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Biosolids are the solid residuals of wastewater treatment that have been treated 

to reduce pathogens and can be used as fertilizer for agricultural purposes. The major 

disposal option of biosolids from wastewater treatment plants is land application. 

Since biosolids odor quality is inconsistent, there is a possibility that odorous biosolids 

can be distributed to field sites nearby residential areas. The objective of this thesis 

was to create statistical models using the processing data and ambient conditions at 

Blue Plains wastewater treatment plant to predict biosolids odor levels. The model 

shows that FeCl3 addition in the primary process, lime addition, the number of 

centrifuges out of service and the temperature at the plant are parameters that can be 

used to predict biosolids odor. 



FORECASTING ODOR LEVELS FOR BIOSOLIDS PRODUCT BASED ON 

AMBIENT CONDITIONS 

 

by 

Sirapong Vilalai 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park in partial fulfillment 

of the requirements for the degree of  
Master of Science 

2003 
 

Advisory Committee: 
 

Assistant Professor Steven A. Gabriel, Chair 
 Associate Professor Eric A. Seagren 
 Professor Gregory B. Baecher 





ii

DEDICATION 

 

To my parents and family, for their unconditional love, guidance, and support. 



iii

ACKNOWLEDGEMENTS 

 

I would like to express my gratitude to Dr. Steven A. Gabriel, my advisor, for 

his kindly guidance thorough the development of this thesis. His technical and 

editorial advice was essential to the completion of this thesis. 

 

I would like to thank Royal Thai Army for giving me a great opportunity to 

study master degree in the US and the financial support during my study. 

 

I would like to express my sincere thanks to Chris Peot who gave me an 

opportunity to work as an intern in DCWASA, permission to use DCWASA data, and 

useful discussions thorough the development of this thesis.  I would like to thank 

Mark Ramirez and Dorian Tolbert from DCWASA for their advices and explanation 

about DCWASA process.  

 

I am grateful to Dr. Gregory B. Baecher and Dr. Eric A. Seagren for agreeing 

to be my committee members, and for reviewing this thesis. 

 

Lastly, thanks Kim Hyunah for encouragement and support.  

 



iv

Table of Contents 

List of Tables ............................................................................................................... vii 

List of Figures............................................................................................................... xi 

Chapter 1 Introduction ....................................................................................................1 

1.1 Overview of Biosolids in the US ..........................................................................1 
1.2 Background on the District of Columbia Water and Sewer Authority.................3 
1.3 Overview of Wastewater Treatment Process........................................................5 

1.3.1 Wastewater Treatment Process (DCWASA, 2003).......................................7 
1.4 Problem under Review..........................................................................................9 
1.5. Research Objectives...........................................................................................11 

Chapter 2 Databases......................................................................................................14 

2.1 Summary of All Data Used in This Research...............................................14 
2.2 DCWASA Processing Data ..........................................................................17 

2.2.1 Amount of FeCl3 Added (gallons) ...............................................................18 
2.2.2 Sludge Blanket Depth in Secondary Settling Tank (feet)............................20 
2.2.3 Waste Pickle Liquid Added to Secondary Process (gallons).......................23 
2.2.4 Blend Ratio in Blend Tank (%) ...................................................................24 
2.2.5 Polymer Added (lbs/dry tons of sludge) ......................................................27 
2.2.6 Number of Centrifuges in Service and Out of Service ................................29 
2.2.7 Lime Addition (lbs per try tons of sludge) ..................................................30 

2.3 Field Data............................................................................................................31 
2.3.1 Inspector’s field Odor Data..........................................................................34 

2.4 Weather data .................................................................................................35 

Chapter 3 Descriptive Statistics....................................................................................37 

3.1 Disaggregating Data from 2002 into Three Periods for Analysis ................37 
3.2 Selecting Inspectors into each Period ...........................................................39 
3.3 Setting Variables to Observe the Lagged Effects on Odor Levels ...............41 
3.4 Organizing The Selected Data into Table for Correlation Analysis .............43 
3.5 Correlation Approach ...................................................................................45 
3.6 Correlation between Inspectors’ Field Odor Data and Processing Data ......46 



v

3.6.1 Summary Correlation between Inspectors’ Field Odor Data and Processing 
Data.......................................................................................................................47 
3.6.2 Correlation between Each Inspector’s Field Odor Data and Processing Data 
for the entire year 2002.........................................................................................48 
3.6.3 Correlation between each Inspector’s Field Odor Data and Processing Data 
Winter 2002 ..........................................................................................................54 
3.6.4 Correlation between Each Inspector’s Field Odor Data and Processing Data 
Summer 2002........................................................................................................57 

3.7 Correlation between Normalized Odor Data and Processing Data for Entire 
Year 2002, Summer Season, and Winter Season......................................................61 

3.7.1 The Normalized Odor Data..........................................................................61 
3.7.2 The result of Correlation between Normalized Odor Data and Processing 
Data.......................................................................................................................63 

3.8 Correlation between Each Inspector’s Field Odor Data and Weather Data in 
2002, Summer Season, and Winter Season. .............................................................66 

Chapter 4 Regression Analysis .....................................................................................73 

4.1 Objective of Regression Analysis.......................................................................73 
4.2 The Requirements on an Appropriate Regression Equation...............................73 
4.3 The Procedures to Create Odor Forecasting Models ..........................................75 
4.4 Additional Techniques ........................................................................................80 

4.4.1 Dummy variables .........................................................................................81 
4.4.2 Interaction Variables....................................................................................83 

4.5 Abbreviation of Independent Variables Used in the Regression Analysis.........84 
4.6 The Regression Analysis ....................................................................................86 

4.6.1 Final Regression Results..............................................................................86 
4.6.2 Yearly Regression Analysis.........................................................................88 
4.6.2.1 Pete’s Yearly Regression ..........................................................................89 
4.6.3 Winter Regression Analysis.........................................................................94 
4.6.3.1 Carl’s Winter Regression..........................................................................95 
4.6.3.2 Pete’s Winter Regression........................................................................101 
4.6.4 Summer Regression Analysis ....................................................................109 
4.6.4.1 Mike’s Summer Regression....................................................................110 

4.7 Improving Candidate Regressions ....................................................................113 
4.7.1 Final improvement on Carl’s Winter Regression ......................................114 
4.7.2 Final improvement on Pete’s Winter Regression ......................................116 

4.8 The Summary of Best Regressions...................................................................116 

Chapter 5 Conclusions ................................................................................................118 

5.1 The Major Results from the Regression Analysis ............................................118 
5.2 How the Models Can Work for DCWASA ......................................................119 



vi

5.3 The Problems during the Statistical Modeling Process ....................................120 
5.4 Future Work......................................................................................................120 

Appendix A.................................................................................................................122 

Appendix B.................................................................................................................124 

REFERENCES ...........................................................................................................126 

 



vii

List of Tables 

Table 2.1: The Organization of All Data for Analysis .................................................17 

Table 2.2: The Sample of Field Data. ...........................................................................33 

Table 3.1: The Description of Inspectors’ Odor Data for Each Period ........................40 

Table 3.2: How to Set the Lagged ................................................................................43 

Table 3.3: The Sample of Data Set for Field Odor and Processing Data Correlation 
Analysis ........................................................................................................................44 

Table 3.4: The Sample of Data Set for Field Odor and Processing Data Correlation 
Analysis after Deleting Missing Data...........................................................................45 

Table 3.5: The Correlation between Pete’s Field Odor and Processing Data in 2002 .50 

Table 3.6: The Correlation between Carl’s Field Odor and Processing Data in 2002 .50 

Table 3.7: The Correlation between Patrick’s Field Odor and Processing Data in 2002
......................................................................................................................................51 

Table 3.8: The Correlation between Wilfred’s Field Odor and Processing Data in 2002
......................................................................................................................................51 

Table 3.9: The Correlation between Rob’s Field Odor and Processing Data in 2002..52 

Table 3.10: The Correlation between Mike’s Field Odor and Processing Data in 2002
......................................................................................................................................52 

Table 3.11: The Correlation between Pete’s Field Odor and Processing Data in Winter
......................................................................................................................................55 

Table 3.12: The Correlation between Wilfred’s Field Odor and Processing Data in 
Winter ...........................................................................................................................55 

Table 3.13: The Correlation between Carl’s Field Odor and Processing Data in Winter
......................................................................................................................................56 

Table 3.14: The Correlation between Mike’s Field Odor and Processing Data in 
Winter ...........................................................................................................................56 

Table 3.15: The Correlation between Mike’s Field Odor and Processing Data in the 
summer..........................................................................................................................59 



viii

Table 3.16: The Correlation between Pete’s Field Odor and Processing Data in the 
summer..........................................................................................................................59 

Table 3.17: The Correlation between Rob’s Field Odor and Processing Data in the 
summer..........................................................................................................................60 

Table 3.18: Average and Standard Deviation of Inspectors’ Field Odor Data.............62 

Table 3.19: Normalized Inspectors’ Scores ..................................................................62 

Table 3.20: The Correlation between Normalized Field Odor and Processing Data in 
2002 ..............................................................................................................................64 

Table 3.21: The Correlation between Normalized Field Odor and Processing Data in 
winter ............................................................................................................................64 

Table 3.22: The Correlation between Normalized Field Odor and Processing Data in 
summer..........................................................................................................................65 

Table 3.23: Correlation between Pete’s Odor Data and Weather Data in 2002 ...........67 

Table 3.24: Correlation between Carl’s Odor Data and Weather Data in 2002 ...........67 

Table 3.25: Correlation between Patrick’s Odor Data and Weather Data in 2002.......68 

Table 3.26: Correlation between Mike’s Odor Data and Weather Data in 2002..........68 

Table 3.27: Correlation between Wilfred’s Odor Data and Weather Data in 2002......69 

Table 3.28: Correlation between Pete’s Odor Data and Weather Data in Winter ........69 

Table 3.29: Correlation between Wilfred’s Odor Data and Weather Data in Winter ..70 

Table 3.30: Correlation between Carl’s Odor Data and Weather Data in Winter ........70 

Table 3.31: Correlation between Mike’s Odor Data and Weather Data in Winter.......71 

Table 3.32: Correlation between Pete’s Odor Data and Weather Data in the summer 71 

Table 3.33: Correlation between Mike’s Odor Data and Weather Data in the summer
......................................................................................................................................72 

Table 4.1: Dummy and Interaction Variables Used in Additional Techniques............80 

Table 4.2: Summary of the Good Regression in each Period .......................................87 



ix

Table 4.3: The Data Set for Pete’s Yearly Regression and Adjusted R Squares..........90 

Table 4.4: The Appropriate Pete’s Yearly Regression Result from Data Set 3.2.........92 

Table 4.5: Additional Variables Used on Pete’s Yearly Regression ............................93 

Table 4.6: The Regression Using the Additional Variables on Pete’s Yearly 
Regression.....................................................................................................................94 

Table 4.7: Data Set for Carl’s Winter Regression ........................................................97 

Table 4.8: Carl’s Winter Regression Using Data Set 1 ................................................98 

Table 4.9: Carl’s Winter Good Regression Using Data Set 2 ......................................98 

Table 4.10: Additional Variables Used to Improve Carl’s Winter Regression ............99 

Table 4.11: The Regression from the Improvement on Carl’s Winter Regression on 
Data Set 2....................................................................................................................100 

Table 4.12: Using Significant Variables from Carl’s Winter Regression Running 
Multiple Regression Method for Data Set 2 ...............................................................101 

Table 4.13: Data Set for Pete’s Winter Regression Analysis .....................................103 

Table 4.14: Pete’s Winter Regression on Data Set 2 ..................................................105 

Table 4.15: Pete’s Winter Regression on Data Set 2 without d-1 DEWAT POLY 
Variable.......................................................................................................................106 

Table 4.16: Additional Variables Used to Improve Pete’s Winter Regression ..........107 

Table 4.17: Pete’s Winter Regression with Additional Variables on Data Set 1 .......108 

Table 4.18: Pete’s Winter Regression with Additional Variables on Data Set 2 .......109 

Table 4.19: Best Summer Regression for Inspector Mike Using Data Set 1..............111 

Table 4.20: Additional Variables Used in Improvement on Mike’s summer Regression
....................................................................................................................................112 

Table 4.21: Data Used to Improvement Carl’s Winter Regression ............................114 

Table 4.22: The Best Regression from Improvement on Carl’s Winter Regression ..115 



x

Table 4.23: Data Used for Improvement of Pete’s Winter Regression ......................116 

 



xi

List of Figures 
 

Figure 1.1: Overview of Wastewater Treatment Process (DCWASA, 2003) ................6 

Figure 2.1: Database chart ............................................................................................14 

Figure 2.2: FeCl3 Volume Primary East .......................................................................19 

Figure 2.3: FeCl3 Volume Primary West Graph...........................................................19 

Figure 2.4: Blanket Depth Secondary East Graph........................................................22 

Figure 2.5: Blanket Depth Secondary West Odd Graph...............................................22 

Figure 2.6: Blanket Depth Secondary West Even Graph .............................................23 

Figure 2.7: Waste Pickle Liquid Added Graph.............................................................24 

Figure 2.8: Overview of the Sludge Blending System (DCWASA, 2003) ..................25 

Figure 2.9: Blend Ratio Graph......................................................................................27 

Figure 2.10: Dewatering Polymer for Centrifuges .......................................................28 

Figure 2.11: DAF Polymer ...........................................................................................29 

Figure 2.12: Lime Addition Graph ...............................................................................31 

Figure 3.1: Temperature Distribution at National Airport in 2002...............................38 

Figure 4.1: The Procedures to Create Odor Forecasting Models .................................76 

Figure 4.2: The Procedure to Run Regression Analysis...............................................86 

Figure 4.3: Final Step to Find Best Regression ..........................................................113 

 



1

Chapter 1 Introduction 

This chapter provides an overview of biosolids, a background on the District of 

Columbia Water and Sewer Authority’s Blue Plains wastewater treatment plant, 

problems under review, and the research objectives. 

1.1 Overview of Biosolids in the US 

Biosolids are the nutrient-rich production from wastewater treatment plants 

that can be used as fertilizer for agricultural purposes. Unlike the raw sludge that is the 

byproduct of the processes used to treat wastewater before discharge to the receiving 

water bodies, biosolids have been treated to reduce pathogens, and odor. With Regard 

to the pathogens in biosolids, biosolids can be categorized into two groups: Class A 

and Class B (Evanylo, 2001). Class A level means that biosolids have passed 

additional treatment (e.g., high temperature and high pH) and have below-detectable 

pathogens levels. Class A biosolids can be applied to the land directly without any 

field restrictions and also can be sold as fertilizer in the market place. Compared to 

Class A, Class B biosolids have been treated to reduce pathogens so that they will not 

affect people and the environment but for which field restrictions need to be 

considered before application.  

In the early 1900s, the common way for a wastewater treatment plant to get rid 

of its sludge was to dump it into oceans, lakes, and rivers (Metcalf & Eddy Inc., 1991). 

Since the US population in many cities has increased, the environmental impact from 

wastewater facilities has become much more significant. The growing of algae and the 

death of animals in the rivers have provoked state and federal standards to be applied 
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to municipal wastewater facilities, such as the limitation of compounds of 

phosphorous, ammonia and nitrogen, deposited in the rivers. As the result, wastewater 

treatment plants have to apply more sophisticated treatments to reduce the effluent 

chemical compounds to meet these regulations. In the US, advanced treatment 

processes, such as treatment by waste activated sludge, nitrification, and 

denitrification treatments have been implemented to reduce the chemicals deposited 

into rivers.

In addition to the purification of effluents from the plants, the disposal options 

of sludge present another serious problem. Compared to waste liquids that can be 

discharged directly into rivers after meeting specifications, sludge disposal requires 

the availability of space and state or federal permission, such as the distance from 

surface, ground water, or public area. Since the ban of dumping sludge into the ocean 

(Metcalf & Eddy Inc., 1991), there are three sludge disposal options available: 

landfills, incineration, and land application (biosolids only). We briefly discuss these 

options in what follows.  

For landfill and surface disposal, sludge is dumped and compressed into the 

specific area, such as strip mines (Evanylo, 2001). This option is economically 

attractive since it needs less advanced treatment. One needs to prepare synthetic liners 

in the landfill space to prevent excessive nutrient leakage into the ground or surface 

water. For surface disposal, this option needs to leave the land undeveloped at least 

two years after dumping. Nowadays, it is increasingly difficult to find available space 

for landfills.  



3

The second option is incineration. Incineration reduces the sludge volume, kills 

pathogens, and uses less land space than other options (Evanylo, 2001). However, to 

dispose sludge by incineration, one needs to install special ovens that can produce 

temperatures higher than 450°F as well as install special equipment to prevent the 

spreading of ash. Incineration also leaves heavy-metal particles in the oven that may 

contaminate the air after burning. 

Up to now, given the issues of availability and suitability of space for landfills 

and utilization of nutrients in biosolids, land application seems to be the most 

appropriate option for biosolids. The benefit of biosolids to agriculture is that farmers 

can spread the treated biosolids on the farms as fertilizer to help grow the crops as 

well as reduce fertilizer costs. Biosolids also improve the soil properties in terms of 

nutrient addition, infiltration, soil compaction, and the ability to retain nutrients. For 

the benefit of wastewater treatment plants, this approval solves the space-availability 

problem by delivering biosolids to farms instead of landfill sites. 

As this thesis is focused on wastewater treatment and biosolids management by 

The District of Columbia Water and Sewer Authority (DCWASA), the following 

sections in this research are related to wastewater treatment and biosolids management 

for DCWASA. 

1.2 Background on the District of Columbia Water and Sewer Authority 

The District of Columbia Water and Sewer Authority’s Blue Plains treatment 

plant is the largest advanced wastewater treatment plant in the world. Located in 

southwest Washington DC, Blue Plains provides wastewater treatment service for 

more than 2 million users in Washington DC, Montgomery and Prince George’s 
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county in Maryland, and Fairfax and Loudoun counties in Virginia. Blue Plains treats 

more than 370 million gallons of wastewater per day (DCWASA, 2003). 

Blue Plains was originally constructed in 1938. From 1938 to 1996, it was 

known as the District of Columbia Water and Sewer Utility Administration 

(DCWASA, 2003).  The treatment process from 1938 to 1959 composed of screening 

and primary treatment. The plant applied secondary treatment in 1959 and advanced 

treatment in 1983. As the population and industry in the DC area increased, the 

funding from the DC government, which was the income source to operate Blue 

Plains, was insufficient to maintain the appropriate operating standards, maintenance, 

and to establish new advanced treatment. On April 18, 1996, the DC government and 

the US federal government agreed to establish the District of Columbia Water and 

Sewer Authority as a multi-jurisdictional regional utility. As a result, DCWASA can 

manage the wastewater fee by itself to improve the infrastructure, the wastewater 

facilities and wastewater treatment systems at Blue Plains.   

The wastewater collecting systems in Washington DC are comprised of the 

Combined Sewer Systems (CSS) and the Separate Sewer System (SSS). The CSS 

constitutes about one third of wastewater collecting systems, which was constructed 

before 1900. This system combines the wastewater from sanitary waste and storm 

water into the same line. Then, wastewater is sent to DCWASA for treatment during 

normal weather conditions. When there is a storm in Washington DC and the overflow 

reaches up to a certain level, the operator will discharge the overflow from the 

combined system directly into the Potomac River, Anacostia River, and Rock Creek to 
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prevent flooding in city. As a result, the domestic and industrial waste has 

contaminated the river during storm weather.  

The SSS was constructed after 1900 and constitutes about two thirds of the DC 

wastewater system. The SSS separates wastewater from sanitary sewage from home 

and industry in one line, and storm water to another line. The sanitary waste is treated 

in DCWASA and the storm water is discharged directly into rivers. This system 

reduces the contamination of wastewater into rivers during stormy weather. 

1.3 Overview of Wastewater Treatment Process 

At the Blue Plains, the wastewater treatment process can be categorized into 

two parts: the liquid treatment train and the solid treatment train. The liquid treatment 

train is the set of procedures that purify the wastewater before discharging to the river. 

The goal of this process is to limit the chemicals loaded into the Chesapeake Bay, such 

as organic matter, phosphorous, and nitrogen. The other part is the solid treatment 

train. This process focuses on treating the solids residuals resulting from the liquid 

treatment train. Biosolids also need to pass regulations concerning pH, pathogens, and 

odor before delivery to the field sites. The overview of the wastewater treatment 

process at Blue Plains is shown as follows. 
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Figure 1.1: Overview of Wastewater Treatment Process (DCWASA, 2003) 
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1.3.1 Wastewater Treatment Process (DCWASA, 2003) 

As this research concentrates on odor released from biosolids, the following 

paragraphs provide a summary of the wastewater treatment processes at Blue Plains, 

focused on the solids processes.  

1. Preliminary process: The bar screen is the preliminary step to remove large 

debris, such as boards, branches, trash, or other large particles from the wastewater 

before passing through the system. The gap between each bar can remove the large 

particles from the flow. The purpose of this preliminary process is to detect the large 

particles that can damage the equipment, such as pumps or pipelines. The heavy 

particles detected by the bar screen will be hauled to the landfill.  

After bar screen, the flow is sent to the aerated grit chamber to remove the grit 

from the wastewater. This process is important because it prevents the abrasion of 

equipment in the downstream from grit and increases the service life of equipment. 

The air causes a spiral velocity pattern to settling heavy particles down to the bottom 

of the tank while the lighter particles eventually are carried out of the tanks to the 

primary process (Vesilind, 2003). Grit removed from aeration grit chamber will be 

disposed to nearby landfills by truck. 

 2. Primary process: The raw wastewater from the preliminary process is 

pumped to the primary sedimentation tanks. The primary sedimentation tanks are used 

to slow down the influent and facilitate the settling of suspended solids.  Using the 

gravity in tanks, the suspended solids settle to the bottom of the tanks and scum1 (e.g. 

oil and greases.) floats to the surface of the tanks. Both scum and settling sludge are 

1 Scum is defined as the filmy layer that forms on the surface of water.  
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sent to the degritting and grinding facility to additionally remove grit from the primary 

sludge. In this process, 45% to 65% of suspended solids are removed from the flow. 

3. Secondary process: The secondary aeration tanks form the biological 

process. Air is blown into in these tanks in order to supply oxygen for microorganisms 

in the aerobic biological processes. Microorganisms use the oxygen to convert organic 

wastewater constituents in the flow in the process that produces more microorganisms. 

The combination of wastewater and microorganisms in aeration tanks is called mixed 

liquor (Vesilind, 2003). Then, the wastewater from the aeration tanks flows to the 

secondary sedimentation tanks. In these tanks, a portion of settling sludge at the 

bottom of the tanks, which we call mixed liquor suspended solids (MLSS),  will be 

pumped back to the aeration tanks to maintain a concentration of microorganisms in 

the aeration tanks (Vesilind, 2003) while the rest will be wasted and sent to Dissolved 

air floatation (DAF) thickeners.  

After the secondary sedimentation tanks, wastewater flows to the nitrification 

and denitrification process for ammonia removal. Liquid is sent to multimedia 

filtration after this process to remove the remaining small particles. Then it passes 

through the disinfection step using chorine before being discharged into the Potomac 

river.  

For the solids part, the waste activated sludge settles down in the nitrification 

sedimentation tanks. Some parts are returned to the nitrification reactor (return sludge) 

while the other part is wasted to the DAF thickeners.  
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4. DAF thickeners: Sludge from secondary settling tanks, nitrification and de-

nitrification settling tanks, which are all activated sludge, is first thickened using 

dissolved air floatation thickeners. To increase the solids content of sludge, polymer is 

added to combine all small particles while the air is blown to float these particles to 

the surface. Then, the chain pad removes all the floating sludge on the surface of tanks 

and sends to the sludge blending tank system. 

5.  Blending tanks system: In the blending tank system, sludge from primary 

and floatation thickeners is mixed together in the blend tank. The primary sludge and 

waste activated sludge are first stored separately. To discharge sludge from both tanks, 

the operators calculate the appropriate blend ratio using the influent flow into both 

tanks. 

6. Dewatering and lime stabilization process: After the blending tanks system, 

the blended sludge from the mixing tank is then dewatered by centrifuges and then 

lime is added to increase the pH and kill pathogens before sending the sludge to the 

bunker. Lastly, biosolids will be hauled by truck to the various field sites. 

1.4 Problem under Review 

Much research in environmental engineering has been conducted in order to 

study the cause of biosolids odors. At DCWASA, research has been conducted that 

involve collecting samples from several parts of the plant and then applying laboratory 

procedures to analyze the characteristics of samples. For example, studies have 

investigated the amount of odor released if different amounts of lime are incorporated 

into the samples (Murthy, 2002a). Other studies have investigated the potential of odor 

released from the sample when the sample container is opened for 30 minutes, 24 
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hours, and seven days later.  Such laboratory experiments allow DCWASA to better 

understand various wastewater treatment and biosolids production characteristics. 

In addition to such laboratory experimentation, the biosolids supervisor can 

also obtain the actual processing data inside the plant from Processing Control History 

(PCH), the DCWASA online processing database, as well as the weather data at the 

plant to see the effect of these data on biosolids odor levels. Up to now, a statistical 

study of such factors on biosolids odor levels has not been performed.  

Combining these aforementioned data sources, we can explore the interaction 

between the processing data and ambient conditions at the plant with the biosolids 

odor in the field. For instance, on a day for which there is a small amount of polymer 

and a small amount of lime added to the sludge, we could analyze the resulting 

biosolids odor at the field sites. In addition to processing data that operators can 

control, the ambient data can be taken into account for forecasting purposes. Ambient 

conditions such as the temperature at the plant could affect microbial activities inside 

the sludge. 

Currently, biosolids management at DCWASA has considered the benefit of 

odor forecasting models. Even though the process at the plant already meets or 

exceeds the state and federal specifications, there were cases when the plant had 

delivered odorous biosolids to fields. In terms of operations, there are more than 10 

processes working on biosolids production. All of them have already been evaluated to 

create products that satisfy environmental regulations. In reality, it is impossible to 

operate all processes at full capacity due to maintenance problems at Blue Plains. A 
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forecasting model can be used to predict biosolids odors based on the inconsistency of 

the biosolids production. 

1.5. Research Objectives 

The objectives of this research are as follows: 

1. To understand the interaction of processing variables and ambient conditions 

at the plant on the resulting biosolids odor levels by season of the year and as well as 

the entire year by using a correlation analysis. 

2. To establish forecasting models to predict the odor levels associated with the 

processing variables and ambient conditions at the plant by using multiple regression 

analysis. 

We expect that this research will be of benefit in three ways: biosolids 

management, quality of life to the residents nearby the field sites, and as a part of an 

optimization model of biosolids distribution for DCWASA currently under 

development of the University of Maryland (Gabriel and Sahakij, 2003). 

For biosolids management, this research enables the biosolids supervisor to 

better understand the relationship between processing variables or weather variables at 

the plant and the biosolids odor levels. Using existing processing data, a supervisor 

could monitor and control the variables that cause odorous biosolids. In some cases, 

variables not directly controllable are involved, for example, the number of out-of-

service mixers or the temperature. In these cases, the supervisor can notify the 

destination contractors in advance to schedule trucks in anticipation of odorous 

conditions. 
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Residents around the field sites will benefit from this biosolids management 

program in upcoming odor conditions. The biosolids application program is 

intentionally established to recycle the nutrient-rich products from the wastewater 

treatment plant for agricultural purposes for free. However, biosolids odors, especially 

when strong, are inconvenient to farm residents. Additionally, the strong odor on 

residential areas may be the cause of the opposition or even the ban of biosolids 

application in some areas. A statistical odor forecasting model will help DCWASA to 

more efficiently deliver biosolids products with odor taken into account. Thus, the 

farmers and nearby residents would have a positive attitude to biosolids application 

and apply biosolids for their agriculture as the purpose of biosolids application. 

In future work, DCWASA plans in implementing a multiobjective model to 

control the biosolids processing and biosolids hauling assignment to reduce 

unnecessary transportation and chemicals costs while maintaining minimum odor 

levels. The odor-forecasting model from this research will play a significant role in 

development of this optimal distribution model (Gabriel and Sahakij, 2003). 

The rest of this thesis is organized as follows. In Chapter 2, we discuss the data 

sets we used for our analysis: the processing data, the field data, and the weather data. 

In particular we describe variables and their range of values. In addition, we mention 

why these variables are important in our analysis. Chapter 3 focuses on the descriptive 

statistics of these variables. It starts by explaining how data were organized for the 

correlation analysis. Next, analyses using different periods for 2002 are performed. 

Chapter 4 discusses the multiple regression analyses that we ran. We start with the 

regression between inspector odor data and significant variables shown from the 
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correlation analysis. Then, we explain several techniques applied to improve adjusted 

R squared values, such as including interaction variables, dummy variables, etc. 

Finally, we summarize the best regressions. In Chapter 5, we summarize our finding 

and describe how DCWASA can use the results for better management of the 

biosolids odor levels
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Chapter 2 Databases 

 In this chapter we discuss the data set used in the statistical modeling. As 

shown in Figure 2.1, there are three types of data i.e., DCWASA processing data, field 

site data, and weather data. All of these data sets are believed to affect biosolids odor 

levels. 

 

Figure 2.1: Database chart 

2.1  Summary of All Data Used in This Research 

 This section is the summary of all data used in this thesis. It gives an overview 

of all data used by separating the data into three groups: DCWASA processing data, 

field data, and weather data. The relevant data within each group are listed as follows. 

 

Processing data 

from DCWASA

Weather data  

Odor released at field 

site 
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1. DCWASA processing data. 

 DCWASA processing data is the data set of all variables from DCWASA 

operating processes we expected to investigate relative to their reactions with biosolids 

odor levels. Those data we chose are the following. 

 1.1 Amount of FeCl3 added (gallons) 

 - FeCl3 added in primary east tanks 

 - FeCl3 added in primary west tanks 

 - Sum of FeCl3 added in primary east and primary west tanks. 

 1.2 Sludge Blanket depth in secondary settling tank (feet) 

 - Blanket depth in secondary east tanks   

 - Blanket depth in secondary west odd tanks  

 - Blanket depth in secondary west even tanks  

 - Sum of blanket depth in secondary west odd and west even tanks  

 - Sum of all blanket depth in secondary tanks 

 1.3 Waste Pickle liquid added to the secondary process (gallons) 

 1.4 Blend ratio in blend tank (%) 

 1.5 Polymer added (lbs of polymer/dry tons of sludge) 

 - Polymer added to Diffused Air Floatation process (DAF) 

 - Polymer added to dewatering process 

 - Sum of DAF polymer and dewatering polymer 

 1.6 Number of centrifuges in service and out of service 

 - Number of DCWASA centrifuges in and out of service 

 - Number of contractor centrifuges in service 
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 - Number of contractor belt filter press in service. 

 1.7 Lime addition (lbs of lime per try tons of sludge) 

2. Field data 

 Field data is the data set from farm sites that apply biosolids. Maryland 

Environmental Service (MES) sends inspectors to the field sites to collect the field 

data, such as temperature at the field, wind direction, wind velocity, biosolids odor 

levels, etc. The data we used in this thesis is: 

2.1 Inspector’s field odor data 

3. Weather data  

 Weather data represent ambient conditions at the plant, such as: 

 3.1 Minimum temperature, minimum temperature, average temperature (F) 

 3.2 Snowfall (inches) 

 3.3 Precipitation (inches) 

 3.4 Average station pressure (inches of Hg) 

 3.5 Average daily wind speed (miles per hour) 

Table 2.1 is an overview of how we organized all the data described above. All data 

were taken on a daily basis from 2002 and arranged into four parts: date that the 

variables were taken from, inspector’s field odor data, the set of processing data, and 

the set of weather data. 
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Table 2.1: The Organization of All Data for Analysis 

Inspector 
field odor 

data

Date day
operator     

mike

blanket 
depth 

secondary 
east (ft.)

blanket 
depth 

seconda
ry west 
odd (ft.)

blanket 
depth 

seconda
ry west 

even (ft.)

Blanket 
depth:se
condary 

west 
odd+sec
ondary 
west 

even (ft.)

Maximum 
temp. 
(°F)

Minimum 
temp (°F)

Average 
temp. 
(°F)

1/1/02 Tuesday no data 2.3 2.6 3 5.6 x x 34 20 27 x x
1/2/02 Wednesday 5 2.6 2.6 3 5.6 x x 37 21 29 x x
1/3/02 Thursday 3.2727273 3.3 3.3 3.4 6.7 x x 36 30 33 x x
1/4/02 Friday 6 3.1 3.1 3.5 6.6 x x 41 27 34 x x
1/5/02 Saturday no data 3.1 3.1 2.9 6 x x 51 26 39 x x
1/6/02 Sunday no data 3.3 3.3 3.5 6.8 x x 39 29 34 x x
1/7/02 Monday no data 3.7 3.9 4.7 8.6 x x 39 30 35 x x
1/8/02 Tuesday 3 4.1 3.3 3.4 6.7 x x 40 28 34 x x
1/9/02 Wednesday 3 3.4 3.2 3.1 6.3 x xx 49 29 39 x xx
1/10/02 Thursday 0 3.1 3.1 3.6 6.7 x x 53 34 44 x x
1/11/02 Friday no data 2.8 3.5 3.4 6.9 x x 51 39 45 x x
1/12/02 Saturday no data 2.5 3.1 3.6 6.7 x x 51 30 41 x x
1/13/02 Sunday no data 2.8 2.7 3.7 6.4 x x 49 36 43 x x
1/14/02 Monday 5.5263158 2.5 3 3.9 6.9 x x 51 32 42 x x
1/15/02 Tuesday 6 2.1 3.1 3.9 7 x xx 54 36 45 x xx

x x x x x x x x x x x x x x
x x x x x x x x x x x x x x

Processing data Weather data 

processing data 
no.5, 6, 7, ………

weather data no.5, 
6, 7, ………

2.2  DCWASA Processing Data  

The processing data were expected to be important in affecting the odor 

released from biosolids. The odor from the sludge is a combination of several factors, 

such as the constituents of the sludge on that day, the chemical compounds added in 

the process, the biological activities of microorganisms in the sludge during the liquid 

and solid phases, the retention time in each phase, and the efficiency of the equipment 

in the process, such as centrifuges in the dewatering process. For many years, 

DCWASA has been researching the causes of odor released in wastewater treatment in 

terms of biological activities and chemicals added.  For example, the research has 

shown that polymer causes the release of trimethylamine (TMA), which causes fishy 

odors, from biosolids during the lime stabilization process (Murthy, 2001). This 
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research has provided us a reference point in selecting the appropriate parameters for 

our analysis. In what follows, we describe in more detail each of the processing 

variables considered. 

2.2.1 Amount of FeCl3 Added (gallons) 

 FeCl3 is a chemical added to the primary settling process to remove 

phosphorous in wastewater. Phosphorous removal is an important treatment because it 

can stimulate algae growth in the Chesapeake River. Thus, FeCl3 is added for the 

precipitation of phosphorous from wastewater (Metcalf & Eddy Inc., 1991). In 

DCWASA, three FeCl3 variables were available: FeCl3 added to the primary east 

tanks, FeCl3 added to the primary west tanks and the sum of FeCl3 from the east tanks 

and the west tanks. Based on decisions with DCWASA staff, these variables were 

included in the analysis of the correlation between processing data and biosolids odor 

since it is a major chemical added into primary process (Ramirez, 2003). 

 Figures 2.2 and 2.3 show the graphs of FeCl3 added to the primary east and 

west tanks in 2002. When we compared the volume of FeCl3 used from both tanks, we 

found that the volume of FeCl3 added in the primary west tanks was higher than the 

east tanks according to the greater number of tanks in the primary west. In 2002, the 

range of FeCl3 in the primary east tanks was from 2000 to 6000 gallons and the range 

of FeCl3 in the primary west tanks was from 4000 to 11000 gallons. No study has 

noted the relationship between FeCl3 added in primary wastewater treatment and 

biosolids odor levels. Thus, the relationship between FeCl3 addition and odor levels 

needs to be statistically investigated by using the correlation analysis between the 

FeCl3 data and the inspector’s field odor. 
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Figure 2.2: FeCl3 Volume Primary East  
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Figure 2.3: FeCl3 Volume Primary West Graph 
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2.2.2 Sludge Blanket Depth in Secondary Settling Tank (feet) 

 In the secondary treatment, there are three sets of secondary settling tanks: 

blanket depth secondary west even tanks, blanket depth secondary west odd tanks, and 

blanket depth secondary east tanks. To use blanket depth in our analysis, we created 

two more blanket depth variables: first the sum of blanket depth west even and west 

odd tanks and second the sum of all blanket depth from all tanks. The purpose of the 

secondary process is to use biological consumption from microorganisms in the 

aeration tanks to break down the organic matter in the tanks. After secondary aeration 

tanks, the wastewater is sent to the secondary settling tanks to separate suspended 

solids from wastewater.  

 Using gravity, the suspended solids in the settling tanks are settled to the 

bottom of the tanks. The depth of the suspended solids in this tank is called the blanket 

depth and can roughly determine the capacity of waste activated sludge in the tanks. 

At the bottom of the settling tanks, some of sludge is returned to the aeration tanks to 

balance microorganisms in biological processes (return activated sludge) while the 

remaining sludge (waste activated sludge) is sent to dissolved air floatation thickeners.

 The higher the level of the secondary blanket depth, the greater the biosolids 

odors. The rationale is that the higher the blanket depth indicates the more retention 

time for the activated sludge in the settling tanks. The greater retention time of waste 

activated sludge influences the development of anaerobic conditions for 

microorganisms in the tank and reduces the oxidation reduction potential (ORP). For 

example, experiments at DCWASA have shown that the higher blanket depth, the 

lower the ORP and the greater the production of the sulfur compound (Peot, 2003).  
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 At DCWASA, the level of blanket depth is determined by the balance of the 

amount of MLSS in aeration tanks (Peot, 2003) and then the excess sludge is wasted 

to DAF thickeners. However, an insufficient number of DCWASA centrifuges in 

service, the major problem of DCWASA’s dewatering process (Peot, 2003), causes 

less dewatering capacity. Thus, DCWASA operators have to reduce the wasting of 

waste activated sludge from sedimentation tanks. The fewer of DCWASA centrifuges 

operating, the greater the retention time of activated sludge in the sedimentation tanks 

and the lower ORP in the tanks. As a result, the relationship between the number of 

centrifuges operating and blanket depth is one of the significant factors to determine 

biosolids odor. 

 The following are graphs showing the distribution of blanket depth for all of 

2002. Each of the graphs shows the trend of high blanket depth in January and 

February after that the curve was lower down to May and June, and then climbing up 

again until it reached the peak point around November and December. According to 

Figures 2.4, 2.5, and 2.6, the blanket depth ranges vary from 1 foot to 5.5 feet and we 

consider the values of zero, which are from missing observations, as outliers. 
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Figure 2.4: Blanket Depth Secondary East Graph 
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Figure 2.5: Blanket Depth Secondary West Odd Graph 
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Blanket depth west even
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Figure 2.6: Blanket Depth Secondary West Even Graph 

2.2.3 Waste Pickle Liquid Added to Secondary Process (gallons) 

 Waste Pickle Liquid (WPL), a waste product of steel finishing operations, is 

added to the process for additional removal of phosphorous from wastewater. Even 

though no research has shown how the WPL correlates with biosolids odor levels, this 

WPL variable has been added for analysis for the reason that it is a major chemical 

used in the secondary wastewater treatment process. 

 From Figure 2.7, the WPL added in the secondary tanks did not present any 

trends in the graph. The data seem to be randomly added. As a consequence, we added 

all data in our analysis except those with values of zero, which we treated as outliers. 
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Figure 2.7: Waste Pickle Liquid Added Graph 

2.2.4 Blend Ratio in Blend Tank (%)   

The blend ratio is the ratio between primary sludge (sludge and scum from the 

primary process) and waste activated sludge (the combination of sludge from the 

secondary process, nitrification, and de-nitrification) that were pumped into the 

blending tank as shown in Figure 2.8. 
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Figure 2.8: Overview of the Sludge Blending System (DCWASA, 2003) 

We considered that the sludge and scum from the primary process were the 

food source for microorganisms in the waste activated sludge. The primary sludge is 

the highly condensed sludge that has been primarily taken out of the wastewater in 

primary sedimentation tanks. It contains a high volume of organic matter that can be 

used by waste activated sludge. In comparison, the waste activated sludge from the 

secondary, nitrification, and denitrification processes is composed of microorganisms, 

such as bacteria, and organic matter that can not be removed in the secondary process. 

Waste activated sludge is pumped from the DAF thickeners to the blend tank number 

3. The primary sludge is pumped directly from the primary tanks to blend tank number 

1. The blend ratio of blend tank (number 2) is determined by the calculation of 

influent into tanks number 1 and 3. The blended sludge tank system is the central point 

Sludge 
from 
Primary 
tanks: 
Primary 
sludge 

Sludge from 
Secondary, 
Nitri -
Denitrification 
process: Waste 
Activated 

Tank 1

Tank 3

Dissolved 
Air  
Floatation
(DAF)

Tank 2 
Blending
Tank
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to combine all scum and sludge in wastewater system before dewatering and lime 

stabilization. The formulation of the blend ratio is shown below. 

Blend ratio = Sludge pumped from Tank 1/ sludge pumped from Tank 3 

The assumption for the blend ratio variable is that the higher the ratio the 

higher the level of odor. Since the blend tank ratio is the ratio of primary sludge (food) 

divided by the waste activated sludge (microorganisms), the higher the ratio means 

that microorganisms have a higher level of food relative to their population. When 

sludge from the high blend ratio tank is dewatered, it should present more 

microorganisms than the sludge from the low blend ratio tank. As a result, we assume 

that the high blend ratio causes more odors. 

DCWASA biosolids advisors mentioned that the normal range of this ratio was 

from 0.3 to 0.70 (Tolbert, 2003). The data out of this range were identified as outliers. 

As we see from Table 2.9, the blend ratio tended to peak in June, July, August, and 

September. We can compare the influence of the blend ratio with odor levels in the hot 

months of the year (June, July, and August) with blend ratio in the cold months 

(January, February, and March) in Chapter3 as part of the correlation analysis section. 
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Figure 2.9: Blend Ratio Graph 

2.2.5 Polymer Added (lbs/dry tons of sludge) 

There are three types of polymer added that we used for our analysis: 

Dewatering polymer, dissolved air floatation (DAF) polymer and the combination of 

dewatering and DAF polymer. Polymer is added to both the centrifuge dewatering 

process and DAF in order to hold the sludge particles together to help the centrifuges 

to remove water from the sludge. Several studies have shown that polymer added into 

sludge is a main factor that increases biosolids odor, especially amine production e.g. 

TMA. For example, the increase of polymer will increase the amount of TMA from 

biosolids (Murthy, 2001). Also, DAF is expected to be the major source of TMA 

because of the microbial activity of the waste activated sludge and degradation of the 

polymer added in DAF resulting in the production of TMA (Kim, 2001a). 

Accordingly, we expect that the more polymer added in the DAF and 

dewatering processes, the greater the odors would be released from biosolids. To use 
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the polymer data in our analysis, biosolids supervisors at DCWASA provided us with 

the normal data range that they used. The normal range of dewatering polymer is from 

10 to 30 lbs per dry ton and DAF polymer is from 80 to 300 lbs per dry ton (Tolbert, 

2003). The data outside of this range was considered to be outliers. 

From Figures 2.10 and 2.11, dewatering polymer added before the centrifuges 

had a range between 10-30 lbs per dry ton in 2002 while dewatering polymer added to 

DAF was between 50-200 lbs per dry ton. 

Dewatering polymer

0.0

5.0
10.0

15.0
20.0

25.0

30.0
35.0

40.0
45.0

50.0

01-Jan-02 01-Apr-02 30-Jun-02 28-Sep-02 27-Dec-02

p
o

ly
m

er
ad

d
ed

(l
b

s/
d

ry
to

n
)

Figure 2.10: Dewatering Polymer for Centrifuges  
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Figure 2.11: DAF Polymer  

2.2.6 Number of Centrifuges in Service and Out of Service 

 The centrifuges in the wastewater treatment processes are used for removing 

water from the sludge. Sludge from the blend tank needs to have the water part 

removed to decrease the volume and weight before hauling it to the field in regards to 

cost and quality considerations. In DCWASA, there are two components of the 

dewatering process. One is dewatering by DCWASA centrifuges, the other is 

dewatering by contractor centrifuges and belt filter presses. The contractor assists 

DCWASA in the dewatering and lime stabilization processes in order to reduce the 

biosolids loading on DCWASA centrifuges and mixers. The biosolids supervisor 

decides the working load on the contractor side, at least 150 dry tons or more per day, 

depending on the working status of DCWASA centrifuges. There are seven 

centrifuges available in the DCWASA dewatering process and there are two 

centrifuges and seven belt filter presses available for the contractor.  
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As discussed in sludge blanket depth section about the relationship between 

blanket depth and number of centrifuges operating, the greater the number of 

centrifuges operating the less the retention time of activated sludge in the secondary 

sedimentation tanks as well as the retention time of blended sludge in the blend tank. 

Consequently, the greater number of centrifuges and belt filter presses in service the 

lower the biosolids odor levels.  

2.2.7 Lime Addition (lbs per try tons of sludge) 

 Lime stabilization is the last treatment before biosolids are delivered to the 

bunker and hauled by truck to the sites. The purpose of lime stabilization is to increase 

the pH that kills the pathogens for use in agriculture. After lime stabilization, the pH 

and temperature of the biosolids are increased. Research has shown that decreasing the 

lime dose increased the biological activities and resulted releasing in reduced sulfur 

compounds (Murthy, 2001). Also, it has shown that by reducing the polymer addition 

and incorporating lime dose in the appropriate rate can make a stabilized biosolids 

with low off-site odor (Murthy, 2001). As a result, we expect the more lime added the 

less bacteria left in biosolids as long as the lime is well mixed into the sludge. Thus, 

the odor from biosolids will be decreased. 

 Table 2.12 shows the distribution of lime addition rates in 2002. The lime 

addition rate increased from January to the highest point in August. After this point the 

lime addition rate was lower until November and December. In 2002 the lime addition 

rates in the cold months (January, February, November, and December) were lower 

than in the hot months (May, June, July, and August) 
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Figure 2.12: Lime Addition Graph 

2.3 Field Data 

 Maryland Environmental Service (MES) provides field data for DCWASA 

arranged in Geographic Information System (GIS) format. DCWASA uses these data 

to monitor and update biosolids status for each field site on a monthly basis. To obtain 

the field data, MES assigns inspectors to field sites after receiving the hauling 

schedule from the contractors. At the sites, these inspectors: locate where the truck can 

spread biosolids based on state and federal regulations, and also they collect relevant 

data, such as: numbers of trucks coming in each day, wind speed, temperature, the 

odor level of biosolids on truck, etc. Finally, MES summarizes these data in a monthly 

report to DCWASA. 

 Table 2.2 is a sample of field data from MES. According to the truck 

assignment, in one day, there are many inspectors working on several sites in 
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Maryland and Virginia. Each inspector collected data on that site, such as weather 

conditions, amount of biosolids hauled biosolids odor, etc.  
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Table2.2: TheSampleof Field Data.

D ateD eliver S iteName County
T ons of

bios olids
Weather
condition

Wind
S peed

(miles /hr)
Wind

Direction

T emp
Hi/Lo
(º F ) Odor Ins pector

1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 22.5 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 23.44 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 20.24 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 21.38 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 21.84 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 23.29 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 24.32 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 23.32 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 24.02 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 22.36 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 24.68 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 23.88 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 24.26 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 23.29 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 24.37 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 20.98 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 23.45 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 25.47 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 22.35 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 21.7 S 5 S E 66/55 S L Carl Burton
1/31/2002 S MIT H DAIR Y FAR M Caroline, VA 24.85 S 5 S E 66/55 S L Carl Burton
2/1/2002 S MIT H DAIR Y FAR M Caroline, VA 23.76 S 18 S W 79/48 N Bob Heins
2/1/2002 S MIT H DAIR Y FAR M Caroline, VA 24.32 S 18 S W 79/48 N Bob Heins
2/1/2002 S MIT H DAIR Y FAR M Caroline, VA 24.57 S 18 S W 79/48 N Bob Heins
2/1/2002 S MIT H DAIR Y FAR M Caroline, VA 24.15 S 18 S W 79/48 N Bob Heins
2/1/2002 S MIT H DAIR Y FAR M Caroline, VA 23.42 S 18 S W 79/48 N Bob Heins
2/1/2002 S MIT H DAIR Y FAR M Caroline, VA 22.13 S 18 S W 79/48 N Bob Heins
2/1/2002 S MIT H DAIR Y FAR M Caroline, VA 25.4 S 18 S W 79/48 N Bob Heins
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2.3.1 Inspector’s field Odor Data 

The inspector’s field odor data is the odor score corresponding to the biosolids 

delivered to one particular site on that day. The inspector checks the biosolids odor on 

the truck and then records it in the field database. In 2002, there were eleven 

inspectors from MES assigned to field sites. Three or more inspectors were sent to 

various sites every day depending on the MES assignment.  

To obtain the reading of biosolids odor on a particular day, we decided to use 

an average of all odor scores that one inspector observed on one day, no matter which 

site it was taken from, to represent the odor score of the biosolids from that inspector 

on that day. For example, on July 1, 2002, Inspector “Pete” had 20 data points from 

different field sites. To obtain the odor data of biosolids on July 1, we averaged all 20 

data points to represent as Pete’s field odor data on July 1. Otherwise, we would have 

had to track the odor score from each individual site. Since there are approximately 

500 sites and given insufficient data for an entire year, this seems unlikely. The 

inspector odor score might seem to be subjective, however, the inspector’s field odor 

data is the most applicable and capable odor data set possible. 

In addition to biosolids odor levels from the inspectors, we tried to search for 

odor levels using odor-detection equipment, such as Jerome meters, H2S detecting 

equipment; most of these data were based on laboratory-based experiments. The data 

were incomplete according to our scope of time for one year. Moreover, odor data 

from the lab were focused on different types of chemical compounds from the odor. 

Some concentrated on the odor before lime stabilization, while other concentrated on 
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the odor when they fixed the amount of lime added. Since the lab odor data were not 

consistent and insufficient, the inspector’s field odor data was used in this study.  

From the inspector’s field, inspectors categorized the associated biosolids 

smell as “N” for negligible, “SL” for slight, “M” for medium, or “H” for high. To 

represent these data mathematically, we contacted MES about how to assign score for 

each odor level. MES used the following numerical values. 

 N= negligible (0) 

 SL= slight (3) 

 M= medium (6) 

 H= high (9) 

Thus we assigned these numbers to be the score of the inspector’s field odor 

data. 

All of the inspectors’ field odor data were taken by the inspectors who had 

more than three years of experience. Of the eleven inspectors, we chose six inspectors, 

Carl, Mike, Wilfred, Cheryl, Pete, and Patrick for our analysis because all of them had 

at least three of the four categories, such as 0, 3, and 6, corresponding to their field 

odor data. Only Mike recorded odors levels from all four categories, N, SL, M, and H 

in his data. We chose the inspectors in this way because we needed a range of values 

for the later statistical work. 

2.4  Weather data  

 In addition to processing data, we also considered that weather data might 

have an influence on the biological activity on sludge, especially when extreme 

temperatures were considered. For instance, it would be interesting to see the reaction 
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between chemicals added in biosolids and odor released when extreme weather 

conditions, such as snow, or high temperature were presented. Thus, we included 

weather data in our statistical analysis.  

We obtained the weather data from the National Climate Data Center (NCDC) 

website, the world’s largest archive of weather data 

(http://www.ncdc.noaa.gov/oa/ncdc.html.). We used the weather data from Reagan 

National Airport Station in DC, the closest station of NCDC to DCWASA, to 

represent the weather data at the plant. The parameters we used were: 

1. Minimum, maximum, and average temperature (F) 

2. Snow fall (inches) 

3. Precipitation (inches) 

4. Average station pressure (inches of Hg2)

5. Average daily wind speed (miles per hour)  

 Our assumption about temperature variables (minimum, maximum, and 

average temperature) was that the higher the temperature, the higher the microbial 

activity and the higher the biosolids odor. For other variables, we could not make any 

assumption on their reaction to the biosolids odor in this point but we will use the 

correlation analysis’s result related to these variables to explain their relationship to 

the biosolids odor. 

In Chapter 3, we develop a correlation analysis to understand the role of 

processing data and weather data on odor levels. In addition, we explain the use of 

lagged effects for the variables. 

2 Hg is the chemical formula for mercury. 
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Chapter 3 Descriptive Statistics 

 In this chapter, we discuss about: 1) the procedures to prepare the data set for 

correlation analysis: disaggregating the data from 2002 into three periods for analysis, 

selecting inspectors into each period, setting variables to examine the day lagged 

effects on odor levels, organizing the selected data into a table for correlation analysis, 

and 2) the correlation analysis results and discussion.  

3.1  Disaggregating Data from 2002 into Three Periods for Analysis 

Our assumption on odor levels from biosolids is that the odor levels are the 

consequence of the constituents in sludge, the treatment processes, and the ambient 

conditions at the plant. In terms of the temperature aspect, we assume that temperature 

has significant effects on odor levels, especially when extreme temperature (high or 

low) is presented. In such cases, the temperature causes some effects on the odor 

levels by affecting the reactions of the microbial activities. The increasing or 

decreasing of temperature can change the microbial activity and oxidation reduction 

potential (ORP) of sludge that can increase or decrease odor as well (Murthy, 2002b). 

On a high temperature day, the high temperature at the plant obviously adds an 

additional heat to the process. Research has shown that the changing of oxidation’s 

condition in sludge by the shift of season can affect the generation of reduced sulfur 

compound (Kim, 2001b). For this reason, temperature is one of the significant factors 

expected to increase odor levels. 

We chose the average temperature for aggregating data from 2002. The reason 

we chose average temperature rather than maximum or minimum temperature was that 
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the average temperature on any day is the parameter that most likely explains the 

condition of temperature on that day. Average temperature data from National airport 

was collected and graphed as shown in Figure 3.1.  

Average temperature at National Airport in 2002
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Figure 3.1: Temperature Distribution at National Airport in 2002 

First, we must identify the break points distinguishing high average 

temperature range and low average temperature range. We selected two break points 

to represent hot days and cold days. First is the range from 70 ºF and higher 

temperatures to represent hot days. The data in this range mostly appeared on June, 

July, and August. The second range refers to 50ºF and lower temperatures to represent 

cold days. We choose January, February, and March to analyst the effects of cold 

weather on odor levels.(December has a large number of missing observation in 

processing variables so we haven’t included this month.) 

 In addition to these two ranges, we added one more period using all data in 

2002 to our analysis because we wanted to investigate the effects of processing data 

and weather data on biosolids odor levels regardless of temperature. 
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In summary, we selected three periods for analysis. 

1) The winter period, comprising January, February, and March. 

2) The summer period, comprising, June, July, and August.  

3) The yearly analysis using all days during 2002. 

3.2  Selecting Inspectors into each Period 

 As discussed in Chapter 2, we chose six inspectors. Each of them had at least 

three of the four categories of inspectors’ field odor. Those inspectors were Carl, 

Mike, Wilfred, Rob, Pete, and Patrick.  In terms of the distribution of inspectors’ odor 

data, many inspectors had scores just only in certain periods in 2002. For example, 

Wilfred’s odor data were presented only from January to May 2002. Therefore, we 

needed to select appropriate inspectors for each of those 3 periods mentioned in 

Section 3.1 to produce adequate number of data points. Table 3.1 below shows the 

number of data points and the descriptions of inspectors’ odor data for each period.
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Table 3.1: The Description of Inspectors’ Odor Data for Each Period 

inspector

data 
points 

in 
2002 inspector

data 
points description inspector

data 
points description inspector

data 
points description

Carl 150 Carl 45 Carl* 40
all data 
are "0" Carl 149

Mike 159 Mike 46 Mike 54 Mike 158
Patrick 67 Patrick* 0 no data Patrick* 0 no data Patrick 34
Pete 192 Pete 48 Pete 47 Pete 191

Rob 156 Rob* 5
all scores 

are "3" Rob 56 Rob 156
Wilfred 41 Wilfred 32 Wilfred* 0 no data Wilfred 51

* Not included for analysis in that period.

winter (January to March)

inspectors with 
3 categories of 

odor scores
summer season (June-

August) entire year 2002

The selections of inspectors for each period are described as follows: 

For the winter season (January to March), Carl, Mike, Pete, and Wilfred’s odor 

data were selected because they had variety of odor scores and also had enough data 

points (at least more than 30 data points) as shown in Table 3.1. Rob was ignored 

because of the insufficient data and insufficient variation of his data and Patrick was 

ignored because missing of data in this period. 

For the summer season (June to August), Mike, Pete, and Rob’s odor data were 

selected for the same reason as the winter season. For Carl, even though he had 40 

data points, all of his data points had a score “0”. Thus, his data were not included for 

this season. 

 For the yearly analysis, all inspectors were included. Even though there were a 

few data points in Patrick and Wilfred’s odor data, it was thought that the analysis of 
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their data regardless of season might provide some additional information for our 

analysis. 

3.3  Setting Variables to Observe the Lagged Effects on Odor Levels  

 It is difficult to identify exactly how long it takes to process biosolids from the 

beginning state (preliminary process) to the finishing state where biosolids are 

delivered into the bunkers. In terms of odor levels on biosolids, it’s more complicated 

to identify on which date the processing variables, such as lime addition affect the 

biosolids odor on the sample. For example, if we have odor data from Pete on 

February 14, 2002 equal slight, we would want to know when DCWSA added 

polymer, lime, or FeCl3 into this sample of biosolids and how much DCWASA added. 

We already have DCWASA processing data in 2002 that provide the status of each 

processing variable on a daily basis but we can’t locate the moment when these 

variables affects biosolids odor at the plant. In case of weather data, if we believe that 

the maximum temperature has an effect on biosolids odors, we would want to know 

how many days back maximum temperature caused biosolids odors on the sample date 

of February 14.   

To prepare our processing and weather data in order to observe lagged effects 

on odor level, we used the day that biosolids’ odor was collected as a reference of 

processing and weather data. We used the notation “d-i” to denote a variable lagged by 

i days (relative to odor score). Here i can be {0, 1, 2, 3, 4}. 

We chose to analyze the data back from d-0 to d-4 because we believed that 

this period could capture all the events happened from the first state in the wastewater 

treatment until the trucks delivered biosolids to the fields. There are several factors 
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that delay the biosolids production. For example, when a number of lime mixers or 

centrifuges malfunction, DCWASA reduces the biosolids production and assigns the 

processing work to the contractor who has less capacity. All of these factors contribute 

to the inconsistency of the process. Thus, using five lagged forms of each variable (d-0 

to d-4) we believe that all important events related to biosolids odor can be captured. 

Table 3.2 shows how each variable was set in order to capture the lagged 

effects on odor levels. For example, on January 10, 2002, inspector “Mike” average 

odor score taken from the field sites on this day was “0” and the maximum 

temperature (t max) at National airport was 53 º F. To observe how the odor levels on 

this day (d-0) were affected by t max on one, two, three, and four days before January 

10, 2002, we move the entire d-0 t max column down one, two, three, and four rows 

according to the number of day lagged, i.e., on d-1 to d-4, respectively. Thus, on 

January 10, 2002 the t max on d-0 to d-4 relevant to Mike odor level on that day were 

53, 49, 40, 39, and 39 respectively. 
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Table 3.2: How to Set the Lagged  

 We applied the same procedures to capture the lagged effects of all processing 

and weather data sets.   

3.4  Organizing The Selected Data into Table for Correlation Analysis  

Up to this point, we: 1. selected periods for the correlation analysis: winter, 

summer, and the entire 2002 data,  2. identified which inspectors were appropriate for 

each period, and 3. created lagged weather and processing variables. In this section we 

combine all these procedures into one data table to use in the correlation analysis. 

We choose the correlation between Mike field odor data and processing data in 

the winter period to be the example of how to prepare the data set. First, we pull out 

d-0 d-1 d-2 d-3 d-4
Date day mike t max t max t max t max t max

1/1/02 Tuesday no data 34 no datano data no data no data

1/2/02 Wednesday 5 37 34 no data no data no data
1/3/02 Thursday 3.2727 36 37 34 no data no data
1/4/02 Friday 6 41 36 37 34 no data
1/5/02 Saturday no data 51 41 36 37 34
1/6/02 Sunday no data 39 51 41 36 37
1/7/02 Monday no data 39 39 51 41 36
1/8/02 Tuesday 3 40 39 39 51 41
1/9/02 Wednesday 3 49 40 39 39 51

1/10/02 Thursday 0 53 49 40 39 39
1/11/02 Friday no data 51 53 49 40 39
1/12/02 Saturday no data 51 51 53 49 40
1/13/02 Sunday no data 49 51 51 53 49
1/14/02 Monday 5.5263 51 49 51 51 53
1/15/02 Tuesday 6 54 51 49 51 51

x x x x 54 51 49 51
x x x x x 54 51 49

x x 54 51
x x 54

x x
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all of the processing data and Mike’s odor data from the winter period, January to 

March 2002.  Then, create the lagged variables. 

Table 3.3 shows how to organize the odor and processing data for the 

correlation analysis between inspector Mike’s odor scores and processing data in the 

winter period. First we computed all of Mike’s odor data in the winter as shown in 

column three. Then we applied the procedure described in Section 3.3 to create the 

lagged variables. 

Table 3.3: The Sample of Data Set for Field Odor and Processing Data Correlation 

Analysis  

Date day mike
1/1/02 Tuesday no data 34 20 no data no data no data no data no data no data no data no data

1/2/02 Wednesday 5 37 21 34 20 no data no data no data no data no data no data
1/3/02 Thursday 3.3 36 30 37 21 34 20 no data no data no data no data
1/4/02 Friday 6 41 27 36 30 37 21 34 20 no data no data
1/5/02 Saturday 0 51 26 41 27 36 30 37 21 34 20
1/6/02 Sunday 3 39 29 51 26 41 27 36 30 37 21
1/7/02 Monday 5.5 39 30 39 29 51 26 41 27 36 30
1/8/02 Tuesday 3 40 28 39 30 39 29 51 26 41 27

1/9/02 Wednesday 3 no data 29 40 28 39 30 39 29 51 26
1/10/02 Thursday 0 53 34 no data 29 40 28 39 30 39 29
1/11/02 Friday 5 51 39 53 34 no data 29 40 28 39 30
1/12/02 Saturday no data 51 30 51 39 53 34 no data 29 40 28
1/13/02 Sunday no data 49 36 51 30 51 39 53 34 no data 29
1/14/02 Monday 5.5 51 32 49 36 51 30 51 39 53 34

51 32 49 36 51 30 51 39
51 32 49 36 51 30

51 32 49 36
51 32

all 
processing 
data on d-0

all processing 
data on d-1

all processing 
data on d-2

all processing 
data on d-3

all processing 
data on d-4

Table 3.4 provides a snapshot of the completed data from 1/1/02 to 1/14/02. 

The data from 1/1/02 to 1/14/02 from Table 3.3 decreased to five days as shown in 

Table 3.4 after we deleted our data-missing dates.  When we shifted each variable in 
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creating the lagged variables, we can see a dramatic decrease in the number of data 

points in the table. 

Table 3.4: The Sample of Data Set for Field Odor and Processing Data Correlation 

Analysis after Deleting Missing Data 

Date day mike
1/5/02 Saturday 0 51 26 41 27 36 30 37 21 34 20
1/6/02 Sunday 3 39 29 51 26 41 27 36 30 37 21
1/7/02 Monday 5.5 39 30 39 29 51 26 41 27 36 30
1/8/02 Tuesday 3 40 28 39 30 39 29 51 26 41 27

1/14/02 Monday 5.5 51 32 49 36 51 30 51 39 53 34

all processing 
data on d-4

 all 
processing 
data on d-0

all processing 
data on d-1

all processing 
data on d-2

all processing 
data on d-3

3.5  Correlation Approach 

The purpose of this analysis was to search for correlations between variables 

from the inspectors’ field odor data and both processing data and weather data.  The 

coefficient’s sign of correlation between a pair of variables shows how these variables 

are correlated to each other. The positive correlation’s coefficient means when the 

value of one variable increases the other variable tends to increase as well. Also, the 

negative correlation’s coefficient means when the value of one variable increases the 

other variable tends to decrease. The range of correlation coefficient is from -1 to 1. 

The value closed to -1 or 1 means there is a strong either negative or positive 

correlation between the pair of variables and the value closed to 0 means there is a 

weak correlation between the pair of variables (Winston, 1994). 
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The correlation analysis is useful in regards to the regression work since it is 

instructive to identify independent variables (e.g., amount of lime used) that correlate 

strongly with the dependent variable (odor level). When there are a lot of independent 

variables to choose from (as in the case of the processing data), this is a useful 

technique for narrowing down the set of candidate variables. 

 Additionally, such a correlation analysis can identify independent variables 

which are themselves strongly correlated.  Such a situation can indicate the presence 

of “multicolinearity” (Maddala, 1977) that can lead to incorrectly concluding that 

certain variables are insignificant (in the statistical sense) when in fact they are 

actually important.  This analysis was performed separately by season for the year 

2002 as well as for the entire year.  

Several analyses were run as follows: 

1. Correlation between inspector’s field odor data and processing data from 

data in 2002, winter, and summer. 

2. Correlation between normalized odor data and processing data for data in 

2002, summer, and winter.  

3. Correlation between inspector’s field odor data and weather data from data 

in 2002, winter, and summer. 

In what follows we describe the results of these correlation analyses. 

3.6  Correlation between Inspectors’ Field Odor Data and Processing Data 

The purpose of this analysis was to find processing variables highly correlated 

with the inspectors’ odor for the time frame specified above. 
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3.6.1 Summary Correlation between Inspectors’ Field Odor Data and 

Processing Data 

We summarized the correlation results regardless of periods as shown below 

1. Many of the correlation results showed blanket depth parameters had a 

positive correlation with the inspector’s odor scores, i.e., when the blanket depth 

variables had a correlation coefficient more than 0.3 with the inspector’s odor in 

absolute value. As discussed in Chapter 2, the higher level of the blanket depth in 

secondary sedimentation tanks, the greater the retention time of the waste activated 

sludge prior to removal to the DAF thickeners, and the more potential for biosolids 

odor. 

2. Blend ratio variables were negatively correlated with odor. Even though a 

small number of the correlation results showed strongly negative (coefficient’s sign 

more than absolute 0.3) correlation between blend ratio and inspector’s field odor, 

many correlation results indicated negative correlation between this pair of variables. 

This is an unexpected sign related to what we expected as discussed in Chapter 2.  

Namely, the expectation was that the higher the value of the blend ratio the greater the 

biosolids odor because of more primary sludge (food) relative to waste activated 

sludge (microorganisms). The causality regarding the relationship between the blend 

ratio and biosolids odor must be investigated by laboratory experiments to compare 

the microbial count from the sample of sludge in blend tank with the sample of 

biosolids on the same day to see the trend of the amount of microorganisms in the 

blend tank relative to biosolids.  
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3. Many of the correlation results between lime addition and inspector’s odor 

scores presented highly negative correlation, i.e., when the lime addition variable had 

a correlation’s coefficient value greater than 0.3 with inspector’s odor in absolute 

value. The negative coefficient’s sign of lime follows our assumption in Chapter 2 that 

the more amount of lime added, the lower the biosolids odor levels as well as fewer 

the microorganisms left after lime mixing. 

3.6.2 Correlation between Each Inspector’s Field Odor Data and Processing 

Data for the entire year 2002 

The purpose of this section was to observe the relationship between processing 

data and inspector’s odor score regardless of season. All the processing variables in 

2002 were arranged as d-0, d-1, d-2, d-3, and d-4 into a table. The inspectors we 

selected in this period were Pete (191 data points), Carl, Patrick (149 data points), 

Patrick (34 data points), Wilfred (51 data points), Rob (156 data points), and Mike 

(158 data points). We delete missing data before running the correlation analysis.  

From the Tables 3.5 to 3.10, the correlation analysis results in 2002 are shown. 

In each table, each row represents the correlation between the inspector’s odor score 

on day d-0 and the relevant processing data from day d-0 to d-4, respectively. We used 

the abbreviation of processing variables as shown below 

B.D. second. E = the blanket depth in secondary east 

B.D. second. W. odd  = the blanket depth in secondary west odd 

B.D. second. W. even  = the blanket depth in secondary west even 

All B.D.- W. = sum of blanket depth in secondary west 

All B.D. = sum of all blanket depth 
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FeCl3 primary W. = FeCl3 added in primary west  

FeCl3 primary E = FeCl3 added in primary east  

All FeCl3 = All FeCl3 added  

WPL = waste pickle liquid added  

Blended ratio = the blended ratio in blended mixing tank 

DAF poly. = polymer added in DAF  

DEWAT poly. = polymer added in dewatering process  

All poly. = all polymer added  

WASA # centrif. in service = DCWASA number of centrifuges in service  

WASA # centrif. out service = DCWASA number of centrifuges out of service 

Contr. # belt. in service = contractor number of centrifuges in of service  

Contr. # centrif. in service = contractor number of centrifuges in of service  

Lime = lime addition
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Table3.5: The Correlation between Pete’s Field Odor and Processing Data in 2002

Pete 2002

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
T poly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 0.25 0.33 0.22 0.30 0.32 0.17 0.08 0.14 -0.20 -0.27 0.12 -0.10 0.13 0.13 0.12 -0.14 -0.51 -0.38
d-1 0.35 0.31 0.17 0.26 0.34 0.13 0.08 0.13 -0.24 -0.20 0.05 -0.08 0.04 0.15 0.10 -0.10 -0.49 -0.33
d-2 0.31 0.34 0.23 0.31 0.35 0.14 0.07 0.12 -0.10 -0.18 0.04 -0.12 0.04 0.13 0.04 -0.04 -0.48 -0.31
d-3 0.31 0.35 0.21 0.30 0.35 0.15 0.07 0.13 -0.19 -0.25 0.10 0.10 0.15 0.16 0.07 -0.13 -0.50 -0.30
d-4 0.35 0.31 0.13 0.23 0.31 0.13 0.08 0.13 -0.09 -0.21 0.08 -0.05 0.13 0.07 0.12 -0.11 -0.49 -0.32

Table 3.6: The Correlation between Carl’s Field Odor and Processing Data in 2002

Carl 2002

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
T poly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 0.34 0.36 0.32 0.38 0.43 0.03 -0.02 0.01 -0.11 -0.11 0.19 -0.27 0.11 0.04 0.23 -0.19 -0.35 -0.31
d-1 0.32 0.28 0.23 0.29 0.36 0.04 -0.03 0.01 -0.14 -0.10 0.14 -0.23 0.07 0.12 0.17 -0.18 -0.36 -0.32
d-2 0.30 0.34 0.19 0.29 0.35 0.02 -0.02 0.00 0.06 -0.11 0.06 -0.19 0.06 0.13 0.14 -0.15 -0.33 -0.29
d-3 0.29 0.31 0.24 0.31 0.36 0.03 -0.02 0.01 0.01 -0.12 0.04 -0.17 0.00 0.13 0.16 -0.21 -0.29 -0.29
d-4 0.30 0.39 0.28 0.37 0.40 0.02 -0.01 0.01 -0.10 -0.16 0.00 -0.24 -0.04 0.06 0.23 -0.22 -0.35 -0.29
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Table3.7: The Correlation between Patrick’s Field Odor and Processing Data in 2002

Patrick 2002

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
T poly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 -0.08 -0.16 -0.13 -0.16 -0.16 -0.51 N/A -0.51 -0.18 -0.25 0.23 0.90 0.19 0.02 0.02 0.01 -0.21 -0.63
d-1 0.05 -0.41 -0.30 -0.38 -0.24 -0.48 N/A -0.48 0.33 -0.17 -0.08 -0.39 0.20 0.10 0.03 -0.02 -0.12 -0.56
d-2 -0.01 -0.31 -0.30 -0.33 -0.25 -0.48 0.02 -0.01 0.31 -0.34 -0.13 -0.23 -0.06 0.41 0.28 0.00 -0.12 -0.46
d-3 0.02 -0.22 -0.30 -0.29 -0.20 -0.48 0.02 -0.01 0.29 -0.23 0.16 -0.06 0.17 0.37 0.36 0.07 -0.20 -0.54
d-4 0.11 -0.03 -0.21 -0.13 -0.03 -0.46 N/A -0.46 0.15 -0.21 -0.10 0.72 -0.11 0.17 0.24 -0.08 -0.11 -0.56

Table 3.8: The Correlation between Wilfred’s Field Odor and Processing Data in 2002

Wilfred 2002

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
T poly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 -0.17 0.53 0.12 0.41 0.30 0.42 0.47 0.52 0.06 -0.22 0.11 -0.09 0.06 0.27 0.22 0.51 0.00 -0.05
d-1 -0.06 0.46 0.12 0.38 0.31 0.44 0.48 0.51 -0.10 -0.46 0.23 -0.05 0.20 0.34 0.25 0.34 -0.04 0.01
d-2 0.01 0.44 -0.20 0.20 0.18 0.47 0.47 0.51 -0.11 -0.39 0.03 -0.02 0.03 0.34 0.28 0.38 -0.04 0.03
d-3 0.08 0.51 0.00 0.34 0.35 0.49 0.50 0.53 -0.14 -0.39 0.20 -0.11 0.21 0.27 0.06 0.42 -0.04 0.04
d-4 0.11 0.48 0.00 0.29 0.31 0.50 0.48 0.51 -0.15 -0.53 0.13 -0.03 0.14 0.34 0.05 0.43 -0.03 0.10
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Table3.9: The Correlation between Rob’s Field Odor and Processing Data in 2002

Rob 2002

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
T poly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 0.06 -0.12 0.01 -0.05 -0.01 -0.08 -0.06 -0.09 0.17 0.14 0.06 0.00 0.04 -0.09 -0.03 0.00 0.18 0.15
d-1 0.08 -0.14 -0.02 -0.08 -0.02 -0.08 -0.06 -0.09 -0.05 0.11 0.07 0.08 0.09 -0.14 0.08 0.00 0.18 0.15
d-2 0.13 -0.09 0.18 0.07 0.12 -0.08 -0.06 -0.09 0.03 0.17 -0.31 -0.07 -0.38 -0.08 0.00 0.00 0.18 0.17
d-3 0.03 -0.06 0.05 -0.01 0.01 -0.08 -0.06 -0.09 0.04 0.26 -0.02 -0.01 -0.03 -0.08 -0.12 -0.10 0.15 0.13
d-4 0.05 -0.15 -0.10 -0.13 -0.07 -0.06 -0.08 -0.08 0.12 0.22 0.01 -0.01 -0.04 -0.09 0.00 -0.13 0.16 0.15

Table 3.10: The Correlation between Mike’s Field Odor and Processing Data in 2002

Mike2002

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
T poly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 0.02 0.06 0.16 0.13 0.11 0.03 -0.02 0.01 0.17 -0.01 -0.02 0.17 0.01 0.03 0.07 0.23 0.25 -0.04
d-1 0.05 0.10 0.17 0.16 0.16 0.02 -0.03 -0.01 0.09 0.00 -0.01 0.14 0.03 0.12 0.10 0.26 0.22 0.03
d-2 -0.05 0.08 0.03 0.06 0.03 0.03 -0.01 0.01 0.06 -0.03 -0.15 0.12 -0.15 0.06 0.04 0.30 0.20 -0.05
d-3 0.00 0.06 0.02 0.04 0.03 0.05 0.01 0.04 0.16 -0.13 -0.06 0.13 -0.03 0.04 -0.05 0.17 0.28 -0.07
d-4 0.07 0.00 0.03 0.02 0.05 -0.01 -0.06 -0.03 0.11 0.00 0.01 0.18 0.04 0.12 -0.02 0.22 0.28 0.02
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The correlation’s results between selected inspectors and processing data using 

data from the entire year 2002 showed some strongly correlated parameters consistent 

with the assumptions on processing variable to biosolids odor in Chapter 2. Many of 

blanket depth parameters such as “All B.D.” were positively correlated with Pete’s, 

Carl’s, and Wilfred’s odor scores. This means the higher the level of blanket depth the 

greater the retention time of microorganisms that will be wasted to the blend tank later 

and the greater the potential for biosolids odor. In addition, the correlation’s results 

between lime and the inspector’s odor scores also showed a negative correlation with 

Pete’s, Carl’s, and Patrick’s odor scores, which means the more lime added into 

dewatering sludge the less microorganisms and odor in biosolids. Also, the greater the 

number of contractor centrifuges in service a indicated negative correlation with Pete’s 

and Carl’s odor scores, corresponding to a lower blanket depth in the secondary 

sedimentation tanks and less biosolids odor. 

 FeCl3 variables showed the significant correlation with inspector’s odor scores. 

FeCl3 variables were highly correlated to Wilfred’s odor scores with a positive sign. 

This means the more FeCl3 added into primary tanks the greater the biosolids odor 

scores from inspector Wilfred’s field odor.  

 The blend ratio parameter indicated an unexpected correlation sign. With 

Wilfred’s odor scores, the blend ratio was negatively correlated with biosolids odor. 

As discussed in Chapter 2, a higher blend ratio was expected to increase the 

microorganisms left in biosolids as well as odor. This unexpected correlation’s result 

should be investigated as recommended in Section 3.6.1. 



54

3.6.3 Correlation between each Inspector’s Field Odor Data and Processing 

Data Winter 2002 

Processing data in January, February, and March have been collected to find 

the correlation between processing variables and inspector’s odor score during the 

low-temperature period. All processing data were arranged as d-0, d-1, d-2, d-3, and d-

4 into a table. The inspectors we selected were Pete (48 data points), Wilfred (32 data 

points), Carl (45 data points), and Mike (46 data points). Tables 3.11 to 3.14 show the 

correlation between each inspector’s field odor data during winter 2002 with the 

processing variables from the same period.  
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Table3.11: The Correlation between Pete’s Field Odor and Processing Data in Winter

Table 3.12: The Correlation between Wilfred’s Field Odor and Processing Data in Winter

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
Tpoly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 -0.25 0.06 -0.29 -0.15 -0.21 0.65 0.32 0.62 0.21 0.00 0.11 0.47 0.11 0.10 -0.39 0.12 -0.10 0.34
d-1 -0.11 0.00 -0.26 -0.17 -0.17 0.53 0.36 0.53 0.13 -0.13 -0.19 0.42 -0.16 0.23 -0.41 0.09 -0.10 0.39
d-2 -0.26 -0.08 -0.21 -0.20 -0.24 0.37 0.17 0.36 -0.03 -0.07 0.00 0.34 0.02 -0.03 -0.43 0.10 0.00 0.36
d-3 -0.24 -0.05 -0.32 -0.23 -0.28 0.21 0.04 0.19 -0.11 -0.15 0.08 0.55 0.13 -0.13 -0.45 0.19 0.00 0.35
d-4 -0.16 -0.11 -0.37 -0.29 -0.29 0.13 0.03 0.12 -0.10 -0.20 0.05 0.47 0.09 -0.07 -0.48 0.33 N/A 0.35

Wilfred winter

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
Tpoly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 0.11 0.38 0.03 0.27 0.26 0.47 0.07 0.42 0.07 0.13 0.07 -0.08 -0.32 0.07 0.13 0.51 N/A -0.07
d-1 0.19 0.31 0.16 0.31 0.34 0.48 0.10 0.41 0.14 -0.28 0.00 0.04 -0.17 0.33 0.16 0.26 N/A 0.03
d-2 0.18 0.39 -0.13 0.20 0.25 0.47 0.10 0.38 0.07 -0.10 -0.05 0.08 -0.08 0.30 0.27 0.31 N/A 0.07
d-3 0.37 0.53 0.15 0.43 0.54 0.47 0.14 0.38 0.03 -0.20 0.07 0.10 0.06 0.19 0.24 0.39 N/A 0.05
d-4 0.50 0.45 0.23 0.40 0.56 0.44 0.15 0.36 -0.02 -0.42 -0.12 0.19 -0.11 0.38 0.19 0.42 -0.06 0.12
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Table3.13: The Correlation between Carl’s Field Odor and Processing Data in Winter

Carl winter

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
T poly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 0.49 0.49 0.61 0.66 0.70 -0.06 -0.23 -0.14 -0.17 -0.08 0.36 -0.38 0.24 -0.10 0.87 -0.05 N/A -0.91
d-1 0.48 0.46 0.69 0.69 0.71 -0.01 -0.25 -0.10 -0.06 -0.10 0.27 -0.26 0.15 0.09 0.96 -0.04 N/A -0.91
d-2 0.49 0.59 0.53 0.68 0.72 -0.03 -0.18 -0.09 0.39 -0.14 0.17 -0.25 0.17 0.13 1.00 0.04 0.09 -0.86
d-3 0.47 0.60 0.57 0.73 0.76 -0.02 -0.15 -0.07 0.25 -0.12 0.15 -0.30 0.09 0.14 1.00 -0.07 0.25 -0.86
d-4 0.46 0.68 0.73 0.83 0.82 -0.01 -0.13 -0.06 0.00 -0.20 0.06 -0.40 -0.01 -0.03 0.93 -0.13 N/A -0.87

Table 3.14: The Correlation between Mike’s Field Odor and Processing Data in Winter

Mike winter

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
T poly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 -0.13 0.01 0.21 0.13 0.04 0.08 0.32 0.20 -0.09 -0.20 0.00 0.09 -0.05 0.16 -0.05 0.19 -0.11 0.23
d-1 -0.09 0.09 0.22 0.18 0.14 -0.04 0.30 0.09 -0.34 -0.16 0.07 0.12 0.10 -0.11 -0.03 0.17 -0.12 0.16
d-2 -0.11 0.13 0.07 0.12 0.05 -0.05 0.21 0.04 -0.18 -0.30 -0.24 0.24 -0.28 0.00 -0.06 0.41 -0.31 0.27
d-3 -0.12 0.01 0.03 0.02 -0.05 0.06 0.28 0.14 0.08 -0.33 -0.05 0.25 -0.08 0.08 -0.15 0.21 0.11 0.26
d-4 0.04 -0.08 0.06 0.00 -0.01 -0.06 0.29 0.05 0.10 -0.23 0.03 0.42 0.12 0.04 -0.09 0.13 N/A 0.30
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Using the data in January to March 2002, the correlation’s results between 

inspector’s odor scores and processing data showed 3 processing parameters having 

high correlation with inspector’s odor scores with the expected sign as discussed in 

Chapter 2. First, the blanket depth parameters indicated the positive correlation with 

Wilfred’s and Carl’s odor scores. The higher the level of blanket depth the more 

retention time of waste activated sludge wasted from secondary sedimentation tanks 

and the more odors on biosolids. Second, dewatering polymer showed highly positive 

correlation with Pete’s odors. Thus, the more polymers added into dewatering process 

the more sources to stimulate TMA production from microorganisms. Third, lime 

presented the strongly negative correlation with Carl’s odor scores. Using Carl’s 

biosolids odor scores, the more lime added into sludge the fewer microorganisms to 

produce the biosolids odor. 

 FeCl3 variables that we could not make an assumption on coefficient’s sign 

showed the positive correlation with Pete’s and Wilfred’s odor scores. From this 

result, we can statistically interpret that the more FeCl3 added into primary process the 

higher Pete’s and Wilfred’s odor scores in winter period.  

3.6.4 Correlation between Each Inspector’s Field Odor Data and Processing 

Data Summer 2002 

The purpose of this section was to investigate how much the temperature 

matters to the relationship between processing data and biosolids odors in the high-

temperature period of 2002. Processing variables in June, July, and August were 

arranged as d-0, d-1, d-2, d-3, and d-4 into a table. The inspectors we selected for the 

summer were Rob (56 data points), Pete (47 data points), and Mike (54 data points). 
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From Table 3.15 to 3.17, we see the correlation analysis between each inspector’s 

field odor data during summer 2002 with the processing variables from the same 

period.
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Table3.15: TheCorrelation between Mike’s Field Odor and Processing Data in the summer

Mike summer

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
T poly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 0.30 0.22 0.17 0.20 0.31 0.27 -0.06 0.08 0.23 -0.03 -0.01 0.15 0.05 0.04 -0.06 0.30 0.02 -0.37
d-1 0.41 0.26 0.15 0.22 0.36 0.26 -0.08 0.06 0.40 -0.01 0.03 0.13 0.20 0.30 0.16 0.34 0.01 -0.27
d-2 0.21 0.27 0.02 0.14 0.20 0.25 -0.06 0.07 0.21 -0.09 -0.05 0.00 -0.04 0.17 0.17 0.30 0.03 -0.42
d-3 0.27 0.29 0.03 0.16 0.25 0.25 0.00 0.11 0.27 -0.30 -0.32 -0.03 -0.29 0.29 -0.08 0.10 -0.01 -0.44
d-4 0.27 0.21 -0.03 0.07 0.19 0.14 -0.17 -0.06 0.12 0.01 -0.13 -0.16 -0.17 0.30 -0.06 0.12 0.27 -0.38

Table 3.16: The Correlation between Pete’s Field Odor and Processing Data in the summer

Pete summer

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
T poly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 -0.34 -0.06 -0.04 -0.05 -0.21 -0.16 0.05 -0.04 -0.37 -0.09 0.18 -0.32 0.05 -0.29 0.35 -0.29 0.00 0.17
d-1 -0.15 -0.09 -0.07 -0.10 -0.16 -0.16 0.08 -0.02 -0.17 0.12 -0.03 -0.30 -0.36 -0.29 0.17 -0.04 0.00 0.30
d-2 -0.17 0.01 -0.01 -0.06 -0.12 -0.14 0.06 -0.03 -0.20 0.24 -0.15 -0.23 -0.16 -0.25 0.18 0.15 0.04 0.32
d-3 -0.07 -0.11 0.00 -0.07 -0.09 -0.01 0.08 0.05 -0.17 0.12 -0.08 0.23 0.03 0.09 0.06 -0.07 0.02 0.36
d-4 -0.06 -0.17 -0.25 -0.25 -0.23 -0.25 0.09 -0.06 -0.03 0.20 -0.15 -0.15 -0.08 -0.12 0.22 0.00 0.09 0.34
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Table3.17: The Correlation between Rob’s Field Odor and Processing Data in the summer

Rob summer

B.D.
second.

E.

B.D.
second.
W. odd

B.D.
second.
W. even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primar
y E.

All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWA
T poly.

All
poly.

WASA #
centrif. in
service

WASA
#

centrif.o
ut

service

Contr. #
belt. in
service

Contr. #
centrif.

in
service Lime

d-0 0.03 0.15 0.16 0.18 0.15 -0.09 -0.04 -0.08 0.14 -0.01 0.04 0.02 -0.03 -0.03 0.07 0.04 -0.02 0.25
d-1 0.01 -0.14 0.04 -0.03 -0.02 -0.06 -0.04 -0.06 -0.11 -0.12 0.16 0.03 0.24 -0.07 0.02 0.02 -0.02 0.10
d-2 0.13 -0.10 -0.11 -0.15 -0.02 -0.07 -0.03 -0.06 -0.17 0.09 -0.18 0.06 -0.26 0.05 -0.15 0.03 0.01 0.16
d-3 -0.02 0.13 -0.08 -0.07 -0.03 -0.09 -0.05 -0.08 0.16 0.14 -0.10 -0.13 -0.11 -0.13 0.02 -0.07 0.03 0.06
d-4 -0.04 -0.04 -0.09 -0.08 -0.08 -0.09 -0.04 -0.08 0.01 -0.02 0.05 -0.19 -0.04 -0.03 -0.07 -0.30 0.03 0.10
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The correlation’s result between an inspector’s odor scores and the processing 

data during the summer period did not show strong correlation compared with the 

entire year 2002 and the winter period. The best correlation was from inspector Mike. 

Some blanket depth parameters indicated a positive correlation with Mike’s odor 

scores (“Blanket depth second. E.” and “All blanket depth”), which can be interpreted 

as the higher the blanket depth the greater retention time for activated sludge in the 

tanks as well as the more biosolids odor. Also, lime was negatively correlated with 

Mike’s odor scores. The more lime addition to dewatering sludge decreased the 

biosolids odor by killing the microorganisms left after dewatering. 

3.7  Correlation between Normalized Odor Data and Processing Data for 

Entire Year 2002, Summer Season, and Winter Season.  

3.7.1 The Normalized Odor Data 

Since there were insufficient odor data for winter and summer, it was 

necessary to find a way to combine all data from all different inspectors and then to 

run a correlation analysis. To solve this problem, the data were “normalized” as 

described below and then the data from different inspectors were combined. 

Normalized odor scores were computed as follows using inspector Pete as an 

example: 

Normalized odor data for inspector Pete  

= (Pete’s odor data from each day – average odor data of Pete from 2002)/ 

(Standard deviation of Pete odor data from 2002) 

Table 3.18 summarizes the average and standard deviation of selected 

inspectors for normalized correlation analysis using the data from 2002 
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Table 3.18: Average and Standard Deviation of Inspectors’ Field Odor Data 

 For example, if Pete’s odor data on January 1, 2002 equaled to “3” signifying 

slight odor, Pete’s normalized odor score would be 

= (3 – 2.774) / 2.406 

= 0.939

Next we averaged the resulting inspectors’ normalized odor scores for each day as 

shown in Table 3.19. 

Table 3.19: Normalized Inspectors’ Scores 

Date: Norm. MikeNorm. Pete Norm. Carl Norm. Rob. Norm. Patrick Norm. Wilfred Avg. Norm.score
1/1/02 no data no data no data no data no data no data no data
1/2/02 -0.097 no data 3.438 no data no data -0.069 1.091
1/3/02 -1.173 no data no data no data no data no data -1.173
1/4/02 0.525 no data no data no data no data -0.069 0.228
1/5/02 no data no data no data no data no data no data no data
1/6/02 no data no data no data no data no data no data no data
1/7/02 no data 0.094 3.438 no data no data no data 1.766
1/8/02 -1.343 0.094 no data no data no data no data -0.624
1/9/02 -1.343 0.094 no data no data no data no data -0.624
1/10/02 -3.210 0.094 no data no data no data no data -1.558
1/11/02 no data 0.094 3.438 no data no data no data 1.766

By using the normalized odor data, the odor data from all inspectors could then 

be combined since the scales were similar, thus producing a larger amount of data to 

inspector average odor data in 2002 Standard deviation
Mike 5.156 1.606
 Pete 2.774 2.406
 Carl Burton 0.237 0.803
 Patrick Collins 2.909 1.048
 Rob Siers 3.000 0.511
 Wilfred Wade 3.078 1.133
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use and a greater degree of freedom (Devore, 1995). When this procedure was done, 

the number of data points from each category was increased as follows.   

From Pete’s yearly correlation with 192 data points and Carl’s yearly 

correlation with 150 data points, the data points were increased to 2190 data points in 

the combined inspector’s yearly correlation after normalizing. 

From Pete’s winter correlation with 48 data points, Carl’s winter correlation 

with 45 data points, and Wilfred’s winter correlation with 45 data points, the 

combined inspector’s winter correlation data set increased to 540 data points. 

 From Pete’s summer correlation with 47 data points, Mike’s summer 

correlation with 54 data points, the combined inspector’s summer correlation data set 

increased to 542 data points. 

3.7.2 The result of Correlation between Normalized Odor Data and Processing 

Data 

We ran correlation analyses between the normalized odor data and the 

processing data using data for all of 2002, the winter season, and the summer season. 

The results are shown in Tables 3.20, 3.21, and 3.22 respectively. 

All the correlation’s results showed no significant variable highly correlated 

with normalized odor scores. This may be because we mixed different inspectors in 

the same data set and it reduced the significance of the inspector’s odor scores.
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Table3.20: TheCorrelation between Normalized Field Odor and Processing Data in 2002

Normalized correlation from data 2002(2190 data points)

B.D.
second

. E.

B.D.
second.
W. odd

B.D.
second

. W.
even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primary

E.
All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWAT
poly.

All
poly.

WASA
#

centrif.
in

service

WASA
#

centrif.o
ut

service

Contr.
# belt.

in
servic

e

Contr.
#

centrif.
in

service Lime
d-0 0.13 0.16 0.15 0.17 0.18 0.06 0.02 0.04 -0.01 -0.08 0.09 -0.02 0.07 0.04 0.09 0.00 -0.13 -0.15
d-1 0.18 0.13 0.11 0.13 0.18 0.05 0.02 0.04 -0.05 -0.07 0.06 -0.03 0.06 0.08 0.10 0.00 -0.13 -0.11
d-2 0.15 0.15 0.11 0.14 0.18 0.05 0.01 0.04 0.02 -0.07 -0.08 -0.06 -0.09 0.09 0.08 0.04 -0.12 -0.11
d-3 0.15 0.16 0.09 0.14 0.17 0.06 0.02 0.05 0.02 -0.07 0.04 0.02 0.05 0.09 0.04 -0.04 -0.11 -0.11
d-4 0.18 0.14 0.05 0.10 0.15 0.05 0.02 0.04 0.03 -0.06 0.03 0.00 0.03 0.05 0.08 -0.05 -0.11 -0.10

Table3.21: TheCorrelation between Normalized Field Odor and Processing Data in winter

Normalized correlation from the data on winter (540 data points)

B.D.
second

. E.

B.D.
second.
W. odd

B.D.
second

. W.
even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primary

E.
All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWAT
poly.

All
poly.

WASA
#

centrif.
in

service

WASA
#

centrif.o
ut

service

Contr.
# belt.

in
servic

e

Contr.
#

centrif.
in

service Lime
d-0 0.13 0.23 0.23 0.28 0.28 0.13 0.07 0.13 0.01 -0.07 0.12 -0.04 0.05 0.03 0.26 0.10 -0.06 -0.20
d-1 0.15 0.21 0.23 0.27 0.29 0.13 0.07 0.12 -0.15 -0.11 0.08 0.00 0.04 0.09 0.21 0.06 -0.07 -0.18
d-2 0.11 0.25 0.11 0.21 0.23 0.07 0.01 0.06 0.06 -0.07 -0.08 0.03 -0.07 0.07 0.17 0.12 -0.08 -0.14
d-3 0.11 0.23 0.14 0.22 0.22 0.09 0.01 0.07 0.06 -0.10 0.07 0.02 0.06 0.04 0.16 0.07 0.13 -0.13
d-4 0.18 0.19 0.14 0.19 0.23 0.07 0.03 0.07 0.02 -0.18 0.08 0.05 0.09 0.01 0.21 0.05 0.01 -0.16
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Table3.22: TheCorrelation between Normalized Field Odor and Processing Data in summer

Normalized correlation from data on summer (542 data points)

B.D.
second

. E.

B.D.
second.
W. odd

B.D.
second

. W.
even

All
B.D.-
W.

All
B.D.

FeCl3
primary

W.

FeCl3
primary

E.
All

Fecl3 WPL
Blended

ratio
DAF
poly.

DEWAT
poly.

All
poly.

WASA
#

centrif.
in

service

WASA
#

centrif.o
ut

service

Contr.
# belt.

in
servic

e

Contr.
#

centrif.
in

service Lime
d-0 0.04 0.10 0.10 0.11 0.10 0.02 -0.03 -0.02 0.01 -0.02 0.06 -0.03 0.02 -0.05 0.08 0.01 0.01 0.01
d-1 0.12 0.01 0.05 0.04 0.09 0.02 -0.02 -0.01 0.06 -0.02 0.06 -0.03 0.10 0.03 0.11 0.09 0.01 0.05
d-2 0.08 0.05 0.00 0.02 0.06 0.02 -0.03 -0.01 -0.02 0.07 -0.10 -0.06 -0.14 0.02 0.06 0.10 0.03 0.01
d-3 0.08 0.11 0.01 0.04 0.08 0.04 -0.01 0.01 0.09 0.01 -0.15 0.00 -0.12 0.08 -0.01 -0.03 0.01 0.00
d-4 0.08 0.03 -0.06 -0.02 0.03 -0.05 -0.05 -0.06 0.06 0.05 -0.02 -0.12 -0.05 0.06 0.00 -0.07 0.13 0.02
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3.8  Correlation between Each Inspector’s Field Odor Data and Weather 

Data in 2002, Summer Season, and Winter Season.  

 In addition to the correlation analysis described above between processing data 

and odor scores, correlation between weather and odor data were also considered. We 

selected the same inspectors as before except that inspector Rob in 2002 and in the 

summer because his odor data didn’t show much correlation with processing data in 

these periods. From Tables 3.23 to 3.33, the correlation analysis’s results are shown.

 The following is a summary of the weather and inspector’s odor correlations. 

 For the entire year, Pete’s, Carl’s, and Patrick’s odor scores were strongly 

negative correlated with temperature variables. This is different from our assumption 

that the higher the temperature the higher the biological activity and the more 

biosolids odor. Another variable showing a significant and negative correlation was 

the amount of daily snow fall. This coefficient sign was also unexpected because our 

assumption is the greater the snowfall the less the biological activity and odors. As a 

result, we did not include these weather variables in the yearly regression analysis. 

 In the winter period, the temperature variables (maximum, minimum, and 

average temperature) presented a highly positively correlated coefficient with Pete’s 

odor scores. This followed our assumption that the higher temperature the more 

biological activity and the greater the biosolids odor. 

 In the summer period, there was no obvious strongly correlation between 

weather variables and Pete’s or Mike’s odor scores. 
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Table 3.23: Correlation between Pete’s Odor Data and Weather Data in 2002 

PETE2002

t max t min
avg. 

temp.

average 
daily wind 

speed

daily 
precipitati

on

average 
daily 

station 
pressure

daily 
snowfall

d-0 -0.52 -0.53 -0.53 0.05 -0.10 0.04 0.02
d-1 -0.53 -0.51 -0.53 0.19 -0.10 0.04 0.11
d-2 -0.53 -0.51 -0.53 0.17 -0.10 0.06 0.11
d-3 -0.47 -0.51 -0.50 0.11 0.10 0.07 0.02
d-4 -0.47 -0.53 -0.51 0.12 -0.10 0.07 0.02

Table 3.24: Correlation between Carl’s Odor Data and Weather Data in 2002 

CARL 2002

t max t min
avg. 

temp.

average 
daily wind 

speed

daily 
precipitati

on

average 
daily 

station 
pressure

daily 
snowfall

d-0 -0.28 -0.27 -0.28 0.03 -0.06 -0.18 N/A
d-1 -0.27 -0.29 -0.29 -0.04 -0.05 0.02 N/A
d-2 -0.29 -0.32 -0.31 -0.11 -0.03 0.02 0.29
d-3 -0.32 -0.33 -0.33 -0.02 -0.06 0.02 N/A
d-4 -0.35 -0.33 -0.34 -0.05 -0.06 0.03 0.09
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Table 3.25: Correlation between Patrick’s Odor Data and Weather Data in 2002 

PATRICK2002

t max t min
avg. 

temp.

average 
daily wind 

speed

daily 
precipitati

on

average 
daily 

station 
pressure

daily 
snowfall

d-0 -0.27 -0.45 -0.38 -0.12 -0.07 -0.10 0.02
d-1 -0.37 -0.41 -0.41 0.23 0.03 -0.08 N/A
d-2 -0.48 -0.35 -0.44 0.28 0.13 -0.23 0.38
d-3 -0.34 -0.27 -0.32 0.46 0.14 -0.28 0.47
d-4 -0.24 -0.39 -0.32 0.05 0.10 -0.07 0.07

Table 3.26: Correlation between Mike’s Odor Data and Weather Data in 2002 

 
MIKE 2002

t max t min
avg. 

temp.

average 
daily wind 

speed

daily 
precipitati

on

average 
daily 

station 
pressure

daily 
snowfall

d-0 0.19 0.20 0.20 -0.08 0.02 -0.04 0.01
d-1 0.20 0.20 0.20 -0.06 0.10 -0.04 -0.15
d-2 0.20 0.19 0.20 -0.02 0.05 -0.04 0.06
d-3 0.22 0.21 0.22 0.04 -0.07 -0.04 -0.12
d-4 0.25 0.24 0.24 0.03 0.04 -0.05 -0.27
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Table 3.27: Correlation between Wilfred’s Odor Data and Weather Data in 2002 

wilfred 2002

t max t min
avg. 
temp.

average 
daily wind 
speed

daily 
precipitati
on

average 
daily 
station 
pressure

daily 
snowfall

d-0 0.13 0.17 0.15 0.20 -0.03 0.01 -0.01
d-1 0.24 0.27 0.26 -0.09 0.04 0.01 0.06
d-2 0.23 0.36 0.31 -0.17 0.00 -0.05 -0.01
d-3 0.18 0.33 0.26 -0.04 0.00 -0.08 N/A
d-4 0.18 0.29 0.25 0.05 0.02 0.01 -0.10

Table 3.28: Correlation between Pete’s Odor Data and Weather Data in Winter 

 

PETE winter

t max t min
avg. 

temp.

average 
daily wind 

speed

daily 
precipitati

on

average 
daily 

station 
pressure

daily 
snowfall

d-0 0.11 0.29 0.20 -0.15 0.42 0.10 -0.10
d-1 0.03 0.35 0.18 0.11 0.41 0.10 -0.13
d-2 0.18 0.40 0.31 0.09 0.13 0.24 -0.11
d-3 0.45 0.43 0.47 0.12 -0.01 0.18 -0.10
d-4 0.44 0.23 0.39 0.01 -0.11 0.10 -0.11
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Table 3.29: Correlation between Wilfred’s Odor Data and Weather Data in Winter 

WILFRED winter

t max t min
avg. 

temp.

average 
daily wind 

speed

daily 
precipitati

on

average 
daily 

station 
pressure

daily 
snowfall

d-0 -0.02 0.10 0.03 0.09 0.11 -0.06 0.06
d-1 0.04 0.12 0.07 -0.29 0.15 -0.06 0.20
d-2 0.00 0.14 0.06 -0.27 0.04 0.19 0.08
d-3 -0.05 0.04 -0.02 -0.11 0.06 0.36 N/A
d-4 0.06 0.12 0.10 0.21 0.02 -0.06 -0.05

Table 3.30: Correlation between Carl’s Odor Data and Weather Data in Winter 

CARL winter

t max t min
avg. 

temp.

average 
daily wind 

speed

daily 
precipitati

on

average 
daily 

station 
pressure

daily 
snowfall

d-0 0.00 0.14 0.07 -0.07 -0.12 -0.25 N/A
d-1 0.06 0.07 0.07 -0.23 -0.03 -0.25 N/A
d-2 -0.05 -0.14 -0.10 -0.32 -0.16 -0.11 0.26
d-3 -0.19 -0.14 -0.19 -0.15 -0.17 -0.14 N/A
d-4 -0.28 -0.10 -0.22 -0.19 0.08 -0.31 0.25
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Table 3.31: Correlation between Mike’s Odor Data and Weather Data in Winter 

MIKE winter

t max t min
avg. 

temp.

average 
daily wind 

speed

daily 
precipitati

on

average 
daily 

station 
pressure

daily 
snowfall

d-0 -0.15 -0.09 -0.13 0.13 0.15 0.22 0.08
d-1 0.04 -0.06 0.00 0.08 0.08 0.23 -0.15
d-2 0.14 -0.01 0.09 0.07 0.04 0.27 0.18
d-3 0.28 0.12 0.24 0.19 -0.14 0.11 -0.13
d-4 0.35 0.27 0.34 0.06 -0.36 -0.08 -0.35

Table 3.32: Correlation between Pete’s Odor Data and Weather Data in the summer 

PETE summer

t max t min
avg. 

temp.

average 
daily wind 

speed

daily 
precipitati

on

average 
daily 

station 
pressure

daily 
snowfall

d-0 0.08 0.16 0.11 -0.21 0.00 0.05 N/A
d-1 0.14 0.14 0.14 0.02 -0.12 0.02 N/A
d-2 0.10 0.07 0.09 0.12 -0.11 0.03 N/A
d-3 0.14 0.13 0.14 0.28 -0.13 0.12 N/A
d-4 0.10 0.02 0.07 0.09 -0.12 0.27 N/A
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Table 3.33: Correlation between Mike’s Odor Data and Weather Data in the summer 

MIKE summer

t max t min
avg. 

temp.

average 
daily wind 

speed

daily 
precipitati

on

average 
daily 

station 
pressure

daily 
snowfall

d-0 -0.12 -0.06 -0.10 -0.25 0.10 -0.07 N/A
d-1 -0.21 -0.14 -0.19 -0.15 0.14 -0.05 N/A
d-2 -0.21 -0.15 -0.20 -0.10 -0.03 -0.13 N/A
d-3 -0.22 -0.13 -0.20 0.04 0.03 -0.12 N/A
d-4 -0.20 -0.11 -0.17 0.16 0.11 -0.06 N/A

In Chapter 4, we use the correlation analysis described in this chapter to create 

odor forecasting models by using variables that were strongly correlated with the 

inspector’s odor. In addition, the dummy variables, and the interaction variables will 

be considered as part of the statistical models. 
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Chapter 4 Regression Analysis 

In this chapter, the results of the correlation analysis from Chapter 3 are used 

to create the odor forecasting models by applying regression analysis on the variables 

that showed a high correlation with biosolids odor.  

4.1 Objective of Regression Analysis 

 The odor forecasting models using regression analysis can improve DCWASA 

management in terms of the prediction of high biosolids’ odor as well as provide a 

more efficient distribution (relative to odor) to the field sites on the day that the model 

forecasts a high biosolids odor. Currently, the truck assignment of biosolids in 

DCWASA doesn’t consider the biosolids’ odor as a factor in the assignment plan. 

Most of the time, they focus on the availability of the space at each site and the 

distance from the plant to the site rather than the biosolids’ odor. The odor forecasting 

model can notify the biosolids manager on the day that high biosolids odor is expected 

to be produced. Consequently, the biosolids manager can adjust a truck assignment’s 

plan in advance to divert high odor biosolids away from sites that have already 

received this.  

4.2 The Requirements on an Appropriate Regression Equation 

In this thesis, we used regression analysis approach to study the relationship 

between the independent variables X (the processing and weather data) and the 

dependent variable Y (the inspector’s biosolids odor scores). Using the concept of 

least squares, the independent variables were used to form a multiple regression 

equation to explain the value for the dependent variable. The multiple regression 
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equation predicts the dependent variable iY so as to minimize the sum of the squared 

errors (Maddala, 1977). Initially, we assumed a linear model of the following form: 

iikkiiii uXXXXY ++++++= βββββ ......3322110

where  

iY = dependent variable (inspector’s biosolids odor score) i = 1, 2,…, n

0β = constant 

 jβ = coefficient of independent variable jj, = 1, 2, …, k

ijX = thi observation for thj independent variable 

 iu = error of thi observation 

To identify that the regression equation is appropriate in this thesis, we 

considered three parameters from the regression result: adjusted R square, the 

correctness of the coefficient’s sign for the independent variable, and the P value 

(related to the t-stats). 

1. In each period, we used the adjusted R square of the regression to be one of 

the criteria to select the best regression in that period. As typically used to explain the 

fit of regression, R square is the parameter which describes the variation explained by 

the model. However, the problem with this parameter is that the value of R square will 

keep increasing when more independent variables are added (Maddala, 1977). Unlike 

R square, the adjusted R square takes care of this problem. The selected regression 

equation should present a high adjusted R square value compared to other equations 

for the same period. We anticipated finding equations with adjusted R square values 

more than 0.5. However, in some periods where the adjusted R square values from all 
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regressions were too low we might consider the following parameters in addition to 

adjusted R square to select the appropriate equation. 

2. Within the regression equation, the coefficient’s sign for each independent 

variable should be explainable by the assumptions stated in Chapter 2. However, for 

some variables such as FeCl3, for which we couldn’t make assumptions in Chapter 2, 

we can use the correlation analysis results from Chapter 3 to decide the suitable 

coefficient’s sign. Finally, if there are no references for the correct coefficient’s sign 

from both chapters, we choose to select the equation that best meets points 1 and 3. 

3. All things being equal, a P value less than 0.05 or at most 0.1 is preferred. 

For variables showing P values higher than 0.05, one could not reject the null 

hypothesis that the coefficient of observed variable is equal to zero with 95% 

confidence. For P values lower than 0.05 we could reject the null hypothesis (Devore, 

1995) and only be wrong less than 5% of the time. 

As described above, we selected the appropriate regression for each period 

based on these three parameters: adjusted R square, correct coefficient signs, and 

statistically significant coefficients at the 5% level or 10% level. (or somewhat above 

this level when necessary) 

4.3 The Procedures to Create Odor Forecasting Models 

 The procedures to create odor forecasting models were based on the correlation 

analysis from Chapter 3 and involved the regression analyses in this chapter. We 

summarize the procedure as shown in Figure 4.1. 
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1 2 3 4 5 6* 7 8 9 10

procedures

Divide
data in
2002
into 3
periods

Select
inspector
for
correlation
analysis

check
correlation
analysis’s
result

select
inspector
for
regression
analysis

select
significant
variables
for
regression
analysis

createdata
set for
regression

run
regression
and check
regression’
s result

apply
additonal
techniques

Improve
candidate
regression

summarize
best
regression

yearly period

Pete Pete Pete Pete Pete
Carl Carl Carl Carl
Patrick Patrick
Wilfred Wilfred
Rob Rob
Mike Mike

winter period
Pete Pete Pete Pete Pete Pete
Wilfred Wilfred Wilfred Wilfred
Carl Carl Carl Carl Carl Carl Carl
Mike Mike

summer period
Rob Rob
Mike Mike Mike Mike Mike
Pete Pete Pete Pete

inspector’s
odor data

used

* Need to excludeobservations with missing or outliers values.

Figure4.1: TheProcedures to CreateOdor Forecasting Models

Equation
(1) from
Table4.4

Equation (3)
from Table
4.15

Equation (2)
from Table
4.9

Equation (4)
from Table
4.19

Equation (5)
from Table
4.22

Equation (5)
from Table
4.22
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To generate the odor forecasting models, we divided the work into two phases: 

the correlation analysis phase and the regression analysis phase. 

Correlation analysis phase (step 1 to step 3): 

 1. Disaggregate data in 2002 into three periods: We picked data in 2002 and 

disaggregated them into three periods: the yearly period, the winter period, and the 

summer period. As stated in Chapter 3, the yearly period was used in order to observe 

the relationship between the inspector’s odor score and the processing or weather data 

regardless of the season. Winter and summer periods were used in order to see the 

relationship between the inspector’s odor score and the processing or weather data 

considering the average temperature when it was too low or too high compared to the 

average temperature in entire year. 

 2. Select the inspectors for each period to work on for the correlation analysis: 

After we disaggregated the data in 2002 into three periods, we selected inspectors for 

each period considering the number of data points available for that period. 

3. Apply correlation analysis to the inspector’s odor scores and the processing 

or weather data in each period: Finally, we ran correlation analyses to see how each 

inspector’s odor scores in that period correlated with the processing and weather data. 

Regression analysis phase (step 4 to step 10): 

 4. Select the inspectors for each period for regression analysis: We selected 

inspectors whose biosolids’ odor scores significantly correlated with either processing 

or weather data in each period in order to use their odor’s scores as the dependent 

variable in regression. The following are the inspectors we chose in each period. 

 Yearly period: Pete and Carl. 
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 Winter period: Pete, Carl, and Wilfred. 

 Summer period: Pete and Mike. 

 5. Choose significant variables correlated to selected inspector’s odor scores in 

each period: Variables showing significant correlation to the inspector’s odor scores 

were selected to use as independent variables in the regression analysis.  

 6. Create data set for regression: We needed to create sets of data for each 

inspector before running regressions by considering the number of data points, the 

multicollinearity between variables in the same data set, and the chronological 

consistency.  

 In terms of the number of data points, the variables that had either “outlier” or 

missing values can decrease the number of data points for the regression given the 

need for a complete data set. Thus, we needed to delete the “outlier” and “no data” 

values from the data set. The more “outlier” and “no data” values in the variables, the 

greater the number of data points that were excluded from the data set. 

 In terms of multicollinearity, StatTools, the statistical package we used, cannot 

run regressions with multicollinearity between independent variables in the same data 

set. Therefore, we separated variables showing multicollinearity to different data sets 

before running regression. 

 In terms of the chronological consistency for the processing variables, to run 

regression on the selected significant variables, we combined the appropriate variables 

into a data set taking into account realistic operational considerations. For example, 

the blanket depth data on day d-0 and lime addition on day d-4 could not be included 
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in the same regression equation because in the real treatment process the blanket depth 

tanks processing occurs prior to the lime addition process. 

 7. Run regression: After we obtained all the data sets, we ran regressions on 

each data set and compared the regression equations based on the key measures 

discussed above (adjusted R square, coefficient signs, P values). 

 8. Apply additional techniques: We selected appropriate regressions regarding 

the discussion on section 4.2 from each period to improve the fitness of the regression 

equation by using additional techniques such as incorporating dummy variables and 

interaction variables. The regressions for which we applied these additional techniques 

are shown below.  

Yearly period: Pete’s yearly regression. 

 Winter period: Pete’s winter regression, Carl’s winter regression. 

 Summer period: Mike’s summer regression. 

 9. Improve the candidate regression: After applying additional techniques, we 

selected the significant regressions for final regression’s adjustment by adding more 

processing variables that we thought they might improved the fit of selected 

regressions. Those regressions were Carl’s winter regression and Pete’s winter 

regression. 

 10. Select the best regression: Finally, the best regression of each period was 

summarized to use in DCWASA biosolids management. 
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4.4 Additional Techniques 

 Two techniques, using dummy variables and allowing for interaction between 

variables, were applied to explain the part that was unexplained by the existing 

independent variables in the regressions. Table 4.1 shows the dummy and interaction 

variables. 

Table 4.1: Dummy and Interaction Variables Used in Additional Techniques 

dummy variables

When the sum of blanket depths was higher than 10.3 feet 
When the sum of Fecl3 added was more than 1290 gallons
When the sum of polymer added was more than 200.05 lbs/dry ton 
When lime added was lower than 308 lbs/dry ton
When the average temperature was higher than 77 º F 
When the average temperature was lower than 43 º F 
When the day that we observed the biosolids odor was Monday

interaction variables

Product of the sum of blanket depth and the sum of Fecl3 added
Product of the sum of polymer added and the blend ratio
Product of the sum of blanket depth and the sum of polymer added

The inspectors associated with good regressions using these techniques were: 

 Pete (yearly and winter data) 

 Carl (winter data) 

 Mike (summer data) 
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4.4.1 Dummy variables 

Dummy variables were created to represent various processing and weather -

related conditions. A value of 1 for the dummy variable meant that the condition was 

true on that particular day whereas a value of 0 meant that it was false. For example, if 

the condition that “when the maximum temperature was more than 77 º F”  was set as 

a dummy variable, on the day that the maximum temperature was more than 77 º F, 

the value of the dummy variable was equal to 1, otherwise, it had a value of 0. In our 

regression analysis, we set six dummy variables for each day: 

 1. When the sum of blanket depths was higher than 10.3 feet (All B.D.>10.3)

 2. When the sum of FeCl3 was more than 1290 gallons (All FeCl3>1290) 

 3. When the sum of polymer additions was more than 200.05 lbs/dry ton (All 

poly > 200.05) 

 4. When lime addition was lower than 308 lbs/dry ton (Lime<308) 

 5. When the average temperature was higher than 77 º F (avg.temp>77) 

 6. When the average temperature was lower than 43 º F (avg.temp<43) 

 7. When the day that we observed the biosolids odor was Monday (when it was 

Monday) 

 The following is an explanation for each of these dummy variables and the 

anticipated coefficient values. 

1. “All B.D.>10.3”: This variable was created to capture the days when the 

sum of blanket depth was higher than usual. The value 10.3 feet came from the 80th 

percentile of this variable in 2002. We expected that this variable would have a 
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positive sign related to the increasing of the biosolids odor because the higher the 

blanket depth, the greater the biosolids odor. 

2. “All FeCl3>1290”: This variable was also created to observe the effect of the 

amount of FeCl3 added when the total amount of FeCl3 added was more than 1290 

gallons. The value 1290 came from the 80th of sum of FeCl3 added in 2002. We 

assumed that this variable should have a positive sign regarding the correlation 

analysis between inspector’s odor data and processing data in Chapter 3. 

 3. “All poly > 200.05”: As stated in Chapter 2, polymer causes biosolids odor 

to increase. Thus, this dummy variable was set to capture the effect of the sum of 

polymer from the DAF and dewatering processes when more than 200.05 lbs/dry ton 

were added. This value was the 80th percentile of the data from 2002. This dummy 

variable was expected to increase biosolids odor and this should have a positive sign. 

 4. “Lime<308”: As discussed in Chapter 2, the addition of lime can reduce the 

biosolids odor. This variable was created to observe the effect of lime on biosolids 

odor when the amount of lime added was lower than usual. The 308 lbs/dry ton came 

from the 20th percentile of the lime data from 2002. We expected that this variable 

would have a positive sign and increase the odor levels for biosolids because an 

insufficient amount of lime was added. 

 5. “avg.temp>77”: This dummy variable was used in the yearly and the 

summer regression to analyze the reaction of excessively high-temperature days to 

DCWASA processes and to biosolids odor levels. The value of 77 º F was the 80th 

percentile for the average temperature in 2002. We expected that the higher the 
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temperature, the greater the odor since there would be more favorable conditions for 

biological activity related to odor. 

 6. “avg.temp<43”: This dummy variable was used only in the winter 

regression to investigate the reaction of extremely low-temperature days on DCWASA 

processes to biosolids odor levels. The value of 43 º F was the 20th percentile for the 

average temperature in 2002. We expected the extremely low temperature would 

decrease biological activity and biosolids odor.  

7. “when it was Monday”: Normally, contractors stop hauling biosolids during 

the weekend. Therefore, biosolids odor on Monday should be contrasted to Tuesday 

through Friday, since biosolids would have been kept in the bunker longer than 

biosolids on these other days. We expected that the sign of this variable would be 

positive. 

4.4.2 Interaction Variables  

 Three interaction variables were also created for use in the regression analysis. 

The interaction variables were: 

 1. Product of the sum of blanket depth and the sum of FeCl3 added,  

 2. Product of the sum of polymer added and the blend ratio, and  

3.  Product of the sum of blanket depth and the amount of polymer added. 

These interaction variables were the product of variables that tend to increase 

odor. Thus, the product of these variables also expected to increase odor. Other 

interaction variables such as the product of the sum of FeCl3 variable and the WPL 

added and the product of the polymer and the lime added were also considered but 

could not be used for regression analysis. In the case of the product of sum of FeCl3
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added and the WPL added, there were too many of outliers or missing observation 

values leading to too small a set of usable observations.  

 For the product of the polymer and the lime added, it is important to consider 

the sign of the coefficient for the interaction variable. For example, lime is a chemical 

that decreases odor and polymer is a chemical that increases biosolids odor. The 

product of these variables constituting an interaction variable could have a sign that 

was either positive or negative. An analysis of the correctness of the sign of this 

interaction variable is not as clear as the interaction variables on number 1, 2, and 3 

shown above, which is the product of variables that tend to present the same 

coefficient sign. For example, in the interaction variable “Product of the sum of 

blanket depth and the amount of polymer added”, both of blanket depth and polymer 

variables by themselves tend to increase odor. Therefore, the production of these 

variables should also increase odor as well. 

4.5 Abbreviation of Independent Variables Used in the Regression 

Analysis 

The abbreviations of variables used in the regression analysis are shown 

below. 

B.D. second. E = the blanket depth in secondary east 

B.D. second. W. odd  = the blanket depth in secondary west odd 

B.D. second. W. even  = the blanket depth in secondary west even 

All B.D.- W. = sum of blanket depth in secondary west 

All B.D. = sum of all blanket depth 

FeCl3 primary W. = FeCl3 added in primary west  



85

FeCl3 primary E = FeCl3 added in primary east  

All FeCl3 = All FeCl3 added  

WPL = waste pickle liquid added  

Blended ratio = the blended ratio in blended mixing tank 

DAF poly. = polymer added in DAF  

DEWAT poly. = polymer added in dewatering process  

All poly. = all polymer added  

WASA # centrif. in service = DCWASA number of centrifuges in service  

WASA # centrif. out service = DCWASA number of centrifuges out of service 

Contr. # belt. in service = contractor number of centrifuges in of service  

Contr. # centrif. in service = contractor number of centrifuges in of service  

 Lime = lime addition 
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4.6 The Regression Analysis  

 In this section, the summary of the best regressions from each period is 

summarized and discussed. Steps four to eight in Section 4.3, The Procedures to 

Create Odor Forecasting Models, were applied to the inspector’s regression analysis in 

each period as shown in Figure 4.2. 

 

Figure 4.2: The Procedure to Run Regression Analysis 

4.6.1 Final Regression Results  

 Four regressions were selected. All of them showed appropriate P values and 

coefficient values. The adjusted R square from the best of Carl’s winter regression, 

Pete’s winter regression, Mike’s summer regression, and Pete’s yearly regression were 

0.6866, 0.58, 0.3629, and 0.3259, respectively. These best regressions from each 

period are shown in Table 4.2

6 7 8 9 10

create the 
data set 
for 
regression

run 
regression 
and check 
regression
's result

apply 
additonal 
techniques

Improve 
candidate 
regression

 summarize 
best 
regression
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Table4.2: Summary of theGood Regression in each Period

Period Regressionequation Adjusted R square

Winter regression Carl’swinter regression 0.6866
Y = 5.46243+0.00074X1+O.73544X2-0.02608X3

Y = Carl’sodor scores
X1 = Fecl3 added to primary east tanksond-1 (gallons)
X2 = number of DCWAS’scentrifugesout of serviceond-1
X3 = limeadditionond-1 (lbs/dry ton)

Pete’swinter regression 0.58
Y = -42.91+0.1147X1+O.377X2+0.231X3-0.0137X4+0.0014X5

Y = Pete’sodor scores
X1 = minimumtemperatureond-3
X2 = blanket depth insecondary west even tanksond-3
X4 = polymer addition indewateringprocessond-0 (lbs/dry ton)
X4 = limeadditionond-0 (lbs/dry ton)
X5 = averagestationpressureond-2 (inchesof HG)

Summer regression Mike’ssummer regression 0.3629
Y = 19.0589-0.00194X1

Y = Mike’sodor scores
X1 = Fecl3 added to primary west tanksond-1 (gallons)

Yearly regression Pete’syearly regression 0.3259
Y = 3.759+0.292X1-2.3513X2

Y = Pete’sodor scores
X1 = Sumof all blanket depthsond-2 (feet)
X2 = number of contractor’scentrifuges inserviceond-1
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4.6.2 Yearly Regression Analysis 

 For the regression for all period of 2002, using appropriate variable identified 

in the correlation’s analysis, we used Microsoft Excel to provide regression results. 

Two inspectors, Carl and Pete, were selected for the yearly regression based on their 

high correlated variables presented in Chapter 3 and the number of data points they 

had, 149 and 191 data points respectively. The best regression in this period was 

Pete’s yearly regression shown as follows:  

21 351.2292.0759.3 XXY −+=

Where  

 Y = the Pete’s odor score 

 1X = the sum of blanket depth on day d-2 (feet) 

 2X = Contractor number of centrifuges in service on d-1. 

 Pete’s yearly regression was already discussed in section 4.6.1. In the yearly 

regression analysis, Carl’s regression showed only the sum of blanket depth on d-0 as 

an independent variable with a positive coefficient sign as we expected in Chapter 2. 

However, this regression gave an adjusted R square value of 0.19 that was too low 

compared to Pete’s yearly regression. Therefore we discussed only Pete’s yearly 

regression. 
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4.6.2.1 Pete’s Yearly Regression 

From Pete’s correlation analysis in 2002, we picked three processing variables 

highly correlated with Pete’s odor score. These variables were: 

1. All blanket depth on d-0, d-2, and d-3. 

2. The number of contractor centrifuges in service on d-0 and d-1. 

3. Lime addition on d-0 and d-1. 

Pete’s yearly correlation analysis with weather data in 2002 from Chapter 3 

showed only high correlation on temperature variables (maximum, minimum, and 

average temperature) but with negative signs instead of positive signs. Therefore, we 

didn’t include any weather data for Pete’s yearly regression analysis. 

Table 4.3 shows six different data sets and six different subsets (e.g. 1.1,…, 

1.6) for which we ran regressions. The adjusted R square value of each subset is also 

shown in this table.
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Table 4.3: The Data Set for Pete’s Yearly Regression and Adjusted R Squares 

All B.D.

Contr. # 
centrif. in 
service Lime adj. R^2

set1 d-3 d-1 d-1
1.1 d-3 d-1 0.3130
1.2 d-1 d-1 0.2980
1.3 d-1 0.1240
1.4 d-1 0.2970
1.5 d-3 0.1290
1.6 d-3 d-1 d-1 0.3110
set2 d-3 d-0 0
2.1 d-3 d-0 0.3140
2.2 d-0 d-0 0.3050
2.3 d-0 0.1440
2.4 d-0 0.2950
2.5 d-3 0.1290
2.6 d-3 d-0 d-0 0.3180

set 3 d-2 d-1 d-1
3.1 d-1 d-1 0.2990
3.2 d-2 d-1 0.3259
3.3 d-1 0.1240
3.4 d-1 0.2970
3.5 d-2 0.1360
3.6 d-2 d-1 d-1 0.3230

set 4 d-2 d-0 d-0
4.1 d-0 d-0 0.3050
4.2 d-2 d-0 0.3220
4.3 d-0 0.1440
4.4 d-0 0.2950
4.5 d-2 0.1360
4.6 d-2 d-0 d-0 0.3250

set 5 d-3 d-1 d-0
5.1 d-1 d-0 0.3040
5.2 d-3 d-1 0.3130
5.3 d-0 0.1440
5.4 d-1 0.2970
5.5 d-3 0.1300
5.6 d-3 d-1 d-0 0.3140

set 6 d-2 d-1 d-0
6.1 d-1 d-0 0.3040
6.2 d-2 d-1 0.3260
6.3 d-0 0.1440
6.4 d-1 0.2970
6.5 d-2 0.1360
6.6 d-2 d-1 d-0 0.3260



91

 
The appropriate regression with the highest adjusted R square value of 0.3259 

came from data set 3.2. The regression equation was: 

21 351.2292.0759.3 XXY −+= (1) 

 Where  

 Y = the Pete’s odor score 

 1X = the sum of blanket depths on day d-2 (feet) 

 2X = number of contractor centrifuges in service on d-1. 

Table 4.4 shows the result of regression from data set 3.2.We see that the 

coefficient of 1X and 2X correlate correctly with Pete’s odor score as described in 

Chapter 2. That is the higher the blanket depth the higher the odor level and the greater 

the number of centrifuges, the lower the odor levels. Also, the P values of the 

intercept, 1X and 2X are lower than 0.05. Thus this equation is the most appropriate 

one for Pete’s yearly regression. 
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Table 4.4: The Appropriate Pete’s Yearly Regression Result from Data Set 3.2 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.578226382
R Square 0.334345749
Adjusted R Square 0.32597274
Standard Error 2.066571395
Observations 162

ANOVA
df SS MS F Significance F

Regression 2 341.0711989 170.5355995 39.93137132 8.87713E-15
Residual 159 679.0440554 4.270717329
Total 161 1020.115254

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 3.7591 1.2468 3.0150 0.0030 1.2967 6.2215
d-2 All B.D. 0.2919 0.1039 2.8092 0.0056 0.0867 0.4971
d-1 Contr. # centrif. in 
service -2.3513 0.3467 -6.7817 0.0000 -3.0360 -1.6665

As discussed in Section 4.4, the additional techniques using the dummy 

variables and the interaction variables were applied. Table 4.5 shows the dummy 

variables and interaction variables after we assigned the day lagged of dummy and 

interaction variables considering the day lagged of independent variables existing on 

Table 4.4. For example, we used the dummy variables “All B.D.>10.3” and “All 

FeCl3>1290” for d-2 after considering the existing independent variable “d-2 All 

B.D.” in the regression because we assumed these variables probably occurred on the 

same day (see Figure 1.1 for details). Similar reassuming applied to other dummy and 

interaction variables. Note that the dummy variable “AVG. temp>77” was lagged the 

same number of day as blanket depth since we believed that temperature interacted 

with microorganisms in the blanket depth to cause odor. Also, the number of days 
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lagged for the “Monday” dummy variable was d-0 since we assumed that the biosolids 

distributed to the field sites on Monday should have stronger odor than the other days.  

Table 4.5: Additional Variables Used on Pete’s Yearly Regression 

variables from Pete yearly regression dummy variables added interaction variables added
d-2 All B.D. d-2 All B.D.>10.3 d-2 All B.D. * d-2 All Fecl3

d-1 Contr. # centrif. in service d-2 All Fecl3>1290 d-1 All poly.* d-1 Blended ratio
d-1  Lime d-1 All poly.>200.05 d-2 All B.D.*d-1 All poly

d-1 Lime<308
d-2 AVG. temp>77 

d-0 when it was Monday

We used two data sets: 

Data set 1: Variables from Pete’s yearly regression plus new dummy variables, 

and  

Data set 2: The same data as number 1 as well as interaction variables that 

were added 

Table 4.6 shows the equation after using these additional variables for Pete’s 

yearly regression. The regression showed an improvement in the adjusted R square 

value (with acceptable P values). The negative coefficient for the number of contractor 

centrifuges in service and lime and the positive coefficient for “All B.D.” are 

reasonable based on the discussion in Chapter 2. The positive coefficient for the 

interaction variable the “All B.D. and All FeCl3” followed our expectation that these 

two variables have the potential to increase biosolids odor. However, the sign of the 

coefficient for the dummy variable “Lime<308” and the dummy variable “when it was 

Monday” were negative instead of positive, unexpected results. 
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 Table 4.6: The Regression Using the Additional Variables on Pete’s Yearly 

Regression 

 

In conclusion, the regression equation number one shown in Table 4.4 was 

taken as the best equation for Pete’s yearly regression. 

4.6.3 Winter Regression Analysis 

 As stated in Chapter 3, we used the data from January to March 2002 to 

represent the winter period. However, when we worked on regression analysis, the 

number of data points was greatly reduced due to outliers or missing observations. 

Therefore, we selected two more months: November and December, which also had 

average temperature lower than 50 ºF (corresponding to our definition of winter) to 

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.6625 0.4389 0.4062 1.971072

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 6 313.02 52.17 13.4281 < 0.0001
Unexplained 103 400.1678 3.885124

Standard Lower Upper

Regression Table Error Limit Limit

Constant 8.42127 1.52972 5.50512 0.00000 5.38744 11.45510

 d-1 Contr. # centrif. in service -2.06116 0.47021 -4.38345 0.00003 -2.99372 -1.12860
d-1  Lime -0.00952 0.00311 -3.06061 0.00282 -0.01569 -0.00335
d-2 All B.D.>10.3 1.43607 0.60377 2.37851 0.01923 0.23864 2.63351
d-1 Lime<308 -1.60839 0.76041 -2.11516 0.03683 -3.11648 -0.10030
d-0 when it was Monday -1.12810 0.49700 -2.26982 0.02530 -2.11378 -0.14242
d-2 All B.D. * d-2 All Fecl3 0.00002 0.00001 1.70475 0.09126 0.00000 0.00003

R-Square

F-Ratio p-Value

Coefficient t-Value p-Value



95

use in the winter period. We used Palisade’s StatTools software3 to run regressions 

from all the remaining data sets. 

 Three inspectors, Carl, Pete, and Wilfred, were selected for regression analysis 

in winter period. For two inspectors, Carl and Pete, their regression equations showed 

significant results as will be discussed below. Wilfred’s regression showed a lower 

adjusted R square value and had a fewer number of data points than Carl’s and Pete’s 

regressions. Therefore, we didn’t include an analysis of his regression in this section. 

 The inspector showing the best regression in this period was Carl. His 

regression had an adjusted R square of 0.6866 and was as follows:  

 321 02608.073544.000074.046243.5 XXXY −++=

where 

 Y = Carl’s odor data 

 1X = FeCl3 addition in primary east tanks on d-1 (gallons) 

 2X = Number of DCWASA centrifuges out of service on d-1 

 3X = Lime addition on d-1 (lbs/dry ton of biosolids)  

4.6.3.1 Carl’s Winter Regression 

We selected processing and weather variables that were highly correlated with 

Carl’s odor data during the winter period using the results from Chapter 3. Those 

processing variables were: 

3 Palisade’s StatTools software is the statistical software provided by DCWASA late in August 2003 

after we finished the yearly regression analysis using Microsoft Excel. 
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1. All blanket depth on d-3, and d-4 

2. FeCl3 addition on primary east tanks on d-1 

3. Polymer addition in DAF on d-0 and d-1 

4. DCWASA number of centrifuges out of service on d-0 and d-1 

5. Lime addition on d-0 and d-1 

6. Average daily wind speed on d-1 and d-2 

7. Average daily station pressure on d-1 and d-4 

8. Daily snowfall on d-2 and d-4 

Then we organized these variables into two data sets: data set1 and data set2 as 

shown in Table 4.7. Data set1 included all variables with an absolute correlation 

coefficient’s value more than 0.5 and data set 2 include all the variables above. Thus, 

data set1 had more data points (41 data points) than data set2 (33 data points). This 

was because we selected a fewer number of variables but more highly correlated to 

avoid deleting too many outlier and missing observation values when we combined all 

variables into one set. For the WPL variable, there were many outliers in their data so 

we ignored it to maintain a reasonable number of observations. 
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Table 4.7: Data Set for Carl’s Winter Regression  

varialble on day 

correl 
with 
odor note. varialble on day 

correl 
with 
odor varialble on day 

correl 
with 
odor

d-3 0.76 d-3 0.76 - -
d-4 0.82 d-4 0.82 d-4 0.82

FeCL3 E. d-1 -0.25 - - - FeCL3 E. d-1 -0.25

d-2 0.39 - - - - - -

d-3 0.25 - - - - - -
d-0 0.36 - - - d-0 0.36
d-1 0.26 - - - d-1 0.26

d-0
WASA  # 
centrif.out 
service

d-0 0.87 - -

d-1 0.95 d-1 0.95 d-1 0.95
d-0 d-0 -0.905 - -
d-1 -0.907 d-1 -0.907 d-1 -0.907
d-1 -0.22 - - - d-1 -0.22
d-2 -0.32 - - - d-2 -0.32
d-1 -0.25 - - - d-1 -0.25
d-4 -0.308 - - - d-4 -0.308
d-2 0.26 - - - d-2 0.26
d-4 0.25 - - - d-4 0.25

data set 1 (41 data points) data set 2 (33 data points)All variables chosen

All B.D.

WPL

DAF poly. 

WASA  # 
centrif.out service

Lime 

average daily wind 
speed

All B.D.

daily snowfall

DAF poly. 

WASA  # 
centrif.out service

Lime 

average daily 
wind speed
average daily 

station pressure

too many 
outliers in 
this period

average daily 
station pressure

daily snowfall

All B.D.

Lime 

Tables 4.8 and 4.9 show the appropriate regressions from data set 1 and data 

set 2. Both of them gave a regression with significant variables (relative to the P 

value) and the appropriate coefficient signs. Table 4.8 illustrates the regression using 

only d-1 lime addition as an independent variable with an adjusted R square of 0.43. 

Table 4.9 shows the regression with the variables FeCl3 added to the primary east 

tanks, number of DCWASA centrifuges in service, and lime addition as independent 

variables all lagged one day with an adjusted R square of 0.6866. For data set 2, we 

used several subsets to run regressions. The reason we ran several subsets was because 
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of multicollinearity between independent variables in data set 2 and the fact that 

StatTools could not handle this multicollinearity problem.  

Table 4.8: Carl’s Winter Regression Using Data Set 1 

 

Table 4.9: Carl’s Winter Good Regression Using Data Set 2  

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.8461805 0.7160214 0.6866443 0.7595126

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 3 42.180168 14.060056 24.373454 4.46356E-08
Unexplained 29 16.728923 0.5768594

Standard Lower Upper

Regression Table Error Limit Limit

Constant 5.46243 1.84155 2.96621 0.00598 1.69603 9.22883
d-1 Fecl3 E. 0.00074 0.00020 3.73199 0.00082 0.00033 0.00115
d-1WASA # centrif. out service 0.73544 0.26727 2.75173 0.01011 0.18882 1.28206
d-1 Lime -0.02608 0.00530 -4.91890 0.00003 -0.03693 -0.01524

R-Square

F p

Coefficient t-Value p-Value

Data set 2 gives a higher adjusted R square (0.68 vs.0.431). We selected this 

regression as Carl’s winter regression; that is, the equation:

Multiple R-Square Adjusted StErr of

Summary R R-Square Estimate

0.7086776 0.502224 0.4311131 0.983769

Degrees of Sum of Mean of F p

ANOVA Table Freedom Squares Squares

Explained 1 31.47182 31.47182 33.55667 1.005E-06
Unexplained 39 36.57696 0.9378708

Coefficient Standard t-Value p-Value Lower Upper

Regression Table Error Limit Limit

Constant 9.2073663 1.4709301 6.2595538 0.0000002 6.2321322 12.1826005
d-1 Lime -0.0246055 0.0042476 -5.7928119 0.0000010 -0.0331971 -0.0160140
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 321 02608.073544.000074.046243.5 XXXY −++= (2) 

 where 

 Y = Carl’s odor data 

 1X = FeCl3 addition in primary east tanks on d-1 (gallons) 

 2X = DCWASA number of centrifuges out of service on d-1 

 3X = Lime addition on d-1 (lbs/dry ton of biosolids)  

 To improve upon this regression equation, additional dummy and interaction 

variables were added. We selected the dummy and interaction variables as shown in 

Table 4.10. 

Table 4.10: Additional Variables Used to Improve Carl’s Winter Regression 

variables from Carl winter 
regression dummy variables added interaction variables added
d-1 FeCl3 primary E. d-1 All B.D.>10.3 d-1 All B.D. * d-1 All Fecl3
d-1 WASA  # centrif.out service d-1 All Fecl3>1290 d-1 All poly.* d-1 Blended ratio
d-1 Lime  d-1 All poly.>200.05 d-1 All B.D.*d-1 All poly

d-1 Lime<308
d-1 AVG. temp<43 (winter)
d-0 when it was Monday

We first arranged the data into two sets as follows: 

Data set 1: variables from the first and second columns of Table 4.10 

Data set 2:  Data set 1 plus the interaction variables in column 3 of Table 4.10 

From the regression using data set 1, it was observed that the dummy variables 

did not improve the existing regression equation. For data set 2, the number of data 
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points was reduced from 33 data in the data set 1 to 28 due to outliers and missing data 

when interaction variables were added. Table 4.11 shows the result of this regression 

indicating a better adjusted R square. However, the coefficient’s sign for the dummy 

variable “Avg. temp< 43”, which we expected to be negative, was positive and the 

coefficient’s sign for the interaction variable “All poly*Blended ratio”, which we 

expected a positive sign, gives a negative sign.  

Table 4.11: The Regression from the Improvement on Carl’s Winter Regression on 

Data Set 2 

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.9074 0.8234 0.7730 0.657567

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 6 42.34828 7.058047 16.3232 < 0.0001
Unexplained 21 9.080288 0.432395

Standard Lower Upper

Regression Table Error Limit Limit

Constant -1.60366 1.386466 -1.1567 0.2604 -4.48697 1.279657
d-1 FeCL3 E 0.000427 0.000213 2.0008 0.0585 -1.7E-05 0.00087
d-1w asa # centrif. out service 0.595885 0.253533 2.3503 0.0286 0.068635 1.123136
d-1 All poly>200.05 1.103172 0.439211 2.5117 0.0203 0.189783 2.016561
d-1 Lime<308 2.163783 0.401481 5.3895 < 0.0001 1.328856 2.998709
d-1 AVG temp<43 0.620727 0.303218 2.0471 0.0534 -0.00985 1.251303
d-1 All poly*d-1Blended ratio -0.0218 0.010608 -2.0547 0.0526 -0.04386 0.000265

R-Square

F-Ratio p-Value

Coefficient t-Value p-Value

Because the number of data points in data set 2 was changed from the number 

of data points on Table 4.9 (28 vs. 33), we brought the significant variables from 

Table 4.9 to run regression on data set 2 in order to prove the fit of these significant 

variables on a new data set. Table 4.12 shows a higher adjusted R squares than the 

earlier regression on Table 4.9.  
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Table 4.12: Using Significant Variables from Carl’s Winter Regression Running 

Multiple Regression Method for Data Set 2 

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.8597 0.7391 0.7065 0.747744

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 3 38.00966 12.66989 22.6604 < 0.0001
Unexplained 24 13.41891 0.559121

Standard Lower Upper

Regression Table Error Limit Limit

Constant 5.83013 1.911358 3.0503 0.0055 1.885281215 9.774979
d-1 FeCL3 E 0.000536 0.00023 2.3306 0.0285 6.13237E-05 0.00101
d-1 wasa # centrif.out service 0.825788 0.266433 3.0994 0.0049 0.275897927 1.375678
d-1LIME -0.02466 0.005642 -4.3706 0.0002 -0.03630011 -0.01301

R-Square

F-Ratio p-Value

Coefficient t-Value p-Value

In conclusion, the regression equation (2) from Table 4.9 is the best regression 

of Carl’s winter regression. Compared to regression from Table 4.9, the regression 

shown in Table 4.12 provided the higher adjusted R squares but this regression 

brought the independent variables from Table 4.9 to run regression on the data set 2 

with a smaller number of data points. Therefore, we chose the regression in Table 4.9 

because it could explain the Carl’s odor levels with the greater number of data points. 

4.6.3.2 Pete’s Winter Regression 

From Pete’s correlation analysis in Chapter 3, the following variables were 

identified: 

1. All blanket depth on d-3, and d-4 

2. FeCl3 addition on primary east tanks on d-0 and d-1 

3. Polymer addition in dewatering process on d-0 and d-1 

4. DCWASA number of centrifuges out of service on d-0 and d-1 
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5. Lime addition on d-0 and d-1 

6. Daily precipitation on d-0 

7. Average daily station pressure on d-2 

8. Maximum temperature on d-3 

9. Minimum temperature on d-3 

Table 4.13 shows three data sets used in the regression analysis. In the first 

data set, we took out the dewatering polymer variables on d-0 and d-1 because there 

were too many outliers in these variables. In data set 2, we used all of the nine 

variables above and the number of data points dropped from 61 in data set 1 to 46 data 

points in data set 2. 
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Table4.13: Data Set for Pete’s Winter Regression Analysis

varialble on day correl. varialble on day correl. varialble on day correl.
d-3 -0.32 d-3 -0.32 d-3 -0.32

d-4 -0.37 d-4 -0.37 d-4 -0.37

d-0 0.65 d-0 0.65 d-0 0.65
d-1 0.53 d-1 0.53 d-1 0.53
d-0 0.47 - - d-0 0.47
d-1 0.42 - - d-1 0.42

d-0 -0.39 d-0 -0.39 d-0 -0.39
d-1 -0.41 d-1 -0.41 d-1 -0.41
d-0 0.34 d-0 0.34 d-0 0.34
d-1 0.39 d-1 0.39 d-1 0.39

daily
precipitation d-0 0.42

daily
precipitation d-0 0.42

daily
precipitation d-0 0.42

average daily
station

pressure d-2 0.24

average
daily station

pressure d-2 0.24

average daily
station

pressure d-2 0.24
t max d-3 0.45 t max d-3 0.45 t max d-3 0.45
t min d-3 0.43 t min d-3 0.43 t min d-3 0.43

All Fecl3

DEWAT
poly.

WASA #
centrif.out

Lime

B.D. second.
W. even

All Fecl3

DEWAT
poly.

WASA #
centrif.out

Lime

All variables chosen data set 1 ( 61 data points) data set 2 (46 data points)

B.D. second.
W. even

All Fecl3

DEWAT
poly.

WASA #
centrif.out

Lime

B.D.
second. W.

even
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 Running regressions on data sets 1, the adjusted R square values obtained were 

0.14. From data set 2, the adjusted R square value was 0.6356, which is shown in 

Table 4.14. The P value for each variable in Table 4.14 was lower than 0.1 and the 

sign of each coefficient was appropriate as stated in Chapter 2. However, this 

regression included both dewatering polymer variables on d-0 and d-1 in the same 

regression. Basically, this can be assumed that biosolids odor might be influenced by 

the amount of polymer added to the dewatering process on day d-1 and d-0. However, 

we discussed this assumption with biosolids supervisor and he said that this is not true. 

The dewatering polymer was added into the sludge after blend tank and before 

centrifuges. In fact, there was no retention point between the blend tank and 

centrifuges (dewatering process) to cause the multiple-day reaction of dewatering 

polymer to biosolids odor. Therefore, the effect of polymer to odor is from the amount 

of polymer addition in one day (Dorian, 2003).To see the effect when only one of 

these variables, either d-0 or d-1, we ran two additional regressions for data set 2 

taking just one of these variables (along with the other ones). The results for the 

regression with d-1 the one-day lag for polymer showed high P values for the intercept 

and average daily station pressure ( about 0.23 ) and a adjusted R square of 0.506. The 

results for the regression with the no lag dewatering polymer showed appropriate P 

values and the appropriate coefficient sign with an adjusted R square of 0.58.  Table 

4.15 shows the results of this better regression. 
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Table 4.14: Pete’s Winter Regression on Data Set 2 

 

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.83691477 0.7004263 0.6356537 0.880615

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 6 64.215773 10.702629 13.2243 4.1303E-08
Unexplained 39 31.563302 0.8093154

Standard Lower Upper

Regression Table Error Limit Limit

Constant -45.5047 23.5390 -1.9332 0.0605 -93.1168 2.1074
d-3 t min 0.1146 0.0166 6.8916 0.0000 0.0810 0.1483
d-3 B.D. second. W. even 0.3516 0.2085 1.6864 0.0997 -0.0701 0.7733
d-0 DEWAT poly. 0.2127 0.0592 3.5939 0.0009 0.0930 0.3324
d-1 DEWAT poly. 0.1246 0.0547 2.2753 0.0285 0.0138 0.2353
d-0 Lime -0.0183 0.0050 -3.6887 0.0007 -0.0284 -0.0083
d-2 average daily station pressure 0.0015 0.0008 1.8444 0.0727 -0.0001 0.0031

R-Square

F p

Coefficient t-Value p-Value
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Table 4.15: Pete’s Winter Regression on Data Set 2 without d-1 DEWAT POLY 

Variable 

 
From Table 4.15, we see that the coefficients for each variable as well as the P 

values are appropriate. Therefore, we selected the regression from Table 4.15 as the 

best regression for Pete’s winter time period. This regression equation is as follows:  

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.79165269
R Square 0.62671398
Adjusted R Square 0.58005322

Standard Error 0.94542306
Observations 46

ANOVA
df SS MS F Significance F

Regression 5 60.02608551 12.0052 13.43129 1.0522E-07

Residual 40 35.75299045 0.89382
Total 45 95.77907595

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -42.91029 24.70844 -1.73667 0.09014 -92.84788 7.02730
d-3t min 0.11474 0.01748 6.56429 0.00000 0.07941 0.15007
d-3 blanket depth secondary west even 0.37761 0.21879 1.72592 0.09208 -0.06458 0.81980
d-0 DEWAT poly 0.23139 0.06159 3.75692 0.00055 0.10691 0.35586
d-0 Lime -0.01378 0.00478 -2.88234 0.00632 -0.02345 -0.00412
d-2average daily station pressure 0.00140 0.00084 1.66965 0.10280 -0.00029 0.00309
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 54321 0014.00137.0231.0377.01147.091.42 XXXXXY −−+++−= (3) 
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Additional dummy and interaction variables were used for data set 2 based on 

this best regression shown above. The specific variables are indicated in Table 4.16 

Table 4.16: Additional Variables Used to Improve Pete’s Winter Regression 

variables from Pete winter 
regression dummy variables added interaction variables added
d-3 B.D. second. W. even d-3 All B.D.>10.3 d-3 All B.D. * d-3 All Fecl3
d-0 DEWAT poly. d-3 All Fecl3>1290 d-0 All poly.* d-0 Blended ratio
d-0 Lime  d-1 All poly.>200.05 d-3 All B.D.*d-0 All poly
d-2 Avg. Daily pressure d-0 Lime<308
d-3 Tmin d-3 AVG. temp<43 (winter)

d-0 when it was Monday

The data was first arranges into two sets as follows: 

 Data set 1: variables from the first and second columns of Table 4.16 (46 data 

points), and 



108

Data set 2:  Data set 1 plus the interaction variables in column 3 (37 data 

points). 

 The regression using data set 1 as shown in Table 4.17, gave a higher adjusted 

R square value than the regression from Table 4.15 (0.608 vs. 0.58). The independent 

variable “d-2 Average daily station pressure” was replaced by the dummy variable “d-

0 Lime<308” which had a negative coefficient. The negative coefficient of 

“Lime<308” was not expected because we assumed that the insufficient amount of 

lime added in dewatering should increase odor levels. Moreover, the P value of 

constant (intercept) was high. 

Table 4.17: Pete’s Winter Regression with Additional Variables on Data Set 1 

 

Table 4.18 shows the regression results for data set 2. This regression had a 

higher adjusted R square than the regression from Table 4.15 (0.6454 vs. 0.580) with 

the three significant variables: d-3 t min, d-0 DEWAT poly, d-0 lime. However, the P 

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.8126 0.6603 0.6080 0.913419

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 5 61.064415 12.212883 14.0723 < 0.0001
Unexplained 40 34.714661 0.8678665

Standard Lower Upper

Regression Table Error Limit Limit

Constant 5.36541799 4.1822295 1.2829 0.2069 -3.08718303 13.818019
d-3 t min 0.10816154 0.017308 6.2492 < 0.0001 0.073180865 0.1431422
d-3 B.D. second. W. even 0.43667507 0.2162719 2.0191 0.0502 -0.00042671 0.8737768
d-0 DEWAT poly. 0.16877736 0.064679 2.6095 0.0127 0.038056133 0.2994986
d-0 Lime -0.0264353 0.0089909 -2.9402 0.0054 -0.04460669 -0.0082639
d-0 Lime<308 -1.7822321 0.8836868 -2.0168 0.0505 -3.56822986 0.0037656

R-Square

F-Ratio p-Value

Coefficient t-Value p-Value
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value for the intercept was fairly high (0.47). Therefore, we preferred the regression 

shown in Table 4.15. 

Table 4.18: Pete’s Winter Regression with Additional Variables on Data Set 2 

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.8682 0.7538 0.6454 0.873076

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 3 50.644752 16.881584 20.8261 < 0.0001
Unexplained 33 26.749771 0.8105991

Standard Lower Upper

Regression Table Error Limit Limit

Constant 1.10791589 1.5252388 0.7264 0.4727 -1.99520586 4.2110376
d-3 t min 0.11046495 0.0192501 5.7384 < 0.0001 0.071300288 0.1496296
d-0 DEWAT poly. 0.22636289 0.0582775 3.8842 0.0005 0.107796522 0.3449293
d-0 Lime -0.0150659 0.0040619 -3.7090 0.0008 -0.02332991 -0.0068018

R-Square

F-Ratio p-Value

Coefficient t-Value p-Value

In conclusion, the regression from Table 4.15 was the best regression for Pete 

during the winter time period. 

4.6.4 Summer Regression Analysis 

 As stated in Chapter 3, we used the data in June to August 2002 to represent 

the summer period in the correlation analysis. After we arranged the data set, we 

found that we didn’t have enough observations for some inspectors due to outliers and 

missing observation values. Therefore, we included the month of September, which 

also had average temperature higher than 70 ºF (consistent with the other variables 

chosen). Note that the high temperatures of the summer months might affect biosolids 

odor levels by increasing the biological activity of the associated microorganisms. 

 In the summer period, we selected two inspectors (Mike and Pete) for 

regression analysis from the summer correlation analysis’s results.  The variables that 
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correlated well with odor were then selected as part of the regression analysis for the 

summer. 

 Unfortunately, the weather variables (maximum, minimum, and average 

temperature) didn’t show any significant effect and appropriate correlation with the 

selected inspectors in the summer period. However, we still believed that temperature 

variables should indirectly affect the microorganism in secondary tank because of the 

high correlation on between inspector’s odor and blanket depth variables. Eventually, 

the best result came from Mike’s summer regression shown below, with an adjusted R 

square value of 0.3629. 

100194.00589.19 XY −=

Where 

 Y = Mike’s odor scores 

 1X = FeCl3 addition in primary west tanks on day d-1 (gallons) 

 The following section shows the details of the regressions for inspector Mike 

during this summer period.  

4.6.4.1 Mike’s Summer Regression 

The variables we selected from the correlation analysis for inspector Mike 

using the summer season were as follows: 

1. All blanket depth on d-1 and d-3 

2. FeCl3 addition on primary west tanks on d-0 and d-1 

3. WPL addition on d-1 

4. The ratio in blended tank on d-3 

5. Polymer addition in the DAF process on d-3 
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4. Contractor number of belt filter presses in service on d-0 and d-1 

5. Lime addition on d-0 and d-3 

6. Average daily wind speed on d-0 

With the variables stated above, there was multicollinearity between FeCl3 d-0 

and FeCl3 d-1. Thus we created two data sets from the selected variables above and 

put FeCl3 d-0 into data set1 and FeCl3 d-1 into set 2 with the remain variables included 

in both data sets; both sets had 31 data points. The best regression was found using 

data set 1. This regression is shown in Table 4.19. 

Table 4.19: Best Summer Regression for Inspector Mike Using Data Set 1 

 

Consequently, we see that the best regression was: 

100194.00589.19 XY −= (4) 

where 

 Y = Mike’s odor score 

 1X = FeCl3 addition in primary west tanks on day d-1 (gallons) 

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.619757 0.384099 0.362861 1.602868187

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 1 46.46505 46.46505 18.08551091 0.000201
Unexplained 29 74.50641 2.569186

Standard Lower Upper

Regression Table Error Limit Limit

Constant 19.05894 3.471317 5.490407 6.49738E-06 11.9593 26.15859
d-1 FeCl3 primary 
W. -0.00194 0.000457 -4.25271 0.000200653 -0.00288 -0.00101

R-Square

F p

Coefficient t-Value p-Value
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This regression has an adjusted R square value of 0.3628 with significant P 

values (less than 0.05). The negative coefficient sign on FeCl3 addition for primary 

west means that the more FeCl3 added into the primary west tanks during summer, the 

more the biosolids odor decreased. 

To improve upon this regression, we added dummy and interaction variables as 

shown in Table 4.20. 

Table 4.20: Additional Variables Used in Improvement on Mike’s summer Regression 

variables from Mike summer 
regression dummy variables added interaction variables added
d-1 FeCl3 primary W. d-1 All B.D.>10.3 d-1 All B.D. * d-1 All Fecl3

d-1 All Fecl3>1290 d-0 All poly.* d-0 Blended ratio
d-0 All poly.>200.05 d-0 All B.D.*d-0 All poly
d-0 Lime<308
d-1 AVG. temp>77 
d-0 when it was Monday

We created two data sets as follows: 

Data set 1: variables from the first and second columns Table 4.20, and  

Data set 2:  Data set 1 plus the interaction variables from column 3. 

Adding the dummy and interaction variables to the equation in Table 4.19 

didn’t give a better regression. However, the regression from data set 2 gave a higher 

adjusted R square value 0.6842 (as compared to Table 4.19). Unfortunately, the 

significant dummy variables added to the regression, “All poly>200.05” and 

“AVG.temp>77”, had negative coefficients instead of positive as expected. 

 In summary, the best regression equation for the summer season was Mike’s 

summer regression with adjusted R squares 0.3628 shown in Table 4.19. 
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4.7 Improving Candidate Regressions 

 Up to this point we used several approaches to search for a good regression 

(e.g. selected highly correlated independent variables, arranged data sets based on the 

processing timeframe). The last approach we used was that we selected the processing 

variables that we expected they could fit the regression and improve adjusted R 

squares. Figure 4.3 shows the procedures up to this point as well as what was next 

tried. 

7 8 9 10

run 
regression 
and check 
regression’
s result

apply 
additonal 
techniques

Improve 
candidate 
regression

 summarize 
best 
regression

Figure 4.3: Final Step to Find Best Regression 
 

Since Carl’s winter regression and Pete’s winter regression showed the highest 

adjusted R square values compared to other inspectors in all periods. These 

regressions were selected to improve their regression.  
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4.7.1 Final improvement on Carl’s Winter Regression 

 Table 4.9 shows the best regression for inspector Carl in winter period. It 

shows the highest adjusted R square compared to other inspectors in all periods. We 

want to see whether there were any variables we haven’t considered but could 

additionally be used to explain Carl’s odor levels. Four data sets were created to this 

end. 

Table 4.21: Data Used to Improvement Carl’s Winter Regression 

Existing independent variables Data set added
d-1 FeCL3 primary E. 1) d-1 DAF poly
d-1wasa centrif. # out of service 2) d-1 DAF poly, d-1 t max, and d-1 t min
d-1LIME 3) d-1 DAF poly, d-2 t max, and d-2 t min

4) d-1 All B.D.

We considered four variables, DAF polymer, the sum of all blanket depth, 

maximum temperature, and minimum temperature, to additionally explain Carl’s odor 

scores. After tried, the only variable that can improve this regression was maximum 

temperature on d-2. The result of this regression was shown on Table 4.22. It 

improved the adjusted R squares value from 0.68 (Table 4.9) to 0.7095 (Table 4.22) 

with the positive coefficient sign. The detail of the procedures to improve Carl’s 

winter regression was shown in Appendix A.
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Table 4.22: The Best Regression from Improvement on Carl’s Winter Regression 

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.8636 0.7458 0.7095 0.731248

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 4 43.93683 10.98421 20.5418 < 0.0001
Unexplained 28 14.97226 0.534723

Standard Lower Upper

Regression Table Error Limit Limit

Constant 4.315831 1.882495 2.2926 0.0296 0.459714 8.171948
d-1 FeCL3 primary E. 0.000691 0.000193 3.5754 0.0013 0.000295 0.001087
d-1wasa centrif. # out of service 0.728899 0.257344 2.8324 0.0085 0.201753 1.256045
d-1LIME -0.02644 0.005109 -5.1755 < 0.0001 -0.03691 -0.01598
d-2 t max 0.028029 0.015464 1.8125 0.0806 -0.00365 0.059706

R-Square

F-Ratio p-Value

Coefficient t-Value p-Value

In conclusion, after trying other variables based on the equation two for 

inspector Carl during the winter period, the improvement of Carl’s regression was 

shown below. 

 5321 0280.00264.07289.00007.03158.4 XXXXY +−++= (5) 

 where 

 Y = Carl’s odor data 

 1X = FeCl3 addition in primary east tanks on d-1 (gallons) 

 2X = DCWASA number of centrifuges out of service on d-1 

 3X = Lime addition on d-1 (lbs/dry ton of biosolids)  

 5X = Maximum temperature on d-2 (º F) 
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4.7.2 Final improvement on Pete’s Winter Regression 

 The data set in Table 4.23 was created to check whether some significant 

processing variables were missing from the best of Pete’s winter regression on Table 

4.15. We considered the FeCl3 addition on primary east tanks, number of DCWASA 

centrifuges out of services, blanket depth in secondary west tanks.  

Table 4.23: Data Used for Improvement of Pete’s Winter Regression 

Existing independent variables Data set 
d-3 t min 1) Adding variables Fecl3 primary E. in d-0, d-1, d-2, and d-3
d-3 B.D.second. W. even 2) Adding WASA # centrif. out sevice on d-0 and d-1
d-0 DEWAT polymer 3) Adding B.D. second. W. even on d-0, d-1, and d-2
d-0 Lime 4) Taking B.D. second. W. even on d-3 and t min on d-3 out
d-2 Average daily station pressure

In summary, several tries using the processing variables on Table 4.23 were 

applied on the best of Pete’s winter regression and none of them can improve this 

regression equation. (see the detail of the procedures to improve Pete’s winter 

regression in Appendix B)  

4.8 The Summary of Best Regressions 

 Several attempts to obtain best regressions have been performed. In each 

period, we first selected inspectors and variables that were highly correlated with their 

odor levels. Then the best regression from each period was modified by including the 

dummy and interaction variables. Up to this step, two best regressions regarding 

adjusted R squares were Carl’s winter regression and Pete’s winter regression. As 

described on step number nine, those two best regressions were taken for the final 

improvement. The processing variables that we expected to fit the existing 
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independent variables were added into both regression equations in order to check the 

missing significant variables. Carl’s regression were further improved by including 

one more variable, the maximum temperature on d-2, where increased the adjusted R 

square to 0.7095 as shown in Table 4.22. 

 Lastly, we summarized the best regression in each period as shown below. 

 Yearly period: the best of Pete’s yearly regression from Table 4.4. 

 Winter period: the best of Carl’s winter regression from Table 4.22. 

 Summer period: the best of Mike’s summer regression from Table 4.19. 
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Chapter 5 Conclusions 

 This chapter concludes the major results from the regression analysis, and 

describes how the model can work for DCWASA as well as the problems during the 

processes, and future work. 

5.1 The Major Results from the Regression Analysis 

 In Chapter 4, the best regression equation relative to highest adjusted R squares 

was obtained from Table 4.22 using the data of FeCl3 addition in primary east tanks on 

d-1, DCWASA number of centrifuges out of service on d-1, lime addition on d-1, and 

maximum temperature on d-2 as independent variables to predict the Carl’s odor score 

in winter. The regression equation is shown below. 

4321 028.002644.07288.000069.03158.4 XXXXY +−++=

where 

 Y = Carl’s odor score  

 1X = FeCl3 addition in primary east tanks on d-1 (gallons) 

 2X = DCWASA number of centrifuges out of service on d-1 

 3X = Lime addition on d-1 (lbs/dry ton of biosolids)  

 4X = Maximum temperature (° F) 

 The interpretation of the regression coefficients is the following: 

The coefficient of “FeCl3 addition in primary east tanks on d-1” can be interpreted as 

each gallon of FeCl3 that is added into primary east tank one day before the day that 

Carl records biosolids odors can increase Carl’s odor score by 0.00069 units all else 

being equal. 
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The coefficient of “DCWASA number of centrifuges out of service on d-1” 

can be interpreted as each of the DCWASA centrifuge out of service on one day 

before the day that Carl records biosolids odor can increase Carl’s odor score by 

0.7288 units when other independent variables are held constant. 

 The coefficient of “Lime addition on d-1” can be interpreted as each pound per 

dry ton of lime added one day before the day that Carl observes biosolids odor can 

decrease Carl’s odor score by 0.02644 units when other independent variables are held 

constant. 

 The coefficient of “Maximum temperature on d-2” can be interpreted as each 

degree of maximum temperature two days before the day that Carl takes biosolids 

odor can increase Carl’s odor score by 0.028 units when other independent variables 

are held constant.  

 The following are the best regression for summer period and yearly period. 

 Summer period: the best of Mike’s summer regression with adjusted R squares 

0.3628 from Table 4.19. 

 Yearly period: the best of Pete’s yearly regression with adjusted R squares 

0.3259 from Table 4.4.  

5.2 How the Models Can Work for DCWASA 

 The odor forecasting models developed in this thesis have two purposes: 

 First, they will help DCWASA management to better plan to which sites they 

want to level biosolids based on expected odor. This will enable them to more 

equitably allocate the malodorous effects and respond to potential complaints.  
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 Secondly, these models will be used as part of a multi-objective optimization 

model (Gabriel and Sahakij, 2003) to balance processing and distribution costs with 

odor impacts. For example, the model will provide a forecast of biosolids odor on a 

daily basis by using the data of the significant variables in the best regression. 

5.3 The Problems during the Statistical Modeling Process 

 The major problem in this thesis was the inconsistency of the inspectors’ odor 

data. Since we used the odor data from several inspectors, different standards of 

biosolids odor were created by different inspector’s odor perceptions. In the case that 

there was a discrepancy in the results of the analysis, such as a correlation 

coefficient’s sign among inspectors, it was difficult to select the correct result because 

there was more than one standard. 

 The uncertainty in the duration of the process came from the capacity of the 

equipments. In many occasions there were events that could slow down the biosolids 

production, such as the broken lime mixer, the broken centrifuges, etc. The broken 

lime mixer or the broken centrifuges increased the duration of the biosolids production 

since the contractor, who had less capacity to produce biosolids, had to take 

responsibility for the biosolids production.  

5.4 Future Work 

 The odor forecasting models developed in this thesis can be further developed 

by using more accurate measuring methods for biosolids odors. In this thesis, the 

inspectors’ odor data that we used can roughly explain the effect of the processing and 

weather variables on the biosolids odor according to the several standards from 

different inspector’s odor perceptions, the different of field sites’ conditions that 
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different inspectors took samples, etc. Using more accurate equipment to measure 

biosolids odor at DCWASA in terms of the chemical compounds producing odor can 

produce more objective biosolids odor data and can measure regularly regardless of 

inspectors or weather conditions. In addition, the more accurate biosolids odor 

measurement from equipment can help us to observe more precisely the sensitivity of 

the biosolids odor when it was affected by various processing and weather data. 
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Appendix A 
 

The procedures for the final improvement on Carl’s winter regression were shown 

below. 

1. Add “d-1 DAF poly”: From the best of Carl’s winter regression (Table 4.9), 

we see that the variables “d-1 lime” and “d-1 WASA# centrif out service” were 

already presented. We added the variable “d-1 DAF poly”, which mostly occurred at 

the same day or at least one day earlier than lime (see details in Chapter 2). We 

ignored other polymer variables, such as “All poly.” and “DEWAT poly.” due to 

outlier and missing data problems. 

 The result from using this additional polymer-related variable was no 

improvement as compared to the equation in Table 4.9. In particular, after we added 

“d-1 DAF poly” variable, it showed that the coefficient was insignificant (P value 

more than 0.5) 

 2. Add “d-1 DAF polymer”, “d-1 t max”, and “d-1t min”: For reason similar 

to part number 1, we wanted to see the effect of temperature’s variable (tmax and 

tmin) and DAF polymer when they were added into the regression to explain Carl’s 

odor scores for the winter time period.  

Again no improvement was observed relative to Table 4.9’s result. This means 

that the amount of polymer added in DAF, the maximum temperature, and the 

minimum temperature on day d-1 cannot explain Carl’s odor scores better than the 

existing independent variables on Table 4.9. 
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3. Add “d-1 DAF polymer”, “d-2 t max”, and “d-2t min”: We wanted to see 

the effect of temperature variables (tmax and tmin) one day before the lime was added 

and DAF polymer’s variable at the same day as the lime addition.  

 The regression was improved by increasing adjusted R squares from 0.6866 to 

0.7095 as shown in Table 4.22.  

 4. Add “d-1 All B.D”: Considering blanket depth variables which refer to the 

same day or one day before FeCl3 is added, we chose “d-1 All B.D.”, which had a high 

correlation (0.71), into the regression. From section 4.6.3.1, we recalled that we had 

already considered the d-3 and d-4 All B.D. variables but they were not meaningful 

regression variables.  

 Even though we added the variable showed significantly correlated with Carl’s 

odor score (0.71), it didn’t improve the regression on Table 4.9.
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Appendix B 
 

The procedures for the final improvement on Pete’s winter regression were shown 

below. 

 1. Adding variables “FeCl3 primary E.” in d-0, d-1, d-2, and d-3: On Table 

4.15, blanket depth variable (“d-3 B.D. second. W even”) was presented. We assumed 

that the FeCl3 addition into primary east tanks, which presented as a significant 

variable in the best of Carl’s winter regression on Table 4.9, might explain the Pete’s 

odor during winter as well. Therefore, the “FeCl3 primary E.” variables on d-0, d-1, d-

2, and d-3 were added into the same data set as the best of Pete’s winter regression on 

Table 4.15 to check their significance. 

 None of the selected “FeCl3 primary E.” variables above were significantly 

explained the Pete’s odor scores in winter. “FeCl3 primary E.” variables can 

significantly explain the Carl’s odor scores in winter period but cannot explain Pete’s 

odor scores in winter period. 

 2. Adding “WASA # centrif. out sevice” on d-0 and d-1: From the best 

regression of Carl’s winter regression, number of DCWASA centrifuges out of service 

was significantly explained Carl’s odor scores. We took this variable to the best of 

Pete’s winter regression to check how this variable explained Pete’s odor score. 

 There was no improvement to add this variable into the best of Pete’s winter 

regression. This significant variable in Carl’s winter regression can not explain the 

Pete’s odor scores. 
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 3. Adding “B.D. second. W. even” on d-0, d-1, and d-2: Considering the 

independent variable “d-3 B.D. second. W. even” in the best of Pete’s regression in 

winter, this variable was not correlated with the day lagged of “d-0 DEWAT. Poly” 

and “d-0 Lime” because it was taking such a long period between the blanket depth 

step on d-3 to the lime and polymer step on d-0 (this means that it took almost 3 days 

for processing between these steps). Thus we tried adding “B.D. second. W. even”on 

d-0, d-1, and d-2, which make much more sense than d-3, into regression. However, to 

add these three variables into data set we needed to delete 2 more data points from the 

data set of the best of Pete’s winter regression. (from 46 data point to 44 data points). 

 Unfortunately, none of “B.D.second. W.even” on d-0, d-1, and d-2 can replace 

the “B.D.second. W. even on d-3”. That means the unreasonable day lagged between 

“d-3 B.D.second. W. even” and “d-0 Lime” still be existed. This problem made this 

regression equation lesser appropriate than the good regression on Carl’s winter 

regression. 

 4. Taking either “B.D. second. W. even” on d-3 and “d-3 t min” out: To make 

a good regression of Pete’s winter regression more reasonable, blanket depth variable 

and minimum temperature on d-3 were taken out to check how change on the 

regression equation. 

 The result was the adjusted R squares decreased from 0.58 to 0.16. That means 

these two variables are significantly explained Pete’s odor score in winter. As shown 

in number 3, we already tried to keep this variable but using different day lagged 

concerning the appropriateness of regression. However, none of them can replace the 

variable “B.D. second. W.even on d-3”. 
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