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1 Introduction

Over the past decade a lot of research effort has been invested in trying
to understand security principles for Mobile Ad-Hoc Networks (MANETS).
Among the various problems that the research community has focussed,
a particularly interesting problem is that of trusted routing in MANETS.
Unlike in traditional networks like the Internet, the information flow in a
MANET is not restricted to a certain class of routing nodes. The MANETS
are different in this sense, because every node acts as a potential relay node.
Thus for the proper functioning of any higher layer protocols in MANETS
it is of paramount importance that the mobile ad hoc nodes co-operate in
routing and forwarding. In many practical scenarios where MANETS are
deployed, it might be advantageous for individual nodes not to participate
in this forwarding game. Thus one might expect under an unsupervised
or unmonitored scenario, the network essentially breaks into components
with similar interest groups. This raises the major issue of connectivity in
a MANET which is a primitive requirement for the routing layer. Thus
securing the network from self-interest groups is inherently coupled with
the security of the routing layer. This particular observation has spawned
several interesting works in the recent past. Amongst the several ideas
developed, a particularly rich literature has developed in the area of rep-
utation inspired routing. The fundamental inspiration for this work is to
break the self-interest components by creating incentives for the nodes to



co-operate. For an introduction we refer the reader to [14] and [15]. For
a more recent survey of the reputation systems in Ad-Hoc Networks refer
to [1]. In most of these works in the literature these reputation systems
are designed to operate at every node with no fixed infrastructure. Under
this strict assumption each MANET node is forced to perform the so called
““self-policing” [15]. However we propose an alternate means of providing
these nodes with a Trust-Support-System which we refer to as the Sentinel
Sub-Network (SSN). We provide insights on the design and construction of
this SSN. We adhere to a bottom-up approach to justify our construction
of the SSN architecture. Further in this work we propose several routing
schemes/algorithms in the presence of such an SSN. The wide gamut of
routing algorithms that we present provides the network administrations in
the framework of Community Networking a valuable trade-off analysis tool
between security and performance.

This paper is organised as follows. In Section 2 we give a brief summary
of the reputation systems used in MANETSs. In Section 3 we detail the design
principles and construction of a Sentinel SubNetwork. In Sections 5 and 6
we provided distributed algorithms that solve the trust routing problem in
a multi-criteria setting.

2 Trust/Reputation Systems

In this section we present the key principles and terminology used in the
Trust/Reputation literature. The inspiration to use Reputation Systems
to aid proper operation of the MANET is detailed in the work [15]. It is
based on the fundamental assumption that nodes have a natural incentive to
only consume, but not contribute to the services in the system. Further the
authors of [15] point out that this misbehaviour could be due to greediness
or intent to vandalise of the system. It has been identified by [11] that the
goal of reputation systems is to

1. To provide information to distinguish between a trustworthy and un-
trustworthy principal.

2. To encourage principals to act in a trustworthy manner.

3. To discourage untrustworthy principals from participating in the ser-
vice the reputation system is present to protect.

[15] uses these goals in the context of MANETS to construct the funda-
mental modules of a reputation system. The authors propose that a MANET



reputation system should consist of

1. Monitoring and Detection Modules
2. Reputation Control System

3. Response Modules

The goal of monitoring is to observe nodes in the system and detect their
deviation from the agreed protocols. The Reputation control system updates
the so- called direct-trust and propagates information vectors to construct
the indirect-trust metrics. For a detailed exposition on the ontology of these
trust terminology refer the reader to [6] and [17]. The response modules
should consist of protocols which isolate/penalize aberrant nodes.

The aforementioned principles form the back-bone for several systems
proposed in the recent literature on MANET security. Techniques such as
Intrusion Detection Systems (Monitoring Mechanisms) [16] have been used
to provide information vectors to the reputation control systems. Several
Reputation Update/Control systems have also appeared in the MANET
security literature such as [2], [9] and [10]. There are also other protocols
such as SPROUT [5] which makes use of the reputation systems to route
amid colluding attackers. We find that the literature on Reputation Systems
is large and do not claim a comprehensive citation of it.

We find most of the reputation mechanisms and response routing are
build from the self-policing principle. However for tactical MANETS this
constraint can be relaxed. In the following section we present the arguments
for a having a SSN and give some design principles for building it.

3 Sentinel Sub-Network (SSIN)

We claim that to the best of our knowledge this form of trust-support-system
is fundamentally different from the ones that are presented in the literature.
The basic idea is to logically decouple the Reputation System from other
Network functionalities. For tactical MANETS this is valid design principle
because we can always have a trusted-core. We argue that if such a trusted-
core of even low capacity cannot be realized in hostile environments, then
design efforts for a still higher capacity reliable secure overall network will
not bear any fruits. Thus logically this appears as a subnetwork that lives in
the original network. This is show in figure.1. In the forthcoming subsections
we state design constraints for building the SSN. We show that the logical



constraints on the SSN translate to certain constraints on the communication
graph topology of the network.
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Figure 1: Logical Representation of the SSN

3.1 Modelling Logical SSN

As shown in Fig.2 the Logical Layer of the SSN can be modelled as a Di-
rected Graph Ggsn(Vssn, A). Here Vggy is the set of logical layer nodes of
the SSN. It is assumed that these nodes have the computation machinery to
perform the first two fundamental modules of a trust reputation system ex-
plained in section 2. This includes monitoring and the trust update/control
systems. Since the goal of the SSN is to decouple the trust functionality from
other network functionalities, the response mechanisms such as trust-based
routing is carried out by other layers of the network. A denotes the arc set of
the logical graph, which captures the trust relations among the SSN nodes.
i.e V(i,j) € A, tssn(i,7) represents that trust that the sentinel node i
has on sentinel node j. It should be noted here trust can be asymmetric
and hence it is possible for tggn(,7) # tssn(j,i). In the following section
we discuss the possible graph structure of the logical SSN.



3.2 Graph Topology of Logical SSN

The next fundamental question that we try to address is the topology of
Ggssn. In asituation when the problem at hand lends itself to a construction
of the trusted core (this would be a typical situation in tactical MANETS) it
is indeed possible to have a Gggn that is path-connected. However for other
practical scenarios, such as in community networking, it might be the case
that the Gggn is not path connected and can be broken into self-interest
partitions. Both scenarios are shown in 2. These forms of graph topologies
induce two distinct reputation systems in the SSN.

(a) Connected Logical SSN (b) Disconnected Logical SSN

Figure 2: Logical Representation of the SSN Gggn

3.3 Local Trust vs Grand Trust SSN

In the case when the Gggn is partitioned, there is no trust relation among
the sentinel nodes across partitions. Any trust system on the nodes of
such a Gggny has information vectors limited to its partition. We address
such a trust system as a Local Trust SSN. It should be mentioned here
that within a partition the sentinel nodes can perform message passing to
obtain trust estimates of the participating MANET stations. In the case
when the Gggn is path-connected, the trust system can obtain estimates of
every participating MANET station through message passing. This form of
trust system is called Grand Trust SSN. We do not address any particular
algorithm for monitoring nodes and performing trust updates. Any of the
reputation systems addressed in literature can be used with our framework.
We attempt to only answer the question of how the graph topology limits the
message passing for the reputation systems. This modelling is in the same



lines with the trust modelling of [17]. In this work the semiring algorithms
of [17] are however information-limited to the self-interest partitions.

Though the notion of Grand Trust is appealing, it should be mentioned
that in most of the practical scenarios it would be expensive to create a
Grand Trust SSN. With this observation we proceed to develop response
algorithms that can work within the framework of a Local Trust SSN. These
algorithms are discussed in Section.5.

3.4 Trust SSN and Network Functionality

In the logical SSN construction so far we have assumed that the reputation
mechanism is decoupled from the other network functionalities. However for
reliable information transfer in the network, the reputation system must feed
information vectors to the network functions. This is logically represented
in Figure 3. It shows that the reputation system residing in the logical
SSN feeds the routing layer of the network. It should be noted that every
router is fed by only one SSN node. This is because we assume that the
router modules have no trust computation capabilities. If more than one
SSN nodes feeds into a router module, then there is no means by which
it can combine the trust estimates. The routing layer would be typically
biased by these unambiguous estimates in performing its routing functions.
Any ambiguity in the trust estimates should be resolved by the SSN layer.

3.5 Realization the SSN

In this concluding section of SSN construction we attempt to give some
insights where the logical SSN layer is to be realized. One means is to have
dedicated low power stations to perform the monitoring and trust updates.
Another viable option is to install the SSN layer in certain nodes which are
assumed to be pre-trusted. Both assumptions are very much valid in the
context of tactical MANETS in which the network managers have the ability
to create heterogeneous stations. We refer the stations on which the SSN
layer is installed as the Sentinel Stations. The nature of this construction
however creates some constraints on the physical proximity of the sentinel
stations. The Sentinel Stations should be chosen in such a manner that
every station in the tactical MANET is in the radio range of at least one
Sentinel Station. And from the justification in sub-section. 3.4 it is assumed
that only one Sentinel Station feeds the MANET station of interest. Such
a tactical MANET with Sentinel Nodes is shown in Figure 4

These sentinels may or may not be within the radio range of each other.
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If the sentinel network is partitioned this would correspond the case of Local
Trust SSN in the logical SSN framework. Once we have such a realization,
the next design question is to develop response routing algorithms that work
with certain metrics on performance and security . In the forthcoming sec-
tions we develop these metrics for the response algorithms.

4 Trusted Routing as an Multi-Objective Opti-
mization Problem

In this problem formulation the SSN monitors behavior of the stations (in
the presence of greedy/malicious stations) or the quality of the links (in the
presence of jammers) and updates trust values. Further the SSN assumed
to work with local trust, avoiding the usual assumption of a globally trusted
principal. This is consistent with the premise that the logical SSN in most
cases is partitioned into self-interest groups. We propose algorithms to solve
the trusted routing problem distributively with these local trust estimates.
Further we require the Sentinel Network to disseminate the trust informa-
tion only in the local neighbourhood. By this, we mean that every station
has access only to the trust values of its neighbouring stations or adjacent
links. Such a condition makes the construction of the sentinel network very
inexpensive. Under these conditions, it is possible for the sentinel network
to perform local monitoring and distributed trust evaluation. In most cases,
this is more of a necessity because the sentinel networks are usually low
capacity networks.

Routing Decisions

If trust evaluations from the SSN is available to the routing layer, the routing
decisions can be biased by this metric. The routing decisions essentially
correspond to selecting paths that satisfy certain performance metric and
trust metric. A reasonable performance criterion is the packet delay along
a path. When there are multiple source-destination pairs, the delays are
dependent on the routes chosen by each of these pairs.

However for the trust metric of the path, there is no universally-defined
notion referred to in the current research literature. In light of this problem,
we attempts to define a reasonable metric for the trust of a path which
adheres to a generic rationality.

Once such a trust metric is defined, we find that the routing problem
can be treated as a Multi-criteria Optimization Problem on a graph. The



trust metric could be posed as Hard Constraints or could be Soft-Coupled
into the cost function of the optimization problems. A generic version that
includes both is explained in the forthcoming sections.

5 Distributed Multi-criteria Routing

In this section we develop mathematical expressions for the performance and
trust metrics of a path. We observe that two semiring structures naturally
arise from the definition of our metrics. We show that these two semirings
can be effectively combined in a multi-criteria formulation lending itself to
the required distributed solution.

5.1 Mathematical Formulation

The given Ad-Hoc Network is modeled as Communication Graph G(V, E),
where V is the set of vertices representing the stations and E is the edge set
which connects those stations/vertices that are within radio range of each
other. The radio communication is essentially symmetric and hence G is an
undirected graph. Let Pgp denote the set of paths in G from source S to
destination D # S. Then P = UgxpPsp. Let N (i) denote the neighbours
of i (i.e. those nodes that are in the radio range of 7).

5.2 Modeling Node Trust

In models with greedy relay nodes, it is assumed that the sentinel network
assigns a trust score to every node the in the network. The trust scores are
then securely flooded to all the neighbours of interest. This trust score is
represented as t(i) Vi € V. Further it is assumed that ¢(7) is flooded to
only N (4).

5.3 Modeling Edge Trust

In models with jammers, it is assumed that the sentinel network assigns a
trust score to every link/edge indicating its susceptibility to jammers. This
trust score is represented as ¢(7,j) V(i,7) € E. Again each t(i, j) is flooded
to only N (i) and N (j). It should be noted here that ¢(i, ) # ¢(j,4) in gen-
eral. The trust relations on the links form a directed graph with asymmetric
trust weights on the links.

The algorithms described in the forthcoming sections work seamlessly with



both Node Trust (symmetric) and Edge Trust (asymmetric) cases. For sim-
plicity of exposition, only the Node Trust case is explained in detail. However
in places where there is a distinction between the two problems, we mention
that difference.

5.4 Trust of a Path

In this section we define a trust metric for a path. Each path is an ordered
sequence of station identifiers or alternatively an ordered sequence of links.
The trust metric of a path should be defined as a composition of the trust
values defined on the these nodes/edges. For the sake of explanation con-
sider a trust score for each station which ranges from 0 to 1. Higher trust
values correspond to better behaved stations. Figure 5 shows a typical path
(11,42,13,14,15,16,%7). There are certain trust scores specified for each sta-
tion along the path. In particular the relaying station 5 has a trust value
of 0.3, which is to be considered pretty low for the sake of this example.

Truat=0.8 Trust=0.3
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Truat=0.9
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Figure 5: A typical path

In defining a trust metric, its reasonable to adhere to the adage that the
strength of a path(chain) is limited by the strength of the weakest link in
the path. The rationale behind this assumption is that the trust value of
a path cannot be greater than trust value of any of the stations along the
path. Thus the trust value of a path is lesser than or equal to the trust value
of the stations/links along the path.

Trust(path) < Trust(i) Vi€ (path)
= Trust(path) < min Trust(i)
1€ (path)

In the context of node trust, it is defined as follows

Vpe P, t(p) < mint(i)
1€EpP
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and similarly for edge trust, it is defined as

Vp e P, tp)< min t(i,j) (1)
(i,5)€p

Throughout the formulation we assume that trust values are non-negative.

5.5 Average Delay along a Path

One of the reasonable performance metric to choose is the congestion delay
along a path. Other metrics such as the hop count can also be used in place
of the delay metric in this formulation. Our algorithms are independent
to the exact metric chosen. The only structure that we assume is that
the congestion metric should have an additive property along the path. It
should be mentioned here that this gives rise to one of the semirings in our
optimization algorithms.

In typical multi-hop wireless networks, the delay that each packet suffers
is primarily due to the queue buildup at the MAC layer. Let us suppose the
average delay for the queue at node i is given by d(i) Vi € V. The delay
of a path is then given by

dlp) = Y d(i) VpeP )
1€Ep
Again in the light of having a distributed algorithm, it is assumed that
the delay information is exchanged only in the local neighbourhood. This
exchange can be monitored and attested by the sentinel network to possibly
avoid malicious information dissemination.

5.6 Route Selection - A multi-objective Optimization

In the framework, the routing logic is to choose paths in the graph G which
have high trust values and low delay values. This work confines to the effort
of selecting a single path as a route profile for given source-destination pair
of traffic. For a given path p € Psp, the delay and trust objective are
denoted by d(p) and t(p) respectively. While the delays follow the natural
order of the reals, the order on trust can be abstract. However for this
solution, it is assumed that there is a model map, that transforms the delay
space and abstract ordered space of trusts to R? ¢ < 2. For the example
shown in Figure 5, the model map is just the identity map. It should be
noted however, as long as a meaningful order is defined on the delay-trust
product space, it is very possible to use our algorithms in the forth-coming
sections on that abstract order.

11



Notation | Definition Name

<y <y i=1,2,..,Q Weak component-wise order

T <y <y i=12,.,Qand x £y Component-wise order

T <Ly <y t=1,2,.,Q Strict component-wise order
<tz Yy | T <yr or x=y k=min{i:x; #y} | Lexicographic component-wise order
z <p0 vy | max; r; < max; y; Max order

Table 1: Table of Orders in R¥

The route controller then essentially tries to solve the Multi-criteria
Optimization Problem (MCOP) of the following class

(Psp, f.X)/0/(R9, =) Q<2

where Pgsp is the set of feasible paths, f is a vector valued objective func-
tion and X is abstract delay-trust product objective-space. 6 : X — R is
the model map that transforms the objective-space into R9. < is the any
order on R¥. We define various model maps and order relations, where the
MCOP can be solved distributively. The orders that would be considered
are tabulated in Table.1 for vectors 2 and y € R?.
For detailed exposition of Multi-criteria Optimization terminology we refer
the reader can refer to [4]. To justify the model maps that our work consid-
ers, a brief introduction to semirings is presented in the next subsection.

5.7 Semirings - The Delay and Trust Semirings

We present a discussion of the semiring structure which is applicable to
the trusted routing problem. For a detailed survey of the applications of
semirings we refer the reader to [13]. For specific applications we also suggest
the works of [8], [7] and [18].

A semiring is an algebraic structure (S, ®,®) which satisfies the follow-
ing axioms
(A1) (S,®) is a commutative semigroup with a neutral element ©)

a®b = bda
a®(bdc) = (adb)dc
ad0® = a

(A2) (5,®) is a semigroup with a neutral element O and ©)as an absorb-
ing element

12



a® (b®c) = (a®b)®c
a D = a
a2@® = ©
(A3) @ distributes over &

a®(bdc) = (a®b)D(a®c)
(a®db)®@c = (a®c)® (bRc)

It should be noted that the functions which have this semiring structure
lend themselves to distributed computation/evaluation by the virtue of the
distribution property(A3) which henceforth will be referred to as Semir-
ing Distribution. Of these semiring structures, the one that is particu-
larly useful for optimization is the Ordered Semiring. Here the @ is the
supremum or infimum operator and (S, ®, <) is an ordered semigroup. An
ordered semigroup is a semigroup with an order relation which is monotone
with respect to ®.

a=<b and d <V = axd bV

For the problem at hand, it is natural to deal with a graph whose vertices
or edges are labelled with elements from S, which can be considered to be
some form of weight/cost. These can corresponds to the delay on the nodes
or the trust values on the nodes/edges. In both cases, the optimization
problem would attempt to find the path, which has the optimal (smallest or
largest) aggregate weight/cost in a given semiring.

The delay optimization Eqn.2 corresponds to the (R4 U {0}, min, +)
semiring, which is called the Delay Semiring. Correspondingly the Trust
Semiring is (—R 4 U0, min, max) semiring. This is because the Eqn.1 sug-
gests that the trust optimization should be

max t
Jmax (p)

= max min¢(7)
pEPsp i€p

= min max —t(7)
pEPsp i€p

It is clear that the two objectives delay and trust are different semirings
with a common min operator. The following sections suggest ways in which

13



these two semirings can be combined in the spirit of Distributed multi-
criteria optimization. Notions of Pareto Optimality, Lexicographic Op-
timality, Max-Ordering and Approximation Semirings will be considered.

6 Distributed Multi-criteria Optimization Algorithms

Given the delay and trust semiring, let us define the objective function
f:Psp — R?
f(p) = (d(p),—t(p)) Vp € Psp

With this bi-objective function, we define various model maps and develop
distributed algorithms to solve the multi-objective optimization problem.

The rest of this section is organized as follows. In subsection 6.1 we
detail the Pareto optimal trusted routing problem and provide a distributed
algorithm to obtain all the Pareto paths. In subsection 6.2 we present the
solution to the lexicographic ordering of the trusted routing problem. In
subsections 6.4 and 6.5 we develop interesting scalarized version of the multi-
objective problem. In all the above cases we present distributed algorithms
to solve the corresponding problems.

6.1 Pareto Optimal Routing

Consider the Pareto Class (Psp, f, R?/id/R?, <), where < is the component-
wise order defined in Table.1 and the model map is the identity map.
Pareto Optimal Path : A path p* € Pgp is Pareto optimal 3 no path
p € Psp # p* such that f(p) < f(p*).

To compute the Pareto Optimal Paths, we develop an extended version of
Haimes - € constraint method. For material on this method refer to [19] and
[3]. The basic idea of this method is to convert all but one of the objectives
into constraints and solve the constrained single-objective problem for var-
ious constraints. This constrained optimization problem might have more
than one global minimizer. Hence from this solution set, the path which is
optimal with respect to other objective is chosen. Thus our version of the

corresponds to solving the following two subproblems for ¢ < 0.
SUBPROBLEM 1(¢)

i d(t ...(SubPb
in ;ep (4) (SubPbi(e))
such that — max —t(i) < e
1€

14



SUBPROBLEM 2(¢)
If P*(e) denote the set of optimal paths for problem SubPb;(¢).

p* = arg max t(p) (---SubPby(e))
peP*(€)

_ (s
9 2R
The problems SubPby(e) and SubPby(e) Ve < 0 obtains all the Pareto

Optimal paths for a given graph. The proof of Pareto optimality of our
algorithm is Appendix.A

Hard Constrained Routing / Path Exclusion

We observe that an interesting routing principle arises from the Pareto Op-
timal Routing Algorithms. The subproblems SubPb(€) and SubPby(e) give
rise to paths which we refer to as the Trust-Hard Constraint Paths.
This is a useful routing tool, because it optimizes over over a constraint
that satisfies “All feasible paths should have a trust value of above —e”.
This is exactly the situation the network operator might be interested in
if she wants certain security requirements on the routing paths. In other
words, the network operator might tend to exclude paths which have very
poor trust values.

Distributed Solution

This section proposes an algorithm to solve SUBPROBLEMS 1 and 2, using
the Semiring Distribution and Distributed Exclusion, which needs message
passing only among neighbour nodes. That is every node i € V passes
messages to only ANV (i). The assumption is that the delay value of the opti-
mal path to destination D from any node ¢ is securely exchanged between
the neighbour nodes. The corresponding trust values of the paths are also
exchanged.

There is a Subtle Rationality that should be mentioned here. The ag-
gregate delay at node 7 includes the delay d; at the node. However the
aggregate trust cannot include ¢;. This makes sense because, from every
node’s perspective it would have maximal trust on itself. Thus the trust
aggregate accounts for the trust up to its neighbours only. This rationality
is shown in Figure.6. It should be noted here that this exchange about ag-
gregate trust value can be used as an input vector for the sentinel network’s
trust mechanism.

15



Distributed Extended Haimes Algorithm

From a computational perspective, it would be infeasible to solve the prob-
lems SubPbi(e) SubPby(e)Ve < 0. However since this path optimization
problem works with finitely many paths and we can resort to numerical
means which adhere to the commensurability. Such approaches for dis-
tributed flow problems on graphs is discussed in detail in [12]. The basic
premise here is that the finite set of numerals in the problem should be
commensurable. This means, all the numerals in the given problem should
have a structure wherein, they can be expressed as integral multiple of a
finite quanta. We make is this assumption for most of the algorithms in this
work.

We present the Extended Haimes procedure. In the first phase of the
procedure, we develop a distributed algorithm to compute the trust-quanta.
This algorithm is carried out at each node ¢ € V. There are two versions of
this algorithm for Edge-Trust and Node-Trust respectively.

Algorithm 1 Edge-Trust - Compute Trust-Quanta §*
INITTIALIZE:
0{(0) = max{d |Vj € N(i), t(i,j) = k;j0 where k/s are integers}
repeat
én + 1) —  max{d [|Vj € NG U 4 din) =
k;0 where k}s are integers}
until 6!(n) converges

Algorithm 2 Node-Trust - Compute Trust-Quanta &
INITTALIZE:
0f(0) = max{d |Vj € N(i), t(j)=Fk;0 where k}s are integers}
repeat
oftn + 1)  «—  max{s |Vj € N(@) U i, d&n) =
k;0 where k:é-s are integers}
until §!(n) converges

When the algorithms Alg.1 and Alg.2 converge at every node, they con-
verge to a common value ¢ = §' Vi € V. The proof for this convergence
is given in Appendix.C. This value §* is used to bootstrap the following
algorithms. The constraint value € is iteratively decremented as € « e —
starting from e « 0.

Once the subgraph G’(e) is obtained for either the node or edge trust

16



Algorithm 3 Node Trust-Graph Reduction: Procedure to form Reduced
graph G'(¢) e <0
for j € N (i) do
if ¢(j) < —e then
Node j and its incident edges are excluded
end if
end for

Algorithm 4 Edge Trust-Graph Reduction: Procedure to form Reduced
graph G'(¢) e <0
for j € N(i) do
if ¢(7,j) < —e then
(i,j) is excluded
end if
end for

problem, the algorithms Alg.5 and Alg.6 are performed sequentially.

Algorithm 5 Delay-Bellman-Ford to reach destination D on G’(e)
repeat
SPMYD) = d(i) + k?ﬁ% : SP(D)
until SP*(D) converges

where SP"(D) is the minimum delay to reach destination D in n steps.
This algorithm outputs the path set P*(e).

Algorithm 6 Extract Pareto Paths from P * (¢) on G'(¢)

p* =arg max t(p
ngP*(e) ( )

It is easy to check that the set P*(e) is polynomially bounded in non-
trivial instances of the problem. Hence any optimization algorithm will be
polynomially bounded for Alg.6.

Algorithms Graph Reduction and Delay-Bellman-Ford are carried out
Ve < 0. This corresponds to solving SUBPROBLEM 1 (SubPb;(€)). The
last algorithm of Pareto-Path-Extraction solves SUBPROBLEM 2(SubPba(€)).
These three algorithms when carried out Ve < 0, yield all the Pareto Paths.
The proof that these three algorithms solve SubPbi(e) and SubPby(e) is

17



shown in Appendix.B
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Figure 6: Subtle Rationality

6.2 Lexicographic Optimal / Biased Routing

The obvious shortcoming of using Pareto Optimality is that the number
of paths optimal in the Pareto sense is large. There is still an issue of
selecting certain paths that might be desirable in some sense. One such
popular approach is Lexicographic Ordering. This method assumes that
one metric is superior to other and tries to optimize with respect to the
superior metric. Only if two or more feasible solutions are equally optimal
in the superior metric, the other metric is considered. For the problem of
trust routing, the superior bias can be assigned to either the trust metric
or the delay metric. Based on this, the <j., defined in Table.1l is corre-
spondingly modified. Mathematically this MCOP class can be represented
as (Psp, f, X/id/R? , <je;). It should be noted that a Lexicographic optimal
path is a Pareto optimal path (Chapter 6 of [4]).
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Delay Biased Routing

As the name suggests, the superior criterion is delay. The problem can also
be solved distributively using a delay semiring (R%,@q,®). The semiring
operations are defined as follows. Let (d1,¢1) and (d2,t2) be two sets of
delay-trust pairs. Then

(d1,11) if dl < d2
(d1,11) g (d2,2) = (d2,12) if d2<dl
(d1,max(t1,t2) if dl=d2

(d1,t1) ® (d2,t2) = (d1+ d2,max(t1,t2))

It is trivial to check that indeed the operations form a semiring in R%r.
This form of routing can be used in a networks where the routers are willing
to sacrifice security for performance.

Trust Biased Routing

In this form of routing, the trust metric is considered the superior criterion.
To solve this problem the trust semiring (Ri, D¢, ®) is defined.

(d1,11) if 1> 42
(d1,11) @ (d2,12) = (42, 12) if 12>t
(min(dl,d2),tl) if t1 =12

(d1,t1) ® (d2,t2) = (d1+ d2,maxz(t1,t2))

Again its easy to check that these operators constitute a semiring in
Ri. Analogous to the previous case this routing sacrifices performance to
security.

Distributed Solution

To solve biased routing problem at every node i € V, the following algorithm
is carried out. As in the previous algorithms there is only bounded message
passing in the local neighbourhood. At each node, there are semiring ele-
ments a;; = (di,tg), Vk € N (i) which are in the delay-trust pair. Every
node i is assumed to have access to semiring elements X'(D) Vk € N(7),
which represents the (delay-trust) metric for the optimal paths to reach
destination D in n steps. As explained in Section.6.1 the information is
exchanged securely with the aid of the sentinel network under the subtle
rationality mentioned.
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Algorithm 7 A2.Procedure Lexicographic Optimal Path to reach destina-
tion D
repeat
XDy = P aw® XP(D)
keN (4)
until X7 (D) converges

where @ = @, or P = @4 for trust and delay biased routing respectively.
This semiring iteration converges under the conditions given [13]. The proof
that the algorithm converges to the lexicographic optimal path is given in
Appendix.D.

6.3 Scalarization Methods

Among the several methods to obtain the Pareto Points, scalarization is an-
other popular method to solve for the Pareto Optimal solutions for Convex
problems. For path problems, the objective space is discrete and scalar-
ization in most cases does not yield all Pareto solutions. Nevertheless, the
scalarization techniques yield paths which are desired in another sense. The
first scalarization is called Max-Order Optimality. The second scalariza-
tion is the standard convex combination of the objective functions. For the
latter case, to develop a distributed solution using semiring distribution,
the weighted scalarized cost function is suitably approximated. The two
scalarization methods are described in the follow sections

6.4 Max-Order Optimality / Conservative Routing

In order to bring the delay-trust optimization problem in the common spirit
of a minimization problem consider the transformed function ty(p) = Cy —
t(p)Vp € Psq. The constant Cy indicates the Relative Importance of the trust
metric in max-ordering problem. The max-ordering problem corresponds to
the class (Psp, f, R% /maz /Ry, <), where < is the natural order in the reals.
Thus the max-ordering problem corresponds to

min maz(d(p),tn(p))
PEPsD
This problem tries to select paths which are optimal in the worst-case
sense of trust and delay. Thus it is a conservative means of routing wherein
the cost of the path is governed by the worst-case value of its trust and
delay. From an optimization point of view, this appears as a simplification
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of the cost function. However it should be noted that there is no evident
reduction of the complexity of the path problem. The following algorithms
distributively solves the conservative routing problem. Each of these algo-
rithms run at each of the nodes 7 and needs only local information for its
computation.

Conservative Routing Algorithm

As in the Distributed Extended Haimes Algorithm we invoke the commen-
surabilty techniques to compute a feasible step size. In this case we use the
commensurabilty of both the trust and delay values.

Algorithm 8 Edge-Trust - Compute Delay-Trust-Quanta §
INITIALIZE: 6;(0) <« max{d |Vj € N(i), t(,j) = kjo Ad(i) =
[6 where l,k}s are integers}
repeat
diln + 1) — max{J |Vj € NG U 4, d;(n) =
k;jo where ks are integers}
until J;(n) converges

Algorithm 9 Node-Trust - Compute Delay-Trust-Quanta §
INITIALIZE: §,(0) «— max{o [Vj € N(), t(j) = kjo Ad() =
[6 where l,k;.s are integers}
repeat
diln + 1) —  max{0 [|Vj e  N@G U 4, dn) =
kj6 where k;s are integers}
until d;(n) converges

Once § converges on every node then e is incremented as € «— ¢ + §
starting from ¢ = 0.

Algorithm 10 Edge Trust: Procedure Graph Reduction G'(¢)
for j € N (i) do
if ¢(i,5) < C¢ — € then
(i,j) is excluded
end if
end for
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Algorithm 11 Node Trust: Procedure Graph Reduction G'(¢)
for j € N(i) do
if ¢(j) < C¢ — € then
Node j and its incident edges are excluded
end if
end for

The Alg.12 assumes that in a reduced graph G’(e) the optimal delay
path is computed using an Shortest path algorithm, say Bellman-Ford. This
optimal path is denoted as p’ x (€). If there exists no path from S to D, the
delay of the path is assumed to oo

Algorithm 12 Procedure Max-Ordering Optimal Path to reach Destination
D

e—0
repeat
e—e+0
Construct Sub-graph G’(¢) by calling Graph-Reduction Procedure
until d(p'*) < e
Output p'*

The validity of the algorithms and the proofs of convergence are discussed
in Appendix.E.

6.5 Scalarization with Weighted Sums / Approximation Semir-
ing
Relative Importance Routing
The weighted sums method to compute the Pareto efficient solutions is a
common tool used for convex problems. However even for the discrete case
of path problems, the weighted sum scalarization can yield some Pareto
efficient paths. In path problems, the weighted scalarization computes the
so called Supported Pareto Paths. The notion of supported efficient set is
defined in [4]. The advantage of this method being, that the weighted cost
function is the algorithm the flexibility of assigning importance to one metric
over the other. The scalarization problem turns out to be

in d(p) — ut
nin. (p) — ut(p)
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min d(t1) — pmint(i
o, 2 (8) — pmin (i)

Here the parameter p is the Relative Importance factor for the trust
metric. Larger values of p bias the optimization problem to solve for paths
which are relatively more optimal in the trust sense. It should be noted that
cost function is not solvable by Semiring Distribution. In order to make it
Semiring Solvable, the cost function is modified as follows

min d(i) — p Z e MO

PEPsD 1€EP €D
min (d(i) — pe™MH0)
p€Psp icp

This approximation is inspired from the large M behaviour of the expo-

nentials.
—Mxmin(t(7))

ZefM*t(i) ~ e i
i

It should be also mentioned that the approximation can also be treated
as the exponential penalty for the trust a path. This form of penalty func-
tion penalises those paths which have edges whose trust values are low. This
alternate interpretation gives the designer the flexibility to design other dis-
tributed penalty functions that follow the trust rationale.

The approximation problem is semiring solvable under the (R4, min, +)
semiring and converges under the conditions stated in [13].

7 Appendix

A Pareto Optimality of
Extended Haimes Algorithm

Proposition A.1 SubPbi(e) and SubPby(e)Ve < 0 essentially solves for
the Pareto Efficient paths.

Proof Proof By Contraction.

Let p* be the optimal solution obtained from SubPb; (€) and SubPba(e) Ve <
0. If px is not Pareto Optimal 3 p € Pgp such that f(p) < f(p*). Since the
order is component-wise order, this can correspond to two cases.

Case I . d(p) < d(px) and —t(p) < —t(p*). But d(p*) being optimal for
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SubPb; (€)Ve < 0, this is not possible.

Case I1. d(p) = d(p*) and —t(p) < —t(p*). But t(p*) being optimal for
SubPbs(€)Ve < 0, this is not possible.

This contradicts the assumption and hence p* is indeed Pareto Optimal.

B Algorithms that solve the Delay-Trust(¢) prob-
lem

This section shows how Graph-Reduction & Delay-Bellman-Ford algorithms
sequentially solve SubPb;(€) and SubPbs(€). The proof explains the claimed
Interplay between the two semirings. The proof is based on the observation
is that the (R, max, min) semiring is closely related to a distributed edge ex-
clusion problem. This observation is explained in the following sub-section.

B.1 Distributed Edge Exclusion - MaxMin Semiring
In problem SubPbj(€) the constrained of paths satisfy

—t(p) <e Vp€Psp

Theorem B.1 The above set of paths corresponds to the paths in the re-
duced graph G'(€).
Psp = Psp

For the proof we consider the problem of Edge Trust. It should be noted
that the proof for Node Trust follows trivially. The constraint then appears
as

max —t(i,j) <e
(IS

= min t(i,7) > —e
(i.5)€p

this essentially eliminates all paths p which have an edge (i, ) € p such
that t(4, j) < —e. Let P&y denotes those paths which satisfy the constraint.
i.e those paths p for which all the edges (i, j) € p satisty t(i,7) > —e. Now
consider a subgraph G'(V, E’) formed by eliminating all edges (i,j) € E
whose t(7, j) < —e. The reduced edge-set is denoted by E’. Let Pg, denote
the set of all paths in G’ from source S to destination D
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Proof Vp € P, the edgesinp (i,7) € E/ C E and (i, j) > —e.
= p € P¢p (from the definition of P§p)).
= Psp € Psp

Suppose Pép € Psp,  Ip € Pép such that p & Pgp.

Suppose p = ((i1,%2), (i2,73), ..., (in—1,%r)) is a sequence of edges in E. Each
of these edges satisfy t(tx,tx11) > —e. By definition, these edges would
be contained in Egp,. Thus the sequence of edges and the hence the path
p € Psp.

= P$p € Psp

= Psp = Psp

In a similar manner for node trust, the paths of the subgraph G’(e)
formed by node and incident edge exclusion forms the constrained set of
paths.

C Commensurabilty Techniques

This section explains the validity of the commensurability numeral calcu-
lations. These justify the quanta computation algorithms for both the Ex-
tended Haimes algorithm and the Conservative Routing algorithm.

Theorem C.1 Algorithm “compute quanta” 6 converges §;(n) —, § Vi €
v

Proof The sequence J;(n) is monotone non-increasing and is bounded from
below by 0. Moreover the number of iterations for convergence is finite as
the there are only finitely many different trust and delay values on the edges.
Thus the sequence ¢;(n) converges.

Suppose 0;(n) converges to different value. Say d0;(n) < d;(n). Suppose
i and j are adjacent nodes, then by message passing both nodes achieve a
common smaller value §;(n + 1). If the same argument is carried out for
every node, for a connected graph all the nodes achieve the common value

J.

Theorem C.2 The delay and trust of a path is commensurable in the quan-
tum § , the convergent value.

Proof Vp € Psp d(p) = Zd(z) Here each d(i) is commensurable in 4.

1€EP
Then so is their sum.
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Vp € Psp t(p) = mind(i). Here each (i) is commensurable in §. Then so
1€

is their minimum.

The previous theorems indicate that the delay and trust of the paths
change by the quantum ¢ and no smaller than that. This suggests that this
quantum can be used as a step size for searching for optimal paths.

D Proof of Lexicographic Optimality of Biased Rout-
ing Algorithms

As mentioned the conditions of convergence of the iteration of Biased Algo-
rithms is discussed in detail in [13]. This section proves that the given semir-
ing indeed extracts the lexicographic paths distributively. For the sake of
exposition, only the Delay Biased Routing is considered. The corresponding
proof for Trust Biased Routing follows trivially. The following distributed
algorithm solves the conservative routing problem.

Proof At source S, let px be the path to reach D through composition of
paths to reach D from its neighbours once the algorithm converges. Let
us suppose px is not Lexicographically optimal for Delay Biased Routing.
Then dp # p+ such that either

Case I . d(p) < d(p*). This is not possible as all the sub-paths are optimal
in the delay sense by definition of @y .

Case II. d(p) = d(p*) and t(p) > t(p*) . This is not possible too, because the
sub-paths are optimal in the trust sense if the delays are equivalent (from
the definition of @y).

A similar proof follows for trust-biased routing.

E Proof for the Max-Ordering Optimality of Con-
servative Routing Algorithm

The inspiration for the algorithm to solve the Max-Ordering Optimization
problem, comes from its corresponding Decsion problem.

Max-Ordering Delay-Trust Optimization Problem

pg%)igD max(d(p),tn(p))
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Max-Ordering Delay-Trust Decision Problem DP(¢)

“Given an € > 0 does there exist a path such that max(d(p),tn(p)) < €”.
The smallest € > 0 that for which the decision problem is answered as a
yes corresponds to the optimal value of the optimization problem. The
corresponding path is the conserative routing path.

E.1 Validity of the Conserative Routing Algorithm

The conservative Routing Algorithm makes use of the above claim of the
Decision Problem.

Theorem E.1 There exists a sequence of Decision Problems DP(e™) which
yeild a “yes” in a finite number of iterations.

Proof Consider a sequence of € is chosen as per the iteration "' =
€" + 0. This € is a montone increasing sequence. This because § > 0
from the commensurability of numerals in the problem. So if the graph is
S D-connected (there exists atleast one path from S to D) the sequence of
Decision Problems DP(e") must output a “yes” in a finite number of steps.
Thus the theorem has been proved by showing the construction.

Theorem E.2 The above sequence of decision problems DP(e) are solved
by the Conservative Routing Algorithms.

Proof Algorithm 3 of the Conservative Routing Algorithm generates the
sequence €t = €™ 4+ 6.
The Decision Problem

max(d(p),tn(p)) < €”
d(p) < €" Atn(p) < €"
d(p) < e At(p) > Cy — €

v

The second condition ¢(p) > C; — €" is accounted by the Graph Reduc-
tion step of Alg.12 of Conservative Routing. (This is proved in B.1). The
first condition d(p) < €” can be accounted/checked from computing the op-
timal delay path in the reduced graph(second condition). In the reduced
graph if d(p’+) = €", then the algorithm terminates at a path which satisfies
the second and first condition for the lowest possible value of €¢"*. Thus it
terminates at a conservative path.
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