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 The grass shrimp, Palaemonetes pugio, was exposed to dissolved copper or 

cadmium in a series of laboratory experiments to determine effects on bioenergetics, 

reproduction, and population growth.  In 14-day exposures, adults were exposed to either 

copper or cadmium to quantify bioenergetic effects.  Both metals caused a decline in 

oxygen consumption (lowest observed effects concentrations [LOECs] = 7.5 µg Cu
2+

/L 

and 6.6 µg Cd
2+

/L) and growth rate (LOECs = 27 µg Cu
2+

/L and 6.2 µg Cd
2+

/L).  Effects 

of copper on growth were more severe than those of cadmium, resulting in weight loss 

during the exposure.  Reductions in oxygen consumption and growth, in combination 

with declines in reproduction observed in longer exposures, suggest that both copper and 

cadmium reduce energy allocation to respiration and production pathways. 

 In eight-month exposures, P. pugio were exposed to either copper or cadmium for 

a full life cycle, allowing larvae to attain maturation and reproduce.  While survival was 



 

 

little affected by exposure to cadmium, brood size and the percentage of ovigerous 

females were significantly reduced (LOECs = 1.5 and 2.5 µg Cd
2+

/L, respectively).  

Population growth of P. pugio exposed to cadmium was projected using a stage-based 

matrix model and a z-transformed life cycle graph analysis.  Both models projected a 

decrease in population growth rate (LOEC = 1.5 µg Cd
2+

/L), although population growth 

remained positive.  Decomposition analysis indicated that cadmium-induced declines in 

population growth could be attributed mainly to contributions from reproductive effects.  

In the eight-month exposure to copper, no lethal effects on larvae, juveniles, or adults 

were observed, but larval development was significantly delayed (LOEC = 9 µg Cu
2+

/L).  

Upon reaching maturation, females exposed to copper were able to produce embryos, but 

the embryos did not hatch, precluding completion of the life cycle (LOEC =  

9 µg Cu
2+

/L).  The results from subsequent experiments, which further examined 

reproductive effects, suggested that copper may inhibit larval recruitment via a 

combination of effects on hatching success, parental bioenergetics, and processes before 

or during spawning and/or fertilization.  In conclusion, both copper and cadmium may 

have negative impacts on the sustainability of natural populations of P. pugio in 

contaminated habitats. 
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PREFACE 

 

 The goal of this research project was to investigate various ecotoxicological 

effects of aqueous copper and cadmium on Palaemonetes pugio (grass shrimp) using a 

series of laboratory experiments.  I examined bioenergetic effects on respiration, growth, 

consumption, and energy storage in several two-week exposures of adult shrimp to either 

copper or cadmium.  To examine life stage-specific effects of copper and cadmium on 

survival, development, and reproduction, I conducted eight-month exposures that 

spanned the entire life cycle of the grass shrimp.  Based upon results from these 

exposures, I performed two additional experiments to further examine effects of copper 

on reproduction.  Herein, I present the results from the entire research project in a series 

of manuscript-formatted chapters that either have been or will be submitted for 

publication in peer-reviewed journals, with my graduate advisor (Christopher Rowe) as a 

co-author.  Chapter 3 has already been published with the following citation: “Manyin, 

T., Rowe, C.L., 2008. Modeling effects of cadmium on population growth of 

Palaemonetes pugio: results of a full life cycle exposure. Aquat. Toxicol. 88, 111-120.”  

With the exception of editorial revisions suggested by my advisor and committee 

members, all contents of this dissertation were written by me, Teresa Manyin. 

 In Chapter 1, I provide an overview of the effects of aqueous copper and 

cadmium on bioenergetics, reproduction, and population growth of aquatic invertebrates.  

This chapter serves as an introduction to the research project, summarizing the literature 

that has been published on this topic.  In Chapter 2, I present results from the two-week 

exposures, quantifying effects of copper and cadmium on respiration, growth, 
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consumption, and energy storage.  To evaluate toxicological effects of copper and 

cadmium on the energetic budget of P. pugio, I converted respiration and growth rates to 

their energetic equivalents.  In Chapter 3, I report the effects of cadmium observed during 

the full life cycle exposure, including effects on survival and duration of each life stage, 

as well as effects on reproductive output.  I used these individual-level effects to project 

effects of cadmium on population growth of P. pugio by employing two mathematical 

models: a stage-based matrix model and a z-transformed life cycle graph analysis.  I 

conducted perturbation analyses to decompose population-level effects of cadmium into 

individual-level contributions and to determine the sensitivity of population growth to 

changes in individual-level parameters.  In addition, I projected the ability of a cadmium-

exposed population to withstand predation pressure.  In Chapter 4, I present the effects of 

copper observed during the full life cycle exposure, including effects on survival and 

duration of each life stage, as well as reproduction.  Because exposure to copper 

prevented larval production, and therefore prevented completion of the life cycle, it 

would not have been useful to model the effects of copper on population growth at the 

experimental concentrations.  Instead, I further examined effects on reproduction by 

varying the timing of exposure relative to oviposition. 

 In summary, this dissertation expands the toxicological knowledge of effects of 

copper and cadmium.  Chronic, individual-level effects from laboratory experiments were 

used to project effects at the population level.  The impact of bioenergetic effects on 

population dynamics is a recurring theme, providing an ecological perspective on the 

toxicological effects of copper and cadmium. 
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CHAPTER 1: 

AN OVERVIEW OF THE EFFECTS OF AQUEOUS COPPER AND CADMIUM 

ON BIOENERGETICS, REPRODUCTION, AND POPULATION GROWTH OF 

AQUATIC INVERTEBRATES 

 

Introduction 

 Exposure to toxicants may result in wide-ranging bioenergetic effects, potentially 

impacting multiple aspects of an individual’s energetic budget.  A basic bioenergetic 

budget for an animal may be expressed by the equation, C = R + P + E, where C is 

consumption, R is respiration, P is production, and E is excretion and egestion.  The total 

amount of energy available to an animal to support physiological processes is dependent 

upon the portion of energy that is assimilated from food.  Assimilated energy is equal to 

the energy consumed minus energy lost due to excretion and egestion.  An organism’s 

ability to assimilate energy from food is determined by its assimilation efficiency, which 

is calculated as the amount of energy assimilated divided by the total energy consumed.  

Toxicants may alter the extent of an individual’s bioenergetic budget by affecting its rates 

of consumption, excretion, and/or egestion, as well as its assimilation efficiency. 

 Physiological stress may be induced by exposure to toxicants, often manifesting 

as bioenergetic effects in which allocation of assimilated energy to the competing 

pathways of respiration and production are altered (Calow, 1991).  Respiratory 

expenditures include maintenance (measured as standard metabolic rate), specific 

dynamic action (energy used for digestion and absorption of nutrients), and activity.  

Production pathways include somatic growth and energy storage, production of gametes 
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(i.e., reproductive investment), secretions (such as mucus), and eliminated tissues (such 

as shed exoskeletons).   

 Although many effects of toxicants on reproduction may be linked to reduced 

energetic investment in offspring by parents, toxicants may cause additional effects on 

reproduction that are not bioenergetic in nature.  Frequently, it is difficult to distinguish 

between these two mechanisms of effects on reproduction.  For example, a decrease in 

hatching success may be mediated by reduced energy allocation to egg formation or by 

direct effects of toxicants on survival of embryos.  Regardless of the mechanism of 

effects, the end result of exposure is often a decline in growth and reproduction.  When 

summed together, these effects on individuals may ultimately lead to a decline in 

population growth rate.  This literature review summarizes the current body of 

knowledge regarding the effects of aqueous copper and cadmium on bioenergetics, 

reproduction, and population growth of aquatic invertebrates. 

 Concentrations of copper and cadmium are often elevated in aquatic habitats, 

especially estuaries and coastal regions, due to nearby human activities (Wright, 1986; 

Hall et al., 1998; Yang and Sañudo-Wilhelmy, 1998; Monbet, 2004; Munari and Mistri, 

2007).  Sources of both copper and cadmium to aquatic environments include mine 

drainage, wastewater discharge from metal smelting, runoff of agricultural fertilizers, and 

atmospheric fallout from fossil fuel combustion and refuse incineration; additionally, 

copper may be introduced to aquatic habitats through application of antifouling paint and 

algicides (WHO, 1992; WHO, 1998).   
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Copper 

Essentiality and Mechanisms of Toxicity 

 Copper is an essential trace element in animals, functioning as a cofactor for 

many enzymes involved in oxidation/reduction reactions, such as oxidases, oxygenases, 

and superoxide dismutases (Stohs and Bagchi, 1995; WHO, 1998).  As a component of 

hemocyanin, copper is also required for oxygen transport in the circulatory system of 

arthropods.  Copper is actively accumulated; bioavailability of aqueous copper is largely 

dependent upon the concentration of the free divalent cation, Cu
2+

 (Zamuda and Sunda, 

1982), but accumulation may also be affected by abiotic conditions such as salinity 

(Wright and Zamuda, 1987; Bidwell and Gorrie, 2006) and temperature (Mubiana and 

Blust, 2007).  This review describes effects induced by the uptake of copper from 

solution only, although copper may also be accumulated via uptake from contaminated 

food (Weeks and Rainbow, 1993). 

 When present at concentrations exceeding those that are essential, copper may 

induce toxicological stress by binding to sulfhydryl, carboxylate, and imidazole sites on 

proteins and DNA, impairing protein function and resulting in errors in transcribed RNA 

(WHO, 1998).  Copper can also catalyze the production of reactive oxygen species, 

resulting in lipid peroxidation, DNA and organelle damage, and ATP depletion (Stohs 

and Bagchi, 1995; WHO, 1998). 

Effects on Bioenergetics, Reproduction, and Population Growth 

 Exposure to copper has been found to affect the rate of respiration (measured as 

oxygen consumption) in many aquatic invertebrates (Table 1.1).  Most often, copper 

exposure leads to reduced respiration.  Of the 18 species listed in Table 1.1, 14 displayed 
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a decrease in oxygen consumption and 3 exhibited an increase in response to copper.  In 

one species, the crab Potamonautes warreni, the respiratory response was dependent 

upon the length of exposure; a shorter exposure (7 to 14 days) resulted in elevated 

respiration, but continued exposure (≥  21 days) subsequently reduced respiration 

(Vosloo et al., 2002).  The authors proposed that the initial increase in respiration 

reflected an increased metabolic demand, while the subsequent decrease in respiration 

could be attributed to copper-induced damage to gill tissues (Vosloo et al., 2002). 

 It is therefore evident that copper may influence respiration rate via several 

mechanisms.  Copper can inhibit several enzymes involved in metabolic pathways such 

as glycolysis (Strydom et al., 2006), potentially resulting in a decline in oxygen 

consumption.  In addition, exposure to copper has been found to cause gill necrosis, as 

reported for Carcinus maenas (shore crab; Nonnotte et al., 1993) and Penaeus japonicus 

(Kuruma prawn; Soegianto et al., 1999a), which may result in direct inhibition of oxygen 

consumption.  Furthermore, copper exposure can induce synthesis of metallothioneins or 

other metal-binding proteins (White and Rainbow, 1986; Moraga et al., 2005), which can 

sequester metals and protect against toxic effects, as well as heat shock proteins (Sanders 

et al., 1991; Moraga et al., 2005), which stabilize or repair damaged proteins.  Induction 

of protein synthesis may result in elevated metabolic costs (Hawkins, 1991; Hawkins and 

Day, 1996) and consequently an increase in oxygen consumption.  Therefore, copper has 

the potential to either reduce or elevate respiratory rates, depending upon the dominant 

mechanisms through which it acts.  In the species surveyed, no taxonomic trends were 

evident in the respiratory responses to copper. 
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 Exposure to copper has frequently been observed to reduce rates of growth in 

aquatic invertebrates, regardless of the metric employed (dry weight, wet weight, or body 

length; Table 1.2).  Copper has also been found to reduce scope for growth, calculated as 

the amount of energy assimilated minus energy allocated to respiration (Table 1.2).  

Development from one life stage to the next is often delayed by copper exposure; copper 

has been found to slow development of embryos, larvae, and juveniles of several species 

(Table 1.2).  However, Greco et al. (2001) reported faster development in Tunicotheres 

moseri (pea crab) postlarvae exposed to copper.  Given that exposure to copper has been 

observed to reduce rates of growth and development in most of the studies reviewed, the 

majority of evidence suggests that energy allocated to production declines in response to 

copper. 

 Reproduction is also often negatively impacted by copper exposure.  Effects of 

copper on reproduction, which may be driven by bioenergetic mechanisms, include 

delayed maturation and declines in brood size as well as the number of young produced 

by a female over her lifetime (Table 1.3).  The observed declines in offspring production 

suggest that copper exposure decreases the energy available for reproductive investment.  

Additional effects of copper on reproductive measures, which may or may not be linked 

to bioenergetic effects, include reduced fertilization success, increased abortion rates, and 

reduced embryo hatching success (Table 1.3).  Taken as a whole, the effects of copper on 

reproduction may have pronounced effects on the sustainability of populations in copper-

polluted habitats. 

 Rates of food consumption have been observed to decrease in response to copper 

exposure in several species of aquatic invertebrates (Table 1.4), reducing the total amount 
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of energy available to the individual.  Assuming that assimilation efficiency remains 

constant, a decline in consumption will result in a decrease in the amount of energy 

assimilated and thus available to support respiration and production.  Copper-induced 

reductions in food consumption may be compounded by a decrease in assimilation 

efficiency (Table 1.5), further reducing the amount of energy assimilated.  Copper may 

also affect rates of excretion and elimination (Table 1.5), influencing the rate of 

assimilation.  Exposure to copper may cause excretion to increase (e.g., in the green 

mussel, Perna viridis [Krishnakumar et al., 1990]) or decrease (e.g., in the crab,  

P. warreni [Vosloo et al., 2002]).  Copper has been observed to reduce the rate of 

elimination in P. viridis, although organic content of feces was elevated (Sze and Lee, 

2000).  The overall impact of excretion and/or elimination effects on the energy budget 

cannot be predicted without additional information on consumption and energetic 

expenditures for a particular species. 

 Other bioenergetic effects of copper include reductions in activity, clearance rate, 

and molting rate (Table 1.5), further suggesting decreases in respiration and production.  

The majority of bioenergetic evidence, including reductions in respiration, consumption, 

growth, and reproduction, suggests that exposure to copper results in an overall metabolic 

depression, as illustrated in P. viridis (Sze and Lee, 2000).  Copper-induced declines in 

growth and reproduction at the level of the individual may be expressed at the population 

level as a decrease in population growth, as has been observed in several species (Table 

1.6).  Therefore, copper pollution in natural habitats may potentially result in a decline in 

populations of aquatic invertebrates. 
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Cadmium 

Mechanisms of Toxicity 

 Cadmium is not an essential element, but may be accumulated via pathways for 

calcium uptake (Wright, 1995).  Bioaccumulation of cadmium from solution is correlated 

with the free divalent cation concentration, Cd
2+

 (Sunda et al., 1978), but may also be 

influenced by abiotic factors such as salinity (De Lisle and Roberts, 1988), temperature 

(Mubiana and Blust, 2007), and calcium concentration (Wright and Frain, 1981; De Lisle 

and Roberts, 1994).  As with copper, cadmium may also be accumulated via uptake from 

contaminated food (Khalil et al., 1995); however, this review describes only effects 

induced by the uptake of cadmium from solution.   

 Cadmium may cause toxic effects by binding to sulfhydryl, sulfate, and carbonyl 

sites on proteins and DNA (Furst et al., 1998), inhibiting their function.  Cadmium may 

also interfere with calcium uptake and calcium channels via competition for binding sites 

(Furst et al., 1998; Strydom et al., 2006).  In addition, cadmium may cause lipid 

peroxidation (Stohs and Bagchi, 1995) and inhibit DNA repair (Furst et al., 1998). 

Effects on Bioenergetics, Reproduction, and Population Growth 

 Many researchers have observed a significant effect of cadmium exposure on 

respiration in aquatic invertebrates (Table 1.7).  Exposure to cadmium often results in a 

decrease in respiration, although an increase in respiration sometimes occurs.  Of the 22 

species included in Table 1.7, 16 exhibited a decline in oxygen consumption in response 

to cadmium and 2 displayed an increase.  In the remaining 4 species, the effect of 

cadmium on oxygen consumption varied, depending upon exposure conditions.  

Taxonomic trends were not evident in the effects of cadmium on respiration. 
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 Conditions that may influence an individual’s respiratory response to cadmium 

include duration of exposure, cadmium concentration, and/or salinity (Table 1.7).  In 

Daphnia magna, De Coen and Janssen (2003) reported an increase in oxygen 

consumption at a low cadmium concentration (4 µg/L), and a decrease in oxygen 

consumption, relative to controls, at higher cadmium concentrations (≥  14 µg/L), but an 

explanation was not provided for these results.  In the snail Murex trunculus, reduced 

oxygen consumption was observed in a short-term (60 h) exposure to a high 

concentration of cadmium (5000 µg/L), but oxygen consumption was elevated in a longer 

(34 d) exposure to a low concentration of cadmium (50 µg/L; Dalla Via et al., 1989).  

The authors proposed that the decrease in oxygen consumption was due to severe 

metabolic disturbances that impeded respiration at high cadmium concentrations, and that 

the increase in oxygen consumption at low cadmium concentrations reflected the 

induction of detoxification mechanisms, such as metallothionein synthesis (Dalla Via et 

al., 1989).  The field crab, Barytelphusa guerini, exhibited an increase in oxygen 

consumption in shorter (6-24 h) exposures, but a decline in oxygen consumption in 

longer (4-15 d) exposures; the initial increase in respiration was proposed to be the result 

of defense mechanisms against cadmium toxicity, while the subsequent decline in 

respiration was attributed to irreparable tissue injury (Reddy and Venugopal, 1993).  

Vernberg et al. (1977) observed a salinity-dependent response in the grass shrimp, 

Palaemonetes pugio; at a lower salinity (5 ppt), cadmium exposure resulted in a decrease 

in oxygen consumption, but at a higher salinity (15 ppt), cadmium caused an increase in 

respiration.  The authors were unwilling to speculate as to the cause of the seemingly 

contradictory responses in respiration due to the high degree of variability among 
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individuals, perhaps due to variation in activity levels (Vernberg et al., 1977).  

Conversely, Hutcheson et al. (1985) reported a decrease in oxygen consumption in  

P. pugio at a salinity of 15 ppt, although the exposure was shorter and the cadmium 

concentration was higher than those employed by Vernberg et al. (1977). 

 Effects of cadmium on respiration may be mediated by several mechanisms.  For 

example, cadmium has been found to inhibit several enzymes involved in metabolic 

pathways, including glycolysis, the Krebs cycle, gluconeogenesis, and oxidative 

phosphorylation (Furst et al., 1998; Strydom et al., 2006), which may cause a decrease in 

metabolic rate.  In addition, exposure to cadmium may result in gill necrosis, as reported 

for the dogwhelk Nucella lapillus (Leung et al., 2000), and several species of shrimp, 

including Penaeus duorarum and Palaemonetes vulgaris (Nimmo et al., 1977a) and  

P. japonicus (Soegianoto et al., 1999b).  Such damage to gills may directly inhibit 

oxygen consumption.  Furthermore, cadmium exposure has been observed to cause a 

decrease in the number of mitochondria per unit cell volume in the swan mussel, 

Anodonta cygnea (Hemelraad et al., 1990) and eastern oyster, Crassostrea virginica 

(Cherkasov et al., 2006), potentially leading to a reduction in the capacity for aerobic 

respiration.  However, cadmium-induced synthesis of protective proteins may cause an 

increase in respiration; similar to copper, exposure to cadmium has been found to induce 

synthesis of heat shock proteins (Werner and Nagel, 1997; Brown et al., 1995) and 

metallothioneins or similar metal-binding proteins (e.g., Howard and Hacker, 1990; 

Moraga et al., 2005).  Hence, specific effects of cadmium at cellular and subcellular 

levels may impact oxygen consumption differently; the net effect on respiration is 

expected to be a synthesis of such lower level effects. 
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 Reduced growth rates have been observed in many aquatic invertebrates in 

response to cadmium exposure (Table 1.8).  Effects of cadmium on dry weight (total, 

tissue, or shell), wet weight, body length, shell length and area, accumulation of proteins 

and lipovitellin, and scope for growth have been reported for several species (Table 1.8).  

Exposure to cadmium has also been found to delay development of larval and juvenile 

stages (Table 1.8).  Overall, the effects on growth and development suggest that cadmium 

exposure results in a decline in energy allocated to production pathways. 

 Reproduction is also commonly inhibited by cadmium exposure.  Reproductive 

effects that may be driven by bioenergetic mechanisms include reduced brood size, a 

decline in the percentage of adults producing offspring, reduced offspring size, a delay in 

the release of young, and a reduction in the total number of young per female (Table 1.9).  

These effects suggest that exposure to cadmium reduces the energy allocated to 

reproductive investment in offspring.  Less often, cadmium exposure has been observed 

to result in positive effects on reproductive measures (Table 1.9); examples include an 

increase in fecundity in the snail, Biomphalaria glabrata (Salice and Miller, 2003), and 

cladoceran, D. magna (Bodar et al., 1988b; Guan and Wang, 2006), an increase in the 

size of offspring in the sea urchin, Anthocidaris crassispina (Au et al., 2000), and 

accelerated maturation in the brine shrimp, Artemia parthenogenetica (Sarabia et al., 

2003).  Nonetheless, the majority of evidence suggests that cadmium exposure typically 

decreases the amount of energy allocated toward reproduction.  Additional effects of 

cadmium on reproductive measures, which may or may not be linked to bioenergetic 

effects, include reduced hatching success, decreased sperm motility, and a decline in 
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fertilization success (Table 1.9).  In sum, exposure to cadmium may have many negative 

impacts on reproduction, although positive effects have occasionally been observed. 

 Effects of cadmium exposure on ingestion rates are usually negative (Table 1.10), 

reducing the input to an animal’s energy budget.  However, Brown and Pascoe (1989) 

observed an increase in consumption by the amphipod Gammarus pulex at a low 

cadmium concentration (2.1 µg/L), whereas consumption decreased at a higher cadmium 

concentration (6.0 µg/L).  Researchers have also reported declines in the amount of 

energy assimilated in response to cadmium exposure (Table 1.11).  Assimilation 

efficiency may either increase or decrease in cadmium exposures (Table 1.11).  An 

increase in assimilation efficiency, such as that observed in D. magna, might allow 

organisms to compensate for a reduction in consumption (Guan and Wang, 2006).  

Conversely, a decrease in assimilation efficiency, as observed in combination with 

reduced ingestion in the mysid Leptomysis lingvura, could further reduce the amount of 

energy available to the energetic budget (Gaudy et al., 1991).  Increases in lipid 

utilization in response to cadmium exposure (Table 1.11) suggest that organisms are 

unable to satisfy their energetic needs via consumption and must resort to energy 

reserves.  Other bioenergetic effects include reduced activity, increased mucus 

production, and mixed effects on rates of excretion and molting (Table 1.11).  Although 

cadmium appears to result in complex effects on the bioenergetics of aquatic 

invertebrates, exposure to cadmium most often causes a decline in consumption and 

production, resulting in a shortage in energy available to maintain standard rates of 

growth and reproduction.  These declines at the level of the individual may be expressed 
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as a decrease in population growth rate, as observed in several aquatic invertebrates 

(Table 1.12). 

 

Conclusion 

 Copper and cadmium often have similar effects on rates of consumption, growth, 

development, and reproduction in aquatic invertebrates; exposure typically reduces 

consumption and assimilation, as well as energy allocation to production.  Effects on 

respiration may vary depending upon metal concentration, duration of exposure, salinity, 

and species studied.  Variable responses in respiration are not unexpected due to the 

complex set of physiological mechanisms that may affect oxygen consumption.  The 

majority of evidence suggests that both copper and cadmium may reduce energy 

allocation to production pathways.  Even at sublethal concentrations, a decrease in 

production may ultimately result in population declines in contaminated habitats, with 

unknown effects at the ecosystem level. 
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Table 1.1.  Effects of copper on rate of oxygen consumption. 

 

 Initial Water   Total   

 Life Hardness  Duration of Copper   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration Observed Effect Reference 

Dreissena polymorpha adults FW NR 24 h 100 µg Cu/L reduced oxygen consumption Rao and Khan, 2000 

(zebra mussel)               

Mytilis edulis adults 33 ppt 8.1 30-60 m 200 µg Cu/L reduced oxygen consumption in intact Manley, 1983 

(blue mussel)       and "propped open" individuals  

     500 µg Cu/L reduced oxygen consumption in  

            individuals with posterior adductor   

      muscle severed  

Perna viridis adults 34 ppt 8.2-8.4 24 h 60 µg Cu/L reduced oxygen consumption Prabhudeva and 

(green mussel)             Menon, 1986 

Perna viridis adults SW NR 84 d 50 µg Cu/L reduced oxygen consumption Sze and Lee, 2000 

(green mussel)               

Ruditapes decussatus adults 35.6 ppt NR 2 d 10 µg Cu/L increased oxygen consumption Sobral and Widdows, 

(clam)             1997 

Tapes philippinarum adults 26-28 ppt 8.0-8.2 14 d 10 µg Cu/L increased oxygen consumption Munari and Mistri, 

(clam)             2007 

Balanus amphitrite adults SW NR 2 h 255 µg Cu/L reduced oxygen consumption Rao et al., 1986 

(barnacle)               

Balanus tintinnabulum        

(barnacle)               

Gammarus pulex adults 108 mg/L 8.0 10 d 10.8 µg Cu/L increased oxygen consumption Kedwards et al., 1996 

(amphipod)               

Caridina rajadhari adults FW NR 30 m 300 µg Cu/L reduced oxygen consumption Chinnayya, 1971 

(shrimp)               

Farfantepenaeus postlarvae 25 ppt NR 15 m 17 µg Cu/L reduced oxygen consumption Santos et al., 2000 

paulensis (pink shrimp)               
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Table 1.1, continued. 

 

 Initial Water   Total   

 Life Hardness  Duration of Copper   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration Observed Effect Reference 

Orconectes immunis juveniles 139 mg/L 6.9 5 d 160 µg Cu/L reduced oxygen consumption Khan et al., 2006 

(crayfish)               

Carcinus maenas adults SW NR 2 h 10000 µg Cu/L reduced oxygen consumption Depledge, 1984 

(shore crab)               

Portunus pelagicus adults 18 ppt NR 96 h 1500 µg Cu/L reduced oxygen consumption Ketpadung and 

(blue swimming crab)  27 ppt   750 µg Cu/L  Tangkrock-olan, 2006 

  35 ppt   3000 µg Cu/L   

    44 ppt   750 µg Cu/L     

Potamonautes warreni adults FW NR 7-14 d 1000 µg Cu/L increased oxygen consumption Vosloo et al., 2002 

(crab)       21 d  reduced oxygen consumption   

Scylla serrata adults SW NR 96 h 10000 µg Cu/L reduced oxygen consumption Ahmed et al., 1997 

(crab)               

Uca annulipes adults 20 ppt NR 48 h 870 µg Cu/L reduced oxygen consumption Devi and Rao, 1989 

(fiddler crab)    96 h 500 µg Cu/L   

Uca triangularis    48 h 3410 µg Cu/L   

(fiddler crab)       96 h 4670 µg Cu/L     

 
NR = not reported 
1
 Life stage with which exposure was initiated 

2
 Water hardness is given in mg CaCO3/L, salinity in ppt; FW = freshwater (hardness not reported); SW = saltwater (salinity not reported) 
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Table 1.2.  Effects of copper on growth and development.  The metric used to quantify growth rate is supplied in parentheses. 

 

 Initial Water   Total   

 Life Hardness  Duration of Copper   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration Observed Effect Reference 

Watersipora subtorquata larvae SW NR 6 h 100 µg Cu/L reduced growth (diameter) of colonies Ng and Keough, 2003 

(bryozoan)      started from exposed larvae, delayed  

          metamorphosis of larvae   

Lymnaea stagnalis eggs FW NR 28 d 25 µg Cu/L reduced growth (wet weight and Girling et al., 2000 

(snail)           shell size)   

Physa integra adults 45 mg/L 7.7 42 d 14.8 µg Cu/L reduced growth (shell length) Arthur and Leonard, 

(snail)             1970 

Mytilus edulis adults SW NR 3 d 10 µg Cu/L reduced growth (shell length) Manley et al., 1984 

(blue mussel)               

Mytilus edulis adults SW NR 10 d 4.6 µg Cu/L reduced growth (shell length) Redpath, 1985 

(blue mussel)       20 d 1.4 µg Cu/L     

Mytilus edulis adults 30 ppt NR 7 d 32 µg Cu/L reduced scope for growth Sanders et al., 1991 

(blue mussel)               

Perna viridis adults 33.5 ppt 8.1 14 d 25 µg Cu/L reduced scope for growth Krishnakumar et al., 

(green mussel)             1990 

Perna viridis adults SW NR 84 d 50 µg Cu/L reduced growth (shell length, Sze and Lee, 2000 

(green mussel)           dry weight of tissue,   

      and condition index)  

Ruditapes decussatus adults 35.6 ppt NR 2 d 10 µg Cu/L reduced scope for growth Sobral and Widdows, 

(clam)             1997 

Tapes philippinarum adults 26-28 ppt 8.0-8.2 5 d 10 µg Cu/L reduced scope for growth Munari and Mistri, 

(clam)             2007 

Isognomon californicum larvae SW NR 4 d 5 µg Cu/L reduced growth (dry weight) Ringwood, 1992a 

(oyster)               
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Table 1.2, continued. 

 

 Initial Water   Total   

 Life Hardness  Duration of Copper   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration Observed Effect Reference 

Bosmina longirostris neonates FW 6.9-7.1 13-17 d 18 µg Cu/L reduced growth (carapace length) Koivisto and Ketola, 

(cladoceran)             1995 

Daphnia magna neonates 45.3 mg/L 7.74 21 d 40 µg Cu/L reduced growth (dry weight) Biesinger and 

(cladoceran)             Christensen, 1972 

Tigriopus japonicus gravid 30 ppt NR 48 d 64.2 µg Cu/L delayed development from nauplial D'Agostino and 

(copepod) females         to adult stage Finney, 1974 

Gammarus adults 45 mg/L 7.7 42 d 14.8 µg Cu/L reduced growth (body length) Arthur and Leonard, 

pseudolimnaeus             1970 

(amphipod)        

Gammarus pulex mixture 103 mg/L 7.9 100 d 11 µg Cu/L reduced growth (increase in number Maund et al., 1992 

(amphipod) of all        of molts required to reach a given   

 stages     body length)  

Gammarus pulex neonates FW 6-7 28 d 7 µg Cu/L reduced growth (wet weight) Girling et al., 2000 

(amphipod)               

Farfantepenaeus postlarvae 25 ppt NR 35 d 43 µg Cu/L reduced growth (wet weight) Santos et al., 2000 

paulensis (pink shrimp)         85 µg Cu/L reduced growth (total length   

      and dry weight)  

Metapenaeus ensis larvae 30 ppt 7.9-8.1 10 d 60 µg Cu/L delayed development of larvae Wong et al., 1995 

(shrimp) postlarvae   8 d 80 µg Cu/L reduced growth (body length)  

Palaemonetes pugio embryos 20 ppt 7.0-7.8 7 d 1000 µg Cu/L reduced growth (embryo length) Rayburn and Fisher, 

(grass shrimp)       12 d 3000 µg Cu/L delayed development of embryos 1995 

Penaeus monodon juveniles 25 ppt 8.13 15 d 4500 µg Cu/L reduced growth (total length Chen and Lin, 2001 

(tiger shrimp)       30 d 900 µg Cu/L and wet weight)   

Tunicotheres moseri larvae 37 ppt NR 96 h 100 µg Cu/L increased duration of first larval stage Greco et al., 2001 

(pea crab) postlarvae       10 µg Cu/L decreased duration of postlarval stage   



 

 17 

Table 1.2, continued. 

 

 

 Initial Water   Total   

 Life Hardness  Duration of Copper   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration Observed Effect Reference 

Chironomus riparius larvae, 2
nd

 FW 6-7 10 d 25 µg Cu/L reduced growth (wet weight) Girling et al., 2000 

(midge) instar             

Paracentrotus lividus embryos 34 ppt 8.0 48 h 32.9 µg Cu/L reduced growth (length) Lorenzo et al., 2002 

(sea urchin)         41.1 µg Cu/L inhibition of development of embryos   

       into larvae  

 

NR = not reported 
1
 Life stage with which exposure was initiated 

2
 Water hardness is given in mg CaCO3/L, salinity in ppt; FW = freshwater (hardness not reported); SW = saltwater (salinity not reported) 
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Table 1.3.  Effects of copper on reproduction. 

 

 Initial Water   Total   

 Life Hardness  Duration of Copper   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration Observed Effect Reference 

Acropora longicyathus gametes SW NR 30 m 23.6 µg Cu/L reduced fertilization success Reichelt-Brushett and 

(coral)        Harrison, 2005 

Acropora tenuis     41.9 µg Cu/L   

(coral)        

Goniastrea aspera     20.4 µg Cu/L   

(coral)        

Goniastrea retiformis     20 µg Cu/L   

(coral)               

Goniastrea aspera gametes SW NR 30 m 20 µg Cu/L reduced fertilization success Reichelt-Brushett and 

(coral)             Harrison, 1999 

Lobophytum compactum gametes SW NR 30 m 69 µg Cu/L reduced fertilization success Reichelt-Brushett and 

(coral)             Michaelek-Wagner, 

       2005 

Mytilus edulis sperm SW 7.91 20 m 6355 µg Cu/L reduced sperm motility Earnshaw et al., 1986 

(blue mussel)               

Isognomon californicum sperm SW NR 60 m 50 µg Cu/L reduced fertilization success Ringwood, 1992a 

(oyster)               

Bosmina longirostris neonates FW 6.9-7.1 13-17 d 14 µg Cu/L delayed maturation (first appearance Koivisto and Ketola, 

(cladoceran)       of eggs in brood pouch), increased age 1995 

      at first reproduction  

     16 µg Cu/L fewer young per brood  

      18 µg Cu/L fewer young per female  

Daphnia pulex     26 µg Cu/L delayed maturation (first appearance  

(cladoceran)           of eggs in brood pouch)   
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Table 1.3, continued. 

 

 Initial Water   Total   

 Life Hardness  Duration of Copper   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration Observed Effect Reference 

Daphnia ambigua neonates 130-160 8.2-9.5 ~130 d 60 µg Cu/L decreased brood size Winner and Farrell, 

(cladoceran)  mg/L      1976 

Daphnia parvula     80 µg Cu/L   

(cladoceran)         

Daphnia pulex     80 µg Cu/L   

(cladoceran)               

Daphnia magna neonates 45.3 mg/L 7.74 21 d 22 µg Cu/L fewer young per adult Biesinger and 

(cladoceran)             Christensen, 1972 

Praunus flexuosus adults 30 ppt 8 8 d 5 µg Cu/L reduced percentage of brooding Garnacho et al., 2001 

(mysid shrimp)           females, decreased brood size,   

      increased percentage of abortions  

Corophium volutator adults 25 ppt NR 14 d 100 µg Cu/L reduced percentage of brooding Eriksson and Weeks, 

(amphipod)           females 1994 

Gammarus adults 45 mg/L 7.7 42 d 8 µg Cu/L fewer young per adult Arthur and Leonard, 

pseudolimnaeus             1970 

(amphipod)        

Palaemonetes pugio embryos 20 ppt 7.0-7.8 4 d 3000 µg Cu/L reduced hatching success Rayburn and Fisher, 

(grass shrimp)             1999 

Callinectes sapidus embryos 28 ppt NR 6-8 d 1 µg Cu/L reduced hatching success Lee et al., 1996 

(blue crab)               

Chironomus riparius embryos FW 6-7 time to 1100 µg Cu/L reduced hatching success Girling et al., 2000 

(midge)       hatch       

Echinometra mathaei sperm SW NR 60 m 10 µg Cu/L reduced fertilization success Ringwood, 1992a 

(sea urchin)               
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Table 1.3, continued. 

 

 Initial Water   Total   

 Life Hardness  Duration of Copper   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration Observed Effect Reference 

Ciona intestinalis gametes 33.3 ppt 8.06 20 h 32 µg Cu/L reduced hatching success Bellas et al., 2004 

(ascidian)               

 
NR = not reported 
1
 Life stage with which exposure was initiated 

2
 Water hardness is given in mg CaCO3/L, salinity in ppt; FW = freshwater (hardness not reported); SW = saltwater (salinity not reported) 
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Table 1.4.  Effects of copper on ingestion rate.  

 

 Initial Water   Total   

 Life Hardness  Duration of Copper   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration Observed Effect Reference 

Campeloma decisum adults 45 mg/L 7.7 42 d 14.8 µg Cu/L reduced ingestion Arthur and Leonard, 

(snail)             1970 

Saduria entomon adults 6 ppt 7.6 7 d 10000 µg Cu/L reduced ingestion Pynnonen, 1996 

(isopod)               

Gammarus pulex juveniles 158 mg/L 7.7 96 h 12.1 µg Cu/L reduced ingestion Blockwell et al., 1998 

(amphipod)        

Farfantepenaeus postlarvae 25 ppt NR 30 m 43 µg Cu/L reduced ingestion Santos et al., 2000 

paulensis (pink shrimp)               

Metapenaeus ensis protozoea, 30-34 ppt 8.7 2 h 250 µg Cu/L reduced ingestion Wong et al., 1993 

(shrimp) 3
rd

 instar           

 postlarvae,   24 h 2000 µg Cu/L   

  3
rd

 instar             

Penaeus monodon juveniles 25 ppt 8.13 1.5 h 5000 µg Cu/L reduced ingestion Chen and Lin, 2001 

(tiger shrimp)               

 
NR = not reported 
1
 Life stage with which exposure was initiated 

2
 Water hardness is given in mg CaCO3/L, salinity in ppt; FW = freshwater (hardness not reported); SW = saltwater (salinity not reported) 
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Table 1.5.  Other bioenergetic effects of copper. 
 

 Initial Water   Total   

 Life Hardness  Duration of Copper   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration Observed Effect Reference 

Mytilis edulis adults 33 ppt 8.1 30-60 m 10.1 µg Cu/L reduced clearance rate Manley, 1983 

(blue mussel)               

Mytilus edulis adults 30 ppt NR 7 d 32 µg Cu/L reduced clearance rate, decreased Sanders et al., 1991 

(blue mussel)           assimilation efficiency   

Perna viridis adults 33.5 ppt 8.1 14 d 25 µg Cu/L increased rate of ammonia excretion, Krishnakumar et al., 

(green mussel)           reduced clearance rate 1990 

Perna viridis adults SW NR 84 d 50 µg Cu/L decreased assimilation efficiency, Sze and Lee, 2000 

(green mussel)      reduced clearance rate, reduced fecal  

      production, increased organic content  

            of feces, increased rate of ammonia   

      excretion  

Ruditapes decussatus adults 35.6 ppt NR 2 d 10 µg Cu/L reduced clearance rate Sobral and Widdows, 

(clam)             1997 

Tapes philippinarum adults 26-28 ppt 8.0-8.2 5 d 10 µg Cu/L reduced clearance rate Munari and Mistri, 

(clam)       9 d  decreased assimilation efficiency 2007 

Daphnia magna neonates FW NR 9 h 30 µg Cu/L decreased average swimming Untersteiner et al., 

(cladoceran)    13 h 20 µg Cu/L velocity 2003 

        14 h 10 µg Cu/L     

Gammarus duebeni adults 15.5 ppt NR 7 d 45 µg Cu/L reduced swimming endurance Lawrence and Poulter, 

(amphipod)           (stamina) 1998 

Penaeus monodon juveniles 25 ppt 8.13 75 d 900 µg Cu/L inhibition of molting Chen and Lin, 2001 

(tiger shrimp)               

Portunus pelagicus larvae, 33 ppt NR 72 h 10 µg Cu/L inhibition of molting Mortimer and Miller, 

(sand crab) 3
rd

 instar           1994 



 

 23 

Table 1.5, continued. 

 

 Initial Water   Total   

 Life Hardness  Duration of Copper   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration Observed Effect Reference 

Potamonautes warreni adults FW NR 14 d 1000 µg Cu/L decreased rate of ammonia excretion Vosloo et al., 2002 

(crab)       7 d  increased lipid metabolism   

Tunicotheres moseri larvae, 1
st
 37 ppt NR 96 h 0.5 µg Cu/L inhibition of molting Greco et al., 2001 

(pea crab) instar       

 larvae, 2
nd

    1000 µg Cu/L   

 instar       

  postlarvae       1000 µg Cu/L     

 
NR = not reported 
1
 Life stage with which exposure was initiated 

2
 Water hardness is given in mg CaCO3/L, salinity in ppt; FW = freshwater (hardness not reported); SW = saltwater (salinity not reported) 
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Table 1.6.  Effects of copper on population growth. 

 

 Initial Water   Total   

 Life Hardness  Duration of Copper   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration Observed Effect Reference 

Brachionus calyciflorus neonates FW 6-7 72 h 5 µg Cu/L decreased population growth rate Girling et al., 2000 

(rotifer)               

Brachionus plicatilis adults 34-36 ppt 8.5 10 d 125 µg Cu/L decreased population growth rate Luna-Andrade et al., 

(rotifer)       at low food ration 2002 

     250 µg Cu/L decreased population growth rate  

            at high food ration   

Daphnia ambigua neonates 130-160 8.2-9.5 ~130 d 60 µg Cu/L decreased population growth rate Winner and Farrell, 

(cladoceran)  mg/L      1976 

Daphnia magna     80 µg Cu/L   

(cladoceran)         

Daphnia parvula     60 µg Cu/L   

(cladoceran)         

Daphnia pulex     60 µg Cu/L   

(cladoceran)               

Bosmina longirostris neonates FW 6.9-7.1 13-17 d 18 µg Cu/L decreased population growth rate Koivisto and Ketola, 

(cladoceran)             1995 

Gammarus pulex mixture 103 mg/L 7.9 100 d 14.6 µg Cu/L decreased population growth rate Maund et al., 1992 

(amphipod) of all       

  stages             

 
NR = not reported 
1
 Life stage with which exposure was initiated 

2
 Water hardness is given in mg CaCO3/L, salinity in ppt; FW = freshwater (hardness not reported); SW = saltwater (salinity not reported) 
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Table 1.7.  Effects of cadmium on rate of oxygen consumption. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Murex trunculus adults 29-34 ppt NR 60 h 5000 µg Cd/L reduced oxygen consumption Dalla Via et al., 1989 

(snail)       34 d 50 µg Cd/L increased oxygen consumption   

Nucella lapillus adults 35 ppt NR 20 d 500 µg Cd/L reduced oxygen consumption Leung et al., 2000 

(dogwhelk)               

Donax trunculus adults 40 ppt NR 24 h 100 µg Cd/L reduced oxygen consumption,  Neuberger-Cywiak  

(mussel)           perhaps due to shell closure et al., 2005 

Lampsilis ventricosa adults 165 mg/L 8.1 28 d 22 µg Cd/L reduced oxygen consumption Naimo et al., 1992 

(pocketbook mussel)               

Meretrix casta adults 10-25 ppt NR 4 d 1000 µg Cd/L increased oxygen consumption Kumarasamy and  

(clam)            Karthikeyan, 1999 

Crassostrea virginica adults SW NR 21 d 25 µg Cd/L reduced oxygen consumption in Sokolova et al., 2005 

(eastern oyster)           isolated mitochondria   

Daphnia magna juveniles FW NR 96 h 4 µg Cd/L increased oxygen consumption De Coen and Janssen, 

(cladoceran)     ≥  14 µg Cd/L reduced oxygen consumption as 2003 

            measured by electron transport activity   

Leptomysis lingvura adults SW NR 18-27 h 100 µg Cd/L reduced oxygen consumption Gaudy et al., 1991 

(mysid)               

Elasmopus rapax adults 30 ppt 8.1 24 h 112 µg Cd/L reduced oxygen consumption Zanders and Rojas, 

(amphipod)             1992 

Gammarus duebeni adults 4-24 ppt NR 6 h 1000 µg Cd/L reduced oxygen consumption  Tedengren et al., 

(amphipod)        1988 

Gammarus oceanicus        

(amphipod)             

Gammarus pulex adults FW 7.5 4 h 1000 µg Cd/L reduced oxygen consumption Aronsson and 

(amphipod)       24 h 200 µg Cd/L reduced oxygen consumption Ekelund, 2005 
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Table 1.7, continued. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Litopenaeus schmitti juveniles 15 ppt 7.15-7.87 24 h 3000 µg Cd/L reduced oxygen consumption Wu and Chen, 2004 

(white shrimp)               

Litopenaeus schmitti larvae 36 ppt 8.2 3 h 500 µg Cd/L reduced oxygen consumption Barbieri, 2007 

(white shrimp)               

Palaemonetes pugio adults 5 ppt NR 7 d 50 µg Cd/L reduced oxygen consumption Vernberg et al., 1977 

(grass shrimp)   15 ppt    increased oxygen consumption   

Palaemonetes pugio adults 15 ppt NR 48 h 100 µg Cd/L reduced oxygen consumption Hutcheson et al., 1985 

(grass shrimp)               

Orconectes immunis juveniles 139 mg/L 6.9 5 d 160 µg Cd/L reduced oxygen consumption Khan et al., 2006 

(crayfish)               

Homarus americanus adults 24-26 ppt NR 30 d 3 µg Cd/L increased oxygen consumption Thurberg et al., 1977 

(American lobster)               

Barytelphusa guerini adults FW 7.4 6-24 h 600 µg Cd/L increased oxygen consumption Reddy and 

(field crab)       4-15 d  reduced oxygen consumption Venugopal, 1993 

Cancer irroratus adults 17-32 ppt 8.0 48 h 120 µg Cd/L reduced oxygen consumption Thurberg et al., 1973 

(rock crab)               

Carcinus maenas adults 17-32 ppt 8.0 48 h 500 µg Cd/L reduced oxygen consumption Thurberg et al., 1973 

(green crab)               

Eurypanopeus depressus adults 25 ppt 7.0 72 h 7000 µg Cd/L reduced oxygen consumption Collier et al., 1973 

(mud crab)           in excised gill tissue   

Uca annulipes adults 20 ppt NR 48 h 4300 µg Cd/L reduced oxygen consumption Devi and Rao, 1989 

(fiddler crab)    96 h 3330 µg Cd/L   
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Table 1.7, continued. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Uca triangularis adults 20 ppt NR 48 h 1460 µg Cd/L reduced oxygen consumption Devi and Rao, 1989 

(fiddler crab)       96 h 30 µg Cd/L     

 

NR = not reported 
1
Life stage with which exposure was initiated 

2
Water hardness is given in mg CaCO3/L, salinity in ppt; FW = freshwater (hardness not reported); SW = saltwater (salinity not reported) 

3
Total cadmium concentration unless noted as µg Cd

2+
/L, which refers to the free divalent cadmium ion concentration 
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Table 1.8.  Effects of cadmium on growth and development.  The metric used to quantify growth rate is supplied in parentheses. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Brotia hainanensis juveniles FW 7.4 4 d 800 µg Cd/L reduced scope for growth Lam, 1996 

(snail)               

Hydrobia ulvae juveniles 13 or NR 21 d 100 µg Cd/L reduced growth (shell length) Forbes and Depledge, 

(mudsnail)   23 ppt         1992 

Hydrobia ventrosa juveniles 23 ppt NR 21 d 200 µg Cd/L reduced growth (shell length) Forbes, 1991 

(snail)    28 d 100 µg Cd/L   

    33 ppt  21 d 100 µg Cd/L    

Argopecten irradians juveniles 27.4- NR 42 d 60 µg Cd/L reduced growth (shell length) Pesch and Stewart, 

(bay scallop)   31.5 ppt         1980 

Isognomon californicum larvae SW NR 4 d 1 µg Cd/L reduced growth (dry weight) Ringwood, 1992a 

(oyster)               

Isognomon californicum larvae 34 ppt NR 4 d 2 µg Cd/L reduced growth (shell DW and Ringwood, 1992b 

(oyster)      tissue DW)  

     50 µg Cd/L reduced growth (shell area)  

        14 d 10 µg Cd/L reduced growth (shell length)   

Nephelopsis obscura adults FW NR 91 d 50 µg Cd/L reduced growth (wet weight) Wicklum and Davies, 

(leech)             1996 

Daphnia magna neonates 45.3 mg/L 7.74 21 d 1 µg Cd/L reduced growth (dry weight) Biesinger and 

(cladoceran)             Christensen, 1972  

Daphnia magna neonates 150 mg/L 8.4 14 d 1 µg Cd/L reduced growth (dry weight) Bodar et al., 1988a 

(cladoceran)               

Daphnia magna adults FW NR 3-4 d 2 µg Cd/L reduced growth (dry weight) Barata and Baird, 2000 

(cladoceran)       (1 instar)       

Daphnia magna neonates FW NR 8 d 8.4 µg Cd/L reduced growth (carapace length) Knops et al., 2001 

(cladoceran)       17 d 5.6 µg Cd/L     
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Table 1.8, continued. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Daphnia magna neonates FW NR 21 d 4 µg Cd/L reduced growth (carapace length) De Coen and Janssen, 

(cladoceran)             2003 

Daphnia magna adults FW 8.0 14 d 2.2 µg Cd
2+

/L reduced growth (body length) Baillieul et al., 2005 

(cladoceran)     1.1 µg Cd
2+

/L reduced scope for growth  

                

Daphnia magna adults FW 8.0 14 d 2.8 µg Cd
2+

/L reduced growth (carapace length,  Smolders et al., 2005 

(cladoceran)           only at high food ration)   

Daphnia magna neonates FW 8.2 72 d (6 3 µg Cd/L reduced growth (wet weight) in Guan and Wang, 2006 

(cladoceran)    generations)  all generations  

Tigriopus japonicus gravid 30 ppt NR 48 d 43.8 µg Cd/L delayed development from nauplial D'Agostino and 

(copepod) females         to adult stage Finney, 1974 

Mysidopsis bahia juveniles 30 ppt NR 18 d 4 µg Cd/L reduced growth (dry weight) Carr et al., 1985 

(mysid)               

Siriella armata juveniles 38 ppt NR 5 d 1 µg Cd/L reduced growth (wet weight) Birmelin et al., 1995 

(mysid)               

Gammarus pulex adults FW NR 6 d 20.63 µg Cd/L reduced scope for growth Stuhlbacher and 

(amphipod)             Maltby, 1992 

Litopenaeus vannamei postlarvae 15 ppt 7.15-7.87 7 d 400 µg Cd/L reduced growth (wet weight) Wu and Chen, 2005 

(white shrimp)    14 d 200 µg Cd/L reduced growth (wet weight and  

    28 d 100 µg Cd/L body length)  

Callinectes sapidus juveniles 2.5 ppt NR 21 d 50 µg Cd/L reduced scope for growth Guerin and Stickle, 

(blue crab)             1995 

Callinectes sapidus oocytes 28 ppt NR 4 d 20 µg Cd/L reduced growth (protein and Lee et al., 1996 

(blue crab)           lipovitellin accumulation)   
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Table 1.8, continued. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Rhithropanopeus harrisii larvae 20 ppt 7.6 96 h 0.2 µg Cd
2+

/L reduced growth (dry weight) Thorpe and Costlow, 

(mud crab)             1989 

Chironomus riparius larvae, 98 mg/L 7.6 14 d 150 µg Cd/L delayed development of larvae Pascoe et al., 1989 

(midge) 1
st
 instar     26 d  delayed adult emergence   

Glyptotendipes pallens larvae, 150 mg/L 7.44-8.25 96 h 1000 µg Cd/L reduced growth (dry weight) Heinis et al., 1990 

(midge) 4
th

 instar             

 

NR = not reported 
1
Life stage with which exposure was initiated 

2
Water hardness is given in mg CaCO3/L, salinity in ppt; FW = freshwater (hardness not reported); SW = saltwater (salinity not reported) 

3
Total cadmium concentration unless noted as µg Cd

2+
/L, which refers to the free divalent cadmium ion concentration 
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Table 1.9.  Effects of cadmium on reproduction. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Goniastrea retiformis gametes SW NR 30 m 5000 µg Cd/L reduced fertilization success Reichelt-Brushett and 

(coral)             Harrison, 2005 

Biomphalaria glabrata embryos FW NR 14 d 22.5 µg Cd/L increased time to hatch Salice and Roesijadi, 

(snail)             2002 

Biomphalaria glabrata embryos FW NR > 60 d 2.8 µg Cd/L reduced hatching success and Salice and Miller, 

(snail)      increased fecundity in a wild-bred 2003 

       parasite-resistant strain  

     5.6 µg Cd/L decreased fecundity in a laboratory-  

       bred parasite-susceptible strain  

     11.2 µg Cd/L reduced hatching success in a  

      laboratory-bred parasite-susceptible  

            strain   

Neanthes adults 35 ppt NR 77 d 1.1 µg Cd/L inhibition of egg production Jenkins and Mason, 

arenaceodentata             1988 

(polychaete)        

Daphnia magna neonates 45.3 mg/L 7.74 21 d 0.17 µg Cd/L fewer young per adult Biesinger and 

(cladoceran)             Christensen, 1972 

Daphnia magna neonates 240 mg/L 8.0 14 d 7.5 µg Cd/L fewer young per adult Elnabarawy et al., 

(cladoceran)             1986 

Daphnia magna neonates 150 mg/L 8.4 25 d 0.5 µg Cd/L more neonates per female Bodar et al., 1988b 

(cladoceran)     10 µg Cd/L fewer neonates per female  

          0.5 µg Cd/L reduced offspring size (length)   

Daphnia magna adults FW NR 3-4 d 0.4 µg Cd/L fewer young per brood, decreased Barata and Baird, 2000 

(cladoceran)       (1 instar)   brood mass   
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Table 1.9, continued. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Daphnia magna neonates FW NR 21 d 4 µg Cd/L fewer young per female, fewer young De Coen and Janssen, 

(cladoceran)           per brood 2003 

Daphnia magna adults FW 8.0 14 d 2.2 µg Cd
2+

/L fewer young per female Baillieul et al., 2005 

(cladoceran)               

Daphnia magna adults FW 8.0 14 d 2.8 µg Cd
2+

/L fewer young per female Smolders et al., 2005 

(cladoceran)           (only at high food ration)   

Daphnia magna adults FW 8.0 14 d 2.2 µg Cd
2+

/L fewer young per female Baillieul et al., 2005 

(cladoceran)               

Daphnia magna neonates FW 8.2 72 d (6 3 µg Cd/L more neonates per adult in generations Guan and Wang, 2006 

(cladoceran)    generations)  2 through 5  

Daphnia pulex neonates FW 7.7 24 d 1 µg Cd/L fewer young per adult, fewer young Bertram and Hart, 

(cladoceran)        per brood, fewer broods per adult 1979 

        88 d 10 µg Cd/L reduced percentage of adults   

      producing young  

Daphnia pulex neonates 240 mg/L 8.0 14 d 25 µg Cd/L fewer young per adult Elnabarawy et al., 

(cladoceran)         1986 

Ceriodaphnia reticulata    7 d 0.75 µg Cd/L   

(cladoceran)               

Artemia parthenogenetica nauplii SW NR ~100 d (2 80 µg Cd/L reduced age-specific fecundity, Sarabia et al., 2003 

(brine shrimp)       generations)   shortened pre-reproductive period   

Acartia tonsa adults 17 ppt NR 4 d 40 µg Cd/L fewer eggs produced per unit adult Toudal and Riisgard, 

(copepod)           body mass 1987  

Mysidopsis bahia juveniles 10-27 ppt NR 17 d 6.4 µg Cd/L delayed formation of brood pouches, Nimmo et al., 1977b 

(mysid)           delayed release of young, fewer young   

      per female  
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Table 1.9, continued. 
 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Mysidopsis bahia juveniles 15-25 ppt NR 23 d 6.4 µg Cd/L fewer young per female Nimmo et al., 1978 

(mysid)         10.6 µg Cd/L delayed release of young   

Callinectes sapidus embryos 28 ppt NR 6-8 d 0.1 µg Cd/L reduced hatching success Lee et al., 1996 

(blue crab)               

Anthocidaris crassispina adults 30 ppt NR 28 d 10 µg Cd/L reduced sperm motility (including Au et al., 2000 

(sea urchin)      percentage of motile sperm and  

      percentage of sperm with normal  

       trajectory), delayed cleavage rate in  

      embryo  

     100 µg Cd/L reduced sperm velocity, reduced  

      sperm quality (fertilization success),  

            larger eggs (volume)   

Echinometra mathaei sperm SW NR 60 m 20 µg Cd/L reduced fertilization success Ringwood, 1992b 

(sea urchin)               

Ciona intestinalis gametes 33.3 ppt 8.06 20 h 512 µg Cd/L reduced hatching success Bellas et al., 2004 

(ascidian)               

 
NR = not reported 
1
Life stage with which exposure was initiated 

2
Water hardness is given in mg CaCO3/L, salinity in ppt; FW = freshwater (hardness not reported); SW = saltwater (salinity not reported) 

3
Total cadmium concentration unless noted as µg Cd

2+
/L, which refers to the free divalent cadmium ion concentration 
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Table 1.10.  Effects of cadmium on ingestion rate. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Brotia hainanensis juveniles FW 7.4 4 d 800 µg Cd/L reduced ingestion Lam, 1996 

(snail)               

Hydrobia ulvae juveniles 13 ppt NR 15 m 200 µg Cd/L reduced ingestion Forbes and Depledge, 

(mudsnail)             1992  

Nephelopsis obscura adults FW NR 91 d 50 µg Cd/L reduced ingestion Wicklum and Davies, 

(leech)             1996 

Daphnia magna neonates 150 mg/L 8.4 14 d 5 µg Cd/L reduced ingestion Bodar et al., 1988a 

(cladoceran)               

Daphnia magna adults FW NR 3-4 d 0.4 µg Cd/L reduced ingestion Barata and Baird, 2000 

(cladoceran)       (1 instar)       

Daphnia magna neonates FW 8.2 72 d (6 3 µg Cd/L reduced ingestion in all generations Guan and Wang, 2006 

(cladoceran)    generations)    

Acartia tonsa adults 17 ppt NR 4 d 40 µg Cd/L reduced ingestion Toudal and Riisgard, 

(copepod)             1987 

Leptomysis lingvura adults SW NR 18-27 h 100 µg Cd/L reduced ingestion Gaudy et al., 1991 

(mysid)               

Echinogammarus adults 263 mg/L 7.92 6 d 6.53 µg Cd/L reduced ingestion Pestana et al., 2007 

meridionalis (amphipod)               

Gammarus pulex adults 129 mg/L  7.38 1 d 2.1 µg Cd/L increased ingestion Brown and Pascoe, 

(amphipod)         6.0 µg Cd/L reduced ingestion 1989 

Atyaephyra desmarestii adults 263 mg/L 7.92 6 d 6.53 µg Cd/L reduced ingestion Pestana et al., 2007 

(shrimp)               

Litopenaeus vannamei postlarvae 15 ppt 7.15-7.87 28 d 200 µg Cd/L reduced ingestion Wu and Chen, 2005 

(white shrimp)               
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Table 1.10, continued. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Callinectes sapidus juveniles 2.5 ppt NR 21 d 50 µg Cd/L reduced ingestion Guerin and Stickle, 

(blue crab)             1995 

 
NR = not reported 
1
Life stage with which exposure was initiated 

2
Water hardness is given in mg CaCO3/L, salinity in ppt; FW = freshwater (hardness not reported); SW = saltwater (salinity not reported) 

3
Total cadmium concentration unless noted as µg Cd

2+
/L, which refers to the free divalent cadmium ion concentration 
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Table 1.11.  Other bioenergetic effects of cadmium. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Brotia hainanensis juveniles FW 7.4 4 d 800 µg Cd/L decreased amount of energy Lam, 1996 

(snail)           assimilated   

Nucella lapillus adults 35 ppt NR 20 d 500 µg Cd/L decreased activity (recovery time from Leung et al., 2000 

(dogwhelk)           upside-down posture), increased   

      mucus secretion  

Donax trunculus adults 40 ppt NR 24 h 10000 µg Cd/L decreased rate of ammonia excretion Neuberger-Cywiak et 

(mussel)             al., 2005 

Meretrix casta adults 10-33 ppt NR 4 d 1000 µg Cd/L reduced filtration rate Kumarasamy and 

(clam)           (each salinity tested separately) Karthikeyan, 1999  

Nephelopsis obscura adults FW NR 91 d 50 µg Cd/L decreased activity Wicklum and Davies, 

(leech)       7 d  increased mucus production 1996  

Daphnia magna neonates 150 mg/L 8.4 14 d 5 µg Cd/L decreased amount of energy Bodar et al., 1988a 

(cladoceran)           assimilated   

Daphnia magna juveniles FW NR 48 h 0.4 µg Cd/L reduced lipid reserves De Coen and Janssen, 

(cladoceran)       96 h 4 µg Cd/L  2003 

Daphnia magna adults FW 8.0 14 d 1.1 µg Cd
2+

/L decreased amount of energy Baillieul et al., 2005 

(cladoceran)           assimilated   

Daphnia magna neonates FW 8.2 72 d (6 3 µg Cd/L increased assimilation efficiency in Guan and Wang, 2006 

(cladoceran)    generations)  generations 2 and 3, reduced  

      assimilation efficiency in  

      generation 6  

Leptomysis lingvura adults SW NR 18-27 h 100 µg Cd/L reduced assimilation efficiency, Gaudy et al., 1991 

(mysid)           decreased rate of ammonia excretion   

Mysidopsis bahia juveniles 30 ppt NR 4 d 4 µg Cd/L increased utilization of lipids and Carr et al., 1985 

(mysid)           carbohydrates   
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Table 1.11, continued. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Gammarus pulex adults FW NR 6 d 20.63 µg Cd/L decreased amount of energy Stuhlbacher and 

(amphipod)           assimilated Maltby, 1992 

Hippolyte inermis adults 36 ppt NR immediate 3500 µg Cd/L reduced swimming velocity Untersteiner et al., 

(shrimp)    response     2005 

    1 h 2000 µg Cd/L    

        3 h 1000 µg Cd/L     

Litopenaeus schmitti juveniles 15 ppt 7.15-7.87 24 h 3000 µg Cd/L increased rate of ammonia excretion Wu and Chen, 2004 

(white shrimp)               

Litopenaeus schmitti larvae 36 ppt 8.2 3 h 500 µg Cd/L increased rate of ammonia excretion Barbieri, 2007 

(white shrimp)               

Palaemonetes pugio adults 10 ppt NR 7 d 50 µg Cd/L increased molting frequency Vernberg et al., 1977 

(grass shrimp)               

Palaemonetes pugio adults 15 ppt NR 48 h 560 µg Cd/L decreased activity Hutcheson et al., 1985 

(grass shrimp)               

Rhithropanopeus harrisii larvae 20 ppt 7.6 96 h 0.2 µg Cd
2+

/L inhibition of molting Thorpe and Costlow, 

(mud crab)             1989 

Glyptotendipes pallens larvae, 150 mg/L 7.44-8.25 96 h 2500 µg Cd/L decreased activity Heinis et al., 1990 

(midge) 4
th

 instar             

 
NR = not reported 
1
Life stage with which exposure was initiated 

2
Water hardness is given in mg CaCO3/L, salinity in ppt; FW = freshwater (hardness not reported); SW = saltwater (salinity not reported) 

3
Total cadmium concentration unless noted as µg Cd

2+
/L, which refers to the free divalent cadmium ion concentration 
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Table 1.12.  Effects of cadmium on population growth. 

 

 Initial Water      

 Life Hardness  Duration of Cadmium   

Species Stage
1
 or Salinity

2
 pH Exposure Concentration

3
 Observed Effect Reference 

Biomphalaria glabrata embryos FW NR > 60 d 2.8 µg Cd/L decreased population growth rate in Salice and Miller, 

(snail)      a wild-bred parasite-resistant strain 2003 

     5.6 µg Cd/L decreased population growth rate in  

      a laboratory-bred parasite-susceptible  

            strain   

Aeolosoma headleyi adults 168 mg/L NR 14 d 56 µg Cd/L decreased population growth rate Niederlehner et al., 

(oligochaete)  60 mg/L  12 d 40 µg Cd/L  1984 

Daphnia magna neonates FW NR 21 d 4 µg Cd/L decreased population growth rate De Coen and Janssen, 

(cladoceran)             2003  

Daphnia pulex neonates FW 7.7 27 d 5 µg Cd/L decreased population growth rate Bertram and Hart, 

(cladoceran)             1979  

 
NR = not reported 
1
Life stage with which exposure was initiated 

2
Water hardness is given in mg CaCO3/L, salinity in ppt; FW = freshwater (hardness not reported); SW = saltwater (salinity not reported) 

3
Total cadmium concentration unless noted as µg Cd

2+
/L, which refers to the free divalent cadmium ion concentration 
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CHAPTER 2: 

BIOENERGETIC EFFECTS OF AQUEOUS COPPER AND CADMIUM ON THE 

GRASS SHRIMP, PALAEMONETES PUGIO 

 

Abstract 

 Adult grass shrimp (Palaemonetes pugio) were exposed to either aqueous copper 

(ranging from 7.5 to 41 µg Cu
2+

/L) or cadmium (2.5 to 6.6 µg Cd
2+

/L) for 14 days in 

laboratory experiments to quantify effects on survival and bioenergetic processes, 

including respiration, somatic growth, energy (lipid) storage, and food consumption.  The 

lowest observed effect concentrations for mortality were 41 µg Cu
2+

/L or 6.6 µg Cd
2+

/L, 

expressed as free metal ion concentrations.  Both copper and cadmium caused a decrease 

in respiration rate at concentrations of 7.5 to 41 µg Cu
2+

/L or 6.6 µg Cd
2+

/L.  Exposure to 

copper (≥  27 µg Cu
2+

/L) resulted in negative somatic growth (i.e., weight loss); cadmium 

exposure (6.2 µg Cd
2+

/L) caused a decrease in growth rate, relative to the control, but 

growth remained positive.  Nonpolar lipid content and food consumption were not 

significantly affected by exposure to either copper or cadmium.  Overall, the results 

suggest that both copper and cadmium result in a metabolic depression, decreasing 

energy allocation to both maintenance and production.  

 

Introduction 

 Copper and cadmium are common contaminants in coastal habitats (Wright, 

1986; Hall et al., 1998; Yang and Sañudo-Wilhelmy, 1998; Monbet, 2004; Munari and 

Mistri, 2007).  Sources of copper and cadmium include mine drainage, wastewater from 
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metal smelting, runoff of agricultural fertilizers, and atmospheric fallout from fossil fuel 

combustion and refuse incineration; copper is also released into aquatic environments 

through application of antifouling paint and algicides (WHO, 1992; WHO, 1998).  

Elevated concentrations of copper and cadmium may exert toxic effects on aquatic 

organisms, including crustaceans such as the grass shrimp, Palaemonetes pugio (Burton 

and Fisher, 1990), a common inhabitant of estuaries and coastal systems in eastern North 

America and the Gulf of Mexico. 

 Copper is an essential trace element, functioning as a cofactor for enzymes such 

as oxidases (e.g., cytochrome c), oxygenases, and superoxide dismutase (Stohs and 

Bagchi, 1995; WHO, 1998).  In arthropods, copper is also required as a component of 

hemocyanin, the oxygen-transport molecule circulating in hemolymph.  Bioaccumulation 

of copper is largely dependent upon the concentration of the free divalent cation, Cu
2+

 

(Zamuda and Sunda, 1982), but may also be affected by salinity (Bidwell and Gorrie, 

2006) and temperature (Mubiana and Blust, 2007).  When present at concentrations 

above those that are essential, exposure to copper may result in toxic effects.  For 

example, copper can alter the structure of proteins and DNA by binding at sulfhydryl, 

carboxylate, and imidazole sites, impairing protein function and causing DNA to be 

misread (WHO, 1998).  Copper also serves as a catalyst for the production of reactive 

oxygen species, resulting in peroxidation of lipids, DNA and organelle damage, and ATP 

depletion (Stohs and Bagchi, 1995; WHO, 1998). 

 In contrast, cadmium is not an essential element, having no known biological 

function.  The bioavailable form of cadmium is the free divalent cation, Cd
2+

 (Sunda et 

al., 1978), but bioaccumulation may also be influenced by salinity (De Lisle and Roberts, 
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1988), temperature (Mubiana and Blust, 2007), and calcium concentration (De Lisle and 

Roberts, 1994).  Cadmium may exert toxic effects by binding to proteins and DNA at 

sulfhydryl, sulfate, and carbonyl sites (Furst et al., 1998).  Cadmium inhibits calcium 

uptake and calcium channels by competing with calcium for binding sites (Furst et al., 

1998; Strydom et al., 2006).  Cadmium can also inhibit DNA repair (Furst et al., 1998) 

and cause lipid peroxidation (Stohs and Bagchi, 1995).  

 Exposure to toxic chemicals often results in bioenergetic consequences (e.g., 

Rowe et al., 1998; Rowe et al., 2001).  A basic bioenergetic budget for an animal can be 

expressed as  

C = P + R + E 

where C is energy consumed, P represents energy invested in production (including 

somatic growth, reproduction, energy storage, secretions, and eliminated tissues), R is 

respiratory expenditure (i.e., metabolic rate), and E is energy loss to excretion and 

egestion.  Toxic stress can induce energetic costs, which alter allocation of energy among 

these bioenergetic pathways (Calow, 1991).  Such costs can originate from active 

transport and excretion of chemicals (e.g., Rainbow and White, 1989), synthesis of 

proteins to metabolize or form complexes with toxins (i.e., enzymes or protective 

proteins; e.g., Howard and Hacker, 1990), increased mucus secretion (e.g., Leung et al., 

2000), and repair of damaged tissue (e.g., Soegianto et al., 1999a; Calow, 1991).  Protein 

synthesis is particularly costly (Hawkins, 1991; Hawkins and Day, 1996), and both 

copper and cadmium are known to induce production of metal-binding proteins, such as 

metallothioneins, which serve to regulate free concentrations of essential metals and 

sequester nonessential metals to protect against toxic effects (Roesijadi, 1992).  Heat 
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shock proteins, which stabilize or repair proteins damaged by contaminant exposure, can 

also be induced in response to cadmium exposure (Stohs and Bagchi, 1995).  Regardless 

of the specific mechanism by which they originate, metabolic costs resulting from 

exposure to metals may modify energy budgets, compromising growth, reproduction, 

and/or energy storage by individuals.  Direct effects of copper and cadmium on metabolic 

rates and production pathways have been reported in many aquatic invertebrates (e.g., 

Wu and Chen, 2004; Munari and Mistri, 2007). 

 In the present study, I investigated the bioenergetic effects of chronic (14-day) 

exposure to aqueous copper and cadmium on adult P. pugio.  To quantify effects on 

allocation among energetic pathways, I measured effects on respiration rate, somatic 

growth, food consumption, and energy (lipid) storage.  I hypothesized that toxic effects 

would alter metabolic processes and/or food consumption, ultimately detracting from 

energy investment in production. 

 

Methods 

Test Species 

 The grass shrimp, Palaemonetes pugio is an estuarine, epibenthic, decapod 

crustacean with a wide distribution along the Atlantic and Gulf coasts of North America 

(Gosner, 1971; Anderson, 1985).  Found in the littoral zone to a depth of 9 m (Gosner, 

1971), P. pugio is an omnivore, consuming detritus, algae, and small invertebrates 

(Anderson, 1985).  Palaemonetes pugio is an important prey item for many fish species 

(Clark et al., 2003), thereby providing a key link between the benthic and pelagic 

portions of the food web.  Furthermore, the grass shrimp has been used as a model 
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aquatic invertebrate test species in toxicological studies, largely due to its tolerance of 

handling stress and a broad range of environmental conditions (e.g., salinity and 

temperature). 

Exposure Conditions 

 Adult P. pugio were collected from the lower and middle Patuxent River, 

Maryland, USA, and were maintained in flow-through laboratory tanks, receiving 

ambient water from the lower Patuxent River, until experiments were initiated.  

Exposures were conducted in the laboratory in 38-L tanks, containing 20 L of artificial 

seawater.  Tanks were arranged on shelves in a temperature-controlled room, maintaining 

a constant water temperature of 25 °C.  Municipal water, filtered by reverse osmosis 

(RO), was mixed with Instant Ocean sea salt (Aquarium Systems, Mentor, OH) to a 

salinity of 10 ppt.  The pH was adjusted to approximately 8 by adding 20% HCl.  The 

light regime was 16 hours light: 8 hours dark.  Before exposures began, P. pugio were 

acclimated to the temperature and salinity used during exposures for at least 21 hours.  

 For each experiment, P. pugio were exposed to either copper or cadmium.  One 

copper and two cadmium experiments were conducted.  The cadmium experiments were 

performed twice due to slight temperature fluctuations during the initial experiment, 

which appeared to affect shrimp growth.  The experimental design was a randomized 

complete block design with four treatment levels per experiment (three different 

concentrations of metal and a control), replicated four times.  For the copper experiment, 

the treatments are referred to as Cu0, Cu1, Cu2, and Cu3, and for the cadmium 

experiments, as Cd0, Cd1, Cd2, and Cd3, where “0” is the control and the concentration 

of metal increases from “1” to “3”.  Tanks were arranged in two blocks defined by shelf 
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height, due to possible temperature variations between shelves.  Each block contained 

two replicates of each treatment.  Sets of replicates were staggered in time (no more than 

3 days apart) for logistical purposes. 

 Copper and cadmium were added to exposure water as metal chlorides; controls 

contained no added metals.  To buffer the free metal ion concentration, NTA 

(nitrilotriacetic acid) was added at 5 x 10
-5

 M (Perrin and Dempsey, 1974).  The target 

free metal ion concentrations ranged from 24 to 47 µg Cu
2+

/L for copper and from 2.2 to  

5.6 µg Cd
2+

/L for cadmium (Table 2.1).  The concentrations of metal chlorides necessary 

to achieve target free ion concentrations were estimated using the chemical equilibrium 

program MINEQL+ v. 4.5 (Environmental Research Software, Hallowell, ME), assuming 

a constant composition of Instant Ocean in exposure water (Atkinson and Bingman, 

1988). 

 Experiments were initiated with 20 adult P. pugio per tank, with the exception of 

the second cadmium experiment, which began with 15 individuals per tank.  The volume 

of water was also reduced to 15 L for the second cadmium experiment.  Average mass of 

individual shrimp at the initiation of exposure was 155 mg per individual for the copper 

experiment and 105 and 127 mg for the first and second cadmium experiments, 

respectively.  The duration of each experiment was 14 days.  A complete water change 

was performed after the first seven days, during which exposure conditions were 

maintained by transferring test organisms to temporary holding chambers containing 

exposure water. Water lost due to evaporation was replaced with RO water every other 

day to reduce variation in salinity and metal concentrations.  During exposures, shrimp 

were fed a ration of coarsely ground dry food, consisting of a 1:1 mixture of Wardley 
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Shrimp Pellets (Secaucus, NJ) and Wardley Pond Ten Floating Fish Stix.  The ration was 

0.2 g (dry weight) food per g (wet weight) shrimp every two days, based on the initial 

average weight per shrimp and accounting for mortality during the exposure period.  The 

ration was previously determined to be sufficient to promote growth (personal 

observation).   

Bioenergetic Measurements 

 Somatic growth rate was measured as the change in average wet weight per 

individual over the 14-day exposure; average wet weight was calculated as the total 

weight of shrimp in each tank, divided by the number of individuals.  Respiration was 

measured as oxygen consumption rate at the end of the exposure, using a computer-

controlled Micro OxyMax respirometer (Columbus Instruments, Columbus, OH).  The 

methodology is described in detail by Rowe et al. (2001) and only summarized here.  

Briefly, individuals used for respiration measurements were removed from their tanks 

after 13 days of exposure and held unfed (under exposure conditions) for one day to 

avoid postprandial elevations in respiration rate.  Oxygen consumption was measured for 

three shrimp per replicate, each in an individual 100-mL glass respiratory chamber 

containing 60 mL of exposure water.  The chambers were maintained in the dark at  

25 °C.  The oxygen concentration in the overlying headspace was measured every two 

hours for a total of ~16 hours, resulting in eight measurements per individual.  An empty 

chamber was used as a blank.  A reference standard, consisting of an 8.4 V battery 

(DA146 Procell zinc air medical battery, Duracell, Bethel, CT) in a separate chamber, 

was used to monitor performance of the oxygen sensor. 
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 Energy storage was measured as total nonpolar lipid content, quantified 

gravimetrically by Soxhlet extraction (Sawicka-Kapusta, 1975).  At the end of each 

exposure, tissue samples were preserved at -80 °C for subsequent analysis.  Each sample, 

consisting of a group of three shrimp per tank, was freeze-dried, crushed, extracted with 

boiling petroleum ether for approximately seven hours, and re-dried.  Lipid content was 

calculated as the change in dry weight resulting from the extraction. 

 Food consumption was measured at the end of the exposures.  Three shrimp per 

tank (if available) were fed canned chopped clams (Snow’s/Doxsee, Cape May, NJ) for 

16 hours in 2 L of exposure water at 25 °C.  Clams had previously been allowed to 

equilibrate osmotically with exposure water for ~20 hours.  Consumption was measured 

as the change in wet weight of food over the test period.  Food consumption was not 

measured in the first cadmium experiment because there were not enough surviving 

individuals at the end of the exposure to perform all of the bioenergetic measurements. 

 Due to minor temperature fluctuations (1-2 °C) during the first cadmium 

experiment, the growth data were considered unreliable, given that they were closely 

correlated with temperature.  Survival and respiration rate are reported for the first 

experiment, because survival did not appear to be affected by the small temperature 

fluctuations and respiration rate was measured in a temperature-controlled incubator after 

the exposure ended.  The cadmium experiment was repeated on a smaller scale to provide 

data for growth under conditions in which temperature was less variable.  Respiration 

was not measured in the second cadmium experiment because the measurements from the 

first cadmium experiment were deemed to be acceptable; instead of respiration, food 

consumption was measured in the second cadmium experiment. 
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Chemical Analyses 

 Water samples were collected at the initiation of the exposures and immediately 

after water changes to ascertain whether target metal concentrations were achieved.  

Samples were also taken before water changes and at the termination of exposure to 

assess the change in metal concentrations during the exposure period.  Water was filtered 

through a 0.22-µm nitrocellulose membrane, acidified to pH < 2 with HNO3, diluted 1:10 

to reduce saltwater interference, and analyzed for copper and cadmium using an HP4500 

(Agilent, formerly Hewlett-Packard, Santa Clara, CA) inductively coupled plasma mass 

spectrometer (ICP-MS).  Free metal ion  concentrations were calculated using MINEQL+ 

v. 4.5 software (Environmental Research Software, Hallowell, ME). 

 Bioaccumulation of metals was quantified at the end of the exposure.  Shrimp  

(3-14 per tank, as available) were depurated for three hours in control seawater and 

frozen at -80 °C for later analysis.  Samples were subsequently freeze-dried, crushed, and 

a subsample (~100 mg) of the homogenized sample was digested with 2 mL concentrated 

HNO3 at 60 °C overnight.  After digestion, the sample was diluted and analyzed for 

copper or cadmium by ICP-MS. 

Statistical Analysis 

 Comparisons among treatments were made using the General Linear Model 

(GLM) routine in Minitab v. 13.31 statistical software (Minitab Inc., State College, PA).  

Data from each experiment were analyzed separately.  Data were tested for normality and 

homogeneity of variance and were transformed as necessary.  Experimental block (shelf 

height) was included as a factor in all models, except the analysis of metal concentrations 

in exposure water.  In GLMs that included block as a factor, the maximum number of 
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degrees of freedom for error was 11.  Block was significant in only one statistical test, the 

GLM which analyzed effects on growth in the copper experiment (F1,11 = 5.8; P = 0.035), 

suggesting that subtle temperature differences between blocks influenced growth rate.  

An a priori Type I error rate (α) of 0.05 was used to assess significance of all tests.  The 

Tukey method of pairwise comparisons was employed for all analyses to identify specific 

treatments that differed.  Correlations between variables were analyzed using Pearson’s 

product moment correlation coefficient (r). 

 Growth was calculated as the percent change in wet weight ([final-initial]/initial) 

during the exposure period.  During the second cadmium experiment, the tanks nearest to 

the door were found to be slightly cooler (~24 °C) than the other tanks (~25 °C); the 

cooler tanks were removed from data analysis because growth of P. pugio was found to 

be strongly correlated with temperature in the first cadmium experiment. 

 The rate of oxygen consumption corresponding to the standard metabolic rate (the 

metabolic rate of a post-absorptive organism at rest) was calculated for each individual 

by taking the lower quartile of the measurements for that individual (Rowe, 2002), 

adjusted for the blank.  The lower quartile was calculated as the mean between the 

second-lowest and third-lowest of the eight measurements for a given individual.  Use of 

the lower quartile rather than the average was intended to exclude observations that were 

elevated due to periods of activity (Rowe, 2002).  Oxygen consumption for each 

individual was corrected for mass by dividing the rate of oxygen consumption  

(µL O2/min) by the individual’s wet weight, raised to an empirically-derived allometric 

exponent (Packard and Boardman, 1987; Manyin and Rowe, 2006).  The rate of oxygen 

consumption for each replicate was calculated by averaging the mass-corrected values 
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from the three shrimp for that replicate.  Oxygen consumption is reported on a per gram 

basis (µL O2/min·g) for ease of interpretation and comparison with previously reported 

values. 

 Food consumption data were analyzed using a GLM with shrimp mass as a 

covariate (Beaupre and Dunham, 1995).  Lipid content, expressed as % dry weight, was 

analyzed by a GLM.  Bioenergetic measurements were converted to units of energy 

(Joules) using the mathematical relationships and bioenergetic constants for P. pugio 

defined in Vernberg and Piyatiratitivorakul (1998), including the relationship between  

wet weight and dry weight of tissue, the oxycaloric coefficient for metabolic rate  

(0.0203 J/µL O2), and average caloric value of grass shrimp (17.06 J/ mg dry weight). 

 

Results 

Metal Concentrations in Water and Shrimp Tissue 

 Concentrations of metals in exposure water are shown in Table 2.1.  In the 

cadmium experiments, all treatment levels were significantly different (1
st
 Cd 

experiment: F3,12 = 3.4 x 10
3
, P < 0.001; 2

nd
 Cd experiment: F3,12 = 3.1 x 10

4
, P < 0.001).  

There were only slight differences in cadmium concentrations between the two cadmium 

experiments.  During the course of the experiments, free cadmium ion concentration 

decreased an average of 23% between water changes.  In the copper experiment, 

variation in metal data was higher than in the cadmium experiment, possibly due to 

saltwater interference with copper detection during the ICP-MS analysis.  There was an 

overall difference in free copper ion concentrations (F3,12 = 13.5, P < 0.001) among 

treatment levels, but not all pairwise comparisons were statistically significant  
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(Table 2.1).  Loss of free copper ion between water changes was impossible to estimate 

precisely due to high variability in measured concentrations. 

 Concentrations of copper and cadmium in shrimp tissue varied among treatment 

levels (Table 2.1; Cu: F3,11 = 42.3, P < 0.001 1
st
 Cd experiment: F3,11 = 63.4, P < 0.001; 

2
nd

 Cd experiment: F3,11 = 56.2, P < 0.001;).  Bioaccumulation of metals was closely 

correlated with free metal ion concentration in exposure water (Cu: r = 0.71, P = 0.002; 

1
st
 Cd experiment: r = 0.93, P < 0.001; 2

nd
 Cd experiment: r = 0.95, P < 0.001).  During 

the second cadmium experiment, bioaccumulation of cadmium at each treatment level 

was slightly lower than in the first cadmium experiment, although aqueous cadmium 

concentrations were quite similar (Table 2.1). 

Survival and Bioenergetics 

 Exposure to copper significantly affected survival of P. pugio (F3,11 = 5.8,  

P = 0.013).  A significant reduction in survival was observed only at the highest copper 

concentration, yet average survival for this treatment still exceeded 65% (Fig. 2.1).  

Significant lethal effects were also observed in the first cadmium experiment  

(F3,11 = 4.6, P = 0.025); mortality was significant only at the highest cadmium 

concentration, at which survival averaged 64%.  In the second cadmium experiment, 

cadmium exposure did not reduce survival relative to the control (F3,11 = 2.5, P = 0.117).  

In those experiments where survival was significantly affected by metal exposure, 

survival was inversely correlated with metal bioaccumulation (Cu: r = -0.59, P = 0.017; 

1
st
 Cd experiment: r = -0.70, P = 0.002; 2

nd
 Cd experiment: r = -0.30, P = 0.267). 

 Copper and cadmium each resulted in a decrease in oxygen consumption  

(Fig. 2.2; Cu: F3,11 = 6.3, P = 0.010, Cd: F3,11 = 3.7, P = 0.045).  The decline in respiration 
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was approximately equal in all copper-exposed shrimp, regardless of exposure 

concentration.  In contrast, a stepwise decrease was observed as cadmium concentration 

increased. 

 Somatic growth rate was significantly affected by exposure to copper (Fig. 2.3;  

F3,11 = 12.4, P = 0.001); all copper treatment levels resulted in a negative average growth 

rate (i.e., weight loss).  Growth rates at the Cu2 and Cu3 treatment levels were 

significantly different from the control.  At the highest copper concentration, shrimp lost 

weight at a rate twice as great as the rate of weight gain in control shrimp.  Cadmium 

exposure resulted in a decrease in growth rate relative to the control (F3,7 = 4.6,  

P = 0.044), but the average growth rate was positive, even at the highest cadmium 

concentration (Fig. 2.3). 

 The rate of food consumption was not significantly affected by either copper or 

cadmium exposure (Fig. 2.4; Cu: F3,8 = 3.4, P = 0.075; Cd: F3,10 = 0.3, P = 0.843).  

Neither copper nor cadmium exposure affected nonpolar lipid content of shrimp tissue 

(Cu: F3,11 = 1.1, P = 0.410; 1
st
 Cd experiment: F3,11 = 0.2, P = 0.865, 2

nd
 Cd experiment: 

F3,11 = 1.0, P = 0.413).  Lipid content averaged 2-3% of dry body weight regardless of 

treatment level (Table 2.1). 

 Energetic investments in growth and respiration are shown in Fig. 2.5.  

Respiration comprised a considerably larger portion of the shrimp’s energy budget than 

growth.  The sum of growth and respiration, an approximation of energy assimilated from 

food, decreased as the concentration of copper or cadmium increased. 
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Discussion 

 Exposure to copper and cadmium resulted in a decrease in energy allocation to 

both maintenance and production pathways.  Both metals resulted in a decrease in oxygen 

consumption of P. pugio, indicating a reduction in standard metabolic rate.  The 

cadmium-induced decline in respiration was concentration-dependent, whereas the 

effects of copper appeared to be independent of exposure concentration.  A decline in 

respiration is consistent with numerous studies that have demonstrated a significant 

decrease in oxygen consumption of aquatic invertebrates exposed to copper (e.g., Mytilus 

edulis [Brown and Newell, 1972], Farfantepenaeus paulensis [Santos et al., 2000]) or 

cadmium (e.g., Nucella lapillus [Leung et al., 2000], Litopenaeus schmitti [Barbieri, 

2007]).  Less frequently, an increase in oxygen consumption has been observed in 

response to copper (e.g., Cu: Gammarus pulex [Kedwards et al., 1996], Tapes 

philippinarum [Munari and Mistri, 2007]) or cadmium exposure (e.g., Homarus 

americanus [Thurberg et al., 1977], Meretrix casta [Kumarasamy and Karthikeyan, 

1999]). 

 The declines in respiration that I observed may reflect effects of copper and 

cadmium at tissue, cellular, and biochemical levels.  Gill necrosis, which would directly 

inhibit oxygen consumption, has been observed in crustaceans exposed to copper 

(Carcinus maenas [Nonnette et al., 1993], Penaeus japonicus [Soegianto et al., 1999a]) 

or cadmium (Penaeus duorarum and Palaemonetes vulgaris [Nimmo et al., 1977a],  

P. japonicus [Soegianto et al., 1999b]).  Cadmium has also been shown to decrease the 

number of mitochondria per unit cell volume in Anodonta cygnea (Hemelraad et al., 

1990) and Crassostrea virginica (Cherkasov et al., 2006), leading to a reduction in the 
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capacity for aerobic respiration.  Furthermore, copper and cadmium can inhibit enzymes 

involved in metabolic pathways, including glycolysis (both Cu and Cd), the Krebs cycle 

(Cd), gluconeogenesis (Cd), and oxidative phosphorylation (Cd; Furst et al., 1998; 

Strydom et al., 2006), potentially resulting in a decline in oxygen consumption.  It is 

unknown which of these processes, if any, were responsible for the metal-induced decline 

in respiration that I observed.  Regardless of the mechanism(s) responsible, the 

expression of toxic effects as reduced respiration rate suggests that copper and cadmium 

altered energy allocation to metabolic processes required for maintenance and survival.  

 Growth of P. pugio exhibited a concentration-dependent decrease during exposure 

to either copper or cadmium.  Copper effects were more severe, resulting in a weight loss 

of 11% at the highest concentration.  A decline in somatic growth rate is consistent with 

many previous studies that have reported a decline in growth in response to copper (e.g., 

Perna viridis [Sze and Lee, 2000], Penaeus monodon [Chen and Lin, 2001]) or cadmium 

exposure (e.g., Hydrobia ventrosa [Forbes, 1991], Litopenaeus vannamei [Wu and Chen, 

2005]).  A decrease in growth suggests a reduction in energy allocation to the production 

pathway, which also supports reproduction and energy storage.  Although reproduction 

did not occur during the current study (in either control or exposed P. pugio), copper and 

cadmium have been shown to reduce reproduction in several aquatic species (e.g., Cu: 

Gammarus pseudolimnaeus [Arthur and Leonard, 1970], Bosmina longirostris [Koivisto 

and Ketola, 1995]; Cd: Daphnia magna, D. pulex, and Ceriodaphnia reticulata 

[Elnabarawy et al., 1986], P. pugio [Manyin and Rowe, 2008]), which may reflect 

reduced allocation to the production pathway as a whole. 
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 Neither copper nor cadmium had a significant effect on nonpolar lipid content, an 

estimate of energy storage, in P. pugio.  Lipid content averaged 2-3% of dry tissue mass 

regardless of treatment, as compared to 7-15% in field-collected shrimp during late 

spring, when resources are very abundant (Rowe, unpublished data).  The low lipid 

content in the laboratory individuals, as compared to field-collected individuals, is likely 

due to a comparatively limited food supply in the former, precluding large investments in 

energy stores even under control conditions.  However, cadmium has been found to 

significantly reduce lipid stores in D. magna (De Coen and Janssen, 2003) and copper has 

been observed to increase lipid metabolism in Potamonautes warreni (Vosloo et al., 

2002).  Therefore, both copper and cadmium appear to be capable of reducing energy 

storage as lipids in some situations, although I did not observe such an effect. 

 Neither copper nor cadmium exposure affected the rate of food consumption by 

P. pugio, although both metals have been shown to reduce ingestion rates in other 

crustaceans (e.g., Cu: F. paulensis [Santos et al., 2000], D. magna [Knops et al., 2001]; 

Cd: Callinectes sapidus [Guerin and Stickle, 1995], L. vannamei [Wu and Chen, 2005]).  

It is possible that the metal concentrations used in the current study were not great 

enough to elicit an effect on consumption or that the effects of copper and cadmium are 

species-specific. 

 Bioaccumulation of copper and cadmium by P. pugio was proportional to the free 

ion concentration in the exposure water.  Furthermore, in the experiments where metal 

exposure significantly affected survival, mortality was correlated with metal 

accumulation.  In the first cadmium experiment, bioaccumulation was greater than in the 

second experiment, possibly due to differences in shrimp size; shrimp used in the first 
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experiment were smaller in mass.  Bioaccumulation of metals can be related to body 

mass by a power function (Boyden, 1974), similar to functions relating metabolic 

processes with mass, causing smaller organisms to have higher concentrations of metals 

than larger organisms of the same species (Cubadda et al., 2001; Bjerregaard and 

Depledge, 2002).  Consequently, accumulation of cadmium could have been 

disproportionately higher in the smaller shrimp, potentially accounting for higher 

mortality observed in the first cadmium experiment.  Cadmium exposure did not cause 

significant mortality in the second experiment, corresponding with lower metal 

bioaccumulation. 

 When respiration and growth are examined with respect to energy use or 

investment (Fig. 2.5), it is apparent that respiration comprises a much larger portion of  

P. pugio’s energy budget than does growth, as was also demonstrated in an energy budget 

developed for P. pugio by Vernberg and Piyatiratitivorakul (1998).  Assuming that 

energy allocated to other bioenergetic pathways, such as activity and reproduction, is 

minimal (e.g., shrimp were not reproductive during exposures), the amount of energy 

assimilated from food can be estimated by respiration plus growth (R+G, Fig. 2.5).  Both 

copper and cadmium exposures resulted in a concentration-dependent decrease in R+G, 

reflecting a decline in the energy allocated to both metabolic and production pathways.  

Neither copper nor cadmium affected food consumption; therefore the dose-dependent 

decrease in R+G suggests that metal exposure may have caused a decrease in assimilation 

efficiency, as was reported for Tapes philippinarum exposed to copper (Munari and 

Mistri, 2007) and for Leptomysis lingvura exposed to cadmium (Gaudy et al., 1991). 
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Conclusion 

 Exposure of P. pugio to either copper or cadmium resulted in a significant 

decrease in respiration rate and growth.  Both metals caused an overall metabolic 

depression, which reduced the amount of energy allocated to all bioenergetic pathways.  

A similar metabolic depression has been reported for copper in P. viridis (Sze and Lee, 

2000) and for cadmium in N. lapillus (Leung et al., 2000).  Due to P. pugio’s ecological 

importance in estuarine systems, a metal-induced metabolic depression could ultimately 

affect the efficiency of energy flow through benthic and epibenthic communities in 

contaminated habitats. 
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Table 2.1. Chemistry data from 14-day exposures (means, SE in parentheses): dissolved 

free metal ion concentrations in exposure water (µg/L), metal concentrations in shrimp 

tissue (µg/g dry weight), and lipid content in shrimp tissue (% dry weight).  Free metal 

ion concentration was calculated from the measured total metal concentration using the 

chemical equilibrium program MINEQL+ v. 4.5 (Environmental Research Software, 

Hallowell, ME).  Different superscript letters indicate significant differences among 

treatments within a given experiment.  M = metal used in experiment (Cu or Cd). 

  Target Measured Tissue Tissue 

 Treatment [M
2+

] (aq) [M
2+

](aq) [M] [Lipids] 

Cu Experiment Cu0 0 < 0.01
a
 148.37

a
 1.93 

   (< 0.01) (10.89) (0.14) 

 Cu1 24 7.54
ab

 286.65
b
 1.70 

   (2.15) (10.89) (0.10) 

 Cu2 35 27.03
bc

 327.95
b
 1.67 

   (8.61) (19.96) (0.17) 

 Cu3 47 41.29
c
 440.60

c
 1.99 

     (5.04) (25.95) (0.19) 

First Cd Cd0 0 0.07
a
 1.19

a
 2.98 

Experiment   (< 0.01) (0.11) (0.12) 

 Cd1 2.2 2.48
b
 42.06

b
 3.30 

   (0.03) (3.86) (0.42) 

 Cd2 3.9 4.65
c
 64.06

c
 3.02 

   (0.04) (5.42) (0.37) 

 Cd3 5.6 6.55
d
 67.52

c
 2.98 

     (0.08) (3.15) (0.19) 

Second Cd Cd0 0 0.07
a
 0.90

a
 2.17 

Experiment   (< 0.01) (0.12) (0.14) 

 Cd1 2.2 2.55
b
 28.99

b
 1.80 

   (0.01) (2.70) (0.19) 

 Cd2 3.9 4.49
c
 37.17

b
 1.79 

   (0.02) (2.15) (0.19) 

 Cd3 5.6 6.17
d
 52.02

c
 2.01 

   (0.02) (4.55) (0.16) 
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Fig. 2.1.  Survival of P. pugio after 14 days of exposure to either copper or cadmium.  

Treatments are denoted by the metal used in the exposure (Cu or Cd) and a number 

ranging from 0 to 3, where 0 indicates the control and 3 is the highest metal 

concentration.  Actual copper and cadmium concentrations are provided in Table 2.1.  

Different letters above bars represent significant differences.  There were no significant 

effects on survival in the second cadmium experiment. 
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Fig. 2.2.  Respiration (standard metabolic rate) of P. pugio after a 14-day exposure to 

either copper or cadmium, expressed as oxygen consumption (µL/min) per g (wet weight) 

shrimp tissue.  Copper and cadmium exposure concentrations are provided in Table 2.1.  

Different letters above bars represent significant differences. 
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Fig. 2.3.  Somatic growth (% change in wet weight) of P. pugio during a 14-day exposure 

to either copper or cadmium.  Copper and cadmium exposure concentrations are provided 

in Table 2.1.  Different letters above bars represent significant differences.
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Fig. 2.4.  Consumption of food (mg [wet weight] clams per g [wet weight] shrimp) over 

16 hours after a 14-day exposure to either copper or cadmium.  Copper and cadmium 

exposure concentrations are provided in Table 2.1.  There were no significant differences 

among treatments.   
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Fig. 2.5.  Energetic values for somatic growth (G, dark grey background) and respiration 

(R, light grey background).  Bioenergetic parameters have been converted to their daily 

energetic equivalents per gram (wet weight) of shrimp tissue.  The cross-hatched portion 

represents G + R, which is an approximation of the energy assimilated from food.  The 

area of R that is not cross-hatched is energy derived from the loss of somatic tissue.  

Copper and cadmium exposure concentrations are provided in Table 2.1.   
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CHAPTER 3: 

MODELING EFFECTS OF CADMIUM ON POPULATION GROWTH OF 

PALAEMONETES PUGIO: RESULTS OF A FULL LIFE CYCLE EXPOSURE
1
 

 

Abstract 

 In an eight-month laboratory experiment, Palaemonetes pugio (grass shrimp) 

were exposed to aqueous cadmium (free cadmium ion concentrations of 1.51 or  

2.51 µg Cd
2+

/L) for an entire life cycle, from larva to reproductive adult and through to 

production of second-generation larva.  Individual-level effects on survival, life stage 

duration, and reproduction were measured, and population growth was projected using 

two models: a stage-based matrix model and a z-transformed life cycle graph analysis.  

Adult survival was significantly reduced at 2.51 µg Cd
2+

/L, but cadmium exposure had 

no effect on survival or stage duration of embryos, larvae, or juveniles.  Survival of 

second-generation larvae was unaffected by maternal exposure.  Brood size was reduced 

by 27% at 1.51 µg Cd
2+

/L and by 36% at 2.51 µg Cd
2+

/L.  The percent of females in the 

population that was gravid was approximately 50% lower at 2.51 µg Cd
2+

/L, compared to 

controls.  Both population models projected a dose-dependent decrease in population 

growth rate (λ), up to a 12% reduction at 2.51 µg Cd
2+

/L, which can be attributed mainly 

to contributions from reproductive effects.  Elasticity analysis revealed that population 

growth rate was most sensitive to changes in survival of juveniles and adults.  However, 

lethal effects of cadmium made only a small contribution to the effect on population 

growth rate.  Even though both models project positive growth (λ > 1) of grass shrimp 

                                                 
1
 This chapter has been published with the following citation: Manyin, T., Rowe, C.L., 2008. Modeling 

effects of cadmium on population growth of Palaemonetes pugio: results of a full life cycle exposure. 

Aquat. Toxicol. 88, 111-120. 
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populations exposed to low concentrations of cadmium, the ability of populations to 

withstand predation pressure would be compromised. 

 

Introduction 

 Mathematical modeling is a valuable tool for the prediction of population-level 

effects resulting from chronic exposure to sublethal concentrations of contaminants (e.g., 

Daniels and Allan, 1981; Munns et al., 1997; Hansen et al., 1999; Salice and Miller, 

2003; Raimondo and McKenney, 2006).  Population growth rate has been frequently used 

as a measure of population performance (Caswell, 1996), and is believed to be a more 

appropriate measure of toxicological effects than individual-level responses, because it 

integrates the interactions among individual-level effects into a single measure of 

ecological impact (Forbes and Calow, 1999).  Species with complex life cycles will often 

exhibit stage-specific responses to contaminants (e.g., McGee et al., 1993; Munns et al., 

1997; Jensen et al., 2001).  Effects on each life stage must be considered, in concert, to 

obtain an accurate projection of chronic effects at the population level.  Population 

modeling allows the integration of individual-level effects on each life stage to project 

chronic effects at the population level. 

 Cadmium is a relatively rare, naturally occurring element that is not biologically 

essential.  Cadmium serves many technological uses, such as in the protective plating of 

steel, as a stabilizer for polyvinyl chloride, and as electrode material in nickel-cadmium 

batteries (WHO, 1992).  Concentrations of cadmium in coastal habitats are often elevated 

due to nearby human activities (e.g., Hall et al., 1998; Yang and Sañudo-Wilhelmy, 1998; 

Chiffoleau et al., 2001).  Aquatic sources of cadmium include drainage from metal mines 
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and smelters, runoff of agricultural fertilizers, and atmospheric fallout of byproducts from 

combustion of fossil fuels and refuse incineration (WHO, 1992).   

 Although cadmium is not an essential element, organisms may accumulate it via 

pathways used for calcium uptake (Wright, 1995).  The bioavailable, toxic form of 

cadmium is generally accepted to be the divalent free metal ion, Cd
2+

 (e.g., Sunda et al., 

1978), but salinity and calcium concentration may also influence cadmium toxicity 

(Wright and Frain, 1981; De Lisle and Roberts, 1988).  General mechanisms of cadmium 

toxicity include binding to proteins and DNA at sulfhydryl, sulfate, and carbonyl sites 

(Furst et al., 1998), resulting in the impairment of protein and DNA function, and leading 

to wide-ranging physiological effects.  Cadmium can also inhibit calcium uptake and 

calcium channels, inhibit DNA repair, and cause lipid peroxidation (Stohs and Bagchi, 

1995; Furst et al., 1998; Strydom et al., 2006).  Sublethal effects of cadmium on 

population growth rate have been described in various species of aquatic invertebrates, 

including Daphnia magna (Van Leeuwen et al., 1987), Potamopyrgus antipodarum 

(Jensen et al., 2001), Moinodaphnia macleayi (Barata et al., 2002), and Biomphalaria 

glabrata (Salice and Miller, 2003). 

 Palaemonetes pugio is an abundant and widely distributed estuarine inhabitant of 

the Atlantic and Gulf coasts of the United States (Gosner, 1971; Anderson, 1985), where 

it serves as an important prey item for numerous fish species, including commercially 

important species (Wood, 1967).  The life cycle of P. pugio consists of four stages: 

embryo, larva, juvenile, and adult.  Embryos are carried in an external brood pouch by 

the adult female until they hatch and larvae are released.  Larvae pass through seven or 

eight sub-stages (Little, 1968) prior to metamorphosis to the juvenile life stage, when 
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they become morphologically similar to adults.  Individuals are defined as adults once 

they reach sexual maturity.  Under optimal conditions in the laboratory, embryos can 

mature to adulthood within four months (Wood, 1967; Little, 1968).  Sexually mature 

females may produce a total of four to six broods per year in the laboratory (Poole, 

1987); in Texas, near the southern end of its range, P. pugio was found to have two peak 

spawning seasons per year (Wood, 1967).  The lifespan of P. pugio may be as long as 

two years in the wild (Poole, 1987), but is often much shorter due to intense predation 

pressures by fish (Nixon and Oviatt, 1973; Clark et al., 2003). 

 In this study, P. pugio were exposed to cadmium for an entire life cycle, allowing 

me to quantify effects on all life stages.  Exposures were conducted for eight months, 

starting with freshly hatched larvae and continuing through to production of second-

generation larvae.  Effects of cadmium on survival and duration of each life stage were 

measured.  Reproduction was measured as fecundity and frequency of broods.  Two types 

of models were applied to the individual-level data to project population-level effects of 

cadmium on P. pugio: a stage-based matrix model and a z-transformed life cycle graph 

analysis (Caswell, 2001).  Each model provides an independent estimate of population 

growth rate (λ), decomposes population-level effects of cadmium into individual-level 

contributions, and predicts the vital rate that has the greatest influence on λ through 

sensitivity analysis.  Given that the two models utilize different variables to describe 

population dynamics, each produces a different set of sensitivities and contributions.  

Finally, the effect of predation on growth of cadmium-exposed populations was 

projected. 
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Methods 

Experimental Organisms 

 Adult P. pugio were collected from the Patuxent River, MD, USA and maintained 

in flow-through laboratory stock tanks, which received ambient water from the lower 

Patuxent River.  Breeding was encouraged by increasing water temperature to 25 °C and 

providing a generous food supply, consisting of a combination of brine shrimp (Artemia) 

nauplii and dry food (1:1 mixture of Wardley [Secaucus, NJ] Shrimp Pellets and Wardley 

Pond Ten Floating Fish Stix, both coarsely ground).  When females became gravid, they 

were isolated in individual 1-L beakers, their chelae were trimmed to reduce cannibalism 

of eggs (Little, 1968), and they were suspended in a 3 mm-mesh cage at the top of the 

beaker.  As the embryos hatched, the larvae passed through the mesh to the bottom of the 

beaker.  Cadmium exposures were initiated with freshly-hatched larvae (0- or 1-day post-

hatch); larvae from thirty-one clutches were divided approximately equally among 

treatments to reduce confounding effects due to clutch-specific differences in genetics 

and/or maternal effects on offspring fitness. 

General Exposure Conditions 

 The exposures occurred in the laboratory in a temperature-controlled room at a 

constant water temperature of 25 °C, which falls within the optimal temperature ranges 

for spawning, embryonic development, larval development, and overall survival of P. 

pugio (Wood, 1967; Poole, 1987).  Exposure water consisted of Instant Ocean artificial 

seawater (Aquarium Systems, Mentor, OH), diluted to a salinity of 10 ppt with tap water 

that had been filtered by reverse osmosis (RO).  Nitrilotriacetic acid (NTA), a metal 

chelator, was added to the exposure media at a concentration of 5 x 10
-5

 M, in order to 



 

 68 

buffer the concentration of free metal ion (Perrin and Dempsey, 1974).  The pH was 

adjusted to ~7.8 with NaOH.  Salinity was maintained by replacing water lost to 

evaporation with RO water daily.  A complete water change was conducted every four 

days during the larval stage and every eight days during the juvenile and adult stages.  

During water changes, exposure conditions were maintained by transferring test 

organisms to temporary holding chambers containing exposure water.  All life stages 

were fed a generous ration of Artemia nauplii daily, which was supplemented with dry 

food for juveniles and adults, as described above.  The light regime consisted of a 16:8 

hour ratio of light to dark; long photoperiods have been found to induce breeding in  

P. pugio (Little, 1968; Rayburn and Fisher, 1999).   

 Cadmium was added as CdCl2 to achieve target free ion concentrations of either 

1.36 µg Cd
2+

/L (Cd-low) or 2.27 µg Cd
2+

/L (Cd-high).  The amount of metal required to 

achieve the target free ion concentration of cadmium was calculated using the chemical 

equilibrium program MINEQL+ v. 4.5 (Environmental Research Software, Hallowell, 

ME), given the target free ion concentration, composition of Instant Ocean (Atkinson and 

Bingman, 1998), and concentration of NTA.  The control contained no added CdCl2.  

Each treatment was replicated four times; sets of replicates (each set consisting of one 

replicate of each treatment) were staggered in time, no more than two days apart, for 

logistical purposes.  Replicates were blocked by shelf height to account for effects of 

small temperature variations (< 1 °C) observed among shelves.  Each block consisted of 

one set of replicates.  During larval and juvenile stages, a randomized complete block 

design was employed, with each block (shelf) containing one replicate of each treatment.  
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During the adult stage, a randomized incomplete block design (Anderson and McLean, 

1974) was utilized due to space restrictions.   

Life Cycle Exposure 

 Exposures began with 110 larvae per replicate in 1.5-L beakers, filled with 1 L of 

exposure water.  Survival was measured every four days, coinciding with water changes.  

Larvae were surveyed daily for metamorphosis to the juvenile stage.  Upon 

metamorphosis, juveniles were removed to another set of beakers, in which they were 

held prior to initiating the juvenile exposures.  In order to reduce variation in the age of 

individuals, only the middle 80% of larvae to metamorphose were retained; 

approximately the initial 10% and final 10% to metamorphose were discarded, removing 

the extremes from the population. 

 After metamorphosis (on day 28), juveniles were transferred to 8-L tanks filled 

with 6 L of exposure water, and the number of individuals per replicate was reduced to 

55 to prevent overcrowding.  Juveniles derived from each replicate during the larval 

exposure were placed in a corresponding replicate for the juvenile exposure.  From this 

point onward, survival was measured every 8 days, again coinciding with water changes.  

On day 60, juveniles were transferred to 38-L tanks filled with 17 L of exposure water. 

 On day 86, the first female became gravid, after which each replicate was checked 

daily for the presence of gravid females.  Gravid females were removed, their chelae 

were trimmed, and they were transferred to individual 0.95-L mason jars filled with 0.6 L 

of exposure water.  While isolated, females were fed Artemia only.  After 8 days, the 

water was changed, and females were suspended in a 3 mm-mesh cage at the top of the 

jar.  Upon hatching (13 days after eggs were laid, on average), larvae were counted and 
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the adult female was returned to its original tank.  Survival and reproduction continued to 

be measured until the experiment was terminated on day 240; any females gravid at this 

time were held until their eggs hatched. 

 Hatching success was measured by removing embryos from gravid females on the 

third day after being laid, when the embryos had reached the “tissue cap” stage of 

development (Rayburn and Fisher, 1999) and could be easily separated from each other 

without damage.  Forty embryos per female were removed (3-5 females per replicate) and 

placed in individual wells of polypropylene microcentrifuge tube racks with 2 mL of 

exposure water and incubated at 25 °C until they hatched. 

Second-Generation Effects 

 To determine effects of parental exposure on offspring fitness, survival of larvae 

collected from the control and Cd-high treatment females was measured.  Thirty, second-

generation (F2) larvae from each of three females per replicate were transferred to 1.5-L 

beakers filled with 1 L of exposure water.  Fifteen larvae were placed in control exposure 

water and fifteen in Cd-high exposure water.  Larval survival was measured after 8 days.  

Survival measurements were not continued beyond this point due to personnel and space 

limitations. 

Metals Analysis 

 Water samples for cadmium analysis were taken from the first generation tanks 

(one replicate per treatment) immediately after each water change.  Immediately before 

every third water change, water samples were taken to assess the change in cadmium 

concentration between water changes.  Samples were filtered through a 0.22 µm 

nitrocellulose membrane, acidified to pH < 2 with HNO3, diluted 1:10 to reduce saltwater 
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interference, and analyzed using an Agilent (Santa Clara, CA, formerly Hewlett-Packard) 

HP4500 inductively coupled plasma mass spectrometer (ICP-MS).  Free cadmium ion 

concentrations were calculated using MINEQL+ v. 4.5. 

 At the end of the exposure (day 240), several non-gravid adults (7-10 per 

replicate) were allowed to depurate in clean seawater for three hours and were then 

preserved for tissue analysis by freezing at -80 °C.  Tissue samples were later freeze-

dried and crushed in a plastic bag with a pestle.  A subsample (~100 mg) of the 

homogenized sample was digested by adding 2 mL concentrated HNO3 and heating in a 

60 °C oven overnight.  The digested sample was diluted and analyzed for cadmium by 

ICP-MS. 

Matrix Model 

 To project population growth, a stage-classified matrix model was constructed, 

using the general principles explained by Caswell (2001).  Matrix calculations were 

performed using PopTools (Hood, 2003), an add-in for Microsoft Excel.  The life cycle 

graph (Fig. 3.1A) illustrates the transitions from one life stage to the next.  G, P, and F 

comprise the vital rates of the population.  Gi is the probability that an individual in stage 

i will survive and graduate to the next life stage over one time step and Pi is the 

probability that an individual in stage i will survive and remain in the same life stage.  Fi 

is the fertility of an individual in stage i, that is, the average number of surviving female 

offspring produced over one time step per individual in stage i at the beginning of the 

time step.  Juveniles may mature to adulthood and reproduce within one time step, using 

the birth-flow model, and therefore they have an associated F term.  A time step of 13 

days was used, which was the average duration of the embryonic stage across all 
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treatments.  The model follows only females and female offspring, and assumes a 1:1 sex 

ratio in the population. 

 G, P, and F values were used to construct a population projection matrix, A, such 

that n(t+1) = An(t), where n(t) is the vector of abundances at time t, and n(t+1) is the 

vector of abundances of each life stage at time t+1, one time step later.  The projection 

matrix contains F values in the first row, P values along the diagonal, and G values along 

the subdiagonal.  The dominant eigenvalue of A was calculated to obtain an estimate of 

the finite rate of population growth, λ.  
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 Calculations of G, P, and F were performed using the methods for stage-based 

matrices described by Caswell (2001).  The probability of survival of an individual in 

stage i over one time step, σi, was estimated by changing the time scale of the 

experimental survival data to the 13-day time step:  
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where n = the number of days between survival measurements.  The probability of 

growth from stage i to stage i+1 over one time step, γi, was estimated by:  
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where Ti is the duration of stage i in number of time steps, measured during the full life 

cycle exposure.  The value of λ was estimated iteratively by solving for the dominant 
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eigenvalue of the projection matrix (the elements of which are dependent upon γi) and 

reinserting this value into Eq. 2 until a stable value of λ was reached.   

 Equations to calculate G and P take the general form of Eqs. 3 and 4, respectively:   

 iiiG γσ=  (3) 

 )1( iiiP γσ −=  (4) 

Fertility, F, was calculated using the birth-flow model for continuously reproducing 

species, which assumes that adults reproduce halfway through the time step, requiring 

that offspring survive through half of a time step before being counted in the first stage 

class: 
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where mi (or maternity) is the average number of female offspring per female in stage i 

per time step (Eq. 6), and l(0.5) is the probability of an embryo surviving to the midpoint 

of the next time step.  Maternity was estimated by using fecundity and incorporating the 

average percentage of adult females that was gravid at any given time and also assuming 

a 1:1 sex ratio of offspring: 

 ( )( ) 2/%4 sizebroodmeangravidfemalesm =  (6) 

 Specific calculations of G, P, and F are shown in the following equations: 
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 )1( 333 γσ −=P  (12) 
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Embryonic survival values (σ1
1/2

) in P1 and G1 correspond to only one half of a time step, 

in order to offset the inclusion of σ1
1/2

 in F (Brault and Caswell, 1993).  Also, the survival 

term for adults (σ4) is included in the formulae for P1, G1, and F, because survival 

through the embryonic period is contingent upon survival of the mother, who carries the 

embryos until they hatch; in a natural setting, the eggs cannot survive if the mother dies.  

This is a necessary adaptation of the generalized equations (Eqs. 3 and 4) for any species 

in which survival of the embryonic life stage depends upon survival of the adult. 

 Sensitivity analysis, or prospective perturbation analysis, was performed in order 

to measure the effect on the population growth rate, λ, of an infinitesimal change in a 

vital rate, while all other vital rates are held constant (De Kroon et al., 1986).  

Sensitivities are measured as a response of λ to equal absolute changes in each vital rate.  

For the matrix model, sensitivities were calculated using the dominant right and left 

eigenvectors (w and v, respectively) of the projection matrix, A.  The sensitivity of λ to 

each matrix element, aij, is denoted by ∂λ/∂aij, and was calculated in Eq. 16 (Caswell, 

1978), where < > indicates the scalar product of two vectors: 
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 To calculate elasticities, eij, sensitivities for each vital rate were all normalized to 

the same scale, as shown in Eq. 17 (De Kroon et al., 1986):   
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The elasticities of λ to perturbations in G, P, and F sum to one, and measure the response 

of population growth rate to proportional perturbations of each vital rate (De Kroon et al., 

1986).  Elasticities, rather than sensitivities, are reported, because they may be compared 

amongst each other more easily than sensitivities. 

 Retrospective perturbation analysis was also performed in order to decompose 

treatment effects on λ into contributions from each stage-specific vital rate.  The 

contribution, cij, of each matrix element was calculated by: 
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where b refers to treatment values, r refers to reference or control values, and the 

sensitivity, ∂λ/∂aij, is evaluated at the mean aij between the treatment and control, (aij
(b)

 + 

aij
(r)

)/2 (Caswell, 1996).  The sum of the contributions of treatment effects on the matrix 

elements is approximately equal to the treatment effect on λ (Caswell, 1996): 
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Z-Transformed Life Cycle Graph Analysis 

 Population growth was also modeled using a z-transformed life cycle graph 

analysis.  This modeling method provides a second estimate of population growth rate 

and allows the calculation of sensitivities and contributions of λ to lower level 

parameters, as compared to the matrix model.  The method is based on the z-transformed 

life cycle graph shown in Fig. 3.1B (derived from methods in Caswell, 1996 and Caswell, 

2001, as illustrated in Salice and Miller, 2003), which is a modification of the life cycle 
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graph used for the matrix model.  In the z-transformed life cycle graph, all vital rates are 

multiplied by λ raised to a negative exponent that is equivalent to the time required for 

the transition indicated by the arrow, and the F3 term and self-loops have been removed, 

with the exception of the adult self-loop (Caswell, 1996). 

 In the z-transformed life cycle graph analysis, Pi is the probability of survival of 

an individual in stage i over the duration of the transition indicated in the z-transformed 

life cycle graph, as defined by the following equations: 
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where δi is the duration of stage i in time steps, i.e., the number of time steps required to 

develop from stage i to stage i+1 (equivalent to the term Ti in the matrix model).  

Fertility, F, was calculated using a post-breeding birth pulse model (Caswell, 2001): 

 44mPF =  (24) 

 A characteristic equation was derived from the z-transformed life cycle graph by 

setting the sum of all loops in the graph equal to 1 (Hubbell and Werner, 1979; Caswell, 

2001) and simplifying:  

 0321321

4321

1 =−− +++++ δδδδδδ λλ PFPPP  (25) 

The characteristic equation was then solved to obtain an estimate of λ. 

 The sensitivities of λ to the parameters in the z-transformed life cycle graph were 

determined by implicit differentiation of the characteristic equation (Caswell, 1996).  
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This method allows the calculation of sensitivities of λ to the underlying vital rates, σi 

and δi, in combination with fertility, F.  The resulting sensitivities are shown in Eqs. 26-

33, where ∂λ/∂x denotes the sensitivity of λ to x. 
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Elasticities of λ to σi, δi, and F were calculated as in Eq. 17, by substituting σi, δi, or F for 

aij. 

 The contributions of parameters from the z-transformed life cycle graph to 

treatment effects on λ were calculated as in Eq. 18, again substituting σi, δi, or F for aij.  

The sum of the contributions of treatment effects on σi, δi, and F is approximately equal 

to the treatment effect on λ, as shown in Eq. 34 (Caswell, 1996): 
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Projected Effects of Predation 

 The effect of predation on population growth of cadmium-exposed populations 

was projected by applying a predation rate, which is the percent of the population 

removed by predators per time step, to the estimates of λ for each exposure 

concentration.  The predation rate, between 0 and 25%, was subtracted from one, and the 

resulting number was multiplied by the estimate of λ from the matrix model projection to 

obtain a net population growth rate.  The range of predation rates was chosen to target the 

transition from positive to negative population growth, after the value of λ had been 

determined for each treatment.  The model assumes that predation pressure is equal 

across all life stages because actual predation rates in the field would be dependent upon 

the density and species of predators present, and to my knowledge, no information is 

available in the scientific literature comparing field predation rates for each life stage of 

P. pugio. 

Statistical Analysis 

 Calculations of each individual-level model parameter (σi, δi, P, G, and F) were 

performed separately on each replicate, and the variance among replicates in each 

treatment was calculated for each model parameter (e.g., Rao and Sarma, 1986; Munns et 

al., 1997; Barata et al., 2002; Salice and Miller, 2003).  Population growth rate, λ, was 

calculated and sensitivity analyses were performed separately for each replicate, treating 

each as a separate population.  Since the decomposition of λ requires the evaluation of 

sensitivities at the mean between the control and treatment, contribution values do not 
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include an estimate of variance and differences in contributions among treatments could 

not be tested statistically. 

 Survival for each life stage, σi, was estimated by averaging the observed survival 

values for the duration of that stage.  The duration of the embryonic stage, δ1, was 

estimated by the length of time for eggs to hatch, starting from the day that the clutch 

appeared on the female.  Larval duration, δ2, was estimated by the time from hatching 

until metamorphosis to the juvenile stage.  The distribution of larval duration values was 

highly skewed to the right, since the vast majority of the larvae metamorphosed within 20 

days, but a small number remained in the larval stage as late as day 46.  To accommodate 

the non-normal distribution, average larval duration was estimated by failure time 

analysis (“distribution analysis” in Minitab v. 13 statistical software [State College, PA]).  

The data fit a loglogistic distribution using maximum likelihood estimation (Anderson-

Darling statistic = 14.81).  Applying this distribution, the time at which 50% of the larvae 

had metamorphosed was estimated for each replicate and used for the value of δ2. 

 Because P. pugio exhibits no apparent morphological difference upon maturation 

from juvenile to adult, the presence of gravid females was used as an indicator of sexual 

maturation.  When the percent of gravid females reached 5%, all individuals were 

considered to be reproductively mature adults; this cut-off point was used to estimate the 

duration of the juvenile stage, δ3. 

 Two-way analyses of variance (ANOVAs) were used to test for differences in 

vital rates among treatments, with treatment and replicate set as factors.  Each set of 

replicates, consisting of one replicate of each treatment, belonged to the same temporal 

and physical block and was initiated with larvae from the same group of females.  The 
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replicate set was included as a factor to account for variability due to clutch differences, 

temporal variation (because the replicates were staggered in time), and physical location 

(due to the blocked experimental design).  Replicate set was a significant factor only in 

ANOVAs that tested for effects of cadmium exposure on reproduction and population 

growth rate, most likely due to the effects of small temperature differences between 

blocks.  Pairwise comparisons were performed using the Tukey method (Neter et al., 

1990).  To test for differences in survival of second-generation larvae, a two-way 

ANOVA was employed, with factors consisting of parental and offspring treatments.  A 

Type I error rate (α) of 0.05 was employed for all statistical analyses. 

 

Results 

Water and Tissue Chemistry 

 Free cadmium ion concentrations in freshly mixed exposure water were slightly 

higher than target concentrations (Table 3.1).  Variation in cadmium concentration was 

low, and cadmium concentrations were distinctly different among treatments (P < 0.001).  

Between water changes, free cadmium ion concentration decreased, on average, by 4.4% 

for Cd-low and by 5.4% for Cd-high.  Exposure resulted in substantial bioaccumulation 

of cadmium; cadmium concentrations in adult tissue were strongly dose-dependent  

(P < 0.001, Table 3.1). 

Individual-Level Effects 

 Survival of adults was significantly reduced at the higher concentration of 

cadmium, relative to the control and lower cadmium concentration (P < 0.001, Fig. 3.2).  

There were no significant differences in survival of other life stages.  Average survival of 
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larvae, juveniles, and adults was greater than 85% over each 13-day time step, regardless 

of cadmium concentration, while survival of embryos averaged approximately 60%. 

 Larval and juvenile life stage durations were not significantly affected by 

cadmium exposure (Fig. 3.3).  Larval stage duration averaged 16 days post-hatch across 

treatments, while juvenile stage duration averaged 99 days.  Duration of the embryonic 

stage was constant at 13 days for all treatments, resulting in a 13-day time step for the 

matrix model. 

 Cadmium exposure reduced the number of larvae per brood at both cadmium 

concentrations (P = 0.016, Fig. 3.4).  Relative to the control, females had 27% fewer 

larvae per brood at the Cd-low exposure concentration and 36% fewer at Cd-high.  The 

percent of females in the population that was gravid was about 50% lower at the Cd-high 

concentration (P = 0.031), but was not significantly affected at Cd-low (Fig. 3.4). 

 Maternal exposure had no effect on survival of larvae in second-generation 

exposures.  Regardless of the exposure regime, survival of F2 larvae averaged at least 

95% over eight days, with little variability. 

Projected Population Growth 

 Both population models projected a dose-dependent decrease in population 

growth rate (P < 0.001 for each model, Table 3.2).  For Cd-low, both models estimate a 

6% decrease in λ, as compared to the control.  Exposure to the Cd-high concentration is 

estimated to reduce λ by 12% for the matrix model and 11% for the z-transformed life 

cycle graph analysis.  All projected λ values are greater than one, indicating positive 

population growth.   
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 Estimated vital rates for each model are shown in Table 3.3.  Cadmium exposure 

resulted in significant decreases in fertility parameters for both models (P ≤ 0.034) and 

survival parameters for adults (P < 0.001 for both models) and juveniles (matrix model 

only, P = 0.01). 

Elasticity Analysis 

 For the matrix model, the parameters with the highest elasticities were P3 and P4, 

which are the probabilities of surviving and remaining in the juvenile and adult stages, 

respectively (Fig. 3.5A).  The elasticities for P3 and P4 were approximately equal, and far 

exceeded the elasticity of any other parameter.  The magnitude of elasticity for each 

parameter varied only slightly among treatments, and the overall pattern remained the 

same. 

 For the z-transformed life cycle graph analysis, elasticities were highest for σ3 and 

σ4, which are survival probabilities for juveniles and adults, respectively (Fig. 3.5B).  In 

this model, juvenile survival had a higher elasticity than adult survival, but both were 

again much greater than the elasticity of other parameters.  Elasticities of life stage 

duration parameters (δ) are negative, as expected, due to a decrease in λ as δ increases. 

Contribution Analysis 

 Decomposition analysis revealed that the effect of cadmium on population growth 

rate can be attributed mostly to effects on fertility (Fig. 3.6).  In the matrix model, F4 

(fertility of adults) had the greatest contribution to the change in λ (Fig. 3.6A); this 

contribution is negative, reflecting the decrease in F4 resulting from cadmium exposure 

(Table 3.3).  G3 (the probability of juveniles surviving and graduating to adulthood) had a 
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relatively large positive contribution, corresponding to the increase in G3 in cadmium-

exposed shrimp (Table 3.3). 

 In the z-transformed life cycle graph analysis, the largest contribution to the effect 

of cadmium on λ comes from F (Fig. 3.6B).  The next largest contributions, belonging to 

σ1 and σ4, are relatively small and can be traced back to an (insignificant) increase in 

embryonic survival and a decrease in survival of adults exposed to cadmium, respectively 

(Fig. 3.2). 

Projected Predation Effects 

 The projected effect of predation on net population growth rate is shown in  

Fig. 3.7.  Growth of control populations becomes negative (λ < 1) when the predation 

rate is greater than 21% of the population per time step.  Cadmium-exposed populations 

exhibit negative growth when the predation rate exceeds 16% at Cd-low and 11% at Cd-

high exposure concentrations. 

 

Discussion 

Water and Tissue Chemistry 

 Dissolved cadmium concentrations in the current study were relatively high, 

compared to concentrations normally found in estuaries.  In the absence of NTA, the total 

cadmium concentration needed to achieve the free cadmium ion exposure concentrations 

would be approximately 10 µg CdT/L for Cd-low and 16 µg CdT/L for Cd-high at a 

salinity of 10 ppt.  Similar total cadmium concentrations have been occasionally observed 

in the Chesapeake Bay region, for example, in the Potomac River, VA (Hall et al., 1998) 

and the Upper Chesapeake Bay (Hall et al., 1992). 
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 Bioaccumulation of cadmium in P. pugio was clearly dose-dependent.  The 

concentration of cadmium in adult tissues increased by 41% from Cd-low to Cd-high, 

corresponding to effects on adult survival, fertility, and population growth.  Cadmium 

concentrations in tissues were considerably higher (> 5x) than those reported in shorter 

(14- to 21-day) exposures that resulted in sublethal effects on respiration and molting 

frequency (Vernberg et al., 1977; Rule and Alden, 1996).  Tissue concentrations similar 

to the current study were reported in adult P. pugio exposed to higher concentrations of 

cadmium for six weeks, resulting in over 50% mortality (Pesch and Stewart, 1980).  In 

the current eight-month exposure, it is possible that sequestration of accumulated 

cadmium by metallothionein or a similar metal-binding protein (Howard and Hacker, 

1990) allowed the gradual accumulation of high concentrations of cadmium with 

relatively low effects on survival. 

Effects on Survival 

 Cadmium exposure resulted in a decrease in survival of adult P. pugio, but had no 

significant effect on survival of other life stages.  Adults may have a lower tolerance to 

cadmium than other life stages, or may have been more vulnerable due to cumulative 

effects over the 240-day exposure.  A similar trend was found in the freshwater 

cladoceran M. macleayi, in which adults exhibited a greater sensitivity to cadmium than 

juveniles (Barata et al, 2002).  However, juvenile aquatic invertebrates often have a lower 

tolerance to cadmium than adults, as observed in the freshwater amphipod Gammarus 

pulex (McCahon and Pascoe, 1988), the saltwater mysid Siriella armata (Birmelin et al., 

1995), the estuarine amphipod Leptocheirus plumulosus (McGee et al., 1998), the 
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estuarine gastropod Potamopyrgus antipodarum (Jensen et al., 2001), and the freshwater 

snail B. glabrata (Salice and Roesijadi, 2002). 

 Survival of Palaemonetes pugio larvae was high, averaging over 85% per 13-day 

time step regardless of cadmium concentration.  In contrast, Thorpe and Costlow (1989) 

reported complete mortality of P. pugio larvae during a 4-day exposure to 2.0 µg Cd
2+

/L, 

which is halfway between the two cadmium concentrations in the current study.  The vast 

disparity in survival may be due to the difference in temperature between the two studies; 

Thorpe and Costlow’s (1989) exposure was conducted at 30 °C, while the temperature of 

the current study was 25 °C.  Lethal effects of cadmium on P. pugio have been shown to 

increase dramatically with temperature (Howard and Hacker, 1990). 

 Embryonic survival averaged about 60%, regardless of cadmium concentration.  

Previous studies have reported a wide range of values for survival of P. pugio embryos 

that have been removed from gravid females, from > 90% (Rayburn and Fisher, 1999) to 

< 35% (Reinsel et al., 2001), with low survival possibly due to handling stress.  

Therefore, while embryonic survival was lower than survival of any other life stage in the 

current study, it still falls within the range of previously reported values. 

 Although maternal exposure to cadmium did not affect F2 larval survival, it is 

possible that second-generation effects could emerge later in the life cycle or in future 

generations.  Multigenerational effects of cadmium on survival, growth, and reproduction 

have been observed in D. magna (Muyssen and Janssen, 2004; Guan and Wang, 2006).  

The population models in the current study assume that vital rates of P. pugio will remain 

constant over successive generations of cadmium exposure. 
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Reproductive Effects 

 Cadmium exposure greatly reduced reproduction of P. pugio, resulting in effects 

on both brood size and the percent of females that was gravid at any given time.  Fertility 

parameters (F) for both models were reduced by approximately 50% at Cd-low and 75% 

at Cd-high.  In addition, fertility effects provided the greatest contribution to effects of 

cadmium on population growth rate.  Cadmium-induced decreases in reproductive rate 

have also been observed in D. pulex (Bertram and Hart, 1979), D. magna (Barata and 

Baird, 2000; Smolders et al., 2005), Potamopyrgus antipodarum (Jensen et al., 2001), 

and M. macleayi (Barata et al., 2002).  Effects on reproduction may reflect bioenergetic 

effects of cadmium, since reductions in scope for growth have been reported in G. pulex 

(Stuhlbacher and Maltby, 1992), Callinectes sapidus (Guerin and Stickle, 1995), and  

D. magna (Baillieul et al., 2005) following chronic exposure to cadmium.  Reduced 

brood size may also be the result of a decrease in fertilization success, as observed in 

cadmium-exposed sea urchins (Anthocidaris crassispina), accompanied by a decline in 

sperm motility (Au et al., 2001). 

Perturbation Analyses 

 Elasticity analysis indicated that Palaemonetes pugio population growth is most 

sensitive to changes in juvenile and adult survival.  Although fertility parameters had 

relatively low elasticities, they provided the greatest contributions to the cadmium-

induced decrease in population growth rate, reflecting the drastic effect of cadmium 

exposure on reproduction, as compared to effects on survival.  Similarly, in 

Potamopyrgus antipodarum (Jensen et al., 2001) and M. macleayi (Barata et al., 2002), 

effects of cadmium on population growth were attributed mainly to reduced reproduction.  
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In contrast, the greatest contribution to reduced population growth in cadmium-exposed 

B. glabrata resulted from a decline in either embryonic or juvenile survival, depending 

upon the strain of snail tested (Salice and Miller, 2003).  Therefore, the relative 

importance of individual-level effects in cadmium-exposed populations may vary among 

and within species. 

Population Growth and Effects of Predation 

 Both the matrix model and z-transformed life cycle graph analysis projected a 

dose-dependent decrease in population growth, but growth remains positive (λ > 1), even 

at the higher cadmium concentration, in the absence of predation.  However, the models 

suggest that populations exposed to cadmium would be much more vulnerable to a 

predator-induced decline.  Compared to populations exposed to the Cd-high 

concentration, model predictions suggest that control populations are able to withstand a 

predation rate that is almost twice as great (21% over 13 days) before population growth 

becomes negative (λ < 1).   

 Palaemonetes pugio is an important prey item for many fish species, including 

Fundulus heteroclitus (mummichog), Micropogonias undulatus (Atlantic croaker), 

Morone americana (white perch), M. saxatilis (striped bass), and Anguilla rostrata 

(American eel; Nixon and Oviatt, 1973; Clark et al., 2003).  In experimental settings, 

extremely high predation rates on adult P. pugio have been observed.  For example, the 

predation rate on tethered P. pugio in shallow depths of the Rhode River, MD averaged 

~12% over only 30 minutes (Clark et al., 2003).  In a structured artificial habitat, striped 

bass consumed ~24% of grass shrimp present within only 22 hours, while mummichogs 

consumed ~8% (Davis et al., 2003).  Predation was likely overestimated in these studies 
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because behavior of the prey was constrained; in the field, P. pugio are likely to exhibit 

predator-avoidance behavior (Dorn et al., 2006).  In a more natural setting, small 

mummichogs exhibited an average predation rate of 30% on P. pugio over two weeks in 

large enclosures in an intertidal marsh (Kneib, 1988).  This estimate is much more similar 

to the predation rates that could be sustained by the modeled populations in the current 

study.  Predation rates on neonate and juvenile P. pugio appear to be largely unstudied.  It 

is likely that neonates and juveniles experience pressures from a variety of non-piscine 

predators that specifically feed on small prey sizes.  In natural populations, many factors 

can influence predation rate, including predator density, prey density, predator type, and 

habitat structure.   

Comparison of Two Population Models 

 The two population growth models resulted in very similar projections of λ, and 

both models predict a dose-dependent effect of cadmium on λ.  The estimates of λ from 

the life cycle graph analysis were all slightly lower than those from the matrix model.  

Elasticity analysis results varied only slightly, with the life cycle graph analysis resulting 

in a greater elasticity for juvenile survival, while the matrix model results suggest similar 

elasticities for juvenile and adult survival. 

 Decomposition analysis for the two models revealed similar patterns of 

contributions.  For both models, fertility provided the greatest contribution to the 

cadmium-induced decrease in λ.  However, the matrix model analysis revealed a fairly 

large, positive contribution of G3 to population growth, suggesting that cadmium 

exposure actually provides an advantage to juveniles by increasing the probability that a 

juvenile will survive and graduate to adulthood.  The positive contribution of G3 to λ can 
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be traced to a small (non-significant) increase in G3 in cadmium-exposed P. pugio, which 

appears to be an artifact of slight changes in juvenile survival and duration.  However, the 

contribution of G3 becomes inflated due to the high sensitivity of λ to juvenile survival.  

In contrast, juvenile survival and duration have very small contributions in the z-

transformed life cycle graph analysis.  Decomposition analysis for the life cycle graph 

analysis does not suggest an advantage of cadmium exposure for juveniles, because this 

model allows the calculation of contributions of base-level parameters, rather than 

complex functions of these parameters (Caswell, 1996).  Sensitivities and contributions 

resulting from matrix model calculations can, therefore, muddle information from various 

parameters, so that it is difficult to determine the exact source of the toxicological effect 

on population growth. 

 

Conclusion 

 Both the matrix model and the z-transformed life cycle graph analysis projected a 

dose-dependent decline in population growth rate of P. pugio chronically exposed to 

dissolved cadmium, driven mainly by a reduction in brood size and the proportion of 

gravid females.  Lethal effects were only observed in the adult life stage, and did not 

contribute greatly to the decline in population growth.  Even though population growth 

remained positive in populations exposed to free cadmium ion concentrations  

≤ 2.51 µg Cd
2+

/L, these populations are more vulnerable to a predator-induced decline.  A 

comparison of decomposition analyses between the two models suggests that the z-

transformed life cycle graph analysis provides a more clear explanation of the source of 

contributions from individual-level responses to population growth rate. 
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Table 3.1.  Cadmium concentrations (mean ± SE) in exposure water (µg Cd
2+

/L) and 

shrimp tissue (µg Cd/g dry mass).  Free cadmium ion concentration was estimated from 

the measured total cadmium concentration using the chemical equilibrium program 

MINEQL+ v. 4.5.  Values with different superscripts are significantly different  

(P ≤ 0.05). 

 

Treatment Target [Cd
2+

](aq) Measured [Cd
2+

](aq) [Cd] in Tissue 

    

Control 0 0.03
a
 +/- 0.002   0.64

a
 +/- 0.05 

    

Cd-low 1.36 1.51
b
 +/- 0.01 56.96

b
 +/- 3.41 

    

Cd-high 2.27 2.51
c
 +/- 0.01 80.40

c
 +/- 8.80 
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Table 3.2.  Population growth rate (λ) estimates (mean ± SE) for each model.  Values 

with different superscripts are significantly different (P ≤ 0.05). 

 

Treatment Matrix Model λ 

Life Cycle  

Graph Analysis λ 

   

Control 1.28
a
 +/- 0.02 1.26

a
 +/- 0.02 

   

Cd-low 1.20
b
 +/- 0.02 1.19

b
 +/- 0.02 

   

Cd-high 1.13
c
 +/- 0.03 1.12

c
 +/- 0.03 
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Table 3.3. Model parameter estimates (mean, SE) for the matrix model and z-transformed life cycle graph analysis.  The value of the 

P1 parameter for the matrix model was zero for all treatments, because the duration of the first life stage is equal to the time step.  

Values with different superscripts are significantly different (P ≤ 0.05). 

 

 Matrix Model  Z-Transformed Life Cycle Graph Analysis 

               

Treatment F3 F4 G1 G2 G3 P2 P3 P4  F P1 P2 P3 P4 

               

Control 0.12
a
 5.23

a
 0.72 0.68 0.05 0.21 0.94

a
 0.99

a
  7.51

a
 0.53 0.87 0.94 0.99

a
 

               

 (0.02) (1.31) (0.04) (0.02) (0.004) (0.01) (0.004) (0.001)  (2.25) (0.05) (0.02) (0.01) (0.001) 

               

Cd-low 0.07
b
 2.36

b
 0.76 0.67 0.07 0.23 0.92

ab
 0.98

a
  3.29

ab
 0.58 0.87 0.94 0.98

a
 

               

 (0.01) (0.84) (0.04) (0.02) (0.01) (0.02) (0.01) (0.01)  (1.36) (0.06) (0.03) (0.03) (0.01) 

               

Cd-high 0.05
b
 1.45

b
 0.77 0.64 0.08 0.23 0.90

b
 0.93

b
  1.79

b
 0.6 0.83 0.86 0.93

b
 

               

 (0.01) (0.54) (0.05) (0.01) (0.02) (0.01) (0.01) (0.01)  (0.66) (0.08) (0.03) (0.04) (0.01) 
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Fig. 3.1.  Life cycle graphs for P. pugio used for the stage-based matrix model (A) and z-

transformed life cycle graph analysis (B).  Stage 1 = embryos, stage 2 = larvae, stage 3 = 

juveniles, and stage 4 = adults.  In the matrix model, G is the probability of survival and 

graduation to the next life stage, P is the probability of surviving and remaining in the 

same life stage, and F is fertility.  In the z-transformed life cycle graph, P is the 

probability of survival of a given life stage, δ is the duration of the life stage in time 

steps, and F is fertility.   
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Fig. 3.2.  Effect of cadmium on survival (σ) of each life stage of P. pugio (mean ± SE).  

Survival values have been adjusted to one time step (13 days).  Bars labeled with 

different letters are significantly different (P ≤ 0.05). 
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Fig. 3.3. Effect of cadmium on duration of larval and juvenile stages (mean ± SE).  

There were no significant differences among treatments.  Embryonic duration was 

constant across treatments (13 days). 
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Fig. 3.4. Reproductive effects of lifetime exposure to cadmium: number of larvae per 

brood and the percent of adult females that was gravid, on average, at any given time 

(mean ± SE).  Different letters indicate significant differences (P ≤ 0.05). 
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Fig. 3.5.  Elasticity (mean ± SE) of λ to each model parameter for the matrix model (A) 

and z-transformed life cycle graph analysis (B). 
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Fig. 3.6.  Contribution of each model parameter to the effect of cadmium on λ for the 

matrix model (A) and z-transformed life cycle graph analysis (B). 
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Fig. 3.7.  Predicted effect of predation pressure on population growth rate of cadmium-

exposed populations, using estimates of λ from the matrix model.  Predation rate is the 

percent of the population removed per time step.  When λ < 1, population growth is 

negative.  
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CHAPTER 4: 

REPRODUCTIVE AND LIFE STAGE-SPECIFIC EFFECTS OF AQUEOUS 

COPPER ON THE GRASS SHRIMP, PALAEMONETES PUGIO 

 

Abstract 

 Palaemonetes pugio (grass shrimp) were exposed to aqueous copper for an entire 

life cycle, starting with larvae and allowing them to attain maturation and reproduce.  

During this 240-day exposure, effects of copper on the survival and duration of each life 

stage duration were measured, as well as effects on reproduction.  Copper at free ion 

concentrations of 9 or 26 µg Cu
2+

/L had no lethal effects on larval, juvenile, or adult 

stages.  Larval development was significantly delayed at both 9 and 26 µg Cu
2+

/L.  

Although females exposed to copper (9 or 26 µg Cu
2+

/L) produced embryos during the 

life cycle exposure, the embryos did not hatch, precluding completion of the life cycle.  

In a subsequent experiment, adults from the life cycle exposure to copper (26 µg Cu
2+

/L) 

that were transferred to control seawater produced viable embryos; however, the larval 

output per clutch was 43% less than in clutches from females that had never been 

exposed to copper, perhaps due to effects on the parental generation that reduced 

energetic allocation to reproduction.  Females that were raised in control seawater and 

then transferred, prior to oviposition, to seawater containing 26 µg Cu
2+

/L were unable to 

produce viable embryos after only three days of exposure.  Hence, either acute or chronic 

exposure to 26 µg Cu
2+

/L prevented production of larvae.  To determine the post-

spawning effects of copper exposure on larval production, gravid females that had 

spawned in control seawater were transferred to seawater containing 26 µg Cu
2+

/L; some 
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embryos hatched successfully, although clutches produced only 26% as many larvae as 

those hatched in control seawater.  This reduction in hatching success is unlikely to be 

completely responsible for the lack of larval recruitment observed in pre-spawning 

exposures to copper, suggesting that copper may also inhibit processes before or during 

spawning and fertilization.  Given that reproduction by P. pugio was severely constrained 

at copper concentrations that were otherwise sublethal (≥  9 µg Cu
2+

/L), severe effects on 

population dynamics may occur in conditions that would not likely be deemed deleterious 

on the basis of short-term, lethality-based studies. 

 

Introduction 

 Exposure to contaminants for an entire life cycle can provide valuable insight into 

chronic effects at the individual and population level (Rowe, 2003; Salice and Miller, 

2003; Manyin and Rowe, 2006).  For species with complex life cycles, it is important to 

quantify effects of contaminants on all life stages, because sensitivity to toxicants may 

vary substantially among different life stages (Munns et al., 1997; McGee et al., 1998; 

Salice and Roesijadi, 2002).  The integration of effects on each life stage may reveal 

significant effects on population dynamics, even at sublethal concentrations (Levin et al., 

1996).  Such effects cannot be assessed using traditional acute toxicity exposures. 

 Copper is a widespread contaminant in coastal and estuarine ecosystems (e.g., 

Wright, 1986; Hall et al., 1998; Munari and Mistri, 2007).  Sources of copper to aquatic 

habitats include application of antifouling paint and algicides, runoff of agricultural 

fertilizers, mine drainage, wastewater from metal smelting, and atmospheric fallout from 

fossil fuel combustion and refuse incineration (WHO, 1998).  Bioavailability of copper is 
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largely dependent upon the concentration of the free divalent cation, Cu
2+

 (Zamuda and 

Sunda, 1982), but bioaccumulation of copper can also be influenced by salinity (Wright 

and Zamuda, 1987; Bidwell and Gorrie, 2006).  Copper is an essential trace element, 

functioning as a cofactor for enzymes involved in oxidation/reduction reactions (Stohs 

and Bagchi, 1995; WHO, 1998).  Copper is also a component of hemocyanin, the 

molecule responsible for oxygen transport in the hemolymph of arthropods.  However, 

copper can have toxic effects at concentrations above those that are essential (e.g., Burton 

and Fisher, 1990). 

Mechanisms of copper toxicity include binding to proteins and DNA at 

sulfhydryl, carboxylate, and imidazole sites and catalyzing the production of reactive 

oxygen species (Stohs and Bagchi, 1995; WHO, 1998).  Therefore, copper can result 

directly in impairment of protein function, peroxidation of lipids, damage to DNA and 

organelles, and depletion of ATP (Stohs and Bagchi, 1995; WHO, 1998).  Toxic effects 

of copper can be expressed as reduced survival and delayed development in aquatic 

invertebrates (e.g., Wong et al., 1995).  Copper may also inhibit reproduction in aquatic 

invertebrates by delaying sexual maturation (e.g., Koivisto and Ketola, 1995), reducing 

fertilization success (e.g., Reichelt-Brushett and Harrison, 2005), decreasing fecundity 

(e.g., Garnacho et al., 2001), and reducing the proportion of reproductive females in a 

population (e.g., Eriksson and Weeks, 1994). 

 The grass shrimp, Palaemonetes pugio, is abundant in estuaries and coastal 

habitats along the Atlantic and Gulf coasts of the United States (Gosner, 1971; Anderson, 

1985), where it is an important prey item for many fish species (Nixon and Oviatt, 1973; 

Clark et al., 2003).  The grass shrimp’s life cycle consists of four life stages: embryo, 
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larva, juvenile (postlarva), and adult.  Fertilized embryos are carried by females in an 

external brood pouch until they hatch and larvae are released.  Larvae pass through 3 to 

11 sub-stages (Anderson, 1985) before metamorphosis to the juvenile stage, which is 

morphologically similar to the adult stage.  Upon reaching sexual maturity, the male 

transfers a spermatophore to the female, where it is retained until oviposition (Anderson, 

1985).  Within seven hours of copulation, eggs are extruded by the female and fertilized 

externally as sperm are released from the spermatophore; after fertilization, the embryos 

are manipulated toward the brood pouch (Anderson, 1985).  The entire life cycle can be 

completed in as little as two and a half months in natural habitats (Anderson, 1985) or 

four months in the laboratory (Manyin and Rowe, 2008), although rates of growth and 

development may vary considerably due to seasonal variations in temperature and food 

supply (Wood, 1967). Palaemonetes pugio (grass shrimp) were exposed to aqueous 

copper for an entire life cycle, starting with larvae and allowing them to attain maturation 

and reproduce.   

 To determine the effects of aqueous copper on each life stage of P. pugio, I 

conducted a full life cycle exposure, similar to the life cycle exposure to cadmium 

described in Chapter 3.  The exposure was initiated with freshly hatched larvae, which 

were allowed to attain maturation and reproduce over a period of eight months.  Effects 

of copper on the survival and duration of each life stage were measured, as well as the 

effects on reproduction.  Although I originally intended to apply a population growth 

model to these individual-level measurements, as conducted for cadmium in Chapter 3, 

exposure to copper prevented larval production, thereby preventing population growth.  

Due to the substantial effects observed on reproduction during the life cycle exposure, I 
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conducted two subsequent experiments to examine reproductive effects in relation to the 

timing of exposure.  In the “reciprocal cross” experiment, adults from the life cycle 

exposure were transferred from control conditions to copper exposure conditions and vice 

versa.  The purpose of the reciprocal cross experiment was to determine the acute 

reproductive effects of exposure to copper prior to oviposition and to test for the potential 

recovery of reproductive performance following cessation of exposure to copper.  I also 

conducted a post-spawning exposure to determine the effect of copper exposure on the 

viability of embryos that had been spawned under control conditions.   

 

Methods 

General Exposure Conditions 

 All exposures were conducted at a water temperature of 25 °C, photoperiod of 

16:8 hours light to dark, and salinity of 10 ppt using Instant Ocean (Aquarium Systems, 

Mentor, OH) sea salts mixed with tap water that had been filtered by reverse osmosis 

(RO).  The pH was adjusted to 7.8 or 7.9 with 1 M NaOH.  To compensate for water lost 

due to evaporation, RO water was added daily to maintain water levels.  A complete 

water change was conducted every 4 days for larval exposures and every 7 or 8 days for 

juvenile and adult exposures.  During water changes, test organisms were transferred to 

temporary holding chambers containing exposure water.  Survival was measured during 

water changes.  All life stages were fed brine shrimp (Artemia) nauplii daily; the diet for 

juveniles and adults was supplemented with coarsely ground dry food (1:1 mixture of 

Wardley [Secaucus, NJ] Shrimp Pellets and Wardley Pond Ten Floating Fish Stix). 
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 The concentration of free copper ions (Cu
2+

) was buffered by adding 

nitrilotriacetic acid (NTA), a metal chelator, at 5 x 10
-5

 M (Perrin and Dempsey, 1974).  

Copper was added as CuCl2 to achieve target free copper ion concentrations; the total 

metal concentration required was calculated using the chemical equilibrium program 

MINEQL+ v. 4.5 (Environmental Research Software, Hallowell, ME), given the target 

Cu
2+

 concentration, composition of Instant Ocean (Atkinson and Bingman, 1998), and 

concentration of NTA.  Control seawater contained no added CuCl2. 

Life Cycle Exposure 

 Palaemonetes pugio larvae were exposed to copper at nominal free divalent 

cation concentrations of 9 and 26 µg Cu
2+

/L.  Water samples were taken after each water 

change, filtered through a 0.22 µm nitrocellulose membrane, and acidified to pH < 2 with 

HNO3.  Samples were diluted 1:10 to reduce saltwater interference and analyzed for total 

dissolved copper using an Agilent (Santa Clara, CA, formerly Hewlett-Packard) HP4500 

inductively coupled plasma mass spectrometer (ICP-MS).  Due to variations in the ICP-

MS measurements, the copper measurements were repeated using a PerkinElmer 

(Waltham, MA) AAnalyst 800 atomic absorption spectrometer (AA).  On average, the 

measured total copper concentrations from both the ICP-MS and AA data sets were 

within ~5% of nominal concentrations.  However, due to the addition of NTA to the 

exposure water, the total copper concentrations were very similar for the two treatments 

(3200 and 3270 µg Cu/L) and as a result of variation in samples and limits of analytical 

resolution, concentrations in the two treatments could not be reliably distinguished using 

either ICP-MS or AA.  Therefore, only the nominal free ion concentrations are reported.  

The pH was ~7.8 throughout the life cycle exposure. 
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Larval P. pugio were derived from laboratory-bred stocks of wild-caught adults 

collected from the Patuxent River, MD, USA.  Newly hatched larvae (0- or 1-day post-

hatch) were placed in 1.5-L beakers, filled with 1 L of exposure water.  Each treatment 

was replicated four times, and each replicate began with 110 larvae.  Sets of replicates, 

consisting of one replicate of each treatment, were staggered in time, no more than two 

days apart.  During larval and juvenile stages, containers were arranged in a randomized 

complete block design; each replicate set was blocked temporally, physically (by shelf 

height), and maternally (i.e., each set was initiated with a subsample of larvae from a 

given group of females).  Beyond Day 60 (due to the increased size of tanks), the 

physical arrangement of tanks was altered to a randomized incomplete block design, in 

which the number of blocks was increased and each block contained only a fraction of 

the treatments (Anderson and McLean, 1974). 

Between Day 11 and 46, individuals that had metamorphosed to the juvenile stage 

were removed daily and transferred to another set of beakers until the juvenile exposure 

began.  To reduce variation in age, only the middle 80% of individuals to metamorphose 

were retained for the juvenile exposure, discarding the initial 10% and final 10% to 

undergo metamorphosis.  The juvenile exposure was initiated on Day 28 by transferring 

55 individuals per replicate to 8-L tanks containing 6 L of exposure water.  On Day 60, 

juveniles were transferred to 38-L tanks filled with 17 L of exposure water. 

 Shrimp began to produce clutches on Day 75.  Gravid females were removed 

daily to individual 0.95-L jars filled with 0.6 L of exposure water.  The females’ chelae 

were trimmed to prevent cannibalism of eggs (Little, 1968).  While isolated, the females 

were fed Artemia only.  The water was changed after eight days and females were placed 
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in a 3 mm-mesh cage, suspended at the top of the jar.  After the females’ eggs hatched, 

larvae were counted and the females were returned to their original tanks.  If a female did 

not retain its eggs until hatching, it was returned to its tank when it was no longer 

carrying eggs.  The exposure continued for a total of 240 days. 

 At the end of the exposure, several non-gravid adults (7-10 per tank) were 

allowed to depurate in clean seawater for three hours and preserved at -80 °C for 

subsequent analysis of total copper concentration.  Tissue samples were freeze-dried, 

crushed, and homogenized.  A subsample (~100 mg) was digested with 2 mL 

concentrated HNO3 at 60 °C overnight.  The digested sample was diluted and analyzed 

for copper by ICP-MS. 

Reciprocal Cross Exposure 

 This experiment utilized adults from the life cycle exposure’s control and  

26 µg Cu
2+

/L treatment.  After the life cycle exposure ended, half of the surviving adults 

were retained in their original exposure conditions and half were transferred to the 

alternate treatment, resulting in four possible combinations of primary and secondary 

exposure conditions.  No gravid females were transferred to the alternate treatment.  

There were four replicates per treatment combination, arranged in a randomized complete 

block design, blocked by shelf height. 

 The exposure was conducted in 38-L tanks containing 10 L of exposure water, 

and each tank contained 13-16 adults.  The pH was 7.8.  As females became gravid, they 

were removed to individual containers, as described above, to obtain counts of hatched 

larvae.  The exposure lasted for 21 days; any females gravid at this time were held until 

their eggs hatched or until they were no longer carrying eggs. 
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Post-Spawning Exposure 

 In this experiment, embryos that had been spawned under control conditions were 

exposed to copper.  A mixture of wild-caught and laboratory-bred adults (84 total) was 

bred in control seawater.  Gravid females were removed daily and each female was 

placed in an individual jar, containing either control seawater or copper-spiked seawater 

(26 µg Cu
2+

/L) at a pH of 7.9.  Larvae were counted upon hatching.  Because clutch size 

has been found to be correlated with size of the spawning female (Wood, 1967), the 

carapace length of the female was measured from the eye socket to the rear of the 

carapace.  The experiment lasted 25 days, during which time nine shrimp were used in 

each treatment. 

Statistical Analysis 

 The distribution of larval stage duration values, measured as the length of time 

from hatching until metamorphosis to the juvenile stage, was highly skewed to the right.  

To determine the average duration of the larval stage, I used failure time analysis 

(“distribution analysis” for right-censored data in Minitab v. 13.31 statistical software 

[State College, PA]).  The data fit a loglogistic distribution using maximum likelihood 

estimation (Anderson-Darling statistic = 14.81).  Applying this distribution, the time at 

which 50% of the larvae had metamorphosed was calculated for each replicate to 

estimate the duration of the larval stage.   

 Because P. pugio exhibits no apparent morphological difference upon the 

transition from the juvenile to adult stage, the presence of gravid females was used as an 

indicator of this transition.  The duration of the juvenile stage was estimated by the length 

of time from metamorphosis until 5% of the females in a replicate were gravid, at which 
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time all individuals in the replicate were assumed to be reproductively mature adults.  

This was an arbitrary cutoff, which equated to more than one female in a replicate being 

gravid at the same time. 

 The General Linear Model (GLM) routine in Minitab was used to test for 

differences among treatments.  Experimental block was included as a factor in statistical 

tests for the life cycle exposure and reciprocal cross exposure, although block was not a 

significant factor in any of the GLM tests.  Data were tested for normality and 

homogeneity of variance and were transformed as necessary.  Pairwise comparisons were 

performed using the Tukey method.  P-values resulting from pairwise comparisons are 

reported in the results.  An a priori Type I error rate (α) of 0.05 was used to assess 

significance of all statistical tests.  

 To test for differences in larval production in the reciprocal cross exposure, a 

GLM was employed using the following factors: primary exposure conditions, secondary 

exposure conditions, the interaction between primary and secondary exposure conditions, 

and experimental block.  For the post-spawning exposure, carapace length was included 

as a covariate in the GLM used to test for effects on larval production because the shrimp 

used in this exposure were more variable in size. 

 

Results 

Life Cycle Exposure 

 During the full life cycle exposure, there were no significant effects of copper on 

survival of larval, juvenile, and adult life stages (Fig. 4.1, P ≥  0.76).  Survival averaged  
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> 95% for each life stage.  At the end of the eight-month exposure, the number of 

surviving shrimp was similar for all treatments. 

Exposure to copper significantly increased the length of the larval stage (P < 0.01 

and P < 0.001 for 9 and 26 µg Cu
2+

/L, respectively).  Average duration of the larval stage 

increased by two days when shrimp were exposed to 9 µg Cu
2+

/L and by three days when 

exposed to 26 µg Cu
2+

/L, compared to control individuals (Fig. 4.2).  However, the 

duration of the juvenile stage was not significantly affected by copper exposure (Fig. 4.2,  

P ≥  0.67). 

 Shrimp raised under control conditions produced 48 (± 5) larvae per clutch, with 

an average of 39 clutches spawned per control tank during the final five months of the 

exposure period.  Although many shrimp in the copper treatments became gravid during 

the course of the life cycle experiment (producing ~27 clutches per replicate at  

9 µg Cu
2+

/L and ~20 clutches per replicate at 26 µg Cu
2+

/L), no larvae were produced 

from any of the clutches.  Females often dropped all of their eggs from their brood pouch 

within two days after spawning.  Hence, larval recruitment was prevented by exposure to 

copper at either 9 or 26 µg Cu
2+

/L. 

 At the end of the life cycle exposure, copper concentrations in adult shrimp tissue 

were significantly greater in shrimp exposed to copper (P < 0.01 and P = 0.05 for 9 and 

26 µg Cu
2+

/L, respectively), but did not differ between the two copper concentrations 

(Table 4.1). 

Reciprocal Cross Exposure 

 Shrimp that had been raised under control conditions and then transferred to 

copper-spiked seawater (26 µg Cu
2+

/L) were able to spawn, but no embryos hatched 
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(Table 4.2).  The first shrimp spawned three days after transfer from control to copper 

conditions.  Secondary exposure of shrimp to copper prevented production of larvae, 

regardless of the primary exposure conditions.  Females exposed to copper usually 

dropped all of their eggs within three days after spawning.     

 Shrimp that had been exposed to copper (26 µg Cu
2+

/L) during the full life cycle 

exposure successfully produced larvae when transferred to control seawater (Table 4.2).  

The first females to produce viable embryos had been in control conditions for only two 

days.  (No embryos were produced during the first day of this experiment.)  Although 

shrimp transferred from copper to control conditions succeeded in producing larvae, they 

produced 43% fewer larvae per clutch, on average, than shrimp that had been exposed to 

control conditions continuously (Table 4.2, P = 0.04).  The duration of the embryonic 

stage averaged 13 days, regardless of exposure conditions. 

 During the exposure, at least six females became gravid in reciprocal treatment 

combinations (treatments in which the primary and secondary exposure conditions 

differed).  Only two females became gravid in the copper “positive control”, in which 

shrimp had been exposed to copper during both the life cycle exposure and the reciprocal 

cross exposure.  No adult mortality occurred during the reciprocal cross exposure. 

Post-Spawning Effects 

 When gravid shrimp that had spawned in control seawater were transferred to 

copper-spiked seawater (26 µg Cu
2+

/L), 7 out of 9 clutches successfully produced larvae.  

On average, gravid shrimp transferred from control to copper conditions produced about 

26% as many larvae as shrimp maintained under control conditions (Fig. 4.3, P < 0.01).  

The duration of the embryonic stage averaged 13 days, regardless of exposure conditions. 
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Discussion 

Effects of Exposure Prior to Oviposition 

 During the life cycle exposure to copper, pronounced effects on reproduction by 

P. pugio were observed.  Although females exposed to copper could readily produce 

eggs, no larvae were produced from any of the clutches.  Therefore, subsequent 

completion of the shrimp’s life cycle was precluded at either 9 or 26 µg Cu
2+

/L, despite 

the absence of lethal effects on larvae, juveniles, and adults.  In the absence of organic 

ligands, free ion concentrations of 9 and 26 µg Cu
2+

/L would correspond to total copper 

concentrations of 33 and 95 µg Cu/L, respectively, at the experimental pH and salinity.  

Copper concentrations as high as 72 µg Cu/L have been observed in the tributaries of the 

Chesapeake Bay, USA (Hall et al., 1998), a region where P. pugio are abundant. 

 The acute effects of copper exposure (prior to oviposition) on larval production 

appeared to be identical to those observed in the life cycle exposure.  Adults exposed to 

26 µg Cu
2+

/L during the reciprocal cross exposure were unable to produce viable eggs, 

regardless of prior exposure conditions.  Conversely, eggs that were spawned under 

control conditions and then transferred to 26 µg Cu
2+

/L were sometimes able to hatch 

successfully in the post-spawning exposure, indicating that inhibitory effects of copper on 

reproduction are not solely due to reduced hatching success.  Therefore, a secondary 

effect of copper on reproduction appears to occur either before or during spawning and 

fertilization. 

 Effects of copper exposure on fertilization in aquatic invertebrates have been 

well-documented.  Copper exposure has been observed to reduce fertilization success in 

several coral species (Reichelt-Brushett and Harrison, 1999; Reichelt-Brushett and 
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Harrison, 2005; Reichelt-Brushett and Michalek-Wagner, 2005), oysters (Isognomon 

californicum [Ringwood, 1992a]), and sea urchins (Echinometra mathaei [Ringwood, 

1992a]) at total copper concentrations ranging from 10 to 50 µg/L.  In addition, reduced 

sperm motility has been observed in mussels (Mytilus edulis) exposed to 6 mg CuTotal/L 

(Earnshaw et al., 1986).  Therefore, it is possible that a decrease in fertilization success 

contributed to the prevention of larval production observed in pre-spawning exposures  

of P. pugio. 

Effects of Exposure on Hatching Success 

 In the post-spawning exposure, clutches that had been spawned in control 

seawater were often able to produce larvae in seawater containing 26 µg Cu
2+

/L.  

However, each clutch produced only 26% as many larvae, on average, as clutches that 

were not exposed to copper.  Therefore, copper exposure appears to reduce the hatching 

success of P. pugio embryos.  Exposure to a much higher concentration of copper  

(3 mg CuTotal/L) was reported to reduce hatching success of P. pugio embryos in vitro 

(Rayburn and Fisher, 1999).  Furthermore, copper-induced decreases in hatching success 

rates have been observed in other crustaceans such as crabs (Callinectes sapidus [Lee et 

al., 1996]) and mysid shrimp (Praunus flexuosus [Garnacho et al., 2001]).  Although 

there was a decrease in the number of larvae per brood in the post-spawning exposure to 

copper, a moderate percentage of embryos nonetheless hatched successfully, indicating 

that the lack of larval production observed in the life cycle exposure was not solely due to 

effects of copper on hatching success. 
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Potential Bioenergetic Effects on Reproduction 

 In the reciprocal cross exposure, females that had been exposed to copper for 

eight months were able to produce larvae successfully when transferred to control 

seawater prior to oviposition.  However, they produced 43% fewer larvae than shrimp 

that had been maintained continuously under control conditions.  The observed decrease 

in larval production may be due to a carryover of bioenergetic effects on the parental 

generation.  Exposure to copper has been found to reduce the amount of energy allocated 

to production pathways in aquatic invertebrates, including mussels (e.g., Perna viridis 

[Sze and Lee, 2000]), clams (e.g., Tapes philippinarum [Munari and Mistri, 2007]), 

cladocera (e.g., Daphnia pulex [Winner and Farrell, 1976]), amphipods (e.g., Gammarus 

pulex [Maund et al., 1992]), and shrimp (e.g., Farfantepenaeus paulensis [Santos et al., 

2000] and P. pugio [see Chapter 2]).  The exposure of P. pugio to copper for a full life 

cycle thus may have resulted in cumulative bioenergetic effects, reducing energy 

allocation to reproduction even after transfer to control conditions and resulting in a 

decrease in larval production. 

Effects on Duration of the Larval Stage 

 During the life cycle exposure, development of larvae to the juvenile stage was 

delayed by 2 to 3 days at copper concentrations of either 9 or 26 µg Cu
2+

/L.  Although 

this amount of time appears to be trivial relative to the length of the shrimp’s life cycle, it 

results in a 12-18% increase in the duration of the larval stage, which may be the most 

vulnerable to predation due to its planktonic nature (Anderson, 1985).  Additional 

examples of copper-induced delayed development in aquatic invertebrates include 

delayed embryonic development in P. pugio (Rayburn and Fisher, 1999), slower larval 
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development in Metapenaeus ensis (shrimp; Wong et al., 1995) and Watersipora 

subtorquata (bryozoan; Ng and Keough, 2003), and delayed sexual maturation in 

Tigriopus japonicus (copepod; D’Agostino and Finney, 1974). 

 

Conclusion 

 Exposure to copper at free ion concentrations of 9 or 26 µg Cu
2+

/L resulted in 

failure to complete the life cycle of P. pugio, given that no larvae were produced.  

Although females were able to spawn in copper exposures, they were unable to produce 

viable embryos.  Adults that had been exposed to copper for a full life cycle were able to 

produce viable embryos after being transferred to control conditions, but the number of 

larvae per clutch was reduced in comparison to reference values, possibly due to 

bioenergetic effects on the parental generation that reduced allocation of energy to 

reproduction.  Gravid shrimp exposed to copper after spawning in control conditions 

were able to produce a limited number of larvae per brood, which likely indicates 

reduced hatching success of embryos.  The overall effect of copper exposure on larval 

production may be due to a combination of effects on hatching success, parental 

bioenergetics, and processes before or during spawning and/or fertilization.  The results 

from this study suggest that even acute exposure to sublethal concentrations of copper 

can prevent completion of P. pugio’s life cycle.  Thus, copper pollution in natural 

habitats, even at relatively low concentrations, may have marked effects on the 

population dynamics of grass shrimp. 
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Table 4.1.  Copper concentrations (mean ± SE) in adult shrimp tissue (µg/g dry mass) at 

the end of the full life cycle exposure.  Values with different letters are significantly 

different (P ≤ 0.05). 

 

Nominal 

Treatment [Cu] in Tissue 

  

Control     95.8
a
 ± 12.6 

  

9 µg Cu
2+

/L   165.4
b
 ± 13.9 

  

26 µg Cu
2+

/L 140.5
b
 ± 9.6 
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Table 4.2.  Number of larvae (mean ± SE) hatched per clutch in the reciprocal cross 

exposure.  Adults were exposed to primary conditions for eight months and exposed to 

secondary conditions for up to 21 days.  Values with different letters are significantly 

different (P ≤ 0.05). 

 

 

   Primary Exposure Conditions 

     

   Control 26 µg Cu
2+

/L 

     

 Control 95
a
 ± 15 54

b
 ± 1 

     

 26 µg Cu
2+

/L 0
c
 ± 0 0

c
 ± 0 
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Fig. 4.1.  Survival (mean ± SE) of each life stage of P. pugio in the full life cycle 

exposure to copper.  Larval and juvenile survival were measured over 4-day intervals; 

adult survival was measured over 8-day intervals. 
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Fig. 4.2. Effects of copper exposure on duration (mean ± SE) of larval and juvenile 

stages.  Bars labeled with different letters are significantly different (P ≤ 0.05). 
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Fig. 4.3.  Number of larvae (mean ± SE) hatched per clutch in post-spawning exposures.  

Shrimp that spawned in control seawater were either retained in control seawater or 

exposed to copper (26 µg Cu
2+

/L) until their embryos hatched.  Different letters indicate a 

significant difference (P ≤ 0.05). 
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CONCLUDING REMARKS 

 

 Bioenergetic effects of copper and cadmium on the grass shrimp, Palaemonetes 

pugio were observed in both the two-week exposures and in the eight-month, full life 

cycle exposures.  Results from the two-week exposures, presented in Chapter 2, indicate 

that both copper and cadmium reduce the rates of standard metabolism and growth.  The 

effect of copper on growth was more severe than that of cadmium; exposure to copper 

resulted in a negative growth rate (weight loss) even at a sublethal concentration.  Food 

consumption and energy storage were not significantly affected by exposure to either 

metal.  In the full life cycle exposure, cadmium caused a decrease in reproductive output 

by reducing brood size as well as the percentage of reproductive females in the 

population (Chapter 3).  Although exposure to copper prevented larval production during 

the life cycle exposure, shrimp were able to successfully produce a limited number of 

larvae when transferred to control conditions (Chapter 4).  The results suggested that 

parental energetic allocation to reproduction had been reduced by long-term exposure to 

copper.  In sum, the bioenergetic effects of copper and cadmium on metabolic rate, 

growth, and reproduction suggest a decline in energy allocated to both respiration and 

production pathways, which is consistent with the majority of bioenergetic effects of 

copper and cadmium reported for aquatic invertebrates (reviewed in Chapter 1).  

Recommendations for future research include the measurement of effects of copper and 

cadmium on the assimilation efficiency, activity level, and molting rate of P. pugio. 

 Effects of cadmium on population dynamics, presented in Chapter 3, were 

explored using two methods of population modeling.  Exposure to cadmium was 
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projected to reduce population growth of P. pugio, even at a concentration that was 

sublethal to each life stage.  Results from decomposition analyses indicated that effects 

on population growth could be attributed mainly to effects of cadmium on reproduction.  

From these analyses, it is apparent that bioenergetic effects on reproduction at the 

individual level may have significant consequences at the population level.  Even though 

both models projected positive population growth at the experimental concentrations, 

exposure to cadmium would reduce the ability of populations to withstand predation 

pressure.  Given that P. pugio is an important prey item to several fish species, a 

reduction in the population growth rate of grass shrimp may have implications for their 

predators as well.  Predator populations may potentially be affected by cadmium both 

indirectly, i.e., by a decline in prey availability, and directly, i.e., via toxic effects of 

cadmium on the predators themselves.  Field surveys in cadmium-polluted areas are 

recommended to explore the effects of cadmium on both P. pugio and their predators. 

 The effects of copper on the life cycle of P. pugio, presented in Chapter 4, were 

particularly striking.  Although the concentrations studied were sublethal to larvae, 

juveniles, and adults, females exposed to copper were unable to produce viable embryos, 

preventing completion of the life cycle.  Subsequent experiments revealed that copper 

exposure may significantly reduce the energetic allocation to reproduction, as well as the 

hatching success of embryos, although these effects of copper are unlikely to be 

completely responsible for the lack of larval production observed during the life cycle 

exposure.  Hence, it is likely that exposure to copper also inhibits processes that occur 

either before or during spawning and/or fertilization.  In view of the fact that copper is 

known to reduce fertilization success in several species of aquatic invertebrates  
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(Chapter 1), this mechanism of inhibiting reproduction may very well have contributed to 

the prevention of larval production in P. pugio.  Due to the severe nature of the effects of 

copper on reproduction in P. pugio, future research is recommended to examine effects of 

copper on the reproductive processes of other aquatic invertebrates, particularly closely 

related crustaceans with external fertilization. 

 In conclusion, effects of copper and cadmium on bioenergetics, reproduction, and 

population growth of P. pugio suggest that both metals may reduce the sustainability of 

grass shrimp populations in contaminated habitats, even at sublethal concentrations.  

Population declines of this widely distributed epibenthic invertebrate could have far-

reaching implications at the level of the ecosystem, including effects on nutrient cycling 

and predator populations. 
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