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Cells can sense and respond to the physical environment through generation

and transmission of mechanical forces from the surroundings to the cell interior and

from one cell to another. This dissertation focuses on mechanosensing by T cells, key

players in the adaptive immune system, which form a strong line of defense against

infections by their ability to recognize foreign molecules and develop an appropri-

ate response. T cells form close contact with an opposing antigen presenting cell

upon recognition of protein fragments derived from infecting pathogens (antigens).

Recent studies have shown that externally applied forces can trigger biochemical

signaling in T cells. How forces are internally generated by T cells, involved in

signaling and transmitted at the level of the cell interface, remains unclear. In this

thesis, we investigate the molecular mechanisms of force generation by T cells and

their response to forces and the stiffness of the opposing surface.

We have quantitatively characterized the initial phase of T cell contact with

a model of antigen-bearing surfaces. We observe that T cells spread on such sub-



strates and that the kinetics of spreading follows a universal function, with the

spreading rate dependent on actin polymerization and myosin II activity. Altering

cell-substrate adhesions leads to qualitative changes in cell spreading dynamics and

wave-like patterns of actin dynamics. We then used soft elastic substrates with stiff-

ness comparable to that of antigen presenting cells, to measure the forces generated

by T cells during activation.

Perturbation experiments reveal that these forces are largely due to actin as-

sembly and dynamics, with myosin contractility contributing to the development of

traction forces but not its maintenance. We find that Jurkat T-cells are mechanosen-

sitive, with both traction forces and signaling dynamics exhibiting sensitivity to the

stiffness of the substrate. We further demonstrate that dynamics of the T cell mi-

crotubule cytoskeleton also participates in regulating forces at the cell-substrate

interface, through the Rho/ROCK pathway which regulates myosin II light chain

phosphorylation.

Overall, this work highlights physical force as an essential mediator that con-

nects stiffness sensing to intracellular signaling, which then directs gene expression

and eventually the immune response in T cells.
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Chapter 1

Introduction

1.1 Overview of the thesis

Mechanobiology is the study of how physical stimuli, for example, substrate

stiffness, mechanical stretching etc. are sensed by the cell through physical forces,

which then converts the signal into biochemical signal and drives biological out-

comes (Figure 1.1). Cells from diverse tissue types had been shown to be sensitive

to physical forces [97]. In the case of immune cells, forces were suggested to be

essential for arrest and extravasation from blood vessels [4]. Importantly, recent in

vitro studies have established that many cell surface receptors [116, 111, 132, 46]

and intracellular molecules [177] are mechanosensitive and some exhibit catch-bond

behaviour, in which interaction lifetime increases under forced condition.

This thesis will focus on physical forces generated and maintained by T cells

when they get activated. We will first characterize the cellular and membrane

1



Figure 1.1: Mechanotransduction. Mechanotransduction converts mechanical

stimuli into chemical signals to regulate cell behaviour and function. Actin, myosin

II and other mechanosensitive proteins all take part in force sensing. Image is from

[97]. Image used with permission.

dynamics when T cells are activated on rigid substrate (chapter 2), then measure

traction forces involved during activation (chapter 3), investigate on the molecular

mechanism of generation of these traction stresses (chapter 4), and finally as ongoing

work, how the signaling output is related to the physical parameter input during T

cell activation (appendix A). We will start with a brief account of T cell biology and

discuss on why understanding mechanobiology of T cell activation will contribute

to understanding T cell’s in vivo immune response.

1.2 T cell as a part of mammalian immune system

Our body is exposed to constant threats from infection by bacteria, viruses,

fungi and parasites in the environment. To face this challenge, different organisms

2



develop their own line of defence, known as the immune system. Researchers have

identified two major subsystems in our immune system: innate immunity and

adaptive immunity. These two systems cooperate to fight pathogens (Figure

1.2a): innate immunity forms the front barrier, whereas adaptive immunity provides

pathogen-specific immune response and long term immunological memory.

1.2.1 Innate immunity provides the front barrier to pathogen

invasion

The innate immune system provides both physical and chemical barrier to

pathogens. Our skin, tight junctions between epithelials cells, acidic pH in our

stomach and antimicrobial peptides present in mucus layers etc., all inhibit en-

trance of pathogens and maintain sterility in our body [2]. When one of these

barriers is breached, chemical signals (bacterial peptides, cytokines released by im-

mune cells in vicinity etc.) drive chemotaxis of different types of immune cells,

including macrophages, neutrophils, dendritic cells etc to sites of infection (Figure

1.2b). These immune cells carry pattern recognition receptors which recognize con-

served features on pathogens: formylated methionine in bacterial peptides, CpG

motifs in bacterial and viral DNA etc. Upon recognition of invading microbes, pro-

fessional phagocytes such as macrophages and neutrophils carried out phagocytosis,

a process during which their cell surface protruded and engulfed the microbe into

phagosomes (Figure 1.2c). Neutrophils can even emit their chromatin together with

granule proteins to trap and kill invading bacteria [20]. Apart from direct attack

3



a

b

c

Figure 1.2: Immune system comprises of innate and adaptive immunity. (a)

Innate and adaptive immunity cooperate to fight pathogens. (b) Cells and accessory

proteins comprising our immune system. (c) Macrophage phagocytizing red blood

cells opsonized with antibodies. Images are from [2, 56, 76]. All images used with

permission.
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on invaders, these immune cells secrete signaling proteins and lipids, such as cy-

tokines and prostaglandins to generate an inflammatory response. This results

in recruitment of more immune cells to the infected site and triggering of fever, a

rise of body temperature. Finally, macrophages and more importantly, dendritic

cells, act as a critical link between innate and adaptive immunity, to inform T and

B cells about identity of invading pathogens and thereafter enable pathogen specific

immune response and memory.

1.2.2 Adaptive immunity provides specific immune response

and memory

From an evolutionary point of view, adaptive immunity was developed later

than innate immunity, and was only found in Gnathostomes (jawed vertebrates)

and Agnathans (jawless fish)[39, 40]. In contrast, innate immunity was found even

in single cell organisms, and studies of how nermatodes (Caenorhabditis elegans),

bacteria and archaea fight viral infections had led to important breakthroughs in

biomedical science and biotechnology [66, 84]. The main difference between innate

and adaptive immunities lies in the specificity towards individual antigens and

the development of memory of previous infection. These two characteristics are

demonstrated in Figure 1.3. The first encounter with a particular antigen generates

a primary immune response which takes two weeks to develop, whereas later

infection leads to a faster and stronger secondary immune response. To achieve

that, adaptive immunity uses genetic recombination to generate enormous antigen

5



Figure 1.3: Adaptive immunity provides specificity and memory. Antibody

level in blood after first and second immunization for two different antigens (Red

and green). Image is from [2]. Image used with permission.
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receptor diversity, to the extent that almost any potential pathogen or toxin can be

recognized. The cost in return, is the maintenance of a delicate balance between

responses towards self and foreign antigens, in which dysregulation can lead to

autoimmune diseases. Also, adaptive response acts slower than innate response,

and the primary response takes two weeks to peak, although secondary responses

take shorter time (Figure 1.3).

In the human adaptive immune system, two major lineages of white blood cells

called lymphocytes detect and respond to pathogen invasion in a specific manner.

They are the thymus derived T lymphocytes (T cells) and the bone marrow derived

B lymphocytes (B cells) (Figure 1.4a). Thymus and bone marrow are called central

lymphoid organs where lymphocytes develop from common lymphoid progenitor

(CLP) cells (Figure 1.4b). While B cells develop from CLP in the bone marrow,

some CLPs migrate through the blood to the thymus and develop to become näıve

T cells, T cells which have not encountered their cognate antigen within the periph-

ery. As shown by the flow chart in Figure 1.4c, lymphocytes continuously leave the

bloodstream and enter lymph vessels at peripheral lymphoid organs (lymph nodes,

spleen etc.). After percolation through various nodes, lymphocytes rejoin the blood

through the thoracic duct.

As demonstrated in Figure 1.5a, after dendritic cells phagocytose microbes

(section 1.2.1), the phagosomes get fused with lysosomes, which carry acid hydro-

lases to kill the microbes and degrade their biomatter. Such dendritic cells are said

7



a

b

c

Figure 1.4: Life cycle of T and B cells. (a) Human lymphoid organs. Central

lymphoid organs are labelled in yellow, peripheral lymphoid organs in blue and

lymphatic vessels in green. (b) Development of T cells and B cells. (c) Lymphocytes

circulate between the blood and the lymph. Image is from [2]. Image used with

permission.
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a

b c

Figure 1.5: Innate and adaptive immunity cooperate to fight pathogens.

(a) Dendritic cells destroy phagocytosed microbes, and present to T cell. (b) T and

B cells proliferate and differentiate into effector and memory cells. (c) T and B

cells orchestrates adaptive immune response. Images are from [2]. Images used with

permission.
9



to be activated. They migrate to a nearby lymph node and upregulate their expres-

sion of costimulatory proteins. In the lymph node, they present protein peptides

(antigen) from the microbe to T cell recognizing that specific antigen, and acti-

vate the T cell. For this reason, dendritic cells, macrophage and B cells are called

professional antigen presentation cells (APC), as they are particularly efficient at

presenting antigens to activate T cells. The molecular basis of this process is dis-

cussed in section 1.3.3.

In order to orchestrate an intact immune response as shown in Figure 1.3,

näıve lymphocytes proliferate and differentiate into effector and memory cells upon

activation (Figure 1.5b). T and B cells operate in different manner: when stim-

ulated, B cells produce antibodies which bind specifically to virus and microbial

toxins to deactivate them and to mark for destruction by phagocytic cells; on the

other hand, stimulated T cell patrol the body, destroy virus-infected host cells, and

produce signal molecules called cytokines to activate macrophages and B cells for

microbe destruction and antibody production respectively (Figure 1.5c).

1.3 T cell activation: a molecular perspective

Modern immunology is interwined with molecular biology. For example, sub-

types of lymphocytes are defined by molecular markers on their cell surface. More

importantly, understanding of proteins expressed in T and B lymphocytes and their

interactions is indispensable to explain adaptive immunity. The basic molecular
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constituents of adaptive immunity are surprisingly few: T Cell Receptor (TCR),

antibodies, Major Histocompatibility Complex (MHC) molecules, and Recombina-

tion Activating Gene 1 and 2 (RAG1/RAG2) proteins [39]. In this thesis, we will

focus on T cells and how TCR triggering leads to cellular response.

1.3.1 TCR is a multimeric protein complex binding specif-

ically to MHC

The key protein interaction in T cell biology is undoubtedly the TCR-MHC in-

teraction (Figure 1.6a). TCR is a multimeric protein complex comprising of various

transmembrane protein subunits: TCR α and β chains, which bind to peptide-MHC

(pMHC) and have short cytoplasmic tails; CD3δ, ϵ, γ and ζ chains (CD for Cluster

of Differentiation) which are called invariant chains, and contain immunoreceptor

tyrosine-based activation motif (ITAM) in their cytoplasmic tails, motifs with a

tyrosine separated from a leucine or isoleucine by any two other amino acids (sig-

nature sequence of YxxL/I). TCR αβ heterodimer binds noncovalently to CD3ϵγ,

CD3ϵδ and CD3ζζ dimers in 1:1:1:1 stochiometry, forming the TCR complex. In

addition, the key protein kinase that phosphorylates the ITAMs of CD3 proteins,

lymphocyte-specific protein tyrosine kinase (Lck), is associated with the cytoplas-

mic tail of co-receptors CD4 and CD8. These coreceptors have extracellular domains

recognizing the invariant part of the MHC molecule. A more realistic molecular view

of the TCR-MHC interaction is shown in Figure 1.6b.
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Figure 1.6: TCR-pMHC interaction. (a) Cartoon view of core proteins in T

cell-APC interaction. (b) Molecular view of TCR-MHC interaction. (c) Schematic

of TCR αβ structure. (d) Three-dimensional view of extracellular domain of

TCR αβ. The hypervariable loops are shown in red. Images are from [72, 69, 2]

respectively. All images used with permission.
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TCR α and β chains form a heterodimer as shown in Figure 1.6c and d. Both

chains are composed of two separate immunoglobulin (Ig)-like domains: variable (V)

and constant (C). The key region for antigen recognition are 3 hypervariable loops in

both Vα and Vβ domains as shown in Figure 1.6d: their amino acid sequence varies

among TCRs from different T cells from the same animal. These loops are called

complementarity determining regions (CDRs), and the individual loops are called

CDR1, CDR2 and CDR3. Their binding position relative to pMHC is discussed in

section 1.3.3.

1.3.2 MHC presents protein peptide to TCR

MHC molecules can be categorized into 3 different classes, class I, class II and

class III, among which class I and II are the most important for antigen presentation

to T cells. Class I and II MHC molecules differ in structure, tissue expression and

binding partners. As shown in Figure 1.7, in class I, the α chain is folded into three

extracellular globular domains α1, α2 and α3, with a separate β2 microgobulin do-

main binding noncovalently to α3. On the other hand, class II MHC is a heterodimer

of α and β chains. The key regions for antigen presentation are the peptide-binding

groves between α1 and α2 in class I and between α1 and β1 in class II respectively.

A zoomed-in view of TCR-peptide-MHC interface is shown in Figure 1.8b.

In terms of expression pattern, class I is expressed in all tissue cells while
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Figure 1.7: Molecular structure of MHC. Schematic of class I and II MHC

structure. Image is from [2]. Image used with permission.
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class II expression is limited to professional APCs (section 1.2.2). Tissue cells reg-

ularly transport cytosolic peptides (self/foreign) into endoplasmic reticulum (ER)

and bound to α chain of MHC I, which finally presents the peptide to the extracel-

lular space; for professional APCs, endocytosed/ phagocytosed microbial proteins

are cleaved by proteases in the endosome, the resultant peptides bind to MHC II

molecules targeted to the endosome from Golgi apparatus and finally are presented

to cell surface. Therefore, class I presents endogenous while class II presents exoge-

nous antigens. Moreover, class I and II have different binding partners to coreceptors

expressed on T cells at their membrane proximal domain: CD4 binds to β2 domain

of class II and CD8 binds to α3 domain of class I. These two interactions define

functions of peripheral T cell species: mature näıve, effector and memory T cells

are expressing only one of the two coreceptors, CD4+CD8− T cells are the helper

cells (Th) and CD4−CD8+ T cells are the cytotoxic cells.

1.3.3 TCR-pMHC binding: a structural view

The first crystal structure of TCR-MHC binding was determined in 1996 [70].

An example is shown in Figure 1.8a, which a HIV-1 peptide (KK10) is presented by

MHC to TCR [212]. The peptide is bound in a groove between α helices of α1 and

α2 domains in class I and α1 and β1 domains in class II respectively. The docking

topology of CDR relative to pMHC is conserved among TCR bindings with both

class I and II pMHC, and among different peptides presented [69]. The canonical
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Figure 1.8: TCR-pMHC binding. (a) Three dimensional view of a TCR-pMHC

complex: HLA-B*2705 in green, KK10 viral peptide in cyan and TCR in magenta.

(b) Canonical docking topology of TCR CDRs on pMHC. Green: α helices of the

peptide-binding groove. Yellow: peptide. Red, pink, blue: CDRs of TCR. (c) Struc-

ture of TCR-pMHC-CD4 complex. The individual protein domains are labelled. (d)

Top view to the T cell membrane. On the left is the membrane-proximal TCR C do-

mains and on the right is the CD4 membrane-proximal D4 domain. The interaction

site between TCR, CD3ϵδ and CD3ϵγ are denoted. Images are from [212, 69, 217]

respectively. All images used with permission.
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TCR-pMHC docking configuration is shown in Figure 1.8b, with the TCR tilted

with respect to the groove by an angle between 40◦ - 85◦ [170]. CDR1 and CDR2

on both α and β chains interacted with the surface of the MHC and the amino and

carboxyl termini of the peptide, while CDR3 mainly interacts with the center of the

peptide.

Recently the structure of the TCR-pMHCII-CD4 complex was determined, as shown

in Figure 1.8c [217]. Both TCR-pMHC and CD4-pMHC interactions were shown

to be tilted relative to the T cell plasma membrane, by an angle of around 60◦.

Therefore these two protein interactions formed an arch above the T cell mem-

brane, and the CD3ϵδ and CD3ϵγ interaction sites of Cα and Cβ domains faced the

CD4 membrane-proximal D4 domain, lying under the arch (Figure 1.8d). Such posi-

tioning is hypothesized to be essential for efficient signal transduction upon antigen

recognition, as discussed in section 1.3.5.

1.3.4 TCR stimulation leads to signaling, cytoskeletal re-

modelling and synapse formation

It has been measured that there are 20-200 CD4+ and 80-1200 CD8+ näıve

T cells specific to a particular antigen in lymphoid organs over the whole mouse

[149, 160]. Therefore, routine patrolling of näıve and memory T cells in our body,

as shown in Figure 1.4c, is necessary to launch an immune response efficiently. Upon

contact with antigen presented either on a professional APC or a virus-infected tissue
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cell, the T cell stops migration and TCR-pMHC binding leads to TCR triggering.

T cells are extremely sensitive: they can detect single cognate pMHC on APC [95].

TCR triggering results in exposure of ITAMs, whose tyrosine is phosphory-

lated by Src kinases Lck and proto-oncogene tyrosine-protein kinase (Fyn). They

then recruit zeta-chain-associated protein kinase 70 (ZAP-70) which further phos-

phorylate the adapter proteins linker of activated T cells (LAT) and lymphocyte

cytosolic protein 2 (SLP-76). Phosphorylated LAT and SLP-76 recruit multiple

adaptor proteins and downstream signaling molecules into multimolecular signal-

ing complexes located near the site of TCR engagement, including phospholipase

Cγ1 (PLCγ1) and growth factor receptor-bound protein 2 (Grb2), GRB2-related

adapter protein 2 (Gads) etc., and generate a tyrosine phosphorylation signaling

cascade (Figure 1.9a). Immediate downstream targets of TCR signaling include the

non-catalytic region of tyrosine kinase (Nck) adaptor protein, Wiskott-Aldrich syn-

drome protein (WASp) [10] and Wiskott-Aldrich syndrome protein family member

2 (WAVE2) [157]. These actin regulators activate the Arp2/3 complex, which pro-

motes branched actin polymerization [23, 22, 10, 78, 117]. This leads to cytoskeletal

remodeling, morphological changes and cell spreading over the antigen presenting

surface (Figure 1.9b, [60, 218]). TCR activation also leads to sustained calcium

influx and ultimately gene expression over longer timescales . Signaling proteins

transmitting the TCR signal are recruited to TCR within seconds of TCR trigger-

ing, and form multi-protein clusters known as signaling microclusters, as they act

as hubs for rapid recruitment of downstream signaling proteins (Figure 1.10, [22]).
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Figure 1.9: TCR triggering induces tyrosine phosphorylation cascade and

cytoskeleton remodelling. Images are from [218, 16] respectively. All images

used with permission.
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Figure 1.10: TCR triggering induces formation of signaling microclusters.

Image is from [22] . All images used with permission.
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Formation of these microclusters was found to be independent of phosphorylation

by Lck, but was dependent on an intact actin cytoskeleton. In addition, appearance

of first microcluster after cell-substrate contact was found to precede calcium influx

by a few seconds, validating that TCR triggering is a prerequisite for signaling ini-

tiation [28, 219].

Within 30 minutes after initial TCR triggering, signaling proteins and other

molecules at the cell-cell junction spatially organize into a macromolecular structure

called the Immunological Synapse (IS). Reported in 1998 by Kupfer and coworkers

(Figure 1.11a, [148]), the structure is characterized by large scale segregation of

biomolecules at the interface, with TCR and costimulatory molecules (e.g. CD28)

concentrated at the center (also known as central supramolecular adhesion complex

(cSMAC)) and adhesion molecules (e.g. lymphocyte function-associated antigen 1

(LFA-1)) located in an annular region outside the cSMAC (known as peripheral

SMAC (pSMAC)), together forming a ’bull’s eye’ pattern (Figure 1.11b, [88]). The

most distal region is known as distal SMAC (dSMAC), which is enriched in F-actin,

CD43 and the tyrosine phosphatase CD45 [199].

The immune synapse was soon reconstituted in an in vitro lipid bilayer system

[79] after its discovery. Subsequently, extensive work has been done to study the

dynamics of IS formation [167], mechanism of formation [103, 48, 82, 216] and how

the structure is related to cellular signaling [152, 199]. cSMAC was initially thought

to be the signaling center, but it was soon realized that tyrosine phosphorylated
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Figure 1.11: Immunological synapse. (a) T cell-B lymphoma conjugate. Green:

talin. Red: protein kinase Cθ (PKCθ). (b) Molecular organization in mature IS.

Images are from [148, 88] respectively. All images used with permission.
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signaling proteins were localized in pSMAC [28, 199] and TCR proximal signaling

preceded and started to decay before the IS was established [124]. However, stable

conjugation and continuous TCR signaling are required for the T cell to achieve its

full effector potential [89].

1.3.5 Models of TCR triggering

In spite of extensive studies, the exact mechanism of TCR triggering remains

unknown and is a subject of intense research and controversy. Numerous models

have been proposed to explain how TCR triggering is achieved. There are three

categories of models [197]:

1. Aggregation: TCR engagement promotes aggregation of TCRs into clusters,

with coreceptor from self-peptide MHC binding to agonist-MHC and therefore

brings the associated Lck into the vicinity of ITAM (pseudodimer model, [95]).

2. Segregation: TCR engagement produces close contact zones enriched in sig-

naling microclusters, and are segregated from inhibitory tyrosine phosphatases

that dephosphorylate signaling proteins and hence promoting stable phospho-

rylation (Figure 1.12a, [100]).

3. Conformation change: a mechanical force was transmitted across the TCR

complex and this induces signaling by causing a conformational change in

ITAM-containing CD3 molecules, exposing them for phosphorylation. The

source of the force could be from the APC, from T cell’s own cytoskeleton, or
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a

Figure 1.12: Models of TCR triggering. (a) Segregation model of TCR

triggering. Binding of single TCR-pMHC was enhanced by costimulatory molecule

binding which promoted membrane bending, excluding CD45 which had large

extracellular domain. (b) Cartoon view of ITAMs of CD3ϵ residing in hydrophobic

leaflet in bicelle inferred from Nuclear Magnetic Resonance (NMR) data. (c)

Intracellular calcium elevation dissociates the ITAMs of CD3ζ and CD3ϵ from lipid

bilayer to facilitate phosphorylation. (d) ’Closing’ of the two CD3ζζ chains upon

TCR triggering. Images are from [100, 213, 183, 125] respectively. All images used

with permission.
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both [136].

It should be noted that these models are not mutually exclusive, and each has

its own evidential support. Noteworthy is the mechanical force model of TCR trig-

gering, as there is mounting evidence for it in recent years.. In terms of data related

to structural configuration of TCR-CD3 complex, it has been shown that CD3ϵ

and CD3ζ has their ITAM buried in the lipid bilayer in resting T cells, sequestered

from cytoplasmic kinases (Figure 1.12b [213]). Elevated intracellular calcium level

releases these ITAMs and facilitate their phosphorylation by kinases (Figure 1.12c,

[183]). Interestingly, a recent report using proximity probes and Förster resonance

energy transfer (FRET) to study distance between intracellular domains of CD3ζζ

chains suggested that the two chains were brought together upon cognate pMHC

binding, acting like a mechanical pivot (Figure 1.12d [125]).

1.4 Mechanobiology of T cell activation: a new

perspective

Conventional immunology has focussed on elucidation of the roles of different

genes in regulating and defining our immune system [2]. In the last 5 years, there

has been growing interest in the interplay between mechanical force and biological

processes during T cell activation [197, 110]. T cells, by their role of immunosurveil-

lance, routinely encounter opposing cells with various mechanical properties [4].
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Whether the forces T cell generates and experiences take part in signaling genera-

tion and modulation during T cell activation is poorly understood. Here we discuss

three different aspects of why mechanical forces and mechanical properties of the

opposing cell might be important in determining T cell’s immune response. A short

introduction of mechanobiology observed in nonimmune cells will be given in section

1.5.

1.4.1 TCR triggering is sensitive to applied physical forces

The role of physical forces in TCR triggering has come into focus after the

receptor deformation hypothesis was proposed in 2008 [136]. In this model, cy-

toskeletal forces deform the membrane at the IS, and thereby push or pull on the

TCRs. TCRs binding with agonist are deformed and signal initiation is facilitated

by the conformational change caused by the forces.

Several experimental works have followed up on the idea since then. A study

in 2009 [111] made use of a nonactivating antibody targeting the cleft between CD3ϵ

and CD3γ, which would not stimulate calcium influx in force-free conditions. Cal-

cium influx was observed upon tangential shear applied to the antibody through an

optical tweezer. The authors argued that the FG loop in Cβ domain of TCR (Figure

1.8d) acts as a lever, which transmits a torque to the CD3ϵγ and CD3ϵδ ectodomain

to stimulate signaling (Figure 1.13a). The efficacy of shear or pull on the TCR to
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Figure 1.13: (Continued on the following page.)
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Figure 1.13: Physical forces take part in TCR triggering. (a) Engagement by

cognate pMHC generates a torque that transfer to CD3 signaling subunits through

the FG loop of Cβ. (b) Experimental setup used in [131] to apply shear to TCR.

Copyright 2010. The American Association of Immunologists, Inc. (c) TCR-pMHC

interaction was found to be a catch bond, and forces help accumulate interaction

lifetime to induce calcium influx. Images are from [111, 131, 132]. All images used

with permission.

trigger calcium influx is demonstrated again in later study which used single-chain

variable fragment (scFv) tethered to 3T3 fibroblast as an artifical APC [131]. The

tether was through extracellular domain of the CD43 molecule, which is a large gly-

coprotein usually excluded from signaling TCR microclusters in the IS (Figure 1.11,

[88]). At resting, force free condition, conjugated T cell does not take in calcium

but is triggered when the T cell is sheared or pulled by a micropipette (Figure 1.13b).

A major breakthrough was reported in 2014, in which TCR-pMHC interaction

is demonstrated to be a catch bond [132],with lifetime increasing with force applica-

tion. The lifetime of the TCR-pMHC bond peaked at 10 pN of applied force (Figure

1.13d), and calcium influx into the cell correlated strongly with accumulated lifetime

in the first minute of force application (Figure 1.13c,e). The catch-bond nature of

TCR-pMHC was confirmed in a later single molecule study by another group, who

demonstrated that the TCR Cβ FG loop allosterically controls both the lifetime
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and peptide discrimination via force-driven conformational transition [46].

1.4.2 Flow of actin cytoskeleton is essential to organize IS

and signaling

It was appreciated early since the discovery of the IS that the actin cytoskele-

ton plays an important role in organizing the molecular architecture at the IS [16].

Initial TCR engagement triggers rapid and isotropic actin polymerization to spread

the cell membrane onto the stimulatory surface [23]. Studies showed that treatment

with actin depolymerizer latrunculin A inhibits TCR microcluster formation and

inward movement but does not dissipate preexisting microclusters (Figure 1.14a,

[199]). Later studies tracking actin flow and microcluster speeds confirmed their

correlation (Figure 1.14b, [103, 8, 216]). Finally, TCR microclusters were reported

to recruit actin foci through WASp and cotranslocate into the cSMAC [117].

A series of studies have investigated the interactions between actin dynam-

ics, TCR movements and signaling by using physical barriers to constraint TCR

movements during IS formation [152, 48, 220]. It was found that constraining TCR

microclusters to the periphery enhanced phosphotyrosine signaling, supporting the

notion that pSMAC rather than cSMAC is the region of active signaling [152, 199].

Importantly, by tracking actin retrograde flow around regions of trapped TCR mi-

croclusters, it was found that actin flow slowed down in the vicinity of the clusters,
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Figure 1.14: Actin dynamics reorganizes IS. (a) Abrupt treatment with

latrunculin A inhibited formation and movement of TCR microcluster but did not

disrupt preexisting microclusters. (b) TCR and actin flow move with same speed

in both d-SMAC and p-SMAC. (c) Trapped TCR microclusters slow down actin

retrograde flow. (f) Force from actin flow and ICAM-1 binding promoted LFA-1

affinity maturation. Images are from [199, 216, 220, 38] respectively. All images

used with permission.
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again suggesting that TCR and actin cytoskeleton are coupled and that TCRs are

potentially pulled by the actin flow [220].

Lastly, small molecules were used to perturb actin and myosin dynamics to

characterize roles of actin flow in organizing the IS and maintaining signaling. Stud-

ies from two groups simultaneously reported that the actin flow in T cells can

be stopped completely by inhibiting myosin II activity and actin depolymerization

[216, 8]. This abrogated calcium signaling [8] and affiniy maturation of LFA-1 [38].

The importance of actin depolymerization in organizing the IS was later demon-

strated in two different cytotoxic T cells studies [12, 167].

1.4.3 T cell immune response is sensitive to substrate stiff-

ness

Application of physical forces to cells and conversely, cells exerting physical

forces to the environment, inherently involve the concept of stiffness. Stiffness is the

resistance to deformation in response to applied force. Different materials respond

to applied force in different ways. The study of rheological properties of various

biomaterials is still an active area of research, and there is no common consensus

regarding which category of matter a living cell belongs to. One possible candidate

is the poroelastic model, as poroelasticity and intracellular fluid flow have been

demonstrated and were shown to be important in cell migration and blebbing in

living cells [34, 168, 109, 147].
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However, biomaterials are conventionally considered to be viscoelastic: their

stiffnesses contain a viscous and an elastic component. In a viscous response, the

material resists shear flow and strains linearly with time when a stress is applied.

In an elastic response, the material returns to its original state rapidly once the

stress is removed. Experimental measurements of immune cells’ stiffness/elasticity

have been scarce. The first measurement of T cell stiffness was by AFM of trapped

immune cells (neutrophil and Jurkat T cells) in microfabricated wells [169]. It was

found that Jurkat T cells are among the softest cells, with Young’s modulus of 48

Pa. A new study in 2015 focussed on stiffnesses of professional APCs (Figure 1.2b)

before and after inflammation [21]. The measurements showed that APCs are soft

cells with Young’s moduli below 1 kPa, and inflammations with different cytokines

change the stiffness in a different manner.

Since APCs and T cells were both measured to be soft, this implies substrate

stiffness might play an important role in directing T cell activation. Two previous

studies have used elastic substrates with well defined Young’s moduli to study how

T cell’s immune response depends on substrate stiffness. The first study used anti-

CD3 and anti-CD28 coated polydimethylsiloxane (PDMS) to stimulate primary T

cells [161]. It was found that softer substrates (≈50-100 kPa) enhanced prolifera-

tion, IL-2 production, and näıve CD4+ cell differentiation into type 1 helper T cells.

The second study used polyacrylamide gels as stimulatory surfaces for näıve CD4+

cells [102]. The stiffness range tested was 10-200 kPa. It was found that in contrast
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Figure 1.15: Antigen presenting cells are soft. (a) Macrophages and dendritic

cells’ stiffnesses before and after inflammation. (b) Stiffness scale for cells and

tissues. Image is from [21]. Image used with permission.
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to the first study, IL-2 production was enhanced on stiffer substrates. In addition,

proximal signaling was also higher on stiffer substrate. Unfortunately, the stiffness

range of substrates in both studies was much higher than stiffness of APC (< 1 kPa).

1.5 Mechanobiology in nonimmune cells

Mechanobiology has been studied more actively in non-immune adherent cells

that interact with extracellular matrix (ECM), compared to immune cells. Although

they are drastically different in mechanical properties and gene expression profiles,

knowledge of the molecular components that make up the force generating and

mechanosensing apparatus in non-immune cells provides useful guidelines to think

about possible players and molecular mechanisms of mechanosensing in immune

cells. We will be discussing traction forces different types of cells are able to generate,

how they generate forces, and finally how stiffness information obtained by the cell

is transmitted and integrated to arrive at cellular decision and to determine cell

fate.

1.5.1 Force generation by nonimmune cells

It is well known that mesenchymal cells exert larger stresses with increasing

substrate stiffness and can generate stresses up to 10 kPa on stiff substrates (Figure

1.16a, [194]). This is associated with an increasingly organized actin cytoskeleton

such as alignment of contractile actin bundles called stress fibers, which originate
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Figure 1.16: Traction force exerted by nonimmune cells. (a) REF52

fibroblasts exert increasing stress on higher stiffness. Right: red: micropillars;

green: paxillin. (b) Cytoskeletal organization at the leading edge of epithelial cells.

Green: actin; red: paxillin; blue: NMII. (c) Traction stress versus F-actin speed for

all points throughout the cell front. Scalebar: 10 µm. Images are from [194, 71]

respectively. All images used with permission.
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Figure 1.17: Actin dynamics is essential to traction stress. (a) Traction

stress profile of NG108-15 neuronal growth cone. Scalebar: 10 µm. (b) Inhibition of

actin dynamics abrogated traction stress in growth cone. Images are from [92, 15]

respectively. All images used with permission.
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and terminate at molecular structures known as focal adhesions (Figure 1.16b, sec-

tion 1.5.2, [71, 223, 145]). Nonmuscle myosin II (NMII) contractions are known to

be essential to organize the actin network [14], and NMII knowndown experiments

have shown that NMIIA and NMIIB contribute 60 % and 30 % of stresses in mouse

embryonic fibroblasts [27]. Recently, it was found that local traction stress varies

biphasically with actin flow speed in epithelial cells (Figure 1.16c, [71]).

On the other hand, neuronal growth cones exert much weaker traction stresses,

in range of 5-50 Pa (Figure 1.17a, [15, 114, 92]). Rapidly migrating cells like fish

keratocytes also generate significant traction stresses during migration, up to 200 Pa

[68]. A significant amount of research has focused on the molecular mechanisms of

traction force generation. The dynamics of actin cytoskeleton is considered essential

for stress generation and maintenance for all the cell types described above. For ex-

ample, inhibition of actin polymerization in keratocytes reduced traction stresses by

50 % [68]. This was also observed in growth cone when subjected to actin dynamics

inhibitions (Figure 1.17b, [92]).

1.5.2 Focal adhesion: force-transducing molecular clutch

Focal adhesions (FA) are macromolecular structures which connect and trans-

mit forces from the actin cytoskeleton to integrins [30]. Through advances in 3D

superresolution microscopy, its structure was revealed in 2010, as shown in Figure
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Figure 1.18: Focal adhesion: a molecular clutch. Image is from [106]. Image

used with permission.

1.18a. Stratified in the z direction, the bottom layer of FA is the membrane protein

integrin, which different subtype of integrins recognizes and binds to recognition

sequences in different extracellular matrix (ECM) proteins. Integrins do not bind

to actin filaments directly, but rather recruit FA associated proteins, for example,

paxillin, focal adhesion kinase (FAK), talin and vinculin etc. that assemble into

two distinct layers (integrin signaling and force transducing layers) (Figure 1.18a).

Actin filaments and crosslinkers like α-actinin then bind to these proteins on top.

As shown in Figure 1.17c, FAs (labelled by paxillin staining) are located behind

the leading edge, and are separated from a region called lamellipodium composed

of a dense meshwork of actin. In live cells, the actin cytoskeleton persistently poly-

merizes at the leading edge, membrane tension pushes back the f-actin network and
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f-actin depolymerizes when it moves backward relative to the underlying substrate

[42]. Balancing membrane tension and rates of these two processes, f-actin tread-

mills and flows retrograde. By catching this flow with FA associated proteins, FA

represents a physical link and provides pulling force to integrins, which further pull

on the ECM proteins. This is known as the molecular clutch hypothesis [30].

By fluorescent speckle microscopy, it was found that the retrograde flow speed

at FA decreases from top layer to bottom layer, with actin being the fastest and

integrin being almost stationary [86]. Therefore, the different FA-associated pro-

teins are expected to be under mechanical tension with respect to each other when

assembled in FA. This was shown directly by a FRET sensor measuring extension

of vinculin in FA that vinculin in stable FA are under 2.5 pN force [80]. These in-

tramolecular forces can unfold proteins and expose cryptic binding sites. p130Cas,

an adaptor protein recruited to FAs, was shown to expose its Src phosphorylation

site upon isotropic cell pulling [177]. More recently, it was shown in an elegant in

vitro experiment that actomyosin contraction pulls on talin to expose its vinculin-

binding sites and recruits vinculin [37]. Secondly, mechanical forces can increase

interaction lifetime if the bond of interest has a catch-bond behaviour. For exam-

ple, integrin-fibronectin binding has been demonstrated to be a catch bond [116].

To conclude, FA is a classic example of an organelle which carries out mechanosens-

ing and mechanotransduction. The multi-protein nature of FA bears strong resem-

blance to signaling microclusters that are present in T cell IS (Figure 1.10). Inter-
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estingly, CasL, a homologue of p130Cas, colocalizes with microclusters during IS

formation and its phosphorylation is sensitive to NMII activities [221, 118]. This

raises the interesting possibility that these signaling microclusters might also be

mechanosensitive like FAs.

1.5.3 Substrate stiffness drives diverse cellular processes

As illustrated in Figure 1.15, tissue cells and ECMs are inherently soft mate-

rials compared with glass coverslips or tissue culture dishes, and can have a diverse

range of stiffnesses in different physiological contexts. Given that cells can sense the

rigidity of the environment with traction forces, it is not surprising that stiffness

differences can lead to diverse biological outcomes. Three different examples will be

discussed here to illustrate why understanding force sensing is essential to a better

understanding of cellular behaviour.

Elastic substrates have been commonly used to mimic the cells mechanical

environment and study cellular responses to changes in stiffness. When fibroblasts

were plated onto a polyacrylamide gel with a gradient of stiffness, it was found that

fibroblasts migrate towards a stiffer substrate, a phenomenon called durotaxis [134].

Secondly, it is well known that cancer cells and tumors have significantly different

stiffnesses from normal healthy tissue. For example, it was shown in mouse breast

cancer that metastatic potential of a tumor correlates inversely with its stiffness

[64, 133].
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Figure 1.19: Stiffness drives mesenchymal stem cell differentiation. Image

is from [61]. Image used with permission.

41



A dramatic example of stiffness driven determination of biological fate is found

during differentiation of mesenchymal stem cells (Figure 1.19, [61]). Human mes-

enchymal stem cells were plated on polyacrylamide gels of stiffnesses that mimic

brain, muscle and bones, and were cultured in identical media. After 4 days, these

cells differentiated into lineages of cells from tissues of corresponding stiffnesses

(neurons, myoblasts, and osteoblasts), and showed the corresponding mRNA tran-

scription and gene expression patterns. Such differentiation was completely blocked

upon inhibition of NMII, indicative of the role of force sensing in the process.

1.5.4 Objectives of this study

Given the available data in the T cell literature and knowledge in mechanobiol-

ogy of nonimmune cells, this thesis focuses on the following questions and attempts

to fill in the gaps between roles of physical forces during T cell activation at molec-

ular and cellular level:

1. Does T cell exert significant traction stress during formation of IS?

2. If so, does the stress depend on stiffness of the stimulatory substrate and how?

3. How does T cell generate and maintain traction stress? Do the actin and

microtubule cytoskeletons play a role?

4. How does proximal T cell signaling (tyrosine phosphorylation, calcium signal-
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ing) depend on substrate stiffness? Does active stress generated by T cell help

maintain calcium signaling as suggested by the catch-bond behaviour [132]?

By using elastic substrates with stiffnesses that fall in the range of APC stiffnesses

(Figure 1.15a), we ask if mechanosensing contributes to T cell activation, in terms of

signaling, gene expression and differentiation etc., and compare with immobilized,

bilayer and cell-cell conjugate studies [9]. Below is a brief overview of the different

chapters:

1. In chapter 2 , we characterize spreading kinetics, membrane and actin dynam-

ics during T cell activation on coverslip.

2. In chapter 3, we measure traction forces exerted by T cell during activation,

highlight the importance of actin dynamics in generating and maintaining

these forces, and show that T cell display distinct morphological and signaling

responses to different stiffnesses.

3. In chapter 4, we show that microtubule dynamics regulate traction force main-

tenance through Rho-ROCK-NMII pathway at IS.

4. In appendix A. we use the calcium influx during T cell activation as a signaling

output readout to characterize how inputs of substrate stiffness and traction

forces regulate signaling.
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Chapter 2

Spreading kinetics, membrane and

actin dynamics in Jurkat T cell

activation
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Abstract

Contact formation of T cells with antigen presenting cells (APCs) results in

the engagement of T cell receptors (TCRs), recruitment and aggregation of signaling

proteins into microclusters and ultimately, T cell activation. During this process, T

cells undergo dramatic changes in cell shape and reorganization of the cytoskeleton.

While the importance of the cytoskeleton in T cell activation is well known, how

its dynamics correlates with spreading kinetcs during the early stages of spreading

is not well understood. In this study, we observed two modes of spreading during

activation of Jurkat T cells on anti-CD3-coated substrates. The cell edge exhibited

repeated protrusions and retractions, which were driven by wave like patterns of

actin. Our results suggest that cell membrane morphology at the cell-substrate

interface may be a critical constraint on signaling and the actin cytoskeleton in

Jurkat cells is capable of organizing into spatial patterns.
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This chapter is adapted from Hui, Wang, Grooman, Wayt and Upadhyaya

[87] and Hui, Kwak and Upadhyaya [119]. Jessica Wayt and Chenlu Wang both

contributed to data acquisition in Figure 2.1-2.3 and Saein Kwak contributed to

data acquisition in Figure 2.4-2.5.

2.1 Introduction

Cellular responses to environmental stimuli involve large scale changes in mor-

phology, primarily driven by reorganization of the actin cytoskeleton [101, 107, 108].

One striking example of this occurs during cell-cell recognition in immune cells,

where T lymphocytes rapidly spread to establish contacts with antigen-presenting

cells (APCs) [148, 210]. These contacts allow T cell receptors (TCRs) to bind to

peptide- major histocompatibility complex (pMHC) displayed on the APC surface.

TCR-pMHC binding results in the activation of TCRs and the formation of signal-

ing microclusters that consist of activated TCR and various downstream signaling

molecules [22, 28, 54, 219, 199]. This subsequently activates actin nucleation pro-

moting factors (NPFs) such as WAVE2, HS1, and WASP [16]. These NPFs in turn

activate the Arp2/3 complex, nucleating actin polymerization, which provides the

necessary force for membrane deformation, cell spreading, and microcluster trans-

port [16, 24, 13].

Arp2/3-nucleated actin polymerization has been intensely studied in many

cell types owing to its importance in chemotaxis, cell motility, endocytosis, mem-

46



brane ruffling, and ventral F-actin waves [207, 77, 184]. These studies show that

polymerizing actin can form stationary or moving spots, or propagate as waves un-

der a broad variety of conditions. In particular, ventral F-actin waves have been

extensively observed in neutrophils [206], Dictyostelium [202, 18, 17, 74, 179] and

adherent cells [29], suggesting that the underlying mechanisms of their formation

are largely conserved. However, despite the engagement of a similar complement

of actin regulators as other cells, it is not known if T cells exhibit such dynamic

structures and whether these play a role in microcluster assembly.

The formation of contacts between a cell and another surface is driven by

deformations occurring at multiple length scales. Large-scale deformations of the

cell membrane, driven by cytoskeletal reorganization, allow the formation of cellular

contacts over micrometer length scales [31, 44, 57, 75, 166, 180]. Recent work has

devoted considerable attention to cell adhesion and spreading during the first few

minutes of cell-substrate contact [31, 44, 180, 50, 62, 181]. In particular, theoretical

and experimental studies have focused on the kinetics of spreading. An emerging

consensus view is that cell spreading occurs in phases, where the growth of spread

area (or contact) follows a power law in time with distinct exponents [44, 180, 50]

or other distinct functional forms [31, 32].

We have used simultaneous interference reflection microscopy (IRM) and to-

tal internal reflection fluorescence (TIRF) microscopy to analyze the dynamics of

the cell periphery and actin cytoskeleton, using Jurkat cells as a model system. We
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found that the contact area of spreading cells is characterized by a common function

of time with a characteristic timescale, which is determined by the dynamics of the

actomyosin cytoskeleton but is largely insensitive to ligand density. In addition, we

found two distinct modes of cell spreading with similar kinetics but striking differ-

ences in membrane topography and dynamics. Actin organizes into spatiotemporal

patterns such as traveling waves and spirals, which are driven by polymerization.

These waves appear to be associated with moving membrane folds suggesting that

a coupling between chemical and mechanical factors. Our studies demonstrate an

intricate relationship between membrane and F-actin dynamics, during activation

and spreading of Jurkat T cells and may have implications for theoretical models of

actin dynamics.

2.2 Results

2.2.1 Kinetics of cell spreading

To examine the biophysical factors that determine spreading kinetics and the

role of membrane dynamics in signaling we studied the spreading of Jurkat cells

on glass substrates coated with anti-CD3ϵ. Antibody binding to CD3 leads to in-

duction of signaling and activation of actin polymerization. This model system has

been shown to induce robust spreading of T cells, recapitulating many aspects of

T-cell signaling and activation [23, 10, 154, 22, 54] while facilitating multimodal

imaging of the cell-substrate interface. Cells were allowed to contact an antibody-
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Figure 2.1: Spreading of Jurkat T lymphocytes on antibody-coated

substrates. (a) Time-lapse IRM images showing the increasing contact zone

as the cell spreads out. Scale bar, 5 µm. (b) Contact area as a function of

time for six representative cells. The smooth lines are fits to a tanh function,

A(t) ∼ A0 tanh(αt). (c) Rescaled graphs showing that the spreading of all cells

can be described by a common spreading function. (d) Histogram of the spreading

rate, α (n = 88). (e) Histogram of the final spread area A0.
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coated glass substrate in serum-free media and imaged with brightfield microscopy

and IRM. Within seconds of incubation, cells started forming contacts with the

coated substrate. The contacts appeared as fluctuating light and dark IRM pat-

terns and interference rings. After initial contact, the cells started spreading and

rapidly increased their contact area (Figure 2.1a). The contact zone of a spreading

cell appeared as a predominantly dark gray patch that increased in size isotropically,

with the cell boundary being relatively smooth and circular, until the spread area

saturated in 2-3 min (Figure 2.1a). Cells displayed limited spreading on poly-L-

lysine coated glass or plain glass, suggesting that T cell spreading requires specific

adhesion.

We found that the cell-substrate contact area showed a rapid growth after a

small initial lag period, and eventually saturated (Figure 2.1b). The overall time

course of the spread area supports a recent model [31, 32]. This model predicts

that growth of the contact area as a function of time follows a hyperbolic tangent

function and highlights the requirement of actin polymerization to drive spreading.

Accordingly, we found that the area was well fit by a hyperbolic tangent function,

A(t) ∼ A0 tanh(αt) (Figure 2.1b), as indicated by the fit residuals. This allowed

us to extract a characteristic timescale of spreading to saturation, as well as the

asymptotic spread area. Upon rescaling the area of each cell with the final area A0,

and the time by α, all the data from the cells fell on a single universal curve (Figure

2.1c) showing that a common mechanism likely underlies the spreading of all these

cells. From the fits, we obtained a typical spreading rate of α ∼ 0.02± 0.01 s−1 and
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a final spread area of A0 ∼ 430 ± 160 µm2. Both these parameters showed some

degree of heterogeneity across the cell population (Figure 2.1d).

Recent model of active spreading [32] predicts that the spreading rate should be

independent or weakly dependent on the density of adhesive ligands on the substrate.

To test this for T cell spreading, we examined the effect of the antibody coating

density by changing the antibody concentration in solution from 0.01 µg/ml to

10 µg/ml. At concentrations > 0.2 µg/ml, cell spreading was similar to that at 10

µg/ml (the control concentration), with similar spreading rates and final areas (data

not shown). At concentrations < 0.2 µg/ml, cells established adhesive patches but

did not spread. However, for the small fraction of cells that did spread, the mean α

value was the same as that of control cells. Thus, spreading kinetics of T cells are

robust, with a characteristic timescale that does not change over a range of antibody

density.

2.2.2 Role of the actomyosin cytoskeleton on cell spreading

Previous work has shown that the binding of TCRs to anti-CD3ϵ antibodies

on the substrate leads to the activation of signaling cascades that regulate actin

polymerization [23, 10, 78, 157, 24]. Cells treated with very high doses (500 nM

and higher) of actin polymerization inhibitor latrunculin A (lat-A) do not spread.

At 100 nM lat-A, cells can spread but with lower spreading rates and final areas as

compared to the control population (Figure 2.2a,b). At even lower concentrations of
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Figure 2.2: Cells with compromised actin polymerization do not spread

efficiently. (a) Spreading rate α decreases as the concentration of Lat-A increases

(p < 0.01, t-test). (b) The final spread area is unaffected for small concentrations

of Lat-A, but is much smaller for higher concentrations (p < 0.05, t-test). (c)

Spreading rate is diminished upon inhibition of the activity of NMII or Rho kinase

(ROCK). (d) Final spread area is not affected by inhibition of NMII or ROCK.

The number of cells analyzed was > 18 in all conditions.
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lat-A (10 nM), the final areas of spread cells were similar to those for control cells,

but spreading occurred with significantly slower rates (Figure 2.2a,b). The dose-

dependent effect of Lat-A on spreading rate indicates that the rate of spreading is

largely determined by actin polymerization kinetics, and distinguishes it from the

passive spreading described by [44].

Previous studies have shown that nonmuscle myosin II (NMII) regulates the

rate of cell spreading in fibroblasts (33,34). In T cells, NMII (specifically the IIA

isoform) knockdown or inhibition alters signaling in the immune synapse (35). How-

ever, its role in the initial spreading of T cells has not been investigated. Cells treated

with blebbistatin (a specific inhibitor of the ATPase action of NMII [3]) were able

to spread, and the contact area growth over time followed a hyperbolic tangent

function, as in the case of control cells. For low concentrations of blebbistatin (20

µM), the rate of spreading was only weakly reduced and the maximal spread area

showed no significant change (Figure 2.2c,d). In 50 µM blebbistatin, the spreading

rate was reduced compared to the control case, but the maximal areas were largely

unaffected (Figure 2.2c,d). To assess the roles of distinct signaling pathways that

might control the activity of NMII, we investigated the role of the Rho-associated

protein kinase (ROCK), which is essential for phosphorylation of myosin light chain

(MLC), in turn essential for NMII activity. We found that the ROCK inhibitor Y-

27632 (100 µM) significantly reduced the spreading rate of cells but not their final

area.
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2.2.3 Effect of serum on cell spreading

In the experiments described so far, cells were cultured in growth medium,

and then withdrawn from serum 15 min before imaging. These conditions are used

routinely to study T-cell activation and signaling [78, 157]. To test whether TCR

mediated spreading behavior depends on the presence of serum, a more physiological

condition, we imaged cell spreading in medium supplemented with 10% FBS. As in

serum-free medium, cells in medium with 10% FBS rapidly established contact with

the substrate and started spreading (Figure 2.3a). The growth of contact area as

a function of time for a spreading cell could be well fit by a hyperbolic tangent

function, similar to the case for serum-free conditions. However, the kinetics were

characterized by an irregular growth of the projected cell area (Fig. 2.3b). The

spreading rate α for cell populations was the same in the presence and absence

of serum (Figure 2.3c) (p > 0.1, t-test, n = 88, serum-free, n = 45 with serum),

although the final spread area, A0, was lower in the serum-supplemented than in

the serum-free case (p < 0.05). However, there was a remarkable difference in the

nature of spreading. Kymographs of the cell edge (Figure 2.3d) showed that the

cell-substrate contacts were highly dynamic, with the cell edge undergoing repeated

protrusions and retractions during spreading. In contrast, cells spreading in the

absence of serum showed a smooth movement of the cell periphery (Figure 2.3e).

Across the population, in the presence of serum, most cells showed an irregular

anisotropic pattern of spreading (> 75%), whereas nearly all cells in serum-free

medium (> 95%) showed smooth isotropic spreading.
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Figure 2.3: (Continued on the following page.)
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Figure 2.3: Spreading in the presence of serum is qualitatively different.

(a) Time-lapse IRM images of a T cell spreading on antibody-coated glass substrate

in the presence of serum. Scale bar, 5 µm. (b) Contact area of the cell as a function

of time. Each graph corresponds to a different cell. The solid gray lines show a

fit to a hyperbolic tangent function. (c) Comparison of spreading rate α and final

spread area A0, for serum and serum-free cases shows that these parameters are

very similar in the two conditions. (d) Kymographs of four representative sections

in serum. (e) Kymographs of two representative sections in serum-free conditions

(scale bars, 3 µm, 30 s).

2.2.4 Actin waves correlate with edge protrusions

We then used Jurkat T cells expressing EGFP-actin to visualize the actin cy-

toskeleton when cells spread in the presence of serum, in order to examine its role in

the dynamics of the cell edge. Following initial contact, the cells spread, rapidly in-

creasing their contact area (Figure 2.4A). Simultaneously collected timelapse TIRF

images of EGFP-actin (Figure 2.4B) showed that the leading edge was associated

with radially moving fronts of actin. Figure 2.4D shows a traveling bump of actin

intensity at the cell periphery as it moved radially outwards. Kymographs (Fig-

ure 2.4C) show that the cell edge underwent repeated protrusions and retractions

throughout spreading before establishing a clear lamellipodium, which was marked

by the formation of a ring of actin and the establishment of retrograde flow. The

protrusion-retraction events were not strictly periodic, and the average time inter-
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Figure 2.4: Spreading T cells display dynamic edge movement and actin

waves. (A,B) Time-lapse (A) IRM and (B) TIRFM images of a Jurkat T cell

spreading on anti-CD3-coated substrates. Yellow arrows: actin waves. Scale bar is

10 µm. (C) Kymograph of a radial line across the cell edge (dashed line in (A))

in IRM (top) and TIRF (bottom). Scale bars: horizontal 5 µm; vertical 2 min.

(Continued on next page.)
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Figure 2.4: (D) Line profile corresponds to the wave marked by the top yellow

arrow in (B). Direction of the arrow corresponds to time. (E) Cell outlines at

multiple time-points in different colors, going from blue (earlier in time) to red

(later in time) for 0 to 5 min. (F,G) Heat maps of (F) edge velocity and (G) actin

intensities in the normal direction along the cell edge as a function of time. (H)

Temporal autocorrelation of leading edge velocity (black), EGFP-actin intensity

(red), and their cross-correlation (blue).

val between successive protrusion peaks was 80 ± 17 s (N = 56 intervals from 10

cells). Successive cell contours extracted from the IRM images (Figure 2.4E) also

show that the cell edge around the entire cell periphery was dynamic with exten-

sive protrusions and retractions. The time evolution of the leading-edge position as

obtained from the IRM images was tracked using a level-set method [137] to deter-

mine the local protrusion and retraction velocities normal to the leading edge. A

relatively irregular sequence of protrusion and retraction events was observed with

typical velocities on the order of 100-120 nm/s (Figure 2.4F).

While similar oscillations have been observed in primary T cells spreading on

stimulatory bilayer substrates [51], the relationship between actin and edge dynamics

is not well understood. To quantify this, we calculated the intensity profile of EGFP-

actin by summing the intensity of pixels within a 2 µm band around the cell edge

obtained from the IRM images (Figure 2.4G). Brighter F-actin intensities appeared
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to weakly correlate with slower protrusion velocities while lower intensities were

associated with larger protrusion velocities. To further quantify the relationship,

we computed auto- and cross-correlations of the edge velocity and the local actin

signal. While the temporal autocorrelation of the leading edge velocity and actin

intensity showed a pronounced dip, the cross-correlation indicated a slight offset of

∼ 15 s (Figure 2.4H). This indicates that the leading edge velocity peaks several

seconds (15±4 s, n = 5 cells) earlier than the actin intensity, similar to observations

in adherent cells [171].

2.2.5 Actin Waves correlate with membrane folds

In addition to the peripheral actin waves (Figure 2.5A), we also observed dy-

namic actin structures interior to the cell periphery, such as traveling waves moving

radially outwards and inwards towards the cell center (Figure 2.5B,C), as well as

spiral patterns (Figure 2.5C). The movement of these structures was visualized as

shown in a representative kymograph (Figure 2.5D). The average velocity for the

entire population was 7.1 ± 2.0 µm/min (n = 80, Figure 2.5E) consistent with the

edge velocities observed in Figure 2.5F. Internal actin structures typically had an

average velocity of 6.7 ± 2.1 µm/min (n = 27), similar to that of the peripheral

actin waves, 7.1 ± 1.8 µm/min (n = 43), suggesting that all these structures may

be driven largely by actin polymerization and share a similar mechanistic origin.

Previous studies have reported the assembly of actin or actin nucleators into
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Figure 2.5: (Continued on next page.)
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Figure 2.5: Spreading Jurkat T cells display membrane coupled actin

waves. (A) Time-lapse image of EGFP-actin expressing cell on anti-CD3-coated

substrates showing peripheral actin waves. (B) Time-lapse image showing a

spiral wave of actin. (C) Time-lapse TIRF images showing internal actin waves.

(D) Kymograph showing multiple types of propagating actin structures. The

linear streaks of GFP represent traveling waves. Vertical scale bar: 1 min. (E)

Histogram of actin wave velocities across cell populations. The mean velocity is

7.1 ± 2.0 µm/min, N = 80. (F,G) (F) Dual-wavelength images and (G) intensity

profiles showing snapshots of a spreading cell with EGFP-actin (green) and

TagRFP-T cytosol (red). (H,I) Time-lapse (H) TIRF and (I) wildfield images

of EGFP-actin cell showing propagating actin waves. All horizontal scale bar: 5 µm.

wave-like structures of protein density in a variety of cell types, such as neutrophils,

Dictyostelium, and epithelial cells [18, 17, 73, 206, 6, 29]. To examine whether the

internal waves we observed were actin density waves, we stably transfected EGFP-

actin labeled Jurkat cells with TagRFP-T as a cytosolic marker to generate two-color

cell lines. TIRF images of the red fluorescence show the position of the membrane,

which is in closest contact with the substrate, as the TIRF signal disappears when

the membrane-substrate distance increases. Dual-wavelength TIRF imaging of actin

and cytosol showed a high degree of correlation between the location of actin waves

(green) and cytosol (red), which likely corresponds to membrane folds (Figure 2.5F).

Direct observation of the membrane by labeling proved to be difficult owing to mem-
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brane recycling over the time-scale of spreading. Line profiles of the fluorescence

intensities across a region of the cell plotted for the two channels show that the

peaks of intensities overlap with each other, indicating that actin is colocalized with

membrane folds that are in close contact with the surface (Figure 2.5G). However,

the actin and cytosol intensities at each wave do not vary proportionately. In addi-

tion to TIRF, we observed actin/membrane structures in simultaneously collected

epifluorescence images (Figure 2.5H), indicating that these waves were not a prox-

imity artifact of TIRF imaging. Taken together, these observations suggest that the

observed waves are coupled actin-membrane waves traveling on a planar membrane

surface. This is consistent with our previous observations using IRM that the mem-

brane topography at the cell substrate interface is not entirely flat, rather it has

vertical undulations on the order of 25-50 nm [120].

We finally verified that these actin waves result from TCR activation at the

surface to formally rule out the possibility that these structures accompany passive

spreading. We imaged cells spreading on substrates coated with the pro-adhesive

ligand, anti-CD43, which leads to non-integrin mediated adhesion, without any stim-

ulatory anti-CD3. While cells spread on this surface (though to a smaller extent

than on stimulatory antibody), the actin cytoskeleton as imaged in TIRF remained

largely uniform with no visible structures such as the propagating waves observed on

an activating surface (data not shown). The advance of the cell periphery was slower

and not as smooth and efficient as in the presence of stimulatory antibody. These

results suggest that the actin structures are dynamically stabilized membrane folds
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that require TCR activation and signaling for their formation and maintenance.

2.3 Discussion

The initial attachment of cell membranes to a surface plays a key role in the

formation of receptor-ligand bonds during cell-cell and cell-substrate junction forma-

tion. In the commonly studied ’T cell activation on coverslip’ system [23, 22, 54, 8],

we identified two modes of spreading that are characterized by marked differences

in the dynamics of the cell edge (Figures 2.1,2.3), consistent with previous obser-

vations in spreading fibroblasts [57]. Also, we have characterized actin dynamics

during early stages of activation, and found that actin organize into rich spatiotem-

poral patterns such as traveling waves, moving spots, and spirals (Figure 2.4).

We found that the contact area of spreading Jurkat T cells on antibody-coated

substrates was well described by a hyperbolic tangent function, with a characteristic

timescale of ∼ 45 s. This is similar to the time over which the initial signaling peaks

[85]. Our results are consistent with a recent model of cell spreading, which predicts

that the spread area grows as tanh(αt) [31]. Previous studies have described the

kinetics of spreading in different cells as power laws [31, 44, 57, 75, 180, 50, 158]. We

note that the early phase of spreading in our observations, after the initial lag pe-

riod, is compatible with models suggesting linear growth of cell area (since at early

times a hyperbolic tangent function is linear). Perturbing the actin cytoskeleton

using lat-A in a dose-dependent manner leads to slower spreading, as predicted by
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these models. This shows that actin polymerization is essential for spreading and

controls its timescale.

The role of NMII in determining the early spreading kinetics in T lymphocytes

is not known. Our experiments showed that inhibition of NMMII and ROCK activ-

ity slowed down spreading kinetics without significantly altering the maximal spread

area. This is in contrast to observations in fibroblasts, where spreading is enhanced

by the inhibition of NMII [27, 203], presumably due to the loss of contractile activity

of the actomyosin network that applies an inward tension to cells. This suggests

that the actomyosin network may not function similarly in the early stages of T cell

spreading. It is possible that the contraction of the actomyosin network applies a

force that squeezes the lamellipodia outward [121]. Inhibition of myosin would then

slow down the outward movement of the cell edge, as we observed. This alternative

hypothesis has been postulated before for leukocyte and lymphocyte motility and

could also presumably be functional during the spreading of T cells [121].

Actin waves have been observed in Dictyostelium [202, 18, 73] and in motile

neutrophils during chemotaxis [206]. However, the mobile actin structures we have

characterized here in Jurkat cells (Figure 2.4) appear to be distinct from those

previously observed. First, TCR activation is obligatory for the formation of the

propagating actin waves, unlike in Dictyostelium where waves are generated in the

absence of G-protein signaling [17]. Second, actin waves in Jurkat cells appear to be

associated with membrane undulations and correlated with moving membrane folds
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suggesting that a coupling between chemical and mechanical factors is required to

generate these waves (Figure 2.5). Previous studies on Jurkat, mouse, and human T

cells have not reported such patterns, possibly because these studies either focused

on well spread cells in the later stages of spreading or imaged the actin fluorescence

using confocal microscopy which has lower axial resolution than TIRF microscopy

[23, 78, 103, 8]. Moreover, most studies of T cell spreading on lipid bilayers used

ICAM-1 as an adhesive ligand, which may have suppressed such waves.

The central role played by the actin cytoskeleton in T cell signaling has been

demonstrated by pharmacological, physical, and genetic perturbations [222]. Col-

lectively, these studies suggest that a dynamic actin network is required for effective

TCR-ligand interaction as well as the formation and transport of kinases, scaffolds,

and other proteins into micron-sized signaling assemblies around activated TCRs,

but the coordinated behavior of the cytoskeletal network and signaling components

is not well understood. Our results show that the actin cytoskeleton and regulatory

proteins in Jurkat T cells couple with membrane undulations to lead to traveling

waves, which are modulated by TCR signaling during activation. These dynamic

edge oscillations under conditions of low adhesion and the actin coupled membrane

waves may be helpful in the search for antigens on the relatively rough surface of

an antigen presenting cell, as well as facilitating TCR triggering through kinetic

segregation [100].
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Chapter 3

Cytoskeletal forces during

signaling activation in Jurkat T

cells
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Abstract

T-cells are critical for the adaptive immune response in the body. The binding

of the T cell receptor (TCR) with antigen on the surface of antigen presenting cells

(APCs) leads to cell spreading and signaling activation. The underlying mechanism

of signaling activation is not completely understood. Although cytoskeletal forces

have been implicated in this process, the contribution of different cytoskeletal com-

ponents and their spatial organization are unknown. Here we use traction force

microscopy to measure the forces exerted by Jurkat T-cells during TCR activation.

Perturbation experiments reveal that these forces are largely due to actin assembly

and dynamics, with myosin contractility contributing to the development of traction

force but not its maintenance. We find that Jurkat T-cells are mechanosensitive,

with cytoskeletal forces and signaling dynamics both sensitive to the stiffness of the

substrate. Our results delineate the cytoskeletal contributions to interfacial forces

exerted by T-cells during activation.

67



This chapter is adapted from Hui, Balagopalan, Samelson and Upadhyaya [87].

3.1 Introduction

T lymphocytes are central effectors of the adaptive immune response, circu-

lating through the body and scanning APCs for their cognate antigens [2, 141].

Contact and adhesion between the T cell and the APC results in T cell spreading

on the APC, ensuring close proximity between the cells. TCRs recognize peptide-

major hiscompatibility complexes (pMHCs) on the APC surface. This results in

the activation of TCRs and the formation of signaling microclusters that consist of

activated TCR and various downstream signaling molecules [22, 219, 199]. Despite

extensive study of the biochemical signaling pathways involved, much further work

is required to elucidate the precise mechanism of T-cell activation [197].

Signaling activation of T-cells critically depends upon T-cell adhesion to the

APC [215] and extensive rearrangements of the actin cytoskeleton and cell deforma-

tion [222]. These observations suggest that physical forces exerted on the TCR may

contribute to activation by facilitating conformational changes in the TCR/CD3

complex, resulting in signaling activation, TCR clustering, and the assembly of

signaling microclusters [136, 135, 111]. Alternatively, the applied forces may act

directly on signaling molecules, resulting in conformational changes that activate

additional signaling cascades [221]. In support of these views, direct application of

external forces to anti-CD3 or pMHC coated beads or biomembrane force probe can
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lead to activation of the TCR [111, 91, 132].

In the literature, two different studies have examined the forces generated by T

cells when they are activated. The first one used a biomembrane force probe (BFP)

to measure pushing and pulling forces when primary T-cells engulf anti-CD3 coated

beads [91]. The small size of the beads precluded spatial resolution of the forces

exerted across the cell-substrate contact. The second study plated primary human

CD4+ cells on elastomer pillar arrays coated with anti-CD3 or pMHC and showed

that T-cells exert traction forces in response to CD3 and CD28 costimulation [11].

Considering the small size of T cell compared with adherent cells, the micropillar

assay introduces a high percentage of nonstimulatory empty space between pillars,

and artifacts like local assembly of proteins around the pillars.

In most adherent cells, stresses are generated by the coordinated action of actin

polymerization and myosin contraction, which drive actin flows. Although several

studies suggest that cytoskeletal dynamics plays a crucial role in TCR signaling

[8, 12, 222], the delineation of contributions of different cytoskeletal components to

force generation is unclear. Regardless of the origin of the force, the overall mag-

nitude of generated forces will depend on the elastic properties of the cellular actin

network and the dynamics of actin assembly and disassembly. The effective internal

stress generated in the viscoelastic actin network can be estimated from the mate-

rial parameters of the cell [15]. Independent measures of resting Jurkat cell stiffness

suggest that these are soft (Youngs modulus, 50-100 Pa [pN/µm2], [169]), which
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likely limits the peak internal stresses to 100 Pa at best. Whether these forces are

sufficient for activation is unknown.

Here we use traction force microscopy (TFM) to measure the forces exerted

by T-cells during activation [47]. We find that Jurkat T-cells are weak force gen-

erators on anti-CD3 coated elastic substrates, exerting peak stresses reaching 20-30

Pa on stiff substrates. These forces are largely driven by actin polymerization dy-

namics. Nonmuscle myosin II (NMII) activity is dispensable for maintenance of

traction stress, but contributes to the generation of forces. We find that T-cell sig-

naling activation is sensitive to the stiffness of the activating substrates and this

mechanosensitivity is correlated with increased cytoskeletal forces. Our results sug-

gest that forces generated by the actomyosin cytoskeleton are essential for continuous

receptor activation and TCR signal maintenance at the immunological synapse (IS)

[89].

3.2 Results

3.2.1 Traction forces generated by Jurkat T-cells

To measure the forces exerted by T-cells, we performed TFM, which allows

the measurement of spatially resolved traction stresses. Jurkat T cells expressing

enhanced green fluorescent protein (EGFP)-actin were allowed to spread on poly-

acrylamide gels coated with anti-CD3 and embedded with fluorescent beads on the
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Figure 3.1: Jurkat T-cells are weak generators of traction force. (a,b) Time-

lapse (a) fluorescence images and (b) traction stress color maps of EGFP-actin

expressing Jurkat T-cells spreading on an anti-CD3 coated elastic substrate (of stiff-

ness 1.2 kPa). (c) Vector map of traction forces showing the direction of stresses.

Scale bar, 10 µm. (d) Development of stress as a function of time for four sample

cells on substrate with Young modulus (E) below 1 kPa. (e) Histogram of stress

exerted by Jurkat T-cells on substrate with E < 1 kPa (n = 486). (f) Comparison

of traction stresses on substrates coated with stimulatory antibody anti-CD3 and

nonstimulatory antibody anti-CD43.
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top surface as fiduciary markers. We imaged the spreading dynamics of cells starting

from the earliest time points before the cell established contact with the substrate

and continued imaging for at least 15 min. Typically, cells were completely spread

before 15 min, as shown in the EGFP-actin montage of a typical cell spreading on

a gel of stiffness 1.2 kPa, which approximates the stiffness of APCs, [21] (Figure

3.1a). To measure the traction stresses exerted by cells, we tracked the fluorescent

beads using particle image velocimetry (PIV). The first frame of the live-cell image

sequence, before the cell exerted traction on the surface, was used as the zero dis-

placement or reference image. Unconstrained Fourier transform traction cytometry

(unconstrained FTTC; [26]) was used to calculate the traction stress map from the

measured bead displacements at different times (Figure 3.1b). The average traction

stresses exerted by cells were in the range of 0-10 Pa, in the same range as stresses

exerted by neuronal growth cones [15, 114, 92]. By contrast, rapidly migrating ker-

atocytes and strongly adherent fibroblasts are known to exert traction stresses in

the range of 100 Pa to several kPas [47, 68, 194].

We found that the traction stress was concentrated at the periphery of the

spread area coincident with lamellipodia and lamella. The stresses exerted were

higher a few microns internal to the periphery of the cell, which corresponded to

actin-dense regions. Stresses were exerted centripetally and directed toward the cell

center, as seen in the spatial map of vectors corresponding to the exerted stresses

(Figure 3.1c). We used EGFP-actin images to track cell edges (as shown by the

black line in Figure 3.1c) and to obtain the contact area of the spreading cell at
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each time point. The total force exerted by the cell rapidly increased over the first

5 min after initiation of spreading, until it reached a maximum and subsequently

either saturated over the rest of the observation period or showed a slight decrease

(Figure 3.1d). The total force exerted by cells on gels of stiffness below 1 kPa be-

tween 14 and 15 min showed considerable variation, with a median value of 0.47 nN

(Figure 3.1e).

We further verified that the observed forces were specific to TCR-ligand me-

diated activation and spreading. On substrates coated with the nonstimulatory

antibody anti-CD43, cells established contact and spread but to a smaller extent

than on stimulating surfaces. The total force exerted by cells on a nonstimulat-

ing surface were significantly lower than the stress exerted on stimulating surfaces

(anti-CD3: 0.93± 0.85 nN, n = 383; anti-CD43: 0.51± 0.14 nN, n = 20; p = 0.002,

1< E <2 kPa, Figure 3.1f). This indicates that the observed forces are largely a

direct consequence of TCR-ligand binding leading to T cell activation.

3.2.2 Role of the actin cytoskeleton in force maintenance

We next sought to examine the molecular basis of force maintenance in Jurkat

T-cells. The actomyosin cytoskeleton is likely to be essential to force maintenance

in these cells, similar to other cell types [152, 8]. We perturbed the activity of the

actomyosin cytoskeleton using small-molecule inhibitors, which are powerful agents
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for rapid and reversible inhibition of target molecules [164]. Because preincubation

of cells with inhibitors can affect cell spreading, we added inhibitors to cells after

they had spread and measured the changes in cellular traction stress after inhibitor

application. Unless specified, we added inhibitors to cells after 15 min of stimulation

on anti-CD3 coated gels of stiffness in the range of 0-2 kPa and continued to image

the bead movements and GFP-actin dynamics simultaneously for an additional 15

min in order to measure the effect of the drug on forces. This method allows us

to examine the effects of inhibitors on a single-cell basis and avoid the problems of

population averaging that might mask the inhibition effects (Figure 3.1e).

We first focused on the role of actin polymerization and depolymerization

dynamics on cellular traction forces with latrunculin-A (Lat-A) to inhibit polymer-

ization of actin, jasplakinolide (Jasp) to stabilize preexisting actin filaments, and

CK-666 to inhibit the activity of Arp2/3 complex, an actin-nucleating protein. In-

hibition of actin polymerization by Lat-A resulted in the disruption of preexisting

lamellipodia and actin-rich structures visible in the cell surface contact zone (Figure

3.2c), with a reduction in traction (Figure 3.2d). Application of Lat-A 5 min after

initiation of spreading resulted in similar disruption of actin and loss of traction

(unpublished data). As a control, addition of dimethyl sulfoxide (DMSO) carrier

alone did not significantly affect the actin structures in the cell or the traction forces

generated (Figure 3.2a,b).

Initial TCR signaling upon stimulation has been shown to result in immedi-
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Figure 3.2: (Continued on next page).
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Figure 3.2: Loss of F-actin dynamics reduces cellular force generation.

Fluorescence images (top) and traction color maps (bottom) of EGFP-actin

expressing Jurkat T-cells on elastic substrate 1 min before (left) and 9 min after

(right) application of (a,b) 0.1 % DMSO, (c,d) 1 µM latrunculin-A, (e,f) 100 µM

CK-666, and (g,h) 1 µM jasplakinolide. (i) Average stress as a function of time for

a representative cell in each of the conditions described. The dashed line represents

the time point at which the drug was added. (j) Comparison of the after-to-before

ratios of traction stresses for application of Lat-A (n = 22), CK-666 (n = 24), and

Jasp (n = 20) with control (n = 64). The average stresses in a 3-min time interval

just before addition of drug and in the time interval 9-15 min after addition of

drugs were used to compute the ratios. **p < 0.01, ***p < 0.001.

ate recruitment of signaling proteins that subsequently lead to Arp2/3 activation

[16, 24, 59, 117]. Inhibition of Arp2/3 activation by addition of CK-666, an in-

hibitor that locks the Arp2/3 complex in an inactive conformation [156], led to the

retraction of lamellipodia and termination of edge dynamics (Figure 3.2e). This

is in accordance with previous observation that the Arp2/3 complex is essential for

maintaining lamellipodial structure [78]. Consistent with our expectations, addition

of CK-666 led to a reduction in the traction forces, as seen from the before-and-after

traction maps (Figure 3.2f).

Stabilization of F-actin upon addition of Jasp, which was reported to inhibit
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actin retrograde flow in both T cells [8, 216] and neuronal growth cones [198], re-

sulted in the reduction of traction forces in most cells, as shown in the traction maps

before and after inhibitor addition (Figure 3.2h). However, the effect of Jasp was

somewhat variable, with some cells showing little effect of Jasp on actin flow and

edge dynamics. These cells typically did not show a decrease in traction.

Representative curves of the time evolution of average stress upon addition of

inhibitors or control (DMSO carrier alone) are shown in Figure 3.2i. To characterize

the change in stress upon inhibitor application for a population of cells, we quanti-

fied the ratio of mean stress after (between 9 and 15 min) and before (-3 to 0 min)

application of drug for each cell. Lat-A treatment decreased the traction stresses

by 65 % (stress ratio: 0.41 ± 0.14, p = 9.7 × 10−13), whereas CK-666 resulted in

a 50 % decrease (stress ratio of 0.61 ± 0.15, p = 1.3 × 10−8), and Jasp treatment

decrease stress by 40 % (ratio: 0.73 ± 0.31, p = 0.0018) (Figure 3.2j). All of these

were significantly different from the control (stress ratio 1.2± 0.3).

To characterize the effects of these drugs on the actin cytoskeleton, we used

the superior optical resolution of TIRF microscopy to observe the change in F-actin

levels at the cell-substrate interface. We allowed the EGFP-actin Jurkat cells to

be activated on anti-CD3 coated coverslips for 10 minutes, treated with drugs for 3

minutes, fixed the cells and stained with phalloidin. Jasp treatment resulted in cells

that retracted from the coverslip, in accordance to previous reports [8, 216]. On

the other hand, Lat A reduced f-actin level at the IS by 35 % (phalloidin intensity:
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Figure 3.3: Effects of actin inhibitors on f-actin level and retrograde flow.

(a) Phalloidin intensity of cells treated by actin inhibitors at 10 min after activation

for 3 minutes. (b) Snapshot of an EGFP-actin cell spreading (left; scale bar, 10

µm), and a kymograph (right) drawn along the dashed line. The linear streaks

illustrate actin retrograde flow in the cell periphery. Scale bar, 5 µm (horizontal), 5

min. (vertical). (c) Ratio of retrograde flow speed after to before drug treatment.
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0.42± 0.09, p = 4.4× 10−5), and CK-666 reduced f-actin level by 16 % (phalloidin

intensity: 0.55± 0.15, p = 0.03) (Figure 3.3a).

Previous studies on neurons established a connection between traction forces

exerted by cells, cell stiffness, and internal cellular forces with the rate of actin

retrograde flows in the cell lamellipodia [33, 15]. We therefore examined how lamel-

lipodial actin flows in Jurkat T cells were affected by drug treatments, by conducting

live cell imaging of EGFP-actin cells activated on glass, adding drugs at 10 min-

utes and imaged for further 10 minutes. We quantified the rate of actin flow using

kymography of actin structures in the lamellipodia of spreaded cells (Figure 3.3b).

Upon lat A application, the actin structure in most cells disappeared, forbidding

tracking of retrograde flow (data not shown). Fortunately, retrograde flow was still

observable after CK-666 treatment. By taking ratio between retrograde flow speed

after to before drug treatment, we found that Arp2/3 inhibition significantly slowed

down retrograde speed by 50 % compared with the control (Figure 3.3c). Our results

indicate that actin polymerization, depolymerization and retrograde flow dynamics

are important for the generation and maintenance of forces in activated Jurkat T-

cells.
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3.2.3 Role of NMII activity in force generation

The role of NMII in organizing the IS is controversial. [81]. It was suggested

that NMII activity is required for central supramolecular activation cluster (cSMAC)

formation [93], while later studies provided evidence contradicting this hypothesis

[12, 118, 221]. As TFM provides direct measurement of forces generated by T cells

during activation, we therefore investigated the role of NMII in force generation

during T cell signaling activation.

We first examined the effect of blebbistatin, which inhibits NMII’s ATPase

activity, on traction force maintenance. Because blue light inhibits blebbistatin, we

turned off the blue illumination just before adding 50 µM blebbistatin to spreading

Jurkat cells and compared the traction stress, as shown in the before and after stress

maps (Figure 3.4, a and b) for a representative cell. Qualitatively, we found that

the cell edge continued to behave in a dynamic manner upon blebbistatin addition.

We measured actin retrograde flow in the presence of blebbistatin using TagRFP-T-

actin-labeled cells and found that the flow was largely intact, indicating that NMIIA

does not play a significant role in maintaining actin flow in these cells (Figure 3.5a,

n = 11, p = 0.08). We noted that the average stress ratio (0.94 ± 0.43) was not

significantly different from the control (stress ratio, 1.18 ± 0.28; n = 66, p = 0.57;

Figure 3.4e). On the other hand, treatment with 100 µM Y-27632 decreased the

stresses exerted, as shown in the stress maps (Figure 3.4, c and d). The cell contact

area did not decrease upon drug application, and actin lamellipodial structures were
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Figure 3.4: Effect of NMII activity on cellular force generation. (Continued

on next page)
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Figure 3.4: (a,c) Fluorescence image and (b,d) Traction stress color map of

EGFP-actin Jurkat T-cell on an elastic substrate 1 min before (left) and 9 min.

after (right) addition of (a,b) 50 µM blebbistatin (c,d) 100 µM Y-27632.(e) After-

to-before ratios of traction stresses upon addition of blebbistatin (N = 66 cells),

control (DMSO carrier), Y-27632 (N = 25 cells) and water control (N = 20 cells).

**p < 0.01. (f, g) Traction stress color maps for example cells which f: DMSO and

g: Blebb was added at 5 min after stimulation. (h) Traces of the stress ratio exerted

by four example cells with drug addition 5 min after stimulation (vertical dashed

line). Red lines indicate vehicle, and blue lines indicate blebbistatin addition. (i)

Summary statistics of the stress ratio after drug addition for cells averaged between

9 and 12 min after stimulation. N = 37 for blebbistatin and N = 44 for DMSO (*

p <0.05, Wilcoxons rank sum test). Scale bars, 10 µm.

maintained even after the addition of Y-27632 (Figure 3.4, c and d). The summary

data show a 33 % decrease in stresses (stress ratio, 0.73 ± 0.44) as compared with

the water control (1.09± 0.12; p = 0.004; Figure 3.4e).

Because myosin II contraction affects conjugate formation [93] and T-cell ac-

tivation in the early stages [221], it is possible that NMII is required for the initial

generation of forces but not at later stages. To test this, we applied blebbistatin 5

min after the initiation of spreading and examined the effect on the exerted forces.

We found that whereas the stress exerted by the cell continued to increase until
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TagRFP-T-actin cells did not modulate retrograde flow speed. (b) Average stress

exerted by cells between 14-15 min on substrate with E < 1 kPa. shMYH9: NMII

knockdown cells; Y: 100 µM Y-27632.

saturation upon vehicle application (Figure 3.4f), the total force exerted by the cell

plateaued near the value at 5 min or decreased slightly upon blebbistatin applica-

tion. However, blebbistatin did not abolish the forces (Figure 3.4, g and h), and a

few cells continued to show increase in traction. Summary data of the stress ratios

after and before treatment show that blebbistatin-treated cells have a significantly

lower stress ratio than DMSO (carrier)-treated cells (n = 37, p = 0.04). This con-

firms that myosin II is required for the initial phase of force generation but is not

involved at later time points (Figure 3.4i).
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To further examine the role of NMIIA in force generation, we knocked down

NMIIA expression in these EGFP-actin expressing Jurkat cells by RNA interference

against NMIIA [162]. The resultant cell line, labelled shMYH9 in Figure 3.5a, had

50 % knockdown of NMIIA (data not shown). These cells exert 25 % less stresses

than wildtype cells (Figure 3.5, WT: 1.38± 0.75 Pa, n = 486; shMYH9: 1.04± 0.59

Pa, n = 59; p = 0.0026). Alternatively, we allowed the EGFP-actin expressing cells

to spread in the presence of 100 µM Y-27632 [196], which inhibits NMII contractility

in these cells [8]. Cells were able to spread and exerted traction forces, but with a

40 % reduction (Figure 3.5b, Y: 0.82± 0.51 Pa, n = 49, p = 1.2× 10−6). Therefore,

we conclude that NMII activities contribute to stress generation in Jurkat T cells

at IS.

3.2.4 Effect of substrate stiffness on cellular forces, mor-

phology, and signaling

Many types of cells that interact with soft materials have the ability to sense

the stiffness of their mechanical environment and respond to it by exerting larger

forces on stiffer substrates [101]. Whether Jurkat cells respond similarly to sub-

strate stiffness is not known. Recent experiments suggest that physical forces, such

as those generated by the actin cytoskeleton, may be important for T cell signaling

[111, 132]. To examine whether Jurkat cells are sensitive to substrate stiffness, we

fabricated polyacrylamide gels with varying concentrations of cross-linker to change
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Figure 3.6: Substrate stiffness affects traction forces and signaling. (a)

Total force exerted by cells as a function of gel stiffness. The data are fit to a

sigmoidal curve (Eq. 3.1). (b) Top, DIC images of two representative cells spreading

on soft (200 Pa) and stiff (10 kPa) gels. Bottom: kymographs of edge dynamics

along the red lines. (c) Example time traces of Pearson coefficient between cell

edge’s radial position profile at 15 min and at earlier time points for cells spreading

on soft (< 3.6 kPa, blue) and stiff (> 3.6 kPa, red) gels. (d) Comparison of the

percentage of time for which the cell edge profile had correlation coefficient > 0.5

compared with the profile at 15 min for soft and stiff gels. (e) Western blot of pY

levels of LAT and ZAP-70 at the indicated times on two different gel stiffnesses (0.4

and 9 kPa). (f) Densitometry analysis of relative pY levels. Analysis represents

average of five different experiments.

the elastic modulus of the gels. We used gels that ranged in stiffness from 200 Pa to

5 kPa embedded with beads and imaged for traction force measurements as before.

For comparison of forces between gels of different stiffness, we calculated the aver-

age traction stress exerted by stably spread cells between 14 and 15 minutes after

spreading initiation. We found that the average stress exerted by cells increased for

soft substrates and rapidly saturated for stiffer substrates, as shown in Figure 3.6a.

Similar results were obtained for earlier time points (unpublished data). Our obser-

vations suggest that Jurkat T-cells have the ability to sense the substrate stiffness

and modulate the internally generated cytoskeletal forces as a function of substrate
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stiffness. We fit our stress-stiffness data to a sigmoidal function from active matter

theory (Figure 3.6a, [138]):

Feq = Fsat
kext

kext + kC
(3.1)

Here Feq is the traction force at equilibrium, Fsat is the saturation force, kext is the

stiffness of the external environment, and kC is the cytoskeletal stiffness of the cell.

kC also represents a characteristic stiffness scale of which kext > kC represents stiff

regime and otherwise. Fitting results gave Fsat of 6.7 nN and kC of 3.6 kPa. It

suggested an operational definition in which gels with stiffness < 3.6 kPa could be

denoted as soft and gels of higher stiffness as stiff.

We then examined whether cell morphology and edge dynamics showed dis-

tinct behaviors depending on gel stiffness. We found that cells were more dynamic,

with cell edges displaying extensive protrusions and retractions and cell shape re-

modeling on soft gels. On stiff gels, cells typically spread out smoothly, with the

cell edge advancing in a more isotropic manner. Furthermore, cell edge dynamics

continued for a much longer period of time on softer gels, whereas on stiffer gels,

cell edges either remained stably spread with minimal edge dynamics or retracted.

This is illustrated in Figure 3.6b with kymographs drawn radially across the cell for

representative cells on soft (left) and stiff (right) gels. We quantified the dynamics

of cell morphology by comparing the radial distance profile (from the cell center

around the cell edge as tracked from EGFP-actin images) at 15 min with that at

each earlier time point. We calculated the Pearson correlation coefficient of these
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two profiles as the cell edge evolved in time. Representative time courses of the

correlation coefficient for cells spreading on soft (< 3.6 kPa, blue) and stiff (> 3.6

kPa, red) gels are shown in Figure 3.6c. On stiff gels, the correlation coefficient

was small initially, indicating considerable edge dynamics, but approached 1 as the

cell periphery remained stable and persistent. However, on soft gels, the correlation

coefficient remained low throughout, indicating ongoing edge dynamics during the

movie. To quantify the population response to substrate stiffness, we calculated the

percentage of time, P (t), that the correlation coefficient was > 0.5, that is, with

a shape similar to that at 15 min (Figure 3.6d). We found that cells on soft gels

were significantly more dynamic, with low P (t) (Mann-Whitney U-test, p < 0.001)

compared with those on stiff gels. These observations demonstrate that cell mor-

phologies are more dynamic on soft substrates.

Recent work has shown that primary T-cells show enhanced signaling on stiff

elastic substrates compared with softer ones [102]. However, the softest substrates

used in that study (10 kPa) were much stiffer than the stiffest ones used in our force

measurements (8 kPa), while typical APC stiffness is < 1 kPa. We confirmed that

Jurkat T-cells showed phosphotyrosine (pY) signaling on the anti-CD3 coated gels

of different stiffnesses used in our study and not on poly-l-lysine coated gels (Figure

3.7). We next examined whether the differences in observed forces and morphology

at varying gel stiffness were associated with differences in signaling activation. As

it is difficult to sample signaling on a continuous range of substrate stiffnesses, we

chose two specific stiffness values (≈ 0.4 and ≈ 9 kPa) as representative soft and stiff
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Figure 3.7: (a) Widefield images of EGFP-actin labeled Jurkat cell spreading on

an poly-L-lysine coated glass surface with phosphotyrosine staining (top) and actin

fluorescence image (bottom). (b-d) Widefield images of EGFP actin cells spreading

on anti-CD3 coated substrates of indicated stiffness. Gel compositions were (3:0.1,

5:0.1 and 10:0.1 of acrylamide:BIS). All scale bars are 10 µm.
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substrates, respectively. We allowed the cells to spread on gels for specific times (3,

6, and 15 min) before lysing them in situ and used the cell lysates for SDS-PAGE

analysis. Western blotting for phosphotyrosine (pY) residues was used to analyze

the relative pY levels at various time points on gels of different stiffnesses. Figure

3.6e shows the results of a representative SDS-PAGE analysis for soft and stiff gels.

As seen from the bands of pY labeling, signaling is activated in cells spreading on

both types of gels and appears to peak within 3 min of contact formation. However,

for stiff gels, pY levels decrease after 6 min, whereas for soft gels, the pY levels

appear to persist for a longer time (as the band appears more intense even at later

time points). To quantify the development of signaling, we calculated the relative

pY levels for the 35- to 40-kDa band, likely corresponding to phosphorylated LAT,

for soft and stiff gels. We found that pY levels peaked at 3 min on stiff gels and

rapidly declined, whereas on softer gels, the levels were lower but sustained even

at 15 min after stimulation (Figure 3.6f). We observed the same trend for bands

corresponding to ZAP70/SLP76. Our results suggest that the temporal evolution of

early signaling in Jurkat T-cells is sensitive to substrate stiffness and soft substrates

support signal maintenance.

3.3 Discussion

Mechanical forces have been implicated to play a role in TCR signaling and

activation. Here we measured the traction stresses generated by Jurkat T-cells and

transmitted through TCRs to the contacting surface. We find that T-cells are soft
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and weak force generators exerting average stresses on the order of 0-13 Pa during

activation by anti-CD3 coated elastic substrates. The stresses are distributed pe-

ripherally around the contact zone. The forces increased as the cell spread upon

stimulation and are maintained for at least 15 minutes. Moreover, these forces are

specifically generated in response to CD3 stimulation similar to human primary

CD4+ cells [11]. Overall, the forces are of lower magnitude than those associated

with integrins in adherent cells [194].

Previous studies have established that actin cytoskeletal dynamics is essential

for TCR signaling and activation [8]. We found that an intact and dynamic F-actin

cytoskeleton was essential for the exertion of traction stresses by Jurkat T-cells. As

expected, inhibition of actin polymerization with Lat-A substantially decreased the

forces generated. Stabilization of F-actin by Jasp consistently led to a reduction

in forces in cells in which actin flows and edge dynamics were inhibited upon Jasp

treatment. We also found that the Arp2/3 complex was required for force main-

tenance, suggesting that the biochemical pathway that leads to Arp2/3 activation

and actin polymerization [77] might also link activated TCR to the actin cytoskele-

ton physically [16]. We further found that actin flow speeds were reduced by the

inhibition of CK-666 (Figure 3.3c). It is not clear whether the stress relaxation

effects of CK-666 are due to disruption of the physical link between TCR and actin,

modulation of retrograde flow speed or combination of both.

Myosin II-driven contraction of actomyosin networks is the major contributor
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to actin retrograde flow in neuronal growth cones and filopodia [142, 198] and con-

tributes 90% of the traction stress exerted by mouse embryonic fibroblasts, most

likely related their contractions on actin to form stress fibers [27]. In contrast, the

role of myosin II in TCR signaling and IS formation has not been unequivocally

established [81]. The primary form of myosin II present in T-cells is myosin IIA,

with a very small fraction of myosin IIB [98, 93]. We find that suppression of NMII

ATPase activity by blebbistatin did not affect the maintenance of traction forces in

cells that were already spread (Figure 3.4a). In contrast, inhibition of Rho-kinase

by Y-27632 modestly decreased the forces (Figure 3.4c). We suspect this is because

the mechanism of action of these two commonly used drugs are different, in which

blebbistatin is known to weaken NMII-actin binding while Y-27632 promotes NMII

light chain dephosphorylation. More in-depth study to distinguish between these

two aspects of NMII activities will be the subject of future research.

On the other hand, application of blebbistatin during the early phase of spread-

ing retarded further development of tractions (Figure 3.4g). This agrees with further

experiments in which we directly measured traction stress generated by cells under

depletion of NMIIA or Rho kinase inhibtion (Figure 3.5b), and found that both

reduced the cell’s stress. Therefore, we establish that NMII activity is essential to

the buildup of traction forces during IS formation.

We found that Jurkat T cells exert larger forces on substrates of increased

stiffness (in the stiffness range of 200 Pa to 6 kPa), indicating that they are able to
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sense the substrate rigidity over this large range and modulate their force generation

accordingly. This appears to be in contrast to a recent study on human primary

CD4+ cells spreading on anti-CD3 coated micropillar arrays [11], which did not show

any change in traction force per pillar as a function of pillar stiffness. However, our

results are consistent with a previous study using biomembrane force probe, which

showed that T cells engage anti-CD3 coated beads and pull with loading rates that

increased with probe stiffness [91].

Many cell types, including fibroblasts, neutrophils, and neurons, have been

shown to be mechanosensitive, being able to exert increasing force on substrates of

greater stiffnesses [134, 33, 159]. The characteristic stiffness scale of 3.6 kPa derived

from active matter theory (Figure 3.6a, [138]) is substantially higher than measured

stiffness of Jurkat T cells [21, 169]. We think that could be due to stiffening of cell

cortex after actin polymerization induced by TCR triggering [23], as cell stiffness of

the T cell IS is never measured in the literature.

Mouse primary T-cells have been found to respond to the mechanical stiff-

ness of substrates, with increased interleukin-2 production and enhanced tyrosine

phosphorylation on stiffer polyacrylamide gels [102]. However, the stiffness range

explored in those studies was considerably higher (10-200 kPa), and traction forces

were not measured. In vivo, T-cells spread on APCs that are soft (in the stiffness

range of a few hundred pascals to 1 kPa; [21]), suggesting that our observations of

enhanced dynamics of the cell edge on soft gels may be physiologically relevant to
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T-cell function.

The repeated edge dynamics may result from repeated bursts of actin polymer-

ization leading to multiple leading edges and formation of fresh signaling clusters at

the nascent cell periphery. In contrast, on stiff substrates, the cell-edge expansion

is smoother, without repeated protrusions. Previous studies have shown that the

continuous recycling of signaling intermediates (tyrosine kinases and substrates) is

essential for maintaining levels of pY after cell spreading [124, 28, 199]. Thus it is

likely that the continued cell-edge dynamics of cells on softer substrates may medi-

ate the sustained signaling observed on these substrates.

Hydrostatic pressure interacts with actomyosin contractions to determine the

cell shape and the cellular forces during cell blebbing [34] and mitosis [185]. A recent

study measured the intracellular hydrostatic pressure in lamellipodia and lobopodia

during cell migration and found values of 300 Pa and 2200 Pa respectively [165].

This is comparable in magnitude to stress generated by the cell on a 2D [126] or

3D matrix [127]. Although intracellular pressure of T cell during formation of IS

is unknown, we expect that it would be of the same order of magnitude as the

stress generated by the cell, and that varying the osmotic pressure can change the

stress level significantly. Whether osmotic pressure takes part in mechanosensing,

for example, Jurkat T cells activated on soft and stiff substrates might have different

osmotic pressures, is still an open question.
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The molecular mechanisms that underlie mechanosensing remain a topic of

intense study [150]. A number of studies suggest that integrins may serve as puta-

tive mechanosensors [4, 116]. We find that Jurkat cells exhibit mechanosensitivity

even without integrin engagement, suggesting that these mechanisms may be quite

general. Jurkat cells also lack CasL (a p130Cas homologue), a protein implicated

in mechanosensitivity [104, 177, 221, 118]. In conclusion, our studies show that

mechanosensitivity may be a general feature of T cells. Our results place constraints

on the forces that these cells are able to generate and thereby apply on TCR-ligand

linkages to potentially initiate signaling.
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Chapter 4

Microtubule dynamics at T cell

contact regulates stress

maintenance through

Rho-ROCK-myosin II pathway
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Abstract

T cell receptor (TCR) triggering and subsequent T cell activation are essen-

tial for adaptive immune response. Application of mechanical forces to the TCR

has been shown to induce signaling events, and conversely, T cell generates and

maintains traction forces on the cognate antigen presenting cell during activation.

Although actin dynamics have been shown to be essential for force generation, the

molecular mechanism regulating these dynamics remain poorly understood. Here,

we report traction forces generated by Jurkat T cell to be regulated by microtubule

dynamics through Rho activities and nonmuscle myosin II (NMII) light chain phos-

phorylation at the T cell-substrate interface. These results underscore crosstalk

between actin and microtubule cytoskeletal dynamics at the contact and their role

in regulating cellular mechanosensing during T cell activation.
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4.1 Introduction

As a central player in the adaptive immune response, T lymphocytes are acti-

vated when T cell receptors (TCRs) on their surface recognize cognate peptide-major

histocompatibility complex (pMHC) expressed on surface of antigen-presenting cells

(APCs) [95]. A burst of actin polymerization is triggered upon TCR stimulation

[23] and T cell spreads over surface of the APC [78], forming a molecular architec-

ture known as the immunological synapse (IS) [148, 79]. This is accompanied by

activation of the well-studied TCR signaling pathway [173, 218]. Apart from the

actin cytoskeleton, of equal importance is the rapid polarization of the microtubule

cytoskeleton that facilitates directional secretion of cytokines and cytolytic factors

towards the APC [186, 78, 215, 90].

Since the proposal of the receptor deformation hypothesis [136], there has

been keen interest in the role of physical forces during T cell activation, owing

to novel techniques to analyze forces T cell experiences and exerts, from molecu-

lar scale of single TCRs [111, 131, 132, 46] to cellular scale of the whole T cell

[91, 161, 102, 11, 87]. It is now established that T cells are mechanosensitive to sub-

strate stiffness and are able to generate significant traction stresses, albeit relatively

weak compared with adherent cells [71]. Actin polymerization/depolymerization

dynamics are essential for T cells to maintain dynamic traction stresses, calcium

signaling and integrin affinity maturation [87, 8, 38]. However, as the actin cy-

toskeleton is known to be regulated by multiple factors and molecular pathways,
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and forms distinct structures in different zones of the IS [8, 216], it remains chal-

lenging to dissect the relative contributions to stresses by individual pathways.

Apart from the well studied phenomenon of microtubule organizing center

(MTOC) translocation during IS formation [186, 140, 215], vigorous microtubule

dynamics at IS was demonstrated in T cell-APC conjugates by live cell microscopy

recently [139, 167]. Interestingly, the microtubule-Rho pathway was shown to reg-

ulate T cell migratory polarity [191], and Rho kinase inhibition led to rapid stress

relaxation in anti-CD3 stimulated Jurkat T cells [87]. Whether these pathways

crosstalk with the actin cytoskeleton and take part in mechanosensing by T cells is

poorly understood.

In this report, we propose a molecular mechanism of how traction stresses are

generated and maintained at the T cell-substrate interface. Using traction force mi-

croscopy (TFM) and quantitative fluorescence imaging, we show that microtubule

dynamics at the contact acts as a signaling module that may regulate contractility

during activation of both Jurkat cells and human primary CD4+ T cells. Contractil-

ity is regulated by bipolar filament assembly of myosin II at the interface, providing

a source of traction forces in addition to that from the better understood actin flow.
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4.2 Results

4.2.1 Microtubule network forms a radially emanating dy-

namic array

In order to visualize the microtubule and actin networks clearly and to reveal

the locations of microtubule plus-tips, we permeabilized Jurkat cells after 10 minutes

of anti-CD3 stimulation, fixed and stained for tubulin and f-actin [142, 115]. Extrac-

tion by 0.1 % Triton-X-100 removed cytosolic proteins efficiently (Figure 4.1a), and

the MTOC was preserved and manifested as a focal point from which microtubules

emanated. As reported before [216, 8], the f-actin network is organized into distinct

zones of lamellipodia (asterisk), actin-arc rich lamella (yellow arrow) and sparse

inner actin network (red arrow) (Figure 4.1a). From the overlay, we locate most

microtubule plus-tips to be at lamella, where they colocalized with the actin arcs

(cyan arrow). This organization of actin and microtubule networks agrees with a

recent microscopy study of cytotoxic T cell-APC conjugates [167] and is reminiscent

of that in neuronal growth cone [178] and the leading edge of a migrating cell [176],

except that the IS is relatively radially symmetric [58].

To characterize microtubule dynamics in live cell, we first established a E6-

1 Jurkat cell line of EGFP-actin transfected with retroviruses carrying TagRFP-

T-tubulin, and conducted dual color imaging in total internal reflection fluores-

cence (TIRF) mode. Upon stimulation by surface-bound anti-CD3, the MTOC ap-
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Figure 4.1: Microtubule dynamics in Jurkat cells upon activation. (a) E6-1

cell fixed and permeabilized at 10 minutes and stained for tubulin (red) and F-

actin (green). (b) E6-1 EGFP-actin TagRFP-T-tubulin cell spreading on anti-CD3ϵ

coated coverslip. Live cell snapshots at 0 and 10 minutes were shown. (c) Montage

of E6-1 cells transfected with EB3-tdTomato activated by anti-CD3. (d) and (e)

Snapshots of actin (top) and tubulin (bottom) before (left) and 10 minutes after

(right) (c) 100 nM nocodazole and (d) 0.5 µM Taxol application. (f) EB3-tdTomato

before (left) and after (right) inhibitor application. Scalebar = 10 µm.
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peared within 1-2 minutes after the cell started spreading, and vigorous microtubule

polymerization/depolymerization activities were maintained for at least 10 minutes

(Figure 4.1b, Supplemental video 1). We also transfected Jurkat cells with EB3-

tdTomato to observe growing plus tips of microtubules. As expected, the MTOC

appears as a common starting point of EB3 comets, and we confirmed that the

movements of these comets are mostly radially outward, while some comets were

observed to travel tangentially at the periphery (Figure 4.1c and Supplemental video

2).

We then proceeded to observe the effects of microtubule-specific drugs on the

dynamics of the microtubule array by adding drugs at 10 minutes after cell con-

tact with the coverslip. To avoid disrupting microtubule network structure and to

only target on polymerization/depolymerization dynamics, we used a low dose of

100 nM nocodazole for inhibition of microtubule polymerization or 500 nM Taxol

for inhibiting microtubule depolymerization, as characterized in [215]. As shown in

Figure 4.1d, e and Supplemental video 3 and 4, low doses of nocodazole and Taxol

both lead to decreased fluorescence intensity of microtubules suggesting a decreased

number of microtubules, while having minimal effects on actin network structure or

cell morphology. In addition, both nocodazole and Taxol treatments led to disap-

pearance of EB3 comets, confirming their inhibition of microtubule growth (Figure

4.1f and supplemental video 5).
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4.2.2 Microtubule dynamics regulate traction stress through

Rho activity

To characterize the effect of mcirotubule dynamics inhibition on traction force

maintenance, we carried out TFM and observed changes in traction stresses af-

ter drug treatment as described before [87]. We observed increases in traction

stress upon stabilization of microtubules, as shown in Figure 4.2a (Stress ratio

= 1.42 ± 0.63, n = 20, p = 0.0001 for nocodazole; Stress ratio = 1.34 ± 0.32,

n = 34, p = 0.04 for Taxol).

It was shown before that microtubule dynamics can regulate Rho guanine nu-

cleotide exchange factor (RhoGEF) localization [143] and modulate T cell migration

and cytokinesis [191, 67]. We hypothesized the stress enhancement by microtubule

dynamics inhibition might be caused by upregulation of Rho activity, which then

regulates contractility at the periphery as we found previously that Rho kinase in-

hibition reduced traction stresses in Jurkat T cells ([87], Figure 4.5f). Therefore,

we used the Rho kinase inhibitor Y-27632 together with nocodazole to dissect how

microtubule dynamics regulates traction stress in Jurkat cells.

If inhibiting microtubule dynamics enhances contractility through activation

of Rho, simultaneous application of Y-27632 and nocodazole would negate stress

strengthening effect by nocodazole alone. Consistent with our hypothesis, coappli-

cation of Y-27632 and nocodazole resulted in decrease in stress (Figure 4.2b, stress
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Figure 4.2: Effects of microtubule inhibitors on traction stress. (a)
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led to increase in traction stress. (b) Rho kinase inhibition negated the stress
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treatments at 15 min after Jurkat cell spreading in the presence of 100 µM Y-27632.
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ratio 0.86 ± 0.22, p = 0.003). In order to rule out the possibility that microtubule

dynamics and Rho signaling operate independently but have opposite effects on

traction stresses instead of a upstream-downstream relation, we incubated Jurkat

cells in 100 µM Y-27632 for 15 min, activated on elastic substrate in the presence

of Y-27632, and then applied nocodazole for 15 min. This allowed us to examine if

microtubule stabilization increases traction stress in the absence of Rho activity. We

found that for cells already treated with Y-27632, the addition of nocodazole had no

effect on the traction stresses (Figure 4.2c, nocodazole stress ratio 1.31±0.29; vehicle

stress ratio 1.19± 0.17, n = 26, p = 0.58). This suggests that the increase in stress

observed in the presence of nocodazole is mediated by Rho activity downstream of

microtubule dynamics.

4.2.3 Rho activation regulates traction maintenance through

myosin II

Y-27632 inhibits Rho kinase, whose activation leads to NMII light chain phos-

phorylation through inhibition of myosin phosphatase [112, 204]. Therefore we

used calyculin A (CA), a serine/threonine protein phosphatase inhibitor that in-

hibits myosin phosphatase activity and enhances NMII light chain phosphorylation

[96, 204], to ask whether Rho signaling regulates stress through NMII light chain

phosphorylation and bipolar filament assembly [201].

We found that the concentration of CA used in previous literature [224, 214]
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Figure 4.3: Dissecting the role of myosin II in stress maintenance. (a-f)

(a,c,e) EGFP-actin and (b,d,f) stress exerted by the cell before (top) and after
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(g) Stress ratio of Jurkat cells after application of different myosin II inhibitors at

15 min. DMSO and okadaic acid (OA) are negative controls of CA, and water is

negative control of Y and Y+CA.
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(20 nM) was too high for the Jurkat cell system, and caused rapid cell retraction

from the substrate, drastic rise in traction stress, and cortical oscillations (data not

shown). We therefore used a lower dose of 5 nM, which did not cause retraction

from substrate within the 15 minute imaging time window for most cells (Figure

4.3c-f). At this dose, CA treatment significantly increased traction stresses after

15 mins (stress ratio = 1.33 ± 0.39, p = 0.037). As CA inhibits both type 1 and

type 2A protein phosphatases, we used okadaic acid (OA), at concentration that

preferentially inhibits type 2A phosphatase (20 nM) as a negative control [96]. CA

treatment also showed significantly higher stress ratio compared with OA (stress

ratio = 0.85 ± 0.33, p = 0.007). Therefore, we infer that the effect of CA is most

likely due to its inhibition of myosin phosphatase [224, 214].

As myosin phosphatase activity lies downstream of Rho activities, we asked

if inhibiton of myosin phosphatase can revert the stress relaxation effects of Rho

kinase inhibition. We used coapplication of CA and Y-27632 and compare with

Y-27632 alone. As shown in Figure 4.3e and f, presence of CA reversed the effect of

Y-27632 (Stress ratio = 0.96± 0.52, n = 25, p = 0.41). Unfortunately we were not

able to address whether myosin phosphatase is strictly downstream of Rho, as CA

incubation had a drastic effect on cortical actin structure and inhibited spreading

altogether even at a mild dose. Overall, our data suggest positive correlation be-

tween NMII light chain phosphorylation and traction stress maintenance in Jurkat

cells.
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4.2.4 Myosin II is recruited during contact formation

The role of NMII in organizing the IS is controversial in the literature [81].

Recent studies show that NMII is dispensable for inward transport of TCR micro-

clusters and formation of IS [98, 221, 12, 216], but TFM data suggest that NMII

contributes to traction force build up but not its maintenance [87]. Moreover, NMII

ATPase and Rho kinase inhibition experiments showed blebbistatin treatment did

not change while Y-27632 treatment decreased the traction force maintenance in

Jurkat cells ([87] and Figure 4.3g). This calls for visualization of NMII dynamics

and quantification of NMII localization and activation level during T cell spreading.

We cloned and transfected TagRFP-T labelled regulatory light chain (MYL12B)

into EGFP-actin expressing Jurkat cells. Imaging of these dual-transfected cells in-

dicated that NMII undergoes retrograde flow that spans the lamella region (Figure

4.4a and Supplemental Video 6), as was previously described [8, 216]. More im-

portantly, we observed that NMII is recruited subsequent to initial actin polymer-

ization and cell spreading [23, 120]. To quantify this, we measured actin and light

chain TIRF intensity inside the contact as a function of time, as shown in Figure

4.4b. We calculated the ratio between average intensities at 9-10 minutes and 1-2

minutes as the ”protein recruitment index” to quantify the level of protein recruit-

ment. Comparison of protein recruitment indices of 13 cells indicated that during

cell spreading, the total actin content at the interface remained constant despite

vigorous polymerization/depolymerization dynamics (index = 1.0± 0.2), but NMII
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Figure 4.4: Myosin II dynamics during T cell spreading. (a) Tracking of

intensities of EGFP-actin (blue) and MYL12B-TagRFP-T (green) in cell shown

in Figure 4.4a in the first 10 minutes. (b) Myosin II showed significantly higher

protein recruitment index than actin. Protein recruitment index is defined to be
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min after stimulation, costained with (c) anti-myosin IIA and phalloidin and (d)

anti-myosin IIA and anti-tubulin. Arrow points to region of NMII accumulation

which is actin-sparse.
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is actively recruited into the synapse (Figure 4.4c, index = 1.8±0.4, p = 6.4×10−6).

We then used fixation after permeabilization as described before (Figure 4.1b)

to visualize actin-bound NMII with F-actin and microtubules respectively. We per-

meabilized the cells at 10 min after activation for immunostaining, when NMII

recruitment has mostly saturated (Figure 4.4b). We found that NMII localizes to

the lamella ring behind the cell edge and within actin-sparse central region (arrow

in Figure 4.4d). Overlay with microtubules shows that the lamella form a ’cage’ to

confine the plus-tips of microtubules (Figure 4.4e).

4.2.5 Microtubule dynamics and Rho signaling regulate myosin

II light chain phosphorylation

We investigated how the small molecules Y-27632 and nocodazole used in force

maintenance experiments influence NMII localization and light chain phosphoryla-

tion [201]. Jurkat cells were allowed to be activated for 10 minutes, treated with

drugs for 10 minutes, permeabilized and fixed (Figure S1a). Quantification of the

level of bound NMIIs in the TIRF plane reveals that both nocodazole (NMII inten-

sity: 0.81± 0.17, p = 0.0038) and Y-27632 (0.82± 0.22, p = 1.6× 10−4) treatments

increases NMII binding at the interface by 14 % (vehicle: 0.71±0.18, Figure S1b,c).

To confirm the physiological relevance of this finding, we repeated the experiment

with purified human CD4+ T cells and proceeded with the same procedure. As

shown in Figure S1e,f, nocodazole (NMII intensity: 1.1 ± 0.4, p = 1.4 × 10−9) and
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Y-27632 (1.1 ± 0.3, p = 3.9 × 10−4) both increased bound NMII compared with

vehicle (0.96 ± 0.24), with similar percentage increases as in Jurkats. Therefore

the opposite effects of Rho kinase and microtubule dynamics inhibitions on stress

maintenance cannot be explained by modulation of NMII-actin binding.

We next compared the level of monophosphorylated myosin light chain at ser-

ine 19 (pMLC) at contact after different treatments, followed by conventional fixa-

tion procedures (Figure 4.5a). For Jurkat cells, Y-27632 treatment reduced pMLC

level by 24 % (vehicle: 0.55 ± 0.27; Y-27632: 0.42 ± 0.24, p = 0.0038), while noco-

dazole treatment resulted in significant 20 % increase in pMLC level (0.65 ± 0.34,

p = 0.0036, Figure 4.5b,c). We obtained similar results for primary CD4+ cells,

in which Y-27632 treatment reduced pMLC level by 40 % (vehicle: 0.065 ± 0.019;

Y-27632: 0.040± 0.013, p = 8× 10−19) and nocodazole treatment resulted in signif-

icant 12 % increase in pMLC level (0.073± 0.016, p = 0.0011, Figure 4.5d,e).

To conclude, the traction stress maintained by T cells at contact is positively

correlated with the pMLC level, which is then regulated by microtubule dynamics

and Rho activities at the interface (Figure 4.5f), adding a stress-regulatory role to

the microtubule network apart from the well known function of secretory granules

delivery [186, 167].
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4.3 Discussion

Physical forces have been observed to take part in multiple cell biological pro-

cesses [97]. In the context of IS formation, it is not surprising that T cells generate

significant traction stresses at contact plane [91, 11, 87], which involves extensive re-

organization of surface molecules [148, 79]. In this study, we demonstrated a molec-

ular pathway which originates from microtubule polymerization-depolymerization

activities in lamella (Figure 4.1), regulating Rho activities (Figure 4.2), which then

regulates myosin light chain phosphorylation and formation of bipolar filaments

which correlate with cellular contractility and force generation (Figure 4.3 and 4.5,

[201]).

MTOC translocation has been studied extensively [186, 140, 215, 167] and

is a hallmark feature of the early phase of T cell activation [16, 90]. The micro-

tubule cytoskeleton is dynamic after translocation to the IS ([139] and Figure 4.1a).

The finding that nocodazole and to a lesser extent, Taxol increased traction stress

hints that microtubule dynamics serves as a signaling module that regulates stress

maintenance. As microtubule dynamics is known to regulate Rho activities through

segregation of RhoGEF [209, 143, 144] and Rho kinase inhibition led to decrease

in traction stresses in Jurkat cells [87], the microtubule-Rho-NMII pathway is an

attractive candidate for the stress maintenance mechanism, adding to their reported

role in directing T cell migration polarity [191]. Experiments of nocodazole added

to cells already inhibited in Rho kinase and simultaneously with Rho kinase inhi-
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bition suggest that microtubule dynamics is an upstream negative regulator of Rho

activities, consistent with the role of this pathway in specifying division plane during

cytokinesis [67, 63].

The poorly defined role of NMII in maintaining traction prompted us to inves-

tigate NMII dynamics directly through live cell imaging. Interestingly, we found that

NMII is recruited from the cell body during IS formation rather than being remod-

elled like actin, a phenomenon underappreciated in the literature. The recruitment

took 5-10 minutes in Jurkat cells, and has the same time scale as traction devel-

opment [11, 87]. This suggests that two different processes involving NMII occur

during IS formation, namely, recruitment of NMII and NMII-mediated contractility.

In the T cell literature, most studies used either genetic knockdown [93, 12, 118]

and/or small molecules [93, 12, 221, 8, 216] to perturb NMII functions. Knockdown

experiments reduce the amount of NMII available to be recruited to the interface,

while small molecules inhibit NMII acitivities before and when the cell is activated

on a stimulatory substrate, therefore might affect both processes differentially. This

could be one of the factors that gave rise to inconsistencies between different reports

[81].

Immunofluorescence data showed that traction stress maintained by T cells

does not correlate with the amount of tightly bound NMII, but correlates with the

pMLC level. It is known in the literature that light chain phosphorylation at thre-

onine 18 and serine 19 promotes bipolar filament assembly and ATPase activities
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in vitro [43, 105], and regulation of the phosphorylation/dephosphorylation cycles

maintains tissue integrity during gastrulation [200] and defines the myosin activation

zone during cytokinesis [67]. In the latter example, dynamics of astral microtubules

and their interaction with the cell cortex operate upstream of Rho and MLC phos-

phorylation. Our study suggests T cell might use the same mechanism to activate

NMII locally at the contact and to generate forces to the TCRs during contact with

APC.

Adding to results from our previous report [87], we suggest that Jurkat T

cells have two mechanisms to generate and maintain traction stress: firstly, actin

polymerization/depolymerization dynamics that generate retrograde flow of f-actin

[103, 220]; secondly, phosphorylation of myosin light chain that correlates with cel-

lular contractility [8, 216, 200]. We propose actin dynamics to be the dominant

driving force, as T cells can still reorganize and form IS when NMII is knocked down

[118] or conditionally knockout [12]. By promoting bipolar filament assembly, light

chain phosphorylation increases alignment of actin arcs in the lamella [142, 25, 216],

contributing a significant fraction of the stress. Both mechanisms are likely to be

physiologically relevant as the effects of Rho kinase and microtubule inhibitions on

localization and phosphorylation are observed in both Jurkat and primary human

cells.

Unfortunately, spatiotemporal dynamics of the molecular events depicted in

Figure 4.5f remains elusive: are Rho activities inhibited during microtubule polymer-
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ization or depolymerization? Do NMII-rich zones at the contact represent regions

of high Rho activities? Do regions of strong traction stress colocalize with light

chain phosphorylation and appearance of new TCR microclusters? To answer these

questions, multicolor live cell imaging of EB1 comets [139], RhoA biosensors [163]

and tension fluorescent probes [225, 151] will provide a more complete picture of

crosstalk between cytoskeletal, signaling and force dynamics at the IS.

4.4 Supplementary materials
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Figure S1: Traction maintenance does not correlate with level of actin-

bound NMII (a) Scheme of experiment. Cells (Jurkat/CD4+) were activated for

10 mins, treated with inhibitors for 10 mins, permeabilized and fixed. (b,e) Im-

munofluorescence of NMIIA (green) and tubulin (red) of (b) Jurkats and (e) human

CD4+ T cells permeabilized and fixed as shown in (a). (c,d,f,g) Quantification of

(c,f) NMII and (d,g) tubulin levels of (c,d) Jurkats and (f,g) CD4+ human T cells.

Scalebar: 10 µm.
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Chapter 5

Conclusions and Future Directions

5.1 Conclusions

T cells, with their specific but wide repertoire of antigen recognition capabil-

ities, are key players in our adaptive immune system. Their roles of carrying out

immunosurveillance and mounting immune response upon infection suggest that

they routinely contact various tissue cells with significantly different physical prop-

erties. In this thesis, we focused on elasticity of the environment as a physical cue

that T cells sense and respond to during activation. In chapter 2, we characer-

ized the morphological, membrane and cytoskeletal dynamics during Jurkat T cell

spreading on rigid glass substrates. We found the kinetics of contact area expansion

follows a universal curve and inclusion of factors that favor membrane undulations

gave rise to coupled actin-membrane waves. In chapter 3, we used traction force

microscopy to measure the forces generated by Jurkat T cells during activation

on elastic substrates, and confirmed that they are weak force generators like the
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neuronal growth cone. We found that actin dynamics is essential for generation

and maintenance of these forces, while myosin II activity only contributes to build

up of the forces but not their maintenance. Importantly, we found that Jurkat T

cells sense substrate rigidity by generating more forces on stiffer substrates, while

displaying more protrusion/retraction actiivities and more sustained TCR proximal

signaling on soft substrates. In chapter 4, we found that the microtubule polymeriza-

tion/depolymerization dynamics at the T cell-substrate interface regulates traction

force maintenance. This was achieved through regulation of Rho activities which

promote myosin light chain phosphorylation. Finally in appendix A, we measured

calcium influx by Jurkat T cells and found that it varies biphasically with substrate

stiffness. The calcium signal was found to decrease and became less sustained as

the stiffness approaches ’signaling minimum’ around Young’s modulus of 5 kPa. In

addition, Rho kinase inhibition disrupted both the force generation apparatus and

the calcium-stress relation, resulting in significant changes in the calcium-stiffness

relation, thereby highlighting the Rho-ROCK pathway as an essential modulator of

mechanosensitivity in Jurkat T cells.

The cytoskeletal forces we measured are comparable to that used in vitro to

trigger the TCR complex and signaling [111, 132]. Combined with the measured

relations between stress and stiffness, as well as between calcium influx and stress,

these interfacial forces take part in mechanosensing that convert physical signal of

stiffness of the opposing substrate into a biochemical signal. As these forces origi-

nate from the T cell cytoskeleton rather than an external source and are developed
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over time of contact, they might be essential for the T cell to maintain its signaling

in in vivo immunological synapse.

Different tissues are characterized by varying stiffness. It is unknown whether

stiffness could act as a marker of tissue identity in the T cell immune response. Our

finding that Jurkat T cells’ signaling response being sensitive to substrate stiffness

provides a clue that primary T cell might also use stiffness as an input parameter to

determine outcome of an immune response, to stay tolerant or to proliferate. This is

also important for T cell cancer therapy design, as cancer cells are known to possess

significantly different stiffness from healthy tissues [41].

5.2 Future directions

5.2.1 Primary T cells

Throughout the dissertation, we used the Jurkat E6-1 cell line to carry out

imaging experiment with the exception of the immunostaining experiment of pri-

mary CD4+ T cells in chapter 4. It is highly desirable to investigate mechanosen-

sitivity in primary T cells for two reasons: firstly, primary T cells are not cancer-

ous, therefore they presumably reflect T cells in the most ’natural’ setting. This

is particularly important for investigation of cellular signaling, proliferation and

gene expression, as pathways regulating these processes are often perturbed in can-

cer cells. Secondly, different lineages of primary T cells can be effectively sorted
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through fluorescence-activated cell sorting (FACS). The sorted pure population of

helper, cytotoxic and regulatory T cells allows the exciting possibility to investigate

mechanosensing in these different subtypes of T cells.

As preliminary work, we obtained primary CD4+ human T cells transfected

with LifeAct-EGFP from our collaborator and conducted TFM of these cells acti-

vated on anti-CD3 elastic substrates. We found that similar to Jurkat T cells, they

exert significant traction stress during spreading (Figure 5.1a) and is comparable to

that of EGFP-actin expressing Jurkat cells.

5.2.2 pMHC for activation

We used anti-CD3ϵ to activate Jurkat T cells throughout the thesis, as the

specific antigen Jurkat cells recognize is unknown. Anti-CD3 stimulation might not

be the most physiologically relevant way to investigate forces through TCR complex,

as forces bypass the αβTCR and acted through CD3 molecules, hence disallowing

study of force transmission through the Vα and Vβ domains to the extracellular

domain of CD3, which is of keen interest in the mechanical force model of TCR

triggering.

Another popular, and more physiological TCR ligand used in the literature

is the superantigens conjugated to MHC molecules [174], which allows formation

of IS-containing T cell-B cell conjugate without use of any specific peptides [78].

121



a

 

S
tr

e
s

s
 (

P
a

)

0

4

8

12

16
E6-1 EGFP-actin
CD4+ LifeAct-EGFP

b

Figure 5.1: Traction force microscopy of primary human T cells. (a)

Life-Act-EGFP (left) and traction stress map of a CD4+ human T cell activated on

a 1 kPa elastic substrate for 15 min. Scale bar: 10 µm.(b) Comparison of traction

stress exerted by CD4+ LifeAct-EGFP primary cells (blue) and EGFP-actin Jurkat

cells (red).
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The most sophisticated, but natural setting would be the use of mouse T cells from

transgenic mice that express TCRs with known peptide antigencity. By activating

them on elastic substrates coated with the corresponding pMHC molecules, we can

test whether the mechanosensitivity we observed in this dissertation also applies to

the TCR-pMHC bond.

Use of pMHC is highly desirable as the TCR-pMHC bond is much weaker than

the bond between TCR and its antibody [132]. Recent literature has demonstrated

that transgenic mouse T cells are able to generate significant forces on pMHC coated

micropillars [11], therefore our system should be easily extensible to measure forces

and calcium influx by these transgenic TCR mouse cells.

5.2.3 Physiological relevance of membrane undulations and

actin waves

The membrane undulations and actin waves we observed in chapter 2 in the

presence of FBS are mostly due to weakened cell adhesion to substrate, as we re-

ported that Very Late Antigen-4 (VLA-4, α4β1 integrin) ligation suppressed the

undulations [119]. Although live cell imaging of smoothness of T cell-APC interface

is beyound the resolution provided by light microscopy, electron micrograph of T

cell-APC conjugate often reveals that to be rough [78]. Therefore, it is interesting

to investigate how markers of proximal signaling, for example, phosphorylation of

ZAP-70, Lck, LAT and SLP-76 etc. and calcium influx are affected by the presence
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of FBS as a function of time of cell-substrate contact.

5.2.4 Mechanisms of stress generation

In the thesis, we investigated the role of the cytoskeleton, specifically, actin,

microtubules and myosin II in regulating traction stresses generated by Jurkat T

cell. Our results indicate the most traction stresses are due to actin dynamics, but

how different molecular pathways contributed to regulate actin dynamics is still

poorly undertstood. We have focused on the small GTPase Rho and Rho kinase

pathway that regulates myosin II light chain phosphorylation, but the other small

GTPases like Rac1 and Cdc42 can potentially take part in stress regulation as well.

Another interesting direction is to understand whether signaling microclusters

take part in mechanosensing. Microclusters, similar to focal adhesions, are multi-

meric protein complexes where proetein-protein interactions and signal transduction

take place [218]. While their nanoarchitecture and dynamics are begun to be revaled

by superresolution microscopy [182, 208], to what portion their components being

mechanosensitive is unknown. One prominent example is CasL, a homologue of the

mechanosensitive protein p130Cas. Myosin IIA knockdown mouse T cells activated

by pMHC and intercellular adhesion molecule 1 (ICAM-1) showed significant reduc-

tion of phosphorylation of CasL [118].

To dissect the molecular pathways leading to stress generation, it is necessary
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to conduct live cell multicolor imaging to detect and distinguish events spatiotem-

porally [167]. Recent advance of force biosensors that allow simultaneous TIRF

imaging of forces and fluorescently tagged proteins [151] opens up the possibility to

image actin retrograde flow, EB1 comets, myosin accumulations, microcluster for-

mation etc. together with force patterns, and would greatly speed up the analysis

of spatiotemporal dynamics between the phenomenon of interest and forces, as this

technique is not limited by availability of fluorescent markers in the vicinity of the

cell.

5.2.5 Rho modulated mechanosensitivity and calcium-force

relation

In appendix A, we showed that Rho kinase inhibition led to significant reduc-

tion of calcium influx by Jurkat T cells activated on soft gels. In addition, cells

treated with Y-27632 on soft gels have calcium influx profiles similar to control

cells activated on stiff gels. It appears that the mechanical (stiffness) and chemical

(Rho activity) signals are integrated by the cell that determine the calcium signal.

However, it was shown before and confirmed in our hands (data not shown) that

Y-27632 treatment has no effect on calcium influx by Jurkat T cells activated on

coverslip. To explain the apparent paradox, we hypothesize that Rho kinase inhibi-

tion disrupts mechanosensing apparatus of the cell, and possibly softens the cell so

that the opposing substrate appears to be stiffer than it really is. Glass substrate is

therefore rigid to both control and Y-27632 treated cells, thus results in no change in
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calcium influx. This hypothesis would require more data collection of calcium influx

of Y-27632 treated cells at the higher stiffness to confirm, as it would predict the

’signaling minimum’ stiffness range observed in control cells (around 5 kPa) would

also exist in Rho kinase inhibited cells and would be shifted to a lower stiffness.
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Appendix A

Mechanosensing and signaling

during Jurkat T cell activation
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Abstract

T cells, with their role of carrying out immunosurveillance, are routinely ex-

posed to tissues cells with different stiffnesses. Whether and how substrate rigidity

regulate T cell signaling remains little known. In this study we carried out calcium

imaging of Jurkat T cells activated on elastic substrates with stiffness ranging from

100 Pa to 100,000 Pa, covering the whole range of tissue stiffness including that of

professional antigen presenting cells. We discovered a ’signaling minimum’ stiffness

around 5 kPa and characterized how Rho-ROCK associated contractility modulate

mechanosensitivity of these cells. Our results suggest physical force as an essential

mediator that connects stiffness sensing to intracellular signaling, which directs gene

expression and subsequent immune response.
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A.1 Introduction

Calcium ion (Ca2+) acts as an universal second messenger in virtually all eu-

karyotic cells [65, 2]. Studies have shown that intracellular Ca2+ level elevation being

an integral part of the T cell receptor (TCR) activation response [89, 111, 132]. The

resting T cell cytosolic concentration has been measured to be around 100 nM, but

can be elevated to 1 µM upon TCR stimulation [94, 65]. T cells are extremely sensi-

tive to TCR-peptide-major histocompatibility complex (pMHC) binding such that

a single cognate pMHC can trigger calcium influx [95]. Moreover, Ca2+ influx upon

TCR triggering was recently shown to be correlated with physical forces applied to

T cell [111, 132, 46].

At the single cell level, Ca2+ influx in T cells is heterogeneous [1, 211, 175].

Primary T cells exhibit Ca2+ level oscillations upon stimulation by phytohaemag-

glutinin (PHA) [83], anti-CD3 crosslinking [36] or antigen presentation by antigen

presentating cells (APCs) [1, 211, 175]. These oscillations might enhance signal-

ing efficiency at low stimulation levels [53, 130], as different transcription factors

require different Ca2+ levels to be activated [52]. Sustained elevation is correlated

with peptide antigenicity and dose [1, 211, 175] as well as formation of actin foci in

immunological synapse (IS) [117].

Structural findings showed the CD3ζζ chains were divaricated during TCR

complex assembly, and were brought back together as a mechanical pivot upon

130



cognate pMHC binding [125]. Calcium elevation was suggested to have a role in

facilitating the process, as the immunoreceptor tyrosine-based activation motives

(ITAMs) of CD3ϵ and CD3ζ were exposed to the cytosol upon calcium influx [183],

and were otherwise buried inside the hydrophobic lipid bilayer interior in a resting

T cell [213]. Therefore, a feedback loop appears to operate between TCR triggering

and calcium influx in a healthy T cell, while mechanical force is a possible candidate

to induce conformational change in the TCR complex.

The influx of extracellular calcium in T cell is regulated by store-operated

calcium entry (SOCE). Upon TCR triggering, a tyrosine phosphorylation cascade

[218] leads to phospholipase Cγ1 (PLCγ1) being phosphorylated at Y783. The

resultant activated enzyme catalyzes the hydrolysis of the membrane phospholipid

phosphatidylinositol-4,5-biphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and

diacylglycerol (DAG). IP3 then acts as a second messenger and binds to IP3 recep-

tors on the endoplasmic reticulum (ER), triggering release of Ca2+ from the ER

store. The decrease in Ca2+ in the ER is detected by stromal interaction molecule

1 (STIM1), which then interacts with calcium release activated current (CRAC)

channel protein Orai1 on the plasma membrane. This opens the channel and al-

lows entry of extracellular Ca2+. SOCE is essential for activating gene expression

after TCR stimulation, notably the transcription factors nuclear factor of activated

T cells (NFAT), nuclear factor-κB (NF-κB) and cyclic-AMP-responsive-element-

binding protein (CREB) [65]. Defects in regulating SOCE are associated with im-

munodeficiencies (severe combined immunodeficiency (SCID) etc.) and autoimmune
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diseases (systemic lupus erythemantosus (SLE) and rheumatoid arthritis etc.).

As näıve and memory T cells routinely patrol our body to search for the

cognate APCs [141], stiffness of the opposing substrate is a physiologically rele-

vant parameter which could modulate signaling response of different lineages of T

cells. We are interested in investigating the relationship between the mechanical

properties of the opposing substrate (stiffness), the active response that the T cell

generates (traction forces) and the cellular signaling response (SOCE). The first sys-

tematic stiffness measurements of professional APCs indicated that macrophages,

monocytes and dendritic cells are soft and have Young moduli below 2 kPa [21].

We have previously reported that in this stiffness range, Jurkat T cells display ac-

tive morphological remodelling and more sustained TCR proximal signaling during

activation, compared with higher stiffnesses [87]. Traction force microscopy (TFM)

has the advantage of precise control of rigidity of the underlying substrate. When

combined with calcium imaging, this allows us to study SOCE on substrates with

similar stiffness to APCs, and also on stiffer substrates with elasticity similar to cells

of mesenchymal origin [129]. Our simultaneous measurements of traction force and

calcium levels allows correlation between these two quantities at the single cell level.

There are a few studies focusing on the relationship between calcium influx

and mechanical forces in single cells. One example is keratocytes, in which Ca2+

transients were observed to precede traction stress increases during migration [55].

Similarly, fibroblast cells were observed to display Ca2+ transients coincident with
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traction increase in the direction of local mechanical stretching [153, 155], and on

the other hand, application of shear stress can trigger calcium flickers, which were

shown to steer cell migration [205]. Here we use the Jurkat cell line to study SOCE

on different substate stiffnesses. We have characterized and reported the stress-

stiffness relationship in these cells before [87], and in this report, we suggest the

close relations between stiffness, forces and SOCE during their activation.

A.2 Results

A.2.1 Calcium imaging using widefield OGB-1 fluorescence

We used the nonratiometric calcium dye Oregon Green 488 BAPTA-1 (OGB-

1) to image calcium dynamics in Jurkat T cells. The dye has an in situ Kd of 430

nM and dynamic range of 2.6 as measured in HeLa cells [192]. We first checked

the efficacy of OGB-1 epifluorescence to report relative calcium changes by imag-

ing these cells in wide-field and TIRF simultaneously. TIRF provides a shallow

illumination depth of 100-200 nm [7], hence avoids cell body fluorescence and pro-

vides a more quantitative measure of dye fluorescent intensity than widefield. We

plated Jurkat T cells loaded with OGB-1 on nonstimulatory coverslips coated with

poly-L-lysine (PLL), and recorded the fluorescence of the cells as it attached. In

all experiments, we started imaging within one minute after plating to ensure con-

sistency between different movies and to include most of the initial calcium spike.

Comparison between wide-field (blue) and TIRF (red) intensities shows that the
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Figure A.1: (Continued on the following page.)
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Figure A.1: Establishment of quantitative calcium imaging with OGB-1.

(a) Wide-field and TIRF OGB-1 intensities of a Jurkat cell attached on nonstim-

ulatory surface. (b) Application of 2 µM BTP2 at 15 min resulted in decrease

of OGB-1 fluorescence for both cells plated on anti-CD3 (blue) or PLL control

(red). The baseline can be extracted as indicated (green dash lines). (c) OGB-1

ratio as a function of time, for cells spreading on anti-CD3 (blue) and PLL (red).

(d) Area under OGB-1 ratio curve for cells activated on stimulatory (α-CD3) vs.

nonstimulatory (PLL) and with Ca2+ level quenched by BTP2 or 5 mM EGTA.

(e) OGB-1 ratios of cells attached on PLL and were treated with 1 µM ionomycin

(blue) or vehicle (red) at 5 minute. (f) Ratio of areas under OGB-1 ratio curve in

the 10 minutes after to the 5 minutes before drug treatments.

cell body fluorescence caused significant overshoot of epifluorescence signal in the

first minute, most likely because the cell has not yet attached. For the time points

afterwards, these two signals followed each other closely (Figure A.1a). Therefore,

epifluorescence is a reliable way to measure Ca2+ levels in cells.

To account for dye loading heterogeneities, we applied a drug that inhibited

SOCE at 15 min after spreading to quench the cytosolic calcium levels back to base-

line. We chose BTP2 (or YM 58483) [226] as we found that this drug induced the

least effect on cell morphology while quenching OGB-1 fluorescence in most cells effi-

ciently, on both stimulatory and nonstimulatory surfaces (Figure A.1b). By imaging
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for a further 15 minutes after BTP2 application, the baseline OGB-1 fluorescence

(F0) was extracted from the time series after drug treatment, as shown by the green

dash lines in Figure A.1b. The ratio between fluorescence levels before 15 min F (t)

and F0m (Figure A.1c) reports calcium levels within single cells quantitatively.

We took two different approachs to show sensitivity of OGB-1 ratio to artifi-

cially induced cytosolic Ca2+ level changes. First, we compared OGB-1 ratio curves

of cells activated on anti-CD3 (α-CD3, stimulatory) against poly-L-lysine (PLL, non-

stimulatory) and used area under the OGB-1 ratio curve before BTP2 application

to measure average calcium influx level. As shown in Figure A.1d, cells spreading

on anti-CD3 coated coverslips showed significantly higher area (n = 43, 2620± 382

s) compared with PLL negative control (n = 44, 2230 ± 620 s) (p = 0.0025). To

confirm the effectiveness of BTP2 to reveal baseline OGB-1 fluorescence, we applied

Ca2+ chelator ethylene glycol tetraacetic acid (EGTA), instead of BTP2 and found

that the area under ratio curve was also significantly lower on nonstimulatory than

stimulatory surface (Figure A.1d). ( Anti-CD3: n = 33, 2580± 790 s; poly-l-lysine:

n = 30, 2060 ± 470 s; p = 0.015). No statistically significant difference was found

between areas under OGB-1 ratio curves of cells treated with BTP2 and EGTA, on

both anti-CD3 coated or uncoated coverslips.

The second approach uses calcium ionosphore ionomycin to artifically increase

intracellular Ca2+ concentration. We applied ionomycin at 5 min after cells attached

to PLL, imaged for 10 min. Example OGB-1 ratio curves of ionomycin (blue) and
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vehicle (red) treatments were shown in Figure A.1e. For most cells, OGB-1 fluores-

cence was increased after ionomycin treatment, but not after vehicle treatment. We

computed the area under the OGB-1 ratio curve for 10 minutes after drug treat-

ment and divided that by the area in the 5 minutes prior to treatment. This ”area

ratio” provides a quantitative readout of Ca2+ influx due to ionomycin treatment

(Figure A.1f), and we observed a significant increase in area ratio for ionomycin/

vehicle treated cells (ionomycin: n = 23, 1.90 ± 0.29; vehicle: n = 28, 1.43 ± 0.24;

p = 5 × 10−6). Overall, our OGB-1 imaging method provides a reliable single cell

readout of Ca2+ levels during Jurkat T cell activation.

A.2.2 SOCE varies biphasically with substrate stiffness dur-

ing Jurkat T cell activation

We next studied the calcium influx by Jurkat T cells when activated on anti-

CD3 coated polyacrylamide gels [87]. By varying acrylamide-BIS ratio, one can pro-

duce elastic substrates that span the whole elasticity range of various tissues (100

Pa - 100 kPa, [188]). The distribution of average influx as a function of substrate

stiffness is shown in Figure A.2a. We found that it showed significant decrease as the

substrate stiffness increased from 100 Pa to 5 kPa (linear regression: p = 2.5×10−6).

Above 5 kPa, the Ca2+ influx increases with stiffness (linear regression: p = 0.0094).

For negative control, we measured average influx of Jurkat T cells plated on non-

stimulatory PLL substrate with various stiffnesses (Figure A.2a) and observed no
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Figure A.2: Ca2+ influx of Jurkat T cells is modulated by substrate rigidity.

(a) Average Ca2+ influx as a function of stiffness. Cyan: PLL; Red: anti-CD3. Cor-

responding tissues with similar stiffnesses were labelled, with information given in a

previous report [188]. (b) Population median (bolded lines) and the range between

first and third quartiles of cells spreading on soft (blue), stiff (red) and rigid (yellow).

dependence of average influx on substrate stiffness (linear regression: p = 0.11). We

measured OGB-1 ratio at 15 min and the rate of decrease of OGB-1 ratio as a func-

tion of stiffness and observed a similar trend (Figure S1). Therefore, our analysis

suggests a biphasic dependence of Ca2+ influx on stiffness.

We were interested in how stiffness modulates the temporal dynamics of Ca2+

levels. We therefore plotted the population behaviour OGB-1 ratios of cells spread-

ing on soft (E < 1.3 kPa), stiff (3 < E < 7 kPa) and rigid (18 < E < 42 kPa)

substrates (Figure A.2b). We observe that the initial Ca2+ rise was similar be-

tween these three stiffness ranges, as seen from the significant overlap between their

midspreads at early time points. However, soft and rigid substrates were better

at sustaining Ca2+ levels compared with stiff substrates, shown by the overlap of

median traces of soft (blue) and rigid (yellow) substrates near 15 min with the stiff

trace (red) being significantly lower.
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A.2.3 Rho activities modulate mechanosensitivity of Ca2+

influx

How do Jurkat T cells sense stiffness of the stimulatory substrate and mod-

ulate their Ca2+ influx accordingly? Mechanical force is an attractive candidate

because TCR complex was shown to be a mechanosensor [111], and we have previ-

ously shown that Jurkat T cells exert stronger traction stresses on stiffer substrates

[87]. We focus on the hypothesis that Ca2+ influx are regulated through stresses

on TCRs, which changes their interaction lifetime with their ligands [132] (Figure

A.3a). Also, Ca2+ levels could have a regulatory effect on on traction stress gener-

ated by the cell. Therefore, it is essential to measure and understand the relation

between Ca2+ influx and traction stress.

Our TFM setup allows us to simultaneously monitor evolution of Ca2+ and

traction stress as the cell spreaded. We used Ca2+ level at 15 min to correlate with

traction stresses exerted by individual cells at that time point regardless of substrate

stiffness. We found that cells exerting stronger stresses are worse at sustaining Ca2+

influx (Figure A.3b, linear regression: p = 7.5 × 10−10), agreeing with the obser-

vation that stress increases but Ca2+ influx decreases with stiffness. However, no

biphasic relationship (or catch bond behaviour) between Ca2+ sustenance and stress

was observed, in contrary to the observation in a previous report [132] for the case

of mechanical triggering of TCR.
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Figure A.3: Rho signaling regulates both stress-stiffness and Ca2+ influx-

stress relations. (a) Hypothesis of mechanosensing mechanism. The cell sense

substrate rigidity through generation of physical forces and magnitude of these

forces regulate Ca2+ influx. (b) Single cell Ca2+ sustenance as a function of

traction stress. (c) Rho kinase inhibition reduced Jurkat cell’s force generation

capability. (d,e) Rho kinase inhibition impaired Ca2+ sustenance for activation on

soft elastic substrate. (f) Rho kinase inhibition significantly changed Jurkat cells’

Ca2+ influx-stress relation.

We then asked whether and how inhibition of Rho pathway, which is a well

known regulator of cellular contractility [123], affects the mechanosensitivity of Ca2+

influx. When we allowed Jurkat cells incubated in 100 µM Y-27632 (Rho kinase in-

hibitor, [196]) to spread on substrates with various stiffnesses, Rho kinase inhibition

consistently resulted in cells generating less traction (Figure A.3c). Therefore, Rho

signaling regulates traction stress generation (Figure A.3a, top half). On the other

hand, whether and how Rho signaling regulates Ca2+ influx is unknown. If the

relationship between Ca2+ influx and traction stresses is not dependent on Rho sig-

naling, one would expect cells activated in the presence of Y-27632 to have higher

Ca2+ influx compared with control on similar substrate stiffness, as the Figure A.3b

suggests that lower stress leads to higher influx. However, careful examination of

Ca2+ influx in the absence and presence of Y-27632 on elastic substrates of Young

moduli between 0 and 2 kPa showed that Y-27632 reduced Ca2+ influx and sus-
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tenance (Figure A.3d), indicating that Rho signaling also regulates the relation

between Ca2+ influx and traction stress. Strikingly, the effect of Rho kinase inhi-

bition is similar to the effect of increased substrate stiffness (Figure A.2b). The

difference in Ca2+ influx between control and Y-27632 treated cells was the most

significant on soft substrates, while on stiffer substrates the difference was only close

to significance (E < 2 kPa: p = 2.9×10−4; 2 < E < 4 kPa: p = 0.058; Figure A.3e).

We finally compared the Ca2+ influx-traction relation between control cells and

Y-27632 treated cells, as shown in Figure A.3f. For both cases, cells exerting lower

tractions have more sustained Ca levels (linear regression: p = 1.7 × 10−5 for Y-

27632 treated cells). However, within the same stress range, Rho kinase inhibition

significantly reduced both Ca2+ sustenance and average influx (data not shown)

compared with control. These results highlight Rho-associated contractility as a

key regulator of calcium signaling in Jurkat T cell which regulates both how stress

depends on stiffness and how the Ca2+ signal depends on stress.

A.3 Discussion

Ca2+ influx is a hallmark feature of T cell activation. Previous literature have

studied the initial rise and sustenance of the Ca2+ signal [211, 22, 95, 219, 12, 175],

how different molecular perturbations (knockdowns [157, 93, 118], mutants [190],

cytoskeletal inhibitions [199, 8, 117] etc.) influence the signal, and how the signal

is generated in the first place [65]. On the other hand, the Ca2+ elevations can also
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feedback to sustain CD3ϵ and CD3ζ chain phosphorylation [213, 183]. As a result,

recent works have used Ca2+ influx as an easy readout of TCR triggering to corre-

late with application of mechanical forces to TCR complex [111, 131, 132, 46] and

with pushing forces exerted by T cells [91] temporally. In this study, we combined

calcium imaging and TFM of the Jurkat Cell anti-CD3 activation system [9], and

used the Ca2+ signal as a readout of signaling output, in response to different input

substrate stiffnesses.

Given T cell’s function of immunosurveillance in various body tissues, it is ap-

parent that they routinely encounter cells with various stiffnesses. Mechanobiology

research has hightlighted the importance of substrate stiffness in driving cell migra-

tion [134], mesenchymal stem cell differentiation [61] and development of metastatic

potential of tumor cells [133]. Two studies in the literature have addressed T cell

activation on soft elastic substrates, but they found contradictory results: one sug-

gested soft substrate enhanced interleukin 2 (IL-2) production [161] while the second

suggested the converse [102]. Unfortunately, the range of substrate stiffness inves-

tigated (minimum of 10 kPa) was much higher than that typical of APCs in both

studies (< 2 kPa, [21]). The stiffness range used in this and our previous study [87]

employed polyacrylamide gels ranging 3 orders of magnitude from 100 Pa up to 100

kPa, spanning the whole stiffness range of living tissues [129].

While ratiometric dyes like Fura-2 are commonly used for calcium imaging in

T cells, OGB-1 is a gold standard for imaging action potentials in neuroscience [35].
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We prefer it over Fura-2 for a few reasons: firstly, its superior optical and chemical

properties that provide brightness and sensitivity to changes in Ca2+ levels, and

secondly, its green emission allows use of the same optical setup as imaging GFP,

hence avoiding UV optics and reduced microscope objective magnification which is

important for simultaneous TFM. The drawback is the need to quench Ca2+ level

at the end of imaging to obtain the baseline fluorescence. Photobleaching was mini-

mal as we seldom see cells with steadily decaying fluorescence when its Ca2+ level is

quenched. Our characterization of the system suggests that this approach is suitable

for large scale calcium imaging and comparison between cells activated on different

substrates and at different dates.

We and other groups have previously characterized the polyacrylamide sys-

tem’s capability to provide a chemically identical environment with stiffness as the

only changing parameter [87]. Our results suggests a biphasic relation between Ca2+

influx and stiffness in Jurkat cells. The existence of ”signaling minimum” around the

stiffness of fat, kidney and lung (Figure A.2c) is surprising. Close look of cells acti-

vated on these stiffnesses revealed weakened Ca2+ signal sustenance (Figure A.2d).

This is in accordance with our previous result that tyrosine phosphorylation of TCR

signaling kinases and adaptors is less sustained on these stiffnesses [87]. Further-

more, the rise of Ca2+ sustenance as stiffness is increased agrees with observation

that TCR proximal signaling increased with stiffness from 10 to 200 kPa [102]. Com-

pared with previous studies, our result has given a more complete picture of how

signaling varies from typical stiffness of APCs (100-1000 Pa) to more rigid tissue
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stiffness of bones and muscles.

Physical forces and stiffness sensing form the basis of mechanobiology [97].

It is natural to hypothesize that mechanosensing by Jurkat cells is mediated by

physical forces the cells exert on the opposing substrate (Figure A.3a), as previous

results by us and other groups [87, 91] has shown that T cells exert higher traction

forces on stiffer substrate. Further, TCR-pMHC interaction was shown to be via

catch-bond in which forces can enhance interaction lifetime [132, 46]. We there-

fore asked whether and how inhibition of Rho pathway, a well-known pathway that

regulates cellular contractility, influences the mechanosensing behaviour of Jurkat

cells. We found that in a Rho kinase inhibited environment, Jurkat T cells were

less capable of sustaining Ca2+ influx on soft substrates, and show strikingly similar

Ca2+ signal as control cells spreading on stiff substrate. Our finding echoes to that

of a previous study, which the investigators cultured various adherent cell types on

substrate stiffness ranging from 0.3 kPa to that of glass [146], and observed that

inhibition of myosin II-associated contractility could promote cell proliferation on

soft substrates, mimicking the effect of increasing stiffness. Our data also showed Y-

27632 treatment changed the Ca2+ influx-stress relation significantly (Figure A.3f),

together indicating Rho signaling as a regulator of mechanosensing of Jurkat cells.

Although Jurkat cells are not ideal for investigation of physiological T cell

signaling [88], our study nevertheless highlights an nontrivial role of substrate stiff-

ness during T cell activation. Our system could be easily extended to primary T
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cells, in which different subtypes of T cells (e.g. näıve, helper, cytotoxic, regulatory,

memory) could have substantially different stiffness dependence in their signaling

response. Also, the similar Ca2+ influx behaviour of Y-27632 treated cells spreading

on a soft gel and a control cell spreading on a stiff gel suggests mechanical (stiffness)

and chemical (Rho) signals can be integrated for mechanochemical information pro-

cessing at the cellular scale. Finally, whether the Ca2+ influx-stress relation is causal

and bidirectional is still open to investigation. Overall, our study highlights tissue

stiffness as a key regulator of Jurkat T cell signaling, and a more holistic undert-

standing of the mechanobiology of T cell activation might be essential for tackling

autoimmune diseases and designing T cell cancer therapy.

A.4 Supplementary materials
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Appendix B

Materials and Methods

B.1 Cells and reagents

B.1.1 Reagents

Anti-CD3 was purchased from eBioscience (San Diego, CA). Antibody against

tubulin, NMIIA and monophosphorylated NMII light chain were purchased from

Abcam (Cambridge, MA). Calyculin A and antibody against doubly phosphory-

lated NMII light chain were purchased from Cell Signaling Technology (Danvers,

MA).Okadaic acid was purchased from Santa Cruz Biotechnology (Dallas, TX).

Y27632 was purchased from SelleckChem (Houston, TX). BTP2 and Taxol were pur-

chased from Cayman Chemicals (Ann Arbor, MI). Jasplakinolide, (-)-blebbistatin

and ionomycin were purchased from Calbiochem (Billerica, MA). 40 % acrylamide, 2

% Bis-acrylamide, ammonium persulfate, and tetramethylethylenediamine were pur-

chased from Bio-Rad (Hercules, CA). FluoSphereRed microspheres, 0.2 µm, were
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purchased from Molecular Probes (Eugene, OR). Poly-l-lysine, latrunculin-A and

nocodazole were purchased from Sigma-Aldrich (St. Louis, MO). Sylgard 164 elas-

tomers were purchased from Ellsworth Adhesives (Germantown, WI). Stainless steel

microspheres were purchased from Salem Balls (Canton, CT). Polystyrene micro-

spheres were purchased from Polysciences (Warrington, PA). Hydrazine hydrate

and colchicine were purchased from Acros (Pittsburgh, PA). L-15 medium was pur-

chased from Life Technologies (Grand Island, NY). All oligos were purchased from

Integrated DNA Technologies (Coralville, Iowa).

B.1.2 Cell culture

E6-1 and E6-1 EGFP-actin Jurkat T cells were a gift from the lab of L. Samel-

son (National Cancer Institute, National Institute of Health) Primary peripheral

CD4+ T cells were generous gift from Dr. Janis Burkhardt, Children’s Hospital

of Philadelphia, Philadelphia, PA. They are cultured in RPMI 1640 supplemented

with 10 % fetal bovine serum and 1 % penicillin-streptomycin. Briefly, cells were

grown in RPMI medium at 37 ◦C in a CO2 incubator. Before imaging, 1 ml of cells

was centrifuged at 240 g for 5 min. The supernatant was removed and the cells were

resuspended in imaging buffer (L-15, Invitrogen, Carlsbad, CA). For experiments

with serum, 10 % fetal bovine serum (FBS) (Invitrogen) was added to the imaging

buffer. For drug inhibitions, drugs were added to the imaging buffer and the cells

were incubated at 37 ◦C for 15 min before imaging.
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B.1.3 Molecular cloning and transfections

TagRFP-T sequence was cloned from pcass TagRFP-T (a gift from Morgan

Huse, Rockefeller University, New York, NY) into pIRES-neo2-PAGFP-tubulin (a

gift from Patricia Wadsworth, Addgene plasmid # 12297, [195]) by polymerase

chain reaction (PCR) with forward primer: GATTAAGCTAGCGGCCGCAGGTG

and backward primer: GTAATCCGGACTTGTACAGCTCGTC to create pIRES-

neo2-TagRFP-T-tubulin. The TagRFP-T-tubulin fragment was then further cloned

into pMSCV-IRES-hygro to create pMSCV-TagRFP-T-tubulin-IRES-hygro, allow-

ing retroviral bicistronic expression of TagRFP-T-tubulin and hygromycin-resistance

gene. MYL12B was cloned by whole cell reverse transcriptase polymerase chain

reaction (RT-PCR) from Jurkat cells [113] with the forward primer: CAACTCGA-

GAATTAAACAACCACCATG and reverse primer:

CATAGCGGCCGCGTCATCTTTGTCTTTGG, and cloned into Z4-MSCV-TagRFP-

T (a gift from Morgan Huse, Rockefeller University, New York, NY). Retroviruses

were generated according to standard protocol [189] with Phoenix Amphotropic cells

and were transduced into Jurkat cells by spin infection. The cells were then selected

in 12.5 µg/ml zeocin for 2 weeks, and sorted with fluorescence-activated cell sorting

(FACS) to obtain high expression clones. Monoclonal cell lines were finally gener-

ated by limiting dilution of the sorted polyclonal population.
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B.2 Substrate preparation

B.2.1 Glass substrates for TIRF imaging

Chambered coverslips (LabTek) were cleaned with 1 M HCl and 70 % ethanol

for 30 min and dried at 37 ◦C for 1 h. Chambers were treated for 10 min with 0.01

% (weight/volume) poly-L-lysine solution (Sigma- Aldrich), drained, and dried for 1

h at 37 ◦C. Chambers were coated with 10 µg/ml anti-CD3ϵ antibody (Hit-3a, eBio-

sciences, San Diego, CA) overnight at 4 ◦C. Excess antibody was removed by exten-

sive washing with phosphate-buffered saline. To test the effect of substrate coverage

on spreading kinetics, the solution antibody concentration was varied over 0.01-10

µg/ml. Cells were seeded onto chambers in the appropriate imaging medium.

B.2.2 Elastic substrates for TFM and characterization

Bulk fabrication of polyacrylamide gels with diameter of 12 mm was followed

as described in [45], with a slight modification to form a thin and dense layer of

fluorescent beads trapped on top of the polyacrylamide gel [19]. Gel stiffness ranges

from 100 Pa to 100 kPa, by varying acrylamide from 2 to 12 % and keeping BIS

at 0.1 %. Before coating of proteins, the top of the gel was observed under an

epifluorescence microscope (TE2000; Nikon, Tokyo, Japan) at 20× magnification in

rhodamine channel to ensure that a monolayer of densely spaced beads was present.

Suitable gels were then attached to the bottom of MatTek 35-mm dishes with a 20

mm diameter microwell (MatTek, Ashland, MA) with Sylgard 164 silicone elastomer

(Dow Corning, Midland, MI). 0.01 % poly-l-lysine was coated on polyacrylamide
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with hydrazine hydrate method [5]. Afterwards, the gels were washed three times

with Dulbecco’s phosphate buffered saline (DPBS), and 10 µg/ml anti-human CD3

(Hit3a) was added to the gel and incubated at 4 ◦C overnight.

Fluorescently labeled Hit3a was used to verify that antibody coating did not

depend on substrate stiffness (unpublished data). After each image acquisition, gel

height was determined by microscope’s focusing mechanism and corrected for axial

scaling [99]. Stainless steel balls (1/64-, 1/32-, and 3/64-in. diameter) or polystyrene

balls (for gels with Young modulus < 300 Pa) were then added to where the time

series was taken. Steel balls were removed by a magnetic stir bar, and polystyrene

balls were removed by bulb aspiration for a few times. The indentation caused by

the ball and the gel height at that spot were recorded. The Young’s modulus of

each individual gel used for the experiments was calculated using a Hertz model for

an elastic substrate with finite thickness [49]. Typically, gels with acrylamide/Bis

ratios of 2:0.1, 3:0.1, 4:0.1, and 5:0.1 were measured to have an average stiffness of

0.4, 2, 4, and 9 kPa, respectively.

B.3 Microscopy

B.3.1 Live cell imaging

Live-cell movies of cell spreading were taken over 15 min at a frame rate of 5

s per frame in bright-field differential interference contrast (DIC), FluoSphereRed,

153



and GFP channels. Images were collected using an inverted microscope (TE2000

PFS; Nikon, Melville, NY) with a cooled charge-coupled device camera (CoolSNAP

HQ2; Photometrics, Tucson, AZ). EGFP-actin and fluorescent beads were imaged

using a 60×/1.49 numerical aperture objective lens and a mercury lamp excitation

for TFM. For TIRF microscopy, the light source were 491 nm and 561 nm lasers

from Andor Technology (Belfast, UK).

The imaging medium used was Leibovitz’s medium L-15 without phenol red

[128], and the dish was kept at 37 ◦C throughout data acquisition by means of an

airstream incubator (Nevtek, Williamsville, VA). Illumination wavelength and ex-

posure times were controlled using a multibandpass dichromatic mirror (Chroma,

Rockingham, VT) and bandpass excitation and emission filters (Chroma) in elec-

tronic filterwheel/shutter devices (Sutter Instruments, Novato, CA). In inhibitor

addition experiments and calcium imaging, data acquisition was paused at 15 min.

drugs at double of target concentration were added at an equal volume as the imag-

ing medium, and data acquisition was resumed for 15 min. The carrier solvent was

maintained at 0.1 % for DMSO and 1 % water.

B.3.2 Immunofluorescence imaging

Conventional fixation was carried out by fixing the cells at 2.4 % paraformalde-

hyde (PFA) for 30 minutes at 37 ◦C, permeabilizing cells at 0.1 % Triton-X-100 for

154



4 minutes at room temperature, blocked with 2 % normal goat serum for 30 min-

utes at room temperature, incubated with primary antibodies overnight at 4 ◦C and

finally incubated in secondary antibodies for 45 minutes at room temperature.

Permeabilization before fixation protocol was adopted from previous studies

[142, 115], with the modification of using a much lower percentage of Triton-X-100

(0.1 %) than previous studies (1 %), so that cell morphology was kept intact during

permeabilization. Cells were activated for specified time period, and a 2× per-

mabilization buffer (10 mM 2-(N-morpholino)ethanesulfonic acid (MES), 130 mM

potassium chloride (KCl), 3 mM magnesium chloride (MgCl2), 10 mM ethylene gly-

col tetraacetic acid (EGTA), 0.2 % Triton-X-100, 8 % Polyethylene glycol (PEG)

8000, 2 % bovine serum albumin(BSA)) were added at equal volume to the buffer

the cells were in for 10 minutes at 37 ◦C. The cells were then washed in wash buffer

(10 mM MES, 130 mM KCl, 3 mM MgCl2, 5 mM EGTA, 4 % PEG 8000, 1 % BSA)

and fixed in 2.4 % PFA in DPBS.

In immunofluorescence experiments, images of four different channels, namely,

interference reflection (IRM), bright field DIC, green and red TIRF fluorescence

were acquired. At the end of experiment, one image of fluorescent dextran solution

was taken for shading correction, and one image with all light sources turned off

was taken for dark noise removal.
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B.4 Image analysis

B.4.1 Tracking of fluorescent beads

For TFM data, the image sequences in FluoSphereRed channel were background-

subtracted with the background estimated from morphological opening and then

input into the freely available MATLAB package MatPIV for particle image ve-

locimetry analysis [187]. The first image in the sequence before the cells contacted

the substrate was taken as the zero-displacement image, and sample drift was cor-

rected for by tracking the displacements of fiduciary beads far away from any cells.

The method was sufficiently sensitive to detect bead displacements in gels up to 6-8

kPa, as verified by single-particle tracking (Figure B.1).

B.4.2 Fourier-transform traction cytometry

To obtain traction forces exerted by the cell, Boussinesq solution of infinite

half space in linear elasticity theory was used, neglecting displacements and forces

in the z direction: [122]: ux

uy

 =
1 + ν

πEr3

 r2 − νy2 νxy

νxy r2 − νx2


 Fx

Fy

 (B.1)

Here a point force Fxx̂ + Fyŷ is applied at origin, uxx̂ + uyŷ is the resultant dis-

placement at (x, y), and r =
√
x2 + y2. Hence, below is the Green’s function of the

Boussineq solution:

G(x, y) =
1 + ν

πEr3

 r2 − νy2 νxy

νxy r2 − νx2

 (B.2)
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Figure B.1: Particle tracking velocimetry can detect bead displacements

on stiff gels. A. Jurkat cell expressing EGFP-actin spreading on a stiff (6 kPa) gel.

B. Image of 200 nm fluorescent bead. C. Zoomed in view of ROI shown in A,B with

bead tracks superimposed on binary image of cell. Tracks for beads under the cell

are shown in red while external beads are shown in white. D. Cumulative histogram

of multiple beads tracked over 15 min. of cell spreading.

157



and given a stress profile of σ⃗(x, y) = σx(x, y)x̂ + σy(x, y)ŷ, the resultant displace-

ment profile is given by: ux

uy

 =

∫ ∫
dx′dy′G(x− x′, y − y′)

 σx(x
′, y′)

σy(x
′, y′)

 (B.3)

Therefore, 2D TFM is to solve the above integral equation. By convolution theorem,

convolution integral is much simplified in the frequency space. We take 2D Fourier

transform of equation B.3:  ũx

ũy

 = G̃

 σ̃x

σ̃y

 (B.4)

 σ̃x

σ̃y

 = G̃−1

 ũx

ũy

 (B.5)

where ũx, ũy, σ̃x, σ̃y, G̃ are the Fourier transform of the vectors and matrices and

G̃−1 is inverse of G̃.

G̃ =
2(1 + ν)

Ek3

 k2 − νk2
x −νkxky

−νkxky k2 − νk2
y

 (B.6)

G̃−1 =
E

2(1− ν2)k

 k2 − νk2
y νkxky

νkxky k2 − νk2
x

 (B.7)

Here kx, ky and k2 = k2
x + k2

y are the wave vector components and magnitude. This

method is known as Fourier Transform Traction Cytometry (FTTC) [26, 172].

In TFM carried out in this disseration, displacement vector maps generated

were then input into an unconstrained FTTC algorithm implemented in MATLAB
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[26] at resolution of 1.6 µm and extended to include finite-thickness correction [193].

The analysis was carried out for every frame in the image sequence, and the analyzed

traction stress data were presented as traction stress magnitude and vector maps

image sequences, respectively. Cells showing significant above-background displace-

ments and traction were chosen by visual observation for cell edge tracking.

Cell boundaries and edge velocities were extracted using techniques described

in [120, 137]. Stress vectors calculated at each grid point from FTTC were linearly

interpolated to each neighboring pixel, and average traction stress magnitude was

obtained by integrating the magnitudes of stress vectors at every pixel inside the

cell boundary, irrespective of the stress direction. The stress curve for individual

cell was smoothed by robust lowess before statistical analysis. Finally, we used the

traction stress measured at the first frame as an estimate of the background stress

noise and was subtracted from the stresses at later times to obtain the effective

traction stress exerted by the cell.

B.4.3 Cell edge dynamics quantification

The centroid of the tracked cell area in the first frame was treated as the cell

center. At each frame, the radial distance r and angle of each piece of the cell edge

from the centroid θ was recorded. The radial edge profile R(θ, t) of the cell at each

time point t was represented by the average r in each bin angle of 6◦. Pearson
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correlation coefficient between the radial edge profiles at 15 minutes (t) and before

(t′) was calculated by the following formula:

ρ(t, t′) =
E[R(θ, t)R(θ, t′)]− E[R(θ, t)]E[R(θ, t′)]√

E[R2(θ, t)]− (E[R(θ, t)])2
√
E[R2(θ, t′)]− (E[R(θ, t′)])2

(B.8)

Here expectation is taken over θ. This calculation was carried out by corr function

in MATLAB.

B.4.4 Quantitative imaging

To analyze immunofluorescence images quantitatively, dark noise was first sub-

tracted from each image. Secondly the image was corrected for illumination shading,

by dividing with dark noise subtracted TIRF image of fluorescent dextran solution

acquired at the end of imaging. Background fluorescence was then estimated from

morphological opening and was subtracted from the corrected image to give the final

quantitative image. Edge of single cells was tracked using cell edge tracking software

on the IRM image. The average intensity in the tracked region was calculated for

the channels of interest (green, red or both).

B.4.5 Densitometry analysis

For densitometry analysis, we first normalized the intensity within the 35- to 40

kDa band (pLAT) and 70 kDa (pZAP70/pSLP-76) by tubulin intensity respectively

at every time point, giving ratio R.
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Michael P Sheetz. Nanometer analysis of cell spreading on matrix-coated sur-

faces reveals two distinct cell states and steps. Biophysical journal, 86(3):1794–

1806, 2004.

[58] Michael L Dustin. Cell adhesion molecules and actin cytoskeleton at immune

synapses and kinapses. Current opinion in cell biology, 19(5):529–533, 2007.

[59] Michael L Dustin and Jay T Groves. Receptor signaling clusters in the immune

synapse. Annual review of biophysics, 41:543, 2012.

[60] M.L. Dustin and A.C. Chan. Signaling takes shape in review the immune

system. Cell, 103:283–294, 2000.

[61] Adam J Engler, Shamik Sen, H Lee Sweeney, and Dennis E Discher. Matrix

elasticity directs stem cell lineage specification. Cell, 126(4):677–689, 2006.

[62] MA Fardin, OM Rossier, P Rangamani, PD Avigan, NC Gauthier, W Von-

negut, A Mathur, J Hone, R Iyengar, and MP Sheetz. Cell spreading as a

hydrodynamic process. Soft Matter, 6(19):4788–4799, 2010.

170



[63] Juan Pablo Fededa and Daniel W Gerlich. Molecular control of animal cell

cytokinesis. Nature cell biology, 14(5):440–447, 2012.

[64] Joseph Fenner, Amanda C Stacer, Frank Winterroth, Timothy D Johnson,

Kathryn E Luker, and Gary D Luker. Macroscopic stiffness of breast tumors

predicts metastasis. Scientific reports, 4, 2014.

[65] Stefan Feske. Calcium signalling in lymphocyte activation and disease. Nature

Reviews Immunology, 7(9):690–702, 2007.

[66] Andrew Fire, SiQun Xu, Mary K Montgomery, Steven A Kostas, Samuel E

Driver, and Craig C Mello. Potent and specific genetic interference by double-

stranded rna in caenorhabditis elegans. nature, 391(6669):806–811, 1998.

[67] Victoria E Foe and George von Dassow. Stable and dynamic microtubules

coordinately shape the myosin activation zone during cytokinetic furrow for-

mation. The Journal of cell biology, 183(3):457–470, 2008.

[68] Maxime F Fournier, Roger Sauser, Davide Ambrosi, Jean-Jacques Meister,

and Alexander B Verkhovsky. Force transmission in migrating cells. The

Journal of cell biology, 188(2):287–297, 2010.

[69] K Christopher Garcia. Reconciling views on t cell receptor germline bias for

mhc. Trends in immunology, 33(9):429–436, 2012.

[70] K Christopher Garcia, Massimo Degano, Robyn L Stanfield, Anders Brun-

mark, Michael R Jackson, Per A Peterson, Luc Teyton, and Ian A Wilson.

171



An αβ t cell receptor structure at 2.5 å and its orientation in the tcr-mhc
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telbrunn, Mónica Gordón-Alonso, Ching-Hwa Sung, Balbino Alarcón, Jesús
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