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With consumer electronics becoming numerous, various and complex, the idea
of a single, shared, general and flexible interfacing agent to interface human users
with the multitude of task-oriented systems or devices seems appealing. Such a
universal interfacing agent has to understand user instructions and issue commands
to control the task-oriented system to which it is connected, in a manner that the
given user desires.

Two important issues that such an agent has to deal with are: (i) how to
represent and reason about the tasks that a given device can perform and the results
that a given device can produce and (ii) how to represent and reason about when
different tasks are to be performed and whether the tasks have been successful. The
dissertation explores these issues in detail and provides a solution to deal with these
issues within a contradiction-tolerant and time-sensitive framework called Active

logic.



The solution involves explicitly representing the beliefs, desires, intentions,
expectations, observations and achievements of the interfacing agent and reasoning
based on these attitudes; the dissertation provides a theory (ALFA) that agents
can use in order to perform this reasoning. The theory specifies the interactions
between beliefs, observations, desires, intentions, expectations and achievements for
a universal interfacing agent, while taking into consideration issues associated with
concurrent execution of actions as well as perturbation tolerance. The main char-
acteristics of the theory are: representing and reasoning about concurrent actions
and results, dealing with interactions of preconditions of actions or results, dynamic
reconsideration of intentions and reasoning using expectations and achievements.

The dissertation also provides an architecture (DIRECTOR) for implementing
agents based on the theory. In this architecture, a meta-cognitive process controls
the cognitive activities of the agent. The rudimentary results of implementing the
architecture to create a natural language based interfacing agent (ALFRED) are
also discussed in the dissertation.

This work also discusses how the agent’s underlying Active logic knowledge
base evolves during reasoning and provides proofs for properties that the knowledge

base exhibits, using a meta-theory that specifies how the knowledge base evolves.
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Chapter 1
Introduction

1.1 Problem Statement

This dissertation develops a unified theory of acting and agency, that a univer-
sal interfacing agent for task-oriented systems can use, in order to realize different
types of user instructions. The specific types of user instructions that this work

focuses on, are listed in Section 1.3.10.

1.2 Motivation

Device interfaces are Janus-faced, with one face looking outward and inter-
acting with the user and the other looking inward and controlling the device. The
actual tasks that a device performs determine the inner face of the interface. One
of the most common strategies applied for designing the outer face of the interface
is to focus on these tasks, relying on familiar controls for each task. For instance,
simple video players have controls for play, rewind, forward and stop corresponding
to the four functions that the player can perform. The advantage of this strategy
is that the capabilities of the device are easily accessible to the user and hence in
effect, the user controls the device directly. However, the number of controls on

the outer face of the interface increases in proportion to the number of capabilities.



Therefore, as devices get more complex it becomes increasingly difficult to display
all the capabilities, without making them resemble airplane cockpits.

Another common strategy employed to design the outer face is to focus on
the user needs, providing controls for what the designer perceives to be the most
common user needs. In this strategy, there is a clear mapping layer that provides
the proper mapping from the outer face controls to the inner face device functions;
wherein a control on the outer face may map to more than one capability of the
device. Thus, in some video players there is a control that automatically rewinds the
tape before it plays the tape. The advantage of this strategy is that the users have
easy access to some commonly required behavior. However, the behavior that the
designer perceives to be the most common might not match some users’ requirements
since each user is unique and the behavior that users require from a device differ. For
the same reasons, it is impossible to foresee all possible user-specific needs. Even if
a designer succeeds in foreseeing all possible user-specific needs and providing access
controls that can trigger behaviors that satisfy those needs, the resulting outer face
will become too complex for any practical use.

A third strategy employed is to allow flexible outer faces that users can adapt
to suit their needs. For instance, some CD players allow users to program the
tracks to be played repeatedly. Here, the mapping layer between the outer face
and the inner face is not fixed by the designer, rather it is programmed by the
user. Therefore, the user chooses the inner face device functions that are to be
mapped to an outer face control, and the interface allows and keeps track of such

user programmed mappings.



In fact, when flexible outer faces are allowed, the interface as a whole, can be
thought of as an agent that (i) keeps track of the current mappings in the map-
ping layer, (ii) translates the outer face user selections to appropriate sets of device
capabilities and (iii) allows changes in the mapping layer through the outer face.
The amount of dynamic mapping change that is facilitated depends on how sophis-
ticated the particular interfacing agent is; the more sophisticated the agent is, the
more intelligent the resulting device is considered to be. Examples of such intelli-
gent devices include wheel chairs [GG98, LBJ199], construction vehicles [GI99] and
Portable Satellite Assistant(PSA) [GBWT00].

The advantage of having flexible outerfaces is that the users have additional
flexibility in operating the device in a manner that suits their needs. As Kay [Kay90]
points out, interfacing agents' can revolutionize computing since a user need not
manipulate a system directly, but can indirectly control a system by interacting
with the agent. The disadvantage is that one has to learn to program a device in
the manner one desires, before one can operate it in that fashion.

Today, each device interface is designed as part of the device itself. The

disadvantage of this is two-fold. First, there is very little in common between the

! The intelligent interfacing agents that are in use today are mainly for web related applications.
For instance, intelligent information agents like search engines (e.g., Google, HotBot), news watch-
ers [BP99] and browsing assistants [Lie97] find, evaluate and filter information based on the user’s
personal interests. Another class of intelligent interfaces concentrate on cooperation with users or
other agents to find solutions to complex problems. These agents have been applied to provide help
in the areas of organizing email [LMM94], shopping online [CM96], scheduling meetings [HSAN97],

automating tasks [HL97] and providing advice [T.S94].



outer faces of the different device interfaces. Hence, as users acquire more electronic
devices (cameras, cell phones, PDAs, etc.) they may find learning each new interface
(outer face) increasingly burdensome. And second, the inner face of an interface is
very closely knit with the underlying device functionalities and hence they are more-
or-less inseparable. Therefore, the interfacing agent designed for one device cannot
be easily reused to interface with another device.

Hence, as consumer electronics become more complex and various, designers
will need to consider the possibility of employing a single, shared, general and flexi-
ble interfacing agent with an outer face that users can easily learn to interact with,
a mapping layer that can be modified easily and an inner face that can be adapted
to control many different devices. An interfacing agent equipped with a natural
language outer face and having appropriate mechanisms to alter the mapping layer
and the inner face will serve this goal. It can be used to control not only hardware
devices but also software applications that are task-oriented. With the help of such
an agent, users can tailor the behavior of task-oriented systems to suit their needs,
without learning specialized vocabularies to do so. Crangle and Suppes [CS94] de-
scribe these two features—tailoring the behavior of an application to suit a user’s
needs and users not having to learn specialized vocabularies—as the principles that
govern human-computer interaction. Such a universal interfacing agent could revo-
lutionize the use of task-oriented, specialized systems in the same manner that the
Windows Operating System has revolutionized the use of personal computers.

For example, consider a pool controller that accepts commands to heat the
pool, stop heating and provide temperature of the water. To maintain the temper-

4



ature of the pool at 90°F between 8:00 pm and 9:00 pm if it is a working day, and
between 10:00 am and 1:00 pm if it is a non-working day, a user directly interacting
with the pool controller has to (i) keep track of the time (ii) keep track of the tem-
perature by observing the temperature reading periodically during the interval in
which the temperature has to be maintained and (iii) issue commands to heat and
stop heating based on the observed temperature. On the other hand, a user inter-
acting with an interfacing agent can instruct the agent to maintain a temperature of
90°F between 8:00 pm and 9:00 pm if it is a working day and between 10:00 am and
1:00 pm if it is a non-working day; the agent then issues commands at appropriate
times to heat and stop heating based on the temperature, time and whether the user
is working or not on a particular day. Thus, by integrating a rational interfacing
agent with a task-oriented system, the user gains the flexibility to adapt the system

to meet his/her unique requirements.

1.3 Terminology

This section discusses the intended meaning of some terms used in this disser-

tation.

1.3.1 Task-Oriented System - TOS

Task-oriented system—TOS—denotes either a hardware device or a soft-
ware application that has a well-defined and finite set of capabilities; that is, any sys-

tem that can perform a limited number of operations or tasks. An example of a TOS



is a CD player that can play, rewind, forward, stop and identify the current track
being played. A task-oriented system (TOS) is specified by the entities—domain
objects (Section 1.3.3), TOS tasks(Section 1.3.4), TOS readings (Section 1.3.5) and
TOS commands (Section 1.3.6)—and the relationships that exist between these en-

tities.

1.3.2 TOS Domain

TOS Domain refers to the actual world (surroundings or environment) in

which the TOS operates.

1.3.3 Domain Objects

Domain objects (or simply objects) refers to all the objects that the given
TOS controls (e.g., CD). Each domain object can have one or more names associated
with it, and these names can be used to refer to the objects. The term object name
denotes the name of a domain object. Objects can have different properties and
each property can have different values. The terms object property (or simply
property) and property value (or value) refer to the property of an object and
the value of a property respectively. The range of values that a property can take

is denoted by the term range and the type of values is denoted by type.



1.3.4 TOS Tasks

The term TOS tasks (or tasks) denotes the different tasks that the given
TOS performs. (e.g., play, rewind, forward, stop). The term task name denotes

the name associated with a particular task.

1.3.5 TOS Readings

TOS readings refers to the readings or results that the given TOS produces.
An example of a reading is the current track. TOS readings are essentially relations
that associate a value to some property of an object. Names associated with readings

are termed reading names.

1.3.6 TOS Commands

The messages or signals (e.g., play signal, rewind signal) that trigger the TOS
tasks or TOS readings can vary from a simple impulse (electrical, optical, mechanical
etc.,) to activate a motor, to a specialized command (e.g., START MOTOR1) to
trigger that motor. This work assumes that (i) specialized commands can substitute
other types of signals and (ii) conversion from a specialized command to other
signals is possible with appropriate hardware and software. Therefore, the term
TOS commands shall refer to only these specialized commands. TOS commands
can be thought of as a function that associates domain objects to TOS tasks or
TOS readings. The term command name denotes the name associated with a

particular command.



1.3.7 Names

The generic term names refers to object names, task names, reading names

and command names.

1.3.8 Universal Interfacing Agent - UTA

An interfacing agent has to translate an instruction from the user to appro-
priate messages or signals that the TOS can operate with.

Russel and Norvig define an agent as

...anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through effectors. [RN95,

p.31]

The environment, that an interfacing agent is connected to and acts on, con-
sists of only the user of the agent and the TOS to which the agent is connected;
the domain that the TOS controls is not part of the environment of the interfacing
agent 2. The interfacing agent senses the user with sensors in the outer face and
senses the TOS with sensors in the inner face. It acts upon the TOS using effectors
on the inner face and acts upon the user (like changing the beliefs of the user, or
causing him/her to do something like answer a question) with the help of effectors
on the outer face.

Changing the environment of an agent could render the agent ineffective in

2Therefore, the interfacing agent cannot manipulate, monitor or control the TOS domain di-

rectly; it can access the domain only indirectly using the TOS.



perceiving and acting upon the new environment until the sensors and effectors are
adapted to work in the new environment. This is true to some extent even for
human agents. For instance, a real-estate agent might not be able to perform as
an airline reservations agent effectively until the former has been adapted to work
in an airline reservations environment, possibly by learning the vocabulary and the
functions required of the latter agent.

An interfacing agent can be adapted to control a different TOS by replacing
the four entities—objects, tasks, readings and commands—mentioned earlier, and
the entity relationships associated with the old TOS with that of the new TOS. The
term universal interfacing agent (UIA) is used to denote an interfacing agent
that permits this adaptation. Thus, a UIA translates the inputs from the user to
different actions that it can perform and some of these actions cause TOS commands

to be issued to the TOS to which the UIA is connected.

1.3.9 UIA Actions

The term UTA actions refers to the different actions that a UIA can perform.

These actions are listed below:

e send commands to TOS

receive readings from TOS

receive information from the user

provide information to the user



e update own knowledge base

1.3.10 User Instructions

The inputs that the user provides to a UIA are termed user instructions
(or simply instructions). User instructions to a UIA can fall under the following

categories:

e perform UIA actions immediately. e.g., Heat pool now. Read temperature

now.

e perform UIA actions after a specific amount of time. e.g., Heat pool after 5

minutes. Read temperature after 5 minutes.

e perform UTA actions at specific time. e.g., Heat pool at 7:00 am. Read

temperature at 7:00 am.

e perform UIA actions indefinitely. e.g., Keep ringing the bell.

e perform UIA actions for a specific period of time. e.g., Keep ringing the bell

from 5:00 pm to 5:01 pm.

e perform UTA actions at periodic intervals, indefinitely. e.g., Heat pool at 6:00

am everyday. Heat pool at 10:00 am on non-working days.

e perform UIA actions at periodic intervals, for a specific period of time. e.g.,
Heat pool at 8:00 am everyday this week. Heat pool at 10:00 am on every

non-working day this month.
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e perform UTA actions when certain conditions hold. e.g., Heat pool at 7:00 pm
today if the short-circuit problem has been fixed by then. Heat pool after 6:00

pm if the temperature is below 80°F and the voltage level is not low.

1.4 Desiderata for a UTA

The desiderata for a UIA can be discussed from the perspective of a user
or designer. The following sub-sections examine the desirable features of a UTA
from each of these angles, by considering the TOS—a pool heater equipped with
a thermometer—having valid TOS commands—HEAT POOL, STOP HEAT and

READ TEMPERATURE.

1.4.1 User Perspective

From the users point of view, the behaviors desired of a UIA are:

e Interfacing A UIA has to be effective in interfacing with the user as well as
the TOS. For user interfacing, it has to keep track of the user specified goals,
preferences and constraints, provide relevant information to the user, request
clarifications or other information from the user and process the replies from
the user. For system interfacing, the UTA has to interact with a TOS by both
sending valid TOS commands to it and receiving or observing readings that

the TOS produces.

e Proactivity Since the user is insulated from directly manipulating, controlling
and maybe even monitoring the target TOS, much of the proactive responsive-
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ness which would normally be the provenance of the user must be taken over
by the agent. Thus, it becomes the responsibility of the agent to respond to
any perturbations such as contradictory information or a difference between
expected and actual outcomes, quickly and effectively. To detect such per-
turbations, the UIA has to keep track of the effects of the TOS commands it
issues, by interpreting the readings that the TOS produces, and when such
readings are not available, by confirming with the user if and when required.
That is, if the TOS has the necessary sensors to observe the readings of its
actions, then the agent can keep track of the effect of the TOS commands it
issues, by interpreting these TOS readings; but if the TOS does not have such

sensors, then the agent can rely on confirmations that it gets from the user.

e Reactivity The agent has to respond to user instructions and TOS readings
in a dynamic manner. This requires that the agent be able to accept stimuli
from either the user or the TOS at any time, independent of its activity at that
time. For instance, for the user instruction “Warm the pool to 85°F now”,
the agent has to issue “HEAT POOL” TOS command immediately and, when
the temperature reading from TOS reaches 85°F or more, the agent has to

respond immediately by issuing “STOP HEAT” command.

1.4.2 Designer Perspective

From a designer’s perspective, the features that the UIA requires to exhibit

the behaviors discussed above are listed below:
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e Knowing The UIA has to know how to interpret user instructions and trans-
late them into actions that it can perform. For this, it needs knowledge about
the entities and their relationships for the given TOS. That is, it needs to know
about the valid objects, properties, values, ranges, types, tasks, commands,
readings, names, relationships between objects (e.g., an object may form a
category of certain other objects), relationships between commands (e.g., one
command may start a task or a reading and another command may stop a task
or a reading), relationships between names (e.g., two names may be equiva-
lent) and relationships between tasks and readings (e.g., certain readings may

be the effects of certain tasks).

In addition, the UIA needs to have knowledge about when different actions

are to be performed. This requires knowledge about time and its passage.

Since an agent’s knowledge can change (either because of connecting to a new
TOS or because of the dynamic nature of the environment), the knowledge
base of the agent should be easily modifiable, so that new information can be

added and existing information can be updated or deleted relatively quickly.

e Reasoning The agent has to not only know things, but through reasoning, it
has to take explicit knowledge and go beyond it to implicit knowledge that can
be derived from what is known as well as make decisions or perform actions
based on the knowledge. Not only that, since the knowledge that an agent has
may be false, imperfect or even contradictory, the reasoning has to be robust

enough to deal with contradictory information and changing beliefs.
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The agent has to perform theoretical reasoning directed towards determining
the beliefs of the agent as well as practical reasoning [Dav01, Woo00] that is
directed towards determining the actions that the agent can perform. Theo-
retical reasoning involves creating new beliefs based on the current beliefs, as
in deriving the new belief “ Water is warm”, from the beliefs “The temperature
of water is 100°F” and “Any water with temperature between 95°F and 110°F
is warm”. On the other hand, practical reasoning® involves deciding what

desires are to be pursued and how to pursue them.

By reasoning with its knowledge, the agent has to interpret each user instruc-
tion and then translate it into appropriate UIA actions. For instance, if a user
instruction is “Switch on the heater whenever the pool temperature drops below
75°F”, then using its reasoning capability, an agent should be able to send
“READ TEMPERATURE” periodically and issue “HEAT POOL” command

at appropriate times without any further intervention from the user.

e Meta-reasoning Meta-reasoning can help identify any anomalies or incon-
sistencies in the regular reasoning process, thus providing some level of per-
turbation tolerance for the resulting agent. This can be illustrated with an
example. Suppose, the user initially gives the instruction “Switch on the heater
at 11 : 00am on non-working days if the temperature is below 75°F”. The rea-

soning process could decide when the “HEAT POOL” commands need to be

3 Audi [Aud89] argues that practical reasoning might exhibit the structure of acting for a reason,
so that actions for a reason can be considered rational in view of the agent’s reason(s) for these

actions.
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issued based on the result of “READ TEMPERATURE” command and the
knowledge about the user’s work schedule. Now, suppose the user gives a new
instruction “Do not heat the pool during my vacation days” before going on
a vacation. Assuming that the agent has the background knowledge that the
user does not work during vacation days, these two instructions can cause an
inconsistency in the agent’s belief set since the first instruction causes it to be-
lieve that “HEAT POOL” has to be issued, while the latter instruction causes
it to believe that “HEAT POOL” should not be issued during the vacation
days. In such scenarios, meta-reasoning can help the reasoning process make
a decision regarding how to proceed. In the current example, one possibility
is to note that “vacation days” is a subset of non-working days and hence give
more importance to the belief associated with the more specific subset (vaca-
tion days) than the more general class (non-working days), thus deciding not
to sent the “HEAT POOL” command after all. Another heuristic that can be
applied to deal with inconsistency is to give more importance to a user’s latter
instruction. Thus, meta-reasoning can provide the agent the ability to go be-
yond reacting to changes in the environment to actually taking the initiative

under specific circumstances, thereby exhibiting some level of proactivity.

1.5 Approach

An approach to implementing a UIA has to have the ability to represent and

reason about the different UIA actions and their effects. This requires represen-
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tations for time as well as the entities and relationships associated with the given
TOS.

In order to realize the different user instructions, it is not enough that a UTA
has the capability to represent and reason about the different UIA actions; it has
to make decisions about which UIA actions are to be performed and when they are
to be performed. That is, the agent needs to make dynamic plans about its future
activities.

One way to implement this is by considering the agent as an intentional system
[Den87] and then implementing the mental attitudes of beliefs, desires, intentions,
expectations and achievements within a time-sensitive and contradiction-tolerant
logical framework that allows rich knowledge representation as well as flexible knowl-
edge modification. In such an approach, the agent can interpret the user instruc-
tions and create desires to perform the UIA actions associated with the instructions.
Based on its knowledge and availability of time and resources, the agent can then
create intentions to perform desired UIA actions. In order to determine whether a
UIA action produces the correct effects, the agent can create an expectation regard-
ing the outcome based on available knowledge whenever it initiates a UIA action.
The agent can then keep track of those desires, intentions and expectations that are
achieved, achievable and unachievable in order to make decisions about what to do.

For instance, in case a desire cannot be achieved the user may need to be informed.
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1.6 Outline

The rest of the dissertation is organized as follows:

Chapter 2 focuses on the activity aspect of a UTA. It addresses issues associated
with representing and reasoning about actions and their effects. Since reasoning
about actions involves representing and reasoning about time, that topic is also
examined in the same chapter. Chapter 2 also discusses some well known formalisms
discussed in the literature to represent and reason about change, actions, and time.

Chapter 3 concentrates on the agency aspect of a UTA. It explores how an agent
can plan its activities by representing different intentional notions and examines
some formalisms that implement such notions.

Chapter 4 discusses Active logic—a time-sensitive and contradiction-tolerant
logical framework that allows rich knowledge representation and flexible knowledge
modification. It also gives a brief outline of Alma/Carne—the general purpose
implementation language cum reasoner for Active logic based applications.

Chapter 5 formally specifies a theory of how an Active logic knowledge base
changes and proves certain properties of an evolving Active logic knowledge base
using the theory.

Chapter 6 introduces Active Logic For Agents (ALFA)—a unified theory for
acting and agency which is based on Active logic and Alma/Carne and discusses
how ALFA tackles some of the issues in representing and reasoning about time,
actions and agency.

Chapter 7 examines the different aspects related to designing and specifying
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an agent, architecture and provides a survey of some agent architectures.

Chapter 8 provides a meta-cognitive architecture (DIRECTOR-—Domain In-
dependent Reason-Enhanced Controller for Task Oriented Systems) for a universal
interfacing agent which is based on ALFA.

Chapter 9 discusses how DIRECTOR architecture can be applied towards
building a natural language based interface, ALFRED—Active Logic For Reason
Enhanced Dialog. It also provides some preliminary results on the implementation
of ALFRED.

Chapter 10 gives the conclusion and discusses future work.

The main technical contributions are presented in Chapters 5, 6, 8 and 9.
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Chapter 2
Theories of Time and Action

2.1 Introduction

In order to meet the desiderata for a UIA discussed in Section 1.4, a UIA
needs to reason about time as well as actions and their effects. Representing and
reasoning about time, actions, effects and temporal relationships have been widely
studied both in the areas of philosophy and artificial intelligence. The next sections
examine (i) some of the issues associated with representing and reasoning about time
(ii) some of the issues associated with representing and reasoning about actions,
effects and temporal relationships and (iii) some of the formal frameworks discussed

in the literature and how they deal with some of these issues.

2.2 Issues in Representing and Reasoning about Time

2.2.1 Time Passage

Time does not stay still; it is in continuous motion. As a result, the present
becomes past and the future becomes present. Thus, representing and reasoning
about the passage of time is closely associated with the issue of representing and
reasoning about past, present and future. In order to determine what was true,

what is true and what will be true, some concept of “now”—what the current time
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is—that changes as time passes is necessary.

2.2.2 Temporal Elements

One of the issues in representing time is deciding the fundamental unit of time
over which propositions hold (or do not hold). The commonly used units of time
are a point, an interval or both. In point-based view of time, intervals are specified
as ordered pairs of time points. And, in interval-based view of time, points are
considered as intervals with no durations.

Proponents of the point-based view of time (e.g., [McD82]) argue that repre-
senting time points is necessary for modeling continuous change. For instance, a ball
tossed into the air, has positive velocity while going up, zero velocity at the highest
position in its path and negative velocity while coming down. Thus, the interval
in which the ball’s velocity is positive meets the interval in which its velocity is
negative, at a clear point, where the velocity is zero.

On the other hand, the proponents of the interval-based view of time (e.g.,
[AF94]) argue that points are mere mathematical abstractions; any physical truth
must hold during an interval, however small that interval may be. Also, the point-
based view of time leads to the Dividing Instant Problem [vB83, MKO03]. This
problem can be summarized as whether an interval includes its endpoints or not.
Suppose, P holds in interval ¢ and —P holds in interval j (which is adjacent to 7).
If all intervals include their end-points then intervals ¢ and J will have a point in

common and at that point both P and =P hold.
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To deal with these issues [Gal90] allows both points and intervals as funda-

mental units of time within the same representation.

2.2.3 Time Structure

The actual structure of time depends on the ordering specified amongst the
temporal elements. A total ordering can represent linear or circular time whereas
a partial ordering can represent branching time. Linear time is considered useful
to represent changes or sequence of events that happen over time. On the other
hand, a branching time is regarded as useful for considering alternative scenarios.
For instance, in [McD82], time is considered linear in the past and branching into
the future.

If the ordering is such that every temporal element has an element before and
after it, then the structure of time is considered to be unbounded. If the ordering
has a definite beginning and an end then it is considered bounded on both sides. If
there is a beginning and no end, then it is considered left-bounded; similarly, if there
is an end but no beginning, then it is considered right-bounded.

If a temporal element exists between any two temporal elements then the
structure is termed dense (continuous). On the other hand, if there are temporal
elements that cannot be decomposed then the corresponding structure is termed

discrete.
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2.2.4 Temporal Information

Different forms in which temporal information occur are listed below:

—

. Absolute - e.g., “at 5:30 pm”, “On Sunday”

2. Relative - e.g., “5 minutes before sunset”, “day after tomorrow”

3. Duration - e.g., “5 minutes”

=~

. Fuzzy - e.g., “around 5:00 pm”, “before lunch”, “sometime next week”

Both absolute and relative types of temporal information map to unique sets
of one or more primitive temporal elements. For relative temporal information, the
temporal ordering of the underlying time structure determines this set, whereas, the
mapping from absolute temporal information to this set is more direct. Duration
type information specifies the number of temporal elements to be chosen as well
as the ordering for these elements but does not identify what those elements actu-
ally are. Fuzzy type information specifies possible sets of temporal elements; the

elements, number of elements or both may vary for these sets.

2.2.5 Property Inheritance

A fact that holds over an interval may or may not hold for all the primitive
temporal elements that make up that interval. For instance, “has 28 days”—is true
only for the interval specified by the month February, 2005 and not for any of the

primitive temporal elements or subintervals, ! that constitute that interval. Such

le.g., February 1, 2005 has 28 days is not true.
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facts are discrete. On the other hand, if the proposition—“pouring water” —is true
in an interval, then it will be true in all subintervals. A fact that holds over all its
subintervals whenever it holds over an interval is called homogeneous. There are
other facts that hold over only some subintervals (but not others) when it holds
for an interval. For example, the proposition—“ate ice cream”—may hold for the
interval specified by Monday; yet, it may not hold for the interval specified by
between 5:00 p.m. and 6:00 p.m. on Monday, but, hold for the interval specified by

between 2:00 p.m. and 2:30 p.m. on Monday. Such propositions are heterogeneous.

2.2.6 Representation Methodology

Temporal information can be expressed in different logical forms. The temporal
arguments methods [Hau87] include time as additional arguments in the functions
and predicates of a first-order language. Modal temporal logic formalisms use the
possible world semantics and associate each possible world with a different time
(point or interval); thus the temporality results from the semantics rather than
the syntax. Reified logics use special predicates to specify the temporal aspect of
assertions. They reify standard propositions of some language (first-order or modal)
as objects denoting propositional terms. Then, the special predicates relate these
propositional terms to temporal objects or other propositional terms. The difference

between these formalisms is depicted in Table 2.1.
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Table 2.1: Techniques For Representing Temporal Information Logically

Technique Assertion Interpretation

Temporal Argument alive(bird, noon) M = alive(bird, noon)
Reified Logic holds(alive(bird), noon) | M = holds(alive(bird), noon)
Modal Temporal Logic | alive(bird) M, noon = alive(bird)

2.3 Issues in Representing and Reasoning about Actions and Effects

2.3.1 Unchanged Properties

Actions usually cause changes to only a relatively small portion of the world,
leaving the majority of properties and relationships in the world unchanged. For
instance, the action of my writing this dissertation does not affect the color of milk,
the number of states in the different countries of the world or the number of hours in
a day. The persistence problem [Sho88] is centered around predicting the properties
that remain unchanged as actions are performed. In the context of situation calculus
[MH69], McCarthy and Hayes discuss an obvious way of handling this problem using
axioms that represent how the world stays the same called frame azxioms and how
that method leads to the frame problem — the need for a large number of frame

axioms to describe each action.

2.3.2 Action Conditions

Since there are numerous conditions that can cause an action to fail in a
dynamic world, it is extremely difficult to define the circumstances under which an
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action is guaranteed to work precisely. For instance, the act of writing the letter
“A” with a pen on a paper can fail because of the unavailability of pen or paper, the
pen not working, the person not knowing how to write, the person not being able to
lift the pen, the person not being able to hold the pen or the person’s hands being
tied and bound. Thus, one can imagine a large number of conditions that should
hold for an action to succeed. The problem of specifying the conditions that must
hold for the successful performance of a given action is known as the qualification
problem [McC80].

A related issue is how long should each condition hold; in some cases a con-
dition may need to hold during the entire course of action, whereas in others the
condition may need to hold only at the beginning of the action. For instance, the
condition “light switch off” needs to be true through out the course of the action
“remove light bulb” whereas the condition “jar is full” needs to hold only at the

beginning of the action “empty contents”.

2.3.3 Indirect Effects

The performance of an action may cause the proliferation of many implicit
consequences. Representing all the implicit consequences as part of the specification
of an action is not feasible because such consequences can be very large in number.
For instance, kicking a ball may result in the change of location of not only the ball,
but also those particles of dust and grass that stick to the ball and those that the

shoe brushes while kicking; other effects include the dirt on the shoes and the calories
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burned. The problem of describing indirect effects or the implicit consequences of

performing actions is known as the ramification problem [Fin87|.

2.3.4 FEffect Time

Representing when the different effects of an action hold is another issue.
Some effects become true immediately when the action is performed whereas others
become true only after some delay. For instance, imagine a garden hose—AB—of
length X, with three sprinklers I, J and K attached at distances X/4, X/2 and
3X/4 respectively from end A which is connected to a tap at the end A. The effect
of opening the tap will be noticed first at I, then at J, followed by K, and finally at
the end B; i.e., water will start coming out of I, then J, then K and finally out of

the end B.

2.3.5 FEffect Duration

The duration for which different effects hold can vary. Thus, the effect of
pressing a buzzer might result in a sound to be produced for 5 seconds whereas

tripping an alarm might cause a sound to last much longer.

2.3.6 External Changes

External changes may occur independent of the actions that are being per-
formed. These changes may cause the conditions for performing actions to change,

thereby either qualifying or disqualifying certain actions for execution. The action,

26



pouring concrete, may have as a condition that the ground be dry; external changes
like rain, a water pipe leakage or a fire hydrant opening may render the dry condition
false, thereby disqualifying the action.

The external changes may sometimes affect the effects of certain actions. For
instance, the direction of the wind affects the trajectory traced by a beach ball that

is thrown.

2.3.7 Action Durations

Actions usually take time and changes can happen in the environment during
the happening of the action. Not only that, different actions may have different
durations. Also, effects may vary depending on the duration of an action. For
instance, pressing the door bell for 2 seconds may produce a sound for 2 seconds,

whereas pressing the door bell for 5 seconds may produce a sound for 5 seconds.

2.3.8 Overlapping Actions

Actions occur over an interval of time, however small that interval may be.
Therefore, actions can overlap one another and some effects may be produced only if
certain actions are overlapped. For instance, in Emacs doing the actions—pressing
Ctrl key, pressing X key and pressing S key in sequence will produce a different effect

when compared to overlapping the first action with the second and third actions.
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2.3.9 Concurrent Actions

Some effects (e.g., clapping) can be produced only if certain actions (e.g.,
moving left hand and moving right hand) are done concurrently. On the other
hand, performing some actions concurrently can prove disastrous (e.g. kicking with
both legs or pushing and pulling the same object).

The preconditions for kicking with the left leg and for kicking with the right
leg may both be true when considered as individual actions, yet they cannot be
performed as concurrent actions. Specifying preconditions for concurrent actions
is tricky because the preconditions that hold for executing individual actions can
interact in complicated ways when applied for executing concurrent actions. Thus,
sometimes even when the preconditions for two actions may be jointly consistent,
intuitively they should not be concurrently possible. This problem is called the
precondition interaction problem [Rei96].

The effect of pushing an object is opposite of the effect of pulling an object.
Therefore, even though each action when performed in sequence can produce ex-
pected effects, when they are performed concurrently, their effects interfere. The

interactions between effects are discussed in [BB01].

2.3.10 Natural Actions

Ice kept out of the refrigerator melts, a ball that is thrown up comes back
down; such actions occur naturally, without an outside agent initiating the particular

action. That is, natural actions are not triggered by an agent. These natural actions
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may be definite or spontaneous. An agent can make predictions about definite
actions because of its knowledge about the occurrence of such actions. On the other
hand, spontaneous actions are unexpected and hence cannot be predicted. For
instance, an agent may have sufficient knowledge to predict that the sun will rise
in the east (definite action), and yet may not have enough information to predict
the event of a meteorite hitting the earth (spontaneous action). Irrespective of
whether an agent can predict a natural action or not based on its knowledge, that
action may cause some changes in the environment. Therefore, representing and
reasoning about natural actions may be necessary to reason about the changes in

the environment.

2.3.11 In-Deterministic Effects

The effects of some actions are in-deterministic as in the tossing of a coin.

How to specify such in-deterministic effects is another issue.

2.3.12 Relations Between Actions

Certain relationships may exist between some actions. An example of such a
relation is the start-stop relation. A start action can cause an effect to hold and a
counterpart stop action can cause that effect to cease holding. For instance, turning

a switch down may turn the light on whereas turning a switch up may turn the light

off.
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2.4 Survey of Formalisms

The formalisms that have been developed primarily for reasoning about action
effects have been extended to incorporate the reasoning about passage of time.
Similarly, the formalisms developed primarily to represent the changes in the world
as time passes have been extended to deal with reasoning about action effects. As
a result, some current formalisms address some of the issues on representing and
reasoning about effects of actions as well as passage of time. The following sections

examine a few formal frameworks discussed in the literature.

2.4.1 Situation Calculus

In the situation calculus [MHG69], the world is formalized in terms of situations,
actions and fluents. A “snapshot” of the world at an instant of time is called a
situation. A fluent is a function that maps a situation to either a truth value (true
or false) or a new situation; in the former case, the fluent is called a propositional
fluent and in the latter case, it is called a situational fluent. A special situational
fluent result maps the situation before an action occurred to the new situation that
results from the performance of that action.

Frame axioms are used to specify the fluents that are unaffected by the oc-
currence of actions. But, this leads to the frame problem—that is, too many frame
axioms (for n actions and m fluents, one might have to specify n.m frame axioms)
are needed to express all the unchanged properties. An approach to the frame prob-

lem is to have an implicit assumption that the values of fluents not specified as
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effects of an action remain unchanged. Then, the effects of an action can be de-
scribed by specifying only the subset of fluents that are changed by an action. This
approach to dealing with the frame problem has been refined into a theory of abnor-
mality in [McC80] and [McC86] called circumscription. The basic idea is to define
an abnormality predicate AB such that for any fluent f, action a and situation s,
AB(f, a, s) holds only if the occurrence of action a in situation s causes the fluent f
to change its truth value and minimizing the abnormal temporal individuals—that
is, the triplets for which AB holds. However, in [HM86, HM87] Hank and McDer-
mott demonstrate that minimization of abnormalities is not sufficient to guarantee
that the truth value of a normal fluent does not change from one situation to the
next using the famous Yale shooting problem.

As discussed in [SG88], the situation calculus as originally formulated is not
adequate for formalizing concurrent actions, overlapping actions, actions with de-
layed effects and actions that are not instantaneous. Several extensions of situation

calculus that allow concurrent actions are given in [Web90, Pin98, Pin94, LS92].

2.4.2 FEvent Calculus

The original event calculus [KS86], introduced by Kowalski and Sergot, is for-
mulated as a logic program. It uses the Horn clause subset of predicate calculus,
augmented with negation as failure. It allows representing and reasoning about
events, their effects and the maximal time periods for which those effects hold. In

this formalism, a property (effect) persists into the future until it is terminated by
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an event and back into the past until it was initiated by an event. The maximal
time periods for which properties hold are named based on the events that initiate
or terminate the property. Thus, an event F that initiates a property P starts a
maximal time period—after(E, P)—during which P holds. Similarly, an event E
that terminates a property P ends a maximal time period—be fore(E, P)—during
which P holds. Since properties are terminated or initiated only by events, the
maximal time period for which a property holds is identified as both after(F1, P)
and before(E2, P), where E1 initiates P and E2 terminates P. The original event
calculus allows concurrent events, overlapping events as well as events with dura-
tion. In addition, it can manage incomplete information about events; i.e., it can
derive implied events from incomplete information about explicitly specified events.
However, the original formalism allows only discrete events; it cannot represent
continuous events. Moreover, it can represent only simple relationships between an
event and its effects. It cannot specify that a certain event invariably follows another
event or that an event occurs whenever certain properties hold.

Kowalski provides a simplified event calculus that uses time points rather than
time periods in [Kow92]. It is useful when complete information about events are
known; when the information about events is incomplete, it can give incorrect re-
sults. A variant of this calculus, in which time points are identified with global
situations proves to be equivalent to the situation calculus [KS94]. Shanahan ex-
tends the simplified version of the event calculus that uses time points, to deal with
continuous change in [Sha90]; but, it cannot deal with incomplete information about

events. Kowalski provides a new event calculus in [Kow95], which is essentially the
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simplified event calculus that uses time points mentioned earlier, augmented with
integrity constraints. It can represent event occurrences without knowledge of their
absolute times and properties that hold either at time points or at events. This
calculus can derive the existence of implied events, when the information about
explicitly specified events is incomplete.

Event calculus has been specified in formalisms other than logic programs
including modal logic [AMC96], action description language, argumentation frame-

work and classical logic.

2.4.3 McDermott’s Point-based Temporal Logic

McDermott’s Temporal Logic [McD82], which is based on classical first order
logic, has an infinite set of primitive temporal elements called points (or states).
The time structure is characterized as an unbounded and dense collection, of time
points, which is linear in the past and branching (partially ordered) into the future.
There are two types of basic temporal entities: facts and events in this formalism.
The denotation of a fact is a set of time points while the denotation of an event is
a set of maximal intervals, where each interval is a pair of time points denoting a
totally ordered, convex set of points.

Predicates T" and 77" are used to denote when a fact holds. The notion that a
fact p is true at point ¢ is represented as T'(t,p) and the notion that a fact p holds

over the interval between ¢; and t,, is specified as (T'Tt; to p). The predicate TT
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(True Throughout) is defined in terms of the predicate T" as follows:

(TT t1 ta p) = (V)(t1 <t <ty = (T't p)) (2.1)

The predicate OCC' is used to state when an event occurs or happens. Thus,

(OCC t; ty e) indicates that event e happens between points t; and .

2.4.4 Allen’s Interval Based Temporal Logic

Allen’s theory of time and action [All83, All84] has intervals as primitive tem-
poral elements and assumes a linear model of time. A set of thirteen mutually
exclusive binary relations — {F'quals, Before, After, Meets, MetBy, Overlaps,
OverlappedBy, Starts, StartedBy, During, Contains, Finishes, FinishedBy} —
describe different ways of relating two convex intervals. In [AF94] all these thirteen
relations are formally defined using the single primitive relation Meets. The logic
has three types of temporal entities - properties, processes and events. These entities
differ in the subintervals over which they hold.? Thus, properties are homogeneous,
events are discrete and processes are either homogeneous or heterogeneous. The 2-
place predicate — HOLDS (p, 1) — specifies that property p holds over the interval i.
Another predicate - OCCUR(e, i) — denotes that an event e occurs over an interval

i. Finally, OCCURING! (p, i) denotes that a process p occurs over an interval i.

2See Section 2.2.5.
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2.4.5 Features and Fluents

Features and Fluents [San94] represents the evolution of an inhabited dynamic
system (IDS)—a system that contains agents that can influence its state at later
times by performing actions—in terms of the interactions between the agents (ego)
and the world. Each IDS is defined as the pair < W, K >, where W is an IDS
world and K is an IDS ego. Both ego and world are formalized using the notion
of a development; a world is a binary relation on developments and an ego is a
unary function over developments. Each finite development is defined as a tuple
< B,M,R,A,C > where B is a finite time domain of integers, where the largest
element is interpreted as the current time—now, M is a valuation that assigns
values to temporal and object constant symbols, R is the history function R(f,1%)
that provides the value of feature f at time ¢, A is the set of past actions and C' is
the set of current actions. A state associates a value to a feature and can obtained
from a history by selecting a fixed value of . A fluent is obtained from a history
by selecting a fixed value of f.

A finite sequence of developments is a finite game between the players—ego
and world. A set of games played by the same world is a scenario; a scenario
description contains statements that completely characterizes an IDS world and
partially characterizes other aspects of the games. Feature logics can express such
statements about scenario descriptions.

Features and Fluents method characterizes properties of IDS worlds using an

ontological taxonomy. The range of applicability of different methods used in rea-
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soning based on scenario descriptions is often expressed in terms of this ontological
taxonomy; whether a particular reasoning method can be proven correct depends on

whether the scenario world belongs to a certain ontological class in the taxonomy.

2.4.6 Semantic Network Processing System—SNePS

SNePS ([CM87, Sha00]) is a semantic network language with facilities for
building semantic networks, retrieving information from them and performing in-
ference with them. Information is represented in SNePS as a network of nodes and
labeled directed arcs. Each node has a unique identifier, however, two or more arcs
may have the same label. Nodes represent the propositions, entities, properties
and relations while the arcs represent structural links between the nodes. There
are four types of expressions in SNeP§S logic, denoting propositions, rules, acts and
individuals.

In [Sha89, Sha98, IS00], SNePS has been used to model the mind of a cognitive
agent Cassie (Cognitive Agent of the SNePS System—an Intelligent Entity). In
Cassie, a meta-logical variable Now is used to maintain a personal sense of time.
Since Now is not a term in the language, there are issues of expressivity when
different actions are to be scheduled based on conditions that hold at different times
(See [IS00] for details).

When Cassie recognizes a change in the world, the value of Now changes to
a new term; that is, the passage of time is linked to the actions that the agent

performs. So, during the time that an agent is idle, its personal time stands still.
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2.5 Discussion

How some of the issues discussed in Section 2.2 and Section 2.3 are tackled
within a time sensitive and contradiction tolerant framework called Active logic is
discussed in the later chapters of this dissertation.

One of the key questions at this point is whether representing and reasoning
about time, actions and effects are enough to model a UTA. Knowledge about when
effects of actions are produced and which actions can produce what effects, need not
necessarily provide the agent the ability to decide when to perform what actions.
How does the agent decide what to do now, next or later? The next chapter addresses

these issues.
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Chapter 3
Theories of Agency

3.1 Introduction

For a UIA to meet the desiderata in Section 1.4, it is not enough that it has
knowledge about time and temporal relationships as well as actions and their ef-
fects; it needs to have the ability to perform practical reasoning to produce rational
actions. That is, the theories of action and time need to be extended with aspects
of agency in order to produce rational actions. Practical reasoning agents are often
viewed as intentional systems [Den87] and their behaviors can be explained and
predicted by attributing mental attitudes such as beliefs, observations, desires, in-
tentions, obligations and expectations. The following sections explore some mental
attitudes that may be represented for guiding the practical reasoning of a UIA, issues
in representing and reasoning about these attitudes and the literature for theories

of such mental attitudes.

3.2 Mental Attitudes for Agency

3.2.1 Beliefs, Desires and Intentions

The roles of the mental attitudes—beliefs, desires and intentions—in producing

rational action are widely discussed in the literature (for e.g., [Bra99, Dav01, Wal90]
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and some practical reasoning systems [BR98, RG92, RG95, RG91b, Wo000, BIP88,
IC93] represent and reason with these attitudes in order to act rationally.

Beliefs comprise the knowledge that the agent has about the world and they
correspond to the information state of the agent. Desires are the different goals,
wants or needs that the agent has and they correspond to the evaluative state of
the agent. Intentions are mental commitments for performing actions and they
represent the decisions that the agent has made at an earlier time. According to
Bratman [Bra87], desires are potential influencers of actions whereas intentions are
conduct-controlling pro-attitudes. Desires are transformed to intentions based on
time, urgency, opportunity, importance and available means. Intentions are usually
retained without reconsideration unless there is a necessity to reconsider them. Since
intentions are commitments for actions, they can trigger reasoning about how to
achieve those actions. Thus, intentions play a significant role as inputs for further

practical reasoning.

3.2.2 Obligations

Obligations—like desires—are potential influencers of actions; however, unlike
desires, obligations are external motivational attitudes. Obligations may be repre-
sented in order to incorporate norms and commitments of social agents and social
rationality [BDHT01]. By specifying a hierarchy for the different attitudes repre-
sented, where the attitudes at the higher level may override attitudes at a lower level,

different types of agent behavior can be obtained. For example, if desires override
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obligations, the agent exhibits selfish behavior; if obligations override desires, the

agent exhibits social behavior.

3.2.3 Expectations

Anticipation - expectation or “advance reflection” - is an important basic pre-
requisite for intentional and goal-directed action [SW85]. One of the advantages of
explicitly modeling expectations is that, an agent can determine whether the action
that it initiated has succeeded or failed by checking the actual outcome of the action
against the expected result. If the actual outcome matches with the expectation,
then the agent can be assured that its desire has been satisfied. On the other hand,
if the actual outcome does not match the expectation, then it can know that the
action that it initiated was not successful. This knowledge can then trigger further
practical reasoning to satisfy the unsatisfied desire.

Another advantage of explicit modeling of expectations is that expectations
can help an agent make focussed observations of the world. Maintaining a dynamic
model of all aspects of a changing world is impossible in a resource bounded agent.
Therefore, it is extremely important that the observations that an agent performs to
update its current beliefs about the world are focussed. Expectations help the agent
to make such focussed observations. According to Popper [Pop73], expectations
formulated as queries can be used to make observations, and these observations
can be used to obtain either a confirming or a correcting answer to the formulated

expectations. Thus, an agent’s expectations can guide its observations and these
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observations in turn can help verify the original expectations.

Modeling expectations can be useful, not only in the context of task-related
actions, but also in the context of discourse-related actions. Discourse-related
actions—called conversation acts [TH92]—include the traditional speech acts [Aus62,
Sea69| (like inform, request and promise) as well as turn-taking acts, grounding acts
and higher-level argumentation acts (like question and answer pair). For example,
if an agent desires some clarification from the user, then the agent can adopt an
intention to ask the user a question or a clarification and at the same time create
an expectation about what the user response would be. This expectation can then

be used to help interpret the user’s response.

3.2.4 Observations

Like beliefs, observations are informational attitudes; however unlike belief,
the justification for the information in an observation is first-hand experience. By
representing observations explicitly, agents can distinguish between knowledge that
was obtained from first-hand experience and that was obtained from another agent
or by deduction. Such a distinction can help agents deal with conflicts in their

information content by choosing one informational attitude over the other.

3.2.5 Achievements

An agent can have attitudes regarding whether its motivational attitudes—

desires, intentions and expectations—have been successful or not. Explicit represen-
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tation of such success or failure can help an agent reason based on this information.
For instance, failure of an intention may cause the agent to create another intention

to fulfill the original desire.

3.3 Issues in Representing and Reasoning about Mental Attitudes

Some of the issues that arise when representing and reasoning about different

mental attitudes are discussed next.

3.3.1 Dealing with Conflicts

Conflicts can arise between different mental attitudes and the strategy adopted
to deal with different conflicts determine the agent’s overall behavior. Some exam-

ples of conflicts are given below:

e Conflicts between beliefs e.g., I believe the oven is off because I did not turn it

on. I believe the oven is on because my son says it is on.

e Conflicts between intentions e.g., I intend to finish my dissertation on Hal-

loween evening. I intend to go trick-or-treating on Halloween evening.

e Conflicts between desires e.g., I desire to be kind and compassionate to animals.

I desire to eat meat.

e Conflicts between obligations e.g., It is my obligation to protect (hide) my
source of information. It is my obligation to reveal all the information that I

have about the case in court.
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e Conflicts between expectations e.g., I expect the boxr to move when pushed. I

expect the box to stay put when pushed.

e Conflicts between beliefs and obligations e.g., It is my obligation to pay for

their dinner. I believe I do not have the money to pay for all.

e Conflicts between beliefs and intentions e.g., I intend to go to the airport to

pick them up. I believe I cannot go to the airport because my car is broken.

e Conflicts between desires and intentions e.g., I desire to discourage slaughtering

animals. I intend to buy some meat to eat.

e Conflicts between expectations and observations e.g., I expect the light to be

on. I observe the light to be off.

An agent needs to have some strategy to deal with the different conflicts;
specifying a strategy that is robust enough to deal with different types of conflicts
is one of the main issues in practical reasoning. The strategy employed to resolve
two conflicts may make use of the other mental attitudes that are in effect while
resolving the conflict. For instance, if an agent has a conflict between a desire to
eat meat and not to eat meat, and it has an obligation to act like the majority, then
that obligation can help the agent resolve the conflict in favor of the current social

group that the agent is part of.
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3.3.2 Intention Reconsideration

Intentions are commitments for future course of actions; when an agent adopts
an intention to execute an action, it makes a commitment to perform that action.
Therefore, intentions usually resist being dropped or reconsidered in normal situa-
tions. However, in a dynamic world wherein the environment can change any time,
intentions may have to be dropped or reconsidered [Bra87, Bra99]. For instance,
an agent may create an intention to wash the car on Saturday. In normal situa-
tions, this will cause the agent to actually execute the action of washing the car
on Saturday. But, suppose the car gets wrecked on Friday; this event has to cause
the agent to drop the original intention to wash the car on Saturday. Similarly, an
agent’s intention to wash the car on Saturday at 10:00 am may have to reconsidered
(and re-scheduled) if the agent has to drive to New York at 10:00 am on Saturday,
assuming that washing the car and driving the car are not activities that can be
performed concurrently.

Intention reconsideration may need to occur, not only before the action as-
sociated with an intention has been initiated (as in the examples above), but also
possibly after the action has been invoked. For instance, an intention to listen to
music may cause the action of switching on the radio; but if the radio is not working,
the intention remains unachieved and hence the intention needs to be reconsidered.
This reconsideration may result in switching on the CD player or the tape player
instead of the radio.

Selecting a good policy for dropping and reconsidering intentions is extremely
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important for any resource bounded agent. For, as noted in [BIP88|, reconsidering
intentions too often can be too costly from a computational point of view, while
not reconsidering intentions can produce incorrect results (or unwanted behaviors)
in a dynamic world. Experimental studies [KG91, SW00] have shown that cautious
agents—those that reconsider intentions at every possible opportunity—outperform
bold agents—those that reconsider intentions only after executing the current set
of intentions—in highly dynamic worlds, while the reverse is true for static worlds.
Since the dynamicity of an environment can vary from time to time, it is important
to have agents that are neither bold nor cautious, but adaptive—that is, agents that

can adapt their commitment levels at run time.

3.3.3 Side Effects

A person going to a dentist to get a tooth extracted may know that there will
be pain during the procedure; however, it is incorrect to assume that the person
intended the pain. The intention of the person is to get the tooth extracted; the
pain is just a side effect of the procedure. Bratman [Bra87, Bra99] argues that side
effects are not true intentions and their role in practical reasoning is different from
that of true intentions. For instance, if a side effect (e.g., pain) does not occur, the
agent need not try to achieve the side effect, rather it can proceed with its other
activities. Another issue in dealing with mental attitudes is to distinguish between
side effects and main effects as well as representing and reasoning about side effects

versus main effects.
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3.4 Survey of Formalisms

3.4.1 Theory of Intention

In [CL90], Cohen and Levesque propose a formal theory of rational action
based on possible-world semantics. The formalism has four primary modal operators—
BELief, GOAL, HAPPENS (the event that happens next) and DONE (the event
that just occurred). Other operators include ; («; o' denotes o follows «), ? (a?
denotes a test action «) and future time operators—“{” (eventually), “0” (always)

and LATER. The future time operators are defined as follows:

Sa ™ 3z (HAPPENSz;a?) (3.1)
0o 0o (3.2)
(LATER p) & —p A Op (3.3)

Intentions are defined based on persistent goals (P-GOAL)—ones that cannot
be dropped until they are achieved or known to be unachievable. P-GOAL is defined
as in (3.4). An agent x has a P-GOAL for p iff = has a goal that p be true in future
and z believes that p is not currently true; as soon as x believes that p is true or p

will never be true, x drops its goal for p to be true in future.

(P — GOAL z p) Y (GOAL 2(LATER p)) A (BEL z —p)
A[BEFORE((BEL z p) vV (BEL z0O-p))  (3.4)

~(GOALz(LATERp))]
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An intention for action a is defined using P-GOAL as in (3.5). An agent z
intends (INTEN D) to perform an action a iff z has a persistent goal (P-GOAL)

to have done a, immediately after believing that it is about to do a.

(INTEND; z a) ¥(P — GOAL z|DONE z(BEL z(HAPPENS a))?;a]) (3:5)

An intention to achieve a particular result or state of affairs is defined as
in (3.6). An agent z intends (INTEN D) to bring about p means that, (i) x is
committed to or has a persistent goal to do some sequence of events e, after which
p holds, (ii) x believes it is about to do some event sequence (e’) to bring about p
and (iii) before doing e to bring about p, the agent should not have a goal of not
bringing about p by doing e.

(INTEND, z p) (P — GOAL = 3¢(DONE z
[((BEL z3¢'(HAPPENS z €'; p?))A (3.6)
—~(GOAL x—~(HAPPENS z ¢;p?))]?;e;p7))

The formalism allows representing complex actions to be composed of simple
actions. These complex actions are a;b (a is followed by b), a|b (nondeterministic
choice between a or b), a?;b? (test action b follows test action a) and a*;b (0 or
more iterations of a followed by b). The assumption is that the agent performs
only one action at a time and hence concurrent actions are not addressed; also,
the interactions between simple acts in a complex act are not dealt with in the
formalism.

In the formalism, there is no notion for simple passage of time; change occurs
only when events occur (passage of time is not considered as an event). The for-
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malism assumes that the set of beliefs and the goals that the agent has are always
consistent. That is, the theory assumes that inconsistencies in the set of desires are
sorted out outside the logic so that the theory always has a consistent set of goals;
the possibly inconsistent set of desires is not included within the formalism.

In order to capture the restrictions (i) agents do not defer working on their
goals forever and (ii) agents do not try to achieve a goal forever (except maintenance

goals), this formalism makes use of assumption (3.7).

= &—(GOAL z(LATER p)) (3.7)

However, the assumption does not state that an agent should eventually act
on a goal; it merely mandates that the agent should eventually drop the goal [Sin92].
Thus, it is not clear how the assumption captures the restriction that agents do not
defer working on their goals forever; in fact, agents that cannot or will not work on

their goals will also end up dropping their goals.

3.4.2 BDI-Architectures

In [RG91b, RG92, RG95, RGI1a], Rao and Georgeff describe a logical frame-
work for agent theory based on three primitive modalities—beliefs, desires and inten-
tions. The formalism models the world using a temporal structure with a branching
time future and a single past, called a time tree. Each node in the tree is a time
point. Branches from a time point represent the choices available to an agent at

that point in time. Different events transform one time point in the structure to
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another.

In the formalism, operators BEL, GOAL and INTEND represent beliefs, goals
and intentions respectively, succeeds, fails and does indicate the immediate future of
an event, and succeeded, failed and done represent the immediate past of an event.
In this formalism, the connection between intention and action is represented by
axiom (3.8) which states that if an agent has a commitment to act on a single

primitive action e then it will do e.

INTEND(does(e)) D does(e) (3.8)

In order to prevent agents from procrastinating with respect to their intentions
and allow agents to drop intentions, the BDI-Architecture uses axiom' (3.9). Axiom
(3.9) allows an intention that has never been achieved to be dropped (in addition

to the ones that have been achieved).

INTEND(¢) D inevitable)(~(INTEND()) (3.9)

The formalism does not provide mechanisms to form new intentions when the
action associated with an intention fail or to reconsider intentions in light of new
information about the world. In addition, (3.9) cause agents to drop unachieved
intentions. All these factors can potentially lead to the agent not achieving intended

actions or effects.

!Note the similarity between this axiom and axiom (3.7) in Section 3.4.1.
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Algorithms that capture the formalism are specified in [RG92, Wo000]. These
algorithms use perceptions to update beliefs and deliberation on beliefs to update
intentions. The deliberation process has two parts: generation of desires and filtering
of generated desires. Only those desires that successfully pass through the filter
function are chosen by the agent as intentions. Agents can maintain an intention (i)
until it is realized (blind or fanatical commitment), (ii) until either it is realized or
it is not possible (single-minded commitment), or (iii) as long as it is still believed
possible (open-minded commitment). An agent’s plans are selected according to its
beliefs and intentions. When a plan goes awry or when the agent has otherwise
determined that its current intentions are inappropriate, an agent may reconsider
its intentions. A cautious agent reconsiders intentions at the end of each “deliberate-
plan-act” cycle, whereas a bold agent does not reconsider its intentions.

The earlier work in BDI-Architecture concentrates on single agent with no
parallel actions. Later work (for e.g., [[GR92, IC93] attempts to include parallel
actions. Parallel actions are executed by spawning multiple run-time stacks of pro-
cedures and executing these procedures in parallel. However, the formalism does not
address the issues that may occur because of the interactions between preconditions
of different actions when they are done in parallel. Also, the formalism does not

have the ability to keep track of the evolving time during its deliberations.
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3.4.3 Logic of Rational Agents

In [Wo000], Wooldridge provides a multi-modal, branching-time logic—LORA—
that can be used to capture properties of rational agents, such as the possible interre-
lationships among beliefs, desires, and intentions in both single-agent and multiagent
setups.

LORA combines four components: (i) a classical first-order logic component;
(ii) a BDI component to express the beliefs, desires, and intentions of agents within
the system; (iii) a temporal component to represent the dynamic aspects of systems;
and (iv) an action component to represent the effects of actions that agents perform.

LORA represents a class of logics, and one can readily tailor it to specific kinds
of agents, with distinct traits, such as cautious/bold and blind / single-minded / open-
minded. 1t can also be used to define multiagent notions such as—teamwork, commu-
nication in the form of speech acts, and cooperative problem solving. Autonomous
agents can perform cooperative problem solving in LORA in four stages: (1) recog-
nition, (2) team formation, (3) plan formation, and (4) team action.

LORA can be used to formalize collective mental states such as mutual beliefs,
desires, intentions, and joint commitments. For communication between agents,
LORA defines two primitive speech acts—inform (when an agent attempts to get
another agent to believe something) and request (when an agent gets another agent
to intend something). LORA also has a range of other speech acts defined using
these primitives.

LORA is also used to define a model of cooperative problem solving. The
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model has four stages: (i) an agent recognizes the potential for cooperation with
respect to one of its actions, (ii) the agent solicits assistance from a team of agents,
(iii) the team attempts to agree to a plan of joint action, and (iv) the plan is executed
by the group.

Since the axiomatic system of LORA includes axiom K? and the rule of neces-
sitation®, the agents that LORA models need to be logically omniscient and perfect
reasoners. That is, agents need to believe all tautologies, since they are true in
every world, as well as all logical consequences of their beliefs. Thus, this approach
links rationality to a form of logical perfection. Not only that, since the axiomatic
system includes axiom D%, all beliefs of the agent are assumed to be consistent.
This is doubtless an idealization, since few real-world agents of any complexity are
likely to be completely consistent in their beliefs. Furthermore, requiring that an
agent believe all consequences of its beliefs can lead to having agents that possess an
infinite number of beliefs. This, along with the existence of “infinite belief-states”
in instances of mutual belief, is difficult to reconcile for finite agents with limited
capacities. In short, LORA is more of a specification framework and not an exe-
cutable logic; as Wooldridge points out in [Woo00], there is currently no simple way

of automating LORA.
By AB(¢p = ¢) = By
3From | ¢ infer &= B¢
4B¢ = -B-¢
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3.4.4 Situation Calculus Based Intention Theory

To avoid the weaknesses (like logical omniscience and computational complex-
ity of theorem-proving or model checking) of modal approaches, [PPP04, DP03]
introduce a theory of intention in the framework of Situation Calculus (See Section
2.4.1). The theory enhances Reiter’s action theories [Rei01] with intentional notions
of beliefs, desires and intentions. Specifically, cognitive fluents (belief fluents, desire
fluents and intention fluents) are introduced and appropriate successor state axioms
are specified for these fluents. Belief-producing actions, goal-producing actions and
intention-producing actions—such as sense, adopt, abandon, commit or give up—
cause cognitive fluents to change in the same manner that ordinary actions cause
relational fluents to change. Incorrect beliefs can be represented by having successor

belief axioms that do not correspond to successor state axioms.

3.5 Discussion

One key question is: can a UIA reason effectively by representing only the be-
liefs, desires and intentions? Suppose the UIA has to control a pool heater with valid
commands “START HEAT”, “STOP HEAT”, “INCREASE HEAT”, “DECREASE
HEAT” and “READ TEMPERATURE” and the user request is “Heat the pool”.
The agent can adopt a desire to heat the pool and then create an intention to is-
sue “START HEAT” command to the pool heater. So, the BDI model provides
a framework for reasoning about what to achieve and how to achieve an action.

However, knowing how to achieve does not guarantee that the actual action does
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indeed become achieved. That is, adopting an intention for execution and executing
an intention cannot guarantee that the original desire that triggered the intention
is satisfied. The achievement of an action in a dynamic world cannot be determined
by the agent; whether an action is successful is beyond the control of the agent. In
the current example, even though the agent sends the command to the heater, the
agent cannot decide on this basis that the pool has indeed become warm.

Once an intention is formed to heat the pool and the command to heat the pool
has been issued to the heater, a rational agent should actually check whether the
pool is getting warm and if not, do something to fix the problem. In order to perform
this extra step of checking the outcome of an action (of checking whether the pool
is warm), the agent should have some representation of what the expected outcome
of an action is. This means that a framework for implementing a rational agent
interface should have a mechanism for representing the mental attitude ezpectation,
in addition to the traditionally represented mental attitudes—beliefs, desires and
intentions.

Traditional BDI frameworks, categorize wants, needs, goals and expectations
under the category of desires. However, expectations seem to play a different role in
practical reasoning when compared to needs, wants and goals. A desire causes an
intention for an action to be formed. Once the intention is adopted for execution, an
expectation regarding the outcome of the action is formed. And, this expectation
may then be used to check the actual outcome of the action.

In the example, if the agent creates an expectation that the temperature of the

pool would rise when the “HEAT POOL” command is issued, then after it issues
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the command, it can observe the temperature of the pool to check whether the pool
has in fact become warm. To observe the temperature of the pool the agent can
adopt a desire and then an intention to observe the temperature and then execute
that intention. The results of the observation contribute to the current beliefs of
the agent. Thus, expectations can cause new desires, intentions, expectations and
beliefs.

If the temperature has not gone up after a while, then the agent has a failed
expectation. The agent can thus note that there is a problem and then try to either
(i) fix the problem by itself (by increasing the temperature setting of the heater)
or by getting help from the human user, or (ii) at least inform the user about the
problem.

As noted in [Sea83, CL90] a causally self-referential connection exists between
an intention and the production of an action; for an agent to intend to perform
an action, the intention should cause the agent to actually perform that action.
Cohen and Levesque’s formalism attempts to constrain this causally self referential
connection using their two definitions of intentions (See Section 3.4.1). However, an
actual specification of this connection is not provided. Rao and Georgeft’s formalism
(Section 3.4.2) tries to specify the connection using an implicit assumption that
the successful completion of an event would result in succeeded(e) while the failure
would result in failed(e). However, a formal specification for this assumption is not
given. Hence, the specification of the causal connection between an intention and an
action is at the very least incomplete in these formalisms. One way to specify this

connection is by modeling expectation. Once the agent has issued an action, if the
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agent knows what to expect, then the agent can form a goal to check the achievement

of the expectation and thus conclude that the action has either succeeded or failed.
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Chapter 4
Active Logic

4.1 Introduction

Active logics [EDP90] are a family of formalisms that use time-sensitive in-
ference rules to have their knowledge base evolve with the passage of time. Active
logics have the necessary characteristics for implementing the reasoning about time,
actions, effects and agency needed for a UIA. A general purpose Active logic is
implemented in the Alma/Carne reasoning system; both the formalism and the
implementation are discussed in this chapter.

Technically, an Active logic consists of a first-order language, a set of time-
sensitive inference rules and an observation function that specifies aspects of the
environment as first-order formulas. Therefore, Active logics can be seen either as
formalisms per se, or as inference engines that implement formalisms.

In Active logics, the basic unit of time is a step and the passage of time is
represented by a predicate now that is true only for the current step in the reasoning
process. The formulas at each step include those formulas that are (i) inherited from
the previous step, (ii) obtained by applying the rules of inference to the formulas in
the previous step and (iii) added as observations at that step. Direct contradictands
at one step are not inherited to the next step; hence, they do not derive new formulas

(thus avoiding the swamping problem). Different semantics of Active logics (using
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different assumptions) have been proposed in [Nir94, AGGP05].
In the sub-sections that follow, some of the useful general features of Active

logics are discussed.

4.2 Features of Active logic

4.2.1 Step-wise Reasoning

In Active logic, the formulas at step i+1 are obtained by applying the rules of

inference in the Active logic to the formulas in step 7 as illustrated in 4.1.

i: AA—-BB—-C

i+1 : AABA—>B,B—>C

i+2 : A B,C,A—B,B—C

(4.1)

Here, at step i+1, B is derived using the formulas A and A — B and at step
i+2, C is obtained from the formulas, B and B — C. Each “step” in an Active
logic proof takes one Active logic time-step; thus inference always moves into the
future at least one step. An Active logic knowledge base will have only a finite set
of formulas at each time step, since the finitely-many inference rules when applied

to the finite set of formulas in a step can produce only finitely-many conclusions for
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the next step.

4.2.2 Addition of New Formulas

The observation function can add new formulas into the logic at any step.
The formulas that are added in a step are incorporated into the ongoing reasoning
to derive the formulas for the next step. Step-wise reasoning coupled with this
ability to add new formulas at any step, ensure that the logic will not get stuck in
a lengthy proof, oblivious of the external changes that occur during the reasoning.
That is, the external changes that occur while the logic is performing the lengthy
proof can be added as new formulas at any step during the proof. In fact, these
added formulas could change the course of reasoning, since they get included in the

ongoing reasoning as soon as they are added into the knowledge base.

4.2.3 Inheritance of Formulas

By default, all formulas in a step that are not directly contradicting are inher-
ited to the next step. However some formulas like the ones related to the current
time are not inherited to the next step. The inheritance of formulas from one step
to the next is controlled by inheritance rules. One simple version of such an “inher-

»1

itance rule” ", which also illustrates the use of firing conditions, is shown in 4.2:

Inheritance and disinheritance are directly related to belief revision [Gér88] and to the frame

problem [MH69]; see [NKMP97, Nir94] for further discussion.

99



i : A [condition: -A ¢ KB, A+# Now(i)]

i+1 : A

(4.2)

4.2.4 Time Sensitivity

To represent and reason about the passage of time, Active logics employ a
notion of “now” that is constantly updated by the “clock rule” shown in 4.3. The
clock rule states that from the fact that it is step ¢ at the current step, the step

number of the next step is 7 + 1.

i : Now(i)

i+1 : Now(i+1)

(4.3)

With the help of the clock rule, Active logic keeps track of the evolving time as
the reasoning progresses from one step to the next. This evolving-during-inference
model of time sharply contrasts with the frozen-during-inference characterization of
time that temporal logics [AF94, RU71] have; in temporal logics the past, present

and future do not change while theorems are being derived. This time-tracking
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property of Active logic is especially useful when an agent’s reasoning is aimed

towards meeting a deadline; see [NKMP97, Nir94| for details.

4.2.5 Contradiction Tolerance

When a contradiction occurs, most modal, temporal and nonmonotonic logics,
suffer from the “swamping problem” (this is related to the “omniscience” problem of
traditional logics of belief: given a contradiction, all (infinitely-many) well formed
formulas are entailed as theorems and hence are believed). Most approaches to
overcome the swamping problem lack the essential time-dependency for real-time
capabilities 2.

The ability of Active logic to explicitly track the individual steps of a deduction
makes it a natural mechanism for reasoning about contradictions and their causes.
Since Active logic performs step-wise reasoning, the knowledge base at a step (along
with new observations) determines the contents of the knowledge base at the next
step. Thus, the current contents of the knowledge base can affect the contents of
the knowledge base at later steps but not earlier.

Therefore, if directly contradictory wifs, P and =P, occur in the KB at time i,
Active logic notes the contradiction at i+1 using a ‘conflict-recognition” inference
rule like (4.4), so that further reasoning can be initiated to repair the contradiction,
or at least to adopt a strategy to deal with it, such as preventing the contradictands

from deriving any new formulas in the later steps.

2The importance of real-time capabilities in AI systems is discussed in [MHA195].
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i+1 : Contra(i, P,—P)

(4.4)

The Contra predicate in (4.4) is a meta-predicate: it is about the course of
reasoning itself (and yet is also part of that same evolving history). Thus, unlike
in truth maintenance systems [Doy79] where a separate process resolves contradic-
tions using justification information, in Active logic the contradiction detection and
handling [Mil93] occur in the same reasoning process.

While disinheriting contradictands is a reasonable first step, it is often not
enough even to “defuse” the contradiction for long. The formulas that derived
P and —P may re-derive the contradictands, or other conflicts may occur. Thus,
[MP93, GPP97, Pur01b] investigate ways to allow an Active logic-based reasoner to
retrace its history of inferences, examine what led to the contradiction, and perform
meta-reasoning concerning which of these warrants continued belief.

Although an indirect contradiction may lurk undetected in the knowledge base,
dealing only with direct contradictions may be enough for many purposes. Sooner or
later, an indirect contradiction may reveal itself in the form of a direct contradiction
which will then get detected by (4.4). Thus, Active logic has the ability to reason
effectively in the presence of contradictions, taking action with respect to them only
when they become revealed in the course of inference.
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4.2.6 Representation of Defaults

In Active logic, defaults can be represented using default rules like (4.5), which
states that if =P is not known at the current time, and if Q is known, then P is

inferred by default at the next time step.

i @ Q,~Know(—=P,i), Now(i)

i+1 : P
(4.5)

Since only a linear lookup in the belief set for time i is needed to tell that
—P is not there (and that @ is there), the decidability issues of traditional default
mechanisms do not arise in Active logic. The default rule in itself does not deal
with problems arising from interacting defaults. However, since such cases tend to
involve contradictory conclusions (as when, evidence for =P becomes known), they
can be treated as any other contradictands. One simple expedient in such cases is

to disinherit the default conclusion and accept the non-default evidence.

4.2.7 Non-monotonicity

Active logics do not attempt to capture the (usually undecidable) absolute
truth about what is consistent with what is known; this is in general impossible
for practical agents. If no evidence is already known that would prevent a default
conclusion, then Active logic derives that default conclusion. As time passes, if
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Active logic infers an evidence that should have prevented that conclusion, it is
only at that later time that Active logic withdraws the original conclusion. In the
limit, Active logics provide the same default conclusions as standard non-monotonic

reasoning formalisms [Pur01b).

4.2.8 Introspection

In Active logic, negative introspection—the ability to determine that one does
not know something—is often encoded as the following inference rule (where the

notation [B] means that B is not present):

i : ..[B]

i+1 : —=Know(i, B)

(4.6)

This mandates the conclusion at time ¢ + 1 that statement B was not known

to the logic at time 7 (that is, B does not appear among the beliefs at time 7).

4.2.9 History Tracking

Active logic maintains a temporal history of its reasoning process that can be
used by the logic for further reasoning. The history enables the logic to determine
when each formula was added or deleted in its past and thus provides a mechanism
to reason about the past reasoning.
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4.2.10 Quotation

Quotation mechanism names the different formulas in Active logic. This allows
an individual formula to be referenced using its name. The quotation and the history
mechanism together provide a mechanism for meta-reasoning within the reasoning

process itself.

4.2.11 Integration with non-logical processing

Finally, Active logic can initiate, observe and respond to external events and
non-logical processes by proving specialized predicates. For example, the proposition

call initiates an external action.

4.3 Alma/Carne—An Active Logic Reasoner

Alma/Carne [PJTT99, PurOla, Pur01b] is a general purpose implementation
of Active logic. It has a dual role: (i) acting as the language to specify Active logic
based applications and (ii) providing the core reasoning engine for these applications.

In its role as a language, Alma/Carne allows applications to be specified as a
set, of logical sentences and procedures. When the sentences are loaded into Alma
and the procedures into Carne, Alma/Carne takes the role of a reasoning engine. In
this role, Alma generates Active logic inferences, some of which trigger procedures
in Carne. These procedures can perform some computation or cause effects in the
world, and can include non-logical reasoning procedures like probabilistic reasoners

and parsers (thus, allowing close interaction between different kinds of reasoning).
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Alma’s state is updated with the status of the procedures (e.g.. done, doing) which
enables reasoning about the processes Alma triggered. Failure of a procedure, for
instance, can lead to reasoning that causes retraction of earlier assumptions. Carne
can also monitor the world and assert formulas about the state of the world into
Alma, implementing the observation functionality of Active logic. This enables
Alma to react to changes in the world. Thus Alma/Carne can initiate, observe and

respond to external events and non-logical processes.

4.3.1 Alma

Language

The signature of the Alma language is similar to that of a first order language.
The logical symbols in Alma language include and, or, not, i f and forall correspond-
ing to the classical logical symbols A, V, -, — and V. In addition there are two
logical symbols bif and fif that are different kinds of implication. bif asserts its
consequent only in the context of backward chaining. fif asserts its consequent at a
step in which all the antecedents are true; it cannot combine with other implications
to derive new formulas, the only new formula that it can assert is its consequent.

There are certain predicates in Alma that are reserved for examining the in-
ternal state of the logic or for performing a non-logical action. Examples of reserved
predicates include form_to_name and name_to_formula that relate a formula to its
name, bs that starts a proof by contradiction and af that adds a new formula into

the Alma knowledge base at the next step.
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Representation

Formulas input to Alma are converted to clausal form before being asserted
in the knowledge base. All formulas are named, either by the user or Alma; these
names are used to refer to the formulas.

Alma maintains information about the formulas, for example, how they were
derived, at what step, and which derivations they were involved in. An impor-
tant such piece of information is the status of the formula: trusted or distrusted.
Distrusted formulas are not used for further inference but remain present in the
knowledge base. Formulas typically become distrusted when they are involved in
a direct contradiction. All such meta-information of a formula is available through
reserved predicates and form the basis of the meta-reasoning capabilities of Alma.
Other reserved predicates cause changes in the knowledge base (including meta-
information) when asserted. For example, the status of formulas can be changed to
either remove potentially false formulas from further inference or reinstate formulas

that were previously distrusted.

Computation

Computation in Alma is achieved through a combination of different mecha-

nisms, some of which are listed below:

e Resolution

Inferences, including those for meta-reasoning, are mainly done by applying

the resolution and factoring rules. Hence, it is not complete in the forward
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direction. Using the reserved predicate bs and the special connective bi f, Alma

allows backward chaining, thus providing the completeness for FOL.

Prolog Computation

Alma can perform arbitrary Prolog computation with the reserved predicate
eval_bound. The computations performed should be limited to those that will
complete fast (so that they can be performed within a step). Longer running

computations are to be done using Carne.

Contradiction Detection

The contradiction detection rule verifies whether the negation of any newly
added atom is present in the database. Inconsistencies are therefore only
detected when complementary atoms are derived. The presence of an atom
and its complement causes the status of these formulas to change to being
“distrusted”. In addition, the fact that there is a contradiction and the identity
of the contradictands are asserted in the knowledge base using a reserved
predicate contra. Strategies for dealing with the contradiction based on the
current situation can be expressed as contradiction handling routines. Alma
stops the immediate spread of potentially bad facts by distrusting them and
provides the means for the user to handle the contradiction but has no further

built-in strategy to deal with each contradiction that it detects.

Time Tracking

The reserved predicate now(T) is used to denote step numbers. The time rule
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deletes the previous now(i) and asserts now(i + 1) and thereby defines each

step.

e Inheritance

All formulas are assumed to be inherited from one step to the next by default.
Therefore, there is no explicit inheritance rule. Rather, formulas that are
not to be inherited—ones that are distrusted or to be removed—are explicitly

deleted.

e Introspection

Introspection is done using the reserved predicate pos_int. To determine
whether ¢ is known, pos_int merely inspects the knowledge base to determine
either whether ¢ was present at a specified step T or whether it is present in the
current step. This limits the expressivity somewhat but provides substantial

gains in efficiency.

Control

The inference rules (resolution, contradiction detection and time) are applied
at each step. While contradiction detection is applied to all formulas, resolution can
be applied selectively. Users can specify the formulas on which resolution has to be
applied and an ordering on the pairs of formulas that are candidates for resolution,
using Prolog filters. Also, users can specify a limit on the time to be spent on each
step; thus making the duration of each step bounded. Here, as in contradiction
handling, Alma provides the means for the user to specify strategies. It is possible
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for user-specified strategies to indefinitely delay inferences.

Alma also provides three kinds of conditionals (fif,bif and if) to control
inferences based on whether they are to be used for forward chaining, or backward
chaining or both. The correct choice of conditional may be crucial practically; if an
implication is needed only in certain cases but not typically, then fif may swamp
the knowledge base with unnecessary formulas whereas bif can be used to generate
targeted inferences.

Backward chaining is done step by step in a breadth first fashion. Breadth
first search has the advantage of finding the shortest solution but the disadvantage
of requiring more resources. The search tree is maintained as a set of formulas in the
Alma knowledge base. This means that new information can inform proofs started
earlier and sprout new branches in the interior of the tree. Alma provides several

ways to control the proof, including a depth limit.

4.3.2 Carne

Carne is a process separate from Alma that communicates with Alma to run
procedures that would take too long to run in the Alma process. Carne also serves
as a link from Alma to other external processes. This allows Alma to be embedded
in a larger system with Alma providing reasoning services, as in [TACT99] where
Alma/Carne implements the dialog manager in a larger planning system.

Table 4.1 presents the simple interface between Alma and Carne.

P is a program that is defined in Carne, and I D is a unique identifier for that

70



Table 4.1: Alma and Carne Interface.

Formula Asserted by Effect

do(P,ID) Alma reasoning | Carne invokes program P

doing(P,ID) | Carne Informs Alma that P has been invoked.
done(P,ID) | Carne Informs Alma that P has completed.
error(P,ID) | Carne Informs Alma that P has failed.

[0) Carne Informs Alma of ¢

invocation instance. This simple interface together with Alma’s inference allows
several types of behavior. For example, the user can specify that a program should
be run and aborted if it does not complete within a time limit. This can be done by
comparing the time at which doing is asserted with the current time and invoking
another program to abort the first.

The last row in the table represents Carne asserting formulas in the Alma
database. Notice that the do/doing/done terms do not allow complex results of
computation to be asserted in the database. Programs run by Carne can use other

reserved terms to assert formulas in the Alma knowledge base.

4.3.3 Implementation

Alma/Carne system is implemented in Prolog with a GUI written in Java
which displays ongoing inferences in Alma. Alma can output a history of its infer-
ence. This history can then be replayed in the GUI for examining the inferences

and/or debugging domain descriptions.
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4.3.4 Convention

The convention used in this dissertation to denote different Alma/Carne sym-

bols is given in Table 4.2.

72



Table 4.2: Alma Symbols, Description and Notation used

Alma Symbol | Description Notation
and classical and operator A

or classical or operator \

forall forall operator \4

not negation operator not

\+ negation on failure -

if classical if operator —

fif forward chaining if 3

bif backward chaining if ¢ P
pos_int positive introspection pos_int
bs breadth first search ° bfs

af adds formula af

df deletes formula df
contra contradiction contra
reinstate reinstate formula reinstate
call initiate action call
doing action is being done doing
done action is completed done

form_to_name
name_to_form

name_to_time

return name of formula
return formula given its name

return “added time” ¢ of formula

form_to_name
name_to_formula

name_to_time

®Triggers backward chaining, while doing a breadth-first search

bUses bif formulas to conduct the search
‘the time at which formula was added into the KB
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Chapter 5

Formal Theory of Alma/Carne Reasoning—M.AL

This chapter formally proves certain properties of the Alma/Carne reasoner
using a meta-theory—MAL—which specifies how the contents of the Alma/Carne
knowledge base change. MAL can be thought of as a formal specification of the
Alma/Carne reasoning engine. The formulas that are specified in the Alma/Carne
language are represented in the Alma/Carne knowledge base in the clausal form as
discussed in Section 4.3.1. Lp is used to denote the primitive language in which
the formulas in clausal form (i.e., the converted formulas) are represented in the
Alma/Carne knowledge base. Lp is a two-sorted language with sorts for time and
others. The well-formed formulas in Lp are called knowledge formulas and constants
that correspond to the well-formed formulas in £p form a part of the language of
MAL—L pjac-

MAL deals with mainly three types of objects—sets, time and knowledge.
Intuitively objects of type time refer to the different time steps in an agent’s reason-
ing and objects of type knowledge refer to the knowledge formulas (i.e., the agent’s
knowledge). Objects of type sets refer to different sets created using the knowledge
that the agent has; examples of such sets include set of knowledge formulas that
are believed and set of knowledge formulas that are distrusted. M.AL essentially

shows how an Active logic based agent reasons, by maintaining two categories of
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knowledge—trusted and distrusted beliefs—at each time step, using different sets.
Since Alma/Carne reasons by maintaining such trusted knowledge and distrusted
knowledge using axioms similar to the ones in MAL, the proofs derived in this

chapter can provide some intuitions regarding reasoning in Alma/Carne.

5.1 Primitive language—Lp

Lp is the primitive language in which the Alma/Carne formulas are repre-
sented within the Alma/Carne knowledge base. It has two sorts of objects—time

and others. The symbols of Lp are as follows:

logical connectives: not,V

e auxiliary symbols: (, ), and ,

e a denumerable, non empty set of constant symbols of type time: 0,1,2,...

e a denumerable, possibly empty set of other constant symbols: (o, (i, (o, ...

e a denumerable number of variable symbols of sort time: 7y, 7,75, ...

e a denumerable number of other variable symbols: ¥, ¥,,v,, ...

a countable, possibly empty, set of function letters: g for all positive integers

n and k. A+ B denotes g3(A, B)

a countable, nonempty set of predicate symbols: p} for all positive integers n

and k. now denotes pj and A = B denotes p3(A, B)
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Intuitively + indicates standard addition operator, now is a 1-place predicate
that takes a time argument and asserts the current time step and = is a 2-place
predicate that asserts equivalences between functions and their evaluations.

The well-formed formulas in Ly are given in Figure 5.1.

constant ::= time_const | other_const
variable ::= time_var | other_var
primitive_term ::= constant | variable | function(primitive_termlist)
primitive_termlist ::= primitive_term | primitive_term, primitive_termlist
primitive_literal ::= predicate(primitive_termlist) |
not(predicate(primitive_termlist))
literal term ::= primitive_term | primitive_literal
literal list ::= literal_term | literal _term, literal list
positive_literal ::= predicate(literal list)
negative_literal ::= not(positive_literal)
knowledge_formula ::= positive_literal | negative_literal |

(knowledge_formula V knowledge_formula)

Figure 5.1: BNF for Knowledge Formulas—the Well-formed Formulas of Lp

Definition 5.1.1. The negation of any positive_literal ® in Lp is the knowledge

formula not(®).
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Definition 5.1.2. The disjunction of two knowledge formulas I'y and T’y in Lp is

the knowledge formula (I'; V I'y)

Definition 5.1.3. The reduction of a knowledge formula I' in £p w.r.t a set of
knowledge formulas A is the knowledge formula obtained by replacing those function
terms in I' that have only constants as parameters (i.e., without variables and other
functions as parameters), with constants specified by the function definitions in
A. Thus, if g}(C4,...,C,) = C is a function definition in A where C, Cy,...,C,
are constants, then replacing the occurrence of g} (C1,...,Cy) in I with C gives a

reduction of 7.

Definition 5.1.4. Given a mapping from distinct variables {A4, ..., A,} in a knowl-
edge formula T" of Lp to variables or constants {O1,...,0,} in Lp, the substitution
of I' with the given mapping is a new knowledge formula obtained by replacing every

occurrence of A; with ©,.

Definition 5.1.5. Two knowledge formulas I'y and I's; are unifiable with a given
mapping from all the variables {Ay,...,A,} in knowledge formulas I'y and I’y of
Lp to variables or constants {©1,...,0,} in Lp, if the mapping from variables to
variables is injective and the substitution of I'y with the given mapping gives the

same knowledge formula as the substitution of I'y; with the given mapping.

5.2 LamacLanguage of MAL

L pac—the language of M AL—is a many-sorted language with sorts for time,
knowledge and set.
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5.2.1 Symbols of L ar

The symbols of L4, are as follows:
e auxiliary symbols: (, ), , and ,
e constants corresponding to the constant and variable symbols in Lp
— constants of type time 0,1, 2, ... corresponding to constants of type time
in [,73
— constants of type other (o, (1, (o, ... corresponding to constants of type
other in Lp

— constants of type time_var 7y, T, Ts,... corresponding to time variable

symbols in Lp

— constants of type other_var ¥y, 9,1, 7,, ... corresponding to other variable

symbols in Lp

e constants that correspond to each knowledge-formula of Ly denoted by explic-
itly representing the knowledge-formulas in £p where the under-lined variables
(that belong to L) in a knowledge-formula are replaced by the corresponding

constants (not underlined) in Laqar

— constants of type positive that correspond to each positive literal knowledge-
formula of Lp
— constants of type negative that correspond to each negative literal knowledge-

formula of Lp
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— constants of type complex that correspond to knowledge-formulas of Lp
that are neither positive literals nor negative literals (i.e., compositions

of positive and negative literals using the the V operator in Lp)
e constant symbol: ()
e operators: <,+,=,€,2,U and \
e logical connectives: =, A and —

e variable symbols of sort time denoted by lower case English letters with or

without subscripts.

e function symbols: SUBSTIZTUTE, REDUCE, BEL, DIS, AF, DF, PRF

and

e predicate symbols: UNZFIES, ADD_FORM and DEL_FORM

5.2.2 Well-formed Formulas in £ 4,

The well-formed formulas in L4, are given in Figure 5.2.

In order to make expressions easier to read, parentheses are omitted whenever
a formula has a unique reading. Besides, a precedence order is assigned to different
operators and connectives in order to obtain unique readings without all the paren-
theses. The precedence order from lowest to highest is —, +, <, =, A, €, U, \, £, .

Additional conventions followed in this chapter to denote different symbols are

listed below:
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Ip_const
var_const
prim_term_const
knowledge_const
uni fier_term
uni fier_form
time_term

AorD_form

knowledge_list
prim_set
prf_set_name

other_set_name

set_name
set_term
set_form

knowledge_term

atomic_form

wff

::= time_const | other _const

::= time_var_const | other var_const

::= Ip_const | var_const

::= positive_const | negative_const | complex_const

::= prim_term_const,var_const | unifier_term, unifier_term

= UNTFIES(knowledge_const, knowledge const,{unifier_term})
::= time_const | time_variable | (time_term + time_term)

= ADD_FORM(knowledge_const, time_term) |
DEL_FORM (knowledge_const, time_term)

::= knowledge_const | knowledge_const, knowledge_list
=0 | {knowledge list}
::= PRF(knowledge_const)

::= BEL(time_term) | DIS(time_term) |

AF (time_term) | DF (time_term)
::= other_set_name | pr f_set_name
= prim_set | set_name | (set_term U set_term) | (set_term \ set_term)
= set_term = set_term | knowledge_term € set_term

:= knowledge_const | REDUCE (knowledge_const, set_term) |
SUBSTITUTE(knowledge_const, {uni fier_term})

= unifier_form | AorD_form | time_term < time_term |

set_form | knowledge_term = knowledge_term

= atomic_form | =(wff) | (wff —=wff) | (wffAwff)

Figure 5.2: Well-formed Formulas in L4,

80



e , with or with out subscripts denotes any time constant

® /i, [y, 1, - - - are schema-variables that denote knowledge formula constants
in Laqaz, that correspond to positive literals in Lp; i.e., they are schema-

variables for positive constants

® v, 1y, v,... are schema-variables that denote knowledge formula constants
in L4z, that correspond to negative literals in Lp; i.e., they are schema-

variables for negative constants

e o,3,7 and k with or without subscripts are schema-variables that denote
knowledge formula constants in L4 that correspond to well-formed knowl-

edge formulas in Lp; i.e, they denote constants of type positive, negative or

complezx
o UT ,UT,,UT,,... are schema-variables that denote uni fier_term items
o T T\, T,, ... are schema-variables that denote time_term items
e K,K,,K,,...are schema-variables that denote knowledge_list items
e 05,0851,08,, ... are schema-variables that denote other_set_name items
e 5 51,9,... are schema-variables for set_term items

W, W1, W, ... denote wffsin Lyar

Definition 5.2.1. W; <> W, is used as an abbreviation for (W; — Wo)A(Wy — W)

Definition 5.2.2. 7} T < T is used as an abbreviation for (73 x T) A (T < T5)
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Definition 5.2.3. The operator = is defined as an abbreviation symbol for the sort

time as follows: T} = Ty stands for (T} < To) A (To < T)

Definition 5.2.4. The symbol # is defined as an abbreviation as follows: T} # T5

stands for =(7} = T5).

Definition 5.2.5. The symbol < is defined as follows: T} < T3 stands for (77 <

Tg) N _‘(TQ # Tl)

Definition 5.2.6. The connective symbol ¢ is defined as an abbreviation symbol

as follows: k ¢ S stands for —(k € S)

Definition 5.2.7. The following notations are used when representing set formulas

(set_form) :

e A set formula SF that contains a variable ¢ is written as SF(¢) to explicitly

show that SF has variable ¢.

j
e A(SF(t)) is an abbreviation for SF(:) A ... A SF(j)

t=t

5.3 Axioms of MAL

5.3.1 Connective Symbols =, A and —

The connective symbol — is axiomatized by the following axiom schema:
Axiom 1. —(=(W)) + W

Axiom schemas for the connective A are as follows:
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Axiom 2. Wi AWy — W,

Axiom 3. Wi AWy — Wy

5.3.2 Operator Symbols

The operator < in L4, is axiomatized by the following axiom schemas, where
Lz and ¢, belong to N the set of natural numbers including 0, and < is the “less than

or equal to” relation defined over N.
Axiom 4. 1, < 1, whenever 1, <
Axiom 5. —(i; < ty) whenever ¢ £ ¢,

The relationship between operators + and < in L4, is axiomatized by the

following axiom schemas:

Axiom 6. ¢, + ¢, = ¢, where, tz,1, and ¢, belong to X the set of natural numbers

including 0, and + is the normal addition operation defined over X and ¢, + ¢, = ¢,.
The following axiom schema relates < and =:
Axiom 7. T1 = T2 — OS(Tl) = OS(TQ)

The operator € is axiomatized as follows where x denotes any knowledge

constant:
Axiom 8. —(k €0)

Axiom 9. k€ {k}
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Axiom 10. k€ {K,k}
Axiom 11. &€ {x, K}
Axiom 12. k€ {K;,k, Ky}
Axiom 13. k€ {a} = (k2 a)
The following axiom schemas specify the commutativity of £ and = operators.
Axiom 14. (k1 = ko) < (K2 = K1)
Axiom 15. (S =S5;) < (S2 = 5))

The relationship between € and £ is axiomatized by the following axiom

schema,
Axiom 16. K1 £ Ko — (Hl € Sl Ko € Sl)

Axiom schemas 17, 18, 19 and 20 axiomatize the relationship between = and

€ operators.

Axiom 17. (S1=S5;) = (k€ S1 = Kk € Sy)
Axiom 18. (S1=S5;) — (k€ Sy —> Kk € 51)
Axiom 19. (S1=5;) = (k¢ S1 > K ¢ S,)
Axiom 20. (S1=5;) = (k¢ So—> K¢ S))

The relationships between operators U and € are axiomatized by the following

axiom schemas:
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Axiom 21. (k€ S1USy) = (k¢ S1 > KES)AN(k¢E Sy — Kk €SY))
Axiom 22. (k€ S;) = (k€ 51 USy)
Axiom 23. (k€ S3) = (k€ S1US,)
Axiom 24. (k¢ (S1USs)) = (k¢ S1AK & Ss)
Axiom 25. (k¢ SiAKk¢ Sy) = (k¢ S1US)
Axioms 26, 27 and 28 axiomatize the relationships between \ and € operators.
Axiom 26. (k€ S1AKESs) <>k €S\ S
Axiom 27. k€ Sy >k ¢S5\ S:
Axiom 28. k¢ S >k ¢ S1\ S,
Axiom schema 29 axiomatizes the relationships between \ and = operators.
Axiom 29. (S] =Sy A S3=5s) — (S1\ S5 =5\ S4)
Axiom schema 30 axiomatizes the relationships between U and = operators.

Axiom 30. (Sl = SQ A Sg = S4) — (S1 U Sg = SQ U S4)

5.3.3 Function Symbols

Axiom 31. SUBSTITUTE (k,UT) £ k, whenever k and k; are knowledge con-
stants and the knowledge formula in £p that corresponds to x is the substitution
(Definition 5.1.4) of the knowledge formula in Lp that corresponds to x with the

mapping given by the unifier term UT.
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Axiom 32. REDUCE (k, PS) = k; whenever k and k; are knowledge constants,
PS is a primitive set and the knowledge formula in £p that corresponds to x; is a
reduction (Definition 5.1.3) of the knowledge formula in L£p that corresponds to &

w.r.t the set of knowledge formulas that correspond to the constants in PS.
The relationship between = and REDUCE is axiomatized as follows:

Axiom 33. Sl = SQ N K1 = ’REDL[C&'(/{, Sl) — K1 = ’RSDL[CE(&, SQ)

5.3.4 Predicate Symbols

Axiom 34. UNTFIES(ky, ko, UT) whenever the knowledge formulas in Lp corre-
sponding to the constants x; and ky are unifiable (Definition 5.1.5) by the unifier

term UT.

Axiom 35. “UNTIFIES(k1, ke, UT) whenever the knowledge formulas in Lp cor-
responding to the constants x; and ks are not wunifiable (Definition 5.1.5) by the

unifier term UT.

Axiom 36. ADD_FORM(k, ) whenever there is an external request in Alma/Carne
to add a new knowledge formula (e.g., an observation) that corresponds to the con-

stant x, at time ¢.

Axiom 37. DEL_FORM(k, 1) whenever there is an external request in Alma/Carne
to delete the knowledge formula that corresponds to the knowledge constant k, at

time ¢.
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5.3.5 Core Axioms for Reasoning

The axioms of the MAL theory that form the core reasoner for an Active

logic based agent are given below. These axioms cause various knowledge formulas

to become members of appropriate sets based on whether the knowledge is new,

trusted or distrusted. Note that only Axiom 38 and Axiom 39 are axioms while the

remaining are schemas.

Axiom 38.

Axiom 39.

Axiom 40.

Axiom 41.

Axiom 42.

Axiom 43.

Axiom 44.

Axiom 45.

Axiom 46.

BEL(0) = {now(0)}
BEL(t+1) = (BEL({)UAF(t))\ (DIS(t)UDF(t))

(/,Ll € BEL(t)/\(nOt(/LQ)\/Iil) € BEL(t))/\Z/{NIfIgS(Ml, M2, UT)/\
k= SUBSTITUTE(k1,U) Ak ¢ BEL(t)) —

(k € AF(t) APRF (k) = {1, (not(u2) V k1)})
k € BEL(t) A k1 2 REDUCE(k, BEL(t)) — k1 € AF(¢)
ADD_FORM(k,t) — k€ AF(t)

(11 € AF(t) Anot(uz) € AF () AUNTFIES (s, pio, UT))  —

(11 € DIS(t) A not(us) € DIS(1))

(uy € AF(t) Anot(uz) € BEL(t) AUNTFLES (s, 2, UT)) —

(u1 € DIS(t) A not(us) € DIS(t))

(,LL1 € BEL(t) A not(ug) € AF(t) N UNI]—"I&S(/“, M2, UT)) —

(11 € DIS(t) A not(uz) € DIS(1))

(k € DIS(t) A k1 € PRF(k)) — (k1 € DIS(t))
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Axiom 47. DEL FORM(k,t) — (k€ DF(t) APRF(x) =0)
Axiom 48. now(:) € BEL({) — now(:) € DF({) Anow(:+ 1) € AF(?)

The intuitive meaning of these axioms is as specified below. Axiom (38) states
that the set BEL(0) contains the constant corresponding to the positive literal
now(0). Axiom (39) states that the set BEL(¢ + 1) consists of those elements
that are present in BEL(¢) U AF(¢) and not present in DIS(¢) U DF(¢). Axiom
(40) states that if x can be obtained by applying modus ponens, after unification
and appropriate substitution, to two existing formulas in the set BEL(t), then
that new formula x belongs in the set AF(¢) and the two old formulas will be
present in the set PRF(5). Axiom (41) states that if x; is present in BEL(?)
and ko is a reduction of k; then kg belongs in AF(t). Axiom (42) states that it
follows from ADD_FORM(k,t) that the formula  belongs in AF(t). Axioms (43),
(44) and (45) together state that if a direct contradiction exists in the formulas in
AF(t) UBEL(t), then the contradictands belong in DIS(¢). Axiom (46) states that
if a formula is present in DIS(¢) (i.e., it is distrusted at ¢) and the proof for the
formula is known then the formulas in the proof are also present in DIS(¢). Axiom
(47) states that from DEL FORM(k,t) it follows that x is present in DF(¢) and

the set PRF (k) is empty. Axioms (48) implements the clock rule.

5.4 Structures for Lyar

Definition 5.4.1. A structure for L4, is a pair < D, > where D is a non-

empty set (called the domain of the structure) that is composed of distinct subsets
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TC,0C, TY, OV, PC, NC and €C representing time, other, time_var, other_var,
positive, negative and complex constants respectively and § is a function that sat-

isfies the following:
e if , is a constant symbol of sort time, then h(1) € TC
e if ( is a constant symbol of sort other, then §({) € OC
e if 7 is a constant symbol of sort time_var, then h(7) € TV
e if 9 is an other_var constant, then h(9) € OU
e if 41 is a positive constant, then h(u) € P&
e if v is a negative constant, then h(v) € NE
e if 0 is a complex constant, then h(o) € €€

e For each n-ary function symbol ¢ of Lyac, h(¢) is an n-place operation closed

over the appropriate sorts for which ¢ is defined.

e For each predicate symbol ¥ of Lagac, H(?) is an m-place relation over the

appropriate sorts for which 1 is defined.

The time variables range over all of T€.

Definition 5.4.2. An interpretation U7 <" of a unifier_term UT of Lrqac in

a given structure ( D, b ), is defined as follows:

o if UT = PT,VC for primitive_term constant PT and var_const constant VC
then
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UT <P = h(PT),h(VC)

o if UT = UT,UT, for unifier terms UT; and UT, then

D, . <D,h> <D,h>
UT<PY> =UTP" UTS™"

Definition 5.4.3. An interpretation UF <P of a unifier formula UF of Lo

in a given structure ( D, b ), is defined as follows:

o if UF = UNTFIES(k1,ke,{UT}) for knowledge constants k; and ko and

unifier term UT then

UF<PY> = WUNTFIES)(H(k1), h(ks), {UT<PH>Y})

Definition 5.4.4. An interpretation 77 <P%> of a closed ! time term TT of

Lamac in a given structure ( D, b ), is defined as follows:

e if 7T is a time constant ¢ then

TT<Ph> = p(u)

o if TT' =TT, +TT; where TT; and TT), are closed time terms then

7-7-<D,h> — 7-7-1<D,b> + 7-7-2<D,f)>

lwith no variables

90



Definition 5.4.5. An interpretation AD<P"%> of a closed add/delete formula AD

of Laac in a given structure ( D, b ), is defined as follows:

o if AD = ADD_FORM(k,TT) where & is a knowledge constant and 77 is a

closed time term then

AD<PY> = ADD_FORM(b(k), TT<PH>)

o if AD = DEL FORM(k, TT) where k is a knowledge constant and 77T is a

closed time term then

AD<PY> = DEL_FORM(h(k), TT<PH>)

Definition 5.4.6. An interpretation ST <P of a closed set term ST of Lac

in a given structure ( D, ), is defined as follows:

e if ST = () then

ST<Ph> = p(0)
e if ST = {k} where k is a knowledge constant, then

ST = {h(x)}

o if ST = {ki,...,kn} for knowledge constants k1 ...k, then
ST<PP = {b(k1), ..., b(km)}

o if ST = OS(TT) where OS is BEL, DIS, DF or AF and T'T is a closed time
term then

ST<PY> = p(OS)(TT<P">)
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e if ST = PRF (k) where k is a knowledge constant then

ST<PH> = h(PRF)(h(x))

o if ST = ST, U ST, where ST and ST, are closed set terms then

87'<'D,f)> — 87-1<D,f)> UST;D,I)>

e if ST = ST, \ ST, where ST; and ST are closed set terms then

87’<D,f)> — 87'1<'D,f]> \57-2<'D,h>

Definition 5.4.7. An interpretation SF<?"> of a closed set formula SF of Lyar

in a given structure ( D, b ), is defined as follows:
e if SF = (ST; = ST») where STy and ST, are closed set terms then

SFPI = (STP" = ST;7")

o if SFF = (KT € ST) where KT is a knowledge term and ST is a closed set
term then

Sf<D’b> — (K:T<’D,h> c 87-<’D,f)>)

Definition 5.4.8. An interpretation K7 <P of a knowledge term KT of Lac

in a given structure ( D, b ), is defined as follows:

o if KT = k for knowledge constant x then

KT<P5 = (k)
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o if KT = SUBSTITUTE(k,{UT}) for knowledge constant x and unifier term

UT then

KT <P = b(SUBSTITUTE)(H(k), UT <P1>)

o if KT = REDUCE (K, ST) for knowledge constant k£ and closed set term ST,
then

KT<PY> = h(REDUCE) (h(k), ST<P1>)

Definition 5.4.9. An interpretation AF<?"%> of a closed atomic formula AF of

Lamac in a given structure ( D, b ), is defined as follows:
e if AF = UF for unifier formula UF' then

Aj:<D,f)> — uj:<D,l)>

o if AF = AD for a closed add/delete formula AD then

AF<PI> = AD<PH>

o if AF =TT, X TT, where TT; and T'T5 are closed time terms, then

AF<PI> = (TTIP S TTP)

o if AF = SF where SF is a closed set formula then

Af'<7),f)> — SF<D’b>
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o if AF = (KT, £ KT,) where KT, and KT, are closed knowledge terms, then

AF<PH> = (KTTPP> £ KT5P07)

Definition 5.4.10. An interpretation W<?"> of a closed sentence or well-formed

formula W of L4 in a given structure ( D, b ), is defined as follows:
e if W = AF where AF is a closed atomic formula then

W<D,f)> — Aj:<’D,h>

o if W = —(W;) where W is a closed wff then

W<D,h> _ ﬁ()/Vl<73,f)>)

o if W = (W, - W) where W, and W, are closed wifs then

D,b> _ <D,h> <D,h>
WSPH> = (WP 5 WP

o if W = (W, AW;) where W and W, are closed wifs then

Definition 5.4.11. Given a wif W and a structure {( D, ) of Lrqac, an assignment
for W in ( D, b ) is a mapping from the set of all time-variables in W to T€. The

set of all assignments for W in structure ( D, b ) is denoted by Ql%)’h ).

Definition 5.4.12. Given an assignment o for wif W in a structure ( D, 8 ), the
substitution of W with © denoted by G(W, D) is a wif obtained by substituting the

variables in W with constants given by the assignment oO.
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Definition 5.4.13. Let { D,h ) be a structure for Lo4c and T be a function
such that T : W — {T, F}. The truth value of a wif W in ( D, ), denoted by

T(W<PH>)  is defined as follows:

e if W is a closed atomic formula then T(W<P%>) = T iff W<P:Y> holds
o if W is =(W;) for wif Wy then T(W<PH>) = T iff TW;PP>) = F

o if W is (W, — W,) where W; and W, are wffs then T(W<P9>) = F iff

TW P5”) = T and TWSPY) = F

o if W is (W) A W5) where W, and W, are wifs then T(W<PH>) = T iff
TW;P) = T and TWsP") =T
e if W is a wif with variables (time-variables) then T(W<P"Y>) = T iff
T(S(W,D)<P"*) = T for every assignment O in Qlﬁ,vp’b ),
Definition 5.4.14. A structure ( D, by ) satisfies a wif W, denoted by ( D, § ) = W,

iff TOW<Ph>) = T. A structure ( D,h ) does not satisfy a wif W, denoted by

(D,h) ¥ W, iff [W<PH>) = F.

Definition 5.4.15. A witf W is logically true or valid, written = W, iff (D, h ) EW
for every structure ( D,h ) of Lagac. W is satisfiable iff some structure of Laqac

satisfies W.

Definition 5.4.16. A structure ( D, ) is a model of MAL, written ( D, b )

MAL (D, ) =W for every wit W in MAL.
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5.5 Properties of MAL

Some properties that an Active logic KB based on M AL exhibits are discussed

next by proving these properties within MAL.

5.5.1 Relationships between AF and BEL

How certain properties of the sets AF and BEL are related are specified by

the following lemmas.
Lemma 5.5.1. MAL = (€ BEL(t) A p € BEL(t 4+ 1)) — (not(u) ¢ AF())

Proof. Proof by Contradiction: Suppose { D,k ) is a model of MAL structure such

that

(D,§) ¥ (u € BEL(t) A p € BEL(t + 1)) — (not(u) ¢ AF())  (5.1)

- (D,h) = (u€ BEL() Ap € BEL(t+1)) and { D, b ) ¥ (not(u) ¢ AF(t))

(D,h) = p € BEL(?) (5.2)
(D,h) = pe BEL(t+ 1) (5.3)
(D,h) E (not(u) € AF(t)) (5.4)

. by Axiom 45, (5.2) and (5.4),

(D,h) E (1 € DIS() A not(s) € DIS(t))
. By Axiom 39,

(D,b) = (1 ¢ BEL( + 1))
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2. (D,h ) ¥ (n € BEL(t + 1)) and that contradicts (5.3),

.- for every model of MAL, the given wiff is true. O

Corollary 5.5.2. MAL = ((not(u) € BEL(t) Anot(u) € BEL(t + 1)) — (1 ¢

AF(1)))
Proof. The proof for Corollary 5.5.2 is similar to the proof of Lemma 5.5.1. U
Lemma 5.5.3. MAL = (p € AF(t) A p € BEL(t + 1)) — (not(u) ¢ AF(t))

Proof. Proof by Contradiction:

Suppose (D, b ) is a model of MAL such that

(D,h) ¥ (u€ AF(t) A p € BEL(t+1)) — (not(u) ¢ AF()) (5.5

S ADh) = (e AF(t) Ap € BEL(t+ 1)) and (D, b ) ¥ (not(u) ¢ AF(¢))

(D,b) EpeAF() (5.6)
(D,h) = pe BEL(t+1) (5.7)
(D,b) [ (not(u) € AF(2)) (5-8)

. by Axiom 43, (5.6) and (5.8),

(D,b) = (1 € DIS(#) Anot(u) € DIS(#))

. By Axiom 39,

(D,b) = (k¢ BEL(t + 1))

2. AD,h)YE (ne BEL(t + 1)) and that contradicts (5.7),

.- for every model of MAL, the given wiff is true. O
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Corollary 5.5.4. MAL = not(u) € AF(t) Anot(u) € BEL(t+ 1) — u ¢ AF(¢)
Proof. The proof for Corollary 5.5.4 is similar to the proof of Lemma 5.5.3. O
Lemma 5.5.5. MAL = p € AF(t) A p € BEL(t + 1) — not(u) ¢ BEL(t)

Proof. Proof by Contradiction:
Suppose (D, b ) is a model of MAL such that
(D,h)YFE ue AF(t) Ap € BEL(t + 1) — not(u) ¢ BEL(t)
- AD,h)E(ue AF(t) Ap € BEL(t + 1))
and

(D,b) ¥ (not(n) ¢ BEL(?))

(D,h) EneAF() (5.9)
(D,b) = pe BEL(t +1) (5.10)
(D,b) [ (not(p) € BEL(?)) (5.11)

.. by Axiom 44, (5.9) and (5.11),
(D,h) = (1 € DIS(t) A not(u) € DIS(%))
.. By Axiom 39,

(D,b) = (1 ¢ BEL(Z + 1))

2. (D,h) ¥ (u e BEL(t + 1)) and that contradicts (5.10),

.. for every model of MAL, the given wif is true. O
Corollary 5.5.6. MAL = not(u) € AF(t) Anot(u) € BEL(t+1) — 1 ¢ BEL(t)

Proof. The proof for Corollary 5.5.6 is similar to the proof of Lemma 5.5.5. O
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5.6 No Direct Contradictions

The formulas in the KB at each step in Alma/Carne are consistent in the
sense that no direct contradictions exist in a step. The formal specification of this

property in the theory MAL is given in Theorem 5.6.1.

Theorem 5.6.1. (Direct Consistency Theorem)

(i) MAL = p € BEL(t) — not(u) ¢ BEL(#)

(ii) MAL &= not(y) € BEL(t) — u ¢ BEL(?)

Proof. The proof for (ii) is similar to the proof for (i) and can be obtained by
interchanging not(x) and p. Therefore, only the proof for (i) is given below:

For a model that does not satisfy u € BEL(t), the wif is trivially true by the
definition of T for wifs with —.

Given any model ( D, b ) of MAL that satisfies p € BEL(¢), it can proven
that ( D, b ) also satisfies not(u) ¢ BEL(t) using induction on ¢ as follows.

Given premise:

(D,bh) = u € BEL(t) (5.12)

Base case [t = 0]:

Trivially true for the base case.

Induction Hypothesis [t = m] :

Assume that for some m, ( D, b ) = (u € BEL(m) — not(u) ¢ BEL(m))

Induction step [t=m+1] :
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By (5.12),

(D,h) = p e BEL(m +1) (5.13)

By Axiom 39,

BEL(m + 1) = (BEL(m) U AF(m)) \ (DIS(m) UDF(m))  (5.14)

Case 1. (D,h) = (1 € BEL(m))
.. by Induction Hypothesis, ( D, h ) = (not(x) ¢ BEL(m))
and by Lemma 5.5.1 and (5.13), ( D, b ) = (not(u) ¢ AF(m))

- By (5.14), (D, ) = (not(u) ¢ BEL(m + 1))

Case 2. (D,h) = u ¢ BEL(m)

By (5.13) and (5.14),

(D,h) = ne AF(m) (5.15)

By Lemma 5.5.3, (5.13) and (5.15), { D,b ) Enot(u) ¢ AF(m)
And, by Lemma 5.5.5, (5.13) and (5.15), ( D, b ) = not(u) ¢ BEL(m)

. By (5.14), { D, ) = not(u) ¢ BEL(m + 1)

5.7 Contradiction Detection

If there is a direct contradiction in the reasoning process, the contradictands
appear in DIS(7) for some 7. This is given by Theorem 5.7.1. The theorem states
that every direct contradiction that occurs in the reasoning gets detected.
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Theorem 5.7.1. (Contradiction Detection Theorem)

MAL = (1 € (AF(t)UBEL(t))Anot(u) € (AF(#)UBEL(t)) — (1 € DIS(¢)Anot(s) € DIS(t)))

Proof. That is, prove that for any model ( D, h ) of MAL, if

(D,h) E (ne (AF(t) UBEL(t)) Anot(u) € (AF(t) UBEL(%)))

then

(D,b) = (u € DIS(#) A not(u) € DIS()))

Assuming the antecedant,

(D,b) = (n e (AF(t) UBEL(?)) (5.16)

(D,b) = (not(u) € (AF() UBEL(2))) (5.17)

By (5.16) and Axiom (21),

(D,b) = (u¢ AF(t) = n € BEL(t)) (5.18)

and by (5.17) and Axiom (21)

(D,h) = (not(y) ¢ AF(t) — not(u) € BEL(?)) (5.19)

By (5.18), if ( D,h ) = pu ¢ AF(t) then ( D,b ) = u € BEL(t). That is,
either (D, b)) ¥ u¢ AF(t) or (D,b) = u € BEL(L).

And, if (D,h ) ¥ ¢ AF(t) then (D,h) = p € AF()

- AD,h)EpneAF(t) or (D,h) = n € BEL(?)

Similarly, by (5.19), { D, ) = not(u) € AF(t) or { D,h ) = not(u) €
BEL(t)

. the possible scenarios that arise when (5.16) and (5.17) hold are as follows:
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i. (D,h)=pe AF(t) and (D,h ) = not(y) € AF(t)

ii. (D,bh)modelsy € AF(t) and { D, h Ymodels not(u) € BEL(t)

iii. ( D, b ymodelsy € BEL(t) and ( D, h ymodelsnot(u) € AF(t)

iv. (D, b )modelsy € BEL(t) and { D, b Ymodels not(u) € BEL(t)

Theorem 5.6.1 states that [iv] never occurs. For [i], [ii] and [iii], Axioms (43),
(44) and (45) respectively, ensure that ( D, b ) = (u € DIS(¢) A not(u) € DIS(1))

O

5.8 Persistence

In the Alma/Carne knowledge base, a knowledge formula that is not directly
contradicted during the reasoning, persists. This is formally specified in MAL as
Persistence Theorem 5.8.1. Intuitively the theorem states that a formula  that is
present in BEL(t) persists through BEL(t + n + 1) if k occurs neither in DIS(7)

nor in DF (i), for all ¢ such that t i <t +n.

Theorem 5.8.1. (Persistence Theorem)

MAL & (x € BEL(# 7\72 ( ¢ DIS(i) UDF(i)) — +/n\+ (x € BEL())))

Proof. That is, prove that for any model { D, ) of MAL, if

t+n

(D,h) =k € BEL(t /\ ¢ DIS(i) UDF(q)))

then
t+n+1

(D.h) = /\ k € BEL(j)
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The Persistence Theorem can be proven using induction on n as follows:

By assuming the antecedants of the implication in the theorem,

(D,h) =k € BEL(t) (5.20)

(D,h) = 7\”n ¢ DIS(i) UDF(7) (5.21)
i=t
Base Case [n = 0]:
By (5.21), { D,b ) =k ¢ DIS(t) U DF(¢)
And, by Axiom 22 and (5.20), ( D, b ) = k € BEL(t) U AF(t)
.. by Axioms 39 and 26, (D,h) =k € BEL(t + 1)
Induction Hypothesis [n = m)]:
Assume that { D, h ) = k € BEL(t + m)
Induction Step [n = m + 1]: By Axiom 39,
BEL(t +m + 1) = (BEL(t + m) U AF(t + m)) \ (DIS(t + m) U DF (¢ + m))
By (5.21), { D,b ) = k ¢ DIS(t + m) U DF(t + m)
And, from L.H. and Axiom 22, ( D,§ ) E k € (BEL(t + m) U AF(t +m))

. by Axiom 26, (D, ) =« € BEL(t +m + 1) 0

5.9 Nonmonotonicity

In the Alma/Carne knowledge base, the knowledge formulas that are distrusted
or deleted do not take part in further reasoning. This property is given by Theorem

2.9.1.
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Theorem 5.9.1. (Nonmonotonicity Theorem)

MAL = k € BEL(t) A (t < i) A (5 € (DF(7) UDIS(i))) — & ¢ BEL(i + 1))

Proof. By assuming the antecedants of the implication,
(D,h) ErkeBEL(t)A(t i) Ak € (DIS(i) UDF(i))
- (D,h) E k € (DIS(i) UDF (%))
By Axiom 39, BEL(i + 1) = (BEL(i) U AF(3)) \ (DIS(i) U DF (:))

.. by Axiom 27 and Axiom 19, (D,h ) =« ¢ BEL(i + 1) O

5.10 Discussion

This chapter formally specifies how the Alma/Carne knowledge base evolves
using axioms in a meta-theory—MAL. It then proves certain properties of the

Alma/Carne reasoner using MAL.
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Chapter 6
Active Logic for Agents - ALFA

6.1 Introduction

ALFA—Active Logic For Agents—is a reasoner based on Alma/Carne with
representations for beliefs, observations, desires, intentions, expectations and achieve-
ments. In general, an agent based on ALFA can have desires to perform concurrent
actions or achieve concurrent results at different times.

For a UIA, the actions are: send commands to TOS, provide information to
the user and update own knowledge base; the results are: readings from TOS and
information from the user. The UIA actions listed in Section 1.3.9 correspond to
performing these actions and receiving these results. In some cases, the results may
directly map to the effect of an action, but that is not a necessary condition. In
other words, the UIA can have desires to achieve results that are not effects of known
action(s) !.

ALFA transforms achievable desires to intentions and achievable intentions
to actions. Actions may cause changes to different properties of domain objects

and these properties need to be observed to determine whether the changes have

been effective. For this, ALFA creates expectations regarding the new value of the

!Note that the TOS readings do not include all the effects of actions. In fact, the set of TOS

readings is a proper subset of the set of effects.
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property, and these expectations may then get transformed into desires to actually
observe the value of that property. For instance, performing the action—turning the
heater on—causes an expectation that the water temperature increases; this expec-
tation causes a new desire to observe the water temperature. Thus, ALFA makes use
of expectations to determine whether the action that the agent initiates produces
the requisite outcome or result. Such expectations can act as desire creators by
triggering the formation of desires to observe the result specified in an expectation.

Agents based on ALFA can have the following 6 broad categories of desires or

intentions:

e to perform simultaneous actions.

to perform simultaneous actions repeatedly.

to observe the values of various properties of objects.

to continuously observe these values.

e to achieve specific values for different properties of objects.

e to maintain the properties of object at specific values.

In ALFA, a desire for 6, where 6 is a set of either concurrent actions or simul-
taneous results, is represented as desire(Id, T'ype, 0,11, T5). Here, Id distinguishes
different desires and Type is a constant—act, reAct, get or reGet—depending on
whether 6 denotes a set of actions to be performed concurrently once, a set of actions

to be repeatedly performed simultaneously, a set of results to be obtained together

106



once or a set of results to be repeatedly obtained simultaneously, respectively. T; and
T, denote the time period in which the actions are to be performed or the results need
to be obtained. The different values that 7} and 7T, can take include all non-negative
integers. Intentions are represented likewise, as intention(Id, T'ype, 0, T1,T5), where
the interpretation of the different variables is the same as that for desires. An expec-
tation for a result §' is represented as expectation(f’, T, Ts), where the variables
T, and T; together denote the time period in which an observation of 3’ is expected.
Depending on the values of 77 and 75, a desire, intention or expectation can be
associated with an interval (when 77 # T3) or point in time (when 77 = T5).

ALFA represents the last observed value Val of a property Prop of an object
Obj as lobserved(Obj, Prop,Val,T) where T denotes the time at which the last
observation was obtained.

Preconditions for actions and results are represented as precondition(x, 6’)
where ¢’ is either an action or a result and « is either pos_int(F') or = pos_int(F),
where I is any formula. By assigning pos_int(done(c/, I D)) to &, it can be specified
that the action o' should precede #'.

ALFA represents the effect of a set of concurrent actions « as effect(ca, 8, 11, 7o),
where ' is either has(Obj, Prop,Val) or observation(Obj, Prop) depending on
whether o causes a change in the property of an object or an observation of a prop-
erty of an object. 71 and 7, together specify the duration for which the result can
be observed; that is, ' can be observed for 7 steps, starting 7, steps after the step
at which the actions in « have been invoked. The value, 75 = 0, indicates that the
effect persists.
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ALFA represents opposing results and effects as oppose(Obj, Prop, Valy, Valy)
where Val; and Valy are two possible values for the property Prop of object Obj
and Val, opposes (has an opposing effect to) Valy. Examples of Val; and Val, are
increase and decrease.

ALFA marks desires and intentions as achievable(/NV) or not(achievable(NV))
where N is the name of the desire formula or intention formula, based on whether the
desire or intention is achievable or not. Only achievable desires get transformed to
intentions; similarly, only achievable intentions? get transformed to actions. ALFA
also marks achieved intentions as achieved(/d, N) and achieved expectations as
achieved(N) so that they don’t take part in further reasoning.

When ALFA has an intention to achieve a set of results, it notes a feasible set
of concurrent actions that can cause each result as feasible(Id, 8, o, 11, T2) where
Id is a unique identifier that corresponds to the intention, ' is a result, « is a set
of concurrent actions that can produce f', 7; is the first time step after the actions
are initiated when the result can be observed and 7, is the duration for which the

result can be observed.

6.2 ALFA Components

The different components of the ALFA reasoner that control the transforma-

tion of desires, intentions and expectations from one to the other, as well as from

2Note that a desire is achievable does not mean that the corresponding intention is achievable.
A desire may be achievable and yet the corresponding intention may not be achievable because

some precondition is not met or the intention interferes with other active intentions.
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achievable to unachievable are discussed next. In the formulas discussed below, ¢

refers to the current time step; that is, now(t) evaluates to true.

6.2.1 Marking Desires as Achievable/Unachievable

ALFA notes desires as achievable or unachievable based on whether the time
period associated with the desire has elapsed or not. Thus, (6.1) and (6.2) mark

achievable and unachievable desires respectively.

Achievable Desires

e A desire for @ is achievable if the time period associated with the desire has
not elapsed, that is, the end time 75 is later than the current time t. This is
specified using formula (6.1).

desire(Id, Type,0,T1,T5) A (Ty > t)A
form_to_name(desire(/d, Type, 0,T1,T5), N) (6.1)

% achievable(NV)
Unachievable Desires

e If there is a desire for 6 to be achieved before 75, but if 7, has elapsed, then

that desire is noted as unachievable using formula (6.2).

desire(Id, Type,0,T1,T5) A (To < t)A
form_to_name(desire(/d, Type, 0,T1,Ts), N) (6.2)

% not(achievable(V))
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6.2.2 Creating New Intentions

ALFA creates new intentions based on the following:

a. each achievable desire causes a corresponding intention to be created.
b. each intention of type reAct causes creation of intentions of type act.
c. intentions of type reGet causes creation of intentions of type get.

d. each intention of type get (a set of results) causes an intention of type act to

be created, if there is a set of actions that can cause that set of results.

Formula (6.3) implements condition [a], (6.4) and (6.5) together implement
condition [b], (6.6) and (6.7) implement condition [c] and (6.8) and (6.9) together

implement condition [d].

Intentions from Desires

e If there is a desire for 6, where 0 is either a set of actions or a set of results
depending on the value of T'ype, and if that desire is currently achievable, then
a corresponding intention is created using rule (6.3).
desire(Id, Type, 0, T, T5)A
form_to name(desire(/d, Type, 6,T1,T,), N) A achievable(N) (6.3)

% intention(/d, Type, 0,T1,T5)
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Intentions from Other Intentions

e If there is a reAct intention to repeatedly perform a set of actions then, adopt
an act intention to perform those actions if such an intention does not exist
already. Formulas (6.4) and (6.5) create act intentions from reAct intentions;
while the former formula is used if the start time is later than the current

time, the latter is used when the start time is earlier than the current time.
intention(Id, reAct, o, Ty, T3) A — pos_int(intention(/d, act, o, _, ))A
(t < T1) A form_to_name(intention(Id, reAct, o, Ty, T3), N) A achievable(V)

% intention(/d, act, o, T1, T)

intention(Id, reAct, o, Ty, Ty) A - pos_int(intention(Id, act, o, _, -))A
(t > T1) A form_to_name(intention(/d, reAct, o, Ty, T5), N) A achievable(N)
% intention(Id, act, o, t,T3)
(6.5)
e If there is a reGet intention to continuously get a set of results 5 and if a get
intention to observe or achieve the results in (3, is not being pursued currently,
then (6.6) and (6.7) create such an intention. While (6.6) is used if the start

time associated with the intention is earlier than the current time, (6.7) is
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used when the start time is later than the current time.
intention(Id, reGet, 3,T1,T>) A = pos_int(intention(Id, get, 3, _, )))A
(t < T1) A form_to_name(intention(/d, reGet, §,T1,T»), N) A achievable(N)

% intention(/d, get, 5,11, Ts)

(6.6)

intention(Id, reGet, 3,11, T>) A - pos_int(intention(Id, get, 3, _, )))A
(t > T1) A form_to_name(intention(/d, reGet, 5,11,T3), N) A achievable(N)
% intention(1d, get, 8,t,T5)

(6.7)
If there is a get intention to observe or achieve a set of results 3, then formula
(6.8) notes the feasible set of actions that can cause each 8 in § before T,. The
set of actions « that can potentially cause each §’ is identified by the presence
of effect assertions; the feasibility of « is based on whether the preconditions
of each action o/ in « hold or not. If the precondition for one of the actions
o' in « is that another action & is not in doing state, then & should neither
be present in the set of actions « nor be currently in doing state. Similarly,
if the precondition for one of the actions ¢ in « is that another action & is

in doing state, then & should either be present in the set of actions a or be
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currently in doing state.

intention(Id, get, 3, T, T>) A (B' € 8) A —~pos_int(feasible(Id, 3, _, _, ))A
(effect(a, 8,71, 72) Veffect(Id, o, B', 71, 72)) A (t + 71 < To)A
Vareo[precondition(x, o) — (((k == — pos_int(doing(d, ) — & ¢ a)A
(k V (k == pos_int(doing(&, ) — & € ))))|A
form_to_name(intention(/d, get, §,T1,T»), N) A achievable(N)

% feasible(Id, 3, a, 11, 72)

(6.8)

If there is more than one set of actions that can cause a result §' (i.e., there
are multiple effect assertions that associate ' with different sets of actions),
then (6.8) chooses only one set of actions to achieve . This principle is
advantageous if the actions in the different sets when performed at the same
time may interfere with one another, but disadvantageous if the actions in
the different sets can cause the result quicker. For instance, if the required
result is for a ball to reach Player A and the possible sets of actions to achieve
the result are kick with the right leg and kick with the left leg, then choosing
only one of these sets as the feasible set of actions will prevent the agent from
attempting to kick with the left leg and the right leg at the same time. In
another situation, if the required result is to get a pool warm and the possible
sets of actions to achieve the result are switch on Heater 1 and switch on
Heater 2, then the principle of choosing only one set is clearly not the best
strategy especially if the best option is to switch on both the heaters to get
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the pool warm quicker.

e If there is an intention to observe or achieve a set of results 5 and the feasible
action(s) for each 8’ in /3 is known, then formula (6.9) gathers all these feasible

actions into « and creates an intention to perform the set of actions in .

intention(Id, get, 8,11, T>) A Vg cplfeasible(Id, 5, _, , J)A

18]
a= U o;|(B; € B A feasible(Id, B;, a;, 1, T2,))A
i=1

]
T = Hl_11n7'11|(5Z € ﬁ A feasible(Id, Bi,ai,Tli,TQi))/\

Ty = %@Xﬁi\(ﬁi € B N feasible(Id, 3;, o, T1,, T2,))A

n<Ti— 1 =7A

mn>=T1 — 7'{ =T\A (6.9)
T < Ty — 79 = T

7 >=Ty = 75 = OA

- pos_int(intention(Id, act, _, ., ))A

form_to_name(intention(/d, get, 5,11,T3), N) A achievable(N)

% intention(Id, act, o, Ty — 71, To — 75)
6.2.3 Marking Intentions as Achievable/Unachievable

ALFA determines whether an intention is achievable or not, based on the

following:

a. if any precondition of the action or result associated with an intention no
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longer holds, then that intention is unachievable.
b. intentions that interfere with each other are unachievable.
c. all other intentions are achievable.

ALFA implements condition [a] by rules (6.10), (6.11), (6.12) and (6.13), [b]

by (6.14) and [c] by rules (6.15) and (6.16).

Unachievable Intentions

e If 6 has not been performed or produced before step 75, then the corresponding
intention is marked as unachievable using rule (6.10).
intention(Id, Type, 0,T1,T5) A (Ty < t)A
form to name(intention(/d, T'ype, §,T1,T5), N) (6.10)
% not(achievable(N))
e Formula (6.11), specifies that an intention for a set of actions or results cannot

be achieved if the preconditions for the actions or results associated with the

intention do not hold.
intention(Id, Type, 0, Ty, To) A g cg[precondition(x, ')A
-k A Kk # pos_int(doing(_, ))]A
(6.11)
form to name(intention(/d, T'ype, 0,T1,T5), N)
% not(achievable(V))
e Rules (6.12) and (6.13) assume that the set of results § has to be achieved

on an all or none basis. Rule (6.12) checks whether the agent knows how to
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produce each 3’ € 3, and (6.13) checks whether every 3’ € 3 can be achieved

before T,.
intention(Id, T'ype, B,T1,T5) A (Type == get V Type == reGet)A
Jprep| pos-int(effect(_, ', , -)) A —pos_int(effect(Id, _, 5, _, -))|]A
(6.12)

form to name(intention(/d, T'ype, 3,11, T5), N)

% not(achievable(N))

intention(Id, Type, B, T1,T5) A (Type == get V Type == reGet)A
Jpep[Va|(effect(a, 8,11, 2) V effect(Id, o, f', 71, 72)) = ((t + 71 > T3)
A Jwreo|~ pos_int(doing(c/, Id)) A — pos_int(done(a/, Id))])]]A
form_to_name(intention(/d, T'ype, 3,11, T3), N)

%+ not(achievable(N))

(6.13)
e Rule (6.14) marks intentions that interfere either with itself or with other

intentions as unachievable.
intention(Id, Type, 0,11, T5) A
form_to_name(intention(/d, T'ype, 0,11, 1), N) A bfs(interferes(NV, _))
%+ not(achievable(V))

(6.14)
Achievable Intentions
e An intention for a set of actions « is achievable, if the preconditions for each

action o/ € « hold, the time at which the actions in « are to be invoked has
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not elapsed and the intention does not interfere with any other intention. This
is specified by rule (6.15).
intention(Id, Type, o, T1,To) A (t < T3)A
(Type == act V Type == reAct) A Vyeao|Vi[precondition(x, ') —
(k V (k == pos_int(doing(&)) — & € a))]]A
form_to_name(intention(/d, T'ype, o, 11, T5), N) A — pos_int(interferes(XV, _))
% achievable(N)
(6.15)

e If there is an intention to achieve a set of results 3, the set of actions « that
can cause (3 is known, all the preconditions for a as well as 8 hold, and «
can cause [ before Ty, then that intention is marked as achievable using rule
(6.16).
intention(Id, Type, B, T1,T3) A (Type == get V Type == reGet)A
Vgep[Ve|[precondition(k, 8') — (k V k == pos_int(doing(_, -)))]A
d,[effect(a, 8,71, 72) A (t + 71 < Tb) A VaeaVi[precondition(x, ') —

(k V (k == pos_int(doing(&)) — & € «))]]]A
form to_name(intention(/d, T'ype, 5,T1,T5), N) A -~ pos_int(interferes(N, ))
% achievable(N)
(6.16)

6.2.4 Finding Interfering Intentions

An intention is self-interfering if any of the conditions below hold:
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a. it has actions with contradictory effects.

b. it has actions with contradictory preconditions.

c. it has results that are contradictory.

Also, two intentions interfere with each other if any of the following conditions

hold:

d. the actions associated with the intentions have contradictory effects.

e. the results associated with the intentions are contradictory.

f. an action associated with one intention has an effect that contradicts the result

associated with the other intention.

These conditions are specified in ALFA by rules (6.17), (6.18) (6.19), (6.20),

(6.21) and (6.22) below.

e Formula (6.17) specifies that an intention for a set of actions « interferes with

itself, if there are subsets a; and @s for a such that g; (the effect of @;) opposes
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Bo (the effect of @y), and their durations overlap.

interferes(N, N) «p
intention(Id, Type, o, T}, T5) A (Type == act V Type == reAct)A\
effect(ay, B1,71,,7,) A (a1 C «a) A effect(as, B2, T1,, T2,) A
(@2 C a) A bfs(contradicts(5y, 52))A
bfs(overlaps(7i + 71,, Ty + 71, + 7o, T1 + 715, To + 71, + T2,)A
form to name(intention(/d, T'ype, o, T1,T»), N)

(6.17)

e If there are actions oy and as in «, such that their preconditions are contra-
dictory, then formula (6.18) marks an intention to achieve « as interfering.
interferes(N, N) «p
intention(Id, Type, o, T}, T5) A (Type == act V Type == reAct)A\
4, ,00ca[Precondition(xy, ;) A precondition(ks, as)A
((k1 == —k2) V ((k1 == pos_int(F) A ko == pos_int(not(F)))
V (k2 == pos_int(F) A k; == pos_int(not(F))))|A
form to name(intention(/d, T'ype, o, T1,T»), N)

(6.18)

e Formula (6.19) specifies that an intention for a set of results 5 interferes with
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itself, if 3, € [ opposes By € S.
interferes(N, N) «p
intention(Id, Type, B,T1,T5) N (Type == get V Type == reGet)A
Js,e53p,¢5[PEs(contradicts(5, B2))|A
form_to_name(intention(/d, Type, 8,T1,Ts), N)
(6.19)
e An intention for a set of actions «; interferes with another intention for a set
of actions ay if there are subsets a; and as for sets a; and « respectively, such
that (3, is the effect of @; and (5 is the effect of a,, and these effects—f3; and
Ba—oppose each other and their durations overlap. This is given by formula
(6.20).
interferes(Ny, Ny) P
intention(Id;, Type1l, a1, T1,, To,) A (T'yper == act V Type; == reAct)A\
effect(ay, B1,71,,72,) A (@1 C a1)A
intention(Idy, Types, ao, T1,,Ts,) A N(Types == act V Typey == reAct)A\
effect(ay, B, 71,,72,) A (@ C )
bfs(overlaps(T, + 71,, T2, + 71, + 7o, T1y + 71y, Toy + 1, + Toy))A
bfs(contradicts(f;, £2))A
form_to_name(intention(/d;, Type, a1, T1,, 1o, ), N1)A
form_to name(intention(/ds, Types, o, T1,, T5,), No)

(6.20)
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e Formula (6.21) specifies that an intention for a set of results 3; interferes with
another intention to achieve a set of results B, if the time periods for the
intentions overlap and (; € 3; opposes By € Bs.

interferes(Ny, Np) <P
intention(Id,, Type., B1,T1,,T5,) N (Type, == get V Type; == reGet)A
intention(Idy, T'ypes, B2, Th,, Ta,) A (Types == get V Typey == reGet)A
bfs(overlaps(71,,Ts,,T1,, T2,))A
36,5, 3.5, [PFs(contradicts(5y, 2))]A
form_to_name(intention(Id,, Typey, B1, T1,, T5, ), N1)A
form_to_name (intention(/dy, Typey, B2, T1,, Tb, ), Na)

(6.21)

e An intention for a set of actions « interferes with another intention for a set of

results [ if some effect 5; that o produces opposes some result 35 in 5 and the

121



duration of 3; overlaps with the duration of 5y. This is given by rule (6.22).

interferes(N;, Ny) «P
intention(Idy, Typey, o, T1,,T5,) A (T'ypey == act V Type; == reAct)A
effect(a, f1,1,,7,) A (@ C a)A
intention(Idy, Types, B,T1,,Ts,) N (Types == get V Typey == reGet)A
Js,ep[bfs(contradicts(f, B2))]A
bfs(overlaps(7}, + 71,, 1o, + 71, + 7oy, 115, T2,))A
form to name(intention(/d;, Type;, o, T1,, 1o, ), N1)A

form_to_name(intention(/ds, T'ypes, 5,T1,,T5,), Na)

(6.22)
6.2.5 Finding Contradictory Effects and Results

An effect may contradict with either a result or another effect. Similarly a
result may contradict with another result or an effect. Two effects or two results
or a result and an effect are contradictory if they oppose one another and their

durations overlap.

e The conditions for two time periods to overlap is specified by formula (6.23).

overlaps(T}, Ty, T3,T,) <P
Ty < Ty ATy < Ty ATy < T3)A (6.23)

(T <L AT <TyNT, <Th)

e To determine whether the results, effects or a result and an effect oppose each
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other, ALFA makes use of rule (6.24).

contradicts(3y, 52) <P
B, == has(Obj, Prop, Val;) A B, == has(Obyj, (6.24)
Prop,Valy) A bfs(oppose(Obj, Prop,Valy, Vals))

e Sample axioms that represent opposing entities (results or effects) are shown

in (6.25).

oppose(_, -, increase, decrease) (6.25a)

oppose(_, -, move_left, move_right) (6.25b)

6.2.6 Marking Achieved Intentions

e Once Carne asserts that a set of actions o has been completed, the intention

that caused « is noted as achieved using (6.26).
intention(Id, act,a, Ty, T5) A (t < T3)A
Vareo|done(d!, Id) A form_to_name(done (', Id), N)A
name_to_time(N,T)A (T > T AT < T)]A (6.26)
form to_name(intention(/d, act, o, T1,T5), N)
%+ achieved(Id, N)
e An intention to perform a set of actions a repeatedly, is marked as achieved,
when all the sub-intentions that were created to perform those actions have
been achieved (and hence dropped). This is specified as rule (6.27). Note that

if at least one sub-intention was created and achieved then achieved(/d, _) will
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be true. Therefore, checking achieved(Id,_) in (6.27) ensures that a reAct

intention which was never acted on is not marked as achieved.
intention(Id, reAct,a, Ty, T5) A (t > To)A
- pos_int(intention(/d, act, o, _, -) A achieved(Id, _)A

(6.27)

form to name(intention(/d, reAct,a,T1,T,), N)

% achieved(Id, N)

e An intention to change the property Prop of an object Obj to value Val
is noted as achieved if there is an observation given by lobserved which
shows that property Prop indeed has the value Val. Similarly, an achievable
intention to observe the value of property Prop of object Obj is marked as
achieved if there is an observation that provides the value Val for property

Prop. Both these scenarios are addressed by rule (6.28).

intention(Id, get, 8, Ty, Tz) AVgep[(8 ==
has(Obj, Prop,Val) vV 8' == observation(Obj,
Prop)) A pos_int(lobserved(Obj, Prop,Val,T))A
(6.28)
(Ty <T)N (T, > T)|A
form to_name(intention(/d, get, 3,T1,T>), N)
% achieved(Id, N)
e An intention to achieve the set 5 repeatedly is marked as achieved, when all the
sub-intentions that were created to achieve those results have been achieved

(and hence dropped). This is specified as rule (6.29). The rule also makes sure
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that a reGet intention which was never acted on is not marked as achieved.
intention(Id, reGet, 5,T1,T2) A (t > T5)A
— pos_int(intention(Id, get, 3, _, )) A achieved(Id, )A

(6.29)
form to name(intention(/d, reGet, §,11,T3), N)

% achieved(Id, N)

6.2.7 Dealing with Contradictory Mental Attitudes

e Whenever there is a contradiction in the various mental attitudes (e.g., achiev-
able vs. unachievable or intention vs. not an intention) ALFA rules in favor
of the attitude that it attains later (recency prejudice [Per97]) using the con-
tradiction handling rules (6.30) and (6.31). An indiscriminate application of
recency prejudice to deal with all contradictions in an agent’s KB may not be
appropriate and in many cases wrong [Per97]. However, when dealing with
an agent’s mental attitudes like desires, intentions, expectations, observations
and achievements, recency prejudice seems reasonable. Therefore, (6.30) and

(6.31) apply recency prejudice only to mental attitudes other than beliefs.
name_to_time(Ny,T}) A name_to_time(N,, T)A
(Ty > T3) A contra(Ny, Ny, ) A name_to_formula(Ny, F)A
(F == desire(_, ,,_,_) V F == intention(_, , , , )V
(6.30)
== achievable( ) V F == achieved(_, ) V F == achieved(_)V

F == expectation(_, , ) V F == lobserved(_, _, _,))

%+ reinstate(V;)
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name _to_time(N;,7) A name_to_time(N,, T3)A
(Ty < T3) A contra(Ny, No, ) A name_to_formula(N;, F)A

(F == desire(_, ,,_, )V F == intention(_, , , , )V
(6.31)
== achievable(_) V F' == achieved(_,_) V F == achieved(_)V
F == expectation(_, , ) V F == lobserved(, _, _,))

%+ reinstate(N,)
6.2.8 Dealing with Unknown Effects

If the effects of certain actions are described relatively (e.g., temperature in-
creases relative to the current temperature), then ALFA grounds such effects based

on the current conditions using rules (6.32) and (6.33).

e If there is an intention to get or reGet a set of results 5 and there is some
B’ in B without an effect assertion that relates ' directly to a set of actions
that can cause (', then use the current knowledge base to create an effect
assertion. If B’ involves having the property Prop of an object Obj at value
Val and if there are effect axioms that associate set of actions to changing
the value of Prop, then use those effect axioms and the current lobserved

value of Prop to determine the new effect assertion. This is given by rules
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(6.32) and (6.33).
intention(Id, Type, 8,T1,13)) A (T'ype == get V Type == reGet)A
B € B A —pos_int(effect(_, 5',_, ))A
B' == has(Obj, Prop, Val) A effect(c, has(Obj, Prop, increase), 1y, 72) A
lobserved(Obj, Prop, Valy, T) A (T > T1) A (Valy < Val)
+ effect(Id, o, §', 71, 72)

(6.32)

intention(Id, Type, 8,T1,T5) N (Type == get V Type == reGet)A
B' € B A —pos_int(effect(_, 5, _, ))A
B' == has(Obj, Prop, Val) A effect(c, has(Obj, Prop, decrease), 11, 72) A
lobserved(Obj, Prop,Val,, T) A(T > T1) A (Val; > Val)
+ effect(Id, o, 5,11, 72)

(6.33)
Whether (6.32) or (6.33) gets triggered depends on the currently (or lastly)

observed value of Prop. The presence of a new last-observed-value predicate
lobserved causes previous last observed values to be distrusted; all the formu-
las originally derived from the newly distrusted formula, also get distrusted.
As a result, an effect axiom associated with an old observation gets distrusted
and a new effect axiom based on the new observation gets added. This provides
a mechanism for acting on intentions to maintain certain results for lengthy
durations. For instance, to maintain the temperature of an object at a specific
value, an agent can perform one set of actions if the temperature goes above
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the specific value, and perform another set of actions in case it goes below, in

order to bring it back to the required level.

6.2.9 Dropping Achieved/Futile Intentions

ALFA maintains an intention as long as it holds (i.e., the intention is true
but not its negation), it is considered achievable and it has not been achieved
so far. Thus, an agent based on ALFA can behave like an open-minded agent
[RG91b, RG92| that maintains its intentions as long as it is still believed possi-
ble. The following rules helps agents based on ALFA to drop achieved intentions

and intentions that are believed to be impossible.

e In ALFA, intentions that have been achieved are dropped by (6.34). If an
achieved intention corresponds directly to a desire, that is, the Id and Type
are the same, then that desire does not hold any longer.

achieved(N) A name_to_formula(N, intention(Id, Type, 0,11, 1))\
(desire(Id, Type, 0, T1,Ty) — af (not(desire(Id, Type,0,T1,T5))))
+ df(N)
(6.34)

e ALFA drops unachievable intentions associated with a desire that has an
elapsed time period using (6.35), (6.36) and (6.37). Sub-intentions that are
unachievable are dropped if the time period for the main intention has elapsed
using (6.35). Main intentions that are unachievable are dropped when the

time periods elapse and all subintentions have been dropped using (6.36) and
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(6.37).
not(achievable(N))A
name _to_formula(N, intention(/d, Typey, , _, ))A
(6.35)
desire(Id, Type, 0, T1,T5) A (Type # Typer) ANt > Ty

% df(NV)

not(achievable(N))A
name_to_formula(N, intention(/d, T'ype, 0, T, T5))A
desire(Id, Type, 0, T1,To) ANt > ToA (6.36)
(Type == get V Type == act)
%+ df(N)
not(achievable(N))A
name _to_formula(N, intention(/d, Type, 0, T1,T5))A
desire(/d, Type, 0, Ty, To) Nt > ToA
(Type == reGet V Type == reAct)\ (6.37)
- pos_int(intention(Id, act, _, , )))A
- pos_int(intention(Id, get, _, _, _))
% df(N)

e If an intention to perform a set of actions is unachievable and this intention
corresponds to an intention to achieve a set of results—g (that is, both the
intentions have the same Id), then, the unachievable intention is dropped so
that ALFA can try to create a new intention to produce a different set of
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actions in order to achieve the same results. This is given by (6.38).

not(achievable(N))A
name_to_formula(/N, intention(/d, act, o, T1, T5))A
(6.38)
pos_int(intention(Id, get, _, _, _))
¢+ df(N)
e If a main intention is not a goal any longer then all sub-intentions are also not
goals any more. ALFA implements this using (6.39).
not(intention(/d, _, , -, )))A
intention(Id, Type, 0,T1,T3) (6.39)
% not(intention(Id, Type, 0, T1,Ts))
e ALFA drops intentions that are no longer goals for the agent using formula
(6.40) and (6.41).
not(intention(Id, Type, 0, T1,Ts))A
form_to_name(intention(/d, T'ype, 0,11, T5), N)A (6.40)

(T'ype == act V Type == get)

% df(NV)
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not(intention(Id, Type, 0, T1,Ts))A
form_to name(intention(I/d, Type, 0,11, T3), N)A
(Type == reAct V Type == reGet)A\
(6.41)
— pos_int(intention(/d, act, _, -, .))A
— pos_int(intention(Id, get, _, _, ))
% df(N)

6.2.10 Dropping Desires

e ALFA drops desires that no longer hold, have been achieved or no longer

achievable using formula (6.42) and (6.43).

not(desire(Id,0,T1,T3))A
form_to_name(desire(Id, §,7,73),N) (6.42)

% df(NV)

desire(/d,0, T, T5) Nt > Ty
form_to_name(desire(Id, §,7,,73),N) (6.43)
% df(N)
6.2.11 Transforming Intentions into Actions

e If there is an intention to perform a set of actions a between 77 and T, and

the current time is between T and T3, then every action o/ € « that has not
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been initiated yet is invoked by rule (6.44).

intention(Id, act, o, Ty, T5) A (T1 < t)A
form_to_name(intention(/d, act, o, T1,T5), N) A achievable(N)A

(6.44)
o € a A —pos_int(doing(a’, Id)) A — pos_int(done(c’, Id))

% call(d/, Id)
6.2.12 Creating Expectations

e For every set of concurrent actions that are being performed, ALFA creates an

expectation regarding the known effects of those actions using formula (6.45).
(© = Jo/|doing(c/, ) A effect(a, ', 71,72) Ao C OA
Ti=t+14+nA(rn==0ATo =T+ EXPECTMAX)VT, =T, + 1)

% expectation (', a, T1,T5)
(6.45)

Note that EXPECTMAX can take any value greater than 0; however, a

lower value may cause an expectation to be marked as unachieved if an observation

could not be made within the time period specified within the expectation.

6.2.13 Creating Desires from Expectations

e If there is an expectation that some property Prop of an object Obj will be
changed, then a desire can be created to observe the property Prop of the

object Oby, if the action «, that can cause that observation is known. This is
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given by rule (6.46) below.
expectation(has(Obj, Prop,Val), ,T1,T5)A
pos._int(effect(«, observation(Obj, Prop), i, 72))A
- pos_int(desire(_, act, o, -, ) A Id = newid()A (6.46)
(mn<ThANNTy =T, —7)VNT, =T)A
% desire(/d, act, o, NT1, Ts)

6.2.14 Marking Expectations as Achieved /Unachieved

Achieved Expectations

e The conditions tested to mark an expectation as achieved are similar to the
ones in rule (6.28) and are given by formula (6.47). Thus, an expectation that
the value of property Prop will become Val between T7 and T5, is considered
achieved if there is an observation between T} and T3, that shows that Prop
has value Val. Also, an expectation that the value of some property Prop
of an object Obj will be obtained between 77 and T, is viewed as achieved
if there is an observation, in the time period specified by 77 and 75, which
provides the value Val of property Prop.
expectation(3’, a, Ty, T5) A form_to_name(expectation(s’, o, Ty, T), N)A
(8" == has(Obj, Prop,Val) V ' == observation(Obj, Prop))A
pos_int(lobserved(Obj, Prop, Val,T)) A (T1 <T) A (T <T5)

% achieved(N)

(6.47)
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Unachieved Expectations

e If an expectation is not achieved within the time period specified by 77 and
T, then it is marked as unachieved using formula (6.48).
expectation(3', o, Ty, To) A (t > To)A
form_to_name(expectation(s’, o, T1,T5), N) A — pos_int(achieved(N))
% not(achieved(NV))

(6.48)

6.2.15 Maintaining Observations

e In order to maintain current observations, the last-observed-value predicate
asserted later is believed over the last-observed-value predicate asserted ear-
lier using formula (6.49). The contradiction that results from (6.49) causes
previous values of lobserved to be distrusted. This in turn causes formulas
that were derived using the old lobserved value to be distrusted. Particularly,
this causes (6.32) and (6.33) to derive new effect formulas in case there is an

active intention that can activate (6.32) or (6.33).
lobserved(Obj, Prop, Val,Ti) A lobserved(Obj, Prop, Val,Ty) A (Ty > T)

% not(lobserved(Obj, Prop, Val,T}))

(6.49)

6.3 Discussion
This section examines how ALFA tackles some of the issues discussed in Chap-

ters 2 and 3 with regard to representing and reasoning about different mental atti-
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tudes, time, actions and effects of actions. It also discusses how ALFA can implement

user instructions discussed in Section 1.3.10.

6.3.1 Representing and Reasoning about Actions and Effects

How ALFA tackles some of the issues discussed in Chapter 2 is described in
this section.

By the inheritance rule in Active logic, all beliefs that hold at a time step
and are not distrusted or deleted are believed at the next time step as well. Thus,
ALFA’s approach to deal with the frame problem [MHG69| discussed in Section 2.3.1
is that all beliefs persist from one step to the next unless distrusted or deleted
explicitly.

ALFA does not necessitate that all preconditions for an action be specified
a priori; those preconditions that are specified for an action are checked to deter-
mine whether they hold. When situations mandate adding new preconditions, such
preconditions can be incorporated into the ongoing reasoning; therefore, the new
preconditions will be checked when the agent attempts to perform the action next.
Also, since beliefs persist from one step to the next, if a precondition holds at one
step, it holds in the future steps unless it gets deleted or distrusted for some rea-
son. Thus, ALFA makes use of Active logic’s inheritance rule and the ability to
add/delete formula at any time step, to deal with the qualification problem [McC80)]
discussed in Section 2.3.2.

ALFA allows representing only preconditions of actions and this can poten-
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tially lead to problems. For instance, if there is an intention to “remove a light bulb”
and it is known that the precondition for that action is “switch S1 is off”, then the
intention is marked as achievable if the agent knows that the precondition holds.
While the agent is performing the action of removing the light bulb, the agent can
adopt an intention to “turn on S1” and that can cause disaster. The problem here
is because ALFA allows specifying only preconditions and not any other conditions.
One possibility is to allow a condition predicate condition(a, 11,72, k) (that is dis-
tinct from precondition) to indicate that condition x needs to hold 71 steps after
the actions in « are initiated and continue to hold for a duration of 7 time steps.

ALFA represents the preconditions for individual actions only, and not for
concurrent actions. However, in some situations preconditions may exist for concur-
rently performing actions. For instance, the precondition for concurrently turning
on switches S; and Sy could be that the switch S3 has to be off, and yet there
may be no precondition for each of the individual actions. Therefore, ALFA is at a
disadvantage when preconditions exist for concurrent actions.

In ALFA, the indirect effects of actions are not represented as part of the
action specification; rather they are included into the ongoing reasoning as obser-
vations. Thus, ALFA’s approach to the ramification problem [Fin87] discussed in
Section 2.3.3 is to incorporate the ramifications into the knowledge base only when
they are observed. The disadvantage of not representing the ramifications explicitly
is that the agent will not be able to reason that the ramifications are the result of a
particular action; rather it just knows that the ramifications happened based on its

observations.
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ALFA tackles the issue of representing when and for how long the effect of an
action holds using the ef fect predicate. ef fect(c, B, T, 72) indicates that the effect
B of the concurrent set of actions « can be observed starting 7; time steps after
actions in « are initiated and the effect persists for a duration of m time steps.

ALFA incorporates external changes into the ongoing reasoning by allowing
new formulas to be added or existing formulas to be deleted from its current belief
set at any time step. Since Active logic reasons in steps, any additions or deletions
to the formulas in a step will be incorporated in the reasoning from the next step
onwards.

ALFA does not represent action durations explicitly; the assumption is that
each action has an inherent duration associated with it and thus need not be specified
explicitly. This can cause difficulty in cases where the task-oriented system has
actions with clear durations, for e.g., press a button for 5 seconds versus press
a button for 10 seconds. For such actions to be accommodated properly within
ALFA, they need to be specified as different actions— “press 5 seconds” and “press
10 seconds”.

ALFA allows representing effects of concurrent actions using the ef fect pred-
icate and permits the agent to have desires and intentions to perform concurrent
actions or achieve concurrent results by the predicates desire and intention. ALFA
determines whether the preconditions of concurrent actions interact using (6.18).
In order to determine whether effects of concurrent actions are contradictory ALFA
makes use of rules (6.17), (6.19), (6.20), (6.21) and (6.22).

ALFA can represent definite natural phenomena that occur in terms of the ac-
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tions that the corresponding agent performs. For instance, the natural phenomenon
“melting of ice” can be represented as an effect of an agent action “keeping the ice
outside the refrigerator”. Natural actions that are completely independent of any
action that the agent performs can be represented in ALFA only in terms of the
changes those actions produce, i.e., in terms of observations that ALFA receives.

ALFA cannot specify in-deterministic effects of actions properly. Representing
in-deterministic effects using different effect predicates can lead to problems as in
the following example. Suppose, the effect of “tossing a coin” is represented by
two effect predicates, one with the effect head_up and the other with the effect
not(head_up). Since these effects are contradictory, an agent based on ALFA cannot
adopt an intention for that action since it believes that such an intention interferes
with itself because of (6.19). On the other hand, if the in-deterministic effects are
not represented as contradictory effects then the reasoning can proceed normally
and the agent can adopt an intention for the action to produce either one of the
effects; however, this is counter-intuitive.

ALFA’s approach to representing relations between actions is to represent the
effect of actions and to specify relations that exist between those effects using oppose

predicates.

6.3.2 Representing and Reasoning about Mental Attitudes

ALFA represents observations, desires, intentions and expectations using the

predicates lobserved, desire, intention and expectation. Beliefs of the agent are
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represented as predicates that specify the belief itself. For instance, has(Obj, Prop, Val)
is a belief . ALFA does not distinguish between external motivational attitudes and
internal motivational attitudes and hence represents obligations also as desires.

ALFA creates intentions for each achievable desire. As a result, an agent based
on ALFA cannot engage in wishful thinking, the way humans do 4, about performing
certain actions or achieving certain results with no intention of ever doing it. This
does not eliminate the possibility of an agent desiring something at some point in
time and not desiring it later.

ALFA acts on achievable intentions and creates expectations regarding the
outcomes of the actions that it performs. In order to create these expectations,
ALFA reasons with the effect axioms—the axioms that specify the known effects
of actions. Note that ALFA does not require that the expected outcomes of every
action is known a priori. On the other hand, ALFA provides a framework for
representing known effects explicitly and using these to create expectations.

In ALFA, expectations trigger further practical reasoning by creating desires
to issue an observation action. Conflicts between expected outcome and actual

outcome are noted as unachieved expectations.

3Contrast this with an observation lobserved(Obj, Prop,Val,T).

4A human can desire to be on Saturn before the year 2010 without ever intending to achieve
it. However, if an agent based on ALFA creates the same desire it will intend to reach Saturn and
then realize that it does not have the knowledge about the actions to be executed to achieve that
result and hence mark that intention as unachievable until it gathers more information on how to

go to Saturn.
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6.3.3 Intention Reconsideration Policy

ALFA provides an automatic mechanism for intention reconsideration (Sec-
tion 3.3.2 and [Bra87]) that is adaptive, characterized by the following two proper-
ties: (i) only achievable intentions result in an actual action being initiated and (ii)
an unachievable intention can result in a revised intention.

In a dynamic world, intentions can change from being unachievable to achiev-
able or vice-versa. For instance, if a particular intention is not achievable because of
the lack of knowledge about how to achieve a result, then the addition of such knowl-
edge will make the intention achievable. The contradiction handling rules (6.30) and
(6.31) in ALFA can aid this transformation. Since the agent acts on those intentions
that it presumes achievable, intentions that get transformed from unachievable to
achievable get automatically acted upon. Thus, ALFA allows a dynamic form of
intention reconsideration with the help of its contradiction handling routines.

Unachievable intentions in ALFA can also cause dynamic reconsideration of
intentions. For instance, if an intention for a set of actions is unachievable and if the
agent had originally created this intention for achieving a set of results, then ALFA
drops the unachievable intention by (6.38) and attempts to create a new achievable
intention by (6.8) and (6.9).

ALFA’s approach of intention reconsideration sharply contrasts with the meta-
level decision theoretic approach [SWO01, WP99, PPSW00, SWP04]| which allows
an agent to choose its policy for intention reconsideration at run-time, provided

the frequency at which the environment changes is known before hand. Since this
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frequency cannot be predetermined in a dynamic world, ALFA adopts the strategy
of allowing its evolving knowledge base determine the reconsideration policy. When
resources are limited, ALFA may not mark an intention as unachievable on time;
consequently, the resulting agent may actually try to act on that intention (bold
behavior). ALFA may also exhibit extreme caution if it has enough resources by
checking whether an intention is achievable or not at every time step. Thus, the
resulting agent may act boldly while at other times it may act cautiously, but the
idea is that it adapts its commitment level based on the conditions and resources

available at run-time.

6.3.4 Dealing with Conflicts

Conflicts that occur as contradictions in the underlying Active logic appear
as contra predicates in ALFA. In addition, ALFA notes conflicts in its intentions
using the rules in 6.2.4. ALFA’s main mechanism to deal with contradictory mental
attitudes (other than beliefs) is the contradiction handling rules (6.30) and (6.31)

which rule in favor of a later formula over an earlier formula.

6.3.5 Implementing User Instructions

In order to implement the different user instructions discussed in Section 1.3.10,
a UIA needs to create appropriate desires based on the interpretation of the instruc-
tion. User instructions of the kind—perform UTA actions immediately, perform UTA

actions after a specific amount of time and perform UIA actions at specific time—can

141



be implemented by creating an “act” or “get” type desire with appropriate values
for the time parameters 77 and T,. User instructions of the kind—perform UIA
actions indefinitely and perform UIA actions for a specific number of times—can be

[4

implemented by creating a “reAct” or “reGet” type desire with appropriate values

for T and Ts.

User instructions of the kind— perform UTA actions at periodic intervals in-
definitely and perform UIA actions at periodic intervals for a specific number of
times—can be implemented by creating precondition axioms that specify the pe-
riodicity and then creating a desire of type “reAct” or “reGet” with appropriate
values of 77 and 75 in order to have the UIA actions occur indefinitely or at periodic
intervals.

User instructions of the kind—perform UIA actions when certain conditions
hold—can be implemented by creating precondition axioms for each condition and
then creating a desire of the type “act” or get” to perform the UIA action.

The last two solutions are not robust enough since ALFA represents precon-
ditions only for actions and not for intentions (or desires or expectations). This
means that once a precondition for an action or result is specified that precondition
will be valid for all instantiations of the action or result until that precondition is
removed from the current set of beliefs. Therefore, if a precondition for an action is
specified as the value of current time is 5:00 p.m., then every intention created to
perform the action will check whether the time is 5:00 p.m. This points to the need
to possibly specify preconditions that are associated with individual intentions in
addition to the preconditions that are currently represented for individual actions.
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Chapter 7
Agent Architectures

7.1 Introduction

This chapter examines different agent architectures and their applicability for
implementing a rational interfacing agent. Agent architectures [BZW98, WJ95,

Wo0092] can be broadly classified into deliberative, reactive and hybrid.

7.2 Deliberative Architectures

Deliberative architectures assume an explicitly represented symbolic model of
the world and the capability of logical (or at least pseudo-logical) reasoning based
on pattern matching and symbolic manipulation as basis for both decision making
(about which actions to perform) and intelligent actions. A problem with this
approach is that it is often difficult to translate the dynamic real world into a
correct and adequate internal model, in time for that model to be useful for logical
reasoning. This problem is often called the transduction problem. Other issues with
deliberative architectures are: how to symbolically represent complex real-world
entities and processes, and how to do the reasoning with the available information
in time for the results to be useful. The quest for perfect provable results instead

of satisfactory results can make deliberative architectures slow to react to outside
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events. Examples of deliberative architectures include the following.

7.2.1 BDI-Architecture:Rao/Georgeff

Rao and Georgeff [RG91b] have developed a logical theory for deliberation by
agents based on three mental attitudes—beliefs, desires and intentions—representing
the information, motivational and deliberative states of the agent, respectively. The
formalism is based on a possible worlds approach, wherein the world is modeled as
a time tree—a temporal structure with a branching time future and a single past.
A particular time point within a possible world is called a situation. Associated
with each situation is a set of belief-accessible worlds, desire-accessible worlds and
intention-accessible worlds corresponding to those worlds that the agent believes to
be possible, desires to bring about and intends to adopt, respectively.

In [RG92, RG95], Rao and Georgeff propose an abstract architecture based
on this formalism. The architecture maintains three dynamic data structures repre-
senting beliefs, desires and intentions of the agent and an event queue representing
all events. The event queue is used to generate a list of options (desires) and a subset
of this list of options is selected to be adopted (intentions). The agent then executes
the atomic actions associated with the adopted intentions. Any external event that
has occurred during the whole process is then added to the event queue. Finally, all
achieved desires and intentions as well as all non-attainable desires and intentions

are removed from the appropriate data structures. This abstract architecture

”is not a practical system for rational reasoning. The architecture is
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based on a (logically) closed set of beliefs, desires, and intentions and

the provability procedures required are not computable [RG95].”

Consequently, a number of simplifications are suggested which while constrain-
ing the expressive power, provide a more practical system. First, they consider only
those beliefs that relate to the current state of the world, but which can be ex-
pected to change over time. Second, the means for achieving certain desires and the
options available are represented explicitly as plans. Plans are specified using the
event necessary for plan invocation, the situation that must hold for the plan to be
executable and the primitive actions or subgoals that have to be achieved for the
plan to be successfully executed. Third, the intentions are represented implicitly as

conventional run-time stacks of plans that are adopted to be performed.

7.2.2 Transaction Oriented Multi-Agent System

TOMAS [BR98] is a multi-agent architecture composed of mental, capability
and execution components. Mental components include: beliefs that an agent has,
messages that are passed between agents, goals that are to be achieved, events that
have occurred and the intentions that are adopted. Capability components include :
plans (recipes to perform different tasks) and intention instantiators (that query the
current beliefs of the agent to determine the set of applicable intentions). Ezecution
components consist of plan interpreters that invoke the different steps of the plan
and the event intention manager(EIM). When an event occurs, the EIM invokes the

intention instantiators and collects the set of applicable intentions. It then chooses
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the intentions to be executed and schedules them with the help of the different plan
interpreters. The plan interpreter executes its plan as an ACID (atomic, consistent,
isolated and durable) transaction thereby avoiding race-conditions and providing
concurrency control for intentions performing conflicting operations. The effects of
the transaction are committed using a two phase commit protocol so as to provide
some amount of fault tolerance.

A problem with this architecture is that ACID transactions are not feasible for
long term activities and the computational overhead introduced by the two-phase

commit can be quite substantial.

7.2.3 Resource-Bounded Agent Architecture

An architecture for practical reasoning in resource-bounded agents is discussed
in [BIP88]. It has data structures for representing an agent’s beliefs, desires and
intentions. The agent’s beliefs include a plan library consisting of recipes of plans
the agent knows about. The agent’s intentions are structured into larger plans for
execution. In addition, there is a reasoner to perform reasoning and cause changes
in the agent’s beliefs, a means-end reasoner to propose different options to com-
plete the plans that the agent has adopted and an opportunity analyzer to propose
options in response to perceived changes in the environment. A compatibility filter
checks which options are compatible with the agent’s existing plans and passes on
the surviving options to the deliberation process. Sometimes, existing plans need

to be reconsidered or even abandoned in light of changes in belief. In order that
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the existing plans do not completely control future deliberation and behavior, there
is a filter override mechanism that allows some incompatible options to survive.
The deliberation process makes a choice between competing, surviving options or
between an incompatible option and a previously intended act and produces inten-
tions towards the chosen action(s). These new intentions are then incorporated into
the agent’s plans.

The underlying idea behind the architecture is the view proposed in [Bra87]
that an agent’s plans can play a role not just in producing action, but in mak-
ing practical reasoning tractable. The architecture attempts to constrain the overall
amount of practical reasoning needed using the filtering mechanism. For the filtering
mechanism to reduce the total reasoning time, it should be computationally inex-
pensive relative to the deliberation process. Designing efficient filtering mechanisms
is one of the major issues with this architecture. In addition, the net benefit of the
filtering process is open to discussion, since experiments conducted in a simulated

environment [PR90| could not prove any advantage of using a filtering mechanism.

7.3 Reactive Architectures

The need for error-tolerance and fast reaction in dynamic environments have
resulted in reactive architectures. Reactive architectures do not include an internal
symbolic world model of their environment and do not use complex symbolic reason-
ing processes. They gain their intelligence from interactions with their environment.

They have task-specific modules that initiate direct reactions in response to specific
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situations that occur in the environment. Even if one module fails, the remaining
modules can perform the tasks that they are meant to. Thus, these architectures
increase the fault-tolerance and robustness of an agent. Reactive agents cannot
use their internal knowledge base to dynamically generate and pursue new goals.
Instead, their goal-orientation results implicitly from the interactions with the en-
vironment. So, it is not clear whether reactive architectures are capable of having
long-term goals and demonstrating goal-oriented behavior. These architectures as-
sume that it is not practical to create optimum plans in a dynamic environment
and hence do not possess any capability to create plans. This means that these

architectures cannot make use of plans to optimize an agent’s behavior.

7.3.1 Subsumption Architecture

Subsumption architecture [Bro86, Bro91b| embodies the concepts of decom-
posing a system into layers of task-achieving behaviors and incrementally integrating
the layers through debugging in the real world. The layers form a hierarchy with
the lower level layers corresponding to more primitive behaviors and higher layers
exhibiting more advanced competence levels. The advantage of this approach is that
each layer of control can be built as a completely separate component and simply
added to existing layers to achieve the overall level of competence.

Each layer is composed of simple finite state machines (FSM) that can com-
municate with each other over the fixed (static) uni-directional connections between

them. Associated with each finite state machine is a set of states the machine can be
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in. In addition, each FSM has registers, timers and simple computational machines
to perform operations like vector sums. The FSMs run asynchronously and their
state changes are caused either by the elapse of certain time period or in response
to input messages. Within a layer, there is no centralized control; instead all the
FSMs have equal control.

The different layers are integrated together using suppression and inhibition
with associated time out mechanisms . When an output of a new layer FSM is fed
as an input to an existing layer FSM, this output can suppress the current inputs
of the existing FSM and provide a replacement input for a specific time period.
Analogously, when the output of a new layer FSM is connected to the output of an
existing FSM, it can inhibit all outputs from the existing FSM for a predetermined
time period.

Subsumption architecture is based on four key aspects [Bro9la) :

e Situatedness: It is difficult to create an accurate dynamic model of the ex-
tremely dynamic environment in which an agent is situated in. Therefore, this
architecture advocates relying on the perception of the actual world at the
desired point in time rather than creating an abstract model and referring to

that model when needed.

e Embodiment: [Smi9l] argues that without physical grounding, a disembodied
knowledge based system could get into infinite regress as it reasons with the
abstract knowledge of the world. Embodiment provides a physical grounding

for an agent in the real world whereby it can experience the real world, directly
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manipulate its environment and sense the effects of its actions in the actual

world.

e Intelligence: Intelligence is determined by the dynamics of an agent’s inter-
actions with its environment and not just by the reasoning performed by the

computational engine of the agent.

e FEmergence: Intelligent behavior (like avoiding obstacles) exhibited by delib-
erative architectures, is a result of intelligent functions (like planning and
learning). In contrast, in subsumption architecture intelligent functionality
of an agent emerges from the interaction of the different intelligent behavior

components and the environment.

Subsumption architectures perform well in dynamic, unpredictable situations
where a quick response is very important but the number of such responses or kinds
of behaviors are limited. It is relatively inexpensive to create simple agents that
have a small set of behaviors based on this architecture. However, it is very hard
to build agents that have many behaviors. As the number of layers increase, the
synchronization effort required to manage the large number of layers can become
exceedingly high.

In addition, this architecture has only limited learning and planning capabil-
ities because of the absence of a locus of control. Also, it lacks a mechanism to
incorporate information that an agent cannot directly perceive from its environ-
ment. This limitation coupled with the lack of any abstract representations in the
architecture mandates that the necessary information is available at all times in the
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local environment for the agent to determine its activity.

7.4 Hybrid Architectures

These architectures try to integrate the advantages of both deliberative and
reactive architectures into a single uniform platform. The reactive component is
used for interactions with the environment and the deliberative component is used
for planning and decision making. Hybrid systems are normally designed in a hier-
archical manner with reactive components for acquiring information from the envi-
ronment at the lower levels and deliberative levels for long-term goal determination

and planning in the upper levels.

7.4.1 Procedural Reasoning System : PRS

PRS architecture [[GR92] represents and reasons about actions and procedures
in a dynamic domain. PRS data structures include a set of current beliefs, a set of
goals, a library of plans (Knowledge Areas (KAs)) and an intention structure. The
KAs are of two kinds - the procedural KAs that encode procedural knowledge about
a specific domain, and meta-level KAs that manipulate beliefs, goals, intentions and
other KAs of PRS itself. Each KA has a body that specifies the sequence of actions
that may be performed to achieve a goal or to respond to an event and an invocation
condition that specifies when the particular KA is to be activated. Some KAs (called
primitive KAs) have in the body only a primitive action that is directly performable

by the system. A KA may be invoked because of a change in the agent’s goals or
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beliefs or both. A partially ordered set of all KAs that are chosen for execution
are stored in the intention structure. As each non-primitive KA is executed, it
establishes certain subgoals which in turn would invoke other KAs. All the KAs
thus invoked form a run-time stack of procedures to be executed. When there are
multiple tasks to be performed, each task would have a separate run-time stack
associated with it. An interpreter selects appropriate KAs based on system beliefs
and goals, places selected KAs in the intention structure, selects a task from the
root of the intention structure and finally executes one step of that task. This would
result in the performance of a primitive action, establishment of a new sub-goal or
the conclusion of some new belief. The establishment of new goals and beliefs would
trigger the interpreter to again select appropriate KAs and the process continues.
The main strengths of this architecture are its ability to construct and act upon
partial plans and its ability to pursue goal-directed tasks while being responsive to
changes in the environment. The main issue is that the reasoning that goes on
within the architecture is essentially based on the user definition of the different
metalevel KAs. Because of this user-reliance, the architecture is only as good as the
meta-level KAs that the user specifies. If proper meta-level KAs are not specified
potential problems could arise especially when multiple tasks are executed at the

same time.
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7.5 Discussion

As discussed in Section 1.4, a UIA needs to be deliberative in order to make
decisions about what TOS commands are to be issued when; at the same time it
needs to be reactive to respond to outside events quickly. A purely deliberative
architecture based agent will be too slow in responding to outside events while a
purely reactive architecture based agent will not be able to learn dynamically or
plan its actions. Hence, for a UIA a hybrid architecture seems the most viable
option based on the discussion so far. However, in hybrid architectures, the delib-
erative components and the reactive components are separate entities controlling
different aspects of an agent’s behavior and whether a behavior is controlled by the
deliberative component or the reactive component is pre-determined. As a result,
the behaviors controlled by the reactive components have all the disadvantages of
reactive architectures and the behaviors controlled by deliberative components have
all the disadvantages of deliberative architectures. Thus, planning may take too
long for the plan to be useful, or a reactive procedure may be faulty. This suggests
the need for a meta-level control mechanism that monitors the deliberative and the
reactive components and adapts the components dynamically as and when required.

Such a meta-cognitive architecture is discussed in the next chapter.
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Chapter 8
A Meta-Cognitive Architecture

8.1 Introduction

A UIA needs to react quickly to user requests and observations (TOS readings)
by performing appropriate UIA actions; at the same time, it needs to deliberate over
which are the “appropriate” actions and whether it is ok to perform those actions.
Thus, a UIA needs to be reactive and deliberative at the same time. Not only that, if
a reactive response does not produce the expected outcome, some deliberation may
be required to determine the cause of the discrepancy and to figure out a method
to correct the situation. Similarly, if the deliberation is “stuck” or taking too long,
a reactive response may be needed to change the deliberation.

One way to achieve this is to have a meta-level control mechanism that con-
trols the deliberative and reactive cognitive processes by guiding one process in the
service of the other as and when required. In such a meta-cognitive architecture,
deliberation can alter reactive responses and reactivity can modify the deliberation
dynamically. That is, the meta-cognitive process dynamically guides deliberation to
modify the information that the reactive procedures use to determine the reactive
responses, and guides reactivity to alter deliberation by dynamically updating the
information that the deliberation process uses.

Such a meta-cognitive architecture is shown in Fig 8.1. Simple user instruc-
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tions get translated directly to appropriate UIA actions by the reactive component.
In case there is no applicable reactive procedure to translate a user instruction di-
rectly to a UIA action, the meta-cognitive process notes the situation and requests
the deliberative component to interpret the user instruction and determine the ap-
propriate UIA action(s) to be performed. This deliberation causes changes in the KB
by which a reactive procedure may become applicable. Whenever the reactive com-
ponent produces a UIA action, the meta-cognitive process creates an expectation
regarding the outcome of the action. This expectation causes further deliberation
regarding whether the expected outcome is actually achieved, by comparing against
the new TOS readings; in case the outcome is not as expected, the deliberation pro-
cess can cause new reactive procedures to be applied (if necessary) by updating the
KB. If deliberation is taking too long or not proceeding for some reason, the meta-
cognitive process can trigger reactive procedures that change the data available for
deliberation, thereby modifying the deliberation process dynamically.

Such a meta-cognitive architecture is feasible within the Active logic frame-
work, since Active logic can integrate with non-logical reactive procedures and allow
new information (that may potentially change the reasoning) to be incorporated into
the ongoing reasoning. If the meta-cognitive component, the deliberative compo-
nent and the knowledge base are represented within Active logic and the reactive
component is represented as external processes that get called when the special
predicate “call” gets proven, then the result is a meta-cognitive architecture that
can dynamically modify deliberation and reaction as and when required. Such a

meta-cognitive architecture based on Active logic is discussed next.
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8.2 Domain-Independent Reason-Enhanced Controller for Task-ORiented

Systems (DIRECTOR)

An abstraction of the DIRECTOR architecture is presented in Fig 8.2. In the
actual architecture, the deliberative component and the meta-cognitive process are
integrated with the KB by including the rules that implement the meta-cognitive
process and the deliberative component as axioms within the KB.

DIRECTOR has to cooperate with a human user to elicit a certain behavior
that the user desires from the task-oriented system. In order to accomplish this,
DIRECTOR discerns the user intention for an utterance, adopts desires to achieve
the discerned user intention, creates intentions for achievable desires and invokes
appropriate UTA actions to achieve its intentions. Not only that, it needs to track
the effects of the actions that it initiates and detect any perturbations, such as
contradictory information, or a difference between expected and actual outcomes.
The actions that the UIA triggers will depend on the user instructions and could
range from making simple changes to DIRECTOR’s knowledge base, to translating
the user instruction into a valid TOS command that can cause the TOS to execute
a TOS task.

The different components of DIRECTOR that interact together to perform
the discernment of user intention, adoption of desires to achieve the discerned user
intentions, creation of intentions to achieve desires and translation of the achievable

intentions to UIA actions are detailed below:
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8.2.1 Knowledge Base—KB

The Knowledge Base of DIRECTOR contains the following items.

1. Concept Space that encodes the agent’s world knowledge which include:

e TOS tasks

e TOS commands

e TOS readings

e Domain objects, object names, properties and values of properties
e Relationships (usually termed ontology) of these objects

e DIRECTOR commands to create any of the above items

e Causal relationships between TOS commands, TOS tasks and TOS read-

ings (represented by precondition and effect axioms (Section 6.1).

2. Interpretation Space that contains explicit representations for the following

levels of interpretation of an utterance.

e actual words in the utterance

parse of the utterance

request (main verb) in the utterance

object references in the utterance, maintaining all ambiguity present in

the original utterance (e.g. which light is the “bedroom light”)

disambiguated object references
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3. Observations

4. Desires of the agent to perform different UTA actions and to achieve different

values for the various properties of each domain object.

5. Intentions of the agent

6. Expectations that the agent has

7. Achievements

8. Rules (axioms) that implement the deliberative components and meta-cognitive

process of Figure 8.1

8.2.2 General Parser

For each user instruction, the parser asserts a syntactic structure of the ut-
terance in the KB. The syntactic structure includes the actual words in the user

instruction as well as the parse of that instruction.

8.2.3 Utterance Generator

Whenever the Utterance Generator receives a request (G.R.) to generate an
utterance from the meta-cognitive process, it uses the information in the KB to
generate an utterance. Since the meta-cognitive process is itself a part of the KB,
in fact the request G.R. comes with the information from the KB to generate the

utterance.
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8.2.4 Domain Observer

The Domain Observer gets TOS readings from the connected TOS and asserts

them as observations in the K.B.

8.2.5 Domain Controller

The Domain Controller is the interface to send TOS commands to the TOS.
Whenever the Domain Controller receives the request (D.A.R) to perform a domain

action, it uses information from the KB (which in fact comes along with D.A.R) to

send the TOS command to the TOS.

8.2.6 Reaction Handler

This is a part of the meta-cognitive process that monitors and controls the
cognitive components of the agent. The Reaction Handler monitors the knowledge
base and sends requests to generate utterances (G.R.) to the Utterance Generator
and requests to issue TOS commands (D.A.R) to the Domain Controller based
on the current contents of the knowledge base. In both scenarios, it creates an
expectation regarding the outcome. In the former case, the expectation is used
by the Context-based parser to parse the next utterance. In the latter case, the
expectation is used by the Expectation Processor to initiate observation actions

and/or to compare observations with the expected value.
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8.2.7 Contradiction Handler

The Contradiction Handler is also a part of the meta-cognitive process. It han-
dles the inconsistencies that occur during the reasoning process. When contra(P, —P)
occurs in the KB, the contradiction handler tries to resolve the contradiction. If the
contradiction is resolved in favor of a@ where « is either P or =P, then that « is
reinstated.

How the contradiction is resolved depends on the type of contradiction. In
cases where the agent does not know how to fix an inconsistency, the contradiction

handler creates a desire to get help from the user to fix the inconsistency.

8.2.8 Status Generator

The Status Generator part of the meta-cognitive process monitors the desires
and intentions in the agent’s knowledge base and marks them as achievable or un-
achievable. It also marks intentions that have been achieved so that the Intention
maintainer can delete the ones that have been achieved. It also monitors expecta-
tions and marks them as achieved or unachieved so that the expectation processor

can take appropriate action.

8.2.9 Function Detector

Broadly speaking, the functions in a user instruction fall under two categories
depending on whether the associated UIA action is internal or external. For in-

stance, “Switch on the light” has an inherent TOS command to be issued to the
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TOS, whereas “Microwave is an appliance” has an inherent command for the agent
to learn the concept of microwave. The Function Detector identifies the TOS com-
mands or DIRECTOR, commands in a given user instruction.

Whenever there is an intention in the KB to detect the function in an utterance,
the Function Detector matches the main verbs in the utterance with the commands
stored in the Concept Space of the KB. If a proper match is found then it will
represent this function explicitly in the KB. Otherwise, it will note an error in the

KB.

8.2.10 Utterance Interpreter

The introduction of a new parse in the KB, causes the Utterance Interpreter
to start the interpretation process. It first checks whether all the words in the user
instruction are included in the parse and whether the parse is valid. If a valid parse
is not available, then it creates a desire to parse the utterance again.

Once there is a valid parse available, the Interpreter creates a desire to identify
the function in the utterance. Once the function associated with the utterance is
available in the KB, the Interpreter uses the Concept Space beliefs to determine the
syntax and semantics of the function/command.

From this syntax and semantics, the Interpreter determines the objects that
are involved in the relation and checks whether the actual object references in the
parse do agree with the relation. In case the object references are ambiguous, the

Interpreter creates a desire to determine the referents for the ambiguous object
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references.
Once the Interpreter determines that the object references in the user utterance
hold the same relation as the one specified in the Concept Space for the particular

command, then it creates a desire to perform the action specified by the command.

8.2.11 Reference Disambiguator

An intention to disambiguate a reference causes the Reference Disambiguator
to identify the object that the reference refers to. Reference resolution is carried out
in 3 ways : introspection, interaction with task-oriented system and communicating
with the user. The Disambiguator first introspects to find the referent by checking
whether the required information can be derived from the current KB. If introspec-
tion does not resolve the referent, then the agent tries to disambiguate by creating
a desire to communicate with the user or TOS. Once the referent is determined, it
is represented in the KB.

For instance, to disambiguate the reference “the bedroom light”, the agent
would first introspect to see whether it can determine the referent. If that process
fails to identify the referent , then it will check whether it can find the referent from
the task-oriented system (say, by asking “Which is the light in the bedroom?”, if
it already knows that the expression “the bedroom light” refers to the light in the
bedroom). If both introspection and interaction with the task-oriented system fail

to provide a referent, then the Disambiguator would create a desire to ask the user.
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8.2.12 Context-based Parser

Context based parsing involves fixing an invalid parse based on context. If
there is an intention in the KB to perform context-based parsing, then the Context-

based Parser uses the following items to obtain a valid parse.

e the outputs of the general parser
e the Concept Space portion of the belief set and

e the user expectations (if the current utterance is possibly a user response for

a previous agent query)

8.2.13 Concept Space Maintainer

The Concept Space Maintainer is responsible for making modifications to the
initial Concept Space. The changes that the Maintainer handles include additions,
modifications and deletions of the items in the Concept Space. Corresponding results
of these changes are learning, belief revision and unlearning respectively.

Once the Concept Space Maintainer executes an intention, it then creates a
desire to inform the user about the action that it is taking. The Utterance Generator
would then act on the corresponding intention to actually provide a feedback to the

user. The importance of providing such feedback to the user is discussed in [BH95].
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8.2.14 Expectation Processor

For each domain expectation that the meta-cognitive process produces, the
Expectation Processor determines whether an observation action has been initiated
to determine the actual value of a TOS reading. If such an observation action has
not been initiated then it creates a desire to perform such an action. Once the actual
value is known, it compares the actual value with the expected value to determine
whether there is any discrepancies. In case an expectation is not achieved (based
on the tag assigned by the meta-cognitive process) then the Expectation Processor
can create desires to inform the user. The Expectation Processor also maintains the

current set of expectations by deleting the ones that have been achieved.

8.2.15 Intention Maintainer

The Intention Maintainer creates intentions for achievable desires. It also
deletes those intentions that have been achieved already or those that are to be

dropped.

8.3 Discussion

In order to reason about the internal aspects of a dialog or sub-dialog, it is
important that the interpretations obtained at different levels of the interpreta-
tion process are represented explicitly [McR98, TACT99]. [TAC*99] discusses an

approach that represents the following items for each interpreted utterance.

e L-req (literal) - actual words in a user request
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I-req (intentional) - direct logical interpretation (maintains ambiguity)

D-req (disambiguated) - disambiguated interpretation of the request

P-act (plan) - specification of how to do the act requested in D-req

e E-act (execution) - the action that the system performs

O-act(observation) - monitoring the system’s action

There is a strong correspondence between the items represented in that ap-
proach for each utterance and the items represented in DIRECTOR. The L-req,
I-req and D-req are represented explicitly in the Interpretation Space, P-act and
E-act are represented as agent’s intentions and O-act is represented as a desire to
observe the system’s action. DIRECTOR extends on that approach in the following

ways.

e representing expectations explicitly in order to determine what the O-act

should be.

e representing the status of each desire and intention as either achievable or
unachievable explicitly so that the agent does not attempt unachievable inten-

tions until they are achievable.
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Chapter 9
Implementation

9.1 Introduction

This chapter presents the implementation result of a UIA that is based on the
DIRECTOR architecture (Figure 8.2) and that accepts user instructions in natural
language. The UIA is implemented in Alma/Carne (Section 4.3); therefore, the UIA
KB changes based on M AL axioms discussed in Section 5.3. The implemented UTA
models the beliefs, desires, intentions, expectations and achievements of the agent
and reasons based on a version of the theory of acting and agency (ALFA) presented
in Chapter /refalfa.

The implemented UIA is the dialog agent ALFRED (Active Logic For Reason
Enhanced Dialog) [AJOP02, JAP03, AJP03, JAP04, JAP05b, JAP05a] that can
exhibit some of the meta-linguistic skills that are necessary for a truly viable nat-
ural language human-computer interface. To reduce the complexity of the dialog
problem, ALFRED is always connected to some task-oriented system (TOS) and the
communication between ALFRED and a human user is related to the operation of
that task-oriented system. The ultimate task of ALFRED is to communicate with
a human user in natural language to control different task-oriented systems.

The specific parser that Alfred uses is the Link Parser [GLS95],a syntactic

parser of English, that is based on Link Grammar [ST93]. The syntactic structure
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that the Link Parser produces consists of a set of labeled links connecting pairs of
words that are associated semantically and syntactically.

In general, ALFRED interprets the user requests and creates desires to ac-
complish the requests. Based on knowledge and availability of time and resources,
ALFRED creates intentions to achieve the desires and thus issues the appropriate
instruction to the TOS. In order to determine whether an instruction that it issued
to a TOS has resulted in the desired action, ALFRED creates an expectation re-
garding the outcome, whenever it initiates an action. It then compares the actual

result that it obtains from either the user or the TOS with the expected outcome.

9.2 Examples

The current implementation of ALFRED has been successfully interfaced with

the following task-oriented systems.

e Simulated Pool: ALFRED controls the temperature settings of a pool based

on user needs.

e Movie Player: ALFRED plays different movies based on user requests.

e Toy Train: ALFRED moves various trains to different cities based on user

requests.

e Simulated House: ALFRED controls different appliances in a house based on

user needs.
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e Chess Player: ALFRED plays chess for the user by sending the user requested

moves to a chess program.

e Draughts Player: ALFRED plays the game of draughts for the user by sending

the user requested moves to a draughts program.

Sample dialogs with Alfred when Alfred is connected to some of these task-
oriented systems are given in Appendix A. Switching from one domain to another is
achieved by loading the Concept space for that TOS which includes domain specific
information like names of TOS objects and the syntax and semantics of the valid
TOS commands in that domain. Samples of the initial Concept Space that needs to

be loaded into Alfred’s KB for connecting to each TOS is also given in Appendix A.

9.3 Capabilities

Some of the skills that the current version of ALFRED exhibit and how the
properties of Active logic contribute towards implementing these skills are discussed

below:

e Recognize pauses in dialog

The time-sensitive, history-tracking Active logic provides ALFRED the ca-
pability to notice the passage of idle-time and thus recognize pauses in con-
versation. If no new formulas (observations or inferences) are added into the
logic at step ¢ then, the agent notes at step ¢ + 1 that it was idling in step

1. ALFRED associates idle-time with pauses in the on-going conversation and
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makes use of such pauses to capture the turn in the conversation if or when it

needs to do so. This is illustrated in the following example:

User: Send Bullet to Balty

ALFRED: I do not know the city Balty. Which city is Balty?
User: Send Metroliner to Baltimore.

ALFRED: Ok. [sends Metroliner to Baltimore]

ALFRED: Could you tell me which city is Balty?

Here, since ALFRED did not get a reply from the user for a previous question,
when there is a pause in the conversation, it takes the opportunity to reiterate

its question.

Distinguish between what is known and unknown

Using the introspection rule (4.6), ALFRED can determine that it does not
know something. This knowledge, that it does not know X can be used to
acquire X where X could be the meaning or referent of a word. In the above
example, once ALFRED determines that it does not know the referent for the
city “Balty” it deliberately makes an effort to identify the referent for the city

“Balty” by engaging in a meta-dialog with the human user.

Learn new synonyms for known words

In Active logic new observations can be introduced into the reasoning process
at any step. This allows ALFRED to learn new words as in the following
example.
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User: Balty is Baltimore.
ALFRED: Ok. [learns the new word Balty]
User: Send Bullet to Balty.

ALFRED: Ok. [sends Bullet to Baltimore]

In this example, ALFRED learns the new word Balty and makes use of this new
information in the ongoing conversation. In other words, the newly acquired
information is used in the inference mechanism used to find the referent for
the city Balty during the interpretation of the second utterance. Alma/Carne
makes such onboard reactive reasoning feasible by allowing new formulas (ob-
servations) to be added at any step and using all formulas at one step to derive

the formulas in the next step.

Interpret elliptical utterances

Active logic’s history mechanism provides the framework for maintaining the
context of the ongoing conversation. At any point in time, ALFRED has
access to all the interpretations that it has assigned to past user utterances.
In addition, it has access to its own beliefs, desires, intentions, expectations
and achievements at all previous steps. This means that ALFRED can know
the expectations that have been achieved and those that have not yet been

achieved. ALFRED uses this information to interpret elliptical utterances.

User: Send Northstar to Richy.

ALFRED: I do not know the city Richy. Which city is Richy?
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User: Richmond.
ALFRED: Ok. [learns that Richy is Richmond]

[sends Northstar to Richmond]

Thus, in the example above, ALFRED expects a response from the user that
would provide the meaning of the word Richy. So, ALFRED is able to interpret

the word “Richmond” in the context of the ongoing conversation.

Resolve object references

Reference resolution involves identifying the objects that are referenced in
the ongoing conversation. ALFRED identifies the referent by introspection,
interacting with the task-oriented system and/or getting help from the user.

This is illustrated in the following dialog

User: Send Metro to Newark

ALFRED: I do not know the train Metro. Which train is Metro?
User: Metro is Metroliner

ALFRED: Ok. [sends Metroliner to Newark]

User: Send Metro to Baltimore

ALFRED: Ok. [sends Metroliner to Baltimore]

User: Send the Richmond train to Newark

ALFRED: Ok. [sends Northstar to Newark]

Here, initially introspection fails to provide the referent for the word “Metro”
and hence the agent asks the user for help. Once it learns that Metro is
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Metroliner, the agent identifies the referent for the word “Metro” in the ongo-
ing conversation, using introspection alone. In the last scenario, introspection
provides the information that the Richmond train refers to the train at Rich-
mond. The agent, then interacts with the task-oriented system to identify the

train at Richmond.

Identify communication problems

Active logic’s ability to detect contradictions provides the agent the capability
to identify communication problems and hence attempt appropriate actions

to correct these problems. For instance, consider the following dialog:

User: Send the Baltimore train to Richmond
ALFRED: 0Ok. [sends Metroliner to Richmond]
User: No. Send the Baltimore train to Richmond

ALFRED: Ok. [sends Bullet to Richmond]

Here, the agent moves a train other than the one the user intended by the
phrase “the Baltimore train”. Thus, the user repeats the same request after
a “No”. As originally described in [TACT99], this creates a contradiction—do
X, don’t do X-—which the agent must recognize and consider. In order for the
agent to properly interpret the correction in the latter portion of the above

” is not a change of mind on the

dialog, it must come to recognize that “no
user’s part (as it might have been), nor is it an incoherent self-contradiction

by the user (don’t send it and do send it), but rather an implicit correction
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of the intervening action taken by the agent (sending, say, the Boston train
instead of the Baltimore train). Recognizing this, the agent reconsiders its
initial interpretation of the phrase “Baltimore train”, and chooses another

appropriate candidate to move.

In the example given above, the interpretation of the first utterance causes the
action statement, move(metroliner, richmond) to be asserted into the logic at
some step ¢. The user’s “No”, causes the agent to believe that the interpreta-
tion that it originally assigned to the first utterance is not correct and hence
not(move(metroliner, richmond)) gets asserted at some step j where j > i.
This causes the contradiction rule (4.4) to be triggered and at step j + 1, the
agent recognizes that there is a contradiction in its beliefs. The agent then
initiates its contradiction-handling mechanism to decide which of the contra-
dictands can be trusted. In this particular example, the contradiction handler
causes the latter belief to be trusted over the earlier belief. (The assump-
tion here is that a user’s later commands overrides the earlier commands).
Thus, the agent comes to believe not(move(metroliner, richmond)). It uses
this belief to eliminate metroliner from the candidate list, when it attempts

to resolve the reference “the Baltimore train” the second time.

Discern use of a word from its mention

ALFRED is sensitive to whether a word is being used or mentioned, and

interprets an utterance accordingly as illustrated in the exchange below.

User: Shoot the Bullet to Boston.
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ALFRED: I do not know the command ‘‘shoot’’. What is‘‘shoot’’?

‘‘send’’.

User: ‘‘Shoot’’ means
ALFRED: OK.

[sends the Bullet train to Boston]

ALFRED recognizes that in the first utterance, the user is using the word
“shoot, while when the user defines “shoot”, the word is being mentioned.
The key features that ALFRED use to make this distinction are the context
of the utterance and the knowledge of the allowed actions in the domain that
ALFRED is connected to. The context is specified by the interpretations
assigned to the past utterances and how those interpretations changed from
step to step. The history mechanism of Active logic provides easy access to

the context as well as the current set of allowed actions.

Following [Sak98], the use-mention distinction is characterized in terms of the
possible ostensions of words. That is, X is being “used”, if the speaker intends
to direct the thoughts of the audience to the extension of X; and X is being
“mentioned”, if he intends to direct the thoughts of the audience to some item

associated with X other than its extension. See [AOJP02] for more details.

9.4 Discussion

The dialog system ALFRED illustrates how Active logic can enhance the in-
teractive capability of a task-oriented system, by providing the ability to detect
and recover from miscommunication problems, including ambiguous references, in-
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compatible or contradictory user intentions, and the use of unknown words. This
technology can already be usefully applied to current application domains, such as
home-control software, and it seems that the techniques employed can be refined

and extended to handle more sophisticated domains.
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Chapter 10

Conclusion

The topics covered in this dissertation are the issues associated with creating
a universal interfacing agent that can interface a human user with different devices,
a theory and architecture that a UIA can use and the implementation results of a

UTA. The conclusions and future work are presented in this chapter.

10.1 Contributions

The main contributions of this dissertation and how the contributions were

validated are discussed in this section.

1. This dissertation analyzed the many difficult issues associated with represent-
ing and reasoning about time, action, and their effects, and formalisms that
deal with some of these issues. The conclusion from that analysis is that an
effective framework for a UIA must be time-sensitive, contradiction-tolerant

and allow flexible knowledge manipulation.

2. This dissertation also studied how an agent can decide its activities by rep-
resenting different intentional notions and some formalisms that implement
such notions. The conclusion from that study is that a UIA needs to represent
expectations and achievements in addition to the traditionally represented
notions of beliefs, desires and intentions.
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3. This dissertation also provided an outline of Active logic—a time-sensitive
and contradiction-tolerant logical framework that allows rich knowledge rep-
resentation and flexible knowledge modification, and Alma/Carne—the gen-
eral purpose implementation language cum reasoner for Active logic based

applications.

4. This dissertation also presented a meta-theory MAL to prove properties of an
Active logic KB. If the contents of an Active logic KB can be expressed using
the language Lp, then the meta-theory MAL specifies how the contents of the
KB change over time. Lp is the language for the Alma/Carne knowledge base;
i.e., formulas expressed in Alma/Carne language are converted into clausal

form in language Lp and stored in Alma/Carne KB.

The theory MAL was validated by proving different properties of Active
logic knowledge bases within the theory. Since MAL is an approximation
of Alma/Carne reasoning, it provides some intuitions about how Alma/Carne

knowledge bases evolve.

5. This work also presented ALFA, a theory based on Active logic for a UIA to
reason about its actions and mental attitudes. In fact, the theory provides
a unified solution for some of the issues discussed/addressed in two separate

literatures—action theories and agent theories.

Since ALFA is expressed in Alma/Carne language, the knowledge base of an
agent that uses ALFA, evolves as given by the theory MAL. How ALFA tack-
les different issues associated with representing and reasoning about actions
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and mental attitudes and how ALFA can implement different user instructions

(Section 1.3.10) for a UIA are discussed in Section 6.3.

. This dissertation also surveyed different agent architectures and their appli-
cability for implementing a universal interfacing agent and concluded that a
meta-cognitive architecture in which a meta-cognitive process monitors and
controls the different cognitive activities (deliberative and reactive) of the

agent is necessary for implementing a UIA.

. The dissertation also presented an Active logic based meta-cognitive architecture—
DIRECTOR—for implementing a universal interfacing agent. DIRECTOR
represents beliefs, desires, intentions, expectations, observations and achieve-
ments explicitly in order to reason about an agent’s mental attitudes. The

architecture is validated by implementing it in a dialog agent—ALFRED.

. The dissertation also provided the results of applying ALFA and DIREC-
TOR to implement a natural language based universal interfacing agent—
ALFRED—Active Logic For Reason-Enhanced Dialog. ALFRED has been
validated by testing on multiple task-oriented systems; each TOS is connected
to ALFRED by merely loading the initial concept space associated with that
TOS. Thus, it is possible to connect any TOS to ALFRED just by providing
the Concept Space. One who wants to connect Alfred to a new TOS needs
to only provide the Concept Space description of that domain and not worry
about how the different mental attitudes get created or processed. Sample

Concept Space descriptions and dialogs with Alfred are given in Appendix A.
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10.2 Future Work

ALFA represents only preconditions for actions and not any other conditions;
further research can be done to include other conditions that need to hold for some
duration of time after an action has started. Such conditions may interact in more
complex manner and reasoning about such interactions will be an interesting area
for further study.

Also, currently ALFA does not associate (pre)conditions with any mental at-
titudes. It seems that it is probably necessary to associate such conditions with
individual attitudes. For instance, the action of emptying the jug may have as a
precondition, “jug is full”. In addition, there could be a condition for a particular
instance of that action; for instance, the act of emptying the jug when done in the
evening needs to have as a condition the liquid color is blue. ALFA currently does
not represent and reason about such conditions automatically. The assumption is
that the agent architecture decodes such conditions and creates desires based on
those conditions. In future work, sorting out of the conditions for desire creation
may also be done by ALFA.

Currently ALFA attempts to act on all achievable intentions. However, it may
be useful to create a focus set of intentions and act on that focus set of intentions,
especially when resources are limited and there are many intentions to act on.

Another area for future research is regarding representing and representing at-
titudes of other agents so that UIA’s can collaborate to accomplish different complex

tasks.
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Appendix A

Sample Task-Oriented Systems
Some of the task-oriented systems that were interfaced and tested with Alfred
are discussed below. The contents of the Concept Space that is loaded for each TOS

and sample dialogs with Alfred when connected to each TOS is also given next.

A.1 Toy Train Domain

Examples of TOS commands in this domain are:
[[undo]

[[send, Metroliner, Newark]]

[[send, Northstar, Buffalo]]

[find, Metroliner]|

A.1.1 Concept Space

In this domain, send and find are TOS tasks, is isa DIRECTOR command and
location is a TOS reading. Domain objects include Metroliner, Northstar, Bullet,

Buffalo, Baltimore,.... These are specified by the following predicates:

isa(train, ’Metroliner’).
isa(train, ’Bullet’).

isa(train, ’NorthStar’).
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isa(city, ’Baltimore’).
isa(city, ’Buffalo’).
isa(city, ’Richmond’).
isa(city, ’Pittsburgh’).
isa(city, ’Washington’).
isa(city, ’Newark’).
isa(city, ’Atlanta’).
isa(end, ’to’).
isa(reading, ’location’).
isa(dcommand, ’send’).
isa(dcommand, ’find’).
isa(acommand, ’is’).
isa(acommand, ’no’).
isa(gqnword, ’what’).
isa(gnmark, ’77).

isa(conjunct, ’and’).

Property values of objects are specified as follows:

has (Metroliner, location, Baltimore).
has(Bullet, location, Baltimore).

has (Northstar, location, Baltimore).

The syntax of each TOS reading is specified as follows:

syntax(’location’, [v0, city]).
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Relationship between a TOS task and TOS reading is specified as given below:

effect(find, observation(train, location)).

TOS commands and DIRECTOR, commands are specified as follows:

structure(’no’,
1,
1,
[undo]) .
structure(’send’,
[[vO,v1,’0°], [vO,v2,’MV’], [v2,v3,°J°]1],
[[vO,verb], [v1l, train], [v2, end], [v3, cityll,
[vOo,v1,v3]).
structure(’find’,
[[v0,v1,’0°1],
[[vO,verb], [vl, train]],
[vOo,v1]).
structure(’is’,
[[vOo, v4, °X’], [vO,vi, °’Ww’], [vi, v2, ’S’], [v2, v3, ’0°’]],
[[v0, 1w], [vl,qnword], [v2, verb], [v4,qnmark]],
[what, v3]).
structure(’is’,
[[vOo,v1,’S’], [vi,v2,’0°]1],
[[v1l,verbl],
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[equil, vO, v2]).

structure(’is’,
[[vO,v1,’S’], [vi,v3,°0’], [v2,v3,’s"’], [v3, v4,
[[vi,verb], [v3, conjunctl],

[compose, v0, v2, v4]).

A.1.2 Dialog

User: Send Metro to Richy

ALFRED:I do not know the train Metro.
ALFRED:I do not know the city Richy.

User: Metro is Metroliner

User: Richy is Richmond

ALFRED:OK.

issues [[send, Metroliner, Richmond]] to TOS
User: Send Metro to B

ALFRED:I do not know the city B.

User: B is Buffalo

ALFRED:OK.

issues [[send, Metroliner, Buffalo]l] to TOS
User: Find Northstar

ALFRED:0K.

issues [[find, Northstar]] to TOS
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ALFRED:Northstar is in Baltimore

A.2 Simulated Pool

Examples of TOS commands in this domain are:
[[undo]]

[[switch, on, heaterl]]

[[switch, off, heaterl]]

[[read, temperature]]|

A.2.1 Concept Space

In this domain, switch and read are TOS tasks, is is a DIRECTOR com-
mand and temperature is a TOS reading. Domain objects include Heaterl, Heater?2,

Coolerl and Cooler2. These are specified by the following assertions:

isa(equipment, ’heaterl’).
isa(equipment, ’heater2’).
isa(equipment, ’coolerl’).
isa(equipment, ’cooler2’).
isa(equipment, ’thermometer’).
isa(status, ’on’).

isa(status, ’off’).
isa(reading, ’temperature’) .

isa(dcommand, ’switch’).
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isa(dcommand, ’read’).
isa(acommand, ’is’).
isa(acommand, ’no’).
isa(qnword, ’what’).
isa(qnmark, ’7’).

isa(conjunct, ’and’).

The syntax of the TOS reading—temperature—is specified as follows:

syntax(’temperature’, [v0, number]).

Relationship between a TOS task and TOS reading is specified as given below:

effect(read, observation(thermometer, temperature)).

TOS commands and DIRECTOR. commands are specified as follows:

isa(dcommand, ’switch’).
structure(’switch’,
(LvO,v1,’MV°], [vi,v2,°J°]1],
[[vO,verb], [vl, status], [v2, equipment]],
[vo,vi,v2]).
isa(dcommand, ’read’).
structure(’read’,
[[v0o,v1,’0°1],
[[vO,verb], [vl, readingl],
[vO,v1]).
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structure(’is’,

[[vO, v4, ’X°]1, [vO,vi, °’W’1, [vi, v2, ’S’],

[[vO, 1w], [vl,gqnword], [v2, verb], [v4,qnmark]],

[what, v3]).
structure(’is’,

[[vO,v1,’S’], [vi,v2,°’0°]1],

[[vl,verbl],

lequil, vO0, v2]).
structure(’is’,

([vO,v1,’S’], [vi,v3,’0°], [v2,v3,’s"’],

[[vi,verb], [v3, conjunctl],

[compose, vO, v2, v4]).
structure(’no’,

1,

1,

[undo]) .

A.2.2 Dialog

User: Switch on Hi1
ALFRED:I do not know the heater H1.
User: H1 is Heaterl

ALFRED:OK.
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issues [[switch,on,heater1]] to the TOS
User: Read the temperature.

ALFRED:(0K.

issues [[read,temperature]] to the TOS
ALFRED:Temperature is 70 F.

User :Switch off H1

ALFRED:0K.

issues [[switch,off,heater1]] to TOS
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