN is the normal state resistance.

We determined the critical temperature and field of the superconductor by transport

through a strip of the superconductor with no weak link. All of the devices discussed

in this chapter were fabricated simultaneously on the same chip.
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5.3 Results and Discussion

5.3.1 Device characterization

The electronic characteristics of the BST film were determined by Hall mea-

surements at 30 mK. We found the film’s sheet resistivity to be ρxx = 1.55 kΩ. The

conductivity was due to n-type charge carriers with density n = 4.8e12 cm−2, with

mobility µ = 820 cm2/Vs and elastic mean free path `e = ~kFµ/e = 15 nm. The

film had negative magnetoconductance, indicating weak anti-localization [118,119].

Fitting the magnetoconductance by the Hikami-Larkin-Nagaoka formula yielded a

phase coherence length `φ = 850 nm [120], which we used to estimate the inelastic

mean free path `i.

A cross-sectional image of a portion of a junction taken in a transmission

electron microscope, is shown in Fig. 5.1(b). The deposited Pd diffused vertically

through the entire (BixSb1−x)2Te3 film and into the GaAs substrate. Excess Pd

formed grains on top of the film. Pd diffused laterally into the weak link by roughly

40 nm. These findings were confirmed via energy-dispersive x-ray spectroscopy,

x-ray photoelectron spectroscopy, and scanning Auger electron spectroscopy.

Since Pd diffused through the full vertical extent of the film, regions where Pd

had been deposited had no remaining topological insulator layer. The direction of

current flow at the edge of the weak link would therefore be normal to the supercon-

ductor/TI interface. I note that this geometry differs from that of junctions based

on deposited elemental superconductors, which sit atop the topological insulator
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and have current flow along the interface plane.
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Fig. 5.1: Junctions with a self-formed Pd-Te superconductor. (a) Schematic of a junction
(not to scale). The superconductor/TI interface is lateral, unlike most SN junctions,
where the superconductor sits on top of the normal metal. At the interface is a region
where Pd diffuses laterally into the weak link. (b) Cross-sectional high-angle annular
dark-field (HAADF) TEM image of a portion of a junction indicated by the red box
in (d). At left, the BST weak link. At right is the superconducting Pd-Te region,
with greater film thickness due to Pd incorporated into the BST. Excess Pd has formed
grains atop the film. At center, Pd has diffused laterally into the weak link by about
40 nm. Scale bar, 50 nm. (c) Out-of-plane critical field Hc versus temperature T of the
Pd-Te superconductor (blue circles), and a fit (red line) to Ginzburg-Landau theory for
out-of-plane field. (d) The spectrum of an ABS (blue line), with 2π periodicity, and a
MBS (red dashed line), with 4π-periodicity. (e) An excitation (red line) traversing a 2π-
periodic ABS (grey dashed line) as the phase φ across the junction evolves, with LZTs
(red arrows) at φ = π and 3π, imparting a 4π-periodic component to the current-phase
relationship.

Many superconductors have work functions substantially offset from that of

Bi2Se3-class materials. For example, the work functions of bulk Al and Nb are

less than that of Bi2Se3 by nearly 1 V [121, 122]. Moreover, the difference exceeds

the 0.3 eV bulk bandgap of Bi2Te3. At a transparent interface between these two

materials, charge transfer should dope the TI, moving the chemical potential into

the bulk conduction band and enabling topologically trivial Cooper pairing. Using

Kelvin probe force microscopy (KPFM), we confirmed that the work function of
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evaporated Al is offset from that of BST by −880 meV.

The work functions of Pd and Pd-Te alloys are substantially closer to that

of Bi2Se3-class materials. We found that the work function of Pd-Te exceeded the

work function of the BST film by roughly 200 meV, a significantly smaller offset

than from elemental superconductors. The supplementary material for Rosen et

al [86] contains further details regarding the KPFM measurements.

The Pd-Te superconductor has critical temperature Tc = 1.17 K, normal state

sheet resistivity 100 Ω/sq, and critical field µ0Hc2 = 655 mT (Fig. 5.1(c)). From

this I find a coherence length ξ = 22.4 nm through the Ginzburg-Landau relation

ξ2 = Φ0

2πHc2
. The devices therefore fall in the long dirty junction limit for which

ξ, `e � L.

5.3.2 Device 4: Observation of a fractional AC Josephson effect

The current-voltage relationship of Device 4 is shown in Fig 5.2(a). Super-

current flows across the junction below the critical current Ic = 370 nA. At higher

currents the differential resistance reaches the normal state resistance RN = 146 Ω.

Extrapolating the normal section of the current-voltage relationship to zero voltage

yields an excess current Ie = 136 nA, as expected for a high transparency weak link.

Although the Pd-Te superconductor may not be well described by BCS theory, if we

take the superconducting gap as ∆BCS = 1.76kBTc we arrive at the dimensionless

figures of merit eIcRN/∆BCS = 0.30 and eIeRN/∆BCS = 0.10; naively, the latter

implies a junction transparency τ ≈ 0.25 according to BTK theory [123]. Device 5

had eIeRN/∆BCS = 0.29, implying τ ≈ 0.3 The current-voltage relationship is not
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hysteretic, indicating that the junction is overdamped (consistent with our estima-

tion of the Stewart-McCumber parameter βC ∼ 10−4) and that Joule overheating is

not limiting the retrapping current [124].
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Fig. 5.2: Junctions with Pd-Te superconducting leads under DC bias. (a) Voltage (red)
and differential resistance (blue) of Device 4 as a function of current bias I. (Dashed
lines) Linear fits at high bias. The excess current is determined by the intercept of these
lines with V = 0. (b) Critical current and excess current of Device 5 as a function of
temperature. (Dashed line) The temperature dependence of the BCS superconducting
gap fit to the excess current.

Figure 5.3 shows the resistance versus current of Device 4 in a perpendicular

magnetic field. The critical current displays the typical Fraunhofer pattern, ap-
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proaching zero at nonzero integer multiples of magnetic field B0 = Φ0

LeffW
, where Leff

is the effective junction length and W is the width. A fit yields Leff = 1.1 µm, which

is significantly larger than the geometric length of the junction L ≈ 160 nm. We

found this disparity surprising, as we expect minimal flux focusing by the narrow

Pd-Te leads.

a)

b)

Fig. 5.3: Device 4 in a perpendicular magnetic field. (a) Differential resistance at finite
bias. (b) The extracted critical current. (Dashed line) Fit to the Fraunhofer pattern.

The differential resistance of Device 5 is shown in Fig. 5.4 under an addi-

tional radio-frequency (RF) drive at frequency f = 4.3 GHz. Outside of the central

zero-resistance region at low bias and low RF power are a series of regions of low

differential resistance at finite DC voltage. These regions are centered at voltages

nhf/2e for integer n, as expected for nth Shapiro steps. I note that the strengths

of the differential resistance dips associated with the 1st and 3rd Shapiro steps are

suppressed relative to those of the 2nd and 4th steps.
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Fig. 5.4: Current-voltage relationship in Device 5 under 4.3 GHz excitation (nominal
power -33.5 dBm). (a) (Left) differential resistance versus current bias, and (right) DC
voltage, obtained by numerical integration of the differential resistance. (b) The same
data shown parametrically, emphasizing the suppression of the first and third Shapiro
steps (arrows).

The evolution of the differential resistance with RF excitation power in Device

5 is shown at different RF frequencies in Fig. 5.5(a-c). The development of Shapiro

steps is shown more clearly by the false color plots in in Fig. 5.5(d-f), which were

formed by grouping the data points (equally spaced in DC current) into DC voltage

bins; the voltages where steps occur are visible as bright horizontal streaks. At

4.3 GHz, the weights of the 1st and 3rd Shapiro steps are suppressed at low powers

in comparison to those of the 2nd and 4th steps, and develop only at higher powers.

The 3rd step is recovered as the RF frequency is increased to 5.7 GHz, as is the 1st
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step at 10 GHz.
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Fig. 5.5: Shapiro steps in Device 5. (a-c) False color plots of the differential resistance as a
function of bias current and RF excitation power. (d-f) Corresponding histograms of
measured points within DC voltage bins, shown in normalized units hf/2e, with the
number of counts in each bin normalized as a fraction of the critical current. The nth
Shapiro step appears at voltage nhf/2e. (g-i) The value of the differential resistance
at the 1st through 4th Shapiro step, as a function of RF power. The frequency of RF
excitation is (a, d, g) f =4.3 GHz, (b, e, h) 5.7 GHz, and (c, f, i) 10 GHz.

Suppression of odd Shapiro steps is an expected signature of the presence of

a MBS. The ABS spectrum of a conventional Josephson junction is 2π-periodic,

leading to a 2π-periodic current phase relationship and Shapiro steps at voltages

V = nhf/2e for integer n. The 2π-periodicity results from an avoided crossing of

the two branches of the lowest-energy ABS at φ = π (see Fig. 5.1(d)), a consequence

of scattering in the junction or at interfaces. However, contacting a TI to a super-

conductor is expected to induce effective p-wave pairing [88], and a junction between
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p-wave superconductors should support a pair of Majorana bound states [125–127].

At φ = π and 3π, the two Majorana bound states do not couple and are therefore

at zero energy (see Fig. 5.1(d)). Because these states differ in fermion parity (unlike

ABS, which tunnel charge 2e), this picture should be valid provided the Majorana

modes are spatially separated and there are no quasiparticle excitations [128], re-

quiring kBT � ∆BCS.

Device 5’s current-phase relationship should possess a 4π-periodic component,

which coexists with the 2π-periodic term [129]. At high RF power and frequency,

the 2π component is expected to dominate, but at low RF power and frequency, the

4π component may dominate, leading to a suppression of Shapiro steps with odd

n [95].

I should clarify that my observation of suppressed odd Shapiro steps does

not necessarily imply the presence of a Majorana mode. The lowest Shapiro steps

can be suppressed at low RF power in underdamped junctions [98], as well as in

overdamped junctions if there is self-heating [130, 131]. The small capacitance and

apparent lack of hysteresis in our junctions is not consistent with these effects;

furthermore, these effects cannot suppress the third step while leaving the second

step intact. Another possibility is suppression of the first and third Shapiro steps

due to Landau-Zener transitions (LZTs) between upper and lower ABS branches

near φ = π (Fig. 5.1(e)). This was predicted [132, 133] and recently observed in

a lateral Josephson junction made with a topologically trivial InAs weak link [99],
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with a high interface transparency. The probability of an LZT is

P = exp

(
−π(1− τ)∆

eV

)
, (5.1)

which is significant only when τ ≈ 1 [134]. Our junctions have an estimated τ ∼ 0.3,

far from the high-transparency regime in which LZTs occur.

While we have ruled out hysteresis and LZTs as the source of the suppressed

Shapiro steps, the possibility of other effects needs to be considered. Recent com-

putational work suggests that the nth Shapiro step can be suppressed or obscured

by unwanted device resonances if the resonances occur at DC voltages at or near

nhf/2e [135]. This obvious effect does not explain our results, as we observe sup-

pression of the 1st and 3rd steps only, and suppression of the first step is seen

throughout the range 2.5 GHz (the lowest frequency at which Shapiro steps clearly

develop) to 7 GHz. On the other hand, we did indeed observe strong resonances

above the critical current in our devices. The resonances appear at fixed voltages

with varying field and temperature, even close to Tc, which is inconsistent with mul-

tiple Andreev reflection and Fiske resonance. Instead, we suggest they come from

simple radiative coupling of the device to cavity resonances of the wiring. Because

these resonances are cryostat-specific, reproduction of our results in other cryostats

could exclude the possibility that the suppression of Shapiro steps is related to these

resonances (I note that the DC characterization was performed in a different cryostat

than measurements under RF irradiation).

A potential drawback of our devices is the relatively short coherence length of
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the Pd-Te superconductor, which places our devices in the long junction limit ξ � L.

We attempted to bolster the superconducting coherence lengths of the junction leads

on a test device by evaporating 65 nm Al immediately after depositing 5 nm Pd on

the BST film. The hybrid Al/Pd-Te superconductor had a critical temperature

of 780 mK (whereas evaporated Al films alone had a Tc of roughly 1.3 K), and a

critical field of 13 mT. Compared to junctions with Pd-Te alone, junctions with

hybrid superconducting leads had similar low-frequency transport characteristics,

although somewhat lower critical currents and excess currents (in some devices,

Ie < 0).

Since we expected the coherence length to be increased in the Pb-Te-Al su-

perconductor, but the junction length was unchanged, the junctions should support

fewer trivial ABS [136] coexisting with the single MBS. We therefore expected a pro-

portionally larger 4π-periodic component, leading to more prominent suppression of

odd Shapiro steps. Instead, we observed all Shapiro steps in all measured devices.

Furthermore, in some devices, Shapiro steps at fractional multiples of hf/2e were

observed. Shapiro steps at multiples of hf/4e have been seen in junctions with ex-

ceptionally high transparency [137], reflecting the skewed current-phase relationship

in this regime [29]; yet our devices appear to have had substantially lower trans-

parency. Further work is needed to understand whether these steps reflect higher

harmonics of the current-phase relationship or other resonance effects in the devices.

These results further highlight the complexity of non-equilibrium processes in the

excitation spectra of these devices and the complicated behavior of superconducting

tunneling.
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Fig. 5.6: Magnetic diffraction pattern for Device 6. Fraunhofer-like magnetic diffraction
pattern, which shows evidence of flux trapping.

5.3.3 Device 6: Probabilistic distortions to the AC Josephson effect

In this section, I discuss my measurements of Device 6, another (BiSb)2Te3

device. This device showed unusual features revealed in Shapiro diagrams. Device

6 was approximately 2 µm long and 80 nm wide, as determined by SEM.

Figure 5.6 shows Device 6’s fraunhofer-like diffraction pattern, which is ex-

pected for a long junction with a supercurrent that is uniform spatially across its

width. As the Figure shows, I observed a pattern with clear openings and closings

of the superconducting lobes. However, the magnetic pattern was affected by what

I suspect to be flux trapping in the leads, which causes inconsistent changes in the

critical current IC as the applied field is swept. Additionally, I found no field at

which IC was suppressed completely to zero.

When Device 6 was subjected to RF irradiation, several interesting featured
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Fig. 5.7: Shapiro maps at 57 mK for Device 6. (a) With excitation frequency of 4.5 GHz,
(b) 7 GHz, (c) 9 GHz, (d) 12 GHz.

appeared, including fuzzy or irregular switching transitions from the zero-voltage

state, “feathering”, and symmetrical distortions, which were especially prominent

on the zero step. Representative Shapiro maps showing each of these features are

shown in Fig. 5.8.

First I will discuss the jagged or “fuzzy” edges that can appear on the zero

step boundary, which can be seen in all of the maps in Fig. 5.7. This feature is

highlighted in Fig. 5.8(a), which shows a more detailed image of the map in Fig.

5.7(b). Irregular transitions from the zero-voltage state to the nonzero-voltage state

may be due to a probabilistic tunneling process. Macroscopic quantum tunneling–
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Fig. 5.8: Interesting emergent features. (a) zoomed in image of Fig. 5.7(b), showing the
“fuzzy” step edges [at 7 GHz, 57 mK, 0 mT]. (b)“Feathered” step edges [at 4.3 GHz,
460 mK, 0.36 mT]. (c) broad symmetrical distortions to the pattern [at 4.3 GHz, 500
mK, 0.36 mT].

where a phase particle in the tilted washboard potential tunnels through one of

the potential’s barriers–could explain these fuzzy step edges, but this still leaves the

question of whether this mechanism would occur in junctions that fit the parameters

of our devices.

Next, I saw that “feathering” of step edges sometimes occurred (see Fig.

35.8(b)). We are uncertain what might cause this effect. Lastly, in some cases,

we observed symmetrical distortions to the Shapiro pattern. These may be subtle,

or dramatic like those shown in Fig. 5.8(c), but they were always symmetrical with

71



respect to IDC = 0 and affected the zero step more strongly than other steps. I never

observed this effect at base temperature (∼50 mK), but rather it became apparent

as the temperature was increased, and was sometimes strengthened further by the

application of a small magnetic field. For example, the map in Fig. 5.8(c) was

measured at 500 mK, with a perpendicular field of 0.36 mT. The distortions in this

figure are some of the strongest we were able to observe; however, a variety of maps

we collected at other temperatures and RF frequencies also showed this effect.

It is important to note that none of these unusual features reoccurred exactly

upon a repeat of the same measurement. For example, one may compare the maps

in Figs. 5.8(b) and 5.8(c), which were taken under similar conditions, yet produced

substantially different looking Shapiro diagrams. Because of the probabilistic nature

of these disruptions, a modified or unconventional CPR would not be sufficient to

explain the effects. It seems unlikely that these features can be captured within the

framework of the RCSJ model without the inclusion of some external disturbance

or additional physics.

5.4 Conclusion

In this Chapter I discussed the fabrication of Josephson junctions with topo-

logical insulator weak links using self-formed superconductors. The devices showed

good interface transparency while with little apparent damage to the TI. I observed

suppression of the first and third Shapiro steps under low power and low frequency

RF excitation, a hallmark of a fractional AC Josephson effect that is consistent
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with the existence of Majorana bound states: topologically protected gapless An-

dreev bound states. To the best of my knowledge, our data is inconsistent with

topologically trivial sources for the suppression of Shapiro steps, and presents the

strongest evidence to date of 4π periodicity, aside from that in 2D HgTe quantum

wells.

However, our difficulty in obtaining reproducible results between devices, and

the lack of suppression of odd Shapiro steps in devices with hybrid Al/Pd-Te su-

perconductors, casts doubt upon such an interpretation. More work is needed to

understand how the structure of the superconductor/TI interface influences Andreev

spectra and whether our observations of suppressed Shapiro steps reflect 4π period-

icity or its mimicry by other nonequilibrium effects. Provision of full data sets, with

commentary but not post-selection, is needed for the community to reach reliable

conclusions regarding the existence of Majorana modes. This work was under review

at Physical Review X at the time this was written.

I also presented an RF data set from a single device that produced unusual,

varying features in its Shapiro maps. These features included jagged step edges,

“feathered” step edges, and prominent symmetrical distortions to the zero step, all

of which may indicate the existence of other physics being important. Understanding

the connection between this device and the others we have studied may provide more

clarity on nonequilibrium effects within our devices, and on the circumstances under

which Shapiro steps are suppressed in this material.
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Chapter 6: Conclusion and Outlook

In this dissertation, I briefly reviewed the physics of Josephson junctions and

topological materials, and then discussed my experimental investigations of three

non-standard Josephson effects in junctions made from weak links of different topo-

logical materials.

In Chapter 3, I presented my measurements of the AC Josephson effect in

Pb0.5Sn0.5Te JJs, in which I observed rich subharmonic structure. In comparison, I

observed conventional results in junctions made from the similar but trivial material

PbTe. From this data and simulation I showed that the CPR of the Pb0.5Sn0.5Te

junctions was consistent with a CPR that was a maximally skewed sinusoid. The

form of this CPR implied topologically-enabled unity transparency in the weak link,

which we ascribed to 1D helical edge modes.

Similarly, in Chapter 4 I discussed my measuremebts of the Josephson ef-

fects in SnTe nanowires. I found that the proximity-induced superconductivity in

the wires exhibited an unexpected breaking of time-reversal symmetry. I discussed

three experimental observations that led to this conclusion: an asymmetrical critical

current in the DC Josephson effect, a prominent second harmonic in the AC Joseph-

son effect, and an anomalous magnetic diffraction pattern that showed a minimum
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in critical current at zero magnetic field. I proposed a functional form for a CPR

that reproduced these features, and I described how multiband superconductivity

and ferroelectric domain walls might give rise to these effects.

Finally, in Chapter 5 I discussed my measurements on JJs made with weak

links made of (BiSb)2Te3. Under RF irradiation, at low power and frequency, I

observed suppression of the first and third Shapiro steps in one device. In other

devices, I found suppression of only the first Shapiro step. I discussed how these

observations are consistent with 4π periodicity in the junction’s CPR – a hallmark

of Majorana bound states – but inconsistent with other topologically trivial mech-

anisms that can suppress steps. Since the Shapiro maps of different devices showed

great variation, more data from more devices will be necessary to fully understand

the nature of the Josephson effect in this material – and whether Majorana modes

might be present.
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