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Even simple, deterministic rules can generate interesting behavior in dynamical

systems. This dissertation examines some real world systems for which fairly simple,

locally defined rules yield useful or interesting properties in the system as a whole. In

particular, we study routing in peer-to-peer networks and the motion of crystal steps.

Peers can vary by three orders of magnitude in their capacities to process net-

work traffic. This heterogeneity inspires our use of “proportionate load balancing,”

where each peer provides resources in proportion to its individual capacity. We pro-

vide an implementation that employs small, local adjustments to bring the entire

network into a global balance. Analytically and through simulations, we demon-

strate the effectiveness of proportionate load balancing on two routing methods for

de Bruijn graphs, introducing a new “reversed” routing method which performs better

than standard forward routing in some cases.

The prevalence of peer-to-peer applications prompts companies to locate the



hosts participating in these networks. We explore the use of supervised machine

learning to identify peer-to-peer hosts, without using application-specific informa-

tion. We introduce a model for “triples,” which exploits information about nearly

contemporaneous flows to give a statistical picture of a host’s activities. We find that

triples, together with measurements of inbound vs. outbound traffic, can capture

most of the behavior of peer-to-peer hosts.

An understanding of crystal surface evolution is important for the development

of modern nanoscale electronic devices. The most commonly studied surface features

are steps, which form at low temperatures when the crystal is cut close to a plane

of symmetry. Step bunching, when steps arrange into widely separated clusters of

tightly packed steps, is one important step phenomenon. We analyze a discrete model

for crystal steps, in which the motion of each step depends on the two steps on either

side of it. We find an time-dependence term for the motion that does not appear in

continuum models, and we determine an explicit dependence on step number.
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Chapter 1

Introduction

1.1 Overview of the dissertation

Even simple, deterministic rules can generate interesting behavior in dynamical sys-

tems. For example, the logistic map exhibits chaos for certain parameter values. This

dissertation examines some real-world systems for which fairly simple, locally-defined

rules yield useful or interesting properties in the system as a whole.

The remaining sections of this chapter provide an introduction to modern peer-

to-peer networks and to crystal surfaces. We trace the history of peer-to-peer net-

works from completely centralized systems like Napster, to completely decentralized

systems like Gnutella, to hybrid systems like FastTrack, to alternative systems like

BitTorrent. We then give a detailed introduction to distributed hash tables, which are

decentralized but structured peer-to-peer systems. Finally, we discuss the motivation

behind the study of crystal steps and the step bunching phenomenon.

In Chapter 2, we address the issue of heterogeneity in peer-to-peer networks.

By heterogeneity, we refer to the fact that peers can vary by three orders of mag-

nitude in their capacities to process traffic. We define and analyze networks based

on two routing methods for de Bruijn graphs, introducing a new “reversed” routing

method which performs better than standard forward routing in some cases. We

quantify how heterogeneity affects the average query path length under each routing
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method, proving that the length decreases in most cases. We also provide an imple-

mentation of what we term “proportionate load balancing,” which is applicable to

a range of peer-to-peer networks. Proportionate load balancing employs small local

adjustments to bring the entire network into a global balance, where each participant

provides resources in proportion to its capacity. We demonstrate the effectiveness of

proportionate load balancing on de Bruijn networks.

Chapter 3 explores the use of supervised machine learning to identify peer-

to-peer hosts, without using port numbers or other application-specific information.

Most studies in this area have attempted to classify TCP flows, rather than individual

users. We introduce a model for “triples,” which capture the composite behavior

available when we study hosts rather than flows. Triples exploit information about

nearly-contemporaneous flows to give a statistical picture of a host as a whole. We

find that triples, together with measurements of inbound vs. outbound traffic, can

capture most of the behavior of peer-to-peer hosts, while maintaining acceptable

“false-positive” rates.

In Chapter 4, we analyze a discrete model for crystal steps. In this model, the

motion of each step depends on the two steps on either side of it. We evaluate the

effect of step-step interactions on the stability of the crystal surface, with a focus on

step bunching.
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1.2 Peer-to-peer networks

Classical internet activity fits the client-server model, where powerful central comput-

ers (the servers) provide resources to lower-capacity end users (the clients). Some ex-

amples of servers include cnn.com, which disseminates news; microsoft.com, which

distributes Windows updates; yahoo.com, which provides forums for games and chat-

ting; or the machines that handle all umd.edu email.

Peer-to-peer (P2P) applications, on the other hand, represent a distributed type

of internet activity. A peer-to-peer network is a collection of machines that associate

with one another to share files or other resources. A P2P network may have servers

that facilitate these communications, but unlike in a client-server setup, the servers

do not provide all of the content.

1.2.1 Statistics

Up to 60% of worldwide Internet traffic is peer-to-peer [42]. Most peer-to-peer ap-

plications are used for file sharing — sending files directly between end-users. By

volume, P2P traffic is [42]

• 61% video content,

• 11% audio content,

• 11% compressed files,

• 17% other.

3



(a) A centralized P2P system. (b) A decentralized P2P system.

Figure 1.1: Peer-to-peer applications may be divided broadly into two classes.

Centralized systems have a server that organizes file sharing for a large number

of subsidiary users; this server is a bottleneck and single point of failure for

the system. Decentralized systems lack a central authority, so they avoid the

weaknesses of centralized systems; however, searches can only follow a limited

number of paths, so such systems can be highly inefficient.

$2.3 billion in copyrighted movies were downloaded worldwide in 2005 [36]. Only 13%

of that loss came from users in the United States.

1.2.2 History

Broadly, there are two classes of peer-to-peer applications: centralized and decentral-

ized. See Figure 1.1.

Centralized systems (Napster, DirectConnect, BitTorrent) have a computer that

acts as a hub to organize file transmissions for a large number of client computers.

Napster had a single hub for all its users; DirectConnect has many disjoint sets of

clients and a hub; BitTorrent has a hub for every individual file. Despite their central-
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ized organization, these systems are peer-to-peer because shared files are transmitted

directly between clients. The hubs act only as facilitators to help clients find other

users who possess the information they want, not as content servers. The hubs also

provide an obvious target for disabling the network; Napster was shut down by court

order in July 2001 [53].

Decentralized systems (Gnutella, FastTrack (Kazaa), distributed hash tables

(Kademilia)) have each peer connected to some small number of other peers, without

a central authority, so searches for files must be distributed through their networks.

Gnutella became popular with the demise of Napster. It employs flooding, where a

peer asks its connected peers if they have a certain file, whereupon they ask their

connected peers, etc. FastTrack automatically divides its peers into clients and su-

pernodes, with supernodes performing searches in a Gnutella-like fashion for their

connected clients. Distributed hash tables are structured to provide more efficient

searches in exhange for the overhead of maintaining the structure. In all cases, once

the requested file is located, it is transferred between the relevant clients.

Some systems (eDonkey2000) seem to lie between the two extremes. eDon-

key2000 originally acted like DirectConnect with disjoint hub networks, but it now

allows the hubs to pass searches among themselves.
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1.3 Distributed hash tables

Distributed hash tables (DHTs) form completely decentralized P2P systems which,

due to an imposed structure, have reliable and efficient search methods. See [32] for

details on several popular protocols. Let P be the set of peers. In general, DHTs

have three structural components:

1. A keyspace K, with a publicly-known function f : {data items} → K that

assigns keys to data items.

2. A rule for assigning a portion, or zone, of the keyspace to each peer i ∈ P , such

that
⋃

i∈P zone(i) = K.

3. A set of application-level connections, assigned between peers based on the keys

in their zones.

In the following subsections, we formalize this definition, then briefly discuss

the operation and maintenance of DHTs.

1.3.1 Continuous-discrete definition

For definiteness, we describe Naor and Wieder’s continuous-discrete approach [37] to

defining DHTs. In this framework,

1. K is a continuous space. There is a graph Gcont that has K as its vertex set. (f

is unrestricted; it is often taken to be a uniform hash function.)

2. K is decomposed into possibly-overlapping, connected zones, one per peer.
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3. If Gcont has an edge from zone(i) to zone(j), then there may be an application-

level link from peer i to peer j. This yields a discrete graph Gdisc on the vertex

set P of peers.

In Chapter 2, we will define proportionate load balancing for DHTs that have

a one-dimensional keyspace K = [0, 1) mod 1. With this type of DHT, peer zones

are simply intervals. Peer i has label id(i), and should keep track of (at least) its

immediate predecessor pred(i) and successor succ(i), which are the peers such that

id(j) ∈ (id(pred(i)), id(succ(i))) ⇐⇒ j = i. (1.1)

We use the following definitions in this paper.

• Zone: zone(i) = [id(i), id(succ(i))) mod 1

• Zone size: zi = id(succ(i))− id(i) mod 1

• Relative zone size: ri = nzi, the ratio of zi to the average zone size 1
n

1.3.2 Data sharing

DHTs operate successfully because every peer knows to treat the location idx =

f(x) ∈ K as the authority on information about the data item x. Suppose idx ∈

zone(i). Fundamentally, DHTs need to provide just one operation: lookup : K → P :

idx 7→ i, which passes messages through the network to locate the peer in charge of

item x.

Data items (files) enter the network by having a peer elect to share them. If

peer o (the “owner”) elects to share item x, it executes lookup(f(x)) to find the peer
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i (the “intermediary”) in charge of idx. Peer o then gives its contact information to

peer i.

When another peer s (the “seeker”) wants to find item x, it also executes

lookup(f(x)) to find the peer i. Peer i reports peer o’s contact information to peer s,

so that s can obtain x from o. If no peer has elected to share the item x, peer i can

definitively alert peer s to this fact.

In a network of n peers, many (though not all) DHTs provide search times of

order O (log2(n)) with O (log2(n)) connections per peer. In Chapter 2, we will explain

the lookup operation in detail for de Bruijn networks. These networks provide search

times of order O (log2(n)) with only O (k) connections per peer.

1.3.3 Maintenance of the network

New peers join the network by a process known as bootstrapping. A new peer must

locate a peer already in the network, often via a list of IP addresses for computers

known to have been connected in the past. The new peer locates a target through

this intermediary, and consults with the target to divide that zone between them.

A peer can sign off of the network by transferring its zone to another peer with

a consecutive region of the keyspace. If, instead, the peer simply drops out of the

network without notifying any of its neighbors, a period of time is necessary for the

network to completely recover. Ensuring satisfactory performance during this period

is a subject of much study [44]. Typically, peers will re-advertise their available files

periodically in order to assist in the recovery.
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1.4 Crystal surfaces

An understanding of crystal surface evolution is important for modern nanoscale

applications, such as nanowires and quantum dots [69]. A variety of surface features

[81] can occur. For sufficiently low temperatures, crystal steps are the dominant

feature on a crystal surface cut close to a plane of symmetry.

Specifically, a crystal lattice has certain planes of symmetry that depend on the

lattice structure. A cubic lattice has three perpendicular planes of symmetry. The

crystal can be cut at a “vicinal angle” φ << 1 away from a plane of symmetry. At

high temperatures, the surface will be statistically rough, but at temperatures T less

than the “roughening temperature” TR (which depends on the material), observable

steps form. See Figure 1.2. The terraces have an average length L ∝ cot(φ).

Step bunching is a widely studied surface phenomenon. In the one-dimensional

model, one equilibrium state is a train of uniformly-spaced steps. In contrast, under

the step bunching instability, steps arrange themselves into widely-separated clusters

of tightly-packed steps. This bunching has been observed in a variety of experimental

systems, most commonly as a result of electromigration due to an applied direct

current [70], but also as a result of material deposition onto the surface [65]. Such

experimental observations have motivated interest in a theoretical understanding of

the phenomenon.

9



(a) Crystal steps with curvature. (b) Straight crystal steps.

Figure 1.2: At sufficiently low temperatures, steps are observable on a crystal

surface cut close to a plane of symmetry. The steps are approximately one

lattice constant high, and the terraces are typically tens or hundreds of lattice

constants wide. Real crystal steps have kinks, islands, vacancies, and other

imperfections, but they can be effectively modeled by smooth curved steps as

in Figure 1.2(a). Under certain conditions, the steps can be considered to have

zero curvature, as in Figure 1.2(b). This allows one-dimensional modeling of

step positions.
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Chapter 2

Exploiting heterogeneity

2.1 Introduction

Internet-enabled computers are heterogeneous, in that their capacities to process

traffic vary widely [46, 29]. In a peer-to-peer situation, it can be considered equitable

for the more capable peers to handle a larger fraction of the traffic [44]. We will

equalize the utilizations of the peers, where utilization is defined in Section 2.3.1 as

the fraction of a peer’s capacity that is used by the P2P application.

We refer to the operation of equalizing utilizations as proportionate load balanc-

ing (PLB). This name distinguishes it from typical notions of load balancing, where

the absolute amount of traffic to each peer is equalized. We will demonstrate analyt-

ically and through simulations that leveraging heterogeneity can improve the query

path length and congestion in a particular class of distributed hash tables, the de

Bruijn DHTs.

2.1.1 Related work

DHTs based on the de Bruijn architecture have been studied previously [16, 37, 25,

31, 17, 2]. We will present the basics of both forward and reversed de Bruijn net-

works. In particular, we offer an algorithm for routing in reversed de Bruijn networks

(“reversed routing”) that is novel for being provably correct, i.e., the destination is
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always reached in absence of node failures. Broose [17] provided a reversed routing

algorithm where the probability of failing to reach the desired destination was nonzero

(but small under the assumption of homogeneous zone sizes). Distance Halving [37]

defined its underlying architecture in a reversed manner, but only provided routing

algorithms that relied (in whole or in part) on forward routing. D2B [16], Koorde

[25], and ODRI [31] worked exclusively with forward networks. All of these employed

an assumption of homogeneity in the partitioning of the keyspace.

Demand on the network’s peers can differ for several reasons: (i) nonuniform

numbers of data items may be assigned to the peers [21]; (ii) data items of varying

popularities may receive highly nonuniform numbers of requests [28]; and (iii) the net-

work structure may cause demand to vary inherently, as we will see in Section 2.3.2.2.

Some prior approaches to coping with peer heterogeneity have divided the peers into

a hierarchy of two or more levels based on their capacities [19]. Other approaches

have employed a varying number of “virtual servers” [9, 22] for each peer. These

approaches essentially use (i) to address heterogeneous peer capacities, but lack the

real-time adaptability to deal with (ii) and (iii).

Our PLB implementation allows continuous variability in load distribution, and

keeps the simplicity of a single-level DHT structure. Unlike a recent implementation

[20], it allows continuous variability in peer capacities, and seeks to balance the ratio

of these capacities to the actual traffic load at each peer, not simply to the amount

of keyspace assigned to each peer. It also operates throughout the peers’ lifetimes,

not just during the process of joining or leaving the network.

Initially, proportionate load balancing seems similar to load balancing in het-
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erogeneous processor networks [14]. While our implementation of PLB is similar to

first-order diffusion schemes for processor networks, or the NbrAdjust operation for

parallel databases [18], the problem setting is different. In P2P networks, traffic load

is intimately tied to network structure. We modify the structure to balance queries

at all stages along the search path, not just in the final stage of actually serving the

response to a request.

2.1.2 DHTs and proportionate load balancing

As noted above, most protocols call for all peers to hold zones of approximately equal

size [54], so that absolute traffic levels are nearly equal. However, by assigning more

traffic to peers with higher capacity, PLB can balance their relative traffic levels.

We will demonstrate how this is possible in certain DHTs, where the number of

connections a peer has, and thus the amount of traffic it processes, depends on the

size of its zone.

All DHTs that use the continuous-discrete framework of Section 1.3.1 satisfy

the following assumption, which is critical for our implementation of proportionate

load balancing.

(A1) The expected number of routing paths that pass through a given peer in-

creases with the relative size of its zone.

Well-known examples where Assumption A1 holds include CAN [32] and ODRI [31].

The proofs in Section 2.2.2 will rely in part on the following assumption.

(A2) The peers occur in a random order in the keyspace, that is, P (j = succ(i)) =

13



1
n−1

for all j 6= i.

2.1.3 Overview

The remainder of this chapter is structured as follows. In Section 2.2 we define two

classes of de Bruijn DHTs and analytically examine them under heterogeneous struc-

ture. In Section 2.3 we present a simple scheme for dynamically adapting DHTs (not

necessarily de Bruijn) to exploit heterogeneity. In Section 2.4 we present simulation

results.
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2.2 Heterogeneous de Bruijn networks

Researchers have studied de Bruijn DHTs because they offer the potential for loga-

rithmic diameter logk(#peers) with constant degree k. We use them because they

have node degree intimately tied to zone size [54], making them good candidates for

proportionate load balancing.

Some arguments have been made against the practicality of de Bruijn DHTs [10].

First, heterogeneous partitioning of the keyspace prevents de Bruijn peers from having

constant degree [10]. We embrace this disparity by providing the larger zones to peers

with more capacity. Second, some peers in a DHT must have degree Ω(log(#peers))

(unlike the peers in a classical de Bruijn network) if the network is to remain connected

when half the peers fail [25]. By allowing varying peer degrees (Section 2.2.2.1) and

using an average degree k > 2 ([10] footnote 1), we can achieve a balance between

fault-tolerance and maintenance costs. Third, the path between two peers may be

Ω(#peers) in the worst case. If the ordering of the peers in the keyspace is random,

the probability of this is low; furthermore, heterogeneity improves the expected query

path length (Section 2.2.2.2).

In this section, we will present the basics of both forward and reversed de Bruijn

networks. The authors of Koorde and D2B provided more complete P2P protocols

[25, 16] than we offer here. The authors of ODRI offered comparisons of de Bruijn with

other DHT structures, including discussions of diameter, routing, and fault tolerance

[31].
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2.2.1 Forward and reversed de Bruijn networks

In this section, we first define continuous versions of forward and reversed de Bruijn

graphs. We then show how to discretize these systems to obtain de Bruijn distributed

hash tables.

2.2.1.1 de Bruijn graphs (continuous model)

The underlying space is the unit interval [0, 1) mod 1. When considering graphs of

degree k (integer ≥ 2), we will represent the values in base k, i.e.,

a = .a1a2a3 · · · =
∞∑
i=1

ai

ki
∈ [0, 1) (2.1)

where each ai ∈ Zk = {0, 1, . . . , k−1}. The value of k should be a reasonable number

of connections for each peer to maintain, e.g., k = 8 or k = 16.

2.2.1.1.1 Forward de Bruijn graphs Algebraically, each point a ∈ [0, 1) has

one outgoing edge, to the point ka mod 1. Symbolically, this is represented as an

edge .a1a2a3 · · · → .a2a3a4 · · · . We can thus refer to these as left-shifting graphs.

2.2.1.1.2 Reversed de Bruijn graphs Algebraically, each point a ∈ [0, 1) has

k outgoing edges, to the points (a + x)/k mod 1, for x ∈ Zk. Symbolically, these

are represented as edges .a1a2a3 · · · → .xa1a2 · · · . We can thus refer to these as

right-shifting graphs.

2.2.1.1.3 Comments The outgoing neighbors of a vertex in a reversed de Bruijn

graph are its incoming neighbors in the corresponding forward de Bruijn graph, and
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Figure 2.1: Two reversed de Bruijn graphs on finite spaces {.a1a2 · · · aD : ai ∈

Zk}. Each graph has kD vertices; each vertex has in- and out-degree k = 2.

The diameter of each graph is observably D.

vice versa.

In some applications, the underlying space may be taken as a collection of

elements {.a1a2 · · · aD : ai ∈ Zk} (D fixed) that is finite but still much larger (e.g.,

2128) than the set of peers might ever be. In this case, each vertex in the forward

graph has k outgoing edges: .a1a2 · · · aD−1aD → .a2a3 · · · aDy, y ∈ Zk. The diameter

(the maximum length of any shortest path between vertices) of the resultant forward

and reversed graphs is D. Fig. 2.1 shows two reversed de Bruijn graphs on small

underlying spaces.

2.2.1.2 de Bruijn networks (discrete model)

As in Section 1.3, to create a distributed hash table, we assign each peer i an iden-

tifier id(i) in accordance with Eq. (1.1). Peer i then controls the segment zone(i) =

[id(i), id(succ(i))), and has links to all peers in control of zones where some underlying

17



.00001

.01010

.01111

.10010

.10110 .11010

(a) Outgoing edges
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Figure 2.2: Here k = 2. The six large dots are the ids chosen by six peers,

and the arcs depict the zone each peer is in charge of. Fig. 2.2(a) shows

the outgoing edges for the peer with key .010100̄, while Fig. 2.2(b) shows

the incoming edges for that same peer. The dashed lines are some of the

relevant edges in the underlying reversed de Bruijn graph. The peer will have

network-level connections to (or from) all zones matching at least one of these

de Bruijn edges — the solid lines show these resulting connections in the P2P

network.

edge from zone(i) terminates. See Fig. 2.2.

We now describe algorithms for routing in de Bruijn DHTs, and verify their

correctness. We will suppose that peer i initiates a request for an item with key

b = .b1b2b3 · · · , which lies in some other peer’s zone(j).

2.2.1.2.1 Forward routing Let d be such that k−d ≤ zi. Then for any sequence

.b1b2b3 · · · , there exist a1, a2, . . . , ad ∈ Zk such that .a1a2 · · · adb1b2b3 · · · ∈ zone(i).
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At most two values of (a1, a2, . . . , ad) are required, and peer i can calculate them.

Following the sequence

.a1a2· · · ad−1 ad b1 b2 · · ·→

.a2a3· · · ad b1 b2 b3 · · ·→

...

.adb1 · · · bd−2bd−1 bd bd+1· · ·→

.b1 b2 · · · bd−1 bd bd+1bd+2· · ·= b

(2.2)

of underlying edges yields a valid path of peer links through the network, starting

at peer i and terminating at the appropriate peer j in d steps. The next hop is

computable locally by each peer involved.

2.2.1.2.2 Reversed routing Let d be such that (b − k−d, b + k−d) ⊆ zone(j).1

(Peer i cannot determine d under our assumption of heterogeneity; we will deal with

this difficulty soon.) Then any point .b1b2 · · · bdc1c2c3 · · · lies in (b−k−d, b+k−d) and

thus is covered by zone(j). Following any sequence

.c1c2· · · cd cd+1cd+2· · ·→

.bdc1· · · cd−1 cd cd+1· · ·→

. . .

.b2b3· · · c1 c2 c3 · · ·→

.b1b2· · · bd c1 c2 · · · ∈ zone(j)

(2.3)

1What happens if b = id(j)? In the continuous case, this happens with probability 0, but can

still be corrected by requiring peer j − 1 to forward requests for b to peer j. In the case of a finite

underlying space {.a1a2 · · · aD : ai ∈ Zk}, we may take d = D.
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of underlying edges yields a valid path of peer links, starting at an arbitrary point c

and terminating at the appropriate peer j in d steps.

Since the optimal value of d, dmin, cannot be determined a priori by the source

peer i, we must modify the procedure in Eq. (2.3). Peer i should perform exponential

polling until dmin is exceeded, trying values d = 1, 2, 4, 8, 16, . . .. The queries need

not be returned to i between failed attempts. That is, using ;d to denote the d-step

procedure in Eq. (2.3), and starting at id(i) = a = .a1a2a3 · · · , the sequence

a ;1 .b1 a

.b1a ;2 .b1b2 b1a

.b1b2b1a ;4 .b1b2b3b4 b1b2b1a (2.4)

.b1b2b3b4b1b2b1a ;8 .b1 · · · b8 b1b2b3b4b1b2b1a

...

reaches zone(j) in finite time. Letting 2h−1 < dmin ≤ 2h, the total number of steps

is ` = 1 + 2 + 4 + · · · + 2h = 2h+1 − 1 ∈ [2dmin − 1, 4dmin − 1). The next hop is

computable locally by each peer involved, as long as the current “stage” (1, 2, 4, 8,

. . . ) is included with the message header.

Alternatively, peer i can send out multiple messages simultaneously, a ;1 .b1a,

a ;2 .b1b2a, . . . , a ;2g .b1 · · · b2ga. If no response is received, g should be increased.

The value of g can be based on prior experience. The number of messages is the same

as Eq. (2.4), but the response time is shorter because some are sent in parallel.

Of course, in either case, it is probably desirable to have a larger first attempt

a ;2f .b1 · · · b2f a, 2f > 1.

20



2.2.2 Heterogeneity in de Bruijn networks

We now offer analytical analyses of de Bruijn DHTs under heterogeneity. To our

knowledge, this is the first such analysis for either forward or reversed networks.

Section 2.2.2.1 shows that forward networks are much more liable to develop peers

with only one outgoing neighbor, which are susceptible to disconnection from the

graph. Section 2.2.2.2 demonstrates that high variance among zone sizes always

reduces the query path length of reversed networks under reasonable assumptions, but

that there are reasonable assumptions for forward networks that yield longer query

path lengths. Finally, Section 2.2.2.3 discusses the use of caching as a complementary

tool to PLB.

2.2.2.1 Number of neighbors

We begin with a simple property: node degree. If we were assuming homogeneity

and roughly equal zone sizes, all peers would have in-degree and out-degree very near

k [31]. However, as the zone sizes vary in our heterogeneous networks, the degrees

become non-uniform.

2.2.2.1.1 Forward and reversed neighbors

Theorem 2.1. Suppose peer i has relative zone size ri in either a forward or reversed

de Bruijn DHT with n peers.

• Averaging over forward de Bruijn DHTs, peer i expects to have kfwd
i = 1 + kri

outgoing links to other peers.
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• Averaging over reversed de Bruijn DHTs, peer i expects to have krev
i = k + ri

outgoing links to other peers.

Note that kfwd
i and krev

i are independent of n.

Proof. We begin with a general fact: If a DHT has n arbitrarily-ordered peers, and

[a, b) is an interval in the keyspace [0, 1), then the expected number of distinct peers

in charge of some or all of [a, b) is n(b − a) + 1. Since the n peers are arranged in

no particular order by Assumption A2, the expected number of peers that lie inside

(a, b) is n(b− a). Each of these peers is in charge of a portion of [a, b). Additionally,

there is another peer whose key either is a or immediately precedes a; this peer is in

charge of the first portion of [a, b).

Now recall that zone(i) = [id(i), id(succ(i))).

In the forward case, zone(i) maps to [kid(i), kid(succ(i))), an interval of length

kzi. Then peer i expects to connect to n · kzi + 1 = 1 + kri peers.

In the reversed case, zone(i) maps to k evenly-spaced intervals [ id(i)
k

, id(succ(i))
k

)+

x
k
, x ∈ Zk. Each of these intervals has length 1

k
zi. Then peer i expects to connect to

k(n · 1
k
zi + 1) = k + ri peers.

In the reversed case, even if ri is very small, krev
i ≈ k. Therefore, even a very

weak peer will have alternative paths to route a query through if one of its neighbors

fails. In the forward case, if ri is very small, then kfwd
i ≈ 1 and the peer will be

susceptible to disconnection from the graph ([54], Section 2).

The expected number of links for a peer with an average-sized zone (ri = 1) is

k +1, rather than k, which is the number of links in a uniform de Bruijn graph. This
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is because the uniform graph is unstable with respect to all of its zone boundaries

lining up.

We note that the number of incoming links in a forward DHT is the number of

outgoing links in the corresponding reversed DHT, and vice versa. However, incoming

links do not directly help with routing around a failed neighbor.

2.2.2.1.2 Cost of PLB In Section 2.3.3, we will discuss the number of peers who

must be notified when peer i participates in our implementation of PLB. In the worst

case, all the in- and out-neighbors of either peer pred(i) or i must be notified of a

change in id(i).

By Theorem 2.1, we expect the number of neighbors that must be contacted (in

either the forward or reversed case) to be ≤ kfwd +krev = (k+1)(max{ri, rpred(i)}+1).

2.2.2.2 Query path lengths

If we were assuming homogeneity, so all n peers had roughly equal zone sizes, then

we would have d ∼ logk n for both the forward and reversed cases. Thus the number

of routing steps would be O (logk n), as in [37, 25, 16, 17, 31]. We note that linear

polling in the reversed case (trying values d = 1, 2, 3, 4, 5, . . .) would have resulted in

O ((logk n)2) steps.

In this paper we assume heterogeneity of peers and zone sizes. The average

number of routing steps will depend on these quantities:

• r = (r1, . . . , rn), the relative zone sizes.

• ρ = (ρ1, . . . , ρn), the relative rates at which the peers request items. Reasonable
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values: ρ = 1 (uniform rates); ρ = (cap(1), . . . , cap(n)), where cap(i) is the

capacity2 of the ith peer (faster peers make more queries).

• σ = (σ1, . . . , σn), the relative rates at which the peers supply items. Reasonable

value: σ = r (number of data items controlled is proportional to zone size).

Hot spots (Section 2.2.2.3) may yield a σ that is essentially random if caching

is not employed.

We will employ the fact that the weighted geometric mean

wGm(r; α) =

( n∏
i=1

rαi
i

)1/
Pn

i=1 αi

(2.5)

is always less than or equal to the weighted arithmetic mean

wAm(r; α) =

∑n
i=1 αiri∑n
i=1 αi

(2.6)

with equality iff all ri are equal. The proof is via Jensen’s inequality.

It will be useful to have an estimate of logkwGm(r; r). Let f(x) = x logk x; f

is infinitely differentiable and concave up on the interval I = [rmin, rmax] ⊂ (0,∞).

Taylor’s Theorem says that for any points a, a + h ∈ I and some point ξh between a

and a + h,

f(a + h) = f(a) + f ′(a)h +
1

2
f ′′(ξh)h

2 (2.7)

= a logk a + logk(ea)h +
1

2 ln k
ξ−1
h h2 (2.8)

≥ a logk a + logk(ea)h +
1

2 ln k
r−1
maxh

2. (2.9)

2A peer’s capacity is the rate at which it can process P2P traffic; see Section 2.3.1.
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The mean 1
n

∑n
i=1 ri = 1, so let si = ri − 1. Then

∑n
i=1 si = 0. Finally,

logkwGm(r; r) =
1

n

n∑
i=1

ri logk ri (2.10)

=
1

n

n∑
i=1

f(1 + si) (2.11)

≥ 1

n

(
0 + logk(e)si +

1

2 ln k
r−1
maxs

2
i

)
(2.12)

=
1

2 ln k
r−1
max

1

n
s2

i (2.13)

=
1

2 ln k
r−1
maxVar{ri}. (2.14)

2.2.2.2.1 Forward query path lengths

Theorem 2.2. Consider a forward de Bruijn DHT with n peers.

• The length of the path from peer i to any given destination is

`fwd
j = dlogk n− logk rie. (2.15)

• Taking a weighted average over all peers i in the network gives the the average

query path length

¯̀fwd = logk n− logkwGm(r; ρ) + C (2.16)

for some 0 < C < 1.

Proof. From Section 2.2.1.2.1, the length of the path from i to any b is

di = dlogk

(
z−1

i

)
e = logk n− logk ri + εi, (2.17)

for some 0 ≤ εi < 1. For the second part of the theorem, we have

¯̀fwd =

(
n∑

i=1

ρi(logk n− logk ri + εi)

)(
n∑

i=1

ρi

)−1

(2.18)

= logk n− logkwGm(r; ρ) +wAm(ε; ρ) (2.19)
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yielding Eq. (2.16).

If all peers have the same request rate (ρ = 1), then

logkwGm(r;1) ≤ logkwAm(r;1) = logk 1 = 0, (2.20)

so the average query path length is at least logk n. On the other hand, if peers with

larger zones also have larger ρi (e.g., ρ = (cap(1), . . . , cap(n)) and some form of PLB

has been performed), thenwAm(r; ρ) > 1 and the average query path length can be

less than logk n.

2.2.2.2.2 Reversed query path lengths We begin with a lemma.

Lemma 2.1. Consider a peer j in a reversed de Bruijn DHT with n peers. If b ∈

zone(j), let db be minimal such that .b1b2 · · · bdb
c1c2 · · · ∈ zone(j) for all c. Then the

expected value of db over zone(j) is

d̄j = logk n− logk rj + C
(j)
k (2.21)

where 0 < C
(j)
k < 2 + 1

log2 k
+ 1

k−1
≤ 4.

Proof. We will perform the computation assuming b is in the left half of zone(j);

the argument for the right half is symmetric. Recall from Section 2.2.1.2.2 that db is

minimal such that (b− k−db , b + k−db) ⊆ zone(j). Thus b− id(j) ∈ [k−db , k−db+1).

Let m be such that id(j) + [k−m, k−m+1) contains the midpoint of zone(j); we

find m = d− logk
zj

2
e. Then db is a step function on its half of zone(j), given by

db =


d if d > m and b− id(j) ∈ [k−d, k−d+1),

m if b− id(j) ∈ [k−m,
zj

2
].

(2.22)
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The expected value of db is found by weighted average:

d̄j =

[
∞∑

d=m+1

d
(
k−d+1 − k−d

)
(2.23)

+m
(zj

2
− k−m

)]
/
zj

2
(2.24)

=

[
k−m+1

k − 1
+ m

zj

2

]
/
zj

2
(2.25)

= dlogk n− logk rj + logk 2e+
k−m+1

(k − 1)
zj

2

. (2.26)

We have used Gabriel’s truncated staircase,
∑∞

i=m+1 iri = mrm+1

1−r
+ rm+1

(1−r)2
for 0 < r < 1.

By definition of m, k−m+1 ∈ (
zj

2
, k

zj

2
]. Thus the final term satisfies k−m+1

(k−1)
zj
2

∈

( 1
k−1

, k
k−1

] ⊂ (0, 2], yielding Eq. (2.21).

We now proceed to the theorem that is the main result of this subsection.

Theorem 2.3. Consider a reversed de Bruijn DHT with n peers.

• Averaging over all destinations b chosen uniformly at random from zone(j), the

expected length of the path from any given peer to b is

`rev
i ≈ µ ·

(
logk n− logk rj + C

(j)
k

)
− 1, (2.27)

where µ ≤ 4.

• Taking a weighted average over all destination zones j in the network gives the

the average query path length

¯̀rev ≈ µ · (logk n− logkwGm(r; σ) + Ck) . (2.28)

Here C
(j)
k and Ck are positive values bounded by 2 + 1

log2 k
+ 1

k−1
≤ 4.
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Proof. In Section 2.2.1.2.2, we found that the number of steps ¯̀
j
rev

= 2dlog2 d̄je+1−1 <

4d̄j − 1, yielding the first part of the theorem with µ = 4.

For the second part of the theorem, we average over all destination zones j,

¯̀rev =

(
n∑

j=1

σj
¯̀
j
rev

)
/

n∑
j=1

σj (2.29)

≈

(
n∑

j=1

σjµ · (logk n− logk rj + C
(j)
k )

)(
n∑

j=1

σj

)−1

(2.30)

= µ ·
(
logk n− logkwGm(r; σ) +wAm(C(k)

r ; σ)
)

(2.31)

yielding Eq. (2.28).

In practice, µ will depend on the distribution of the d̄j. Letting hj = dlog2 d̄je,

we have µ = 2hj+1/d̄j. If d̄j were uniformly distributed in (2hj−1, 2hj ], then E(µ) =

4 ln 2 ≈ 2.8. If d̄j were distributed as 1/x in (2hj−1, 2hj ] (such as by Benford’s Law),

then E(µ) = 2/ ln 2 ≈ 2.9.

If received requests are proportional to zone size (σ = r), then logkwGm(r; r) >

0, and the average query path length will be less than logk n. In particular, we saw

above that logkwGm(r; r) ≥ 1
2 ln k

r−1
maxVar{ri}, so high variance among zone sizes has

a beneficial effect on the average query path length.

2.2.2.3 Caching

Dynamic caching is an important tool for relieving hot spots [28] — items with extreme

popularity that cause acute congestion for the peers that host them. Caching is a

process for replicating such items at multiple nodes, to distribute the workload.

Caching is compatible with PLB and provides a complementary benefit. Since
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PLB is based on the actual amount of traffic processed by each peer, it is able to deal

with hot spots to some degree, but caching can be faster and more effective. On the

other hand, caching is not designed to alter the structure of the network in order to

take advantage of heterogeneity.

2.2.2.3.1 Forward caching Forward de Bruijn DHTs permit a simple caching

scheme [17, 37]. A hot spot at location b ∈ [0, 1) should be replicated at the k

predecessor locations b+x
k

= .xb1b2 · · · , x ∈ Zk. Then a request for b will always

pass through one of these caches, each with equal probability. The replication can be

repeated as necessary.

2.2.2.3.2 Reversed caching The analogous scheme does not work for reversed

de Bruijn DHTs, since there is only one predecessor location kb mod 1 to the hot

spot b. A routing-independent caching scheme such as [28] could be used. Al-

ternatively, a peer that routes more than a certain number of requests for item b

can begin caching the item, until some set of peers together controlling the inter-

val .bcrit · · · b2hb1 · · · b2h−1 · · · b1b2b1c, for all c ∈ [0, 1), distributes the workload to a

satisfactory level. (Here bcrit is the first value for which the workload is distributed

satisfactorily.)
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2.3 Proportionate load balancing

In this section, we present an implementation of proportionate load balancing in the

context of continuous-discrete DHTs (Section 1.3), not necessarily de Bruijn. Using

only information about itself and the two peers adjacent to it in the keyspace [0, 1),

each peer will increase or decrease its zone size. Assumption 1 indicates that, over

time, this should equalize all peers’ utilizations. We stress that in simulations, we

will have all peers alter their zone sizes simultaneously on clock ticks, but in reality

a peer can alter its zone size more or less often depending on its individual needs.

2.3.1 Definitions

The capacity of a peer (cap(i)) is the rate at which it is able to process traffic for the

P2P application. Generally, the outbound traffic rate will be the limiting factor [29].

Plots of estimated bottleneck bandwidths for peers in the Napster and Gnutella [32]

networks are given in Section 3.1 of [46]; these plots show that there are frequently

orders of magnitude differences between peer capacities.

Capacity is difficult to measure from the outside, but a peer can keep track of

its own capacity with relative ease. To discourage under-reporting of capacity, peers

might limit the rate at which they transfer files to peer i to be some multiple of i’s

published capacity. This does not affect the implementation of PLB. Over-reporting is

a more complex issue, but not an insurmountable one. The predecessor and successor

of a newly joined peer can restrict the growth of its zone by modifying the algorithm

of Section 2.3.2.2. If a misbehaving peer does obtain a large zone and fails to pass on
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all its messages, it can be treated like a failed peer as in Section 2.3.2.1.

The load of a peer (load(i)) is the rate at which the network asks it to pro-

cess P2P traffic. A peer can keep track of this value, perhaps as an exponentially

weighted moving average. Load is a dynamic quantity that can depend on relative

zone size (Theorem 2.1), global network structure (Fig. 2.3), and key popularity (Sec-

tion 2.2.2.3) in a complicated way.

The utilization of a peer (util(i)) is a dimensionless quantity equal to the ratio

of its load and capacity: util(i) = load(i)
cap(i)

. In order for a peer to keep up with its

requests, its utilization should remain below 1.

2.3.2 Implementation

In our implementation, peer i is only required to keep track of limited information:

For the DHT: Its zone zone(i) = [id(i), id(succ(i))) and the data items that

map to it. Links to its neighbors in the underlying graph, for routing. Links to peers

pred(i) and succ(i), for consistency.

For PLB: The capacity, load, and utilization of itself and peers pred(i) and

succ(i).

2.3.2.1 Arriving and departing peers (churn)

When a new peer wants to join a P2P network, typically it must know how to contact

some existing peer, who helps the new peer find its proper neighbors. Several methods

for assigning a zone to a new peer were analyzed in [54]. In single-point random-split,
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a randomly chosen point in the keyspace becomes the new peer’s id. In single-point

center-split, the peer that controls a randomly chosen point gives exactly half of its

zone to the new peer. In multi-point center-split (random or semi-deterministic), a

fixed number of points are sampled; the one belonging to the largest zone becomes

the target of a center-split. As an example of the analyses, we have that under

single-point center-split the largest and smallest zones are Ω(log n) times larger and

Ω
(
2
√

2 log2 n
)

times smaller than average, with high probability.

The center-split methods are readily generalizable to proportional-split methods,

where the target zone is split, not in half, but in proportion to the capacities of the

new and existing peers3. The intent is to equalize utilizations rather than zone sizes.

In a multi-point method, the point belonging to the peer with the highest utilization

becomes the target.

In our simulations, we will use single-point proportional-split, which works as

follows: If the network has n − 1 peers, then the nth peer chooses a random point

id ∈ K, which will lie in the zone of some existing peer i. Peer n then receives the

identifier id(n) ∈ zone(i) such that zn

zi
= cap(n)

cap(i)
. (Alternatively, id(n) could be chosen

based on the load distribution function gi(x) discussed in Section 2.3.2.2.2.)

When peer i leaves the P2P network, its adjacent peers pred(i) and succ(i)

should take control of its zone. If peer i announces its departure, the adjacent peers

can split zone(i) in proportion to their capacities, and take responsibility for the data

items previously managed by i. If peer i fails or simply drops out, some information

3More generally, it may be split in proportion to some function of the capacities of the new and

existing peers, depending on the nature of the relationship in Assumption 1.
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may be temporarily lost. The Chord coping mechanism [49] is applicable to our

DHTs; an analysis of coping mechanisms is beyond the scope of this paper. Typically,

periodic re-publication of data items is required.

2.3.2.2 Existing peers

Proportional-split joining methods are insufficient to achieve balanced utilizations.

Part of this is due to the unpredictable nature of peer departures, but at least as

important is the fact that local DHT traffic load depends on the global structure of

the network. Fig. 2.3 shows the distribution of load across a particular peer’s zone

for an actual simulation, a reversed de Bruijn network in which the request rates ρ

(Section 2.2.2.2) were all equal and destinations b ∈ K were chosen with uniform

probability.

The dependence of load on network structure means that it is not practical

(or perhaps even possible) to find an exact solution to the problem of utilization

balancing, even if the set of peers is held constant. This is in contrast to processor

networks or parallel databases, where an exact solution can be found as the result of a

global linear equation, and the challenge is to find locally-computable approximations

to this global solution.

Our implementation of PLB has similarities to the NbrAdjust operation of

[18] and the first-order diffusion schemes described in [14], but we also address the

non-uniformity depicted in Fig. 2.3, and we incorporate fail-safes to make sure that

zone sizes do not change too quickly. Pseudocode for the local implementation of
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Figure 2.3: Traffic load is not distributed uniformly within zones, even under

uniform selection of sources and destinations. This graph depicts the distri-

bution of load across a particular peer’s zone in a reversed de Bruijn network.

In the simulation, 19% of the traffic went through the second portion of the

zone, and only 6% through the fifth portion. Call this step function gi(x) for

peer i.
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PLB is given in Fig. 2.4.

2.3.2.2.1 The Balance operation Lines 1 and 2 of Balance assign h to be

the peer with higher utilization, and ` the peer with lower utilization. Line 3 tests

whether util(h) is sufficiently higher than util(`) for the GiveZone operation to be

performed in line 4.

PLB requires two tolerance values, tmin, tdiff ∈ [0, 1). Their meaning is as follows.

If util(`) = 0, we change id(i) if util(h) − util(`) ≥ tmin. On the other hand, if the

util(`) = 1, we change id(i) if util(h) − util(`) ≥ tmin + tdiff. For other values of

util(`), we interpolate linearly. Smaller values of tmin and tdiff cause the network to

take longer to settle down, but a more even distribution of utilizations is achieved.

2.3.2.2.2 The GiveZone operation Line 1 of GiveZone determines the frac-

tion of peer h’s load that should be transferred to peer ` so that util(h)′ = util(`)′.

Solving the equation load(`)+f ·load(h)
cap(`)

= (1−f)·load(h)
cap(h)

for f yields f = 1−util(`)/util(h)
1+cap(h)/cap(`)

. Be-

cause i communicates with both pred(i) and succ(i), zone(i) may be expanded or con-

tracted on both ends simultaneously, so we use the modified value loadfrac(h, `) = 1
2
f .

Recall that the distribution of traffic load is nonuniform within zones. In line

2, peer h determines the fraction zonefrac(h, `) of its zone (adjacent to id(i)) that

corresponds to α · loadfrac(h, `) of its load. (The parameter α ∈ (0, 1] is tunable; we

use α = 1.) In our simulations, we had each peer keep a histogram of the activity in

s = 10 equal sub-intervals of its zone, generating a step function gh like in Fig. 2.3.

If h = i, the integral is Gh,`(x) =
∫ x

0
gh(t)dt. If h = pred(i), the integral is Gh,`(x) =
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Balance (peer i)

1 Let h← argmax{util(i), util(pred(i))}

2 Let `← argmin{util(i), util(pred(i))}

3 IF util(h) ≥ (1 + tdiff)util(`) + tmin THEN

4 GiveZone(h, `)

GiveZone (peer h, peer `)

1 Let loadfrac(h, `)← 1
2
· 1−util(`)/util(h)

1+cap(h)/cap(`)

2 Let zonefrac(h, `)← G−1
h,`(αloadfrac(h, `))

3 Let τ ← min
{

zonefrac(h, `), 1
2
, z`

zh

}
4 Adjust id(i) by τ · zh

Figure 2.4: Pseudocode for PLB (Section 2.3.2.2). Balance describes the

conditions under which PLB is performed. Here tmin, tdiff ∈ [0, 1). GiveZone

determines the new boundary id(i)′ between zone(i) and zone(pred(i)). In

simulations, we have all peers execute Balance simultaneously on clock ticks,

but in reality it can be executed at any time depending on each peer’s needs.
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id(i−1) id(i) id(i+1)
Before:

τ = fraction of zone(i)

id(i−1) id(i)’ id(i+1)
After:

(a) Contracting zone(i)

id(i−1) id(i) id(i+1)
Before:

τ = fraction of zone(i−1)

id(i−1) id(i)’ id(i+1)
After:

(b) Expanding zone(i)

Figure 2.5: In Fig. 2.5(a), peer i contracts its zone by increasing id(i) to id(i)′.

In Fig. 2.5(b), peer i expands its zone by decreasing id(i) to id(i)′.

∫ 1

1−x
gh(t)dt. Notice that G−1

h,` is easy to calculate since gh is a step function.

Line 3 ensures that z′h = zh − τzh ≥ 1
2
zh and z′` = z` + τzh ≤ 2z`, so the zone

sizes do not adjust too quickly. It is easy to repeat the Balance operation, but it is

difficult to recover from a suddenly over-utilized peer.

In line 4, id(i) is adjusted by the proper fraction of zh. It is increased if h = i,

and decreased if h = pred(i). See Fig. 2.5.
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2.3.3 Data and rewiring costs

When peer i changes its id(i) based on PLB, the interval between the old id(i) and

the new id(i)′ changes ownership as discussed in the last section. The previous owner

is h (i or pred(i), the peer with higher utilization), while the new owner is the other

peer `. There is a data cost associated with moving information about data items

from h to ` to maintain the proper definition of their zones. This cost is proportional

to the relative size of the interval, τrh, that was transferred.

There is also a rewiring cost for adjusting neighbor connections maintain the

structure of the DHT. When id(i) is changed, links to/from peer h may be removed,

and links to/from peer ` may be added. For each link involving h, we check whether

the link should be removed from h, and whether a corresponding link should be added

for `. (These are separate questions because both h and ` may simultaneously link to

the same peer.) Any links not involving h will be unchanged. A special case arises if

h has a (virtual) link to itself; then we must check all four combinations of old and

new interval owners: h→ h, `→ h, h→ `, and `→ `.

We summarize these results in a theorem.

Theorem 2.4. Consider continuous-discrete DHTs as in Section 1.3. Suppose id(i)

is adjusted by τ · zh in the GiveZone operation.

• Averaging over all distributions of data items, the expected data cost is

τzh

(∑
Dj

)
= τrhD̄. (2.32)

Here Dj is the number of data items stored by peer j, and D̄ = 1
n

∑n
j=1 Dj is

the average number of stored (and thus of shared) data items per peer.
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• The rewiring cost is at most 2(out-degree of h) + 2(in-degree of h) + 4.
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2.4 Simulation experiments

We now use simulations to evaluate the performance of our proportionate load bal-

ancing implementation. These simulations are all of P2P networks based on various

types of de Bruijn DHTs.

One key feature of a network, which we will report on for each experiment, is its

maximum utilization. The maximum utilization is the greatest utilization experienced

by any peer in the network. A large maximum utilization (near 1) implies that some

peer is near capacity, and will start dropping queries if the request rates increase. A

small maximum utilization (near 0) implies that all peers are experiencing relatively

low load, and the request rate can be increased substantially without overloading the

network.

2.4.1 Setup

We perform iterations of PLB on static and dynamic networks of various sizes, ranging

from 64 to 8192 peers. During one iteration, all utilizations are computed, and then

each peer performs the Balance operation (Section 2.3.2.2) once.

The capacity of each peer is assumed to be constant during the simulation. Ca-

pacities are selected from a probability distribution that approximates the estimated

bottleneck upstream bandwidths of peers in the Gnutella network [46]. This distri-

bution is described in Table 2.1. Capacities selected from this distribution will be

highly variable, indicated by the standard deviation of F being larger than the mean.

The request rate ρi of each peer (Section 2.2.2.2) is also assumed to be constant
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Table 2.1: Statistical properties of our capacity distribution.

Property Value

CDF F (x) = 1
2.3

log10
x
25

Mean 940 Kbps
Standard deviation 1.5 Mbps

Median 350 Kbps
Range 25 Kbps ≤ x < 5 Mbps

during the simulation. We test two reasonable values of ρ: 1 and (cap(1), . . . , cap(n))

(Section 2.2.2.2). In the simulations presented here, the supply rate σi of each peer

is taken to be proportional to its relative zone size ri.
4

We estimate the utilization of each peer by tracing paths from random source

peers to random destination keys. The number of times a peer is traversed during

this process allows us to estimate its relative traffic load. An average of 100 paths per

source peer were traced; results were similar for different choices of the traced paths.

We tested various protocol parameters, and found no unpredictable results. The

parameters used herein are as follows. de Bruijn graphs: k = 8, D = 8. Balance

operation: tmin = 0.03, tdiff = 0.07̄.

2.4.2 Static networks

In our static simulations, no peers joined or left the system. We assigned capacities

to the n peers and fixed their order in the keyspace. We report on four stages of PLB.

In each we measured network features such as maximum utilization, mean utilization,

4Simulations with smooth but very nonuniform distributions of data items showed that PLB copes

well with different values of σ; space prohibits their presentation here. Caching can be employed to

level isolated hot spots, as described in Section 2.2.2.3.
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and average query path length.

0. As a baseline, we tested the uniform network (all peers have zi = 1
n
).

1. We then rebuilt the network with the single-point proportional-split method of

Section 2.3.2.1.

2. We performed five iterations of PLB on this network (to evaluate realistic per-

formance).

3. We continued performing 500 iterations for some simulations (to evaluate lim-

iting behavior). The worst-case value of each feature between 450 and 500

iterations was used.

2.4.2.1 Uniform request rate

In these simulations, ρ ∝ 1. At each network size, 30 simulations were performed for

stages 1 and 2. Because of time considerations, only 6 simulations were continued to

stage 3.

Figs. 2.6 and 2.7 show how the maximum utilization drops under PLB. The

inverse of the maximum utilization determines how much traffic the network can

handle without any peer becoming over-utilized.

Relative to the corresponding uniform networks, forward de Bruijn DHTs saw

a greater decrease in maximum utilization in stages 1 and 2 than did reversed de

Bruijn DHTs. However, the starting values in stage 0 were about twice as great. The

limiting behavior of both cases was about the same, with the maximum utilization
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Figure 2.6: Results of the static simulations in Section 2.4.2.1, with uniform

request rate ρ = 1. The results for forward de Bruijn networks are depicted

here. Multiple simulations were performed. These plots show median values

connected by lines, with boxes delimiting the 25th and 75th percentiles, and

whiskers showing the full extent of the data. Figs. 2.6 and 2.7 show how

the maximum peer utilization decreases under PLB. All measurements are

relative to the maximum utilization in the corresponding uniform network

(peer capacities and ordering are the same as the original network, but all

zones are given equal size). The solid line shows networks built with single-

point proportional-split (Section 2.3.2.1). The dashed line shows the same

proportional-split networks after 5 iterations of Balance. The dotted line

shows the limiting behavior of PLB, after 450 iterations.
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Figure 2.7: Results of the static simulations in Section 2.4.2.1, for reversed de

Bruijn networks. This figure complements Figure 2.6, which shows the results

for forward de Bruijn networks.
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Figure 2.8: Sample result of the static simulations in Section 2.4.2.1. For a

fixed injection rate ρ, we compare the maximum utilization for forward and

reversed de Bruijn DHTs as PLB is performed. The graph depicts the results

of one simulation of each, with 2048 peers. Local fluctuations are much higher

in the forward case.

being 5% to 10% of its original value.

As predicted in Section 2.2.2.2, query path lengths decreased (by 10%) for

reversed de Bruijn DHTs, and increased (by 10%) for forward de Bruijn DHTs. In

stage 0, the reversed query path lengths were about 70% longer than the forward

query path lengths.
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2.4.2.1.1 Volatility Figure 2.8 compares the actual values of the maximum uti-

lization for forward and reversed de Bruijn DHTs. In the limit of a large number of

iterations, their best-case behavior is similar, but oscillations for the forward DHTs

yield a higher worst-case behavior.

The sudden spikes in utilization seen in Figure 2.8 most often occur when a

low-capacity peer becomes overwhelmed, usually for one of two reasons. (i) The peer

might expand its zone and acquire more traffic than expected, due to imbalances in the

keyspace. The imbalances are more profound in forward de Bruijn graphs, because of

their more primitive routing procedure. (ii) A different peer might change the size of

its zone, thus forcing it to connect to the peer in question. This is more problematic in

the forward case because a small peer is likely to have only one outgoing connection,

thus overwhelming its sole neighbor.

2.4.2.2 Varied request rate

In these simulations, ρ ∝ (cap(1), . . . , cap(n)). At each network size, 30 simulations

were performed for stages 1 and 2. Of these, 6 were continued to stage 3. See

Figure 2.9.

Results for maximum utilization were very similar to the simultations with

uniform rerquest rate, as seen in Figure 2.9. Forward de Bruijn DHTs again saw a

greater decrease in maximum utilization in stages 1 and 2 than did reversed de Bruijn

DHTs. The starting values in stage 0 were again about twice as great. However, the

limiting behavior in forward DHTs was slightly better than reversed.
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(a) Forward de Bruijn
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(b) Reversed de Bruijn

Figure 2.9: Results of the static simulations in Section 2.4.2.2, with capacity-

proportional request rate. See Figure 2.6 for an explanation.
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Query path lengths again decreased for reversed de Bruijn DHTs. Forward de

Bruijn DHTs saw a very slight decrease. In stage 0, the reversed query path lengths

were about 65% longer than the forward query path lengths.

2.4.3 Dynamic networks

These simulations model networks that have reached a steady-state size, but with a

fluctuating (dynamic) population of peers. We start with the average network size

n = 512, and allow peers to join and leave the system according to the rules of

Section 2.3.2.1.

Fix a churn rate χ. Between each iteration of PLB, we independently allow

each peer to drop out of the network with probability χ, and we also insert 512χ new

peers with capacities chosen from the distribution in Table 2.1. This process will tend

to keep the network size close to 512.5 How fast do peers come and go in reality?

A detailed study of churn rates ([50], Figure 6) reveals that in the real-world DHT

Kad, approximately 80% of the peers in the network at any given time have been

present for at least one hour, while approximately 95% have been present for at least

ten minutes. Therefore, only a small percentage of the peers will have changed if we

execute PLB every few minutes.

We executed 12 simulations of 500 iterations for forward and reversed networks

for values of χ = 2−15, 2−14, . . . , 2−3. The results for small χ were similar to Figure 2.8,

as expected. A representative example for larger χ appears in Figure 2.10.

5If the network size is ni after i iterations, then E (|ni+1 − 512| | ni) = |(ni−niχ+512χ)−512| =

(1− χ)|ni − 512| < |ni − 512|.
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Figure 2.10: Sample result of the dynamic simulations in Section 2.4.3 (for-

ward network pictured). The churn rate is χ = 2−5 ≈ 3.1%. For clarity, only

200 iterations are displayed. Forward and reversed networks displayed statis-

tically similar reactions to churn rate. We see that the maximum utilization

is highly volatile, but the 99th percentile of utilizations is relatively stable,

indicating that the vast majority of peers in dynamic networks will benefit

from PLB.
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For definiteness, we define a spike as an increase in one step by at least a factor

of two, and the spike recovery time as the number of steps to return to within 10%

of the pre-spike value. First consider the maximum peer utilization, as we have in

other experiments. As χ becomes large (we tested up to χ = 2−3 ≈ 13%), the

median distance between spikes and the median spike recovery time both approach

approximately 5 steps. Now consider the 99th percentile of the peer utilizations,

depicted by the bottom line in Figure 2.10. Ignoring a very few highly-affected peers

increases the median distance between spikes to approximately 75, without greatly

affecting the spike recovery time.

Note that we are assuming no correlation between session length and capacity.

It is plausible to think that in reality, peers with short session times also have low

capacities. Such behavior would reduce the fluctuations in maximum utilization, since

the removal of a peer with a small zone has less impact than the removal of one with

a large zone.

2.4.4 Hierarchical DHTs

Hierarchical P2P systems [19] divide their peers into two (or sometimes more) classes.

One class consists of superpeers, with high capacity and stability, and one consists

of regular, transient peers. We implemented a simple hierarchical system based on

reversed de Bruijn graphs, as follows.

Given a threshold capacity c, we label peer i a superpeer if cap(i) ≥ c, or a

regular peer otherwise. We form a de Bruijn DHT from the superpeers; then each of
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Figure 2.11: Results of the hierarchical simulations in Section 2.4.4. The

results for forward de Bruijn neigworks are depicted here; see Figure 2.12

for the results for reversed de Bruijn networks. Peers were grouped by the

threshold capacity cmean = 940 Kbps, and results are shown relative to the

corresponding flat uniform network (no hierarchy, all zones equal size). The

solid line depicts a hierarchical uniform graph, while the dashed line shows a

hierarchical graph to which PLB has been applied for 5 iterations.
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Figure 2.12: Results of the hierarchical simulations in Section 2.4.4, for re-

versed de Bruijn networks. This figure complements Figure 2.11, which shows

the results for forward de Bruijn networks

.
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the regular peers is assigned to a superpeer at random. All peers share data, but a

superpeer handles all of the routing of requests for its associated regular peers.

When building the network with the single-point proportional-split method

(Section 2.3.2.1), we split zones in proportion to the square roots of the capacities

of the new and existing superpeers. This is because the expected amount of traffic

through a superpeer depends both on its zone size, and on the number of regular

peers attached to it, which is proportional to its zone size. The Balance operation

was unchanged.

Figures 2.11 and 2.12 show results for uniform hierarchical networks and PLB-

iterated hierarchical networks, both compared to uniform non-hierarchical (flat) net-

works. We note two features of these plots. First, uniform hierarchical networks

have maximum utilizations that are about 3% (forward) to 6% (reversed) of the value

for a flat network, which is a large improvement. Second, executing PLB on these

hierarchical networks yields maximum utilizations that are as good as or better than

those for the uniform hierarchical networks.
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2.5 Discussion

We have presented the mechanics of forward and reversed de Bruijn DHTs, under

the continuous-discrete framework. We analyzed the effect of relative zone size on

expected degree in each type of DHT. Furthermore, we investigated the effect of zone

size distribution on the average query path length. Theorems 2.1, 2.2, and 2.3 of

Section 2.2.2 describe the beneficial effect heterogeneity can have.

We have also presented a proportionate load balancing algorithm, which it-

eratively optimizes continuous-discrete DHTs by equalizing peer utilizations. After

analyzing the data and rewiring costs involved, we performed simulations of static,

dynamic, and hierarchical networks to verify the efficacy of PLB in reducing strain

on peers. We found that the maximum relative load on any peer dropped to approx-

imately 20% of the value for a uniformly-structured network after just five iterations

of PLB, and to less than 10% in the limit of 450-500 iterations. A more complete

practical algorithm could be a subject of future research.

Networks built with PLB offer a continuum of peer roles, from server-like to

client-like, so each peer can choose an appropriate role for itself depending on the

current makeup of the network. This differs from hierarchical schemes [19] which

treat some peers almost exclusively as servers and the others only as clients.

We found that forward de Bruijn DHTs are more volatile in their response to

PLB than reversed de Bruijn DHTs (Section 2.4.2.1.1). They also experienced larger

starting values of maximum utilization, by approximately a factor of two. Although

forward DHTs have shorter average query path length in uniformly-structured net-
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works, under heterogeneity we have that the query path length may increase for

forward DHTs, while for reversed DHTs it decreases by µ
2 ln k

r−1
maxVar{ri}. This is

because in the forward case, a large zone size only benefits the owner, while in the re-

versed case, a large zone size benefits all the peers. We believe these features present

a strong case for the consideration of reversed de Bruijn DHTs.
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Chapter 3

Identification of peer-to-peer hosts

3.1 Introduction

Universities and corporations have a particular interest in identifying peer-to-peer

traffic in their networks. Their concerns are twofold: bandwidth and security. With

regard to bandwidth, peers in peer-to-peer networks typically upload more than

clients in client-server systems [45], which puts strain on the networks they inhabit.

With regard to security, sharing pirated content can result in costly legal action, or

applications and content may contain viruses, spyware, or other malware [7].

Our focus on this chapter is on security concerns, so our goal is to identify the

offending/vulnerable hosts. In contrast, when the major concern is for bandwidth,

the goal is to identify individual traffic flows, or even packets. Higher accuracy can

be achieved when identifying hosts, because more information is available: we can

consider all the flows a host is involved in. Additionally, network monitoring is work-

intensive. We are able to achieve acceptable results with NetFlow-style [8] data,

while effective flow-identification schemes tend to require packet-level information

[3, 55, 35].

We will use behavioral commonalities to identify peer-to-peer applications. Our

data will be IP traffic passively observed at set monitoring locations. Examples of

observable behaviors are average flow size, or number of IP addresses communicated
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with in a certain period of time. Message passing, measured in “triples,” will be a

particularly important behavior. We will intentionally ignore other behaviors, such as

port information [34], or the specific timing of requests, because they are application-

specific. We will also attempt to make the identification as close to real-time as

possible, rather than performing extensive post-processing analysis of network struc-

ture.

3.1.1 Related work

Most of the literature on identifying peer-to-peer traffic has focused on labeling flows

(or IP pairs) rather than individual hosts. When applicable, payload examination can

be a very effective method of classifying particular P2P applications [47, 1]. However,

encryption and data volume are increasingly rendering payload methods inapplicable.

It is also possible to identify flows based only on features extracted from meta-

data. These features are typically processed by machine learning classification tech-

niques. Some studies have attempted to identify specific applications, such as Kazaa

or eDonkey. Two such studies achieved 80-90% accuracy, one [3] using only the sizes

of its first several data packets in the flow, and another [55] using a wider variety of

features, including packet interarrival times.

Other studies, which are more in line with our goals, have attempted to identify

the categories of traffic that a flow belongs to, such as P2P or email. One such

study [35] used features including packet interarrival times and TCP ports to achieve

up to 95% accuracy for certain application categories, though only up to 55% for
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P2P. Another [26] used features including port counts to identify 99% of P2P flows

with a 10% false positive rate, but used a fixed algorithm rather than adaptable

machine learning techniques. Though these studies did not rely on prespecified port

information, the use of port numbers at all is increasingly unreliable, because it is

possible for users to employ random port numbers.

A smaller number of studies have discussed identification of individual hosts,

rather than flows. BLINC [27] used features including port counts to classify hosts into

application categories, then used that information to classify the corresponding flows,

achieving 95% accuracy on 80-90% of the flows. Some others focused on more narrow

subsets of P2P applications: one [48] primarily investigated eDonkey, while another

[52] discussed the identification of DHTs, without providing an implemenation, or

suggesting the “triple” heuristic we discuss in Section 3.2.2. All these studies required

post-processing on the graph of host connections.

Other work of interest includes the identification of compromised “stepping

stone” computers [56] and the identification of relay nodes in Skype [51], because

such hosts are qualitatively similar to the hosts in the middle of the “triples” we

define in Section 3.2.2. The identification of email spamming machines by graph

theory techniques [11] may also be of interest.

One might think of a “stepping stone” [56] as a host in the middle of a triple

(see Section 3.2.2), but stepping stone analysis requires the flows to be very similar

on the packet level. In the interest of general applicability, we only concern ourselves

with the existence of the flows, no with any of their measurable properties (other

than perhaps their overall size).
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3.1.2 Trace data

We use publicly-available traces from the NLANR Passive Measurement and Anal-

ysis Project [38]. The PMA project provides packet header traces from a variety of

monitoring locations. Most traces have a duration of 90 seconds, but special traces

with durations of hours or days are also available.

Our main focus was on the Leipzig-I data set [39], a trace capturing all traffic

of the University of Leipzig between 8pm Thursday, November 21 and 2pm Tuesday,

November 26, 2002. This data was captured recently enough that peer-to-peer traffic

is common, but sufficiently long ago that many peers were still using fixed TCP and

UDP ports [34]. In addition to these advantages, the long time period of the trace

allows us to study the behavior of a host in more detail.

We can also compare to 90-second traces from the University of Memphis [40],

captured as recently as March 2006.

Because they each monitor the gateway to a university, both of these traces have

a definite “inside” and “outside.” For Leipzig-I, the inbound and outbound packets

are stored in separate files (whose labels were inadvertently switched [33]). We place

more focus on classifying the interior hosts, since the trace capture more information

about their communications. The interior hosts may also be of more interest to a

network administrator.

We may look at what happens when we use classifications of the exterior hosts

to adjust our judgements of the interior hosts.
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3.1.3 Overview

The remainder of this chapter is structured as follows. In Section 3.2 we discuss

the measurable features of our data set, and derive a model for message passing. In

Section 3.3 we discuss the use of port numbers, provide an overview of supervised

learning techniques, and list the results of our classification experiments.
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3.2 Feature set

The trace data we use provides packet-level records, but we convert them to NetFlow-

style data [8] befpre performing our analyses. In particular, we use the following

definition.

Definition 3.1. A flow is a sequence of packets sent back and forth between a pair

of hosts, identified by the 5-tuple

f = (S, s; D, d; P ), (3.1)

where (S, s) are the source’s IP address and port number, (D, d) are the destination’s

IP address and port number, and P is the protocol number. The “source” is the host

that sends the first observed packet in the flow. If there is a gap of more than 60

seconds between consecutive packets, we consider there to be two distinct flows.

In this work, we only consider flows corresponding to the TCP and UDP pro-

tocols. Most other protocols could easily be included, but for the triples discussed in

Section 3.2.2, it is important to ignore ICMP flows.

Using Definition 3.1, we divide packet traces into flows, keeping the following

information about each flow:

• The 5-tuple (S, s; D, d; P ), with s = d = 0 for protocols without port numbers

• The timestamp of the first packet in the flow

• The timestamp of the last packet in the flow

• The number of packets sent from S to D
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• The number of packets sent from D to S

• The number of bytes (header and payload) sent from S to D

• The number of bytes (header and payload) sent from D to S

• A flag identifying which IP address (S or D) is internal to the university

3.2.1 Elementary features

Whenever a new host X is observed, we create a database entry for it, noting the

timestamp of the first observation and whether the host is interior or exterior to

the university (if known). As X participates in more flows, we update the following

values: the most recent timestamp; a list of the distict IP addresses X interacts

with; the total number of flows initiated and accepted; the total number of packets

initiated and accepted; the total number of payload bytes initiated and accepted; the

total duration of individual flows; and counts of each protocol type.

From these values, we calculate nine acceptable features:

• The average number of new neighbors (IP addresses X interacts with) per sec-

ond

• The average number of flows per neighbor

• The average number of packets per flow

• The average number of payload bytes per packet

• The average flow duration
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• The fraction of flows that were initiated by X

• The fraction of packets that were initiated by X

• The fraction of payload bytes that were initiated by X

• The fraction of flows that used the TCP protocol

These features can be calculated at a specified clock time, or after seeing a specified

amount of activity from host X.

3.2.2 Triples

We now present a feature that measures flow interactions.

3.2.2.1 Definition

For a decentralized peer-to-peer network to function, the peers must participate in

message-passing. Whether in older systems such as Gnutella or newer systems based

on distributed hash tables [32], the lack of a central authority implies that when a

peer wants a file, he must make a lookup query of one or more of his neighbors, who

must in turn make queries of one or more of their neighbors, until the file is located.

Therefore, peers in a decentralized peer-to-peer network will both initiate and

accept flows with other peers, and in quick succession if they are not willing to intro-

duce significant delay into the search process. This inspires the following definition,

where Time(f) is the timestamp of the first packet in flow f .
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Definition 3.2. A triple for a host X is a pair of flows f1 = (A, a; X, x1; p1), f2 =

(X, x2; B, b; p2) such that A 6= B and 0 < Time(f2) − Time(f1) ≤ τ . The triple is

denoted A→ X → B. The parameter τ is called the window parameter.

We use a window parameter of τ = 5 seconds.

Note that either flow f1 or f2 may be involved in more than one triple. In fact,

in the case of Gnutella, we would expect f1 to be in multiple triples, since Gnutella

lookup queries are passed to all neighbors.

3.2.2.2 Counting triples

Because we only observe traffic that takes place between a host inside the university

and a host outside the university, we will be artificially unlikely to see triples for

exterior hosts. We therefore focus on interior hosts. We will find that P2P hosts tend

to have more triples, even though we cannot see the peer activity that takes place

entirely within the university network. In the Leipzig-I dataset, we can easily limit

our analysis to interior hosts.

Consider observing a interior host X for a time period 0 ≤ t ≤ T . We keep

track of the following statistics:

• N1 = the number of flows X accepts

• N2 = the number of flows X initiates

• S1 = the number of accepted flows that are involved in a triple

• S2 = the number of initiated flows that are involved in a triple
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• H = the number of distinct hosts X communicates with (may be omitted —

see below)

The flows counted by N1 have the potential to be the first flow in a triple,

while those counted by N2 have the potential to be the second. We will model each

flow’s probability of being in a triple by assuming that the start times of the flows

are uniformly distributed in the interval [0, T ], and then compare this expectation to

the observations Si.

We choose the uniform distribution for simplicity, and will find it to be effective.

We tried the Poisson distribution with similar results, but it has been known for years

[43] that Poisson models do not capture the burstiness in data networks. Non-Poisson

arrival models [41] could also be considered.

Let f1 be one of the N1 inbound flows, and let t1 = Time(f1). We define

p1 = P[f1 is in a triple] (3.2)

= P[a flow f2 to a different host occurs with Time(f2) ∈ (t1, t1 + τ ]] (3.3)

= 1−
(
1− τ

T

)H−1
H

N2

(3.4)

where H−1
H

N2 is the average number of flows that X initiates to hosts, other than

the host involved in f1. Similarly, given an outbound flow f2, we can define the

probability

p2 = 1−
(
1− τ

T

)H−1
H

N1

(3.5)

that f2 is involved in a triple.
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If H is deemed to be to expensive to keep track of, we can use the approximations

p1 ≈ 1−
(
1− τ

T

)N2

, p2 ≈ 1−
(
1− τ

T

)N1

(3.6)

because H−1
H
≈ 1 for large H.

For i = 1, 2, we can now model the number of flows that are involved in a

triple using a Binomial(Ni, pi) distribution, if we assume each flow has an indepen-

dent, identically distributed probability of being involved in a triple. Recall that the

binomial distribution, which has probability mass function

Bi(n) =

(
Ni

n

)
pn

i (1− pi)
Ni−n, (3.7)

has mean µi = Nipi and variance σ2
i = Nipi(1− pi).

The Binomial(Ni, pi) distribution can be approximated by a Normal(µi, σ
2
i ) dis-

tribution. Therefore, to compare Si to the expected µi, we may use the z-score

zi =
Si − µi

σi

(3.8)

The z-score represents the difference between Si and the model mean, in units of the

model standard deviation. The z-scores z1 and z2 will be our metrics for measuring

triples.
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3.3 Classification results

This section describes our testing methodology and results.

3.3.1 Determining the “true” classes

Although TCP/UDP port numbers are not generally an effective method for identi-

fying peer-to-peer traffic [34], we can use them as a baseline measurement of truth

in the Leipzig-I data set because of its age. Table 3.1 summarizes how much P2P

traffic can be identified by port number; we see that port numbers cannot be used as

a reliable means of identification in the Memphis data set.

Table 3.1: The fraction of TCP/UDP traffic, by number of flows and by
amount of payload, that has known P2P port numbers.

Leipzig-Ia Memphisb

Application Flows Bytes Flows Bytes

eDonkey 2000 23.54% 12.38% 0.28% 0.01%
Soribada 1.52% 0.04% — —
WinMX 1.19% 3.58% — —
DirectConnect 1.05% 1.15% — —
KaZaA 1.04% 10.59% 0.04% 0.01%
Gnutella 0.48% 1.27% 0.75% 0.07%
Manolito 0.21% 0.01% 0.73% 0.01%
SoulSeek 0.10% 0.65% — —
Napster 0.04% 0.11% 0.08% 0.00%
iMesh 0.01% 0.01% — —
BitTorrent 0.00% 0.00% 0.10% 0.00%

Client/Server 48.51% 35.21% 50.94% 54.34%
Unknown 22.29% 34.99% 47.08% 45.55%

aFrom 20021121-200000.
bFrom MEM-1143763417-1.

Given an interior host X, we can assign one of four labels to each of its flows:
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1. Peer-to-Peer: At least one port is known to be associated with a peer-to-peer

application (KaZaA, eDonkey 2000, etc.)

2. Server: At least one port associates the host with the server end of a specific

non-P2P application (HTTP, games, instant messaging, trojans, etc.).

3. Client: At least one port associates the host with the client end of a specific

non-P2P application.

4. Unknown: Neither port has a known association.

We use the port list in Appendix A.1, derived from a variety of online sources.

For example, if X uses port 80 (HTTP), we label the flow Server; if the other host

uses port 80, we label the flow Client.

If at least 75% of the flows that host X participates in are Unknown, then

we also assign X the label Unknown. Otherwise, we assign X one of the labels

Peer-to-Peer, Server, or Client by a simple plurality vote of the relevant flows.

Counts are shown in Table 3.2. Some time-of-day trends are apparent.

We conjecture that many of the Unknown flows are peer-to-peer, because

traditional client/server applications tend to use well-known ports. We also conjecture

that some flows taking place over port 80 are also P2P [26], since hosts may try to

hide their traffic to bypass firewalls or other security measures.
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Table 3.2: The number of active hosts of each type, broken down by date and
time. An “active” host is one that both sent and received one packet in the six-
hour file window. Not all hosts were used in the experiments (Section 3.3.3),
because the experiments employed a more limited time (or traffic volume)
window.

Time Date P2P Client Server Unk. Total

8pm Thu 189 2129 312 1120 3750
Fri 144 1492 316 513 2465
Sat 133 1205 312 301 1951
Sun 190 1880 363 344 2777
Mon 226 2364 324 454 3368

2am Fri 102 788 169 246 1305
Sat 100 415 256 309 1080
Sun 104 646 236 258 1244
Mon 93 768 780 98 1739
Tue 122 872 203 398 1595

8am Fri 167 3462 388 463 4480
Sat 123 1482 214 419 2238
Sun 131 1254 857 468 2710
Mon 172 3929 561 453 5115
Tue 171 3917 520 572 5180

2pm Fri 184 3103 388 432 4107
Sat 139 1683 400 352 2574
Sun 169 1866 439 220 2694
Mon 227 4326 437 535 5525

3.3.2 Supervised learning techniques

We will compare the results of a variety of supervised learning techniques. This

section provides an overview of such techniques. Since we are only using the tools,

not developing new techniques, we do not provide full details; see, e.g., [24] for more

information.
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3.3.2.1 Goals and definitions

The goal of supervised learning is to construct a function, based on known examples,

that relates observable features to an outcome of interest. It can be used to answer

questions such as: What is the probability of a customer defaulting on their mortgage?

Will a patient’s cancer recur? Is a computer access malicious?

Each event (item in the sample space) has:

• a feature vector −→x = (x1, x2, . . . , xp) ∈ Rp of observable variables1

• an outcome variable y ∈ Y 2

There is a body of known training data (−→x1, y1), . . . , (
−→xN , yN). Supervised learn-

ing techniques attempt to build a function f : Rp → Y that is close to having

f(−→xj ) = yj for all 1 ≤ j ≤ N , without overfitting. Building f may be time-consuming,

but once the setup process is complete, predicting the outcome y = f(−→x ) for a new

observation −→x is fast.

3.3.2.2 Examples

We begin with a very simple example. Assume there are only two possible outcomes,

y = 0 or y = 1. The training data divides into two classes, each with Ny members,

1It is possible to have categorical variables xi ∈ Xi, where Xi is not R, nor even a metric space; for

example, Xi = {female,male}. Since none of our features are categorical, we use Xi = R throughout

to simplify the discussion.
2If |Y | is finite, building f is known as a “classification problem”; if Y = R, it is known as a

“regression problem.” We focus on classification problems here.
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and each with mean

−→µy =
1

Ny

Ny∑
j=1

−→xj
(y), (3.9)

and covariance matrix

Σy =
1

Ny − 1

Ny∑
j=1

(−→xj
(y) −−→µy)

T (−→xj
(y) −−→µy). (3.10)

If the true classes are normally distributed with equal covariances, then Fisher’s linear

discrminant [15] provides the Bayes optimal solution. This discriminant divides the

feature space Rp with a hyperplane perpendicular to

−→w = ((N0 − 1)Σ0 + (N1 − 1)Σ1)
−1(−→µ0 −−→µ1). (3.11)

That is, either

fc(
−→x ) =


0 if −→w · −→x ≥ c

1 if −→w · −→x < c,

or fc(
−→x ) =


1 if −→w · −→x ≥ c

0 if −→w · −→x < c,

(3.12)

for some constant c.

We now briefly describe some of the most important supervised learning tech-

niques. In a given problem, there may be more than two possible outcomes; these

techniques can be generalized to multi-class versions with varying amounts of diffi-

culty.

• Linear discriminant analysis [15]. The feature space is divided by a hyperplane.

The model assumes the classes have equal covariances.

• Quadratic discriminant analysis [13]. The feature space is divided by a quadric

surface. The model assumes the classes are normally distributed with unequal

covariances.
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• Naive Bayes classification [12]. All features are assumed to be independent.

• k-nearest neighbor algorithm [13]. A new observation −→x is assigned the most

common y value of its k nearest neighbors xj1 , . . . , xjk
in the training set.

• Neural networks [30]. The function f is a compilaton of other functions, which

fit a given model and are tuned by the training data.

• Classification trees [6]. The feature space is hierarchically divided along one

variable at a time. At each point in the hierarchy, the split is chosen to reduce

the node impurity i = n0n1

(n0+n1)2
.

• Random forests [4]. A large number of classification trees are produced, each

using a small random subset of the features and a randomly chosen (with re-

placement) subset of the training data.

We use Breiman’s implementation for random forests [5], and LNKnet’s imple-

mentation for all other techniques [23]. In LNKnet, we performed a simple mean-0,

variance-1 normalization of the data; such normalization is unnecessary in random

forests.

3.3.3 Results

Since the makeup of a university’s active computer population varies over the course

of a day, we grouped the input files by local start time: 8pm, 2am, 8am, and 2pm.

For n = 4, 16, 64, 256, 1024, we observed the first n flows for each IP address. Again

for n = 4, 16, 64, 256, 1024, we observed the first n seconds of activity for each IP
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address. The features described in Section 3.2 were computed, then run through var-

ious supervised learning algorithms. To account for imbalances in class distribution,

Peer-to-Peer hosts were given a weight five times as great as Client and Server

hosts in the training process.

We estimated the success rate (percent of Peer-to-Peer hosts classified cor-

rectly) and false positive rate (percent of non-Peer-to-Peer (Client and Server)

hosts classified as Peer-to-Peer) for each algorithm. With random forests, these

come from the out of bag (OOB) error estimate. With the other algorithms, these

come from 10-fold cross-validation (CV10).

A comparison of classification techniques is given in Tables 3.3 and 3.4. We

see that the random forests technique generally has the highest success rates. It also

gives larger false positive rates, but as discussed above, we believe many of these

“false positives” are true Peer-to-Peer hosts disguising their traffic as Client,

Server, or Unknown traffic.

The dependence on n (the number of flows or seconds) is depicted in Figure 3.1,

for random forests. We see that increasing the number of flows in the sample increases

the success rate (and the false positive rate), while increasing the time scale of the

sample has little effect.

3.3.4 Testing against the Memphis data set

We compare Memphis data collected just after midnight on Saturday, March 31,

2006 with a Leipzig trace collected at 2am on Saturday, November 23, 2002. Because
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Figure 3.1: Sample of the results for the random forest classifier. Each line

represents a different date. The upper (black) lines are success rates. The

lower (blue) lines are false positive rates. The solid lines incorporate all fea-

tures. The dashed lines incorporate only z1, z2, and the fraction of traffic

initiated by the given host.
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Table 3.3: The range of success and false positive rates, across different days,
for a variety of classifiers, based on the first 16 flows from each host. The
first line under each classifier is for the full feature set. The second line is for
the limited feature set consisting of z1, z2, and the inbound/outbound traffic
ratios.

8pm 2am 8am 2pm
Technique S% FP% S% FP% S% FP% S% FP%

Random forest
62-75 9-12 77-81 11-20 48-65 4-12 56-65 5-8
50-67 13-15 71-79 14-29 41-55 4-13 43-57 7-11

Neural 47-64 6-12 37-82 2-40 22-45 1-9 35-49 3-7
network 37-54 16-19 44-78 18-55 15-37 3-17 16-33 4-11

Classification 45-56 5-7 58-66 5-12 27-43 2-7 32-46 4-5
tree 30-37 7-8 47-56 8-18 16-34 3-8 26-28 4-8

Linear 42-52 8-9 37-69 4-23 8-34 0-5 24-43 2-7
discriminant 33-42 10-12 30-59 7-33 1-27 0-6 13-28 4-7

Nearest 35-40 5-7 45-64 4-13 22-34 2-5 26-41 3-5
neighbor 19-31 7-9 30-53 7-18 13-20 2-7 15-21 4-7

Naive Bayes
27-41 4-4 24-57 4-8 16-29 1-3 23-35 2-4
2-12 1-3 5-39 2-6 0-13 0-2 2-11 0-2

port number are not a reliable means of identification in the Memphis data set (see

Section 3.3.1), we use Leipzig as the training data.

Specifically, we build a random forest on the Leipzig data just as in Section 3.3.3,

then pass the Memphis data through the forest. We base the random forest on the

first 64 seconds of data from each host. Less than 2% of the Memphis hosts had 16

or more flows, so we skip that comparative analysis.

Using the full feature set, 3% of the Memphis hosts were classified as Peer-

to-Peer, 53% as Client, and 43% as Server.

Using the limited feature set consisting of z1, z2, and the inbound/outbound

traffic ratios, which we consider to be less application-specific, 15% of the Memphis
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Table 3.4: The range of success and false positive rates, across different days,
for a variety of classifiers, based on the first 64 seconds of data from each host.
The first line under each classifier is for the full feature set. The second line
is for the limited feature set consisting of z1, z2, and the inbound/outbound
traffic ratios.

8pm 2am 8am 2pm
Technique S% FP% S% FP% S% FP% S% FP%

Random forest
67-78 11-13 81-89 14-25 64-79 6-16 69-72 8-11
44-65 11-13 66-84 14-40 51-75 7-24 49-62 8-12

Neural 51-59 3-10 73-83 12-56 49-68 2-27 53-60 3-8
network 55-64 25-31 62-93 16-60 57-70 10-27 48-63 16-27

Classification 38-51 6-9 56-71 7-16 41-59 2-9 45-50 5-7
tree 26-31 6-9 43-63 7-36 32-56 3-18 26-34 5-10

Linear 35-50 7-15 50-83 15-42 36-63 4-22 34-43 6-9
discriminant 34-47 17-28 47-88 17-65 35-49 9-23 20-48 11-23

Nearest 29-53 5-8 51-68 7-16 38-54 2-10 30-45 4-7
neighbor 23-30 10-12 39-59 17-24 27-37 6-13 25-33 7-13

Naive Bayes
18-39 3-4 37-53 4-9 36-56 3-6 33-38 3-4
12-19 1-2 28-49 4-7 22-36 2-4 14-21 1-3

hosts were classified as Peer-to-Peer, 71% as Client, and 14% as Server.

We consider these results promising. The two data sets were collected more

than three years apart, and we restrict attention to only interior hosts in the Leipzig

data set, while this is not done in the Memphis data set. Nonetheless, a classifier

built from the Leipzig hosts is sufficiently sensitive to distinguish different behaviors

in the Memphis hosts, rather than classifying all Memphis hosts as, e.g., Clients.
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3.4 Discussion

We have found that with minimal tweaking of the parameters, random forests can

identify 80% or more of P2P hosts. One study [35] added a variety of adjustments to

naive Bayes classifiers to improve performance from 65% to 95% on certain application

categories; if they had started with a more powerful classifier such as random forests,

their results might have been even greater.

Our success rates are comparable to those of related studies, given the limita-

tions on our data. We must estimate true classes from port numbers, since we lack

packet payloads. We also miss all peer activity taking place within the university; we

see only communcations between interior and exterior hosts.

77



Chapter 4

Discrete analysis of crystal steps

4.1 Introduction

In Section 1.4, we discussed the importance of understanding crystal surface evolution,

particularly the motion of steps. In this work, we develop an analytical description

of step motion under a discrete model of the underlying physics.

Under continuum models, the crystal surface height is treated as a continuous

function of horizontal position. Because physical steps have discrete heights, discrete

models offer a more natural description of step behavior. Discrete models are still

approximations, however, because the horizontal step positions are typically treated

as continuous variables. In our discrete model analysis, we find an extra time de-

pendence term (t−1/2) in addition to the exponential dependence that emerges in

continuum models.

We discuss the effect of the model’s physical parameters on the step motion,

and therefore the step bunching. Consider an equilibrium solution corresponding

to equally spaced steps. When terrace width deviations tend to decay towards this

solution, the behavior will remain stable. When the terrace widths exhibit growth

away from equilibrium instead, step bunching can occur.
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4.1.1 Related work

A discrete model for crystal steps was first formulated in the early 1950’s [57], after

Burton, Cabrera, and Frank noted the growth of crystals in solutions that were much

less supersaturated than demanded by contemporary models. They concluded that

the crystal surface holding the solution must not be smooth at the nanoscale. Such

discrete models are now called “BCF models.”

A variety of extensions to the original BCF model have been offered. Finite

attachment-detachment rates at step edges play a large role in step behavior [66].

Step-step interactions based on the surface free energy were considered early on [63]; a

variety of short- and long-range interactions have been considered since [67]. Modeling

the crystal as a stack of concentric circular discs allows the introduction of curvature

and step line tension [76]. Analyses of more general shapes have been limited to

single-layer islands [58].

An electric field can also bias the terrace diffusion [80] by applying a direct

current to the adatoms, which have a net charge due to their interactions with the

crystal surface. The inclusion of an electric field in a BCF model [79, 77] is particularly

important because application of a direct current is the most common method of

inducing step bunching experimentally.

Step bunching [68] can appear in systems limited by the step edge attachment-

detachment rates [66]. Experiments show that, under the application of a direct

current, behavior of the bunching instability depends in a complex way on the system’s

temperature and on the direction of the applied current [70, 82]. Step bunching can
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also be induced by deposition from the surrounding vapor, as shown experimentally

[65] and numerically [72]. Finally, step curvature itself can also induce bunching in

the model [61, 62].

In this work, we seek to understand step bunching of straight steps via ana-

lytical examination of the natural discrete equations, rather than by a continuum

approximation [73] or numerically [72, 71, 78, 79]. We focus on the importance of the

applied electric field.

Partial differential equations have been used to study step behavior, for example

scaling laws for bunch widths. These PDEs can be derived directly from continuum

versions of surface free energy and chemical potential [75, 76], or they can be derived

as the continuum limit of discrete step equations [73]. The PDEs are highly nonlinear

and tend to be of fourth order (e.g., equation (5) of [73]). Most analyses have employed

linearized versions [74] for tractability. The linearization is performed about the

solution corresponding to equally spaced steps (e.g., equation (6) of [62]). Growth of

step bunches due to electromigration has been studied in a nonlinear context (e.g.,

equation (31) of [77]).

4.1.2 Overview

The remainder of this chapter is structured as follows. In Section 4.2, we construct a

discrete model for the physics of step motion. In Section 4.3, we derive coupled equa-

tions for terrace widths based on this model. In Section 4.4, we find the linearization

of this step motion equation. Finally, in Section 4.5, we find approximate solutions
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to this linearized equation. A table of relevant parameters and variables appears in

Appendix B.1.
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4.2 Physical models of step motion

In this section, we derive a discrete model for step motion based on the underlying

physics. We will analyze the behavior of a set of coupled linear ODEs, providing a

contrast to the analyses of linear PDEs common in the literature.

4.2.1 Assumptions for the discrete model

We make the following assumptions about the geometry of our model:

(A3) The steps are straight (Figure 1.2(b))

(A4) The step sequence is monotone, downwards to the right

(A5) The step height a is constant

These assumptions permit a one-dimensional model of the crystal surface, with

the position of the jth step edge denoted xj(t). The jth terrace has width xj+1(t) −

xj(t), or normalized width uj(t) =
xj+1(t)−xj(t)

L
, where L is the average terrace width.

We also make the following assumptions about the kinetics.

(A6) Surface diffusion is faster than attachment-detachment (ADL kinetics)

(A7) Step-step interactions have energy U ∝ 1/(terrace width)2 (e.g., entropic

or elastic interactions)

(A8) There are no thermal fluctuations (low temperature)

Step motion proceeds from the motion of adsorbed atoms (adatoms) on the

crystal surface. See Figure 4.1. Let cj(x, t) be the local concentration of adatoms on
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Figure 4.1: The crystal substrate is composed of bonded atoms. Adsorbed

atoms (adatoms) interact with the surface, but move across it. If an adatom

attaches at a step edge (xn), the step edge advances by one lattice constant.

Similarly, an adatom can detach from a step edge, causing the edge to retreat.

the jth terrace, xj < x < xj+1. Also let Jj(x, t) be the adatom current on the jth

terrace.

4.2.2 Discrete terrace equations

The model we derive here is very similar to the straight-step model in [62].

The step velocity law comes from mass conservation of adatoms near the step

edge:

dxj

dt
=

Ω

a

[
−Jj(x

+
j ) + Jj−1(x

−
j )

]
, (4.1)

where Ω is the atomic volume and a is the step height.

The adatom current obeys Fick’s first law of diffusion and is also affected by

electric drift with speed v0:

Jj(x) = −D
∂cj

∂x
+ v0cj. (4.2)

The adatom density cj satisfies Fick’s second law and is also affected by the
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desorption time τ and deposition rate R:

∂cj

∂t
= −∂Jj

∂x
− 1

τ
cj + R (4.3a)

= D
∂2cj

∂x2
− v0

∂cj

∂x
− 1

τ
cj + R. (4.3b)

We will assume there is no deposition: R = 0.

For tractability, we make the quasi-steady approximation [57]

∂cj

∂t
≈ 0. (4.4)

This approximation is not rigorous, but it agrees with physical observations. The

justification is that step velocities (which depend on attachment-detachment) are

much slower than terrace adatom diffusion, so the concentration cj relaxes to steady-

state between step adjustments.

4.2.3 Discrete step boundary conditions

We assume linear kinetics at both the left and right edges of the jth terrace, that is,

Jj(x
+
j ) = −k+

(
cj(x

+
j )− Ceq

j

)
, (4.5a)

Jj(x
−
j+1) = k−

(
cj(x

−
j+1)− Ceq

j+1

)
, (4.5b)

where k+ and k− are the attachment-detachment rate coefficients. If k+,k− are un-

equal, we say there is an “Ehrlich-Schwoebel barrier” at the step edge [78].

The equilibrium adatom density is given by the Arrhenius equation,

Ceq
j = c0e

µj/kBT . (4.6)

Here µj is the step chemical potential, which is the change in surface free energy when

an adatom attaches at the jth step edge. Positive values of µj indicate a propensity
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for a step edge to emit adatoms, while negative values indicate a propensity to accept

adatoms.

Because we are ignoring step curvature (Assumption A3), the chemical potential

depends only on step-step interactions. Assuming nearest-neighbor effects, we have

µj ∝
d

dxj

[U(xj, xj+1) + U(xj−1, xj)] , (4.7)

where, from Assumption A7,

U(xj, xj+1) ∝
1

(xj+1 − xj)2
. (4.8)

Then, subsuming the constants of proportionality into g, we have

µj

kBT
= g

[(
L

xj+1 − xj

)3

−
(

L

xj − xj−1

)3
]

. (4.9)

g is a dimensionless constant that describes the strength of the nearest-neighbor step-

step interactions.
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4.3 Step motion equation from the model

Here we find an equation for
duj

dt
that depends explicitly only on the terrace widths.

We will see that when steps interact,
duj

dt
depends on the terraces two neighbors away,

but when step-step interactions are eliminated,
duj

dt
depends only on the terraces one

neighbor away.

4.3.1 Adatom density and adatom current

Under the quasi-steady approximation, the PDE in equation (4.3) becomes an ODE:

D
∂2cj

∂x2
− v0

∂cj

∂x
− 1

τ
cj = 0, (4.10)

which has solutions

cj(x) = B+
j eR+(x−xj)/L + B−

j eR−(x−xj)/L (4.11)

where B±
j will be determined by boundary conditions, and

R± =
Lv0

2D
± Lv0

2D

√
1 + 4η2, (4.12)

η =

√
Dτ

v0τ
(4.13)

are dimensionless constants.

Substituting equation (4.11) into equation (4.2) gives

Jj(x) = −q+B+
j eR+(x−xj)/L − q−B−

j eR−(x−xj)/L, (4.14)

where

q± =
D

L
R± − v0 = −v0

2
± v0

2

√
1 + 4η2. (4.15)
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We will find it convenient to set

q+
± = q± + k−, q−± = q± − k+. (4.16)

Substituting into equation (4.5) from equations (4.14) and (4.11) gives

B+
j q−+ + B−

j q−− = −k+Ceq
j , (4.17a)

B+
j q+

+eR+uj + B−
j q+

−eR−uj = k−Ceq
j+1, (4.17b)

where

uj =
xj+1 − xj

L
(4.18)

is the normalized width of step j. Now we can solve for B±
j , finding

B±
j = ±d(uj)

[
k−q−∓Ceq

j+1 + k+q+
∓eR∓ujCeq

j

]
, (4.19)

where

d(u) =
1

q+
+q−−eR+u − q−+q+

−eR−u
. (4.20)

Finally, from equation (4.6), we have

Ceq
j = c0e

g(u−3
j −u−3

j−1) (4.21)

where g � 1 is the strength of step interactions.

4.3.2 Terrace width

Via equation (4.1), the normalized terrace width satisfies

u̇j =
ẋj+1 − ẋj

L
(4.22a)

=
Ω

La

[
−Jj+1(xj+1) + (Jj(xj+1) + Jj(xj))− Jj−1(xj)

]
(4.22b)
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=
Ω

La

[
+q+B+

j+1 + q−B−
j+1

− q+B+
j (1 + eR+uj)− q−B−

j (1 + eR−uj)

+ q+B+
j−1e

R+uj−1 + q−B−
j−1e

R−uj−1

]
(4.22c)

=
Ω

La

[
+Ceq

j+2

[
d(uj+1)k−(q+q−− − q−q−+)

]
+ Ceq

j+1

[
d(uj+1)k+(q+q+

−eR−uj+1 − q−q+
+eR+uj+1)

−d(uj)k−(q+q−−(1 + eR+uj)− q−q−+(1 + eR−uj))
]

+ Ceq
j

[
−d(uj)k+(q+q+

−eR−uj(1 + eR+uj)− q−q+
+eR+uj(1 + eR−uj))

+d(uj−1)k−(q+q−−eR+uj−1 − q−q−+eR−uj−1)
]

+ Ceq
j−1

[
d(uj−1)k+(q+q+

−eR−uj−1eR+uj−1 − q−q+
+eR+uj−1eR−uj−1))

]]
(4.22d)

=
Ω

La
c0

[
eg(u−3

j+2−u−3
j+1) [−d(uj+1)k+k−(q+ − q−)]

+ eg(u−3
j+1−u−3

j ) [+d(uj+1)k+(−q−q+
+eR+uj+1 + q+q+

−eR−uj+1)

−d(uj)k−(q+q−−(1 + eR+uj)− q−q−+(1 + eR−uj))
]

+ eg(u−3
j −u−3

j−1)
[
−d(uj)k+(k−(q+ − q−)e(R++R−)uj

− q−q+
+eR+uj + q+q+

−eR−uj)

+d(uj−1)k−(q+q−−eR+uj−1 − q−q−+eR−uj−1)
]

+ eg(u−3
j−1−u−3

j−2)
[
+d(uj−1)k+k−(q+ − q−)e(R++R−)uj−1

]]
. (4.22e)

Therefore,
duj

dt
depends on the two terraces to either side: uj, uj+1, uj−1, and

uj+2, uj−2. However, the dependence on uj+2 and uj−2 is only through the step-step

interactions. If g = 0,
duj

dt
depends only on uj+1, uj, uj−1.
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4.4 Linearization

To make progress with the solution of equation 4.22e, we find the linearization. The

coefficients of uj+2 and uj−2 will be O (g), reflecting that the two-away neighbors

only affect the step motion through step-step interactions. We then investigate the

dependence of all the coefficients on the physical parameters, in the limiting cases of

very strong and very weak electric field.

4.4.1 Subordinate functions

We will linearize around the solution corresponding to equally spaced steps, that is,

uj = 1 for all j. We define the deviation

ũj = uj − 1 (4.23)

so we may consider |ũj| � 1. Several parts of equation (4.22e) must be linearized.

eKuj ∼ eK + KeK ũj +O
(
ũ2

j

)
, (4.24)

u−3
j − u−3

j−1 ∼ 3ũj−1 − 3ũj +O
(
ũ2

j + ũ2
j−1

)
, (4.25)

d(uj) ∼ d0 + d1ũj +O
(
ũ2

j

)
, (4.26)

where

d0 =
1

q+
+q−−eR+ − q−+q+

−eR−
, d1 =

−q+
+q−−R+eR+ + q−+q+

−R−eR−(
q+
+q−−eR+ − q−+q+

−eR−
)2 . (4.27)

We note that

d0R+ + d1 = −d2
0(R+ −R−)q−+q+

−eR− , (4.28a)
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d0R− + d1 = −d2
0(R+ −R−)q+

+q−−eR+ , (4.28b)

d0(R+ + R−) + d1 = +d2
0(q

+
+q−−R−eR+ − q−+q+

−R+eR−) (4.28c)

4.4.2 Terrace width evolution

We now find the linearization of ˙̃uj = u̇j. We require each of |ũj| � 1, |gũj| � 1, and

|R±ũj| � 1 for all j.

˙̃uj ∼
Ω

La
c0

[
(1− 3gũj+2 + 3gũj+1) [−(d0 + d1ũj+1)(k+k−(q+ − q−))]

+ (1− 3gũj+1 + 3gũj)
[
+(d0 + d1ũj+1)(k+(−q−q+

+eR+ + q+q+
−eR−)

+ k+(−q−q+
+R+eR+ + q+q+

−R−eR−)ũj+1)

− (d0 + d1ũj)(k−(q+q−−(1 + eR+)− q−q−+(1 + eR−))

+k−(q+q−−R+eR+ − q−q−+R−eR−)ũj)
]

+ (1− 3gũj + 3gũj−1)
[
−(d0 + d1ũj)(k+(k−(q+ − q−)eR++R−

− q−q+
+eR+ + q+q+

−eR−)

+ k+(k−(R+ + R−)(q+ − q−)eR++R−

− q−q+
+R+eR+ + q+q+

−R−eR−)ũj)

+ (d0 + d1ũj−1)(k−(q+q−−eR+ − q−q−+eR−)

+k−(q+q−−R+eR+ − q−q−+R−eR−)ũj−1)
]

+ (1− 3gũj−1 + 3gũj−2)
[
+(d0 + d1ũj−1)(k+k−(q+ − q−)eR++R−

+k+k−(R+ + R−)(q+ − q−)eR++R−ũj−1)
]]

+O
(
ũ2
·
)

(4.29a)

∼ Ω

La
c0

[
(1− 3gũj+2 + 3gũj+1)
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[
−d0k+k−(q+ − q−)

− d1k+k−(q+ − q−)ũj+1

]
+ (1− 3gũj+1 + 3gũj)[

+d0

(
k+k−(q+ − q−)

(
1 + eR+ + eR−

)
−(k+ + k−)q+q−

(
eR+ − eR−

))
+ d2

0k
2
+(R+ −R−)(q+ − q−)q+

+q+
−eR++R−ũj+1

+ k−(q+ − q−)
(
d2

0k−(R+ −R−)q−+q−−eR++R− + d1k+

)
ũj

]
+ (1− 3gũj + 3gũj−1)[

−d0

(
k+k−(q+ − q−)

(
eR++R− + eR+ + eR−

)
−(k+ + k−)q+q−

(
eR+ − eR−

))
− k+(q+ − q−)

(
d2

0k+(R+ −R−)q+
+q+

−

+k−(d0(R+ + R−) + d1)) eR++R−ũj

− d2
0k

2
−(R+ −R−)(q+ − q−)q−+q−−eR++R−ũj−1

]
+ (1− 3gũj−1 + 3gũj−2)[

+d0k+k−(q+ − q−)eR++R−

+ (d0(R+ + R−) + d1)k+k−(q+ − q−)eR++R−ũj−1

]]
+O

(
ũ2
·
)
(4.29b)

∼ Ω

La
c0

[
ũj+2

[
+3gd0k+k−(q+ − q−)

]
+ ũj+1

[
(q+ − q−)d2

0(k
2
+(R+ −R−)q+

+q+
−eR++R−

+ k+k−(q+
+q−−R+eR+ − q−+q+

−R−eR−))
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− 3gd0(k+k−(q+ − q−)(eR+ + eR− + 2)

− (k+ + k−)q+q−(eR+ − eR−))
]

+ ũj

[
(q+ − q−)d2

0

(
−(R+ −R−)(k2

+q+
+q+

− − k2
−q−+q−−)eR++R−

− k+k−((q+
+q−−R−eR+ − q−+q+

−R+eR−)eR++R−

+ (q+
+q−−R+eR+ − q−+q+

−R−eR−))
)

+ 3gd0(k+k−(q+ − q−)(eR++R− + 2eR+ + 2eR− + 1)

− 2(k+ + k−)q+q−(eR+ − eR−))
]

+ ũj−1

[
(q+ − q−)d2

0e
R++R−(−k2

−(R+ −R−)q−+q−−

+ k+k−(q+
+q−−R−eR+ − q−+q+

−R+eR−))

− 3gd0(k+k−(q+ − q−)(2eR++R− + eR+ + eR−)

− (k+ + k−)q+q−(eR+ − eR−))
]

+ ũj−2

[
+3gd0k+k−(q+ − q−)eR++R−

]]
+O

(
ũ2
·
)
. (4.29c)

Note that all affine terms have cancelled out.

We will typically use the more compact notation

˙̃uj ∼ (gβ2) ũj+2 + (α1 + gβ1) ũj+1 + (α0 + gβ0) ũj

+ (α−1 + gβ−1) ũj−1 + (gβ−2) ũj−2, (4.30)

where

α1 =
Ωc0

La
(q+ − q−)d2

0(k
2
+(R+ −R−)q+

+q+
−eR++R−

+ k+k−(q+
+q−−R+eR+ − q−+q+

−R−eR−)), (4.31a)

α−1 =
Ωc0

La
(q+ − q−)d2

0e
R++R−(−k2

−(R+ −R−)q−+q−−
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+ k+k−(q+
+q−−R−eR+ − q−+q+

−R+eR−)), (4.31b)

α0 = −(α1 + α−1); (4.31c)

β2 = 3
Ωc0

La
d0k+k−(q+ − q−), (4.31d)

β−2 = 3
Ωc0

La
d0k+k−(q+ − q−)eR++R− , (4.31e)

β1 = −3
Ωc0

La
d0(k+k−(q+ − q−)(eR+ + eR− + 2)

− (k+ + k−)q+q−(eR+ − eR−)), (4.31f)

β−1 = −3
Ωc0

La
d0(k+k−(q+ − q−)(2eR++R− + eR+ + eR−)

− (k+ + k−)q+q−(eR+ − eR−)), (4.31g)

β0 = − (β2 + β1 + β−1 + β−2) . (4.31h)

4.4.3 Dependence on the physical parameters

Here we examine the behavior of each of the coefficients αn, βn. A summary of the

physical parameters appears in Appendix B.1. We should always have

(A9) L > 0, a > 0, Ω > 0, c0 > 0, τ > 0, D > 0, k+ > 0, k− > 0

We will also assume

(A10) v0 > 0, g ≥ 0

Then we have q+ > 0 > q− and R+ > 0 > R−.

From these assumptions, we first note that

d0 =
[
q+
+q−−eR+ − q−+q+

−eR−
]−1

(4.32a)

=
[
(q+q− − k+q+ + k−q− − k+k−)eR+
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− (q+q− + k−q+ − k+q− − k+k−)eR−
]−1

(4.32b)

=
[
(q+q− − k+k−)

(
eR+ − eR−

)
− q+

(
k+eR+ + k−eR−

)
+ q−

(
k−eR+ + k+eR−

)]−1
(4.32c)

< 0. (4.32d)

Holding all the parameters L, a, Ω, c0, τ, D, k+, k− constant, and letting v0 vary

in (0,∞), we have

R+ ∼


Lv0/D for v0 � 1

L/
√

Dτ for v0 � 1,

R− ∼


−L/(v0τ) for v0 � 1

−L/
√

Dτ for v0 � 1,

(4.33a)

q+ ∼


D/(v0τ) for v0 � 1

√
D/τ for v0 � 1,

q− ∼


−v0 for v0 � 1

−
√

D/τ for v0 � 1.

(4.33b)

Further assuming that δ = L/
√

Dτ � 1, we have

d0 ∼


−
[
k−v0e

Lv0/D
]−1

for v0 � 1

−
[
2(k+ + k−)

√
D/τ

]−1

+O (δ) for v0 � 1.

(4.34)

4.4.3.1 Non-interaction terms (O (1))

From equation (4.31a), we can calculate

α1 ∼
Ωc0

La
·


−k+(k++k−)

k−
Lv0

D
e−Lv0/D for v0 � 1

−δ
√

D
τ

k+

k++k−
for v0 � 1.

(4.35)
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From equation (4.31b), we can calculate

α−1 ∼
Ωc0

La
·


k+

L
v0τ

for v0 � 1

δ
√

D
τ

k−
k++k−

for v0 � 1.

(4.36)

When the electric field is very strong, α1 → 0− and α−1 → 0+, with α1 decaying

faster in v0 than α−1.

In the case where there is no Ehrlich-Schwoebel effect, that is, k+ = k−, then,

when the electric field is very weak, we have α1 ≈ −α−1, and α0 ≈ 0.

4.4.3.2 Step-step interaction terms (O (g))

From equation (4.31d), we know β2 < 0 for all valid choices of the physical parameters.

We can calculate

β2 ∼
Ωc0

La
·


−3k+e−Lv0/D for v0 � 1

−3 k+k−
k++k−

for v0 � 1.

(4.37)

From equation (4.31e), we know it is also true that β−2 < 0 for all valid choices

of the physical parameters. We can calculate

β−2 ∼
Ωc0

La
·


−3k+ for v0 � 1

−3 k+k−
k++k−

for v0 � 1.

(4.38)

From equation (4.31f), we know β1 > 0 for all valid choices of the physical

parameters. We can calculate

β1 ∼
Ωc0

La
·


3k+ for v0 � 1

12 k+k−
k++k−

for v0 � 1.

(4.39)
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From equation (4.31g), we know β−1 > 0 for all valid choices of the physical

parameters as well. We can calculate

β−1 ∼
Ωc0

La
·


9k+ for v0 � 1

12 k+k−
k++k−

for v0 � 1.

(4.40)

When the electric field is very strong, we have β2 ≈ β−2, while β−1 ≈ 3β1.

When the electric field is very weak, we have β2 ≈ β−2, and β1 ≈ β−1.

96



4.5 Solutions to linearized equation

We transform the linearized step motion equation to simplify the coupling, thus find-

ing an integral expression for ũj(t). We then use the method of steepest descents to

estimate this integral for long times t.

4.5.1 Transformation

Emulating the solution to a difference equation in [59], we assume that ũj(t) takes

the form

ũj(t) =

∫
C(t)

eijzf(z, t)dz (4.41)

for all j, t, for some fixed function f(z, t) and contours C(t). Writing the endpoints of

C(t) as C0(t), C1(t), and assuming we may interchange integration and differentiation,

the Leibniz integral rule gives

˙̃uj(t) =

∫
C(t)

eijz ∂f

∂t
(z, t)dz + C ′

1(t)e
ijC1(t)f(C1(t), t)− C ′

0(t)e
ijC0(t)f(C0(t), t). (4.42)

To eliminate the last two terms, we require the endpoint contribution of the integrand

to vanish, so eijzf(z, t)→ 0 in measure as z → a(t), z → b(t).

For convenience, we define

h(z) = (gβ2)e
2iz +(α1 +gβ1)e

iz +(α0 +gβ0)+(α−1 +gβ−1)e
−iz +(gβ−2)e

−2iz. (4.43)

Now, substituting equation (4.41) into equation (4.30) gives∫
C(t)

eijz ∂f

∂t
(z, t)dz ∼

∫
C(t)

eijzh(z)f(z, t)dz. (4.44)

For this equation to hold for all j, f(z, t) should satisfy the differential equation

∂f

∂t
(z, t) = h(z)f(z, t), (4.45)
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which has solutions

f(z, t) = U(z)eth(z). (4.46)

We will use the requirement U(x) → 0 as x → ±∞ to ensure the vanishing

endpoint contributions in equation 4.42. Then we can take C(t) = R for all t, so

that equation 4.41 is a simple Fourier transform. The other factors eijz and eth(z) are

oscillatory along this contour, confirming decay at the endpoints.

4.5.2 Initial data

U(z) can be determined by the initial data of the problem. We have ũj(0) =∫
R eijzf(z, 0)dz =

∫
R eijzU(z)dz. Treating j as a real (rather than integer) parameter,

we see that U(z) is the inverse Fourier transform of ũj(0):

U(z) =
1

2π

∫
R

e−izjũj(0)dj. (4.47)

To represent a valid physical system, ũj(0) must be continuous in j, the average

of the ũj(0) over all j ∈ Z must equal 0, and we must have ũj(0) ≥ −1 for all j. We

also restrict ourselves to ũj(0) such that U(z)→ 0 as z → ±∞ in a neighborhood of

the real axis.

Later, we will need to use the fact that that U(−z) = U(z), which is easily

verified:

U(−z) =
1

2π

∫
R

eijzũj(0)dj (4.48a)

=
1

2π

∫
R

e−ijzũj(0)dj (4.48b)

=
1

2π

∫
R

e−ijzũj(0)dj (4.48c)
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= U(z) (4.48d)

As a consequence, U maps the imaginary axis to the real axis, since U(iy) = U(−iy) =

U(iy).

As an example, we might choose ũj(0; ε) = je−|j|/ε, which yields U(z; ε) =

−2i
π

ε3z
(1+(εz)2)2

. Since ũj(0; ε) is an odd function of j, we are guaranteed that

1

2N + 1

N∑
j=−N

ũj(0; ε) = 0 (4.49)

for all N , including N →∞.

4.5.3 Steepest descents

From equations (4.41) and (4.46), we have

ũj(t) =

∫
R
U(z)eijzeth(z)dz, (4.50)

where U(z) is given by equation (4.47). In each case below, we will consider the

complex plane restricted to x ∈ (−π, π] to determine the relevant critical point(s) and

contour of integration. This region should be repeated at intervals of 2nπ (n ∈ Z) to

deform the entire real line R. eijz and eth(z) are periodic in Real (z) with period 2π,

so only the value of U(z) will differ between regions.

We are interested in the long-term behavior of the terrace widths, so we assume

t� 1. We consider steps “in the bulk” of the crystal, where
∣∣ j

t

∣∣� 1. To approximate

the above integral using Riemann’s method of steepest descents, we must locate the

critical points where h′(z) = 0. From h(z) in equation (4.43), we have

h′(z) = i
(
2(gβ2)e

2iz + (α1 + gβ1)e
iz − (α−1 + gβ−1)e

−iz − 2(gβ−2)e
−2iz
)
. (4.51)
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Letting w = eiz, we know that w cannot equal 0. Therefore, h′(z) = 0 if and only if

w is a nonzero root of the polynomial

pg(w) = (2gβ2)w
4 + (α1 + gβ1)w

3 − (α−1 + gβ−1)w − (2gβ−2). (4.52)

Suppose we have determined a contour C passing through a unique maximum

critical point z0, where h′(z0) = 0. We can approximate equation (4.50) by making

the change of variable

ζ2 = h(z0)− h(z) ∼ −1

2
h′′(z0)(z − z0)

2 +O
(
(z − z0)

3
)

(4.53)

so that z ∼ z0 +
[
−1

2
h′′(z0)

]−1/2
ζ + O (ζ2) and dz

dζ
∼
[
−1

2
h′′(z0)

]−1/2
+ O (ζ). (Here

we must fix a branch of the square root function. We choose it such that
√

z =
√

z

for all z not on the negative real axis.) Then

ũj(t) =

∫
C

U(z)eijzeth(z)dz (4.54a)

∼
∫

R
U(z(ζ))eijz(ζ)et(h(z0)−ζ2) dz

dζ
dζ (4.54b)

∼ U(z0)e
ijz0eth(z0)

[
−1

2
h′′(z0)

]−1/2 ∫
R

e−tζ2

dζ (4.54c)

= U(z0) ·
√

π

[
−1

2
h′′(z0)

]−1/2

· (eiz0)j · eth(z0)t−1/2. (4.54d)

The factor t−1/2 is a departure from continuum estimations. It is the fastest decay

we could expect to see in an asymptotic expansion. If the first non-zero derivative of

h were of higher order (h′(z0) = h′′(z0) = · · · = h(m−1)(z0) = 0, h(m)(z0) 6= 0, m > 2),

the decay would be t−1/m.
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Figure 4.2: The case g = 0. Contours of constant imaginary part equal to the

imaginary part of a critical point, shown for x ∈ (−π, π].

4.5.3.1 No step interactions (g = 0)

In this case, the polynomial (4.52) is simply

p0(w) = α1w
3 − α−1w. (4.55)

We must ignore the root w = 0, because 0 = w = eiz has no solutions for finite z.

The other roots are ±w0, where w0 =
√

α−1

α1
. Depending on the physical parameters,

w0 may be real, pure imaginary, or zero. w0 = 0 is a bifurcation point, so we analyze

the other two cases in depth. They are generically pictured in Figure 4.2.

The deformed integration path should be chosen so that Imag (h(z)) is constant

and Real (h(z)) reaches a maximum at a critical point. We have

Imag (h(x + iy)) = sin(x)
(
α1e

−y − α−1e
y
)
, (4.56a)

Real (h(x + iy)) = cos(x)
(
α1e

−y + α−1e
y
)

+ α0. (4.56b)

4.5.3.1.1 Real roots (sign(α1) = sign(α−1)). When w0 is real, h(z0) is real as

well, so we must find the contours where Imag (h(z)) = 0. We immediately see that
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Imag (h(x + iy)) = 0 if and only if x = nπ (for some n ∈ Z) or e−y =
√

α−1

α1
.

When x = 2nπ, we have cos(x) = 1, so Real (h(x + iy)) → −∞ as y → ±∞.

Similarly, when x = (2n + 1)π, Real (h(x + iy)) → +∞. Therefore, along the hori-

zontal contour y = − ln
√

α−1

α1
in Figure 4.2(a), we know that Real (h(z)) reaches a

maximum at the points zn = (2n + 1)π − i ln
√

α−1

α1
. We have z0 = π − i ln

√
α−1

α1
.

For the final calculation, note that

eiz0 = −w0 = −
√

α−1

α1

< 0, (4.57a)

h(z0) =
(√
|α1|+

√
|α−1|

)2

> 0, (4.57b)

h′′(z0) = −2
√

α1α−1 < 0. (4.57c)

Also recall that U(−z) = U(z). Now, by summing equation (4.54) over all adjacent

regions of width 2π, we have

ũj(t) ∼
∑
n∈Z

U(z0 + 2nπ) ·
√

π

[
−1

2
h′′(z0 + 2nπ)

]−1/2

· (ei(z0+2nπ))j · eth(z0+2nπ)t−1/2

(4.58a)

=
√

π

[
−1

2
h′′(z0)

]−1/2

· (−w0)
j · eth(z0)t−1/2 ·

∑
n∈Z

U
(

(2n + 1)π − i ln

√
α−1

α1

)
(4.58b)

=
√

π (α1α−1)
−1/4 ·

(
−
√

α−1

α1

)j

· et
“√

|α1|+
√

|α−1|
”2

t−1/2

· 2
∞∑

n=0

Real

(
U
(

(2n + 1)π − i ln

√
α−1

α1

))
. (4.58c)

4.5.3.1.2 Pure imaginary roots (sign(α1) 6= sign(α−1)). Here w0 = i

√∣∣∣α−1

α1

∣∣∣,
so zn = (n + 1

2
)π − i ln

√∣∣∣α−1

α1

∣∣∣ for n ∈ Z are all the critical points.
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When w0 is imaginary, h(z0) is complex. Furthermore, we have the imagi-

nary part Imag (h(x + iy)) = 0 only when x = nπ (n ∈ Z), and not along the

horizontal contour in Figure 4.2(a). Because the contours where Imag (h(x + iy)) =

Imag (h(z0)), a nonzero constant, may not cross the contours where Imag (h(z)) = 0,

they are restricted to regions where x ∈ (nπ, (n + 1)π), so we have y → ±∞. There-

fore, to keep Imag (h(x + iy)) from growing, we must have sin(x)→ 0 with exponen-

tial decay. This implies that the contours are asymptotic to x = nπ (n ∈ Z).

When x ≈ 2nπ, we have cos(x) > 0, so Real (h(x + iy)) → −∞ as y →

−∞ and Real (h(x + iy)) → +∞ as y → +∞. Similarly, when x ≈ (2n + 1)π,

Real (h(x + iy))→ +∞ as y → −∞ and Real (h(x + iy))→ −∞ as y → +∞. There-

fore, along the contour joining (−π, +∞) to (0,−∞) to (π, +∞) in Figure 4.2(b),

Real (h(z)) reaches maxima at the critical points z0,−z0.

For the final calculation, note that

eiz0 = w0 = i

√∣∣∣∣α−1

α1

∣∣∣∣, (4.59a)

h(z0) = |α1| − |α−1| − 2i
√
|α1α−1|, (4.59b)

h′′(z0) = 2i
√
|α1α−1|. (4.59c)

Also note that h(−z) = h(z) as well. Now we have

ũj(t) ∼
∑
n∈Z

U(z0 + 2nπ) ·
√

π

[
−1

2
h′′(z0 + 2nπ)

]−1/2

· (ei(z0+2nπ))j · eth(z0+2nπ)t−1/2

+
∑
n∈Z

U(−z0 − 2nπ) ·
√

π

[
−1

2
h′′(−z0 − 2nπ)

]−1/2

· (ei(−z0−2nπ))j · eth(−z0−2nπ)t−1/2 (4.60a)
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=
√

πt−1/2
∑
n∈Z

(
U(z0 + 2nπ) ·

[
−1

2
h′′(z0)

]−1/2

wj
0e

th(z0)

+ U(z0 + 2nπ) ·
[
−1

2
h′′(z0)

]−1/2

w0
jeth(z0)

)
(4.60b)

= 2
√

πt−1/2
∑
n∈Z

Real

(
U(z0 + 2nπ) ·

[
−1

2
h′′(z0)

]−1/2

wj
0e

th(z0)

)
(4.60c)

= 2
√

πt−1/2

Real

(−i
√
|α1α−1|

)−1/2
(

i

√∣∣∣∣α−1

α1

∣∣∣∣
)j

eth(z0)


·
∑
n∈Z

Real (U(z0 + 2nπ))

− Imag

(−i
√
|α1α−1|

)−1/2
(

i

√∣∣∣∣α−1

α1

∣∣∣∣
)j

eth(z0)


·
∑
n∈Z

Imag (U(z0 + 2nπ))

]
. (4.60d)

4.5.3.2 Step repulsions (g > 0)

In this case, pg(w) is given by the full equation (4.52). Note that pg(w) has real

coefficients, so if w0 is a root, then w0 is also a root. This implies that if z0 is a

critical point, then −z0 is also a critical point.

We know that β±2 are both negative. Therefore, pg(w) → −∞ as w → ±∞,

and pg(0) > 0. The intermediate value theorem implies that pg(w) has at least two

real roots, one positive and one negative. Furthermore, if pg(w) has four real roots,

it is either the case that three are positive and one is negative, or one is positive and

three are negative. The cases are generically pictured in Figure 4.3.

It is possible to determine whether pg(w) has four real roots, or two real and

two complex roots, by finding the sign of the discriminant of pg(w) (positive in the
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Figure 4.3: The case g > 0. Contours of constant imaginary part equal to the

imaginary part of a critical point, shown for x ∈ (−π, π].

former case, negative in the latter).

4.5.3.2.1 Constant imaginary part. The deformed integration path should be

chosen so that Imag (h(z)) is constant. We have

Imag (h(x + iy)) = sin(x)
(
2 cos(x)

[
(gβ2)e

−2y − (gβ−2)e
2y
]

+
[
(α1 + gβ1)e

−y − (α−1 + gβ−1)e
y
])

(4.61)

First, consider a real root w0 of pg(w). Since w0 is real, h(z0) is also real, so

we must find the contours where Imag (h(x + iy)) = 0. This equality holds when

sin(x) = 0, or when cos(x) = − (α1+gβ1)e−y+(α−1+gβ−1)ey

2((gβ2)e−2y−(gβ−2)e2y)
, which approaches 0 as y →

±∞. Therefore, for all n ∈ Z, the contours x = nπ satisfy Imag (h(z)) = 0, and the

lines x = π
2

+ nπ are asymptotes of the remaining contours with Imag (h(z)) = 0.1

1It is not possible to choose, e.g., x = 0 as the deformed contour, because the deformation would

have to pass through regions of x-values where the integral does not converge.
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Now, consider a possible complex root w0 of pg(w). We must find the contours

where Imag (h(x + iy)) = Imag (h(z0)), a nonzero constant. Since these may not

cross the contours where Imag (h(z)) = 0, they are restricted to regions where x ∈

(nπ, (n + 1)π), so y → ±∞. Since the term (gβ2)e
−2y − (gβ−2)e

2y dominates the

growth in y, we must have either sin(x) → 0 or cos(x) → − (α1+gβ1)e−y+(α−1+gβ−1)ey

2((gβ2)e−2y−(gβ−2)e2y)

fast enough to keep Imag (h(z)) from growing. Once again, we find that the contours

are asymptotic to x = nπ and x = π
2

+ nπ (n ∈ Z).

4.5.3.2.2 Steepest descent paths. We will integrate over contours where the

real part Real (h(z)) reaches a maximum at one of the critical points. We have

Real (h(x + iy)) = cos(2x)
[
(gβ2)e

−2y + (gβ−2)e
2y
]

+ cos(x)
[
(α1 + gβ1)e

−y + (α−1 + gβ−1)e
y
]
+ (α0 + gβ0). (4.62)

Since e±2y dominate the growth of Real (h(z)) as y → ±∞, and β±2 < 0, we have

Real (h(z))→ +∞ along the lines x = π
2

+ nπ (n ∈ Z), and Real (h(z))→ −∞ along

the lines x = nπ (n ∈ Z). We now have three cases to consider.

In the first case, pg(w) has three positive roots and one negative root. Let w0 be

the middle positive root, and z0 = −i ln(w0). The necessary contour in Figure 4.3(a)

joins z0 to the negative root and its reflection. By summing equation (4.54) over all

adjacent regions of width 2π, we have

ũj(t) ∼
∑
n∈Z

U(z0 + 2nπ) ·
√

π

[
−1

2
h′′(z0 + 2nπ)

]−1/2

· w−j
0 · eth(z0+2nπ)t−1/2 (4.63a)

=
√

π

[
−1

2
h′′(z0)

]−1/2

· w−j
0 · eth(z0)t−1/2 ·

∑
n∈Z

U(i ln(w0) + 2nπ), (4.63b)
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and, because U(−z) = U(z),

∑
n∈Z

U(i ln(w0) + 2nπ) = U(i ln(w0)) +
∞∑

n=1

(
U(2nπ + i ln(w0)) + U(−2nπ + i ln(w0))

)
(4.64a)

= U(i ln(w0)) + 2
∞∑

n=1

Real (U(2nπ + i ln(w0))) ∈ R. (4.64b)

In the second case, pg(w) has one positive root and three negative roots. Let

w0 be the middle negative root, and z0 = π − i ln |w0|. The necessary contour in

Figure 4.3(b) joins z0 and its reflection to the positive root. As above, we have

ũj(t) ∼
√

π

[
−1

2
h′′(z0)

]−1/2

· w−j
0 · eth(z0)t−1/2 ·

∑
n∈Z

U(i ln |w0|+ (2n + 1)π), (4.65)

and

∑
n∈Z

U(i ln |w0|+ (2n + 1)π) =
∞∑

n=0

(
U((2n + 1)π + i ln |w0|)

+ U(−(2n + 1)π + i ln |w0|)
)

(4.66a)

= 2
∞∑

n=0

Real (U((2n + 1)π + i ln |w0|)) ∈ R. (4.66b)

In the third case, pg(w) has one positive root, one negative root, and two com-

plex conjugate roots. Let w0 = eiz0 be the root with positive imaginary part, and

w0 = ei(−z0) the root with negative imaginary part. In Figure 4.3(c), the necessary

contour for z0 proceeds from the asymptote x = −π to the asympote x = 0, while

the contour for −z0 proceeds from the asymptote x = 0 to the asympote x = +π.

We have

ũj(t) ∼
∑
n∈Z

U(z0 + 2nπ) ·
√

π

[
−1

2
h′′(z0 + 2nπ)

]−1/2

· w−j
0 · eth(z0+2nπ)t−1/2
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+
∑
n∈Z

U(−z0 − 2nπ) ·
√

π

[
−1

2
h′′(−z0 − 2nπ)

]−1/2

· w0
−j · eth(−z0−2nπ)t−1/2 (4.67a)

=
√

πt−1/2
∑
n∈Z

(
U(z0 + 2nπ) ·

[
−1

2
h′′(z0)

]−1/2

w−j
0 eth(z0)

+ U(z0 + 2nπ) ·
[
−1

2
h′′(z0)

]−1/2

w0
−jeth(z0)

)
(4.67b)

= 2
√

πt−1/2
∑
n∈Z

Real

(
U(z0 + 2nπ) ·

[
−1

2
h′′(z0)

]−1/2

w−j
0 eth(z0)

)
, (4.67c)

using the fact that h(−z) = h(z) as well.

4.5.3.3 Relationship between the solutions (g � 1)

Assume that a root w of pg(w) can be expanded as

w = w0 + gαw1 + g2αw2 + · · · (4.68)

for some α 6= 0.

First, assume that w0 = 0, and w ∼ gαw1. Then

g4α+1(2β2w
4
1)︸ ︷︷ ︸

1©
+ g3α(α1w

3
1)︸ ︷︷ ︸

2©
+ gα(−α−1w1)︸ ︷︷ ︸

3©
+ g1(−2β−2)︸ ︷︷ ︸

4©
∼ 0. (4.69)

The balance between 1© and 2© yields α = −1, and thus w1 = − α1

2β2
. The balance

between 3© and 4© yields α = 1, and thus w1 = −2β−2

α−1
. So two of the roots are

w ∼ − α1

2β2

g−1 and w ∼ −2β−2

α−1

g. (4.70)

Now, assume that w0 6= 0. Then

g1(2β2w
4
0 − 2β−2)︸ ︷︷ ︸
1©

+ g0(α1w
3
0 − α−1w0)︸ ︷︷ ︸
2©

+ gα(3α1w
2
0w1 − α−1w1)︸ ︷︷ ︸

3©
∼ 0. (4.71)
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The O (1) term yields w0 = ±
√

α−1

α1
. The balance between 1© and 3© yields α = 1,

and thus w1 = −2
β2w4

0−β−2

3α1w2
0−α−1

=
β−2α2

1−β2α2
−1

α2
1α−1

. So the other two roots are

w ∼
√

α−1

α1

+ gw1 and w ∼ −
√

α−1

α1

+ gw1. (4.72)

The O (1) roots correspond to the roots in the deformed contours we chose

for the integration — they are either the two complex roots, or one is the middle

positive/negative root, since the remaining roots are O (g)→ 0 and O (g−1)→ ±∞.

4.5.3.3.1 Dependence on time and step number. The step-step interaction

case can now be considered as a regular perturbation of the no-interaction case, for

steps in the bulk of the crystal.

When α1 and α−1 have equal signs, which is possible for some intermediate

values of v0, we have equation (4.58c):

ũj(t) ∼
√

π (α1α−1)
−1/4 ·

(
−
√

α−1

α1

)j

· et
“√

|α1|+
√

|α−1|
”2

t−1/2

· 2
∞∑

n=0

Real

(
U
(

(2n + 1)π − i ln

√
α−1

α1

))

The time dependence is proportional to e
t
“√

|α1|+
√

|α−1|
”2

t−1/2, which is exponential

growth with a polynomial decay term. The dependence on j is proportional to(
−
√

α−1

α1

)j

, which is growth or decay depending on the sign of j. Note that the

sign of ũj(t) alternates with odd and even values of j.

When α1 and α−1 have opposite signs, which holds for very strong and very

weak electric fields, we have equation (4.60c):

ũj(t) ∼ 2
√

πt−1/2
∑
n∈Z

Real

(
U(z0 + 2nπ) ·

[
−1

2
h′′(z0)

]−1/2

wj
0e

th(z0)

)
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First consider the time dependence. Recall from equation (4.59) that Real (h(z0)) =

|α1| − |α−1|. We found in Section 4.4.3 that α1 decays to 0 faster than α−1 when

the electric field is very strong, implying that Real (h(z0)) < 0. Now consider the

dependence on step number. Recall that w0 = i

√∣∣∣α−1

α1

∣∣∣, so again we have growth or

decay depending on the sign of j.
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4.6 Discussion

We have analyzed the motion of crystal steps as a discrete system of coupled linear

ODEs. Much of the literature has focused on continuum approximations of surface

height, which can provide reliable indications of the stability of uniform step trains;

step bunching is one form of instability. However, these continuum approximations

miss a time dependence term that appears in the discrete analysis, and they do not

give a full picture of the dependence on step number.

Recall our measure of the deviation of terrace width from the average value,

ũj(t) =
xj+1(t)−xj(t)

L
− 1. We found that the time dependence of ũj(t) is proportional

to eth(z0)t−1/2. The t−1/2 factor does not appear in continuum approximations, and is

the fastest decay we can expect from a first-order asymptotic analysis of the discrete

model. The h(z0) exponent depends on the physical parameters of the problem.

Stability is indicated when ũj(t) decays with time, while instabilities such as step

bunching are possible when ũj(t) grows with time.

We also found that the step number dependence of ũj(t) is proportional to

(eiz0)
j
. Therefore, ũj(t) grows or decays in j depending on the sign of j. We have

identified parameter regions where the base eiz0 is a negative real number, indicating

alternating signs of the terrace width deviation. Such alternation could lead to the

“double steps” that have been observed in silicon [60] and ruthenium [64].
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Appendix A

Addendum to Chapter 3

A.1 Standard ports

In 2003, many peer-to-peer applications used constant port numbers. In addition,

many client-server applications use IANA-assigned ports, or other constant ports.

The following port values were used for determining the “true” classes in Section 3.3.1.

Table A.1: Peer-to-peer ports, protocols, and their usages. Compiled from
various online sources.

Port Protocol Application

412 TCP/UDP DirectConnect
1214 TCP KaZaA
1412 TCP/UDP DirectConnect
2000 TCP eDonkey 2000
2004 UDP eDonkey 2000
2234 TCP SoulSeek
3415 TCP KaZaA
3531 TCP/UDP KaZaA
4329 TCP iMesh
4444 TCP Napster
4661 TCP eDonkey 2000
4662 TCP eDonkey 2000
4663 TCP eDonkey 2000
4665 UDP eDonkey 2000
4666 UDP eDonkey 2000
4670 TCP eDonkey 2000
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Table A.2: Table A.1 continued.

Port Protocol Application

5498 TCP Hotline Connect
5499 UDP Hotline Connect
5500 TCP Hotline Connect
5501 TCP Hotline Connect
5502 TCP Hotline Connect
5503 TCP Hotline Connect
5534 TCP SoulSeek
5555 TCP Napster
6257 UDP WinMX
6346 TCP Gnutella
6347 UDP Gnutella
6348 TCP Gnutella
6662 TCP eDonkey 2000
6666 TCP Napster
6699 TCP WinMX
6700 TCP Napster
6701 TCP Napster
6881 TCP BitTorrent
7674 UDP Soribada
7675 TCP Soribada
7676 TCP Soribada
7677 TCP Soribada
7788 TCP/UDP BuddyShare
8311 TCP Scour
8875 TCP Napster
8888 TCP Napster
8889 TCP Napster

22321 TCP/UDP Soribada
22322 TCP Soribada
41170 TCP/UDP Blubster, Piolet, Manolito
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Table A.3: Client/server ports, protocols, and their usages. Compiled from
various online sources.

Port Protocol Application

20 TCP FTP
21 TCP FTP
22 TCP SSH
23 TCP telnet
25 TCP SMTP
53 TCP/UDP DNS
80 TCP HTTP

110 TCP POP3
123 UDP network time protocol
143 TCP IMAP
389 TCP/UDP LDAP
443 TCP HTTPS
993 TCP IMAP over SSL

1024 TCP/UDP Windows browsing
1025 TCP/UDP Windows browsing
1026 TCP/UDP Windows browsing
1080 TCP proxy server
1490 TCP vocaltec videoconferencing
1755 UDP windows media streaming
1863 TCP/UDP msn messenger
2703 TCP/UDP SpamAssassin
4099 TCP AIM
5050 TCP Yahoo IM
5190 TCP aim
6277 TCP/UDP DCC anti-spam
6665 TCP IRC
6667 TCP IRC
6670 TCP vocaltec videoconferencing
7070 TCP/UDP realaudio
8000 TCP webserver
8080 TCP HTTP2

22555 UDP vocaltec videoconferencing
25793 TCP vocaltec videoconferencing
32768 TCP/UDP *nix browsing
32769 TCP/UDP *nix browsing
32770 TCP/UDP *nix browsing
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Appendix B

Addendum to Chapter 4

B.1 Parameters and variables of the crystal problem

Table B.1: Overview of parameters and variables.

Symbol Dimensions Brief description

L length Typical terrace width
a length Step height

Ω length2 Atomic volume

xj(t) length Position of jth step edge at time t
uj(t) ∅ (xj+1(t)− xj(t))/L; normalized length of jth terrace
ũj(t) ∅ uj(t)− 1; deviation from uniform terrace width

c0 1/length Adatom density at an isolated step
cj(x) 1/length Adatom density at position x on the jth terrace
Jj(x) 1/time Adatom current (flux) at position x on the jth terrace

τ time Desorption time

D length2/time Terrace diffusivity
v0 length/time Down-step velocity due to electric field

k+, k− length/time Rate coefficients for attachment-detachment

g ∅ Strength of step interactions

δ ∅ L/
√

Dτ

η ∅
√

Dτ/(v0τ)
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[64] G. Held, S. Uremović, and D. Menzel. Rearrangement of stepped Ru(001) sur-
faces upon oxygen adsorption. Physical Review Letters, 331–333(2):1122–1128,
July 1995.

[65] Wei Hong, Ho Nyung Lee, Mina Yoon, Hans M. Christen, Douglas H. Lowndes,
Zhigang Suo, and Zhenyu Zhang. Persistent step-flow growth of strained films
on vicinal substrates. Physical Review Letters, 95(9):095501, August 2005.

[66] Navot Israeli and Daniel Kandel. Profile of a decaying crystalline cone. Physical
Review B, 60(8):13707–13717, August 1999.

[67] C. Jayaprakash, Craig Rottman, and W. F. Saam. Simple model for crystal
shapes: Step-step interactions and facet edges. Physical Review B, 30(11):6549–
6554, December 1984.

[68] Daniel Kandel and John D. Weeks. Step bunching as a chaotic pattern formation
process. Physical Review Letters, 69(26):3758–3761, December 1992.

[69] Kavli Institute of Nanoscience; Delft University of Technology. Research in the
quantum transport group. http://qt.tn.tudelft.nl/research/.

121



[70] A.V. Latyshev, A.L. Aseev, A.B. Krasilnikov, and S.I. Stenin. Transforma-
tions on clean Si(111) stepped surface during sublimation. Surface Science,
213(1):157–169, 1989.

[71] Da-Jiang Liu and John D. Weeks. Quantitative theory of current-induced step
bunching on Si(111). Physical Review B, 57(23):14891–14900, June 1998.

[72] Feng Liu, J. Tersoff, and M.G. Lagally. Self-organization of steps in growth of
strained films on vicinal substrates. Physical Review Letters, 89(6):1268–1271,
February 1998.

[73] Dionisios Margetis, Michael J. Aziz, and Howard A. Stone. Continuum approach
to profile scaling in nanostructure decay. Physical Review B, 71(16):165432, April
2005.

[74] C. Misbah and O. Pierre-Louis. Pulses and disorder in a continuum version of
step-bunching dynamics. Physical Review E, 53(5):R4318, May 1996.

[75] William W. Mullins. Flattening of a nearly plane solid surface due to capillarity.
Journal of Applied Physics, 30(1):77–83, January 1959.

[76] A. Rettori and J. Villain. Flattening of grooves on a crystal surface: A method
of investigation of surface roughness. Journal de Physique (Paris, France),
49(2):257–267, 1988.

[77] Masahide Sato and Makio Uwaha. Growth of step bunches formed by the drift
of adatoms. Surface Science, 442(2):318–328, November 1999.

[78] Massahide Sato and Makio Uwaha. Growth law of step bunches induced by the
Ehrlich-Schwoebel effect in growth. Surface Science, 493(1):494–498, November
2001.

[79] S. Stoyanov and V. Tonchev. Properties and dynamic interaction of step density
waves at a crystal surface during electromigration affected sublimation. Physical
Review B, 58(3):1590–1600, July 1998.

[80] Stoyan Stoyanov. Electromigration induced step bunching on Si surfaces: How
does it depend on the temperature and heating current direction? Japanese
Journal of Applied Physics, 30(1):1–6, January 1991.

[81] Brian S. Swartzentruber. Scanning tunneling microscope / Atom-tracking lab.
http://www.sandia.gov/surface science/stm/, August 2002.

[82] Katsumichi Yagi, Hiroki Minoda, and Masashi Degawa. Step bunching, step
wandering and faceting: Self-organization at Si surfaces. Surface Science Reports,
43(2–4):45–126, July 2001.

122


