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ABSTRACT

The most important portion of an expert system development
is the articulation of knowledge by the expert and its
satisfactory formulation in a suitable knowledge representation
scheme for mechanization by a computer. A "deep knowledge"
approach called Goal Tree-Success Tree model is devised
to represent complex dynamic domain knowledge. This approach
can hierarchically model ".he unaérlying principles of a
given process domain (for example nuclear power plant operations
domain). The Goal Tree-Success Tree can then be used to
represent the knowledge-base and provide means of selecting
an efficient search routine in the inference engine of
an expert system.

A prototype expert system has been developed to demonstrate
the method. This expert system models the operation of
a typical feedwater system used in the pressurized water
reactors. The expert system is modeled for real-time operations
if an interface between plant parameters and the expert
system is established. The real-time operation provides
an ability to quickly remedy minor-disturbances that can
quickly lead to system malfunction or trip.

A description of both the Goal Tree-Success Tree Model

and the prototype expert system is presented.



SUMMARY

Complex processes and their control are cumbersome
tasks. Although plant operators are well trained in standard
operating procedures, they may have difficulty in handling
complex or rare operating conditions. In addition, there
are often wide differences between operators' ability to
achieve a high or optimum level of process performance.

That is, better operators operate the process closer to

the optimum level of performance, and thus increase productivity
and performance. Handling these operating conditions during
the plant operation requires a fundamental understanding

of the physical principles based on which plants operate.
Recent expert systems [1-5] have shown the feasibility

of including structural models of the problem domain in

the knowledge base. Application of this type of knoWlédge
representation allows real-time direct access to plant
measurements of the plant control data base for improved

and more consistent plant operation in spite of personnel
turnover, lapses in human attention, and the like.

Two general approaches have been applied to develop
expert systems to aid operators. One is model-based and
the other is model-free. The model-free approach acquires
the knowledge from experts directly, usually in the form
of (if-then) production rules.. This type of approach utilizes
empirical associations between evidence and conclusions,

but does not depend on a 'deep' (functional) understanding



of the domain itself{. The knowledge captured in these
oxpert systems is a shortcut through, or an experiential
compilation of the underlying principles in the problem
domain {6]. This has been referred to as the 'shallow'
knowledge approach. This approach is typical in medical
diagnosis programs, where underlying disease mechanisms
are unknown or difficult to describe (for example, MYCIN
[7] is based on this approach). The shallow approach has
been regarded as the standard approach in building expert
systems.

For many reasons, the shallow approach is not ideal
for complex plant modeling in the form of expert systems.
For example, the knowledge needed to solve a plant upset
condition is broad and ill-defined. The required knowledge
may include the plant layout, physical and chemical properties
of the fluids, design specifications, knowledge of past
and current operating conditions, and interpretation of
process measurements. However, there is a structured theoretical
and conceptual basis which relates all aspects of plant
operation together. During plant operation a large fraction
of the knowledge is structured, and physical models based
on principles of mechanics, dynamics, thermodynamics, heat,
mass and momentum transfer, kinetics and process chemistry,
along with operator interactions, can be hierarchically
modeled.

Since the 'deep knowledge' approach utilizes a model

of the problem domain, it would be more appropriate for



process control, plant operation and diagnosis representation.
Examples of well known expert systems that utilize deep
knowledge include ABEL [8] and IDM [9]. By acquiring the
underlying principles of a domain explicitly, the model

based approach need not anticipate every possible situation
in the domain, which enables the expert system to handle

a wider range of problem types and larger problem domains
such as nuclear power plant operation.

In this paper we have introduced a new type of deep
knowledge representation model called a Goal Tree-Success
Tree model (herein called GTST model) in developing expert
systems for plant monitoring, controlling and alarm handling
activities. This model can completely and rigorously describe
a process plant and its operations. It incorporates a
structured approach that shows how a specific objective
in a plant is achieved. This is done by defining the objective
and partitioning it into a series of related sub-objectives
or goals; these goals are then broken down into subgoals.

The partitioning of goals and subgoals continues hntil
their description can not be made without referring to
plant hardware. At this point logical model of the hardware
should be represented in the form of success trees.
In this paper we have shown how a GTST model is
used to represent an expert system's knowledge base. Also
improved search process of the inference engine by using
this model is discussed. An expert system for a typical

feedwater system operation of a pressurized water reactor



is developed on an IBM-AT, by using the micro-PROLOG language.
[10) The system showed that the GTST model can be effectively
used in developing the expert system knowledge base and
improves search strategies.

The expert system is developed such that it can be
used to operate in a real-time environment, in order to

provide quick response to operator's needs.

2. Development of Goal Tree-Success Tree Model

The concept of GTST model is not new. This approach
has been successfully used as a tool for a variety of engineering
applications [11-15].

In complex process élants human operators tend to
think in terms of achieving plant goals by successfully
operating relevant plant hardware that support the plant
goals. For instance, the operators in a nuclear power
plant have indications of current reactor power level and
combination of hardware that are currently operating to
achieve such a power level. 1In this case maintaihing power
at a given power level is a goal and combination of supporting
hardware represent a success path. As a process upset
condition occurs in the plant, a goal can be challenged;
for example by losing success path hardware. 1In this case,
the operator attempts to locate and maintain the challenged
goal and its corresponding success path(s).

A close view of the above facts recognizes the complexity

and dynamic nature of the challenges and operator intervention,



The GTST can be efficiently utilized as a deep-knowledge
representation scheme in an expert system to provide timely
access to plant knowledge and quick advice. In the remainder
of this section the method of constructing GTST models
are discussed.

Fig. 1 shows the structure of a GTST model. Since
the GTST model is a top-down structure, first a description
of the top par£ (i.e., the goal tree) is provided and then
the description of the lower part (i.e., the success tree)
will follow:

a) Goal Tree Development - The first step in developing
a goal tree model involves definition of the top plant
goal or objective. fhis top goal must be explicitly defined
in terms which make it a single unambigudus statement.

It is from this definition that the analyst will identify
and relate all the different plant goals and subgoals which
must be achieved to attain the overall objective.

The goal tree is constructed vertically downward from
the objective in levels, wherein the analyst subsequently
decomposes each identified goal into a necessary and sufficient
set of dependent subgoals. As the vertical detailed development
of the tree increases, it is necessary that tests be applied
to ensure its accuracy and completeness, and the proper
hierarchy between goals and subgoals be rigorously maintained.

The tests which are to be applied at every level of
the tree to ensure adequacy are:

1) Upon looking upward from any subgoals towards



the top objective, it is possible to define explicitly
why the specific goal or subgoal must be satisfied.
2) Upon looking downward from any goal towards the
bottom of the tree, it is possible to define
explicitly how the specific goal or subgoal is
satisfied.
Failure of the tree to pass either of these tests
at any level implies that:
1) there is a lack of completeness and that intermediate
subgoals have been omitted, or
2) the hierarchy of goals or their interdependencies
have been neither rigorously nor completely defined.
The process of downward development of the tree continues
until the analyst can not further compare the tree without
referring to a hardware. As soon as hardware or a process
condition is explicitly mentioned, the tree can be viewed
as one which describes success paths, not goals.
While a plant is operating, it passes through various
plant states. Each plant state requires certain functions
or goals to be achieved. Therefore, the goal tree can
be viewed as a dynamic model (i.e., the element of time
can also be considered in the model) in that as the plant
enters a new state, only the goals applicable to this state
can be retained for expert system considerations. Moreover,
the level of the goals or functions in the tree does not
indicate their importance. It is the degree of the effect

on the objective that determines their importance. 1In



fact, it is possible to visualize the entire tree as a
'‘mobile' which is held in space with each of the elements
connected by elastic whose length is determined by the
inverse of its importance. As the plant moves through
its spectrum of possible states, applicable goals would
move relative to each other, so that those which have the
higher importance at any point in time will be closer to
the objective, conceptually.

b) Success Tree - The success tree part of the GTST
model is a logical model of a hardware or plant system
from which success paths can be determined. A success
path shows various components whose proper operation guarantee
the successful operation of the system. A system may have
more than one success path, in which case these are alternate
ways of achieving system success (alternate success paths
are designed for achieving high redundency).

It is important that the boundary between goals and
success tree (or success paths) be recognized in the composite
GTST model. Within the goal tree, all goals are connected
by logical AND gates, whereas the success paths are connected
to the goals they serve by logical OR gates. The fact
that all connectors in the goal tree are logical ANDs can
be used to establish a convention which provides the analyst
with a means for easy distinction between the goal tree
and the hardware success paths. Therefore, by convention,

the goal tree is drawn with no AND gates explicitly displayed.

If a gate is shown, success tree or success paths are being



described. Since all components of a success path are
required to function for the success of that path, these
components must be connected by an AND gate. However,
AND gates in the success tree should be explicitly shown.
Fig. 1 illustrates the relationship of objective, goals,

subgoals, and success path, and hardware.

3. Use of The GTST Model As A Dynamic Knowledge Base

The GTST model can be effectively used as a suitable
basis for developing a dynamic knowledge base of a real-time
expert system for operator assistance. In this case, a
model of the plant in form of the GTST model can be used
to provide the ability for reasoning by abstraction to
the plant operators. The success tree part of the model
provides all the success paths available for operation
for a given plant state to the operator, and the goal tree
part shows how and why these success paths support the
plant objective.

A logic or symbolic programming language such as PROLOG
or LISP can be easily used to encode the logic GTST model.
The dynamic knowledge base constructed by use of such a
language can be utilized along with an efficient inference
engine to infer the status of plant goals and their corresponding
optimal success path(s). For demonstration purposes the
language micro-PROLOG was selected, since its built-in
inference engine (i.e., backward chaining and depth-~first

search [16~17]) can be effectively used for the reasoning



purpose. The GTST structure, however, provides an ability
to improve the built-in search strategy if necessary.

The method of improvement may be different for various
GTST models,

The success paths and the goals of a GTST model can
be conveniently represented by relational sentences in
micro-PROLOG. The dynamic knowledge base also consists
of rules and facts. The rules are used for example to
verify a lost hardware and to verify availability of standby
or non-operating hardware. There are two kinds of facts
in the knowledge base, one being time-independent facts
and the other being time-varying facts. The time-independent
facts represent relations of the physical structure of
the plant or the inherent characteristic of the process
that does not vary with time, while the timé—varying facts
represent the current plant hardware states .

In developing a real-time expert system an interface
between plant data and the expert system should be provided
in order to directly feed time-varying process data from
the process control or monitoring system into the dynamic
knowledge base. From time to time additional time-varying
data may also be supplemented by user/operator, if they

are not available through the direct communication links.

4. CFWAVA Expert System for Operator Assistance

A pilot expert system called CFWAVA (Expert System

for Condensate and Feedwater System Availability Operation)
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has been developed based on the GTST model. The CFWAVA
expert system 1s an expert-advisor that can assist plant
operators in coping with process upsets in the Condensate
and Feedwater System (CFWS) of a pressurized water reactor,
The partial loss of the CFWS is the most significant contributor
to the plant outages [18]. However, the partial loss of
this system does not completely disable the heat removal
capability of the CFWS provided that quick remedial actions
be provided. For example, a survey of operating nuclear
power plants [19] has shown that out of 1161 outages there
were 274 which appeared preventable by more rapid actions.
The system responsible for the largest number of outages
(235 out of 1161) was CFWS. It was also indicated that
131 of these outages were preventable by a more rapid operator
action. Reduced number of CFWS outages will also improve
plant safety by reducing the frequency of loss of feedwater
system transients.

Fig. 2 represents a simplified schematic of a typical
CFWS which is used in this pilot expert system. &he system
shows six condensers, three condensate pumps, three condensate
booster pumps and two main feed pumps (for simplification
all other auxiliary hardware such as valves, preheaters
are eliminated). The CFWS has several discrete success
levels such that each level corresponds to one of the reactor
power levels. By the timely and appropriate response of
the operator, the reactor power can be reduced to a level

corresponding to the heat removal capability of the CFWS
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at a given time. The success criteria defining the individual
CFWS component capabilities to the overall plant states

(here discrete power levels) are shown in Table 1.

Table 1
Success Criteria For CFWS
Plant Power Levels
100% 75% 50% 30%
Condenser 6/6 5/6 4/6 3/6
Success
Cond. Pump 3/3 2/3 1/3 1/3
Success
Booster Pump 2/3 2/3 1/3 1/3
Success
Main Feed 2/2 2/2 1/2 1/2

Pump Success

State 1 State 2 State 3 State 4

If the plant power cannot be maintained at any of
the four discrete success levels of the CFWS, then the
operator should be quickly advised to shutdown the plant.

The CFWAVA code is capable of detecting an upset condition
for a given power level, success path, and the time-varying
process data, and provide the operator with the s&stem
state diagnosis result, the optimal achievable power level,
corresponding optimal success path(s), and the required
operator actions to achieve the new power level. The CFWAVA's
real-time data interface is currently being developed.
However, the expert system itself is modeled such that
monitored plant parameters can be handled in a real-time

basis.
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In the rest of this section a discussion of the corresponding
GTST model, and a representation of this model as the knowledge

base of the CFWAVA code is presented.

4.1 Development of Dynamic Goal Tree for CFWAVA

The GTST model (Fig. 3) is developed with the top
objective of "Cycle Equivalent Availability Maximized".
This objective is then broken down into its relevant goals.
The rules for constructing GTST models as discussed earlier
in this paper are strictly applied to maintain hierarchy
and completeness of the tree.

Each of the goals is then decomposed into its lower
level goals. For example, the goal "Availability of Energy
Sinks Maximized" is broken down into "Equivalent Availability
of Electric Switchyard Maximized" and "Availability of
Thermal Condensing is Maximized". The former goal is achieved
by the operation of hardware such as transformers, electric
lines, switchyard,..., etc. and the latter is achieved
by condensers, ..., etc.

Similarly the goal "Equivalent Availability of the
Energy Transport Maximized" is broken down into three subgoals.
One of these subgoals is "Equivalent Availability of Main
Feed Water System Maximized". This goal can be achieved
by maintaining a high level of reliability (e.g., by minimizing
the failure rate of hardware supporting the goal ) or by
maximizing the goal's operability (e.g., by maximizing

availability or readiness of supporting hardware).
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In this very broad GTST model we will only detail
the success paths of the goal "Operability of Main Feedwater
System Maximized". For a comprehensive representation
of the GTST model's top objective, all systems supporting
the lowest level goals of this GTST model should be developed.
However, since this expert system is developed for demonstration
purpose, we will only detail the important goal of maximizing
the feedwater operability.

In the success tree portion of the GTST model, the
success paths of the goal "Operability of Main Feedwater
System Maximized", the set of hardware required for operation
in each defined power level (Table 1) is shown. Because
of the complexity of the success tree, only success paths
of one of the six condensers (CD 11A), and one of the three
condesate pumps (CDPll) and one of the three condensate
booster pumps (CDBPll) and one of the two steam generator
feed pumps (CDFPll) are shown. The rest of these hardware
have identical success path configurations which are not
explicitely shown on the GTST model in Fig. 3 but are modeled
in the expert system.

Let us assume that the plant has been operating with
the success path of ((CD11A CD11lB CD12A CD12B CD13A) (CPP1l1l
CDP13) (CDBPll CDBP12) (SGFP1ll SGFP1l2)). This indicates
that according to the GTST model the current power level
is 75%. Thus the operator goal would be to maintain the
power at this level or the next highest possible power

level.
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Suppose that at a given time, a process upset causes
the discharge pressure of the condensate pump 11 to become
out of the allowed set range which in turn causes the trip
of this pump according to the control logic. Then the
current success path would no longer be viable (according
to the logic demonstrated in the GTST model).

If the condensate pump 12 which has not been operating
is available for operation and no further operational restrictions
(such as low condensate inventory in the main feed system
exists), then the condensate pump 12 will be able to compensate
for pump 11. Therefore, the right branch of the subtree
for condensate pump 12 will be examined to find out if
the condensate pump is available for operation at this
time. If pump 12 is not available for operation, the next
possible power level will be examined for potential usage.

The result will quickly be provided to the operator.

4.2 Knowledge Base of CFWAVA

The knowledge base of CFWAVA is constructed based
on the structured knowledge formulated in the GTST model.
Since the feedwater system can successfully operate in
different power levels, a state concept is devised for
representing power levels. A state is defined as a list
such as (A B C D), in which A, B, C, and D indicate the
number of condensers, condensate pumps, booster pumps,
and feed pumps respectively. There are four possible states

as follows:
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1) previous state: A state list showing the system
configuration prior to a disturbance
2) reduced state: Similar to "previous state" with
the disturbed item(s) eliminated
from the list
3) feasible state: Similar to "reduced state” with
the available item(s) added to
the list to replace the disturbed
item(s)
4) optimal state: Similar to "feasible state" with
unnecessary item(s) removed soO
as to match the corresponding
power level
The success paths corresponding to various power levels
are also represented by a list consisting of four sublists;
each sublist indicating condensers, condensate pumps, booster
pumps, and feed pumps. For example, the following list
shows the discussed sublists:
((cpy,CD3,...) (CDP;,CDPp,...) (CDBP3,CDBP3...) iSGFPl,SGFPz,...)).
The number of item(s) in each sublist of success path corresponds
to the respective item in the state list. For example,
for the state list [previous state (4 1 1 1)], one possible
success path would be:
previous-success-path ((CD11A CD12A CD12B CD13A) (CDPll)
(CDBP12) (SGFP1ll)).
If the expert system detects a disturbance or failure
in say CD12A, then the reduced success path would be determined

as follows:

le



reduced-success-path ((CD1lA CD12B CD13A) (CDP11)
(cpBP12) (SGFP11)).
Further, assume that a check on the readiness and availability
of other condensers indicates that CD11B is available for
operation. Therefore, the feasible success path can be
determined. 1In this case:
feasible-success-path ((CDl11A CD11B CD12B CD13A)
(CcDP11) (CDBP12) (SGFP1ll)).
If a comparison with the success criteria for operation
configuration (See Table 1) indicates that the current
power level can be maintained with the feasible success
path then this path will be selected as an optimal success
path. Otherwise, the expert system would determine the
next possible optimal success path (perhaps relevant to
a lower power level). Suppose that the expert system indicates
that CD11B can be replaced by CD12A within the constraints
set forth by the defined success criteria, then the optimal
success path is:
optimal-success-path ((CDllA CD11B CD12B CD13A)
(CDP11) (CDBP12) (SGFP1ll)).
Relationships between goals can also be represented
by micro-PROLOG sentences such as:
((how (maximize-energy-source-availability) (maximize-
cycle-equivalent-availability)))
((how (maximize-equivalent-availability—~of-energy-conversion)
(maximize-cycle-equivalent-availability)))

In order to determine the operating conditions of items

17



(either working within acceptable limits or not), rules

such as the one shown below can be used:

((diag _-CD1lA) (P "Enter TSl-sensor-value in degree-Fahrenheit:")

(R _TS1) (P "Enter TS2-sensor-value in degree-Fahrenheit:")

(R _TS2) (EQ _TDl #(.T7S2 - _TS1)) (OR ((lesseq .TD1l 12)

(/)) ((delete ((lost _oLl))) (APPEND (-oLl (CD1lA) .nLl))

(add (lost -_nLl))))). ‘

This rule diagnoses the operating condition of CDllA.

If the temperature difference between the temperature sensor

TSl and TS2 is less than or equal to 12 degrees Fahrenheit,

then CD1llA is considered to be successfully operating.

Otherwise, the unit is considered to be in failed condition.
The availability of an item can be checked by rules

such as the one below:

((check-availability-CDP _P) (P "Check tagging-status of

_P [TAG/NO]:")(R -tag)(P “"Check motor-ammeter for -p (4KV-Busl2)

[OK/NO]:")(R _ma)(P "Check cooling-oil-pressure > 23psig

[OK/NO]:") (R —-cop) (OR ((EQ _tag NO) (EQ _ma OK)

(EQ -cop OK) (branch-oP-CDP _p) (/))((branch—NOP-CsP -p))))).

This rule acquires directly the tagging status, the readiness

of the motor ammeter, and the appropriateness of the cooling

0il pressure of the condensate pump. If the pump is not

tagged out and the support systems (e.g., electric motor

power and the cooling o0il here) are ready for operation,

then the hardware is regarded as being available for operation.
The backward chaining (goal-driven) inference built

in PROLOG was used to find the plant state, but improvement
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in the search process was achieved by heuristic procedures.
For instance, conditions such as 1) insufficient condensate
inventory, or 2) complete loss of any single condenser
shell is checked just after the completion of system state
diagnosis. This very quick check reduces the search time
significantly since in these cases the plant should be
shutdown. This is because time-consuming processes such
as state and success state determination, operability
and availability checks can be avoided in such a case.
Because of dynamic effects of feedwater systems, when
a failure occurs, a quick response will minimize progression
of the occurred transient to other hardware. A real-time
interface with this expert system is currently being developed
that automatically provides the operating and availability
conditions. Also, other auxiliary components such as valves
and heaters are also being added. With such a real-time
interface completed, the response actions can be performed
quickly before the transient effect can progress to other
hardware.
The user can ask CFWAVA "why" a recommendation is
made. Presently, explanations are provided to the user
only in cases where plant shutdown is recommended. This
kind of explanation capability is important in this context
since the explanation facility helps to resolve the conceptual
differences between the user and the expert system when
such a conflict exists.

Fig. 4 shows a typical CFWAVA session.
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5. Conclusions

The GTST model is used to develop an expert system
for operator assistance during a process upset condition.
It is observed that the GTST provides an ability to represent
deep knowledge structure in the knowledge base of an expert
system. Furthermore, the.well-organized knowledge structure
such as the GTST model can help the knowledge engineer
find better search routine and thereby assist in developing
a more efficient real-time expert system.

Based on this approach the expert system CFWAVA is
developed. This system has demonstrated the efficiency
of the GTST model. The quick advice provided from thié
expert system can significantly improve operational ability
and safety of plants when quick actions are necessary to

maintain important plant goals.
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<>
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Fig.3 (continued)
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Fig. 3 (continued)
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