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Abstract

A random access system with a finite number of buffered terminals is
considered. The problem of how to decompose this system into a number of
interconnected subsystems in order to maximize its throughput is studied.
Two different interconnection topologies are considered, a directional ring
topology and a fully connected network of subsystems. For each of these
two topologies the problem of maximizing the throughput is reduced to a
simple maximization problem. We apply the attained results to a slotted
ALOHA and a CSMA/CD system. For the forrﬁer a significant improvement
in the throughput performance is reported, while simulation analysis shows

an expected deterioration in the delay performance, for low intensity traffic.

1 Introduction

Given a set of terminals that must communicate over shared (multiple access)
channels, the question arises of how to organize this set in order to obtain optimal
performance from the resulting system. One option is to allow the entire set of

terminals to access a single, common channel according to some protocol (such
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as ALOHA, CSMA or other similar ones). Most studies of multiaccess protocols
generally adopt this option although there is no indication about its optimality.
Furthermore, in many cases it is not realistic to assume that any two terminals
can communicate with each other without the use of intermediate tranceivers. It
was this last consideration that gave rise to a second option, namely to separate
the set into groups, each of which may operate as a single system under a given
protocol, while intergroup traffic can be accommodated via dedicated links between
the subsets. This option leads to the study of a multihop system.

The aim of this paper is to compare these two options. The motivation for
such a comparison was provided by the work of Merakos et. al. , who in [1] showed
that by splitting a multiple access system with an infinite number of unbuffered
users and operating under the CSMA protocol into two subnetworks increases the
maximum stable throughput. Here we explore this question further by considering
to what degree further subdivision improves the maximum stable throughput. Our
attention is focused on multiple access channels with a finite number of buffered
terminals operating under a variety of protocols.

It should be noted that traditional approaches of multihop analysis rely on
heavy approximations and/or simulations (see for example (2, 3, 4, 5]). In this
study we try to employ as general and detailed models as possible. Precise analysis
was employed for the throughput performance, for the delay performance however
we had to rely on simulation mefhods. |

One problem, similar to the one considered here, was studied by Kleinrock
and Silvester, who, in [6], considered communication range models and calcu-
lated the optimal transmission range of a radio user network for maximum overall
throughput. The assumptions made in that study are completely different from
ours and thus it is impossible to relate their conclusions to ours.

Clearly, as soon as we subdivide the set of terminals into more than two
subsets, the question arises how to interconnect these subsets, i. e. the question of

topological connectivity. Depending on the choice of such topology, the effect of



frequency reuse, that the subdivision principle ensures, will be mitigated differently
for each topology, by the need for routing multi-hop traffic.
In the following, after a precise definition of the model, we consider two

different topologies and study the trade-off involved in the decomposition.

2 The Model

We assume a number of M users that can be connected by means of a single mul-
tiple access channel of given overall bandwidth W (packets/sec). We furthermore
assume that the users are identical in the sense that each of them generates packets
of constant bit length X at an average rate ) (packets/sec) and that the destination
of the packets is uniformly distributed among the users, i. e. each packet is intended
for any of the remaining M — 1 users with the same probability, 1/(M — 1). At
this point nothing is assumed about what protocol is used, other than that it has
a known maximum stable throughput ! given by: S,(w,n) packets/packet-length,
where w is the used bandwidth and n is the number of users. The throughput func-
tion, in packets per second, given by w + Sp(w,n) is asummed to be a continuous
and nondecreasing function of w while a decreasing function of n. These assump-
tions do not heart the generality of our model. One expects that an increase in the
number of users will have as a result an increase of the contention, thus a decrease
of the MST. On the other hand an increase of the available bandwidth will have
as a result faster transmission, which in turn cannot deteriorate the performance
of the system. The above assumptions are actually met in practically all known
protocols.

We consider a partition of the M users into k subsets, each with N; users.

Obviously we have

1We use the standard definition of maximum stable throughput as the supremum of the packet

arrival rates for which the system is stable



Communication within each subset is accomplished by means of a fixed, given
protocol, which is the same for all subsets. Communication among different subsets
is achieved by means of special purpose nodes, the bridge nodes. We assume that

there are two bridge nodes in each subsystem:

1. The Receiving Bridge Node (RBN), which receives packets transmitted from
neighboring subnetworks and broadcasts them to the users within the sub-
network or to the Transmitting Bridge Node of the subnetwork, depending

on whether their destination belongs or not to the subnetwork.

2. The Transmitting Bridge Node (TBN), which receives packets broadcasted
from within the subnetwork or from the subnetwork’s RBN, that are in-
tended for users in other subnetworks, and broadcasts them to the RBN ’s

of neighboring subsystems.

For an observer inside a subnetwork the corresponding TBN operates as an
output port that broadcasts outside of the subnetwork packets generated by nodes
inside it. Similarly the corresponding RBN operates as an input port that receives
packets generated outside and intended for nodes inside the subnetwork. On the
other hand for an observer outside a subnetwork the corresponding pair of TBN
- RBN operates as an intermediate hop in the communication between nodes
belonging to different subnetworks.-

With respect to the separation of the subsystems there are two possibilities,
logical separation or physical separation. In the first case the separation of the
sub-networks is achieved by bandwidth assignment, i. e. each subnetwork uses a
distinct portion of the overall bandwidth. In the second case the separation of the
sub-networks is achieved by space separation. For Packet Radio Networks this
can be achieved by geographical dispersion and transmission power control. In the
case of cable LAN s each subnetwork can use a different cable channel.

" Following a construction similar to the one in [1] we consider three queueing

systems that can describe the network of each subgroup of users:



1. The system with the combined aggregate queue @ p(z) of the packets in the
buffers of all users in the ¢-th subnetwork (this is a conceptual “queue” and
consists of the packets generated by all the users in this subsystem). We
denote its arrival rate by Ap(z), its departure rate by Dp(z) and its service

rate by Tp(z). It is allocated a portion u;W of the overall bandwidth.

2. The system with the queue @Q7(2) of packets in the buffer of the TBN in
subsystem :. We denote its arrival rate by Ar(z), its departure rate by Dy(z)

and its service rate by Tr(z). It is allocated a portion z;W of the overall

bandwidth.

3. The system with the queue Qgr(?) of packets in the buffer of the RBN in
subsystem i. We denote its arrival rate by Ag(?), its departure rate by Dg(z)
and its service rate by Tr(z). It is allocated a portion v;IW of the overall

bandwidth.

In general these queueing systems are not “decoupled” and do not operate inde-
pendently of one another. For each case we need to obtain precise relationships
among them.

As a measure of the performance of the system we use the maximum stable
throughput (MST), which we define as the supremum of the total packet generation
rate (given by M) in our case) for which the above described system is stable.
We denote this quantity by S. We characterize this system as stable if for each
constituent subset all three queues that describe it are stable. For the stability of
a queue we use the traditional definition, i. e. that a queue is stable if it possesses
a steady state queue size distribution that yields a finite average delay. In [7] it

was shown that the following proposition is true.

Proposition 1 A queue with arrival rate A and service rate T is stable if A< T
and unstable if A > T, provided that the interarrival as well as the service times
form two stationary and metrically transitive (but not necessarily independent)

sequences.



In a stationary queueing system in steady state (as above) the arrival rate is

never less than the departure rate; they are equal if the system is stable.

Note: The assumptions for stationarity and metrical transitivity are certainly

very mild ones. In stable systems they are due to the steady state behavior of
the system. (The stationarity follows directly by the definition of the steady state
behavior, while the metrical transitivity follows by the strongly mixing property
that such systerﬁs exhibit.) It is also of interest to observe that, using a simple

contradiction-type argument, we can obtain the following corollary to Proposition
1:

Corollary 1 A gqueueing system with arrival rate A and service rate T is stable
if A < T and unstable if A > T, provided that stability of it implies that the inter-
arrival as well as the service times form two stationary and metrically transitive

sequences.

3 The Directional Ring Topology (DRT)

The first topology to be considered is the Directional Ring Topology, in which
all subsets are cyclically arranged on a ring so that any RBN hears transmissions
from the TBN of the previous subnetwork only (with subnetwork k preceding
subnetwork 1).

We assume that the transmission ranges within a subnetwork and between
two successive subnetworks on the ring are such that TBN i can be heard by nodes
only in subnetworks ¢,i + 1 and ¢ — 1 (but not by RBN ¢ — 1). In order to avoid
undesired interference between the intra— and inter— subnet traffic we require that

the following conditions hold true.

(w;W), (W), (z;W), (zi-aW) : non-overlapping (1. a)
(W), (W), (22aW), (z:W) : non-overlapping (1. b)



The following inequalities are necessary for satisfaction of the above non-overlapping

requirement. They are not sufficient, however.

v+ +z,0<1 fori=2,....M
and wm+vi+r+z<1

For our purposes the decomposition of the system is completely specified by (%,
N, u, v, z) and our objective is to choose those parameters so that the MST of
the system is maximized. Note that u, v, x denote the vectors whose components
are the bandwidth portions u;, v; and z; respectively while N denotes the vector
(N1y. .oy Ni).

In Appendix A it is shown that the MST of the system is given by

S = miin {u.-W%Sp(u.-W', N), MG(N)v,W , MG(N)z;W } (2)
where
2(M -1)
G(N) & ————L_
We can now formulate our objective in terms of a maximization problem,
namely
(P. 1) (k’l{lr’lla;')‘c”x)s subject to (1) Z;N,- =M; (2) ui,vi,z; € [0,1];

(3) Constraint (1) is satisfied
Observe that, given any decomposition (k,N,u,v,x) satisfying the restric-

tions of problem (P. 1), we can replace z; by &; and v; by ¥;, where

A

=== m’jn{a:.-,v;}

and this replacement will neither violate any of the restrictions in problem (P. 1),

nor decrease the Maximum Stable Throughput.

Furthermore for any feasible solution of problem (P. 1) the u;’s must satisfy

u; +3z <1



Observe, however, that, if k is even, then we can replace u; by i; = 1 — 3z, thus
adopting the bandwidth allocation of Fig. 2(a). If now k is odd the bandwidth
allocation of Fig. 2(a) is not feasible, since it leads to the overla,pping of the bands
zxW and z;W. In this case one may adopt the allocation of Fig. 2(b), that also
allows to replace u; by 4; =1 — 3z.
Since now
4 >u; Vi

it becomes clear that replacing u; by @; = 1—3z will neither decrease the Maximum
Stable Throughput nor violate any of the restrictions in problem (P. 1), as it is
obvious from Fig. 2(a) and 2(b).

Then problem (P. 1) can be written as

(P. 2) (k'lg’lﬁ’x)S subject to (1) zi:N,- =M; 2u=u € [0,1];
B)vi=z=(1-u)/3
where S is given by (2).
Observe now that in problem (P. 2) neither the cost function nor the con-

straints depend on the order of the subnetworks in the system. Hence the following

condition can be added to these constraints without affecting the solution.
N2N2...2N; (3)

After having added condition (3) to the restrictions of problem (P. 2) one
can verify that the following condition (4) can also be added to the constraints of
problem (P. 2) without changing its solution.

1—u

3

uW—NM;Sp(uW', M) = MG(N) =W (4)

The verification is straightforward, by observing that for any decomposition (k,
N, u; = u, v; = z; = (1 — u)/3) that satisfies the constraints of problem (P.
2), but not condition (4), there exists a decomposition (k = k, N = N, 4; = 4,
5; = £ = (1 — @)/3 that yields a higher Maximum Stable Throughput and that
satisfies both the constraints of problem (P. 2) and condition (4).
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The following Lemma 1 concerns the construction of the optimal vector N.

Lemma 1 The vector N that solves the problem, resulting from problem (P. 2)
after the addition of conditions (8) and (4) has the following structure:

Ni=...=Ny1 2 N

Proof of Lemma 1: To show the optimality of the above construction of the

vector N we observe that for any partition N = (MNVy,..., N) of the users, for
which N, is fixed and given, ? we can increase the maximum stable throughput by
increasing a larger N; at the expense of a smaller NV; (which can be easily shown by
considering a partition in which N; and N; (with N; > N;) have been respectively
replaced by N; + 1 and N; — 1 while the remaining Ny ’s, including Ny, do not
change and showing that the maximum stable throughput increases). Thus N,
should be made as close to N; (the largest element that is fixed) as possible. If
the total number of users M is greater than 2/N;, indeed N; will be equal to N;.
Then we repeat the argument for N3 and so on. Thus the first £ — 1 elements N;
end up being equal to each other and to the given N, while Ny may possibly be
less depending on the values of M and Nj.

The proof of Lemma 1 is thus completed.

In view of Lemma 1, the original problem reduces to

M .
(P. 3) Ny el?f.).{..M}uW]_V:S”(UW’ N;)  where

(1) N constructed as above ;
(2) u is the unique solution in (0,1] to equation (4) *
Problem (P. 3) is a constrained maximization problem over one variable that
takes values in a finite set. An exhaustive search therefore suffices to completely
characterize the solution, once the function Sp(:,-) is specified. We do not address

here the question of computational complexity and of whether this is the most

2Recall that N; is by definition greater than or equal to all other N; s (i > 1).

314 is straightforward to show that indeed equation (4) has a unique solution in (0, 1]
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efficient way of solving the original maximization problem. It certainly has the

attractive feature of linear complexity to M.

4 The Fully Connected Network (FCN)

We now consider a Fully Connected topology of subnetworks, in which every TBN
can be heard by the RBN s of all other subnetworks (see Fig. 3). In this case
intercommunication between any two subsystems is accomplished in a single hop
(in contrast to the case of the DRT).

In order to avoid undesirable interference, and similarly to the case of the
Directional Ring Topology, we require that, for all 7, u;W and v;/W do not overlap
either among themselves or with any of the ;W ’s (for j = 1,..., k). Furthermore
no two z;W ’s may overlap (see Fig. 3). The following condition is necessary for

such a bandwidth allocation:
Ui+v+ Y 2, <1 (5)

Obviously superior throughput can be achieved if inequality (5) is satisfied with
equality. Therefore throughout the remaining of this section we will require that
condition (5) is satisfied with equality.

Following the same procedure as in the case of the DRT we can express the

MST of the FCN as

S = min {u.-WM-'S’p(u,-W, N), M(M - 1) vW M(M - 1) W'}

N, N;(M = N;) ' 7 Ny(M - N;)
Our objective is to choose the parameters -k, N, u, v, x of the FCN in order to
maximize its maximum stable throughput; this maximization can be formulated

in terms of the following problem:

ject t N,=M;
(P. 4) (k,I{II?Iaf,)s(/,x)S subject to (1) Z‘:

(2) wi,viyzi € [0,1]; B) ws+vi+Lpza=1

10



Using arguments similar with the ones in the previous section we can show
that the following conditions can be added to the constraints of problem (P. 4)

without changing its solution:

Ni2N;2...2 Ng

Vi = T
M M(M —1)
w0 Vs M-
u,WNi Sp(u;W, N;) > N = Ni)x’W
MM-1) |
N{(M - Ni)sz : constant for all ¢

Combining the above conditions with the restrictions of problem (P. 4) we

can reduce the problem to:

M(M -1)

(P. 5) If\lfi( mltw SllbjeCt to (1) E’:N, =M ’
(2 M2 N2 2...2 Nie5 (3) z¢:i € [0,1] Vi
M(M-1 .
() bW < (1= B WS,(W(1 = ), M) Vi
where
A N;(M - N;)
¢—1+M;:53E (6)

By a straightforward comparison it follows that for all z, N, satisfying the

restrictions of problem (P. 4), we have
min fi(z,N) = fu(z,N) 0

where

£ N) & (1= p@)WS,(W(1 = dia), N) T ®)

and ¢; is given by equation (6).

Furthermore it is straightforward to show that

max ¢; = ¢y (9)
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Equations (7) and (9) imply that constraints (3) and (4) of problem (P.
5) need only be examined for ¢ = 1. Observe furthermore, that, for i = 1, we
can replace the inequality with equality in constraint (4) of problem (P. 5), thus
obtaining the following equation

M(M-1
s W = AN (10
where fi(z,N) is given by equation (8) (for : = 1). This replacement cannot
decrease the maximum stable throughput. Additionally the resulting equation has
a unique solution in (0,1/¢,]. In view of the above discussion we can further reduce

problem (P. 5) to:

MM =1) .
(P 6) H&&}:( mxw subJect to
(1) TiNi=M; Q)M 2N 2.2 N

(3) z is the unique solution in (0,1/¢;] to equation (10)

The final step in reducing the initial optimization problem to a simple form
is to determine the optimal form of the vector N. In Appendix B it is shown that
for given N; € {1,... M —1} the vector that solves problem (P. 6) can be uniquely
constructed as follows:
N users are assigned to each LAN until they are either exhausted or reduced to a
final remainder of 0 < n < Ny. In this case these n users are assigned to one (last)
LAN.

In view of this last assertion problem (P. 6) reduces to:

M(M —1) cW where : (1) Ny=Ny=...= Ny 2 Ny

(P. 7) Mellom-1) M2 — 5, N?

(2) =z is the unique solution in (0,1/¢:] to equation (10)

Problem (P. 7) is a constrained maximization problem over one variable that
takes values in a finite set. A complete characterization of its solution can be
obtained if the function Sp(-,-) is given. Again the complexity question is not

addressed.
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In Appendix C a comparison between the DRT and the FCN is provided. In
particular it is shown that for any M and W the optimal value of the maximum
stable throughput for a Network operating as a FCN of LAN s is greater than the

one achieved under the DRT. We may also observe that

o In the DRT the utilization of the bandwidth assigned to a single TBN or RBN
is inefficient since these nodes carry all the transit traffic in addition to that
intended for the LAN in which they belong, in contrary to the FCN, in which
the TBN s and RBN s carry only the traffic intended for the subnetwork in
which they belong.

¢ In the DRT the utilization of the bandwidth assigned to all TBN s is more
efficient than the one in the FCN, since in the former overlapping of band-

widths assigned to different TBN s is allowed.

We can therefore explain the performance deficit of the DRT as caused by the
inefficient routing of the packets that cannot be balanced by the surplus that the
frequency reuse induces. .

Under the reasonable assumption that
Sp(w,1) =1 packets/pa,éket—length

it can be shown that for Ny =1, hence N = (1,...,1), the value of z that satisfies
the restrictions of problem (P. 6) is

M
M+2

T =

which leads to

S(hy=1)= MI_W__‘-_E W packets/sec

(The proof is omitted since it only involves straightforward computations based
on problem (P. 7) after having fixed Ny = 1.)

Hence we have that
A}im S(N, = 1) = W packets/sec
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which implies that as M becomes large enough the optimal choice of N is 1, since
the value of W pack/sec for the MST is the suprémum over all possible values of
MST. As a result it is obvious that when considering only the MST as performance
measure and when M is large enough the performance of the FCN is superior to
the performance of any other topology. This is not surprising, since in that case
the system approaches a single FDMA-like set of users for which the maximum

stable throughput is known to be equal to W.

5 Applications

We apply the previous results to the case of two systems, namely a symmetric
slotted ALOHA and a CSMA/CD system. For the former we evaluate the optimal
decomposition for various numbers of users and present simulation results for the
. delay performance of the decomposed systems. For the latter we show how the
bandwidth affects the optimal decomposition. As the numerical results indicate
an increase of the throughput to very large values results in an extremely poor
performance of the baseline system (see also [10}), however it does not affect the

performance of the optimally decomposed one.

5.1 Symmetric Slotted ALOHA

Under ALOHA each user transmits with the same probability p, which is optimally
chosen according to the number n of terminals in the subnetwork (i. e. p = 1/n).

The MST function of this protocol can be easily calculated to be:
Sp(w,n) = (1 - ;11-)""1 packets/packet-length

We assume a number of M terminals communicating as described in section
2 over a multiple access channel of total bandwidth 1 packets/packet-length. For
both topologies it can be easily shown that for all values of M the unique opti-

mal number of subnetworks is equal to M. The extremity of this result can be
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attributed to the very fast deterioration in the throughput performance of the
slotted ALOHA system as the number of users increases.

The actual value of the optimal MST for these two topologies as well as
of the baseline system is shown in Fig. 4 as a function of M. As expected,
limps—oo Sren = 1 and limpas—,00 Sprs = 1/e We can also see that for the ALOHA
protocol under the DRT configuration we have limap—0o Sprr = 2/3. (This is
easy to be shown, in view of the fact that the optimal decomposition of the M-
user slotted ALOHA system, following the DRT topology, assigns one user to each
subnetwork. However we cannot give any physical interpretation to it.)

The extremity in the optimal solution, for the case of th M-user slotted
ALOHA system, renders the delay analysis of the decomposed system necessary.
For this purpose we have considered to systems, a small one, with 6 users, and
a larger one, with 15 users. Using simulation we have obtained the throughput-
delay characteristics for both the baseline system and for the two topologies (FCN
and DRT), for various numbers of subnets. The results are shown in figures 5 and
6. As we can see, in addition to exhibiting a better throughput performance, the
FCN topology also exhibits a better delay performance, than the DRT topology
with the same number of subnets. We can also observe that, for each topology,
the delay performance shows an expected deterioration, for low intensity traffic,

as the number of subnets increases.

5.2 CSMA/CD System

We consider here a slotted CSMA/CD system with M identical users and make

the following assumptions:

Packets have constant length of T kbits.
The distance between two consecutive terminals is constant and equal

to b m.

The detection of the energy level in the channel requires time a sec.
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Then the duration of an idle period or a collision will be:

where ¢ = 3 - 10° km/sec, is the speed of light. Expressed in slots 4 becomes:

b(n—1)

v=(a+ )% slots

where w is the available bandwidth.

It can be shown that the throughput function for this protocol is given by

_ 1 - 1n)t
§p(w’n)'—7 + (1__,.,,)(1 - l/n)n—l

For different values of the parameters M, T, b and a of this system we solved
the optimization problems, and obtained the optimal DRT and FCN decomposi-
tions. The results are illustrated in figures 7 to 12. In particular, in figures 7 and 8
we show how the optimal number of subnets, N,,; and the optimal throughput vary
with the total bandwidth W, for the case of Directional Ring and Fully Connected
Network respectively, for a system with 60 users. The remaining parameters were
chosen to be T' = 1 kbit, b = 300 m and a = 1 p sec. As we can see for
very small bandwidth (100 kbits) N, = 1 and as the bandwidth increases N,
increases as well. In figures 9 and 10 similar curves are shown for the case of a
system with 6 users. In figures 11 and 12 curves of the optimal throughput vs. the
total number of the users are shown for the DRT and the FCN respectively and
for different values of the parameters W, b and a. As we expect, for all values of

the parameters, the throughput of the Fully Connected Network converges to 1.

6 Conclusions

We considered the problem of improving the throughput performance of a mul-
tiaccess channel with a finite set of buffered terminals operating under a given

protocol by partitioning that set into smaller subsets that are linked by dedicated
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links. An important question concerns the topology of the subnetwork intercon-
nection as well as the consequent routing policy. Two topologies were considered,
namely the DRT and the FCN. The reasons behind these choices can be found in
the simplicity of both topologies that renders the throughput analysis tractable.
Certain applications might require more complex topologies as well as additional
constraints, regarding for example the number of subnets or the number of users
in each subnet. Such considerations are beyond the scope of this paper. It should
be noted however that constraints, like the ones mentioned above can be easily
incorporated in the optimization problems, that were considered here. Physical
rather than logical separation among the users was assumed, that can be achieved
by suitable control of the transmission power of each node.

For the two topologies under consideration exact expressions for the MST
were derived and the problem of the optimal choice of the system parameters was
formulated and analyzed. The analysis led to numerical maximization problems
over finite sets. Furthermore it was shown that as the number of users approached
infinity the performance of the FCN approached the performance of a FDMA
system, which, in terms of maximum stable throughput, is superior to all others.
This last observation shows that the MST is not a totally satisfactory measure
for the performance of a multiaccess system. Instead delay and other performance
measures should also be considered. For the case of a symmetric slotted ALOHA
system we have obtained a delay performance evaluation of the decomposed system,

using simulation methods.

A Derivation of the Maximum Stable Through-
put for the DRT

Here we prove the following Proposition
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Proposition 2 The mazimum stable throughput of the DRT is given by
. M
S =min {u,-WTv-—_S,,(u,-W, N)), MG(N)v,W , MG(N)z;W }

Proof of Proposition :  We start by showing that the following inequalities
hold for all %

A

ARr(1) < ’2'(—M—__—1)'(M2 -2 N9 (11)
Aa() € g (M~ T NY) (12)

and that they are satisfied with equality if the system is stable. (Recall that Ar(7)
is the arrival rate in the queueing system of the TBN in subnet ¢, Qr(z), while
ARg(t) is the arrival rate in the queueing system of the RBN in subnet ¢, Qg(:).)

In steady state we have
Dp(i) < Ap(3) = N;A (13)
A packet exiting @Qp(7) will enter Q7(7) with the following probability:

Pr{ packet enters Qr(z) / it exited Qp(j)}

Pr{ packet generated by user in subnet j must go through subnet i}

’

0 fj=i+1
_ (Nig1 ...+ N2/ (M -1) ifj=i4+2,...,.M (14)
(Nig1 + ...+ Nag) /(M = 1) ifj=1
| (M+...+ Njsi+ N+ o+ Ny) /(M —=1) ifj=2,...,4

The reason is that a packet generated in subnet j will enter Qr(2) iff its destina-
tion is in a subnet positioned after subnet i and before subnet j in the clockwise

direction.
Let a;(j) be the flow rate of packets that enter Q7(i) and that have started
from Qp(j) (f =1,...,k) . We then have:

ai(j) = Dp(j) Pr{ packet enters Qr(z) / it has exited @p(j)} (15)
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Substituting for Dp(7) in equation (16) the expression given in inequality (14)
and for the quantity Pr{ packet enters Q7(z)/ it has exited @p(j)} the éxpression
given in Eq. (15) we obtain -

ai(t+1) = 0
[ AN;(Nig1+ ...+ Njo1) /(M = 1)
ifg=14+2,...,. M
ai(j) > AN;j(Niga+...+ Ny)/(M = 1) e (16)
ifj=1
AN;(Ny+...+ Njo1+ Niga + ...+ Nu) /(M = 1)
{ ifg=2,...,2 )
However we have that
Az(i) = 3 ai(y) (17)
Using inequality (17) in equation (18) we :)bta.in
420 € = T2 Male = gy (M* = SN
Furthermore
A

AR(t) = DT(z—l) S AT(Z—I) S m(Mz—ZNJZ)

J
If the system is stable we shall have that Ar(i) = Dr(i) and Ap(i) = Dp(i).
Then all inequalities in the previous analysis will be satisfied with equalities and
so will inequalities (12) and (13) .
We can now proceed to derive an expression for the maximum stable through-
put. Using inequalities (12) and (13) we can show that the system is stable iff the

following conditions are satisfied for all ¢:

N:A < u,'WSp(u,-W,N,-) (18)
A
-271"—4——— EN2 < v. (19)
A 2 2
SO = )(M ZN) < ;W (20)
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We first assume that the system is stable. Then inequalities (12) and (13) are
satisfied with equality and together with Proposition 1 they imply conditions (20)
and. (21). Condition (19) obviously follows from the definition of the maximum
stable throughput.

We assume now that conditions (19), (20) and (21) are satisfied for all i.
Then it is clear that the condition for stability of Proposition 1 is satisfied for
queues Qr(z) and Qgr(¢). Furthermore by the definition of the maximum stable
throughput it follows immediately that queues @p(¢) are also stable. Hence the
system is stable.

The maximum stable throughput of the DRT can then be computed using
conditions (19), (20) and (21) in a straightforward fashion.
Inequalities (12) and (13) imply the following corollary

Corollary 2 The transmitting as well as the receiving bridge nodes carry the same

amount of traffic when the system is stable.

B The optimal construction of the vector N for

the FCN

We prove here the following Proposition

Proposition 3 For given Ny € {1,..., M} the vector N, that solves problem (P.
5) can be uniquely constructed as follows:

N, users are assigned to each subnet until they are either ezhausted or reduced to
a final remainder 0 < n < Ny. In this case these n users are assigned to one (last)

subnet.
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Proof of Proposition: Fix Ny e {1,... M -1} 1

Define
a M(M-1)
Cweon e
The quantity z takes values in the set
A M(M -1
ZM={ZER:z=—A7I2—(__—Z-:—nNL3;;Nn=M;N12N22~--2Nk;
N e{l,...,M~1}: fized}
We have then that
Ni(M - Ny) _ N(M-N) M(M-1) s (22)
M- N MM-1) M*-F, N;
where
a Ni(M — Ny)
= M=) (23)

and c is fixed since both Ny, M are fixed.
Then by substituting from equations (23) and (24) in equation (8) we obtain

fi(z,N) = [l—a:—cxz]WTvAiSp([l ~z —czz|W,Ny) (24)
1
Substituting now from equations (25) and (24) in equation (10) we obtain
M
[l—a:—c:cz]WFSp([l—a:—c:cz]W',Nl)=:czW (25)
1

Differentiating equation (26) and after some computations we obtain

de _ = __ cB+W (26)
dz~ z Bz l'4(cB+W)
where
B2 W——j\v—l- o([1 — 2z — czz]W, Ny ) +
1
Md
+ W2(1 -~ T — CmZ)_N:E';Sp(a, Nl)la=(1—z-—c:z:z)W (27)

> 0

4We do not consider the case Ny = M since the vector N is then uniquely defined
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But since 2 > 0 and B > 0 we have
cB+W

Bt (BtwW) <!
and by equation (27) we have
dz z
dz z
which leads to
d
—(Waz) >0 (28)

Observe now that the constraints of (P. 7) actually specify « uniquely as a function

of z . Hence (P. 7) can be written as

(P. 10) max Wazz(z2)

M1
zeUN1=l Zm

By fixing Ny € {1,...,M — 1} problem (P. 10) becomes:

(P. 11) max Wzz(z)

zEffN1
Equation (29) implies that for fixed Ny and for z € Zp, the function Wzz(z) is

strictly increasing in z . Hence (P. 11) is solved by

max 2
zele
which can be written as
(P.12) max —A—f(-ﬁ—l-——-l—)—z subject to z
N M?-3%,.N; N e {1,....M~1}: given

The remainder of the proof is identical to the proof for the optimal construction

of the vector N for the DRT.

C Comparison between the DRT and the FCN

We prove here the following proposition

Proposition 4 For any M and W the optimal value of S for a network operating
as a FCN of subnets is greater than the one achieved under the DRT.
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Proof of Proposition: = We start by observing that if in problem (P. 3) we

replace the construction of the vector N by the construction used in problem (P.
7) the optimal value of S will not decrease. Furthermore restriction (2) of problem

(P. 3) implies that the cost function can be replaced by
M
—?)—G(N)(l - u)W

Thus, instead of comparing the solutions of problems (P. 3) and (P. 7), we can

compare the solution of problem (P. 7) with the solution of the following one:

2M(M -1) .
(P. 13) O TIR v o = N,%yW subject to
()N =Npg=...= N1 2 Ng,
(2) y is the unique solution in (0,1} to
M _2M(M -1)

It can be shown (after some simple calculations that we omit here) that if
z,y are the unique values that satisfy restriction (2) of problems (P. 7) and (P. 13)
respectively then
T > 2y (29)
where inequality (30) is satisfied with equality iff k¥ < 2.
Inequality (30) implies that

MM-1) 2M(M —1)

I Rl S L (30)

where inequality (31) is satisfied with equality iff k¥ < 2.

The proof of Proposition 4 then follows immediately.
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Figure 3(a). The Fully Connected Network

- W -

<———- -—-—»‘—— —-><— _._> 'R <_, >
UitV aF %y oy ‘

Figure 3(b). Band allocation for FCN



OPTIMAL THROUGHPUT

L I e T B
| P
Ii_ " FULLY CONNECTED NETWORK N
= DIRECTIONAL RING ~
-/ —
\ BASELINE SYSTEM
” —
Lol R N E N ! A B R A
20 40 60 80 100
TOTAL NUMBER OF USERS
Figure 4: Optimal Throughput vs. total number of Users for slotted ALOHA



DELAY

100

80

I

|
- o
- | -
~ " | C
: N :
! n | :

T
/ /! / 1-NET m
;:/// /, // —

j // // S — 2-NETS
_mﬂb/' // _
e ———emwmm= 3—NET FCN
ey ]

——-—— 6-NET FCN |

----------- - 8-NET DRT |
------- 3—NET DRT ]
— —
0 I | I I [ I I | I I L1 | I | I | I
0 2 4 .6 .8 1
THROUGHPUT

Figure 5: Throughput — Delay Caracteristics for 6—user slotted ALOHA system.



DELAY

400 —

— —-—— 5-NET DRT
— ——— 5-NET FCN
300 — ---- 8—NET DRT

- —— 15-NET DRT

15-NET FCN

200

H
{
{
{
{
{
|
{
|
|
|
|
|
i
|
:
- - B8-NET FCN !
H
: 1
|
{
{
|
|
i
|
|
|
|
[
|
|
{
{
|
{
H
!
4

100

0 2 4 6 8 1
THROUGHPUT

Figure 6. Throughput - Delay Caracteristics for 15—user slotted ALOHA system.



OPTIMAL NUMBER OF SUBNETS

60

48

36

24

12
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