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The U.S. National Airspace System (NAS) is inherently highly stochastic. Yet,

many existing decision support tools for air traffic flow management take a deter-

ministic approach to problem solving. In this study, we focus on the flight departure

delays because such delays serve as inputs to many air traffic congestion prediction

systems. Modeling the randomness of the delays will provide a more accurate picture

of the airspace traffic situation, improve the prediction of the airspace congestion

and advance the level of decision making in aviation systems.

We first develop a model to identify the seasonal trend and daily propagation

pattern for flight delays, in which we employ nonparametric methods for modeling

the trends and mixture distribution for the residual errors estimation. This model

demonstrates reasonable goodness of fit, robustness to the choice of the model pa-

rameters, and good predictive capabilities. We emphasize that a major objective is

to produce not just point estimates but estimates of the entire distribution since the

congestion estimation models envisioned require delay distribution functions, e.g.



to produce probability of certain delays or expected traffic levels for arbitrary time

intervals.

Local optima problems are typically associated with mixture distribution es-

timation. To overcome such problems, we develop a global optimization version

of the Expectation Maximization algorithm, borrowing ideas from Genetic Algo-

rithms. This optimization algorithm shows the ability to escape from local traps

and robustness to the choice of parameters.

Finally, we propose models to estimate the so called “wheels-off delays” for

flights within the NAS while incorporating a dynamic update capability. Consid-

ering that our objective is to estimate delay distributions, we evaluate alternate

approaches in terms of the variance of the distribution they produce. That is, new

approaches are evaluated based on their ability to reduce variance and their predic-

tive accuracy. We first show that how a raw histogram can be misleading when a

trend is present and how variance can be reduced by trend estimation. Then, var-

ious techniques are explored for variance reduction. The multiple seasonal trends

method shows great capability for variance reduction while staying parsimonious in

parameters. The downstream ripple effect method further enhances the variance re-

duction capability and makes real-time prediction practical and accurate. A rolling

horizon updating procedure is described to accommodate the arrival of new infor-

mation. Finally different models are compared with the current model adopted by

the ETMS systems and the predictive capabilities of all models are shown.

Our data have been derived from Airline Service Quality Performance (ASQP)

and Aviation System Performance Metrics (ASPM) databases provided by the FAA.
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Chapter 1

Introduction

The U.S. National Airspace System (NAS) is inherently highly stochastic. Yet, many

existing decision support tools for air traffic flow management take a deterministic

approach to problem solving. Modeling the flight delay distributions could serve

as inputs to the current decision support tools, shed light on the performance of

airlines and improve the efficiency of the National Airspace System (NAS).

1.1 Background and Motivation

To predict when an airspace sector will become overloaded, the Federal Aviation

Administration (FAA) employs a module called Monitor Alert. This tool predicts

airspace traffic levels by projecting, for each planned flight, time/space epochs

through the airspace based on a single flight plan (route) and a single estimated

departure time. The estimated departure time used is typically the flight’s sched-

uled departure time. This deterministic approach fails to capture three important

stochastic factors: i) the uncertainty in a flight’s departure time (including the

possibility of flight cancellation), ii) changes in a flight’s route immediately before

takeoff or after the flight is airborne, and iii) airspace queueing effects. On-going

research and development efforts are seeking to develop stochastic models to replace

this deterministic system (see Chandran (2002) for preliminary work and Wanke
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et al. (2005) for an alternative approach). This thesis represents one component of

these research efforts that addresses factor i). That is, in this study we describe

a model for estimating flight departure delay distributions. We emphasize that a

major objective is to produce not just point estimates but estimates of the entire

distribution since the congestion estimation models envisioned require delay distri-

bution functions, e.g. to produce expected traffic levels for arbitrary time intervals.

It is perhaps unnecessary to emphasize the potential benefits of reducing airspace

congestion and delays. As an example, delays directly attributed to air traffic con-

trol actions are estimated to cost airlines 2.9 billion dollars in 1998 in addition to

the cost of delays borne by passengers (ATA, 1999).

The Bureau of Transportation Statistics (BTS) releases summary statistics

and basic analysis on airline performance each month. Most of its delay analysis fo-

cuses on arrival delays rather than the departure delays since arrival delays are more

closely related to ultimate passenger satisfaction. On the other hand, when trying

to understand the source of arrival delays and airspace congestion in general, study

of departure delays becomes quite relevant. We should also note that the BTS anal-

ysis and most prior studies of airspace delays typically only provide average delay

statistics and do not focus on estimates of distribution functions. Probably the most

typical approach to estimating distributions for aviation analysis involves the gener-

ation of histograms from historical data. In Inniss and Ball (2004), such an approach

is used to estimate airport departure capacity distributions. The estimates vary by

hypothetical “seasons”, which are determined through an optimization model. This

approach to characterizing seasonal variation jumps from one estimated distribution
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to another at discrete points in time. The approach developed in this thesis employs

smoothing methods to allow for continuous variations in estimates over time, which

is much more consistent with the underlying physical system. SimAir, a modular

airline simulation tool developed in the year 2000, employs raw historical aggregate

distributions (Rosenberger et al., 2000). Although raw historical distributions are

a simple way to capture departure delays, they can potentially be too sensitive to

specific random variation in the data. Chapter 4 also shows that the raw histogram

can be biased when trends are present in the data. In our analysis, we attempt to

separate random variation from observable patterns in the data. Specifically, we

characterize the underlying mechanisms behind delay, then model and regenerate

delay using functional characterizations. In that sense, our method could be used

as input into simulation tools such as SimAir. One of the distinctive features of our

model is the characterization of seasonal and daily delay patterns. This is one as-

pect in which it distinguishes itself from other work on modeling delay distributions

(e.g. Mueller and Chatterji, 2002). Also, we consider a flexible continuous proba-

bility model for the error distribution while Mueller and Chatterji (2002) assume

a discrete Poisson model. While the authors consider data across several different

airports and airlines, we focus here on one particular airport/airline combination,

and a longer time span, with the goal of extracting airport/airline specific patterns.

We want to point out that our method is flexible and can be readily adapted to

other airline/airport combinations.

The delay values we consider are the departure delays because such delays

serve as inputs to many air traffic congestion prediction systems. Modeling the
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randomness of the delays will provide a more accurate picture of the airspace traffic

situation, improve the prediction of the airspace congestion and advance the level of

decision making in aviation systems. Specifically, there are two types of departure

delays: the push-back delay and wheels-off delay. Push-back delay measures the

discrepancy between the scheduled departure time and the actual departure time

from the gate (push-back time) and wheels-off delay in this study measures the

discrepancy between the proposed wheels-off time and the actual wheels-off time.

Our model starts with the push-back delay and then extends to the wheels-off delay.

Section 4.1.1 shows the connection of the two delays and gives details of how to

incorporate the analyses to improve the current aviation system. Other delays, such

as delay in the air and arrival delay, are all generated after the flight departs. There

is a body of related, prior research that uses models to estimate departure delays or

employs departure delay estimates within broader models. These models typically

address problems involving airport surface congestion. For example, Odoni et al.

(1994) develop a non-homogeneous queueing model to analyze congested airports.

Shumsky (1997) extends this model and estimate take-off times under non-steady

state conditions. Idris et al. (2002) develop a queueing model for taxi-out time

estimation. The result of our work could potentially be used as inputs into any of

these models.

A key component of our model is the estimation of the delay propagation effect.

Delay built-up from previous flights is known as the delay propagation and its effects

on delays have been studied in several prior papers (see for example Beatty et al.

(1998), Schaefer and Millner (2001) and Wang et al. (2003)). Our work provides a
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functional characterization of this effect at a single airport and uses the underlying

function as input into departure delay estimates.

In addition to the daily propagation effect, many other factors influence depar-

ture delay, such as weather conditions, holiday demand surges, luggage problems,

mechanical problems, airline policies, airport congestion, etc. Instead of studying

the impact of each individual factor alone, we group factors into three major cate-

gories in Chapter 2: seasonal trend, daily propagation pattern and random residuals.

Our model uses each of these three categories as an individual building block. To

estimate the seasonal trend and the daily propagation pattern, we employ a smooth-

ing spline model. Its nonparametric nature eliminates the need for assuming a rigid

(and possibly incorrect) form for the dependence of response and predictors (Hastie

and Tibshirani, 1990). In our analysis, we do not have prior knowledge of the form

of the seasonal trend nor of the daily propagation pattern. In addition, by using

a smoothing spline, we can treat time as a continuous factor, which is appropriate

since the delay at the end of one month will not vary significantly from the delay

at the beginning of the next month; there is a similar smooth fluctuation in delay

over the course of one entire day, making the smoothing spline also an advantageous

approach for addressing the daily propagation effect.

We assume a mixture model for the residuals and estimate the mixture-

components using the EM (Expectation Maximization) algorithm. The EM algo-

rithm is known for its fast convergence, stability and convenient implementation in

mixture problems (Bilmes, 1998). One drawback of EM is that it typically converges

only to a local optimum of the likelihood function. The mixture model likelihood,
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however, is known to have many local, sub-optimal solutions, especially when the

data-dimensionality and/or mixture-number are large (McLachlan and Peel, 2000).

This means that EM can get trapped in a solution far away from the global optimum

(see e.g. Jank, 2006a,b).

In an effort to find the global optimum, we develop a global optimization

version of EM by combining EM with the ideas of the Genetic Algorithm (GA). GAs

were first introduced by Holland (1975) based on the principles of natural selection

or “survival of the fittest” in the evolution of species. The GA approach has been

applied to many areas including marketing, biology, engineering, etc. In this study,

we use the principles of GA to overcome local maxima in mixture distributions

within the framework of the EM algorithm. We want to point out that there exists,

to date, only little research on making EM suitable for solving global optimization

problems. Some very recent efforts into that direction include Heath et al. (2006),

Jank (2006a) or Pernkopf and Bouchaffra (2005).

Finally, we propose three models to model the flight wheels-off delays with

dynamic updates. We take the approach from the variance reduction perspective,

relaxing the assumption of the aggregated trends. These models are expected to

further reduce the variance and allows variation in the trends, thus more closely

representing the fight ID/category differences. Dynamic updating feature is an im-

portant characteristic of these models as it is required by the Enhanced Traffic

Management System (ETMS). The current models employed by ETMS are pre-

sented and comparison of the models will be shown side by side.

Our data come from ASQP (Airline Service Quality Performance) and ASPM
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(Aviation System Performance Metrics) databases provided by the FAA.

1.2 Model Application

We now describe how our model can be applied to improve congestion prediction

within the National Airspace System (NAS). Our long-term research objective is a

fairly complete overhaul of the current mechanism for predicting airspace congestion.

Here, we show that our model in its current form can be used in the current system

to improve the air traffic control process.

In order to manage air traffic flows within the U.S., the Federal Aviation

Administration (FAA) has contracted with the Volpe National Transportation Sys-

tems Center to operate the enhanced traffic management system (ETMS). Airspace

sectors are three-dimensional volumes of airspace managed by a single team of con-

trollers. Safety concerns dictate that controller workload should be kept within

certain bounds and limits are placed on the number of aircrafts that can simulta-

neously occupy a sector. The Monitor Alert function within ETMS provides pre-

dictions when such overloads will occur (VNTSC, 2003). The goal of our work is

to replace the current deterministic model for providing such predictions with a

stochastic one.

We now provide a slightly simplified version of how Monitor Alert operates and

then describe our approach to enhance it. We start by defining a set of variables

defining future states, which we initially assume are deterministic. Later we will
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relax this assumption, by treating them as random variables.

F = set of flights under consideration

Ii(w, t) = 1 if flight i occupies sector w at time t

0 otherwise

N(w, t) = the number of flights occupying sector w at time t

ETMS continuously updates estimates of N(w, t). The monitor alert function

then compares these with sector capacities so as to determine if an alert is necessary.

Since N(w, t) =
∑

i∈F Ii(w, t), the process of computing N(w, t) can be reduced to

computing Ii(w, t) for each flight i. ETMS maintains a prediction of the flight plan

for each flight. Given an estimate of flight i’s departure time, tidep, the flight plan

provides a deterministic prediction of the times at which the flight will pass through

a series of airspace locations along its planned route. Specifically, it predicts the time

at which the flight will pass over sector boundaries, and thus determines Ii(w, t).

Let τ denote the present time and tisch the scheduled departure time of flight i, then

ETMS and monitor alert operate as follows: if τ ≤ tisch, tidep is set equal to tisch and

if the flight has not departed but τ > tisch, tidep is set equal to τ . Once the flight

has departed, its airspace position and flight plan are dynamically updated based

on current information.

There are many stochastic elements to this problem—our goal here is to ad-

dress one of them, namely the possible variation in the flight’s departure time.

Specifically, for the case where τ ≤ tisch, we treat tidep as a random variable, which

8



tidep

depart enter

tidep + ti,win

sector w

t

exit

tidep + ti,win + ti,wpass

If t − ti,win − ti,wpass ≤ tidep ≤ t − ti,win then Ii(w, t) = 1

b b bb

Figure 1.1: A Typical Flight Path Through Sector w

implies that Ii(w, t) and N(w, t) are also random variables. Then, in the above

procedure we can use E[N(w, t)] =
∑

i∈F E[Ii(w, t)]. We note that generally flights

have three states: on ground when τ ≤ tisch, on ground when τ > tisch, and airborne.

Our modifications only apply to flights in the first category. For these flights, since

E[Ii(w, t)] = Pr[Ii(w, t) = 1], we need to consider the problem of computing the

probability that a flight is in a sector at a given time. Now, let ti,win be the time

required for flight i to reach the sector boundary of w under the current flight plan

estimate and ti,wpass be the time required for fight i to pass through sector w under

the current flight plan (see Figure 1.1). Then,

Pr[Ii(w, t) = 1] = Pr(t − ti,win − ti,wpass ≤ tidep ≤ t − ti,win )

In this study, we provide methods for estimating the departure delay, which

measures the discrepancy between the actual departure time and the scheduled

departure time. The departure time tidep is just the summation of the departure

delay and the scheduled departure time.
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For example, suppose a flight i is scheduled to depart at 9:50 am (tisch=9:50)

on Jan 10th. Let ti,win =9 min and ti,wpass=15 min. Given the observation time t at

10:10 am, t− ti,win − ti,wpass=9:46 and t− ti,win =10:01. That is, in a deterministic model,

since the scheduled departure time falls within this time interval, the flight will be

predicted, with probability one, to be in sector w at 10:10 am. However, because

of the possibility of delays, this may or may not be the true. Our model provides a

way to calculate the actual probability of this event,

Pr(9 : 46 <= tidep <= 10 : 01)

= Pr(9 : 46 <= tisch + yi(Jan10th, 9 : 50am) <= 10 : 01)

= Pr(9 : 46 <= tisch + f(Jan10th) + ϕ(9 : 50am) + ǫi <= 10 : 01) (1.1)

where the seasonal delay f(Jan10th) equals 10.7 minutes and the daily propagation

delay ϕ(9 : 50am) equals 4.56 minutes, as predicted by our model.

It is easily demonstrated that equation (1.1) can be written as

Pr(−19.27min <= ǫi <= −4.27min)

= Pr(ǫi <= −4.27min) − Pr(ǫi <= −19.27min)

= 0.628 − 0.205 = 0.42

Therefore the probability that flight i is in sector w at observation time t=10:10

am is 0.42. By applying the same rationale to other flights, we can compute the

expected number of flights in sector w at a specific time t.

10



1.3 Overview of Thesis

The thesis is organized as follows. Chapter 2 introduces the statistical models and

assumptions, describe our data and discuss computational results including model fit

and validation. Chapter 3 presents a Genetic Algorithm version of the EM algorithm

for parameter optimization. Chapter 4 proposes models to estimate the flight wheels-

off delays with dynamic updates within the Enhance Traffic Management Systems.

In that Chapter we also describe how variance can be reduced via trend estimation.

Chapter 5 summarizes our findings and points out areas for further research.

11



Chapter 2

Statistical Models for Estimating the Flight Departure Delays

2.1 Model Structure

There are many factors contribute to the departure delays, such as month, air-

line policy, airports, holiday effect, weather condition, delay built-up from previous

flights, luggage problems, mechanic problems, etc. (see Figure 2.1). Instead of at-

tempting to explicitly account for all the different factors depicted on the left hand

side of the arrows in Figure 2.1, we use the much simpler structures on the right

hand side. Therefore, the departure delay for each individual flight can be decom-

posed into three major parts: a main effect due to seasonal variation, a main effect

due to daily delay propagation, plus random errors. That is, controlling for the

seasonal trend in the data, one day does not impact another. Moreover, controlling

for season and day, the residuals are iid (identically & independently distributed).

Seasonal 
Demand 
Change

Weather 
Impact

Other 
Seasonal 
Factors

Seasonal 
Trend

Crew 
Connection 
Problems

Delay Built -Up 
from Previous 
Flights

Other Daily 
Propagation 
Factors

Daily
Propagation

Pattern

Mechanical 
Problems

Luggage 
Problems

Other 
Random 
Factors

Random 
Residuals

Figure 2.1: Factors Influencing Departure Delay
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2.2 The Additive Model

The model formulation is thus as follows: Let yi(s, t) be the departure delay for

flight i scheduled to depart on day s at time t. Let f(s) be the seasonal trend, ϕ(t)

be the daily delay pattern, and ǫi denote the random error. We propose an additive

model of the form

yi(s, t) = f(s) + ϕ(t) + ǫi (2.1)

where the seasonal trend is a function of only day s and the daily delay pattern is

function of only time t. We further assume that the random error is independent of

both s and t. In that sense, yi(s, t) denotes the delay of any flight scheduled at day

s and time t; if i and i′ were two flights scheduled at the same day and time, then

their only delay-difference would be due to random error ǫi.

Note that in this model we assume the effects of season and day to be additive.

While this model may appear simplistic, our results show high predictive accuracy.

In addition, the simplicity of the model allows for easy implementation, maintenance

and updating, and results in robustness with respect to the choice of the model

parameters.

2.2.1 Data Source and Data Preparation

The data used in this study is based on Airline Service Quality Performance (ASQP)

data, which are collected by DOT (US Department of Transportation) under au-

thority of 14 Code of Federal Regulations (CFR). Any airline with more than 1

percent of total domestic enplanements is required to report performance data to

13



DOT.

In year 2000, 10 of the reporting carriers have more than 1 percent of the do-

mestic enplanements. In fulfilling DOT’s data reporting requirements, the reporting

air carriers use automated and/or manual systems for collecting the flight data. The

10 reporting carriers: American, Northwest, United, and US Airways use ACARS

(Aircraft Communications Addressing and Reporting System) exclusively; Conti-

nental, Delta, and Trans World Airlines use a combination of ACARS and manual

reporting systems; and America West, Southwest, and Alaska Airlines rely solely

on their pilots, gate agents and/or ground crews to record arrival times manually.

FAA (2002)

We choose the year 2000 to avoid the September 11th terrorist attacks and

their consequential impact on airline performance. We split our data into a training

and a validation set: we estimate our model on 70% of the data; the remaining 30%

are used for model validation.

Listed is the data fields we obtained from DOT and the Bureau of Transporta-

tion Statistics (BTS). (See table 3.1)

Let tidep denote the actual departure time and let tisch be the scheduled depar-

ture time for flight i. Pushback delay yi(s, t) is defined as yi(s, t) := tidep − tisch. It

measures the difference between the actual departure time and the OAG scheduled

departure time at the gate. However there are two special situations that worth our

attention:

First, a flight may be originally scheduled to depart late at night, but the actual

departure time is pushed to early in the morning next day. For example, on January
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Table 2.1: Fields and Descriptions

Fields Data Item Type Comments
FAA CARR Carrier Code Character Official IATA Data

FLTNO Flight Number Numeric Range 0001-9999
LEAVE Departure Airport Character
ARRIVE Arrival Airport Character

YYMMDD Year Month Date Numeric
DAYOFWK Day of Week Indicator Numeric
OAG DEP OAG Departure Time Character Format: HHMM
LVETIME Actual Departure Time Character
OAG ARR OAG Arrival Time Character
ARRTIME Actual Arrival Time Character
OAG G2G OAG Elapsed Time - G2G Numeric
ASQP G2G Actual Elapsed Time - G2G Numeric
FLT DEL Actual - OAG Elapsed Time Diff-G2G Numeric Non-Negative
TI DEL Taxi-In Delay Minutes Numeric In Minutes
TO DEL Taxi-Out Delay Minutes Numeric In Minutes

TAXI OUT Taxi-Out Minutes Numeric In Minutes
TAXI IN Taxi-In Minutes Numeric

AIRBORNE Airborne Minutes Numeric

23rd in Year 2000, United Airline (UA) had a flight from Denver (DEN) to Seattle-

Tacoma International Airport (SEA), the scheduled departure time was 20:00 in the

evening, but the actually departure time turned out to be 00:18 in the morning next

day. In cases like this, yi := tidep− tisch +24∗60 may be more appropriate since these

flights are probably delayed flights instead of taking off several hours earlier than

the scheduled time. 1

Second, there is a chance that a flight which is scheduled to depart early in the

morning actually departs earlier—departs at night a day before. This situation never

happened in this Denver-UA case study. But we still build this situation into our

delay calculation algorithm as it may happen in other cases: yi := tidep−tisch−24∗60,

since these flights are probably early flights instead of being delayed for more than

1These situation happens when the actual departure date is not clearly specified.

15



23 hours.

2.2.2 Calculating the Delays
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Figure 2.2: Average Daily Delay in Year 2000

In the year 2000, a total of 92,865 UA flights departed from Denver Interna-

tional Airport, which equals an average of about 254 flights per day. Delay consid-

ered in this study is the pushback delay which measures the difference between the

actual and scheduled departure time. Descriptive statistics for pushback delays (in

minutes) are shown in Table 2.2. We notice that the mean is much larger than the

median, suggesting that delay is heavily right-skewed.

Figure 2.2 shows a time-series plot of average daily delay over the 366 day

period under study. We identify an extreme value around observation 90 (March

20th). On that day, average delay is significantly larger than on any other day. The

following excerpt from the NCAR (the National Center for Atmospheric Research)

news release explains what happened on that particular day (see NCAR, 2002) :
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Table 2.2: Summary Statistics of the Pushback Delay (minutes)

Min 1st Quartile Median Mean 3rd Quartile Max Std.
-18.00 -1.00 3.00 18.16 20.00 802.00 37.16

Cancellations and delays due to icy weather can cost airlines mil-

lions of dollars in a single day. On March 20, 2000, icing conditions at

Denver International Airport forced Air Wisconsin to cancel 152 flights.

United canceled 159 outbound and 140 inbound flights the same day, most

because of weather.

March 20th is a special case with extreme icing condition. Politovich et al.

(2002), describe the results of a survey sent out to pilots that flew in and out of

Denver. On one of the question “Was March 20th an extremely unusual event for

DEN?”, 23 out of 26 pilots answered Yes. Therefore we consider that observation

an outlier and exclude March 20th from our study.

2.2.3 Software Package

In this study, we employ R for all the statistical computations. R is a language and

environment for statistical computing and graphics. It is a GNU project which is

similar to the S language and environment which was developed at Bell Laboratories

(formerly AT&T, now Lucent Technologies) by John Chambers and colleagues.

R provides a wide variety of statistical (e.g. linear and nonlinear modeling,

classical statistical tests, time-series analysis, classification, clustering) and graphical

techniques, and is highly extensible. One of R’s strengths is the ease with which well-

designed publication-quality plots can be produced, including mathematical symbols
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and formulae where needed. R is available as Free Software under the terms of the

Free Software Foundation’s GNU General Public License in source code form.

The packages we employ in our study including library genalg for R based

genetic algorithm, library mclust for model-based cluster analysis , library nor1mix

for normal mixture models and libraryMASS for distribution fitting.

2.2.4 Seasonal Trend

We model the seasonal trend using smoothing splines. This nonparametric approach

allows us to trace the seasonal trend without assuming a rigid (and possibly incor-

rect) functional form for the dependence of response and predictors. Smoothing

splines are also known to provide good fit to the data without exhibiting excessive

local variability (Green and Silverman, 1994).

Let Π = {π1, . . . , πV } be a set of knots (i.e. the break points of the piecewise-

defined spline), then a polynomial spline of order d is given by

f(s) = β0 + β1s + β2s
2 + · · · + βds

d +
V

∑

v=1

βdv(s − πv)
d
+ (2.2)

where a+ = aI[a≥0] denotes the positive part of the function a. Let β= (β0, ...βd,

βd1, ..., βdV )′ be the vector of coefficients in (2.2). The choice of V and d strongly

influences the local variability of the function f . One can measure the degree of

departure from a straight line by defining a roughness penalty

PENm =

∫

(Dmf(s))2ds (2.3)
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where Dm, m = 1, 2, ..., denotes the mth derivative of the function f . Using m = 2

and d = 3 leads to the popular cubic smoothing spline. We find f(s) by minimizing

the penalized residual sum of squares (PENSSE):

PENSSEm=2 =
365
∑

s=1

(ȳs − f(s))2 + λS

∫ 365

1

(f ′′(s))2ds, (2.4)

where λS is the smoothing parameter. (The subscript S distinguishes it from the

subsequent smoothing parameter for the daily propagation pattern λD.) ȳs denotes

the average daily delay and is calculated via

ȳs =

∑

i

∑

t yi(s, t)
∑

t nst

s = 1, 2, 3, . . . , 365, (2.5)

where nst refers to the number of flights on day s at time t.

The parameter λS controls the smoothness of the spline. Large values of λS

produce smoother curves while smaller values produce locally more variable curves.

In our study, we balance data-fit and smoothness by choosing an equilibrium value

for λS. As to the number and placement of the knots πv, we set them to the unique

values of ȳs (e.g. Reinsch, 1967; de Boor, 1978).

Note that the year 2000 has 366 days. Since we exclude March 20th, we

remain 365 days in our dataset. A smoothing spline fit to these 365 daily delays

is depicted in Figure 2.3(a). The vertical axis gives the average delay in minutes

and the horizontal axis shows the day of the year. Delays are high in summer and

winter but low in spring and fall, which suggests a strong seasonal pattern. The
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solid line corresponds to a cubic smoothing spline for the seasonal trend f̂(s), using

λS = 1.03.
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Figure 2.3: Estimating the Seasonal Trend: (a) A fitted smoothing spline that
represents the seasonal trend; (b) The compromise between goodness of fit and
fluctuation for the smoothing parameter.

Balancing data fit and smoothness, we choose λS in the following way. For

different values of λS, we calculate the mean squared error (MSE) between the fitted

spline and a simple straight-line regression through the data. We can think of this as

a measure of local variation since a straight-line regression provides the smoothest

data fit. We also calculate the MSE between the spline and the observed data as a

measure of goodness of fit. Figure 2.3(b) shows the resulting two MSE measures as

a function of different λ-values.

MSE1 measures local variation (or departure from smoothness); local variation

decreases (i.e. smoothness increases) as λS increases. MSE2 measures data fit. As

λS increases, MSE1 decreases (i.e. smoothness increases) while MSE2 increases (i.e.

data fit decreases). Figure 2.3(b) shows that we achieve a good balance between

local variation and data fit by choosing λS = 1.03 (i.e. the point where MSE1 and
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MSE2 intersect). We also explore a range of alternative values for λS in Section

2.2.7 and find that our model is very robust to changes in the smoothing parameter

λS.

2.2.5 Daily Propagation Pattern

Since the airline operating resources are linked together, delaying one flight can af-

fect other flights. Among the inter-connected resources affected by delayed flight

operations are crews, aircrafts, passengers, and gate spaces. Because of this connec-

tivity, airline departures are quite sensitive to delays earlier in the day—the delay

of one flight tends to propagate in time to many others.

The same smoothing approach as earlier is employed to model the daily prop-

agation pattern. We define the daily propagation function ϕ(t) to be one that

minimizes the penalized residual sum of squares:

PENSSEm=2 =
24:00
∑

t=00:00

(ȳt − ϕ(t))2 + λD

∫ 24:00

00:00

(ϕ′′(t))2dt (2.6)

where λD is again the smoothing parameter and ȳt denotes the average desesonalized

delay at time t. We calculate ȳt as follows. Let y
′

i(s, t) denote the delay after

removing the seasonal trend,

y
′

i(s, t) = yi(s, t) − f̂(s) ∀s, t, i (2.7)
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Then, we calculate ȳt as

ȳt =

∑

i

∑365
s=1

∑t+T

t y
′

i(s, t)
∑365

s=1

∑t+T

t nst

t = 00 : 00, T, 2T, . . . , 24 : 00, (2.8)

where T denotes a very short time interval (T = 5 minutes in our study). We choose

λD and πv in a similar manner as before.

After removing the seasonal trend, we use a similar smoothing approach for

estimating the daily propagation pattern. Figure 2.4 shows the resulting smooth-

ing spline ϕ̂(t). The horizontal axis corresponds to the scheduled departure time

(from 00:00 to 24:00 calculated in minutes), and the vertical axis shows the delay in

minutes. Note that no flight is scheduled to depart before 6:00 or after 24:00. As a

result, the horizontal axis covers only part of an entire day. We can see that delay

gradually builds up as the day goes on and decreases only deep into the night. The

roughness penalty λD is set at 0.44 using a similar rationale as before (see Figure

2.4(b)).
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Figure 2.4: Estimating the Daily Propagation Pattern: (a) A fitted smoothing
spline that represents the daily propagation pattern; (b) The compromise between
goodness of fit and fluctuation for the smoothing parameter.
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We want to point out that the daily propagation pattern in Figure 2.4 is not

really “daily” in the true sense of the word. In fact, the propagation effect takes

place over two consecutive days. The break point between two “days” is in the early

morning hours around 5:00 am or 6:00 am, when the airport finally consumes all

delays and no more flights depart.

Figure 2.5 shows the scatter of the average delay against the actual departure

time. We notice a very distinct spiky pattern: delay increases sharply within con-

stant time intervals and then drops at the interval-end. We can also see that the

delay is extremely high in the very early morning. The reason for this is that the

horizontal axis is the actual departure time. Since no flight is scheduled to depart

in the very early morning hours, a flight that actually does depart at that time

indicates a flight that has been delayed for an extremely long amount of time (i.e.

from the previous day). When randomly sub-sampling 30% of the data, we notice

that the pattern persists (Figure 2.5(b)). This suggests that, surprisingly, it does

not depend on only a few extreme values.

Airline scheduling and National Air Space (NAS) queueing effects may con-

tribute to the spiky pattern in Figure 2.5. When many flights are scheduled to

depart in a very short time interval, limitations on the airport departure rate result

in long queues. Figure 2.5(c) shows the distribution of flights scheduled to depart

over the course of one day. Each bar corresponds to the number of flights sched-

uled within a 2-minute interval. We see several spikes above 1,500 (i.e. more than

1,500 aggregated flights were scheduled to depart during several 2-minute intervals).

However, less than 800 flights actually did depart during these intervals (see Figure
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2.5(d)). This difference between scheduled and actual departures translates into

delay which propagates itself over the day.
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Figure 2.5: Pattern in Delays vs Actual Departure Times: (a) Delay vs. actual
departure time (b) Delay vs. actual departure time for a random sample of only 30%
of the data (c) Distribution of number of flights scheduled to depart (d) Distribution
of number of flights that actually departed

Queueing effects and “flight banks” in scheduling are well known in airline

studies. However, it is quite surprising to see the well shaped pattern in Figure

2.5 to persist even when we aggregate over the entire year since one may expect

queueing delays on different days to cancel each other out.
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2.2.6 Finite Mixture Distribution for Residuals

The residuals are defined as the errors remaining after accounting for seasonal trend

and daily propagation delay. Residuals originate from many unpredictable factors

such as customers running late, mechanical problems, extreme weather conditions,

etc. To capture the residual delay distribution, we employ a finite mixture model

with several components. Many of the underlying mechanism of delay suggest the

use of an error model comprised of different components: A few flights depart earlier

than the scheduled departure time; this calls for a component that accounts for

early-departers. Another component may account for the majority of flights; i.e.

the majority of flights that depart right around the scheduled time. And yet, there

may be another component (or two) that account for those flights having extremely

long delays.

We thus model the residual distribution as a function of a J-component mix-

ture in ℜ1. The random residuals ǫi are calculated by removing the daily propagation

pattern and the seasonal trend from the original data,

ǫi = yi(s, t) − f̂(s) − ϕ̂(t). (2.9)

The mixture density of the ith residual (i = 1, ..., n) is then given by

g(ǫi|θ) =
J

∑

j=1

pjψj(ǫi|αj) (2.10)

where pj (pj ∈ [0, 1],
∑J

j=1 pj = 1) is the mixing proportion and ψj(ǫ|αj) is a density
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function in the parameter αj. Collecting all parameters into one vector, we write

θ = (p1, ..., pJ ,α1, ...,αJ). Moreover, assuming normal group-conditional densities

we can write

ψj(ǫi|αj) = ψj(ǫi|µj, σj),αj = (µj, σj) (2.11)

where µ denotes the mean and σ denotes the variance, respectively. The log-

likelihood is then

log L(θ|ǫ) =
n

∑

i=1

log

{

J
∑

j=1

pjψj(ǫi|αj)

}

. (2.12)

Chapter 3 further elaborates computational details for parameter estimation.

We develop a global optimization version of the Expectation Maximization algo-

rithm, borrowing ideas from Genetic Algorithms to over come the local optima

problems.

2.2.7 Model Validation

In this section, we validate our model by employing a cross validation method to

check its predictive ability on the holdout sample (30% of the data). Parameters are

calculated from the training set (70% of total data), and the validation is carried

out in the holdout set (30% of total data).

The predictive performance on the holdout sample is checked by investigating

our model’s ability to predict the probability of a delay. To that end, we investigate

its predictive performance around the center of the distribution and in its tail.
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Table 2.3: Model Robustness With Different Smoothing Penalties: Parameter Sen-
sitivity Test

λS λD C80% C90% T3.00%

1.03 0.41 81.07% 90.11% 2.60%
1.03 0.47 81.15% 90.12% 2.60%
1.03 0.44 81.11% 90.13% 2.60%
1.00 0.44 81.12% 90.08% 2.60%
1.06 0.44 81.04% 90.04% 2.59%

Specifically, let Cp = [a, b], where [a, b] is the interval centered around the mean

of the distribution of X such that P (X ∈ Cp) = p, i.e. Cp denotes “middle” p-

percent of the distribution. As an example, C80% denotes the middle 80% of the

distribution (i.e. b is the 90th percentile and a is the 10th percentile); and similar for

Tp = [a, +∞) where a is defined so that P (X ∈ Tp) = p, i.e. a denotes the (1-p)th

percentile. To check the performance of our model, we first compute intervals Cp or

Tp from our model for given values of p. We then compare p with the corresponding

empirically-computed probabilities p̂ calculated from the observed data.

Table 2.3 illustrates the predictive capability of our model using C80%, C90%

and T3.00%. For instance, the value 81.07% in the first row implies that the interval

associated with the middle 80% of our predicted distribution contains 81.07% of the

true data. Similarly, the value 2.60% implies that the predicted upper 3.00% tail

holds 2.60% of the true data. Thus, our model predicts well in the center of the

distribution and in the tail.

Table 2.3 shows the performance for different values of the smoothing param-

eters λS and λD. The third row shows the results for the values we use in this

study; the remaining rows illustrate the robustness of our results to varying values
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of λS and λD. We can see that our model manages to predict the middle of the

distribution and its tail with only little error. Also, the predictive capabilities do

not vary by much for slight changes in the smoothing parameters.
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Chapter 3

Genetic Algorithm and Parameter Optimization for Finite Mixture

Distributions

3.1 Expectation Maximization Algorithm and Its Limitations

One of the biggest challenges for the EM algorithm is that it only guarantees con-

vergence to a local solution. The EM algorithm is a greedy method in the sense that

it is attracted to the locally optimal solution closest to its starting value which can

be a problem when several locally optimal solutions exist. This problem frequently

occurs in the mixture model.

Consider Figure 3.1. The top panel of Figure 3.1 shows 40 observations,

y1, . . . , y40, simulated according to a mixture of two univariate normal distributions,

yi
iid
∼ [p1N(µ1, σ

2
1) + p2N(µ2, σ

2
2)], with p1 = p2 = 0.5, µ1 = −1, µ2 = 2, σ2

1 = 0.001

and σ2
2 = 0.5. Notice that this is a special case of the normal mixture model in

(2.10) with J = 2. Notice also that the first mixture component has almost all

its mass centered around its mean µ1 = −1. This results in a log-likelihood for µ1

depicted in the bottom panel of Figure 3.1. We can see that, as expected, the global

optimum of this log-likelihood is achieved at µ1 = −1. However, we can also see at

least five local optima, located around the values µ1 = 1, 1.5, 2, 2.5 and 3. Clearly,

depending on where we start EM, it may be trapped very far away from the global
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(and true) parameter value. In the following, we propose a new version of EM that,

by borrowing ideas from the Genetic Algorithm, can overcome this problem.

0 10 20 30 40

−
1

0
1

2
3

Observation Number

O
bs

er
va

tio
n 

V
al

ue

−2 −1 0 1 2 3 4

−
20

0
−

15
0

−
10

0
−

50

Parameter Value

Lo
g−

Li
ke

lih
oo

d 
V

al
ue

Figure 3.1: Log-likelihood function for a simple two-component mixture problem.
The top panel shows the simulated data. The bottom panel shows the log-likelihood
function for µ1, the mean of the first likelihood component, holding all other pa-
rameters constant at their true values.

3.2 Optimizing the Parameters—the GA-EM Algorithm

One can maximize above log-likelihood by appealing to the missing information

principle which makes the mixture likelihood very appealing for the use of the EM

algorithm. Specifically, we assume that ǫi arises from one of the J groups. Let

zi = (zi1, ..., ziJ) be the corresponding J-dimensional group indicator vector; that

is, zij = 1 if and only if ǫi belongs to group j; otherwise it equals zero. Notice that

zi is unobserved (or missing). By writing ǫ = (ǫ1, ..., ǫn) for the observed data and

Z = (z1, ...,zn) for the unobserved data we get the complete data as Ω = (ǫ,Z).
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The log-likelihood of the complete data can then be written as

log Lc(θ|Ω) =
n

∑

i=1

J
∑

j=1

zij {log pj + log ψj(ǫi|αj)} . (3.1)

The EM algorithm is an iterative procedure which alternates between two

steps: an E-step and an M-step. The E-step computes the conditional expectation of

the complete data log likelihood, conditional on the observed data (flight departure

delays in our case) and the current parameter values. Let

Q(θ|θ(k−1)) = E[log Lc(θ|Ω)|ǫ; θ(k−1)] (3.2)

where k denotes the kth iteration. Using equation (3.1), (3.2) can be simplified to

Q(θ|θ(k−1)) =
n

∑

i=1

J
∑

j=1

η
(k−1)
ij {log pj + log ψj(ǫi|αj)} (3.3)

where η
(k−1)
ij = E(zij|ǫi; θ

(k−1)) is the posterior probability that ǫi belongs to the

jth component in the mixture. The M-step maximizes Q(·|θ(k−1)). That is, the kth

M-step finds the value θ(k) which satisfies

Q(θ(k)|θ(k−1)) ≥ Q(θ|θ(k−1)) (3.4)

for all θ in the parameter space.

One appeal of assuming a normal mixture distribution (2.11) is that we obtain

closed-form updates for the E- and M-steps (McLachlan and Peel, 2000):
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• E-step : For i = 1, ..., n and j = 1, ..., J we compute

ηij(θ
(k)) =

p
(k)
j ψ(ǫi|µ

(k)
j , σ

(k)
j )

∑J

j=1 p
(k)
j ψ(ǫi|µ

(k)
j , σ

(k)
j )

. (3.5)

• M-step : Write θ(k+1) = (p
(k+1)
1 , ..., p

(k+1)
J , µ

(k+1)
1 , ..., µ

(k+1)
J , σ

(k+1)
1 , ..., σ

(k+1)
J ) for

the parameter update where its components are given by

p
(k+1)
j =

1

n

n
∑

i=1

ηij(θ
k) (3.6)

µ
(k+1)
j =

∑n

i=1 ηij(θ
k)ǫi

∑n

i=1 ηij(θ
k)

(3.7)

σ
(k+1)
j =

∑n

i=1 ηij(θ
k)(ǫi − µ

(k+1)
j )(ǫi − µ

(k+1)
j )T

∑n

i=1 ηij(θ
k)

. (3.8)

The E-step and M-step are repeated until convergence. Convergence is often assessed

by monitoring the improvements in the parameter estimates and/or the improve-

ments in the log-likelihood function.

As pointed out earlier, one of the biggest challenges for EM is that it only guar-

antees convergence to a local optimum and thus, especially in the mixture model,

can get trapped in a sub-optimal solution, possibly far away from the global op-

timum. In the following we propose a new variant of EM that can overcome this

challenge. To do so, we borrow ideas from the literature on global optimization and

in particular from the Genetic Algorithm.

The Genetic Algorithm (GA) was first proposed by Holland (1975). It has

been applied to many functional areas including marketing, biology, and engineering
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(Goldberg, 1989). The basis for the algorithm comes from the observation that a

combination of sexual reproduction and natural selection allows nature to develop

living species that are highly adaptive to the natural environment. In the following

we propose a Genetic Algorithm version of EM. Our algorithm shares similarities

with other efforts on the same topic (Heath et al., 2006; Jank, 2006a; Pernkopf and

Bouchaffra, 2005).

The Genetic Algorithm begins with an initial population of chromosomes. One

evaluates their structure and allocates reproductive opportunities in such a way that

those chromosomes which represent better solutions to the target problem are given

a better chance to produce offspring. The expectation is that some members of the

resulting offspring population acquire the best characteristics of both parents and,

as a consequence, can better adapt to the environmental conditions, providing an

improved solution to the problem.

For this problem we can think of each parameter-component p1, ..., pJ ,α1, ...,αJ

as one individual gene. Then the vector θ = (p1, ..., pJ ,α1, ...,αJ) is a string of pa-

rameters just as a chromosome consists of a string of genes. The fitness function is

the likelihood function (2.12). The resulting EM-based Genetic Algorithm can then

be implemented as follows:

Step1 Initialization: Randomly generate an initial population of l chro-

mosomes, which serves as the pool of parents. Initial parent pool = {θp
1, ....θ

p
l }.

Step2 Evaluation: Evaluate the fitness of each chromosome by calcu-

lating maxθ{log L(θ|ǫ)} in (2.12) via the EM algorithm using θ
p
k, k = 1, . . . , l, as

the starting value. Record the corresponding maximum likelihood value MLKp =
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{MLKp
1, . . . , MLKp

l }

Step3 Crossover: Randomly choose a pair of parents θ
p
k and θ

p
k′ from

the initial pool, and exchange their genes at random positions to generate a pair

of children. Specifically, crossover the pj’s or αj’s between two parents randomly.

Repeat this step until we get l children. Children pool = {θc
1, ....θ

c
l}.

Step4 Mutation: Specify a fixed and small probability of mutation pm.

Draw a random number between 0 and 1; if that number is smaller than pm, then

the new child chromosome is randomly mutated, which means pj or αj are changed

at random.

Step5 Update: Take the fitness of all parents MLKp = {MLKp
1, ....MLKp

l }.

Similarly, compute and record the fitness of all children MLKc = {MLKc
1, ...., MLKc

l}.

Choose the best l chromosomes from the combined parents and children to remain

in the gene pool. Update MLK from {MLKp ∪ MLKc}; update the gene pool cor-

respondingly.

Step6 Iteration: Repeat Step 2-4 until the Nth generation is produced.

N is typically a number fixed in advance.

We refer to our Genetic Algorithm version of EM as the GA-EM algorithm.

Practical implementation of a GA-EM requires the selection of several algorithm

parameters such as the population size l, the number of generations N , and the

mutation rate pm. In our application, we chose these parameters as l = 100, N = 100

and pm= 1/(number of parameters+1) (see e.g. Willighagen, 2005). As you may see

from the following section (Section 3.3) the algorithm performance is very robust to
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different choices.

3.3 GA-EM Results and Sensitivity Analysis of the Parameters

Recall that after removing both the seasonal trend and the daily propagation pat-

tern, we estimate the mixture distribution for the residuals.
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Figure 3.2: Finding the Global Maximum via Genetic Algorithm

We apply our GA-EM algorithm using l = 100 parents and N = 100 genera-

tions. Random starting values were generated to form the pool of parents/chromosomes.

The mutation rate was set at pm= 1/(number of parameters+1) (see e.g. Willigha-

gen, 2005). This results in the generation-history shown in Figure 3.2: as more

and more generations are calculated, the overall fitness improves. Moreover, the

convergence rate is fast since both average fitness per generation (solid line) and

best fitness per generation (dashed line) increase quickly and join (at least almost)

at generation 100. The roughness of the average fitness stems from the fact that
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mutation inflicts shocks into the evolution process which may cause the method to

temporarily seek worse solutions. In effect, this allows the method to overcome local

solutions and, eventually, visit the global optimum.

The performance of the GA-EM algorithm may depend on the choice of the

algorithm parameters l, N and pm. Figure 3.3 shows the performance of the method

when we vary these parameters. We can see that, regardless of the mutation rate,

the population size or the number of generations, GA-EM converges to the same

likelihood value after about 100 generations. We also investigated the method’s

dependence on its inherent randomness (e.g. due to the choice of the starting values

etc.), and, similarly, found that the method converges to the same likelihood value

after about 100 generations, see Figure 3.4. We take this as evidence that 100

generations is a reasonable generation-size for this application.
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Figure 3.3: Robustness of GA-EM to Algorithm Parameters

The computing effort of our method is reasonable. Each EM-step takes about
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0.25 seconds and it takes on average 10 iterations for EM to converge. Thus, one run

of GA-EM with 100 parents and 100 generations takes about 0.25×10×100×100 =

25, 000 seconds or 6.94 hours. This is the time-investment necessary for one data

set. In practice, we may have to update the parameters occasionally because of

newly arriving data.
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Figure 3.4: Robustness of GA-EM to Different Starting Values

One important decision in mixture-modeling is to choose the number of mix-

ture components J . As J increases we typically get a better data fit, however we

also run the risk of over-fitting. Moreover, model-parsimony considerations sug-

gest the lowest possible value of J . From a global optimization point of view, the

optimization problem becomes harder with increasing J since the solution space

becomes more and more complex, showing more and more locally sub-optimal solu-

tions. Thus, the chances of finding the global optimum decrease with increasing J .

Figure 3.5 shows the trade-off between J and the best solution found by GA-EM.
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Table 3.1: Values of the Parameters in Mixture Density Fitting

p1, p2, p3, p4 µ1, µ2, µ3, µ4 σ
2
1, σ

2
2, σ

2
3, σ

2
4

Solution 0.34,0.41,0.18,0.07 -17.05,-8.69,19.20,92.69 108.49,84.92,721.27,4184.54

Notice that for J = 2 we have to determine 2*3-1 = 5 parameter components; how-

ever, for J = 8 this increases to 8*3-1 = 23 components. Unsurprisingly, Figure 3.5

suggests that J should not be chosen too large. In fact, J = 4 mixture components

provide a good balance between data fit, model parsimony and problem complexity.

We will therefore use this value throughout the remainder of this study.
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Figure 3.5: Exploring the Number of Components in GA-EM Algorithm

Table 3.1 shows the parameter values of our best solution. In Figure 3.6

we compare the distribution of the true residuals (left panel) versus the estimated

distribution based on our mixture model using the parameters in Table 3.1 (right
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Figure 3.6: Fitting the Residuals: (a) Density distribution of the original residuals
(b) The fitted distribution with its four components

Table 3.2: Quantiles of the True and the Fitted Distribution

Percentile 10% 20% 30% 40% 50% 60% 70% 80% 90%
Original Residuals -24.86 -19.52 -15.72 -12.32 -8.97 -5.35 -0.75 7.99 35.17
Fitted Residuals -25.19 -19.77 -15.78 -12.28 -8.89 -5.31 -0.73 7.49 36.32

panel). Notice that our model provides a very good fit: the distribution in the

right panel is almost indiscernible (at least visually) from the one in the left panel.

Notice also the negative values in the left half of each distribution. These negative

values indicate flights that have shorter delays compared with the seasonal and daily

average.

Our mixture model has four mixture components. The individual components

are overlaid in Figure 3.6(b). We notice that two components form the center of the

distribution, accounting for the most “typical” delay. The third component captures

medium delays while the fourth one accounts for the extremely large delays.

As pointed out earlier, the true and fitted delay distributions are very similar
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(at least visually). A more objective way of gauging their differences is via comparing

their quantiles (see Table 3.2). We notice that 8 out of the 9 quantile-pairs have

differences less than 1 minute. Only the largest quantile (i.e. the right tail of the

distribution) has a slightly larger difference.
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Chapter 4

Dynamic Updating and Variance Reduction Within the Enhanced

Traffic Management System

In this chapter, we propose models to estimate wheels-off delays for flights. Wheels-

off time has a direct impact on the National Air Space (NAS) system performance

since it serves as input to many ETMS modules for updating the flight en-route pro-

files (e.g. ascending and descending profiles, distance from the origin and destination

of airports, etc) and monitoring the NAS wide traffic demand and alert processing.

Modeling the randomness of these delays provides a more accurate picture of the

airspace traffic situation, improves the prediction of the airspace congestion and

advances the level of decision making in aviation systems.

ETMS developed a Ground Time Predictor (GTP) to predict wheels-off times

for flights, roughly speaking, on a running average of observed ground time delays

collected for flights or flight categories (VNTSC (2003)). Section 4.1 lists the de-

tails of the algorithms. A series of efforts have been carried out to investigate the

effectiveness of the GTP prediction, its relationship to the proposed flight departure

time and further improvement of the GTP predictions (Futer (2005), Futer (2006)).

Other related research on departure delays includes Rosenberger et al. (2000),

Mueller and Chatterji (2002) and Inniss and Ball (2004) for generating empirical

distributions from historical data; Odoni et al. (1994), Shumsky (1997), Idris et al.
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(2002) for queueing effects in the departure process; Beatty et al. (1998), Schaefer

and Millner (2001) and Wang et al. (2003) for the delay propagation effects. We

improve the estimation of wheels-off time by incorporating a time-interval based

approach rather than the flight-ID based approach. This time-interval based model

shows significant advantages in variance reduction and remains parsimonious and

computationally efficient.

Kostiuk et al. (2000) pointed out that limited airport capacity and uncon-

strained flight schedules lead to congestions and delays. Smith and Gilbo (2005)

analyzed the uncertainty of the airport and sector demands and their impacts to

the ETMS system. In this chapter, we also explore the functional relationship be-

tween demand and delay.

Given that the objective is to develop models that efficiently predict delays

with dynamic updating ability, we need to make the model adaptive to the rapid

variations in the real-world situation. In this study, we propose two methods to

model the downstream-ripple effect for the current day delays. This works together

with our rolling-horizon updating method to provide dynamic model capabilities.

To the best of our knowledge, only limited literature touches the research area

of downstream-ripple effect of departure delays. Perhaps the time series models in

highway travel times can shed the most light on this area: we find spectral analy-

sis by Nicholson and Swann (1974), kalman filtering by Okutani and Stephanedes

(1984) and Vythoulkas (1993), linear models by Danech-Pajouh and Aron (1991) and

Kwon et al. (2000) and autoregressive-integrated moving average(ARIMA) models

by Van der Voort et al. (1996) and Oda (1990). Clustering techniques have been
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applied by Danech-Pajouh and Aron (1991) and Van der Voort et al. (1996), and in

recent years, neural networks by Park and Rilett (1998) and Kirby et al. (1997).

In order to make useful predictions in a rapid changing environment, we need to

be able to quickly process a very large amount of data. Rice and Zwet (2004) propose

a varying-coefficient regression model for predicting travel times on freeways. We

adopt this varying coefficient regression model for modeling the downstream ripple

effect because it is effective, fast and scalable. In addition, we propose an exponential

model for the downstream ripple effect which gives almost equivalent results with

fewer parameters.

Considering that our objective is to estimate delay distributions, we evaluate

alternate approaches based on their ability to reduce variance and their predictive

accuracy. We first show that a raw histogram can be misleading when a trend is

present and how variance can be reduced by trend estimation. Then, various tech-

niques are explored for variance reduction. Finally different models are compared

with the current model adopted by the ETMS systems and the predictive capabilities

of all models are shown.

4.1 Current Models for Ground Time Predicting

The ETMS derives ground time estimation from historical flight data. The data is

gathered in real time by the ground time prediction (GTP) subsystem. The ground

time here is defined as the discrepancy between the actual wheels-off time and the

proposed gate-out time. A detailed description of these times is given in Section
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4.1.1.

There are two models currently employed by the ETMS for ground time pre-

diction. On a weekly basis, the GTP creates three prediction files—two based on

flight ID and one based on category. These files are used by the flight database to

assign a ground time prediction to each flight and by the delay adviser to allow the

user to access the predictions.

The flight ID files contain a prediction for the next occurrence of a flight as well

as up to 14 previous actual ground times for the flight. The category files contain

a prediction for flights falling into particular categories. Currently, the category file

includes 55 major US airports. As with the flight ID processing, new predictions are

obtained by adjusting the existing prediction with new actual ground times gathered

during the week.

For assigning a ground time to a flight, the flight ID-based prediction is used

in preference to the category based prediction whenever possible. A default ground

time of 10 minutes is used for flights that are not in the flight ID file and not depart-

ing from one of the airports in the category files. Controlled flights use a ground

time of 0 minutes. A controlled flight is one whose departure time (and arrival time

at destination) has been set by an FAA Traffic Flow Management initiative, such as

a ground delay program. Finally ground times are capped so that no flight receives

a ground time greater than 20 minutes.

The flight ID based model is applied to flights from all airports. A flight

specific ground time prediction, denoted as ŷs for a flight on day s, is made for

flights for which some history has been obtained. If no previous value is available,
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an initial value of 15 minutes is used.

The details of the flight ID model use values from Table 4.1

Table 4.1: Parameters in Flight Based Model for Ground Time Prediction

Description Name Current Value (min)
Upper Threshold for Adjustment T1 3
Lower Threshold for Adjustment T2 -2

Actual Ground Time: Out of Range T3 45
Estimated Ground Time:Out of Range T4 15

Step Size for Adjustment T5 1

The difference is computed between the actual ground time and the predicted

ground time, then adjusted by the upper and lower threshold. Let ǫ = ys − ŷs. If

ǫ ≥ T1, then adjusted error term ǫ̂ = T5; if ǫ < gegT2, then adjusted error term

ǫ̂ = −T5;

The new predicted ŷs+1 is the previous ŷs plus the ǫ̂. That is ŷs+1 = ŷs + ǫ̂.

There are several classes of flights whose ground time estimates are not ad-

justed based on the flight ID based predictions, including controlled flights, flights

with negative actual ground time, outliers, flights with the actual ground delay time

exceeding T3 (45 minutes) and flight instances with actual ground times exceeding

the predicted ground time by greater than T4 minutes.

The categorical prediction of ground time is made for each of the various

categories of flights. These categories are defined by the ranges of time of day,

duration of flight, day of week and specific airports. Categorical predictions are

made for each of the 55 key airports, not for other airports.

The categorical method requires the previous value of the predicted ground

time. If no previous value is available, an initial value of 15 minutes is used. Let ŷs
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be the observation for day s and ys be the actual ground time for flight i, then

ŷs+1 = 0.95 ∗ ŷs + 0.05 ∗ ys (4.1)

Several classes of flights are not used to adjust the category based prediction

of ground times, similar to the flight ID based prediction but including controlled

flights, flights with a negative actual ground time, outliers (flights with actual ground

time exceeding 90 minutes) and general aviation flights. (VNTSC, 2003)

4.1.1 Data Source and a Brief Comparison of the Pushback Delays

and the Wheels-off Delay

As part of its collaborative efforts to reduce delays, the FAA has created a special

data system, Aviation System Performance Metrics (ASPM), to provide metrics

comparing actual versus scheduled performance by the phase of a flight. ASPM data

contain actual and scheduled arrivals and departures by air carriers and airport, and

the actual acceptance and departure rates by airport.

Airlines publish their flight schedules through the Official Airline Guide (OAG).

The OAG file provides the ETMS with the planned schedules of all flights arriving,

departing, or over-flying the United States, Canada, or England. Each weekly OAG

update provides schedules for the next 45 days. The OAG departure time is often

called scheduled departure time.

Prior to flying, flight plans are filed by pilots with the local Aviation Au-

thority (e.g. FAA in the USA). They generally include basic information such as
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departure and arrival points, estimated en-route time, alternate airports in case of

bad weather, type of flight, instrument flight rules or visual flight rules, pilot’s name

and number of passengers. Flight plans are required for flights under instrument

flight rules (IFR). Under visual flight rules (VFR), they are optional unless crossing

national borders, however they are highly recommended, especially when flying over

inhospitable areas, such as water, as they provide a way of alerting rescuers if the

flight is overdue. The departure time on the flight plan is often called flight plan

time or proposed time.

Due to various random factors, flights usually lag behind the scheduled or

proposed departure time as you may see from Figure 4.1.

scheduled

gate-out

flight plan
gate-out

actual

gate-out

actual
wheels-off
actual

Push-back
delay

Wheels-off
delay

Figure 4.1: Pushback Delay v.s. Wheels-off Delay

The choice between scheduled time or proposed time really depends on the

interests of researchers, especially for forecasting purposes. For example, suppose

one is trying to forecast the delays for next day, week or month, then the flight plan

time may not be suitable, because the flight plan information is not available at the

time that the forecast has to be made. In this sense, the scheduled departure time

is more appropriate for long-term forecasting. The flight plan time is suitable for
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short-term forecasting/updating. The ETMS ground time predictor was estimated

via the proposed flight plan time, and it employs the scheduled departure time for

prediction when flight plan time is not available.

To provide a fair comparison with the ETMS predictor, in this Chapter, we

estimate the wheels-off delay from the proposed gate departure time.

In Chapter 2, we estimated the push-back delay, which measures the difference

between the scheduled gate departure time and actual gate-out time. The two delays

are related to each other and yet quite different. The Wheels-off delay involves the

taxi-out delay, thus can be more affected by the condition of the runway or that of

other airport related resources. Push-back delay can be viewed as a component of

the wheels-off delay when the wheels-off delay is estimated from the same scheduled

departure time.

As shown in Table 4.2, all the statistics of the wheels-off delays are larger than

those of the push-back delays, which indicate that the wheels-off delays demonstrate

larger variance and a fatter tail.

Table 4.2: Pushback Delay vs. Wheels-off Delay in Minutes

Min 1st Quartile Median Mean 3rd Quartile Max
Pushback Delays -327.00 -4.00 -1.00 6.99 5.00 719.00
Wheels-off Delays -316.00 9.00 13.00 22.12 23.00 729.00

Wheels-off time has a more direct impact on the National Air Space (NAS)

system performance since it serves as input to many ETMS modules for updating

the flight en-route profiles (e.g. ascending and descending profiles, distance from

the origin and destination of airports, etc) and monitoring the NAS wide traffic
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demand and alert processing. To compare our models with the current ETMS

adopted models, we focus on the ground time prediction.

An initial effort to explore the wheels-off delays shows that the delays have

an interesting pattern: the delays are relatively high during the summer and winter

seasons and are relatively low during other seasons.
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Figure 4.2: Wheels-off Delays in Year 2000 by Month

In the following sections, we explore models to estimate the various trends and

characteristics associated with the delays data.

4.2 Proposed Models for Trend Estimation within the Enhanced

Traffic Management System

In this section, we explore models to estimate the various trends and characteristics

associated with delays data with the goal of achieving further variance reduction

and prediction accuracy.
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4.2.1 The Bias of Raw Histogram and Variance Reduction via Trends

Estimation

We start by examining a highly hypothetic example for illustration purpose. Sup-

pose there are 3 flights departing at each time epoch t (t=1, 2, 3, ..., 10). Among

the three flights, one flight delays 0.2 minute earlier than the average, one flight

delays 0.2 minute less than the average and the third hits right on the average (See

Figure 4.3 upper left). The trend is shown by the solid line.

Suppose we are interested in doing the analysis for the flight delays and pools

the delay points together to draw a histogram plot, as shown on upper right of Figure

4.3. Then one would conclude that the delays have a normal-like distribution.

However, if one could discover the trend within the delays and then remove

the trend from the data (shown in middle left of Figure 4.3), a more homogenized

distribution would be revealed. The corresponding histogram is more uniformly

distributed and the variance becomes smaller.

Yet, one may find a wrong trend and remove the wrong trend from the data,

as shown in the lower left plot of Figure 4.3. The solid line denotes the wrong

trend, the data with “+” sign denote the original data and the circles are the data

after the wrong trend is removed. We can see from the lower right plot that the

corresponding histogram is misrepresented and the new variance (0.28) is even larger

than the variance of the raw data (0.12).

This hypothetic example shows that variance reduction correlates with our

intuition of improvements in estimates. Moreover, it indicates that careless use of
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Figure 4.3: The Bias of Raw Histogram and Variance Reduction via Trends Esti-
mation

a raw histogram can be misleading and a correct trend estimation can effectively

reduce variance.

In the following sections, we endeavor to represent the various trends and

characteristics associated with delay data and explore models for further variance

reduction. Our models will be compared with the current model in use within the

Enhanced Traffic Management System.
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4.2.2 Forward Rolling Horizon Method for Dynamic Updating

In this section, a general dynamic updating procedure is described. There are a

number of factors that can cause substantial yearly/monthly shifts in air traffic

delays. Air traffic levels (demand) can vary from time to time. Also, the extent

of adverse weather conditions can vary substantially from time to time to a degree

that a noticeable impact on delay statistics is seen. Another factor is the relatively

steady introduction of performance-improving technologies (e.g., new avionics) and

infrastructure (e.g., new runways). We consider the problem of generating a model

that adapts to such changes over time an interesting research topic and view the

work in this study as a fundamental basis on which to build such models. On the

other hand, it is also the case that our model can be adapted in fairly simple ways

to get quite reasonable results for this problem.

We propose an approach that can be viewed as a forward rolling horizon

method. Consider our model as a method for generating delay distributions over a

s-day time horizon. Now consider the possibility of applying the model to predict

delays on day s + 1. Let f be a smoothing spline, then the seasonal trend value

for day s + 1 can be obtained by functionally extending the seasonal trend for one

additional day, i.e. f(s + 1).

From this point of view it is quite natural to apply the model in a rolling

horizon mode, where, in order to produce an estimate for a particular day, we create

a model based on the previous s days. Over time we simply add the most recent

day and delete the earliest day and update the model appropriately. For example,
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we start by using all data from one year (say, year #1) to predict delays on the first

day of the next year (say, January 1 of year #2) and let s = 365. Once the actual

delay for January 1 of year #2 becomes available, we drop January 1 of year #1 (i.e.

we drop the oldest observation in the data) and replace it with January 1 of year

#2 (i.e. we replace it with the most recent observation). Based on this updated

data set, we update the seasonal trend and daily propagation pattern and predict

the next day, Jan 2 of year #2. We continue to iterate (or “roll”) in this manner

so that the predictions for any arbitrary day is always based on the data from the

prior 365 days.

Of course, one may choose a shorter time span s, such as half a year, a quarter

or a month. In this study, we adopt s=14 days to provide a fair base for comparison

with the ETMS models.

4.2.3 Model I: Time Interval Based Dynamic Updating

In ETMS, there are two models: one is the flight ID based model and the other

is category based model. Flight ID based model is the preferred default model

whenever a flight ID is present. Given most commercial flights have flight IDs, the

flight ID based model is more frequently used than the category based one. The

intuition for using flight ID comes from the “common sense” that the same flight

(with the same flight ID) tends to depart at similar time slots day after day and

thus the delay for each flight should be similar every day because the congestion on

one day will disappear late into the night and the next day is typically a renewal.
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However, we found that the same flight is not always scheduled to depart at

the same time every day. In fact, in 2004, there were 480 out of 966 flights for United

Airlines (UA) at Denver International Airport (DEN) that had different scheduled

departure time where the difference was more than 30 minutes.

Moreover, some flights tend to operate during some seasons, then stop and

then operate another period of time at the end of the year. In fact, only 27 flights

flew more than 360 days for UA at DEN in that year. A trend estimation based on

a few instances may not be accurate for these flights especially if the trend changes

at different seasons.

Therefore, a time-interval based approach may be more appropriate for cap-

turing the similarities and characteristics for a group of flights that are scheduled to

depart during a time interval t (e.g., t=5:00, 5:15, ..., 22:00) as an alternate of the

flight ID based approach. Plus, the time-interval based approach results in smaller

number of groups and therefore larger sample size. Of course, the flight-specific

model offers better flexibility of capturing different taxi times, gate related differ-

ences, or impact of different runway configurations. But from the experiment in

this study, the flight-specific difference is not very significant since the delay by its

nature is very stochastic.

We assume that these flights within the same 15-min group/time interval follow

similar trends. The detailed formula is

yi∈t(s) = ft(s) + ǫi ∀ t = 7 : 00, 7 : 00 + T, ..., 22 : 00. (4.2)
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where ft(s) denotes a polynomial spline as a function of day s for each time interval

t and i denotes flight i. As long as the scheduled departure time of flight i falls

within time interval t, the predicted delay is generated by the corresponding spline

at t. In other words, all flights within the same t are predicted to be the same by

ft(s). The random error ǫi applies to each flight i and is assumed to follow some

distribution g. This distribution can be estimated via mixture method described

in Section 2.2.6. If i and i′ were two flights scheduled at the same day s and time

t, then their only delay-difference would be due to error ǫi. This random error is

distributed as iid.
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Figure 4.4: Separating the Delays into Two Trends

Let us separate 7:00-22:00 into two time intervals and show an example of
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multiple splines(see Figure 4.4). The lower trends denotes the delays of flights

at early time intervals and the upper trend denotes delays at later time intervals.

We further explore the length of time intervals. Let T denotes the length of time

intervals. For example, when T = 60 min, there are 16 smoothing splines in total

to represent the delay changes during a day. Since from 7:00 to 22:00, there are 15

hours and each spline represent one hour during the day. When T = 150 min, the

spline represent every three-hour trends and there are 5 splines in total. Therefore

the corresponding number of splines N is equal to (22 : 00 − 7 : 00)/T .

For prediction purpose, we employ the forward rolling horizon procedure for

information updating. The detailed procedure in this model is as follows,

Step 1: We set s=14 days because ETMS suggests to forecast the delay for

next flight (day) based on the last 14 instances. This same number provides a fair

base comparison between the models.

Step 2: Estimate the smoothing splines in Model I based on the data in the last

14 days and let the splines extend to forecast the delays within the corresponding

time interval on the 15th day. Record all the errors (ǫi) between the actual and the

predicted for each flight i.

Step 3: Drop the data on the oldest day and add data from the new day and

repeat Step 1 and 2. Keep rolling the time horizon until a whole year is calculated.

Step 4: Pool all the errors (ǫi) together and calculate the variance of the errors.

The errors calculated by this method are predictive errors and the variance

measured here is predictive variance. Predictive variance is practical and useful as

it reflects the predictive capability of a model. We explore a number of N values,
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first from 0 to 30 and then test the variance when N is within the [100, 500] range.

In the left plot of Figure 4.5, the first data point at 0 denotes the variance from the

histogram from the raw data (variance 941.38). The x-axis shows the number of

splines N and the y-axis shows the variance of the residuals. The variance sharply

decreases when N varies from 1 to 5 and then continue to reduce until 9. After 9,

the variance increases and continue to increase when N varies within the [100, 500]

range. As shown in Figure 4.5, N=9 is the optimal number of splines where the

variance reaches its lowest point (898.74). Table 4.3 lists selected number of trends

and their corresponding variance. When applied to different data sets, N may not

equal to 9, but we believe a similar U-shape pattern should be present.
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Figure 4.5: Exploring the Number of Seasonal Trends for Variance Reduction: (a)
Variance Drops and then Increases for N =[0, 30] ; (b) Variance Continues to
Increase when N =[100, 500].

Table 4.3: Selected Number of Seasonal Trends and the Corresponding Variances

Raw Hist. Flight ID Based N=1 N=9 N=500
Var. 941.38 902.88 909.25 898.74 908.87

As N varies from one to a range of values (increasingly), the splines capture

more details of the trend changes of each time interval and thus reduce the variance.
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However, when N reaches a point where it captures all the latent structural changes,

the variance becomes the lowest. Beyond this optimal point, we see that the variance

actually increases, which means a larger N will not be able to provide any further

improvement and on the contrary, a larger N can lead to an over trained model that

captures the unnecessary random changes (wrong trends) and results in even larger

variance, as shown in Figure 4.3.

Exploring variance as a function of N provides guidance on how to choose

the number of splines. Clearly, larger is not always better. A correct number

of trends truly reflects the structural change of the delays and leads to further

variance reduction and unnecessary/redundant trends lead to not only an increase

in the computational difficulties but also worse results. In this study, N=9 is the

optimal number but in other settings (e.g. in large scale data sets or complex

solution space), finding the optimal number can be cumbersome. Therefore, in

practice, a small value of N with reasonable variance level may be favorable since

the computational difficulty is low.

Here are some details of the computational difficulties. Each calculation of

the spline trend takes about 0.176 second. For N trends, it takes 0.176*N seconds.

Under the rolling horizon method, suppose we are going to predict and test the

delays for the whole year, then the calculation takes 0.176*N*(365 − 14) seconds.

365 denotes the total number of days during a year and the first 14 days are used for

training the splines under the rolling horizon model. Then the oldest day is dropped

and a new day is added for prediction purpose for the rest of the year.

Take N = 9 for example, 0.176*9*(365-14)= 9.27 minutes. If N = 90, then
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the computational time increases to 92.7 minutes. Therefore, the computational

difficulty increases proportionally with the increase of the number of splines while

the variance may not be greatly reduced.

Compared with the flight ID based model in ETMS, our model provides dis-

tinct advantages. The flight ID based model gives a variance of 902.88. Compared

with the variance of raw histogram (941.38), this flight ID model shows improve-

ment, suggesting that some structural changes in the delay are captured. However,

when looking at the number of trends in this flight ID model, we find that this

model generates around 900 trends in the data set given there are around 900 dif-

ferent flights flying in and out of Denver. Ironically, such a large number of trends

do not lead to a greatly improved result. This inefficiency comes from three major

sources: First, the assumption that that flights operate roughly at the same time

every day is incorrect. Second, the forecast is based only on the last few instances.

Given that most flights do not operate continuously during the year, the last few

instances might have occurred several months ago and thus may not reflect the sea-

sonal trend correctly. Third, as was shown earlier, a large number of trends do not

necessarily lead to an improved result.

In this case, it is clear that 900 trends do not perform better than 9 trends.

Therefore, our time interval based model offers significant advantages.

4.2.4 Model II: Time Interval Based Model with Demand Sensitivity

Kostiuk et al. (2000) pointed out that limited airport capacity and unconstrained
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flight schedules lead to congestions and delays. In other words, delays and air traffic

demands are closely related to each other.

In this study, we explore the functional relationship of the delays and de-

mands, especially we seek to model the relationship between the delay and demand

in a explicit closed form. The model we employ here is similar to the functional data

analysis model developed by Ramsay and Silverman (2005). Functional data anal-

ysis is aimed to analyze the behavior of curves in a functional format and explore

the characteristic/dependency between the curves. Ramsay and Silverman (2005)

developed a regression model to analyze the relationship between precipitation and

temperature where both precipitation and temperature are expressed in functional

curves. Here we model the delays and demands in functional forms (splines) and

explore the relationship between these two sets of splines in a similar way.

The demand here refers to the number of scheduled flights during any time

interval t. Over-scheduling of flights leads to increased congestion and delays.

Suppose we believe that demand at time t has an impact on the delay at the

same time interval t, then a concurrent model would be

ys(t) = α(t) + β(t)ds(t) + ǫi ∀ s (4.3)

For example, when t=8:00am, this concurrent model will evaluate the impact

of the demand (# of flights) at 8:00 am on the delays at 8:00 am. The parameters

α and β apply to all different day s.

However, demands at other time intervals (e.g. t − 1, t − 2) may have an
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impact on delay at time interval t too. Therefore, a continuous model can be built

as follows,

ys(t) = α(t) +

∫ 24:00

00:00

ds(u)β(t, u)du + ǫi ∀ s (4.4)

In contrast to the concurrent model, the regression coefficient β is now a

function of both t and u. We can interpret β(t, u) for a fixed value of t as the

relative weight placed on the demand at time u that is required to predict the

delays at time t.

Figure 4.6 shows the daily delay changes for the whole year. The x-axis de-

notes the time of the day (from 7:00 to 22:00) and y-axis shows the delay minutes.

Each spline on the plot shows a daily spline and all together there are 365 splines

on this plot. It can be seen that the daily spline demonstrates some interesting

patterns—the delay goes up and down periodically. This up-down spiky pattern is

discussed in details at Section 2.2.5. The reason comes from the airport queueing

effects for shared resources and the flight scheduling “banks”. Here we explore fur-

ther the relationship between this delay pattern and the corresponding scheduled

demand.

Figure 4.7 shows the daily demand patterns for the whole year. The demand

here is defined as the total number of scheduled flights (departures) during any time

interval t. The x-axis denotes the time of the day and y-axis shows the number of

scheduled departures (demand). Each spline shows a daily demand change and all

together there are 365 splines on this plot. The demand looks more homogeneous
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Figure 4.6: Delay Splines

during the morning periods and relatively diversified during the afternoon/evening

time periods. It also shows a clear periodical up-and-down pattern.

Figure 4.7: Demand Splines

If we define delay at time t as yt and demand as dt, and the random variables
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delay Y and demand D are denoted in capital letters, the cross-variance function is

covY,D =

∑365
s=1(ys(t1) − ȳs(t1))(ds(t2) − d̄s(t2))

(365 − 1)
(4.5)

and the cross-correlation function is

covY,D =
covY,D(t1, t2)

√

varY (t1)varD(t2)
(4.6)

Figure 4.8: Contour Plot for Demand and Delay

Unfortunately, the correlations between the delay splines and the demand

splines are very weak, as you may see from Figure 4.8. Most correlations are among

± 0.1 or ± 0.2. The values along the diagonal show the correlations between the

demand and delay at the same time period t. Other areas shows the correlations

between demand at time t1 and delay at time t2. For example, the upper-left section

shows the impact from earlier demand to the delays at later time intervals.

Figure 4.9 shows the beta values. Plot (a) shows β(t) for the Concurrent
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Figure 4.9: Regression Coefficent Plot for Functional Regression: (a) β(t) for Con-
current Model ; (b) β(t, u) for Cross-Time Continuous Model.

Model and (b) shows β(t, u) for the Cross-Time Continuous Model. The diagonal

values of plot (b) constitute plot (a). The correlation plot does not indicate a strong

relationship, nor can we conclude any clear relationship from the beta value plots.

We also measure the goodness of fit from the regression models. The goodness

of fit assessed by an R2 measure is

R2
s = 1 −

∫

(ŷs(t) − ys(t))
2dt

∫

ys(t) − ȳs(t))2dt
(4.7)

The R2 measure did not indicate a satisfying result. Only 18 out 365 splines

show an R2 greater than 0.8, which means most delay splines cannot be explained

by the demand curves. Therefore, we did not find a clear functional relationship

between the demand and the delay, at least not a linear relationship in a closed

explicit form. Simulation of queueing effects may work better for exploring the

relationship between the demand and delay, but we feel it is beyond the scope of

this research.
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4.2.5 Model III: Time Interval Based Seasonal Trend with Daily Air-

port Propagation Updates

This approach seeks to incorporate the daily propagation elements into the model

by adding an additional component—the daily propagation spline. This model seeks

to capture the daily delays in addition to the estimates of seasonal trends.

The dynamic procedure is quite similar to the procedure described in Sec-

tion 4.2.3, except that in Step 2, we estimate the daily propagation pattern after

extracting all the multiple seasonal trends.

The detailed formula is as follows,

yi∈t(s, t) = fi∈t(s) + ϕ(t) + ǫi ∀ t = 5 : 00, 5 : 00 + T, ...22 : 00. (4.8)

where fi∈t(s) here is defined by a spline as a function of day s as the time interval

specific seasonal trend. ϕ(t) denotes the daily delay at time t. This short-term delay

captures the delay possibly attributed to airport/shared resources delays during a

day. As long as the scheduled departure time of flight i falls within time interval t,

the predicted delay is generated by the seasonal spline at fi∈t(s) for time t plus the

daily pattern ϕ(t). The random residual ǫi applies to each flight i.

The daily propagation component ϕ(t) is estimated from the prior s days of

data. This approach has appeal because the daily propagation effect is based on

the past s days of history as is the degree from which daily and seasonal effects are

separated.
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Figure 4.10: Exploring the Relationship Between Variance and Time Span s

We employ the previous optimal number of seasonal splines (N = 9) and

calculate the daily propagation pattern from the last s days. We explore a range of

s days for the daily propagation estimation and find that a longer time span lead to

a better result. In Figure 4.10, the variance reduces when the time span s increases.

We further explore the relationship between variance and the roughness penalty

for the daily propagation pattern. However, the roughness penalty λ does not seem

to have a significant impact on the variance reduction. There is barely any fluctua-

tion of variance in this case. See Figure 4.11.

Although we explore a range of parameters, the best is only close to 898.73,

which is barely lower than the multiple seasonal trend model (898.74 in last section).

One possible reason is that the multiple seasonal trend model already captures the
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Figure 4.11: Exploring the Relationship Between Variance and Roughness Penalty
λ

daily propagation pattern by employing seasonal trends at different time intervals.

For example, the 9-seasonal-trend model employs 3 splines in the morning, afternoon

and evening respectively to capture the delay propagation pattern. There is not

much left for the daily spline ϕ(t) to extract. That is why we do not see a clear

improvement by employing an additional the daily propagation pattern.

4.2.6 Modeling the Downstream Ripple Effect for Real-Time Impacts

This approach seeks to incorporate the dynamic factors into the model by capturing

the real time airport delay information from the current day. A dynamic model

is very important because it adjusts the predictions by making observations of the
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early delays. These delays could come from severe weather condition, GDP delays

and runway congestions, etc, and have a direct impact on later delays. Suppose

flight i has not departed yet during one day, but the airport is experiencing some

adverse weather and all flights must be delayed for several minutes. This adverse

event not only impacts all the current flights at time t but is very likely to impact

flights at t+1, t+2, ..., t+ i. This is similar to a ripple effect. Since this event only

impacts later flights, we may call this effect a downstream ripple effect. This effect

is different from the daily propagation pattern in Model III, which only captures

the day to day ordinary propagation pattern. This downstream ripple effect aims to

capture the real time adverse event impact and its consequent propagation/ripple

effects to later flights.

There is a body of literature modeling time series correlations. Among them,

autoregressive models are widely adopted. However, a traditional autoregressive

model may not applied to this particular flight delay case for the following reasons.

The autoregressive model is one of a group of linear prediction formulas that

attempt to predict an output yn of a system based on the previous outputs (yn−1,

yn−2, yn−3, ...) and inputs (xn−1, xn−2, xn−3, ...). A time series without an exogenous

variable x then is called a self-projecting time series (and the x variables are not

included in the model):

yt = α +

p
∑

1

βiyt−i + ǫt (4.9)

where p denotes the order of the autoregressive part or the number of lags to use in
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the regression.

When p=1, the autoregressive model becomes

yt = α + βyt−1 + ǫt (4.10)

It can be easily shown that

E(yt) = E(α + βyt−1 + ǫt)

= E(α) + βE(yt−1) + E(ǫt)

= α + βE(α + βyt−2) + 0

= α + βα + β2E(yt−2)

= α + βα + β2E((α + βyt−3))

= α + βα + β2α... + βt−1E(y1) (4.11)

In this model, α and β are constant and in the end yt is modeled as related

to y1 alone. The error term is expected to have zero mean. Since the functional

relation E(yt) varies with time t, the delay can vary during the day as a simple

function of α and β. It is hard to justify that a model of constants will effectively

reflect the dynamic impacts to delays over time. For example, if a thunderstorm

hits the airport around 10:00 am, the flights that are supposed to fly immediately

after 10:00 am are very likely to be influenced by this event. All the delays are

expected to increase by a certain amount and the error term may not have a zero

mean. To help the model adapt to the impact of random events, we propose an
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approach that is similar to exponential smoothing and the aim is to capture this

downstream ripple effect. Of course, we don’t have to model the delays using only

the last period t − 1, but rather several periods backwards. In later sections, we

further explore these possibilities.

4.2.6.1 Exponential Smoothing Method

Let the ŷt be the predicted delay for a flight at time t. Suppose we observe a true

delay yt and measure the discrepancy by δt=yt − ŷt. Based on this observation of

discrepancy, we need to decide how to adjust the prediction for later time intervals

ŷt, ŷt+1, ŷt+2, ...

The approach is as follows,

δ̂t = αδt−1 + (1 − α)δ̂t−1 (4.12)

where δ̂t denotes the predicted discrepancy/adjustment for time t. So the newly

updated prediction is y′
t = ŷt + δ̂t. Here is the rationale of the downstream ripple

effect model: when we observe a discrepancy between the predicted and actual

delay, very likely this effect will impact the delays at later time intervals. Then

we adjust the previous predictions by the currently observed discrepancy and its

downstream ripple effect and update the prediction of later time intervals. The

parameter α measures the extent to which a previous event would have on the next

departure delays. We further explore the choice of α for prediction accuracy and for

longer-time span predictions.
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Predicted Delay
by Multi-Seasonal

Trends
Actual Delay

Actual
Discrepancy

Predicted
Discrepancy

New Adjusted
 Predicted Delay

9 25 16 16.00 25.00
12 27 15 16.00 28.00
16 30 14 15.20 31.20
19 31 12 14.24 33.24
22 33 11 12.45 34.45
24 27 3 11.29 35.29
18 25 7 4.66 22.66
14 22 8 6.53 20.53

Figure 4.12: An Example for Downstream Ripple Effect Prediction (α=0.8)

Figure 4.12 shows an example of how this downstream ripple effect can be

captured using this model. In the first row, we assume that δ̂1 = δ1. The first column

shows the original predictions by the multi-seasonal trend model (this example is a

simplified version with less time periods). The second column shows the actual/true

delays (yt). The third column presents the discrepancy δt and the fourth one presents

the predicted discrepancy δ̂t. The last column shows the newly predicted y′
t.

As you may see that something happened early during the day. The impact

of this event pushes up the delays for later time intervals but this impact gradually

disappears at the end. By adopting the exponential adjustment of this ripple effect

(as shown in Equation 4.12), we see the predictions in the last column is much

closer to the true delays than their counterparts generated by the multi-seasonal

trend model alone.

By adopting the exponential adjustment, we are assuming that earlier events

have more impact on its immediate followers than to the events much later in time.
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The details of the exponential effects come from

δ̂t = αδt−1 + (1 − α)δ̂t−1

= αδt−1 + α(1 − α)δt−2 + (1 − α)2δ̂t−2

= α

t−1
∑

1

(1 − α)i−1δt−i + (1 − α)t−2δ̂2 (4.13)

Therefore the discrepancy at t − 1 has a factor of αδt−1 impact on current

time t and the impact from the last two periods is reduced by α(1 − α), and the

impact from the last i period is further mitigated by α(1 − α)i−1. In this sense the

impact of one random event exponentially decreases when passed on to later time

periods. The delays can be very complex and may be magnified due to queueing

effects. However, despite all the possible complexities, we start with a simple model

that gives reasonable results.

We set δ̂1 = δ1, so δ̂2=αδ1 + (1 − α)δ̂1=δ1. The first value for δ̂1 is not of

great importance when the time series is long and the impact of the first one is

exponentially discounted for later time periods. Of course, one could explore other

possible values of δ̂1.

When we forecast a longer time span, we adjust the predictions only based

on what we observed until now. For example, Figure 4.13 shows an example for

forecasting longer time spans. Suppose we only observe the first two time periods

and based on what we observed, we need to forecast the delays for the rest of

the time periods. This exponential smoothing model provides a way to make the

predictions possible. When the actual delays for future time periods are missing,
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Predicted Delay
by Multi-Seasonal

Trends
Actual Delay

Actual
Discrepancy

Predicted
Discrepancy

New Adjusted
 Predicted Delay

9 25 16 16.00 25.00
12 27 15 16.00 28.00
16 30 15.20 31.20
19 31 3.04 22.04
22 33 0.61 22.61
24 27 0.12 24.12
18 25 0.02 18.02
14 22 0.00 14.00

Figure 4.13: Downstream Ripple Effect Prediction for Longer Time Spans (α=0.8)

we simply assume that the discrepancies for later time periods are zero. And the

impact of previous observations shows an exponentially decreasing effect on the later

time periods. As you may see from the last time period, the impact from the first

two is almost none. The degree of this impact is controlled by α. A smaller α puts

less weight on the immediate preceding observations and the distant past continue

to have a large influence on the next forecast. The forecasted trend is relatively

smooth. But when the α is close to 1, the weight decreases rapidly, and only very

recent observations have much influence on the next forecast. In this case, forecasts

react quickly to sudden changes in the series. In this study, we choose α=0.8 to avoid

reacting too quickly to random noise and diluting the basic underlying patterns.

We incorporate the downstream ripple effect and measure the predictive vari-

ance (as described in 4.2.3) for the whole year. The variance is further reduced to

503.77 compared with 898.74 as the best in previous models. This result shows that

the downstream ripple effect successfully models the real-time impact during any

given day.
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4.2.6.2 Varying Coefficient Linear Regression

Varying-coefficient linear regression has been applied to computational biology /bio-

statistics, including Kauermann and Tutz (1999) and Tian et al. (2005). The intu-

ition is that regression parameters may vary over time. For example, in HIV-AIDS

study comparing a new treatment with an active control, the new drug may work

well in the initial treatment period, but gradually loses its potency due to muta-

tion of the virus. This time-varying coefficient method provides a flexible way to

study the dependency of response on the predictor variables and the time effect of

this relationship. In the delay case, the impact of the previous delay to the later

time intervals may change throughout the day, e.g., enhanced or weakened, and we

endeavor to study the time-varying effects of the delays.

In this study, we adopt the linear regression model proposed by Rice and Zwet

(2004) to model in downstream-ripple effect. The goal is to make sure that the

model can perform well in a rapidly changing real-time environment. We want the

method to be simple, fast and scalable, and to be able to process a large amount of

data in a short period of time. The model can be described as follows,

Suppose there exist linear relationships between δ(d, t) and δ(d, t + φ) for all

t and φ,

δ(d, t + φ) = α(t, φ) + β(t, φ)δ(d, t) + ǫ (4.14)

where parameter α and β are allowed to vary with t and φ. Details of parameter

estimates in linear models with varying parameters are discussed by Hastie and
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Figure 4.14: Comparing the Predictive Accuracy of Four Models

Tibshirani (1993).

Of course we could explore a range of t and φ in continuous space. But to

demonstrate the effectiveness of the model and compare with existing models, we

specify a series of “current times” t (t=7:00 am, 8:00 am, ..., 22:00 pm) and the lag

time φ (φ=60 min). The results are shown in the next section along with all other

methods.

4.3 Comparison of the Models and Prediction Accuracy

In this section, we estimated the mean square error of the various prediction methods

for a number of “current times” t (t=7:00 am, 8:00 am, ..., 22:00 pm) and lags

φ (φ=60 min). The four models are: 1. Flight-ID model (currently employed

by the ETMS); 2. Multi-trend model with 9 seasonal trends; 3. Multi-trend +

exponential smoothing model where the exponential smoothing is for estimating the
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downstream-ripple effect and is on top of the multi-trend model; 4. Multi-Trend +

varying-coefficient regression model. The varying-coefficient regression model is an

alternate approach for estimating the downstream-ripple effect.

Figure 4.14 shows the predictive accuracy of the four models. The accuracy

is measured in mean square errors (MSE). The models are all trained based on

6-month data and then used to forecast the next 30 days. As you may see from

Figure 4.14, Model 4 performs very close to Model 3, both with very good results.

The actual MSE for Model 4 is 1181.46, and for Model 3 is 1195.72. Therefore,

Model 4 slightly outperforms Model 3. Model 2 is the third in performance with

an MSE of 1746.44 and Model 1 is the last with an MSE of 2118.68. Model 3 has

the advantage of requiring fewer parameters when compared with Model 4 (only

α as the smoothing parameter for downstream ripple effect). In this sense, it is

computationally efficient, easy to implement and update.

All models give fairly accurate forecasts at the beginning of the day but per-

form worse as time moves later into the day. It is not surprising that Model 1 and

2 perform worse later in the day, since as a day progresses delays tend to build up,

increasing not only in magnitude but also variability. As the same time, Model 3

and 4 can offer little improvement early in the day since they have little or no history

to base their forecasts on. However, later in the day their advantage over Model 1

and 2 grows larger since there is more history on which to base adjustments to the

longer term predictions.

We also explore a range of φ values (φ=60 min, 120 min and 180 min). Figure

4.15, 4.16 and 4.17 show that Model 4 outperforms Model 3 when the lag is large.
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Figure 4.15: Comparing the Predictive Accuracy (φ=60 min)
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Figure 4.16: Comparing the Predictive Accuracy (φ=120 min)
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Figure 4.17: Comparing the Predictive Accuracy (φ=180 min)
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Figure 4.18: Comparing the First Quartile of the Predictive Errors
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Figure 4.19: Comparing the Median of the Predictive Errors
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Figure 4.20: Comparing the Third Quartile of the Predictive Errors
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When we take a closer look at of predictive errors and record the corresponding

quartiles, we find that larger prediction errors occur with the larger delays. Figure

4.18, 4.19 and 4.20 show that all models give similar results when the delays are

small but model 3 and 4 show distinct advantages when delays are large. But from a

practical point of view, predicting larger delay situations is more interesting because

larger delays tend to have greater impact on air congestion. In those situations, our

proposed models perform much better than existing models.

4.3.1 Exploring the Day-of-Week (DOW) Effect

We explore the day of week (DOW) effect and test its impact on the model per-

formance. This DOW effect may come from airline scheduling cycle and from the

travel demand changes during the week. For example, business travelers tend to

travel during the weekdays and leisure travelers during the weekends. Due to those

patterns, we expect to see some differences of the delays during a week. Further

more, we would like to characterize the day of week effect as DOW (i ∈ κ) for flight

i that departs on day κ (κ=Sun, Mon, ... Sat).

The corresponding Multi-trend model with DOW effect becomes

yi∈t(s) = ft(s) + DOW (i ∈ κ) + ǫi (4.15)

where t=7:00, 7:00+T, ..., 22:00 and κ=Sun, Mon, ... Sat. The downstream ripple

models are built upon this model to form the new models with DOW effect. To

estimate the DOW effect, we first estimate and remove the seasonal trends, then
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Figure 4.21: Comparing the Predictive Accuracy of Four Models with the Day of
Week Effect

aggregate the data according to the day of the week to compute this effect. We

find that adding the DOW effect improves the multi-trend model greatly while

Model 1, 3 and 4 do not show any significant improvement (compare Figure 4.14

and 4.21). One possible reason is that the downstream models are very flexible

and react quickly with the daily changes, so adding the DOW does not contribute

much to the model performance. Figure 4.22 further magnifies this difference for

the multi-trend model. The DOW effect is shown on the right-hand side of Figure

4.22. It is interesting to observe that the delays are low during weekends and reach

the highest on Thursdays.

4.3.2 An Example of Application: Predicting Wheels-off Delays

Let us illustrate how to use the models for forecasting. Let us assume the time now

is 11:00 am on July 8th, 2000 and we would like to forecast the delays for the next
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Figure 4.22: Exploring the Day of Week Effect: (L) Comparing the Predictive
Accuracy for the Multi-trend Model; (R) The Day of Week Effect(after the seasonal
trends are removed)

hour (11:00-12:00 am). From the multi-trend model, based on all historical delays

of previous days, the predicted delay is 21.09 minutes. In addition to this point

estimate, one may also check the corresponding error distribution and obtain the

probability forecasts (Figure 4.23). For example, the probability of a flight being

delayed more than 60 minutes is 22.41%.

Suppose we adopt Model 4 (Multi-trend model + Regression). This method

is implemented as a two-step process: First, the multi-seasonal trend model gives

21.09 minutes as the predicted delays. Second, we look at the delays prior to 11 am

for the current day delays. That is, we record the delays starting from early in the

morning until 11:00 am. As predicted by the downstream-ripple model, we know

that the delay will be 18.53 minutes more for the next hour. Therefore all together

we get 39.62 minutes as the predicted delay for the next hour.

Although the prediction (39.62 min) seems to be fairly large, the fact is that

the delays at that particular time were indeed large—with an average delay of 45.46

82



Residual Minutes

F
re

qu
en

cy

−100 0 100 200 300 400

0
20

0
40

0
60

0
80

0
10

00
12

00

Figure 4.23: Residual Histogram for Multi-Trend Model

minutes. Therefore our prediction was reasonably close to the true value.

In addition to a point estimate, the model can give the probability forecasts

as well. The probability forecasts come from the distribution of residuals/errors.

Back to the early example, we can calculate the probability of the delay exceeding

60 minutes P (Y > 60min). The distribution of morning residual errors is shown in

Figure 4.24 and the probability of P (Y > 60min) during 10:00-11:00 am is 15.36%.

Please refer to Chapter 2 and 3 for details of how to model these distributions.

P (Y > 60min) = P (39.62 + ǫ > 60min) (4.16)

= P (ǫ > 20.38min)

= 15.36%

Figure 4.25 and 4.26 show the residual distribution for afternoon and evening re-

spectively. The distributions are more spread-out and have a longer tail compared
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Figure 4.24: Residual Histogram for Morning Departure Delays

with the morning distribution. We can readily use these distributions to create

probability forecasts for later time intervals (such as 2:00-3:00 pm or 8:00-9:00 pm)

as well.

4.3.3 Model Comparison and Summary of Findings

Finally we summarize the methodologies employed in the models to provide further

guidance of how to choose a forecasting model. Please see Table 4.4. Figure 4.27

summarizes the findings from all models explored.

The Aviation System Performance Metrics (ASPM) estimates are based on

flight categories and the categories are defined by the airline, airport and year.

The predictions vary by year. The ETMS model is predominantly flight ID based,
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Figure 4.25: Residual Histogram for Afternoon Departure Delays
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Figure 4.26: Residual Histogram for Evening Departure Delays
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Table 4.4: Comparison of Methodologies in the Forecasting Models

Aggregation Base Methodology Updates
ASPM est. category constant yearly

ETMS flight id heuristic daily
Multi-Trend time/category spline daily
Ripple Effect time/category exponential adjustment real-time

Figure 4.27: Summary of Results for All Models Explored

adjusting the predictions by a step size table and can be updated daily. The multiple

seasonal-trend model shows great improvements in terms of variance reduction and

predictive accuracy. It is also parsimonious and computationally efficient. Finally,

the downstream ripple effect model further enhances these improvements and shows

remarkable capability in short/long term predictions for dynamic updates of real-

time event impacts.
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Chapter 5

Conclusions and Further Research

Our approach to estimating flight departure delays has several distinctive (and new)

features. First, we decompose observed delays into three components: seasonal

trend, daily propagation pattern, and random residuals, which provides a new per-

spective for understanding delays. The additive model based on these three compo-

nents is parsimonious, easy to implement and update, and robust; most importantly,

it demonstrates good fit and strong predictive performance. Second, rather than

providing only point estimates, we focus on estimating the delay distribution. This

distribution can be used to predict expected airspace congestion levels and lead

to more accurate decisions. We also propose a new version of the EM algorithm

that, by borrowing ideas from the Genetic Algorithms, can overcome local solutions

associated with finite mixture models.

Finally, we demonstrate a way to model wheels-off delays in a dynamic fashion

by adopting multiple seasonal trend with downstream ripple effect adjustment. This

method shows great capability for variance reduction and remarkable predictive

accuracy. Not only does it produce point estimates, but also it has the capability of

generating probability forecasts. It provides a more accurate picture of the airspace

traffic situation and demonstrates significant improvement to the current ETMS

forecasting methods.
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In this thesis, we focus on United Airlines and Denver International Airport

only. Our ultimate goal, of course, is to generate departure delay distributions for the

entire NAS. Our model can be applied readily to other airline/airport combination.

An interesting (and open) research problem is to combine individual airline/airport

models into one general, NAS-wide model. As one step in that direction, one could

try to extract, from individual airline/airport models, the effects that contribute

to NAS-wide delay. Such an approach would provide more insight into the general

structure of delays and also would be easier to maintain and update on a NAS-wide

basis.

While a NAS wide model clearly could provide improved results, we feel that

our current model, if incorporated into ETMS and Monitor Alert, would provide

improved predictions for traffic flow management.
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