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Abstract

The problem of estimating the [requencies of multiple sinusoids from noisy observations
is addressed in this paper. A parametric filtering approach, called the PF method, is
proposed that leads to a consistent estimator of the AR representation of the sinusoidal
signal, given the number of sinusoids. 1t is accomplished by using an iterative procedure
to find a fixed-point of the parametrized least squares estimator (from the filtered data)
that comprises a contraction mapping in the vicinity of the true AR parameter. Employ-
ing appropriate filters, this method is able to achieve the accuracy of the nonlinear least
squares estimator, with much less computational complexity and initialization require-
ment. It can also be implemented adaptively (recursively) in order to track time-varying
frequencies. In this way, the PF method provides a flexible and efficient procedure of
frequency estimation. An example of the AR filter is investigated in detail to illustrate

the performance of the PF method.

Abbreviated Title: “Frequency Estimation by Parametric Filtering”
Key words and phrases: Autoregressive, contraction mapping, fixed-point, frequency
estimation, iterative filtering, least squares, parametric filtering, sinusoid, spectral anal-

ysis.






1 Introduction

Let {z:} be a random process (signal) consisting of ¢ superimposed real sinusoids with
unknown frequencies, as given by
q
Ty = Zﬂk cos(wit + ¢r). (1.1)
k=1
In this expression, ¢ > 0 is a known integer, the 8; and wj are unknown constants,
satisfying By > 0 and 0 < wy < -+ <w, < 7, and the ¢; are independent and uniformly
distributed random variables on [0,27). Suppose that the signal is contaminated by
additive noise so that the observed mixed-spectrum process, denoted by {y;}, can be

written as
Yy = ;17[+6t (t:(),:tl,:{jg,) (12)

Assume that the noise {¢,} is independent of {¢;} and can be modeled as a linear process

of the form

€ o= Z lz/)]' ét—jv {é‘l} ~ IID(0,0’?), Z II/)J'! < oo. (13)

j=—oo

Under these assumptions, {y,} becomes stationary, with mean zero and autocovariance

function
Yoo I €
= b(yl-{*‘l‘yi) =T, + Trs
where r¥ := I(z1,2,) and S := E(eq-¢;) are autocovariance functions of the signal and

the noise, respectively, and can be written as
! 2 2
2 192 . _
rt = Z 3B cos(wrr) and 1 = o; Z Virrhj. (1.4)
k=1 J

The objective of frequency estimation is to find estimators of the sinusoidal frequencies
wi on the basis of a finite data set {yy,...,¥,} obtained from the random process (1.2).
Among a variety of different procedures of frequency estimation in the literature,

there is one, known as the AR approach (Kay and Marple, 1981), that resorts to the AR
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representation of the sinusoidal signal under investigation. In fact, {;} is a solution of

the following homogencous autoregressive (AR) equation of order 2¢:

2q
Y aja-; =0. (1.5)
—~

The AR coeflicients «; in this equation are defined as the coeflicients of the polynomial

2q ) q ) )
A(z) =Y a; 2577 1= [ (2 — €%)(2z — e7'%). (1.6)
It is clear that the a; in (1.5) completely determined by wy, and vice versa. Moreover,

the a; are real and symmetric in the sense that
ap=1 and agy_j=qa (J=0,...,q—1). (1.7)

Therefore, the original problem of frequency estimation can be equivalently stated as
that of estimating the AR paramcter vector a := [ay,--- ,a,]7, where the superscript T'
denotes matrix transposition. This reparametrization enables us to employ many well-
studied linear methods, which usually end up with solving systems of linear equations.
Once an cstimate of a becomes available, the {frequency estimates can be obtained from
the zeros of A(z) in (1.6), with a; replaced by their estimates.

A widely-used procedure for estimating the AR parameter a is the so-called least
squares (LS) estimator, also known as Prony’s spectral line estimator (Kay and Marple,
1981), which can be summarized as follows. Due to the AR model (1.5), the observed

process {y;} satisfies the equation

2q 29
ZCI,]‘ Yty — €4 with € 1= Za] €tj- (18)
j=0 j=0

For a given time series {yi,...,y,} ol length n > 2¢, (1.8), together with (1.7), gives

y =-YQa+e. (1.9)
In this equation,
Y241 T Y1 Yaq - Y2 €29+1
y = : Y = : : e = : (1.10)
Un + Yn—2q Yn—t = Yn—29+41 Cn

(o]



and Q is a (2¢ — 1)-by-¢ matrix of the form

I O
Q: =107 1
I o

where I stands for the (¢ — 1)-by-(¢ — 1) identity matrix, Ithe (¢ — 1)-by-(¢ — 1) reverse
permutation matrix, with 1’s on the antidiagonal and 0’s elsewhere, and 0 the zero vector
of dimension ¢ — 1. The LS estimator of a, denoted by arg, is defined as the minimizer

of the sum of squared errors ||y + YQal|?. Simple algebra gives
as=-Yy (1.11)
where Y1 is the pseudo-inverse of YQ, as specified by
Y= (QTYTYQ)'QTY”. (1.12)

The AR approach is computationally attractive as compared {o the nonlinear least
squares (NLS) approach, since the former solves a system of linear equations, whereas
the latter fits the data with a sum ol sinusoids whose amplitudes and frequences are
free variables, yielding a nonlinear optimization problem. On the other hand, the AR
approach has also some serious shortcomings, among which is the inconsistency of apg as

an estimator of the AR parameter a. In fact, as n tends to infinitly, the strong ergodicity

of {y;} gives
n YTy @3 Ry and n"lYTy i r, + f'f

(see Li and Kedem, 1991), where R, and ¥, are defined by

Y 7 Y Y

To T1 T'_2q+2 T

v y Y y

_ r T I L r

. 1 0 ~2q+3 _— 2
R, := . . ' and Ty := ‘ , (1.13)

v y y y

| T2g—2 T24-3 o ] L T2¢—1 ]




respectively, with the superscript B standing for the backward rearrangement of a vector.

Irom (1.9), we can also write
T, E = (n-20)7E(YTy)
= (0= 207~ E(YTY)Qa + E(YTe)}
= —-R,Qa+rf.+17 +R.Qa,

where R, and ¥, are similarly defined from {¢;} as R, and ¥,. The last equality employs
the identity (n — 2¢)"'E(Y%Te) = t. + t? 4+ R.Qa, which can be easily verified upon
noting that the vector e has a similar representation as (1.9), with Y and y replaced by

the corresponding matrices from {¢,}. Using these results in (1.11) as n — oo yields

arg =% —Ry‘]ry =a-— R;l(rf + R.a), (1.14)
where

R,:=Q'R,Q, r,:=Q"(r,+1F)=2Q"r,

and R, and r, are defined analogously from {¢}. It is readily scen from (1.14) that the
limit of apg differs from the parameter a being estimated, since in general r, + Rea # 0.
In other words, the above AR approach produces an inconsistent cstimator of the AR
parameter a. It is not surprising, since {e;} in (1.8) is not white so that {y;} obeys an

ARMA rather than an AR model. As will be seen later, this problem of inconsistency

can be resolved by a parametric filtering approach, which we call the parametric filtering

(PF) method.

2 Parametric Filtering Method

To alleviate the inconsistency problem of the AR approach, we shall consider estimating
the AR parameter a, not directly from the original data, but from the fillered data, upon
using an appropriate parametric filter. It will be shown that the LS estimator from the
filtered data can be made consistent, by “tuning” the filter parameter so as to eliminate,

in the filtered data, the counterpart of the vector r. + R.a in the limit.



2.1 Definition and Algorithm

Keeping this idea in mind, let us first introduce a linear time-invariant causal filter, whose
impulse response sequence is denoted by {h;(a),7 =0,1,...}, where a := [aq, - o)t
is a parameter vector that takes on values in a closed and bounded subset A of a ¢-

dimensional Euclidean space. Assume that the filter is BIBO-stable, that is, 3 |h;j(a)| <

oo, for all &« € A. Let {y;(a)} be the filtered process given by
yle) =3 hj(e) yej,
—~

and define the filtered signal {#,(a)} and the filtered noise {¢;(a)} analogously.
According to the theory of lincar filtering (see, e.g., Brockwell and Davis, 1987), the

filtered signal {z,(a)} remains a sum of ¢ sinusoids which possess the same frequencies

as the unfiltered signal {a;} in (1.1), with possibly different amplitudes and phases. As

a matter of fact, z;(a) can be expressed as

z(a) = g,ﬂk(a) cos{wit + ¢i(a)},

where fi(a) and ¢i(a) are amplitudes and phases of the filtered sinusoids, as specified
by

Bi(a) := fi |H(wy; )] and i) := ¢p + LH(wp; ) mod 2,
respectively, and H(w; a) is the transfer function of the filter, as defined by

H(w;a) = i hj(a) e v,

[t is quite clear that the original problem of frequency estimation is not altered by
the linear filtering and can be cquivalently stated as that of estimating the same AR
parameter a in terms of the fillered processes.

Now let aps(a) be the LS estimator of a on the basis of the filtered time series
{yi(a),...,yn(c)}. Since the strong ergodicity still holds for {y:(a)}, it can be shown

as before that apg(a) converges almost surely to the vector
a(a) :== =R (a) ry() (2.1)

b}



which, similar to (1.14), can be written as
a(a) = a~ R (a){r.(a)+ R.(a)a}. (2.2)

In these expressions, the autocovariances are defined from the corresponding filtered
processes. Multiplying each side of (2.2) by R (), and since R,(a) = R,(a) + Re(),

we obtain
R.(a)a(a) + R(a) a(a) = Re(a)a - r(a).
Assuming for the time being that R,(a) is nonsingular, we obtain
a— a(a) = R;'(a) {r(a) + R.(a) a(a)}. (23)

Evidently, if there exists a filter parameter a* in the interior of A such that R.(a*) is

nonsingular and
a(a*) = -R7 ' (a*)r(a¥), (2.4)

then from (2.3) we would obtain a(a*) = a. This implies that by fixing the filter
parameter a = o, the corresponding LS estimator apg(a*) becomes consistent for
estimating the AR parameter a. In other words, the requirement (2.4) implies r.(a*) +
R(a*)a=r(a*) + R(a*)a(a*) = 0.

Suppose that the autocorrelation function of the noise {¢} is known, and that the

filter is parametrized so that
(A1) a=-Ra)r(a) for all a € A.

Under this assumption, (2.4) reduces to a(a*) = a*, which indicates that the desired

*

filter paraimeter o™ is a fized-point of the mapping a(a). Moreover, since a(a™) = a, it
also follows that a* = a. Therefore, with (A1) being satisfied, il is no longer necessary
to distinguish the AR paramecter a and the desired filter parameter a*, and the problem
of estimating a becomes identical to that of estimating a™.

It is interesting to note the similarity between (A1) and the Yule-Walker equations.

In fact, for an AR(2¢) process with AR parameters satisfying (1.7), the vector of the first
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q free parameters will be the solution of (Al), with R.(a) and r.(a) being replaced by
their counterparts defined from the autocovariances of that AR process.

Given a finite sample of {y;}, let &(a) be a consistent estimator of a(a). Since a* is
a fixed-point of a(a), it is reasonable to estimate a* (= a) by a fixed-point, denoted by

&, of the random mapping a(a), so that
a(&) = a. (2.5)

We refer to this procedure of frequency estimation as parametric filtering method, or
simply PF method. The fixed-point & is called PF estimator of the AR parameter
a(= a*) and the corresponding angular {requencies, denoted by &y, of the zeros of A(z)
in (1.6), with & in place ol a, are called PF estimators of wy.

In order to find the PI estimator &, a simple iterative algorithm, known as the fized-
point iteration (FPI), can be employed. This algorithm generates a scquence {é,,} of

estimators according to the iterative procedure

A

a,, = a(dp-1) (m=1,2,...). (2.6)

It will be shown later that under certain conditions &, converges to & as m — oo almost
surely, provided that the sample size n is sufficiently large.
Note that (2.6) can be regarded as an iterative filtering procedure, which can be

implemented in two steps within cach iteration:
STEP 1. Filter the data with the filter parameter a = &1
STEP 2. Compute &,, = &(&;,—1) from the filtered data.

Other iterative filtering procedures for frequency estimation also exist in the literature

(see, e.g., in Kay, 1984; Dragosevi¢ and Stankovié, 1989).

2.2 Least Squares Estimator

So far we have not specified the estimator 4(e). In fact, any estimator would qualify as

long as it converges (stochastically) to a(a) when the sample size n tends to infinity. In
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the following, we specialize the choice of a(a) by considering the LS estimator from the
filtered data.

Notice that given the finite data {y;,...,y.}, the filtered process {y:(a)} can only
be approximated by

t-1
MCIRS Zhj(a)yt_j (t=1,...,n). (2.7)

i=0
Therefore, the estimator 4(a) should be obtained from {gi(a), ..., 7.(a)}, rather than
the unavailable data {y)(a),...,y.(c)}. Enlightened by the estimator apg(a), which

depends on {y,()}, we may take

A

i) = ~ V() §(ev), (2.8)

where §(a) and Y'(a), defined from {§,(ax)}, are the counterparts of y and Y1 given by
(1.10) and (1.12). It is readily shown that () in (2.8) is the LS estimator that minimizes
the criterion ||§(c) + Y (@) Qa(a)||2. It will be shown later that under appropriate
conditions () in (2.8) converges almost surely to a(ar) as n tends to infinity. In other
words, a(a) is a strongly consistent estimator of a(a). This strong consistency can also
been shown to be uniform in a so that many properties of a(a), as a deterministic

function of a, are retained by its estimator a(a).

2.3 Relation to the CM Method

It should be pointed out that the PI" method presented above is an extension of a fre-
quency estimation procedure recently proposed by He and Kedem (1990) and by Yakowitz
(1991). A somewhat more systematic and rigorous treatment of this procedure and its
statistical properties can be found in Li and Kedem (1991), and Li, Kedem, and Yakowitz
(1991), where the procedurc was referred to as CM method (or contraction mapping
method). In essence, the CM method deals with the case of a single sinusoid (at a
time) in ambient noise, whereas the PF method extends it to the gencral case of multiple

sinusoids. Indeed, for ¢ = I, we note that (A1) becomes
o = —20(a)/ri(a) (2.9)
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and the LS estimator in (2.8) reduces to

ZJL (@) {gu(@) + guaf }/Z?h 1

If we reparametrize the filter by setting ¥ := —a/2, then (2.9) can be written as

where p{(V) stands for the first-order autocorrelation of {e(a)}. This relation is read-
ily recognized as being the fundamental property required by the CM method for the
parametrization of the filter. Moreover, it can be shown (Li and Kedem, 1991) that under
appropriate conditions p(v) := —a(«)/2 is a consistent estimator of the first-order auto-

correlation of {y:(a)}. With this estimator, the fixed-point iteration in (2.6) becomes
U = p(0mar)  (m=1,2,...),

which coincides with the iteration of the CM method that produces a sequence {1§m} for
estimating ¥ := —«* /2 = coswy.

Statistical properties of the CM method have recently been studied by Li and Kedem
(1991) and Li, Kedem, and Yakowitz (1991). In these works, it was proved that under
appropriate conditions the CM method provides a strongly consistent estimator of wy,
and that the estimator is asymptotically normal with a variance inversely related to the
signal-to-noise ratio of the data. In the next section, we shall analyze the PF method
along the same lines as in these works in order to establish the strong consistency and

asymptotic normality of the PI" estimator &

2.4 Nonsingularity of Autocovariance Matrices

To end this section, let us consider the conditions under which R;(a) and R.(a) are non-
singular so that the inverse matrices in (2.3) and (2.4) are well-defined in the derivation
of the PF method. For this purpose, we first extend SBi(a) and wy for k=¢+1,...,2¢
by defining

Bog-r1(a) 1= Bi(a) and  wogopy1 1= —wy (k=1,...,9).
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In so doing, we can write the autocovariance function r%(e) as

= ;; %ﬂf( cos(wyT) = Z ,Bk

with z; 1= exp(iwy). It is not difficult to verify from this expression that R () can be

decomposed as
R,(a) = QTSPSHQ, (2.10)

where the superscript H denotes the Hermitian transpose. In this decomposition, P is a

2¢-by-2q diagonal matrix of the form

= 3 diag{B}(cx),..., B3,(cr)}
and S is a (2q — 1)-by-2¢ Vandermonde matrix as specified by

S:= [Sl,' ©e ,qu] (211)

with s = [1, 2, - ,zZq—Q]T. Since Q is of full column rank ¢ and S¥ of full column

rank 2¢ — 1, the decomposition in (2.10) indicates that R, (a) will have full rank ¢ if P
is nonsingular. It is easy to see that the nonsingularity of P is guaranteed if G(a) > 0,

or, equivalently,
(A2) H(wga) #0  forallk=1,...,qand € A

That is, the filter should pass all frequencies of the signal. Therefore, under (A2), R ()
is nonsingular and hence the derivation of (2.3) is valid. Morcover, the nonsingularity
of R () is guaranteed if r§(a) = var{e,(a)} > 0 (see, e.g., Brockwell and Davis, 1987,
Proposition 5.1.1). By the continuity of H(w; &) in w, r§(a) = 0 if and only if H(w; a) =
0 for all w € (—x, 7). Hence R.(a) is also nonsingular under (A2).

3 Statistical Properties of the PF Estimator

To investigate statistical properties of the PI method presented in the preceding section,

we shall answer the following questions:
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1) Under what conditions does the random mapping a(a) have a fixed-point &?

ii) Under what conditions does the fixed-point iteration in (2.6) converge to the fixed-

point &? and

ii1) What limit and limiting distribution does the PF estimator & possess as the sample

size n tends to infinity?

This section provides a set of sufficient conditions under which a unique fixed-point &
exists and can be found in the vicinity of a* by the fixed-point iteration almost surely,.
Under these conditions, & is also shown to be strongly consistent and asymptotically

normal for estimating a*. These results are formulated in terms of the LS estimator

a(a) defined by (2.8).

3.1 Existence and Convergence
Suppose that the filter also satisfies the following regularity conditions:
(A3) There exist constants ¢; > 0 with 352y jc; < oo such that |hj(a)| < ¢; for all

7=0,1,... and a € A.

(A4) The hj(a) are continuously differentiable in A and there exist constants d;jz > 0
with 37520 jdj < oo such that |0h;(a)/day| < djp forallk =1,...,¢,7=0,1,...,
and o € A.

Under these conditions, we shall first show that the random mapping &(«) is untformly

consistent for estimating a(a) up to the first derivative, as summarized by the following

lemma.

Lemma 3.1 Suppose that (A1)~(A4) are satisfied. Then, a(a) and a(a) are continu-

ously differentiable, and, as n — oo,
ala) ¥ ala) and &'(a) = a'(a)

unifromly in a € A, where & () and a’(a) are Jacobian matrices of a(ax) and a(ar),

respectively.
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PROOF. The proof resorts to some basic results of Li and Kedem (1991), concerning the
uniform strong consistency of sample autocovariances and their derivatives of the filtered
data. In particular, according to Lemma 5.2 and Remark 5.1 of Li and Kedem (1991),

(A3) guarantees that
n YT (o) Y(a) %3 Ry(a) and n 'Y (a)§(a) %3 Fy(a) + iP(a)

uniformly in & € A as n — oo. Since R () is nonsingular under (A2), it follows that

Yf(a) is well-defined almost surely for sufficiently large n and
a(e) 5 —Ry () 1y (a) = a(a)

uniformly in & € A. Applying Lemma 5.2 and Remark 5.1 of Li and Kedem (1991) again
shows that 4(a) and a(a) are continuously differentiable under (A4) and &'(a) *3 a'(«)

uniformly in a € A. %

In the sequel, we shall also make use of the following lemma.
Lemma 3.2 Let o be the spectral radius of the matriz C(a*), where
Cla) = R;'(a) Ro(a). (3.1)
Then (A2) implies p < 1.
PROOF. It is easy to verify from (3.1) that C(a) can also be written as
Cla) = {I+I(a)}7' with I'(a):=R;'(a)R.(a). (3.2)

Let p; and pj, (j = 1,...,q), be the eigenvalues and corresponding eigenvectors of
I(a*), then 1/(1 + p;) are eigenvalues of C(a*), associated with eigenvectors p;. By
definition (Ortega and Rheinboldt, 1970, p. 43), ¢ = max {1/|1 + p;|}. Therefore, p < 1
if |1+ p;] > 1 for all 5. On the other hand, since D(a*) p; = p;p;, it follows from (3.2)
that

p_?R.E(a*) P = /4 {prRé(a*) p]}

12



Note that R,(a*) and Re(a*) are positive definite under (A2). Therefore, we obtain
p]HRI(a*)pj > 0 and p]HRE(a*)pj > 0 for all y. This, in turn, yields g; > 0 for all 5.
As a consequence, we obtain |1 4 p;| =14 u; > 1 for all § and hence p < 1. ¢

Based on these lemmas, the cxistence of the PF estimator & as a fixed-point of &()

and the convergence of I'PI to & can be established as follows.
Theorem 3.1 Under (A1)-(A4), the following assertions hold almost surely, provided
that n s sufficiently large.

a) There exists a neighborhood Sx(a*) := {a: |ja — a*|| < A} of a*, with A being

independent of n, in which the random mapping &(a) has a unique fized-point éx.

b) The sequence {&,,} produced by (2.6) converges to & as m — oo if &g € S5(&),

where Ss(&) C Sa(a) is a neighborhood of &, with é being independent of n.

PrOOF. Notice that (2.2) yiclds a(a) — a(a*) = —R;(a) {r.(a) + R (a)a}. Since

(A1) is equivalent to @ = =R} (a) r.(a), it is easy to verifly that
a(a) — a(a®) = R, (a) R(a) (@ — a) = Ca) (a — a¥). (3.3)

It follows from the continuity of C(a) that the Jacobian matrix of a(a) at a* is given
by a'(a*) = C(a*). By Lemma 3.2, the spectral radius of a’(a*) is strictly less than
1. Thus (see, e.g., Ortega and Rheinboldt, 1970, Theorem 2.2.8, p. 44), there exits a
norm || - || such that ||a’(a*)]| < I. Furthermore, the continuity of a’(a) and C(a) also
guarantees the existence of a constant 0 < ¢ < 1 and a neighborhood Sa(a*) := {a :

la — a*|| < A} € A such that
la' (@) ¢ and [|C(a)]| <c (3.4)

for all @ € Sa(a®). Let x := (¢ 4+ 1)/2 < 1, then, for any 0 < Ay < A, the uniform
convergence of &(a) to a'(a) implies that ||a'(a)|| < « almost surely for all & € Sa,(a*),
provided that n is sufficiently large. On the other hand, using the mean-value theorem
(Ortega and Rheinboldt, 1970, p. 71) we can show that almost surely

[a(cr) — &(a2)|| < & |la — | (3.5)
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for all ay, as € Sa,(@*), that is, the random mapping a(a) is contractive on Sa,{(*)
almost surely, provided that n is sufficiently large. In addition, the convergence of a(a)

to a(a), as shown in Lemma 3.1, guarantees that
la(a”) — o’ = [la(e”) — a(a™)|| < (1 = £)Ao

almost surely for sufficiently large n. Therefore, according to Theorcm 5.2.3 of Stoer and
Bulirsch (1980), the mapping () has a unique fixed-point & on Sa,(a*). Since Aq is
arbitrary, & must be a unique fixed-point of 4(«) in the interior of Sx(a*). Part a) of
the theorem is thus proved. To show Part b), we note that for any neighborhood Ss(é)
of the fixed-point &, if Ss(&) C Sa(a*), then (3.5) remains valid almost surely for all
oy, ay € Ss(&), that is, a(a) is almost surely a contraction mapping on Ss(é&), provided
that n is sufficiently large. By Theorem 5.2.2 of Stoer and Bulirsch (1980), the sequence
{&,.} produced by (2.6) converges to & as m — oo almost surely, if n is sufficiently large
and the initial value &y is chosen in Ss(&). &

REMARK. Theory of numerical analysis (see, e.g., Stoer and Bulirsch, 1980) tells us
that the spectral radius p of C(a™) is crucial to the rate of convergence of FPIL. Indeed,
the smaller the spectral radius g is, the faster is the convergence of FPI to &. As seen

in the proof of Lemma 3.2, o = 1/(1 + fuuin), where figin := min{y;}. Therefore, to

)
accelerate the convergence of IFPI, py,;, should be made as large as possible. Notice
that
fimin = Min M
p#0 R (a*)p
In the case of ¢ = 1, pyin recudes to ri(a*)/r§(a*), which is readily recognized to be
the signal-to-noise ratio of the filtered process {y,(c)} with the desired filter parameter
a = a*. For ¢ > 1, i can be regarded as a generalized indicator of the amount of

signal relative to the amount of noise in the filtered process {y;(a™)}.



3.2 Strong Consistency and Asymptotic Normality

Suppose that & is the fixed-point of the random mapping a(«) in the vicinity of a*. In
the following, we shall investigate asymptotic properties of & as the sample size n tends
to infinity. The following theorem claims the strong consistency of the PF estimator &

for estimating a”.

Theorem 3.2 Suppose that (A1)—(A4) are satisfied, and let & be the unique fized-point
of a(a) in Sa(a*), as given by Theorem 3.1. Then & converges to a* almost surely as

n — oo.
PRrOOF. Since &(&) = & and a(a*) = a*, it follows from (3.3) that
& — o = 6a(d) + a(a) — a(a™) = sa(a) + C(a) (& — a™) (3.6)

where da(a) 1= &(a) — a(a). By (3.4), we have ||C(a)|| < ¢ < 1 for any a € Sa(a™).
It turns out that

l& = a7 < [|6a(&)] + |C(&)

| |& — a*|| < [[64(&)|| + cl|& — a7
and hence

0<(1-¢lla-ar| <[éa(a)

| (3.7)

almost surely for large n. The uniform convergence of a(a) to a(a), as shown in
Lemma 3.1, guarantees that ||§a(&)|] ©3 0 as n — oo, which, together with (3.7), proves

the assertion. &

The asymptotic normality can also be established for the PF estimator &. To this

end, we first need the following lemma, concerning the asymptotic normality of a(a*).

Lemma 3.3 Suppose that (A1)-(A3) are salisfied. If in addition E(€}) < oo, then, as
n — o0, ynéa(a*) = /n{ad(a*) — a} converges in distribution to a normal random

vector with mean zero and covariance matriz
—— -1 * T * -1 *
V = R;'(0") Q" W(a") QR; ()
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where W(a*) := [w;;(a™)] and

0 2¢q 2q
wi;(a*) 1= 42{ akerri_k(a*)} {Z ax r§+j_k(a*)}. (3.8)
=0 k=0 k=0

forz, 3 =1,...,2¢— 1.

Proo¥F. The proof utilizes some basic results of Li, Kedem, and Yakowitz (1991), con-
cerning the asymptotic normality of sample autocovariances of the filtered data. First of

all, under (A1), it is easy to scc that (2.8) yields
sa(a”) = —{(QTY"YQ)'QTYTy +a}.

Here, as well as in the following, the argument a* is omitted in data and autocovariance
matrices for the sake of brevity. Moreover, by following the same lines as the proof of

Theorem 3.1 of Li, Kedem, and Yakowitz (1991), we can write
n'QTYTYQ =R+ o0p(n?) and n'QTYTY =i+ op(n~V?), (3.9)

where R := QTRQ, ¢ := QT(F + FB) = 2QTF, with

and
n—j '
fir=nt Y dui(e)gla’) (G =0,1,...,2¢—1).
t=1
Therefore, it follows from (3.9) that
sa(a”) = —(R7'F+a)+op(n'?)
= —R7'(#+ Ra)+op(n™7?). (3.10)

Let r; := r¥(a*) for brevity. Then, according to Theorem 3.1 and Remark 3.3 of Li,

Kedem, and Yakowitz (1991), /n {#; —r;},( = 0,...,2¢ — 1) are asymptotically jointly
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normal with mean zero and covariance matrix V, := [v;;], where

[o 0]

vy = 212,3,3(0(*) cos(iwy) cos(jwy) _Z_ re(a”) cos(Twy)
+ (1= 3)ri(a”)ri(a”)

£ Y (e 1 (@) + 1 () (e} (3.11)

fori,7=0,1,...,2¢ — 1, and p := E{¢/(a*)}/E{e}(a*)} < co. On the other hand, the
vector £+ Ra in (3.10) can be regarded as the value of some function f(p, ..., Cag-1) at
(; = Fj, that is, # + Ra = f(#,...,72g_1). For this function, it is also true, by (2.1),

that
f(ro,...,1r29-1) = ry(a”)+R,(a")a
= r(a) + Ry(a)a(e’) =
Therefore, invoking Proposition 6.4.3 of Brockwell and Davis (1987) proves that
Vv (# 4+ Ra) = Vi {f(Fo, - . ., Fage1) — £(r0, - - ., T29-1)}

converges in distribution to a normal random vector with mean zcro and covariance
matrix V; := FV,FT, where F is the Jacobian matrix of f evaluated at (ro,. .., 2-1).

It is easy to verify that

t+Ra=QY(F+i%+RQa)=Q[f: R :i¥a,

where & := [ag, 1, ,as,]T. Simple algebra shows F = [fy, -+ ,{2,-], where
@ d1-j + Q14
fo = Q' : and f; = QT
A2q-1 G2q-1—j + Q2g—1+4;

for j=1,...,2¢ — 1, with a; := 0 for k < 0 and k£ > 2¢. Upon noting that v,; given by
(3.11) are symmetric in the sense that v_; ; = v; _; = v_; _; = v;;, we can rewrite V; as

V; = QIBQ, where B := [b;;], (1,7 = 1,...,2¢ — 1), with

2q
bi]' = Z Vi—k,j—1 QpaJ .
k, =0

17



As can be seen from (3.11), there are three groups in the expression of v;;. The first

group involves the sinusoidal terms, all of which are cancelled out in the expression of

2 -
bi;, because Y12, a,zkl =0for k=1,...,q and hence

anl cos{wi(j — D} =0
=0

;2¢—1 and k = 1,...,9. The second group in (3.11) consists of vj;

for j = 1,...,:
(a*). It is easy to see that the corresponding term in V; can be written

€

(p=3)ri(a)rs
as (p — 3) UUT, where

U = Q'[f(a) ! R(a”) i1t
= r{a")+R(a")a = r(a")+R(a")a™.

Under (Al), U = 0 and hence that term in V; vanishes. Combining these results, we

obtain V; = QTBy Q where By := [b/;] with

o] 2q

bgj = Z Z g ap 7’i+i_k(a*){7'i+j_z(a*) + ri_j+,(a*)}.
T=—00 k, =0

Furthermore, it is not difficult to verifly that By can be written compactly as

Bo= ), ATr (a®)r!(a*) (A +1A),

where A is a (4¢ — 1)-by-(2¢ — 1) matrix of the form
A3q 0
A= g aaq
0 dg

and rp(a®) = [ri_, . (a), - ,rey, (o)), Since IA = AT and IQ = Q, we obtain
iAQ = AQ. Therelore,
Vi=2 Y Q'ATr,(a")rf(a") AQ.

T==00
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This expression can be further simplified as
V, =1 QTATr () (a") AQ = Q'W(a) Q,
=0
upon noting that r_,(a) = Ir,(a), QTATr,(a*) = U = 0, and
W(a™) =14 i ATr (a®)rf(a®) A,
=0

Finally, since R &% R,(a*), by Slutsky’s theorem (Lehmann, 1982, Lemma 4.1, pp. 432~
433) we obtain from (3.10) that /né6a(a*) = —R~1\/n (£ + Ra) + op(1) converges in
distribution to N(0, V). ¢

With the aid of this lemma, we are now able to show the asymptotic normality of the

PF estimator &

Theorem 3.3 Suppose that the conditions in Theorem 3.2 are satisfied and that E(€}) <
0o. Then, as n — oo, \/n (& — a*) converges in distribution to a normal random vector

with mean zero and covariance matrix
Vo =R '(a")Q"W(a") QR () (3.12)
where W (a®) is defined in Lemma 3.3.

PROOF. It follows from (3.6) that {I — C(&)} (& — a*) = éa(&). By the mean-value

theorem, 64(&) can be written as

§a(&) = {/5 (@ + M — a))d)\}(d—a*)

Q
3
o

where §&'(ar) is the Jacobian matrix of §a(a). Since 6d'(a) = &'(a) — a'() =

uniformly in a € A, as guaranteed by Lemma 3.1, we have
/5 A& — a%))d) =3 0.

In addition, the consistency of &, together with the continuity of C(a), implies that

C(&) %3 C(a™). Thercfore, by Slutsky’s theorem, /n (& — a*) has the same asymptotic
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distribution as /n {I — C(a*)}~'64(a”). Invoking Lemma 3.3 shows that \/n (& — o)
converges in distribution to N(0, V,), where V,, := {I-C(a*)} 'V {I- C(a*)}"*. Fur-
thermore, using the expression (3.2) of C(a) and applying the matrix-inversion formula,

we can write
{I-Cla)}™ = 1+T7(a) = I} (a) {I+ I(e)}.

On the other hand, Ry(a) = R,(a) + Rc(a) = Re(a) {I+I'(a)}. Therefore, we obtain
{I-C(a)} 'R, () =T () R7 () = R;"(ex). Substituting this result in the above

expression of V, completes the proof. &

4 Extension to Complex Sinusoids

A parallel theory of the PI method can be easily established for the case of complex
sinusoids in additive noise. In fact, if the signal {z;} is a sum of p complex sinusoids as

given by

P
z= > B et (wrttdi)
k=1

with 0 <w; < ++ <w, < 27, then it satisfies a pth-order AR autorcgressive equation of

the form
P
Z a; x¢-; =0
J=0
where the AR parameter vector a := [ay, -+ ,a,]7 is defined by the coefficients of the
polynomial
P ) P
a2 =[]z — =)
7=0 k=1
with z; := exp(iwg). Given a finite data set {yi,...,y,} observed from (1.2), one of the

widely-used estimators of the AR parameter a is given by
ars = —(YAY) 'Yty (4.13)
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where Y and y are redefined by

Y N Yp+1

Y = : : and y:=
Yn—1 ~° Yn—p Yn

This estimator is known as the forward linear prediction (FLP) (Kay and Marple, 1981)
which minimizes the criterion ||y +Ya||?. Other procedures such as the forward-backward
linear prediction (FBLP) (Kay and Marple, 1981) are also applicable for estimating the
AR parameter a with only a slight modification of Y and y in (4.13).

Introducing a parametric filter {h;(a)} indexed by the parameter o := [y, -+ , )7,
an estimator 4(a) of the AR paramcter a can be obtained according to (4.13), with the

data matrices replaced by those of the filtered data {g:(e)} in (2.7). The assumption

(A1) retains its form, but R,(e¢) and r.(a) are now of the structure

2 € A€ € N3

ry ey Tt 73
€ € € €

r r cee T r
1 0 —p+2 2

R, := b r, = (4.14)
€ € € €
L Tp-1 Tp-2 To ] [ Tp

with the autocovariances obtained from the filtered noise {¢(a)}. In this case, (Al)
is readily recognized as being the Yule-Walker equations. In other words, for complex
sinusoids, (A1) can be interpreted as the requirement that the filter be parametrized so
that the parameter a satisfis the Yule-Walker equation for the filtered noise. With this
property being fulfilled, the PF estimator & is defined as the fixed-point of the random
mapping &(a) and can be obtained by FPI in (2.6).

5 The AR Filter

Although its consistency is guaranteed by the asymptotic theory as developed in Sec-
tion 3, the accuracy of the PI estimator depends on the choice of the parametric filter

to be applied to the data. Intuitively, a “good” filter should be bandpass, so that the
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sinusoidal signal can be enhanced and the noise be eliminated as much as possible. A
useful example of such a filter is the AR filter that will be considered in detail as an
illustration of the PF mecthod.

The AR(2¢g) filter (or simply the AR filter) is a parametric filter defined recursively
by

yi(a) + 01(a) nyi—s(a) + - 4 Ozg(a) 9 yr—gg (@) = w1, (5.1)

where 0 < 7 < 1 is a parameter that controls the bandwidth of the filter, and the 0;(a)

are coeflicients of the filter, depending on « and being symmetric in the sense that

qu_j(a) = OJ(CX) (.7 :0117"'7(])

with 8p(a) := 1. This filter was employed by Dragosevi¢ and Stankovié (1989) to estimate
multiple frequencies with the specific choice of the filter coefficients 0;(a) = «. A similar
filter was also used by Kay (1984) for estimating complex sinusoids.

Let us assume that the additive noise {¢;} in (1.3) is white with zero mean and finite
fourth moment. It will be shown that in this situation a very simple relationship between
{0:(a)} and a can be established according to (A1) and, by appropriately selecting o

in a parameter space, theoretical results obtained in previous sections apply.

5.1 Parametrization

Since the noise {¢;} is assumed to be white, it is easy to verify that the autocovariance

function of the filtered noise satisfies the equation

2q
Z?}’“Ok(a)ri_k(a) =0 (r=1,2,...), (5.2)
k=0
or, in matrix form,
r(a) + 1718 (@) = —R(a) Q6(a). (5.3)



In the expression,

0\(cx) Q O
0a):= : Q:=| o7 n?
04(cx) Q O

with Q, := diag(y,...,79"!) and Q; := 97Q,1. By prior-multiplying each side of (5.3)
with 2 Q7, we obtain
(147" r(a) = —2Q"Re(a) Q (a).
Therefore, (A1) requires that
8(a) = 3(1+7*){Q"Re(@) Q} "Re(e) a. (5.4)

On the other hand, simple algebra shows that

2

_ ~ 2 ~
1 + 772(1 QTRE(a)QTnl =T 24 Rc(a)r‘]‘n17

14 g%

Q"Re(a)Q =

where T, is a ¢-by-q diagonal matrix of the form

1 +n* 1+9% 1+ 772q)

T, := diag (77 T Y W Y

As a result, (5.4) is simplified to a trivial linear equation
f(a)=T,a. (5.5)

With the coeflicients given by (5.5), the AR filter in (5.1) satisfies (A1), so that a sequence
of estimators {&,,} can be produced according to FPI in (2.6).
As compared to (5.5), the parametrization in the generalized least squares (GLS)

method of Dragosevi¢ and Stankovié (1989) is given by
0(ax) = a. (5.6)

Notice that for n < 1, (5.5) differs from (5.6). It is this difference that makes the PF

estimator consistent for any 5 < 1, while the GLS estimator is inconsistent. Note also
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that PI" and GLS coincide when 5 = 1. The iterative filtering algorithm (IFA) proposed
by Kay (1984) corresponds to the complex version of PFAR with 5 = 1. However, Kay
used the Burg estimator instead of the least squares in order to guarantee the stability
of the filtering.

In the special case of ¢ = 1, (5.5) reduces to

2
() = ! ;‘7772 o

By this choice, (5.1) becomes a variant of the AR(2) filter discussed by Li and Kedem
(1991) and Li, Kedem, aud Yakowitz (1991). Furthermore, if 5 = 1, it coincides with the
procedure proposed by Quinn and Fernandes (1991) and Truong-Van (1990).

5.2 Parameter Space

In order for the AR filter to possess the properties (A3) and (A4), the parameter
cannot be arbitrarily. Instead, it must lie inside a parameter space. A possible choice of
such a parameter space is presented as follows.

Let © be the collection of 8 := [0y,-++,0,]T for which all zeros of the polynomial

2 L . o . . .
20 0k 2%7F are distinct and on the unit circle in the complex domain, that is,

2q q ) ;
Z 0y 227F = H(z — e”\’“)(z — e'“\k)
k=0 k=1

for some 0 < Ay < +++ < Ay < m, where 0y :=1 and by := 04, (k =0,...,¢—1). Define

the parameter space A(n) to be the collection of a such that 8(a) = T, a € O, that is,
A(n) :={a: T,a € 0}.

Since A; take on values in an open region, both ® and A(n) are also open in the g-
dimensional space. Moreover, it is readily shown that the poles of the AR filter with
0(o) given by (5.5) occur on the circle |z] = n if & € A(n). Thercfore, with < 1 and
a* € A(n), the AR filter satisfies (A3) and (A4) for some bounded and closed subset
A C A(n) that contains a* in its interior.



In practice, it is not guaranteed that &, will always appear inside A(7n). In case of
falling outside, é&,, has to be projected back into A(n) in order to satisfy the conditions of
the PF method. Suppose that for a given «, the zeros of the polynomial 32 0 (ax) 227*
are of the form prexp(xidy), (A = 1,...,q), for some pp > 0 and 0 < Ay < --- <
Ay < 7, where {0i(ax)} are defined by (5.5). Then, the projection of 8(cax) on O is
obviously é(a) = [51(a), e 6q(a)]T, where 6k(a) are determined by the coefficients of
the polynomial

2(1 ~ q . .

> Ok(a) Sk = I - e (z — e,

k=0 k=1

By this operation, we simply force the poles of the AR filter to occur on the circle |z| = 7.

As a result, the projection of ar on A(7), denoted by a, can be written as

5.3 Statistical Properties

For the properties in Section 3 to hold, (A2) is the only thing left for verification. It is

readily shown that the AR filter satisfies this condition, since its transfer function

2q -1
Hw;a) = {Z Ok(a)nke_ikw}
k=0

is nonzero for all a € A(7n).

In conclusion, the AR filter, defined by (5.1) and (5.5) with n < 1, satisfies (Al)-
(A4). Consequently, the corresponding PF estimator &, called the PFAR estimator,
posscsses the statistical properties in Section 3, regarding the existence, convergence,

strong consistency, and asymptotic normality, as can be summarized as follows.

Theorem 5.1 Suppose that {¢;} is white with finite fourth momeni. Then, for the AR
filter defined by (5.1) and (5.5) with 1 < 1, the results in Theorem 3.1, Theorem 3.2, and
Theorem 3.3 are valid, provided that o* € A(n).



As aforementioned, the parameter 5 plays the role of controlling the bandwidth of
the AR filter. Indced, the closer 7 is to 1, the narrower is the bandwidth of the AR filter.
Since the sinusoidal signal under investigation concentrates only on extremely narrow
bands (spikes) in the frequency domain, it is clear that in order to enhance the signal by
the AR filter, 5 should be chosen as close to 1 as possible. IFrom another point of view, the
parameter n also determines the asymptotic behavior of the associated PIFAR estimator
in terms of its covariance matrix. As a matter of fact, the asymptotic covariance matrix
V, of the PFAR estimator can be made arbitrarily small if  is chosen arbitrarily close
to 1. More precisely, it can be shown that V, tends to a zero matrix at the rate of order
(1—n)*asn— 1.

To verify this assertion, we first need to rewrite w;;(a*) defined by (3.8) into a more
suitable form, with the help of the following spectral representation of the autocovariance
function r¢(a*):
re(a) = )—ﬁj/’r |H(w; a*)|? '™ dw.

To do so, we notice that (5.2) can be rewritten as

2q
ddpapri (@) =0 (r=1,2,...),

with d; defined by

di = 1" 0u(@) fa = (1" + > ) /(" +0*7F).

It turns out, by using the spectral representation of r¢(a*), that

2q 2q
Z“k7’ﬁr~k( Z 1 —dg)arr;_i(a)
k=0

0.2

- 5—7‘; [[f(w {Z 1 —di)age ikw} ™ dw.

Introducing the following polynomials

2q

D(:) = Z(l — dk)ak ~2(] k Zok n Z

k=0



and Q(z) := 2% P(z7"), we can write S, as a Cauchy integral of the form
2
=2 _ DGy,
2mi Jial=1 P(2) Q(2)
for any 7 > 1. Note that o* € A(n) implies (a*) € ©. This, in turn, guarantees
that all of the 2¢ zeros of ()(z) appear on the circle |z| = 5 and can be expressed as

vj := 1 exp(ed;), with A; satisfying 0 < Ay < --- < Ay < 7 and Agy—jyq = —A; for
J=1,...,q. As a result, we can write
29 2q
Q(z)=[[(z—v;) and P(z)= [ - 5;2),
i=1 i=1

where v; :=n exp(—i);). It follows from the residue theorem of complex analysis that
29
Z vt (r=1,2,...).

= P(w) (Vk-)

Using this formula, w;;(a*) in (3.8) can be written as

’U)ZJ =4 Z S-,-+lST+J =4 E (57)

0! D) D(v) 7'y~
k=1 Plve) P(v

) Q'(v) Q') 1 — B
where the overline denotes the complex conjugation.

Now, with this expression, the behavior of W(a*) as 5 tends to 1 become easer to
investigate. In fact, we first notice that vy — z; as n — 1. Moreover, it is easy to see

from the definition of d; that do = 1 and

(L= (1=dj)—>j/2 (=1,...,2q)

as n — 1. It follows that
2q , .
(1= D) = > Lja; 2977 = = L7 A=), (5.8)

i=1

where A(z) is the polynomial given by (1.6). In addition, it is readily shown that

2q 2q
(1 - 772)—1 P(l/k) = H(l - Ijjl/k) — Pk = H(]. — fz'jzk)
T2k e



and

Q'(vi) = ﬁ(l/k — V) — ﬁ(zk — zj) = A'(zx).
7 ik
Finally, it is easy to see that (1—7%)/(1—xp) = 1for l =k, and (1 —9*)/(1 —g1y) — 0
as n — 1 for [ # k. Substituting all these limits in (5.7) yiclds

2y, =] 1 -1
(l_n)wu 4Z|P‘2’“L
as 7 — 1. Upon noting that |Py| = |A'(z;)], we can also write
(1-7)QT"W(a")Q — 40 %, with X, := QTSD:S"Q, (5.9)

where Dy is a 2¢-by-2¢q diagonal matrix of the form

Do dlag{M,(

and S the Vandermonde matrix in (2.11).

1 1 }
)27 A (2

To complete the analysis, we only need to know the behavior of R,(a*) as n tends
to 1. For this purpose, we notice that |H(wy; a*)|? = 1/]|Q(2)|* and Q(2x) = —D(z).
It follows from (5.8) that

(1= ") [H(we; a)]* — 4/|A'(2)].
According to (2.10), this implies that
(1- 7]2)2’Rm(a*) —8re Y with ¥ :=QTSDS”Q. (5.10)
In this expression,

1 ol o3
D: dlag{ Lo ,"—*——g”-—”}a
|A'(21)[? | A'(=24)[?

of = B/ T 62, and o2 4,y = o}, (k = 1,...,¢). Introducing the notation 7y :=
r&[r§ = r¥/o? as being the signal-to-noise ratio of the data, and substituting all these

limits in the expression of V, given by (3.12), we finally obtain

AR T AN |
lim (1",;2) Vo= 53 8758 (5.11)
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In particular, when the ¢ sinusoidal compoments have the same power, that is, Gr = 5,

(5.11) reduces to

: 2\3 2
lim (1 nal ) V. =55, (5.12)

n—1 2

since in this case D = ¢7!Dy.
REMARK. It is interesting to recognize, by comparing (5.9) with (2.10), that X, is
identical to the autocovariance matrix of a sinusoidal signal having the same ¢ frequencies
as {z;}, with the amplitude corresponding to w; being equal to 1/|A’(z;)|. Similarly, X
in (5.10) has the same structure as 3o, but the amplitude associated with wy is replaced

by or/]A'(z)|. Therefore, these matrices can be rewritten as

q q

_ cos{wi(t — J)} an _ oj cos{wi(i — j)}
o= |2 TG ] ! Z‘E 2 ()

where s, 7 = 1,...,2¢ — 1.

5.4 Accuracy of the PFAR Estimator

As guaranteed by Theorem 3.3, the PF method produces an estimator & so that /n (& —
a*) is asymptotically normally distributed and thus its estimation accuracy is of order
O(n='?). Upon using the AR filter, it has been shown that the asymptotic covariance
matrix of the resulting PF estimator (i.e., the PFAR estimator) can be made arbitrarily
small as 7 tends to 1. This indicates that a higher order accuracy could be obtained
with 7 ~ 1. Indeed, as discussed in Quinn and Fernandes (1991), Truong-Van (1990),
and Li, Kedem, Yakowitz (1991) for the case of a single sinusoid, the PFAR estimator is
able to achieve the same accuracy of order O(n~3/%) as the nonlinear least squares (NLS)
approach (Hannan, 1973; Stoica and Nehorai, 1989; Walker, 1971) in the limiting case of
n=1.

An advantage of the PF method over the NLS lics in its computational simplicity
inherited from the explicit LS solution of a4(a). Another advantage of the PF method is

its less stringent requirement of the initial estimates. As pointed out by many researchers

(Rice and Rosenblatt, 1988; Stoica, et al., 1989; Li, Kedem, and Yakowitz, 1991), the
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NLS approach, as well as the PFAR estimator in the limiting case of 7 = 1, requires an
initial estimate of accuracy o(n™'), in order to obtain the optimal solution by iterative
procedures. On the other hand, an initial estimate of accuracy O(1) is sufficient for
the calculation of the PFAR estimator with 5 < 1 using FPI in (2.6), as indicated by
Theorem 3.1 and also verified by simulations of Li, Kedem, and Yakowitz (1991). More
importantly, thanks to the flexibility for the choice of 7, the estimation accuracy of
the PFAR estimator can be improved significantly upon using a monotone increasing
sequence of 7 such that 0 <ny <y <-+- = 1.

According to the suggestions of Li, Kedem, and Yakowitz (1991), the iteration in (2.6)
can be carried out with 5 = 7, until convergence, using the PFAR estimator previously
obtained with # = n,_; as the initial value. In so doing for £ = 1,2,..., a sequence
of PFAR estimators associated with {5} is produced, each estimator in the sequence
serving as the initial value of its successor. As k grows, the accuracy improves without
requiring a stringent initial estimate. Another possible way of improving the estimation
accuracy is to increase 7 after each iteration rather than carrying on the iteration until
convergence (see, c.g., Dragosevi¢ and Stankovié, 1989; Kedem and Yakowitz, 1991).
This strategy simplifies the computation but may result in converging to a false location
if 77 1s increased too fast.

In the most interesting case of closely-spaced frequencies, however, one should be
very cautious when increasing 7. Simulations show (sce next section) that the bias of the
PF estimator from finite data increases as n approaches 1, while the variance decreases.
For closely-spaced frequencies, the bias eventually dominates the variance, and hence an
appropriate n < 1 should be used to balance the trade-off between the bias and variance
in minimizing the mean-squared error.

For the case of multiple sinusoids, the fixed-point iteration in (2.6) with 5 ~ 1 can be
shown to be an algorithm that approximately calculates the NLS estimator in an iterative
fashion. In fact, since the NLS cstimator minimizes the sum of squared errors

n q A 2
J = Z {yt - Z(Ak cos wyt + By, Siﬂ@’kt)} (5.13)

t=1 k=1
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with respect to /ik, By, and Wy, 1t can be implemented in two steps, similar to the proce-
dure of Bresler and Macovski (1986) for complex sinusoids. The first step is to minimize
J with respect to [1211, e ,Aq, By, ,f)’q]T, while keeping &y, fixed. It is not difficult to

verify that the optimal vector is given by (GTG)'G”¥, where ¥ := [y1,- -+ ,y)T and

Coswy; -+ COSW, sinw; -+ SiNW,

COSNW; -+ COSNW, sinnw; --+ sinnw,

Substituting this optimal vector in (5.13) gives
J={I-G(G'G)'G" I’ =" {I-G(G'G)"'G"}y.

This quantity, in turn, is minimized with respect to @; in the second step. Notice that
I- G (GTG)'GT is a projection operator that projects an n-vector onto the orthogonal
complement of the 2¢-dimensional column-space of G. On the other hand, if we let
a; be the AR parameters determined by (1.6) for any given i, and denote by A the
corresponding n-by-(n — 2¢) matrix of the structure (5.18), it is casy to verify that
ATG = 0. This implies that the n —2¢ linearly-independent columns of A are orthogonal
to the columns of G and thus span the (n — 2¢)-dimensional orthogonal complement of

the column-space of G. As a consequence, we obtain
I-G(G'G)'GT = A(ATA)'AT
and hence J = yTA (ATA)"IATSI. Furthermore, let & := [é9g41, -+ , 0]’ , Where
2q
=Y Qi Y. (5.14)
/=0 .
Simple algebra shows that ATy = &. Therefore, J can be rewritten as

~

T(ATA) e, (5.15)

[¢>2]

The NLS is thus reduced to the problem of minimizing J in (5.15) with respect to a;. To

compute the NLS estimator, an iterative procedure can be employed in accordance with
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the suggestions of Bresler and Macovski (1986). Indeed, for any estimate &,,, a matrix
A, can be constructed accordingly and a new estimate can be taken as the minimizer
of the criterion J,, := éT(AﬁAm)”lé with respect to a;.

Suppose that &, := [&gm), e ,&gm)]T appears inside a tiny ncighborhood of the AR

parameter a that corresponds to the AR model of the signal. It is easy to see that within

such a neighborhood é; can be approximated by

qu (m) 22” ) qu (m)

A ~{m . A(m o~ A(m )

€ = Clj Te—j + aj €5 = (lj €t—j.
7=0 j=0 j=0

Since {e;:} is white, it can be shown from this approximation that the covariance matrix of
& is approximately equal to 0?AZ A,,. Therefore, &,, := (AL A,,) /28 can be regarded as
a whitening procedure that decorrelates the vector €. Resorting to the frequency-domain
interpretation, this whitening procedure can be approximately performed by applying on
¢, an AR filter of the form (5.1) with g & 1 and &,. Let {&™} be the output of the
filter, then &,, ~ [ég:ll,--- ,e™NT and hence J,, = ||&n*> = Z(éﬁ"‘))? On the other

hand, by interchanging the order of the AR filtering on é; and the FIR filtering on ;
defined by (5.14), we obtain

() &

~{m A ~ -~

&~y 4 Gi-i(Am).
=0

Thus, minimizing J,, is approximatcly equivalent to minimizing Z{Z?io a; Gi—i(an)}?,
which yields the PFAR estimator &,,44 produced by FPI in (2.6).

The above discussion indicates that for multiple sinusoids the PIFAR estimator with
n tending 1 is also capable of approaching the accuracy of the NLS procedure, just like

the case of a single sinusoid as discussed by Li, Kedem, and Yakowitz (1991).

5.5 The Case of Two Sinusoids

The simplest case of the PFAR estimator for a single sinusoid is similar to the CM
estimator discussed by Li and Kedem (1991) and Li, Kedem, and Yakowitz (1991). From

their results, it is easy to verify that for ¢ = 1 the asymptotic variance V,, of the PFAR
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estimator & can be expressed ezactly by (5.12) without taking the limit, that is,

V. — 1 -2\’ 4sinwy
o 1+772 ,),2 :

The requirement that a* € A(n) reduces to |cosw;| < 29/(1 +n?). This implies that w;
should stay away from 0 and 7 al least by an amount of arccos{2n/(1 + 5?%)}.

Let us now consider specifically the case of two sinusoids (¢ = 2) in additive white

noise. In this case, © consists of all § = [0;,0,]T with
01 = —2(cos Ay + cos Ay) and 0 = 2(1 4 2cos Ay cos Ay) (5.16)

for some 0 < Ay < Ay < 7. Simple algebra shows that cos A; and cos A, must be of the
form {—60; + (07 — 40, + 8)1/2} /4. Therefore, 0; and 0, should satisly

-01is/0f—402+8’<1 and 07 — 40, +8 > 0.

It turns out by solving these inequalities that © is the region defined by

i
4

O: 2/|-2<0,<i0?+2 (5.17)

Moreover, for ¢ = 2, (5.5) reduces to

B 149t
RS

01(&)

a; and fy(a) =

According to (5.17), the parameter space A(n) is given by

47 4n? o< 1+ o2 4n?
1+ 77 [ T A

Figure 1 shows A(n) for n = 0.8 together with © defined by (5.17).

A(n) : (5.18)

o] ~

It is readily seen from Figure 1, as well as (5.18) and (5.5), that A(7) is contained in
© for n < 1, and that A(n) coincides with © as n — 1. Therefore, for any given w; and
wq satisfying 0 < wy < wy < m, the requirement a* € A(n) in Theorem 5.1 can always
be met by choosing 7 close enough to 1.

On the other hand, for a given < 1, the requirement a* € A(7) imposes a separation

condition on the frequencies of the signal. As a matter of fact, in order that a* € A(7y),
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Figure 1: Parameter space A(n) with 5 = 0.8 for the case of two sinusoids. The dotted

lines define the region ©.

the frequencies w; and w; should stay away from 0 and =, respectively, and from each

other, by a certain amount depending on 7. It is not too difficult to verify that a sufficient

condition for (5.18) to be fulfilled is that

1 +n? { 2° }
Wy, T — Wy > arccos §{ ——————= and wy — wy > arccos T (-
2(1 4 %) b4

To get a complete picture of the separation condition, Figure 2 shows for 5 = 0.8 and

0.9 the set §1,,, referred to as the frequency space, of all frequencies for which a* € A(n).

Let us now consider the characteristic of the AR filter at a = a*, which determines
the asymptotic behavior of the PFAR estimator, as indicated by Theorem 3.3. Let us
first look at the squared gain function |H(w;a*)|*. In Figure 3, |H(w;a*)|* is plotted
for n = 0.92, where a* = a is the AR parameter corresponding to the sinusoidal signal
with wy = 0.327 and wy; = 0.457. It is interesting to observe that the squared gain
function has peaks near, but not exactly at, the frequencies of the signal. Therefore, the
PIFAR method can eventually enhance the signal, while making the estimator consistent
by slightly biased peaks. A further illustration of this point is presented in Figure 4,

where the poles of the AR filter are plotted against the frequencies of the signal. It can
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Figure 2: Frequency space of normalized frequency f := w/x for n = 0.8 (smallest) and

0.9. The region defined by dotted lines corresponds to the extreme case of n = 1.

be seen that the PFAR method does not in general force the poles of the AR filter to
have the same angular frequencies as those of the signal. Instead, a slightly biased poles
are used on the basis of (5.5) in order to produce a consistent estimator, as guaranteced

by Theorem 5.1.

6 Experimental Results

In order to illustrate the performance of the PF method, we employ the all-pole filter
(5.1) and consider the case of two sinusoids (¢ = 2) in Gaussian white noise. All of
the simulations in this section are based on 100 independent realizations of {y;} with a
relatively short length of n = 100. The phases of the sinusoids arc fixed at zero, and
the sample variance of the noise is adjusted in each realization according to the sample
variance of the signal in order to achieve the required signal-to-noise ratio. Furthermore,
in both PF and GLS — which correspond to the parametrizations (5.5) and (5.6) respec-
tively — the poles of the all-pole filter are constrained to be on the circle |z| = 7, by

projection if necessary, so that the bandwidth parameter n effectively controls the band-
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Figure 3: Plot of squared gain with 5 = 0.92 and a@ = a* for the casc of two sinusoids

with w; = 0.327 and wy = 0.457.

Figure 4: Location of poles of the AR filter shown in Figure 3. The dotted lines indicate

frequencies of the signal on the unit circle.
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Table 1: PF & GLS Estimates for Well-Separated Frequencies

PF GLS
7 mse bias var complexity mse bias var complexity
Prony | 4.72e-3 4.40e-3 3.23e-4 — 4.72¢-3 4.40e-3 3.23e-4 —

0.950 | 2.20e-6 1.17¢-8 2.19e-6 8.0+0.6 2.34e-6 1.48e-7 2.19¢-6  8.1+0.8
0.960 | 1.96e-6 9.14e-9 1.96e-6 3.14+0.2 2.04e-6 9.47e-8 1.95e-6 3.2+£0.4
0.970 | 1.79e-6 9.72¢-9 1.78e-6 3.2%+0.3 1.84e-6 6.21e-8 1.77e-6 3.31+0.4
0.980 | 1.67e-6 1.64e-8 1.65¢-6 3.310.4 1.69¢-6  4.96e-8 1.65e-6 3.4%+04
0.985 | 1.63e-6 2.39e-8 1.60e-6 2.94+04 1.65e-6  4.79¢-8 1.60e-6 2.84+0.4
0.990 | 1.59-6 3.60e-8 1.55e-6 3.0+0.5 1.60e-6 5.08¢e-8 1.55e-6 2.7+0.4
0.995 | 1.55e-6 5.53e-8 1.49¢-6 3.41+0.4 1.55¢-6 6.08¢-8 1.49¢-6  2.9X0.6
1.000 | 1.50e-6 8.27e-8 1.42e-6 3.7£0.6 1.51e-6 8.29e-8 1.42e-6 3.440.5

width of the all-pole filter and the performance of the estimators. FFor convenience, the
following simulation results are given in regard to the normalized frequencies fi := wy/,

and the average mean-squared error

mse := HE(fi = 1) + E(fa = f2)2)

is employed as an overall performance index. Moreover, we define the average bias and

average variance of the frequency estimates by

bias := %{(E(fl) — [+ (B(fy) - )’} and var:= -;—{Var(fl) + var(f3)}

respectively. The frequency estimates of both PF and GLS are obtained by the fixed-
point iteration (2.6) in connection with (5.16) which provides the relationship between

the frequency and AR estimates. The stopping rule of the iteration is given by

e = fom=tye (fm jme0yz 405,

In other words, the iteration terminates at the mth iteration if this inequality is satisfied.
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Table 2: PF & GLS Estimates for Closely-Spaced Frequencies

PF GLS
7 mse bias var complexity mse bias var complexity
Prony | 1.46e-2 1.40e-2 5.68e-4 — 1.46e-2 1.40e-2 5.68e-4 —

0.950 | 1.81e-6 2.69e-8 1.78e-6 10.6%+3.4 | 4.68¢e-6 3.05e-6 1.63e-6 11.0%+5.3
0.960 | 1.67e-6 6.20e-8 1.61e-6 3.31£0.4 3.63e-6 2.17e-6 1.46e-6 3.8£0.2
0.970 | 1.63e-6 1.63e-7 1.46e-6 3.8+£0.3 2.95e-6  1.59%e-6 1.36e-6 3.9+0.2
0.980 | 1.75e-6 4.21e-7 1.32e-6 4.3+0.3 2.56e-6 1.29e-6 1.27e-6 3.7+£04
0.985 | 1.90e-6 6.57e-7 1.25e-6 42104 2.46¢-6 1.25e-6 1.2le-6 2.8+04
0.990 | 2.15e-6 9.83e-7T 1.16e-6 4.44+0.3 2.45e-6 1.31e-6 1.15e-6 3.0+0.5
0.995 | 2.47e-6 1.41e-6 1.06e-6 4.54+0.5 2.56e-6 1.50e-6 1.06e-6 3.7+0.7
1.000 | 2.85e-6 1.91c-G 9.45e-7 4.54+0.8 2.86e-6 1.91e-6 9.46e-7 4.3+£0.8

In our simulations, we first compare the performance of PF and GLS in the cases of
well-separated and closely-spaced frequencies. In both cases the SNR is fixed at 0 dB
per sinusoid, while the bandwidth parameter 5 in the all-pole filter (5.1) takes different
values. Since 5 varies, it is convenient to explicitly write the corresponding frequency
estimates (fl(n),fg(n)) as funcfions of . Table 1 and Table 2 present some statistics
of the frequency estimates for eight ascending values of 5, that is, 5, = 0.95, 5, =
0.96,...,m78 = 1. Thec mean and variance of the stopping time m are also given as
“complexity” in the form of “mean + variance”.

Notice that in the fixed-point iteration (2.6) two things are needed: a value of the
bandwidth parameter n and an initial guess of the AR parameter a. In both PI" and
GLS, we use Prony’s estimator aps as the initial guess of a corresponding the first value
of n, i.e., n = n; = 0.95. When the iteration terminates, the resulting AR estimate,
denoted by a(ny), is used not only to obtain the frequency estimates (jl(m), fz('f]l))7 but
also to initiate the iteration for the next value of 5, namely, n = 7, = 0.96. In general,

as n grows from 7, to ns, we employ the previous AR estimate a(n;—;) to initiate the
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iteration (2.6) corresponding to § = n; in the computation of a(ny).

In Table 1, the true frequencies were taken to be (fi, fo) = (0.41,0.59), which are
well-separated as compared to the width of a Fourier bin Af = 2/n = 0.02 in our
simulations. As we can sce, Prony’s estimator gives poor frequency estimates, while both
PF and GLS significantly improve Prony’s estimator in terms of mean-squared error, even
with a relatively small 5. Moreover, the estimation accuracy can be further improved
by increasing n toward 1. This is quite intuitive because increasing 5 is equivalent to
shrinking the bandwidth of the all-pole filter and thereby enhancing the sinusoids (see also
Dragosevi¢ and Stankovié, 1989; Kedem and Yakowitz, 1991) for similar ideas of shrinking
bandwidth in frequency estimation). The issue is that the shrinkage should be based upon
reliable frequency estimates, since otherwise the filter may lock on false locations (an
example in this regard will be presented later). This is the reason why in our simulations
the iteration for a higher value of  was initiated by the estimates corresponding to
a slightly smaller value of 5. In this way, we gradually shrink the bandwidth as more
reliable estimates become available. Table 1 shows that as  approaches 1 the PI" and GLS
estimates achieve a precision (mse) of 1.50 x 107¢ — very close to the asymptotic variance
of the nonlinear least squares (NLS) estimator which in this case equals 1.22 x 107¢.
Thus, for well-separated frequencies, PF and GLS have the same final performance as 5
approaches 1.

For closely-spaced frequencies, however, the PF estimator performs better than GLS,
as can be seen from Table 2 and Figure 5. In this experiment, the true frequencies were
taken to be (fi, f2) = (0.47,0.51) while all other conditions remained the same as in the
previous example. Notice that the true frequencies are separated only by two Fourier
bins. It is interesting to observe that as the bandwidth parameter 7 increases toward 1
the mse of both methods does not monotonically decrease as in the case of well-separated
frequencies. Instead, it starts increasing after a certain value of 7 (see also Figure 5).
The reason is the following. A closer examination of Table 1 and Table 2 reveals that
as n approaches 1 the bias increases while the variance decreases in both methods. For

well-separated frequencies as shown in Table 1, the bias never dominates the variance,
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Figure 5: Plot of mse (x107%) against 5 for closcly-spaced frequencies.

Table 3: Estimation With n =1
(f1, f2) mse E(fl)ivar(fl) E(fg):tvar(fr_,) complexity
(0.41,0.59) | 4.33¢-6  0.4097044 1.30e-6 0.5905294+6.99e-6 17.9410.7
(0.47,0.51) | 1.38¢-4  0.468628 £9.37e-7 0.51367242.4%-4 24.34+63.3

and hence the mse decreases basically along with the decrease of the variance. On the
other hand, the bias becomes dominant in the case of closely-spaced frequencies as 7
approaches 1 (see Table 2), and a trade-off effect between bias and variance takes place.
As we can see from Figure 5, the best value of 7 for the PI estimator lies between 0.96
and 0.98 where the mse achieves the smallest values. The GLS estimator is clearly inferior
to the PF estimator in this example because of its relatively higher bias. Indeed, the bias
and variance of the GLS estimator play an equal role in the mse, since their magnitudes
are of the same order (see Table 2).

Table 2 illustrates the role of 1 as a parameter that can be utilized to balance the
bias and variance of the PF estimator for minimizing the mean-squared error. Now, in

Table 3, we illustrate the role of 5 in the convergence ol the fixed-point iteration (2.6)
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Figure 6: Plot of —log(mse) against SNR in dB for very closely-spaced frequencies. The

dotted line indicates the asymptotic variance of NLS.

when initial guesses are poor. Instead of gradually increasing n toward 1, as done in
Table 1 and Table 2, the frequency estimates in Table 3 were obtained right away with
n = 1, using Prony’s estimator as the initial guess. This is equivalent to the iterative
procedure that employs the all-pole filter without 5 and starts with Prony’s estimator.
As can be seen from Table 3, the mean-squared error is higher than the mse reported in
Table 1 and Table 2 corresponding to (gradually achieved) n = 1, especially for closely-
spaced frequencies. This indicates that without 5 in the all-pole filter the iteration (2.6)
may fail to converge to the desired fixed-point when poor initial guesses, such as Prony’s
estimator, are used. The reason is that the bandwidth of the all-pole filter without 5
(or, equivalently, with n = 1) is extremely narrow. Although it could be helpful to have
a narrow bandwidth for enhancement of the sinusoids if good initial guesses are used,
a narrow bandwidth might cause the filter to “loose” the true frequencies when tuned
according to inaccurate estimates. Therefore, the safest way is to start with a relatively
small 7, to accommodate even poor initial guesses, and then gradually increase n as
improved estimates from previous iterations become available.

To show the performance of the PI' estimator under different signal-to-noise ratios,
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Figure 6 presents the negative logarithm of the mse for various values of SNR, with the
dotted line indicating the asymptotic variance of NLS as a reference. In this example,
the frequencies were taken to be (f1, f2) = (0.485,0.495), which are closely-spaced within
a Fourier bin, and the bandwidth parameter  was fixed at 0.985 in both PF and GLS.
Prony’s estimator again was used to initiate the fixed-point iteration (2.6) for both meth-
ods. As can be seen, the mse of the PF estimator closely follows the asymptotic variance
of NLS when SNR > 3 dB, and the performance of both PF and GLS deteriorates rapidly
when the SNR is below this threshold. The poor initial accuracy of Prony’s estimator is
largely responsible for this particular value of threshold. In fact, simulations show that
the threshold can be extended to —2 dB if the initial guesses are taken to be the two
Fourier frequencies which correspond to the largest absolute values in the FFT of the
data.

In Figure 7, we show that the PF estimator is capable of resolving very closely-
spaced frequencies where the GLS method fails. In this experiment, the true frequencies,
(fi, f2) = (0.41,0.412), are only 10% apart relative to the width of a Fourier bin. The
frequency estimates were obtained with = 0.997 and the fixed-point iteration (2.6) was
initiated by Prony’s estimator. Figure 7(a) shows the negative logarithm of the mse for
different values of SNR and Figure 7(b) presents the averages of the frequency estimates.
Compared to the GLS estimator, the PF estimator has a much smaller bias which enables
it to resolve the frequencies as well as to achieve a smaller mean-squared error. Notice
that the GLS estimator gives essentially a single frequency f = 0.411 between the two
true frequencies.

Finally, we note that in the preceding discussion the phases were fixed at zero. Expe-
rience shows, however, that when the phases are chosen at random the mse may worsen
somewhat. This is understandable due to the small sample size which cannot explain the

addition of extra sources of variability (Kay and Marple, 1981).
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Figure 7: (a) Plot of —log(mse) against SNR in dB. (b) Plot of averaged frequency

estimates against SNR in dB with dotted lines indicating true {frequencies.
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