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S̃L(n,F) and PGL(n,F). Using orbital integrals we obtain the formula for the
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methods of Flicker and Kazhdan [7].
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Chapter 1

Introduction

1.1 Overview

The study of non-linear groups has gained much importance since Shimura de-

fined a correspondence between the space of cusp forms of half-integral weight

and the space of cusp forms of even integral weight. An important example in-

volving non-linear groups is of the oscillator representation of the two fold cover of

Sp(2n). Shimura’s correspondence gives a correspondence between automorphic

forms on PGL(2) and the two-fold cover S̃L(2) of SL(2).

Flicker, Kazhdan, and Patterson have extensively studied automorphic forms

on arbitrary covers G̃L(n) of GL(n) [6], [7], [9]. A complete description of the

correspondence between the automorphic forms between these two groups for

n = 2 is given in [6]. This was generalized to any n by Flicker and Kazhdan in

[7]. In comparison to G̃L(n), we know much less about automorphic forms on

S̃L(n). However, there exist results for the case n = 2. Waldspurger has done a

deep study of automorphic forms on S̃L(2) in his work [23], [24], [25].

Kazhdan and Patterson have shown that certain covers of GL(n,F) have in-

teresting properties. This work focuses on the genuine representations of N -fold
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covers of the general linear group GL(n,F) and the special linear group SL(n,F)

where F is a p-adic field containing µN , satisfying |µN(F)| = N , where µN(F) is

the group of the N th roots of unity in the field F. A representation of G̃L(n,F)

is said to be genuine if it does not factor to any proper quotient of G̃L(n,F). We

study the lifting (transfer) of characters of representations between PGL(n,F)

and the N -fold cover S̃L(n,F). In lifting theory one tries to obtain a relationship

between the characters of representations of the two groups in question. This

is important because it provides methods for obtaining information about the

representations of one group by knowing about the representations of the other.

Lifting or transfer of functions defined on the two groups is dual to the lifting of

representations of the given groups.

The problem of lifting of representations has been studied extensively. Howe’s

theta correspondence and Langlands’ functoriality of L-packets conjectures are

important examples of the phenomenon of lifting. The Theta correspondence

relates representations of the members of a reductive dual pair imbedded in

the Metaplectic group. Langlands’ functoriality conjecture provides methods to

transfer representations between linear groups by using homomorphisms between

L-groups.

Adams [3] proved a correspondence between characters of SO(p, q) (here p+

q = 2n+1) and the two-fold cover S̃p(2n) over R. Renard [16] obtained an orbital

integral correspondence between continuous functions with compact support on

the above groups and proved that this correspondence is dual to the one obtained

by Adams. Schultz [18] obtained the correspondence between characters for the

case n = 1 for F a p-adic field. This is the same as the correspondence between the

2-fold cover of SL(2) and PGL(2). Adams [1] generalized this to a correspondence
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between the n-fold cover of SL(n,F) and PGL(n,F).

We generalize the work of Adams [1] by obtaining a correspondence between

the characters of certain covers of SL(n,F) and PGL(n,F). As mentioned before,

the problem of lifting of functions is dual to the problem of lifting of characters

and we exhibit a transfer of functions between S̃L(n,F) and PGL(n,F) in that

direction. We consider N -fold covers of GL(n,F) where n|N. We do this because

our methods work only for this case. Only when n|N can we obtain representa-

tions of S̃L(n,F) from our analysis. In the second part of the thesis we study the

lifting of functions between S̃L(n,F) and PGL(n,F). Using orbital integrals we

obtain the formula for the lifting of characters as a dual to the lifting of functions.

This is based on the methods of Flicker and Kazhdan [7]. Finally, using analysis

of orbital integrals, we provide alternate proofs of a well-known fact about p-adic

fields (under certain restrictions). We show that for a Galois extension E/F,

F∗/N(E∗) ' Gal(E/F)ab where N is the norm map (section 1.3).

1.2 Main Results

First we introduce some notation. Let F denote a p-adic field i.e. a finite extension

of the p-adic numbers, Qp. We will be considering central extensions of GL(n,F)

and SL(n,F). Let µN(F) be the group of N th roots of unity in F, and assume

that |µN(F)| = N and that n|N and No = N/n.

Let S̃L(n,F) be a perfect group (a group which is its own commutator sub-

group) fitting into the exact sequence

1 → µN(F) → S̃L(n,F) → SL(n,F) → 1

with µN(F) central in S̃L(n,F). The group S̃L(n,F) is unique up to isomorphism
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and is given by a Steinberg cocycle [13]. We let G̃L(n,F) to be that extension of

GL(n,F) which contains S̃L(n,F). This amounts to taking c = 0 in the notation

of Kazhdan-Patterson [9] (section 2.3).

Thus there is an exact sequence :

1 → µN(F) → G̃L(n,F) → GL(n,F) → 1.

It should be noted that there are other central extensions of GL(n,F) and are

obtained by twisting the cocycle of G̃L(n,F) obtained above by powers of the

N th Hilbert symbol.

The group G̃L(n,F) is a non-linear group, i.e it cannot be imbedded inside any

matrix group. Let T denote a Cartan subgroup of GL(n,F) and p the projection

map from G̃L(n,F) to GL(n,F). A key point is that p−1(T ) is not abelian. This

makes the analysis G̃L(n,F) very different from that of GL(n,F).

1.2.1 Lifting of Characters.

We study the representations of S̃L(n,F) by restricting representations of G̃L(n,F).

For any k, let G̃k
+ = {g ∈ G̃L(n,F) | det(g) ∈ F∗k}

We have the following inclusions:

S̃L(n,F) ⊆ G̃
N/d
+ ⊆ G̃n

+ ⊆ G̃L(n,F) (1.1)

where d = (n− 1, N).

We have our first theorem below. We will be using this theorem to prove our

main result.

Theorem 1.2.1 Let Π be an irreducible, genuine representation of G̃L(n,F). Let

π be an irreducible summand of the restriction of Π to G̃n
+ ( that Π| eGn

+
decomposes
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as a sum of its irreducible constituents follows because G̃n
+ is a normal subgroup

of finite index). Also let σ be an irreducible component of π restricted to G̃
N/d
+ (it

turns out that all components of π|G̃N/d
+ are isomorphic). Then we have:

Θσ(g) =
d

Nn

∑

z∈Z̃N0/d/Z̃N/d

χπ(z)−1ΘΠ(zg)

where Z̃N0/d denotes the pullback of ZNo/d(⊂ GL(n,F)) to G̃L(n,F) and similarly

for Z̃N/d and Θπ,Θσ and ΘΠ are characters of representations as functions on reg-

ular semi-simple elements of respective groups, i.e they are functions on regular

semi-simple elements of the respective group so that integration of a function

against them yields the representation as a distribution acting on the given func-

tion. Existence of characters as a function on the elements of the group follows

from the work of Harish-Chandra ([8]). Also χπ denotes the central character of

the representation π.

Proof. We refer to theorem 3.3.1 for the proof.

Since G̃
N/d
+ = S̃L(n,F)Z(G̃

N/d
+ ) (where Z(G) denotes the center of G), the

above theorem gives us a formula for the characters of S̃L(n,F) in terms of those

of G̃L(n,F). The main point here is that the restriction of an irreducible repre-

sentation from G̃L(n,F) to G̃n
+ is easily understood by means of Clifford theory.

This is where we really need n|N.
The corresponding problem is difficult in the case of GL(n,F) as is illustrated

in [22].

Flicker, Kazhdan and Patterson have defined a lifting theory similar to en-

doscopy for linear groups. They conjecture that under certain conditions, an

irreducible, unitary character π of GL(n,F) lifts to an irreducible, genuine, uni-

tary character L(π) of G̃L(n,F) or to zero [6], [7], [9]. These conditions generally
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hold for tempered representations [1]. They compute the character of L(π) in

terms of π. We follow their approach and relate the characters of representations

of S̃L(n,F) to those of a linear group, PGL(n,F).

Theorem 1.2.1 expresses the character of an irreducible constituent of L(π)

restricted to S̃L(n,F) in terms of characters of G̃L(n,F). Combining the results

of theorem 1.2.1 together with results of [7] on lifting between GL(n,F) and

G̃L(n,F) we relate the characters of S̃L(n,F) and PGL(n,F).

Our main result exhibits a correspondence between representations of PGL(n,F)

and S̃L(n,F). We prove it by taking an appropriate sum of representations of

S̃L(n,F) and relating the character of the sum to an irreducible character of

PGL(n,F). We describe this sum now. The constituents of L(π) restricted

to G̃n
+ are parametrized by their central characters. We describe that now.

Letµ denote a genuine character (fixed once and for all) of Z̃No/d such that

µ(z, ζ) = ζ∀z ∈ ZN . Consider the characters {ν | ν ∈ F̂∗ and νN = χπ}.
We use χν to denote the genuine character of Z̃N0/d parametrized by ν given by

χν(z
No/d, ζ) = ν(zNo/d)µ(zNo/d, ζ).

Let L(π, χν) be the irreducible summand of L(π), with central character χν ,

restricted to S̃L(n,F).

This turns out to be an irreducible genuine representation of S̃L(n,F). For any

character α of F∗ we have L(παN , χνα
n) ' L(π, χν); we sum over F̂∗/F̂∗

n ' µ̂n

and define

Lst(π, χν) =
∑

α∈cµn/cµn
n/e

L(παNo , χνα).

where e = gcd(n,No).

The representation πν−No factors to PGL(n,F), and we get the character of

Lst(π, χν) in terms of the character of πν−No .
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We have a definition:

Definition 1.2.1 Let φ be the orbit correspondence map between PGL(n,F) and

SL(n,F) given by: φ(g) = det(g−No)gN ∈ SL(n,F).

We have our main theorem:

Theorem 1.2.2

ΘLst(π,χν)(g) =
∑

φ(h)=p(g)

∆µ(h, g)Θπν−No (h).

In the above theorem, φ is the orbit correspondence map and p is the pro-

jection map from S̃L(n,F) to SL(n,F). Here ∆µ(h, g) is a transfer factor having

the property that |∆µ(h, g)| = |∆(h)|/|∆(g)| where ∆ denotes the usual Weyl-

denominator ( [1]). Also g in any regular element of GL(n,F).

Proof. We refer to section 4.5 for the proof and for further details regarding

the notation in the above theorem.

The set Π(π, χν) = {L(παNo , χνα) | α ∈ µ̂n} appearing here is analogous

to an L-packet for a linear group [1]. But it should be noted that Π(π, χν) is

not the set of constituents of the restriction of a representation of G̃L(n,F) and

specifically ΘLst(π,χν) is in general not G̃L(n,F) conjugation invariant [1].

In [1], the case n = N was considered. We prove that the methods of re-

striction which we are using work only in the case when n|N . Also, in the

case n|N , we follow a two-step restriction process (cf. (1)). A representation of

G̃L(n,F) is restricted to two intermediate subgroups before obtaining a represen-

tation S̃L(n,F). For a precise statement refer to Theorem 1.2.1. In [1], these two

subgroups coincide and so it is a one-step restriction process. In the formula for

L(π), we need a supplementary character, ω̃ of Z̃N/d (cf. [7], section 26). This is
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not needed in [1]. But it is interesting to note that ω̃ cancels finally and the final

character formula does not depend upon ω̃.

1.2.2 Lifting of functions.

From now on, we restrict to the case n = N. We expect all the results to hold

without any major changes in the proofs. We are dealing with n = N here because

the exposition is much easier is this case. We will use the notation L(π, ν) to

denote L(π, χν) (from the previous section). This will simplify our presentation

(see section 5.1).

In the rest of the thesis, we concentrate on the lifting of functions between G̃n
+

and G̃L(n,F). As we shall see, this will also provide a lifting of representations

between S̃L(n,F) and PGL(n,F). In [7], a lifting of orbital integrals and functions

has been obtained between G̃L(n,F) and GL(n,F) and has been used to define

a lifting of representations between GL(n,F) and G̃L(n,F). We are essentially

following the same approach. We also obtain theorem 1.2.1 as a dual to the

lifting of functions and orbitals integrals between G̃n
+ and G̃L(n,F). We explain

the above results in the rest of this section.

Definition 1.2.2 Let ι : µn → C∗ be an injective character of µn. Fix ι once

and for all. A function f̃ ∈ C∞c (S̃L(n,F)) is said to be a genuine function (with

respect to ι.) if f̃(g, ζ) = ι(ζ)f̃(g, 1) ∀g ∈ S̃L(n,F), ∀ζ ∈ µn.

Let α ∈ µ̂n. Let C∞c (S̃L(n,F))α denote the functions f̃ in C∞c (S̃L(n,F))

satisfying

f̃(zζg) = χ−1
α (zζ)f̃(g)
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for any g ∈ S̃L(n,F) and any zζ where zζ is any pullback of ζI via the map

p : S̃L(n,F) → SL(n,F). Also χα(zζ) = µ(zζ)α(ζ).

Let f̃ ∈ C∞c (S̃L(n,F))α be a genuine function. Choose a character ν of F∗

such that ν|µn = α. We define a function A(f̃ , ν) on G̃n
+ by extension via the

center. Specifically:

Definition 1.2.3 Let f̃ ∈ C∞c (S̃L(n,F))α and ν ∈ F̂∗ such that ν|µn = α. Define:

A(f̃ , ν)(zg) = χ−1
ν (z)A(f̃ , ν)(g)

for any g ∈ S̃L(n,F), z ∈ Z(G̃n
+) = p−1{zI | z ∈ F∗} (Lemma 3.2.4).

We are using z to denote an element of Z(G̃n
+) = Z̃. (which is just the pullback

of Z(GL(n,F)) via p.) This defines A(f̃ , ν) on the whole of G̃n
+ = S̃L(n,F)Z̃. We

also note that A(f̃ , ν) is well-defined because of that transformation properties

of f̃ on S̃L(n,F).

Related to A(f̃ , ν), we make a few more definitions:

Definition 1.2.4 1. Let B(f̃ , ν) be defined on G̃L(n,F) by extending A(f̃ , ν)

outside G̃n
+ by zero.

2. C(f̃ , ν) is defined on GL(n,F) to be a Kazhdan-Flicker lift of B(f̃ , ν) i.e

C(f̃ , ν) satisfies the following:

ΘL(π)(B(f̃ , ν)) = Θπ(C(f̃ , ν))

where π is any irreducible admissible representation of GL(n,F) and L(π)

is its lift on G̃L(n,F) as defined earlier in this section (see section 4.1 [7]

for further details. Note that L(π) exists only for cetain π. Hypothesis I

and II in section 4.1 list some π for which L(π) exists).
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3. D(f̃ , ν) is defined on GL(n,F) by:

D(f̃ , ν)(g) = ν(det(g))C(f̃ , ν)(g).

We state an importand property of D(f̃ , ν).

Lemma 1.2.1 D(f̃ , ν) is trivial on the center of GL(n,F) and is hence a function

on PGL(n,F). Also D(f̃ , ν) is independent of the choice of the extension ν of α.

Proof. see Lemma 5.1.3

The above Lemma follows by considering the orbital integral of C(f̃ , ν) over

GL(n,F) and using the Weyl Integration formula. Details are given in section

5.1. Since D(f̃ , ν) is independent of the choice of the extension ν of α we use

D(f̃) instead to denote D(f̃ , ν).

Let f̃ ∈ C∞c (S̃L(n,F)) be a genuine function. Then f̃ =
∑

α∈µ̂n
f̃α where each

f̃α ∈ C∞c (S̃L(n,F))α is a genuine function. We make the following definition.

Definition 1.2.5 Let f̃ ∈ C∞c (S̃L(n,F)) be a genuine function and f̃ =
∑

α∈µ̂n
f̃α

as above. Define:

Γ(f̃) =
∑

α∈µ̂n

D(f̃α) ∈ C∞c (PGL(n,F)).

We state certain important relations that hold between the functions defined

above.

Lemma 1.2.2 For any f̃ ∈ C∞c (S̃L(n,F))α, choose ν ∈ F̂∗ satisfying ν|µn = α,

we have

ΘL(π,ν)(f̃) = Θπν−1(D(f̃)).
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For a proof we refer to proposition 5.1.1.

From the above Lemma, it follows that:

Theorem 1.2.3 Let f̃ ∈ C∞c (S̃L(n,F)). We have

ΘLst(f̃) = Θπν−1(Γ(f̃)).

The first equality in the above theorem follows because ΘL(π,ν)(f̃
α) = 0 if

ν|µn 6= α. We also see from this fact that stabilization (using Lst instead of

merely L(π, ν) ) is indeed necessary. The fact that D(f̃ , ν) is independent of the

extension ν of α is also important. This enables us to define a distribution on

C∞c (S̃L(n,F)) using the above theorem. We refer to Theorem 5.1.1 for further

details.

1.2.3 Lifting of Orbital Integrals.

Next we study the relationship between various orbital integrals. We use the

notation:

FG(γ, f) = ∆(γ)

∫

G(γ)\G
f(g−1γg)dg

where G is any linear or non-linear group, γ ∈ G is any regular semi-simple

element, G(γ) is the centralizer of γ in G, f is compactly supported mod the

center or compactly supported and may transform by some character of the center

of G, dg is a right-invariant measure on the homogeneous space G(γ)\G whose

normalization will be specified later. We multiply by ∆(γ), the Weil denominator,

in order to normalize the orbital integrals so that they extend by continuity to

the singular elements of G. When we assume G to be a non-linear group (some

subgroup of G̃L(n,F)), we will further assume f to be a genuine function and
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denote it by f̃ . We let an element in the non-linear group to be regular (semi-

simple) if its projection in the linear group is regular (semi-simple).

We now state some results regarding relationships between orbital integrals

of various functions defined before.

Lemma 1.2.3 Let γ̃ ∈ S̃L(n,F) be a regular, semi-simple element and T be

the Cartan subgroup of GL(n,F) containing p(γ̃) with p(γ̃) ∈ T n. Let f̃ ∈
C∞c (S̃L(n,F))α and ν ∈ F̂∗ such that ν|µn = α. We use k1 to denote |G̃n

+\G̃n
+T̃ |

and zy to denote a pullback in Z̃ of yI ∈ Z (note that this choice does not matter

as we are dealing with genuine functions and characters). We then have:

FfGL(n,F)(zyγ̃, B(f̃ , ν)) =
1

k1

χ−1
ν (zy)

∑

h∈ eGn
+\fGL(n,F)

(y, det(h))F eGn
+
(γ̃h, A(f̃ , ν))

where γ̃h = h−1γ̃h.

Proof. We refer to Lemma 5.3.3 for proof.

Upon taking χν to the other side in the above lemma and summing over all

zy ∈ Z̃n\Z̃ we obtain:

Theorem 1.2.4

F eGn
+
(γ̃, A(f̃ , ν)) =

k1

|F∗/F∗n|
∑

z∈fZn\Z̃
χν(z)FfGL(n,F)(zγ̃, B(f̃ , ν))

Proof. We refer to Theorem 5.3.1 for proof.

Next we use lemmas 1.2.2 and 1.2.3 and theorems 1.2.3 and 1.2.4 to again

obtain theorem 1.2.2. We outline the proof (see section 5.4 for details).

Define a function on S̃L(n,F):
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l∗(π, ν)(γ̃) =
1

|F∗/F∗n|
∑

z∈fZn\Z̃
χ−1

ν (z)ΘL(π)(zγ̃)

and a distribution Θl∗(π,ν) on C∞c (S̃L(n,F)) by integrating against l∗(π, ν). Using

Weyl Integration formula we obtain:

Θl∗(π,ν)(f̃) = ΘL(π,ν)(f̃)

for every f̃ ∈ C∞c (S̃L(n,F)) and thus we obtain

ΘL(π,ν) = Θl∗(π,ν)

as characters considered to be functions of elements of S̃L(n,F).

1.3 Connection to Local Class Field Theory

We have used the Norm residue symbol in all our analysis (construction of the

covering group and performing calculations regarding commutators etc). Since

this symbol comes out of Local Class Field Theory we will give an alternate

explicit definition of a symbol, τ , satisfying the properties of the Norm residue

symbol (section 2.1). We can then derive all the results of this thesis using this

symbol and its properties (all that has been used regarding the Norm residue

symbol are the properties stated in section 2.1) and then we would be having all

our results without using the results from Local Class Field Theory.

Let F be a p-adic field containg µn, the nth roots of unity. Assume that n is

coprime to p, the residual characteristic of F. Let E be an extension field of F such

that |E/F| = n. We mention here that n is what it has been in previous sections

i.e coming from SL(n,F). Hence we can associate E to a Cartan subgroup of

13



GL(n,F). Let N : E∗ → F∗ be the norm map. Let τ( , ) denote the alternate to

the nth Norm residue symbol (whose definition we provide explicitly) with respect

to F. We consider orbital integrals of various functions over T̃ , the pullback of

T to G̃L(n,F) via the covering map p : G̃L(n,F → GL(n,F). We obtain the

following result:

Theorem 1.3.1 Let x ∈ F∗/F∗n. Then τ(x, y) = 1 ∀y ∈ E∗n ∩ F∗/F∗n if and

only if x ∈ N(E∗)/F∗n.

From the fact that τ is a perfect pairing, we have an immediate corollary:

Corollary 1.3.1

E∗n ∩ F∗/F∗n ' F∗/N(E∗).

We use the above corollary to obtain the following well-known results about

Local Fields:

Theorem 1.3.2 Let E/F be a finite Galois extension of degree n. Assume that

µn ⊂ F and that n is coprime to the residual characteristic of F. Let Gal(E/F)ab

denote the abelianization of Gal(E/F). Then there exists a map σ : F∗ → Gal(E/F)ab

such that the sequence

1 → N(E∗) → F∗ σ→ Gal(E/F)ab → 1

is exact.

For abelian extensions, we obtain:

Theorem 1.3.3 Let E/F be an abelian field extension of F and E1 and E2 be two

abelian field extensions of F inside E with N i (i=1,2) the corresponding Norm

maps. Then N1(E1) = N2(E2) if and only if E1 = E2. We assume that µn ⊆ F
where n = |E/F| and that n is coprime to the residual characteristic of F.
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For general extensions we have:

Theorem 1.3.4 Let E/F be a finite extension of degree n. Assume µn ⊂ F and

n coprime to the residual characteristic of F. Let E1 be the maximal abelian

extension of F inside E. Then

NE
F (E∗) = NE1

F (E1∗).

We are using the assumption (n, p) = 1 beause for the case p|n the explicit

formula for the Norm-residue symbol is very complicated and it is not easy from

there to obtain the property of non-degeneracy. If we assume the existence of

the Norm-residue symbol and its properties, the same proof of theorem 1.3.4

works exactly the same with τ replaced by the Norm-residue symbol and proves

theorem 1.3.4 for the general case p|n. We are using local class field theory but

still providing a completely different proof of theorem 1.3.4. We refer to [20], Pg.

172, for the classical proof.

Above analysis raises some questions. Why are we able to obtain number-

theoretic results like these using methods from harmonic analysis? What is the

role played by non-linear groups?
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Chapter 2

Metaplectic Groups

2.1 The Hilbert symbol

Let F be a non-archimedean local field. Fix an integer N ≥ 2. Let µN(F) = {x ∈
F : xN = 1} i.e. the N th roots of unity in F. Sometimes we will denote the roots

of unity in F by just µN .

We will assume that |µN(F)| = N , i.e., that F contains the full group of N th

roots of unity. We will denote the N th Hilbert symbol by ( , )N,F over F. We

will abbreviate it by ( , ) when there is no chance of ambiguity. This is a map

( , ) : F∗ × F∗ → µN(F)

satisfying, for a, a′, b in F∗,

1. (a, b)(a′, b) = (aa′, b)

2. (a, b)(b, a) = 1

3. (a, 1− a) = 1 for a 6= 1.

4. {a : (a, x) = 1∀ x ∈ F∗} = F∗N
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5. (a,Nb)F = (a, b)E where E is a finite field extension of F where b ∈ E∗ and

N : E∗ → F∗ denotes the norm map.

where F∗N = {xN |x ∈ F∗}. We refer to [20] for more information on the Hilbert

symbol. In particular, we note that ( , )N is a perfect pairing on F∗/F∗N and

gives an isomorphism of F∗/F∗N with F̂∗/F∗N .

Remark 2.1.1 It must be noted that all the results in this thesis use only the

above properties of the Norm Residue symbol. In particular if we can define

explicitly another symbol having the above properties of the Norm Residue symbol

then we can use that symbol to derive the results of this thesis regarding GL(n,F).

We will be doing this in chapter 6 for the case when the residual characteristic of

F is co-prime to N .

2.2 Basics

We discuss some basic material regarding properties of characters of F∗ and cov-

ering groups. ([1])

We consider covering groups:

1 → µN → G̃
p→ G→ 1

with µn central in G̃ (Section 2.3). Let χπ be the central character of a represen-

tation π. We say a representation π of G̃ is genuine if π has a central character

χπ whose restriction to µN is injective. If π is not genuine then π factors to a rep-

resentation of a cover of G with kernel a proper subgroup of µN . If ι : µN ↪→ C∗

is an embedding we say π is of type ι if χπ|µN
= ι.
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We have the following exact sequences. They will play a very important role

throughout.

1 → µN → F∗ N→ F∗N → 1 (2.1)

1 → F∗N → F∗ → F∗/F∗N → 1 (2.2)

We also have their Pontriagin duals:

1 → F̂∗N → F̂∗ res→ µ̂N → 1 (2.3)

1 → F̂∗/F∗N → F̂∗ res→ F̂∗N → 1 (2.4)

Suppose µN is in the kernel of λ ∈ F̂∗. Then by (2.3) λ(x) = ν(xN) for some

character ν of F̂∗N , which by (2.4) extends to τ ∈ F̂∗. This gives us the following

lemma which will be used repeatedly:

Lemma 2.2.1 Let λ ∈ F̂∗. Then λ = νN for some ν ∈ F̂∗ if and only if λ(ζ) = 1

for all ζ ∈ µN .

We identify the center Z of GL(n,F) with F∗ and the central character χπ of

a representation of GL(n,F) with an element of F̂∗.

For α ∈ F̂∗ we write α for the character α ◦ det of GL(n,F), and also for the

character α ◦ p of G̃L(n,F). Note that for π a representation of GL(n,F) (with a

central character)

χπα = χπα
n. (2.5)

We write Θπ for the global character of a representation π, considered as a

function on the set of regular semisimple elements.
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2.3 Group Structure

We continue with the notation of Section 2.2. Most of this material can be found

in [1]. We first define the group G̃1 ([14], [21]): this is a topological group which

fits in an exact sequence:

1 → µN
ι→ S̃L(n,F)

p→ SL(n,F) → 1 (2.6)

with ι, p continuous, ι closed and p open. The classes of such extensions are

parametrized by the group of (bilinear) Steinberg cocycles with values in µN . Let

( , )N : F∗×F∗ → µN denote the N th norm residue symbol for F. For properties

of ( , )N see section 2.1. Each Steinberg cocycle is given by c(x, y) = (x, y)k
N

for some k ∈ Z. Write G[k] for the group defined by the cocycle (x, y)k
N . Then

G[k] and G[k′] are equivalent extensions if and only if k ≡ k′ mod (N). We let

S̃L(n,F) = G[1]. The proof of above facts can be found in [21] and [12].

Once and for all we fix an embedding

ι : µN(F) ↪→ C∗

and we identify µN with its image. Henceforth we assume all genuine represen-

tations are of type ι.

The Steinberg cocycle defines a cover G̃L(n,F) of GL(n,F) by [9], and we let

G̃L(n,F) to be that cover which contains S̃L(n,F) as a subgroup (we are taking

c = 0 in the notation of [9]).

We write c( , ) for the cocycle defining G̃L(n,F). Then

G̃L(n,F) = {(g, ζ) | g ∈ GL(n,F), ζ ∈ µn)}

with multiplication (g, ζ)(g′, ζ ′) = (gg′, ζζ ′c(g, g′)).
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Commutators play an important role. Suppose g and h are commuting el-

ements of GL(n,F). Let g̃, h̃ be inverse images of g, h in G̃L(n,F). Then

η = g̃h̃g̃−1h̃−1 ∈ µN is independent of the choices of g̃ and h̃. We also use

{g, h} to denote g̃h̃g̃−1h̃−1.

Now let z ∈ Z, the center of GL(n,F) (scalar matrices). We write z = xI for

some x ∈ F∗. For g ∈ GL(n,F), we wish to compute {z, g}. To do this we will

first compute {h, k} where h and k are diagonal elements in GL(n,F). We have

a lemma:

Lemma 2.3.1 Let h = diag(hi) and k = diag(kj). Then

{h, k} =
∏

l

(hl, kl)
−1
N .(det(h), det(k))N

Proof. This lemma can be proved using the properties of the Hilbert symbol. (

[9])

Using the above lemma we have:

Proposition 2.3.1 Let z = xI. Then the map

ζz : G̃L(n,F) → µN(F)

given by

ζz(g) = {z, g}

is a homomorphism and

ζz(g) = (x, det(g))n−1
N

Proof. The map ζz is a homomorphism because {z, g} is in the center of G̃L(n,F)

for every g. It factors through the determinant because S̃L(n,F) is the commu-

tator subgroup of G̃L(n,F) and µN(F) is an abelian group. Thus ζz(g) = ζz(dg)
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where dg could be any diagonal matrix with one entry det(g) and the rest equal

to 1. From the above lemma we obtain:

ζz(g) = {z, dg} = (x, det(g))−1(xn, det(g)) = (x, det(g))n−1

We are as before using the N th Hilbert symbol.

We refer to this formula as the commutator formula. We will be using this

formula repeatedly in the next chapter.
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Chapter 3

Representation Theory

3.1 Restriction of genuine representations to cer-

tain subgroups.

We wish to study how a genuine irreducible representation of G̃ behaves upon

restricting to some particular subgroups. We start by considering a very general

setting. Notation is the same as in chapter 2.

We are considering a central extension G̃ of G by a finite cyclic group A. Here

G can be any linear group. Later on we will consider the case when G = GL(n).

Consider the exact sequence:

1 → A→ G̃
p→ G→ 1.

Let Z be the centre of G and Z̃ the pullback of Z in G̃. Define subgroups H̃

and K̃ of G̃:

1. H̃ = CentG̃(Z̃).

2. K̃ = H̃Z̃.

Assume that H̃ and K̃ are proper normal subgroups of finite index. Also
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assume that CentG̃(H̃) = Z̃ and CentG̃(Z(K̃)) = K̃. These conditions will be

naturally satisfied in our setting, i.e when G = GL(n,F) and G̃ = G̃L(n,F).

We study the restriction of a genuine representation of G̃ to H̃. Since H̃ ⊆
K̃ ⊆ G̃, our approach will be to restrict a representation of G̃ to K̃ and then

restrict from K̃ to H̃.

Lemma 3.1.1 Let Π be an irreducible genuine representation of G̃ and let σ be

an irreducible representation of K̃ occuring in the restriction Π|K̃. We use σg to

denote the conjugate representation of σ by g i.e σg(x) = σ(gxg−1). Then Π|K̃ =

⊕g∈G̃/K̃σ
g where all σg’s in the direct sum are distinct irreducible representations

of K̃.

Proof. Let χσ be the central character of σ. Choose a g ∈ G̃ such that

g /∈ K̃. Let z ∈ Z(K̃).

χσg(z) = χσ(gzg−1z−1z)

= χσ({g, z}z)
Since {g, z} ∈ A , we obtain χσg(z) = χσ(z){g, z} .

Choose a z ∈ Z(K̃) such that {g, z} 6= 1. This can be done because CentG̃(Z(K̃)) =

K̃ and g /∈ K̃. Thus we get χσ 6= χσg and hence σg � σ. By use of results from

Clifford theory (Pg. 345 [4]) we obtain the lemma.

If Π ∈ Irr(K̃), what happens on restricting to H̃ ?

Lemma 3.1.2 Let Π be an irreducible, genuine representation of K̃. Let σ be

an irreducible summand in Π|H̃ . Then σg ' σ for all g ∈ K̃.

Proof. : We can assume g ∈ Z̃ in our claim as K̃ = H̃Z̃.
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Θσg(h) = Θσ({g, h}h) ∀h ∈ H̃.

{g, h} = 1 follows by definition of H̃. Hence ;

Θσg = Θσ ∀ g ∈ K̃.
By Clifford theory ([4], Pg. 345) there exists a positive integer m such that:

Π|H̃ = mσ. (σ + . . .+ σ︸ ︷︷ ︸
m

). (3.1)

Next we determine m. We have a lemma:

Lemma 3.1.3 Let Π be an irreducible, genuine representation of K̃. Let σ be

an irreducible summand in Π|H̃ . Then Π|H̃ = mσ where m =
√
|K̃/H̃|.

Proof. By Frobenius Reciprocity:

IndK̃
H̃

(σ) = mΠ⊕ · · · . (3.2)

We use the formula for the character of an induced representation (very similar

to [19], chapter 7) to obtain:

Θ
IndK̃

H̃

(h) = |K̃/H̃|Θσ(h) h ∈ H̃

= 0 h /∈ H̃.

From the above formula and the next lemma, we conclude:

Θ
IndK̃

H̃

=
|K̃/H̃|ΘΠ

m
.

Using this and equation 3.2, we have:

|K̃/H̃|ΘΠ

m
= mΘΠ + · · ·
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where + · · · stands for sum of characters of representations other than Π. Since

the characters if distinct representations are linearly independent, we can compare

coefficients and conclude that |K̃/H̃| = m2. This proves the lemma.

Lemma 3.1.4 ΘΠ vanishes outside H̃.

Proof. : Let g /∈ H̃. Choose z such that {z, g} 6= 1. (z ∈ Z̃). (here we

only use the definition of H̃.)

ΘΠ(g) = ΘΠ(zgz−1)

= ΘΠ({z, g}g)

= ΘΠ(g){z, g}.

Here we have used the fact that Π is genuine. Since g can be chosen so that

{z, g} 6= 1,⇒ ΘΠ(g) = 0.

3.2 Subgroups of G̃.

Let us state the notation first. From now on we will use the following notation:

• G := GL(n,F).

• G̃ := G̃L(n,F).

• For l ∈ Z, let Gl
+ := {g ∈ G| det(g) ∈ F∗l}.

• For l ∈ Z, let G̃l
+ := {g ∈ G̃| det(g) ∈ F∗l}.

• G1 := SL(n,F).
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• G̃1 := S̃L(n,F).

Now we consider the case when G = GL(n,F) and A = µN . We are assuming

that F contains the group ofN th roots of unity. Let p be the residual characteristic

of F. We assume p is coprime to N.

We have an exact sequence:

1 → µN → G̃→ G→ 1.

Here G̃ is the extension defined in chapter 2. Let d=(n-1,N) and k=(n,N)=(n,N/d).

Let g, h ∈ G̃ such that p(g), p(h) commute in G.

Lemma 3.2.1 With above definitions and the notation from previous section,

H̃ = G̃
N/d
+ .

Proof. H̃ = CentG̃(Z̃) by definition.

Let g ∈ H̃. Then

{g, zx} = 1 ∀x ∈ F∗

(det(g)n−1, x)N = 1 ∀x ∈ F∗

⇔ det(g)n−1 ∈ F∗N .

From the next lemma, we conclude that above statements are necessary and

sufficient for det(g) ∈ F∗N/d.

Lemma 3.2.2 Let x ∈ F∗. Then xa ∈ F∗b ⇔ x ∈ F ∗b/(a,b) where (a, b) denotes

the greatest common divisor of a and b. We assume all b roots of unity are in F∗.

Proof. Denote d = (a, b). If x ∈ F∗b/d then xa ∈ F∗b. For the other side write

d = ar + bs where r, s are integers.
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Then xa = yb ⇒ xar = ybr ⇒ xd−bs = ybr ⇒ xd = yb(r+s).

Now the fact that all bth roots of unity are in F∗ completes the proof.

Above arguments also prove that H̃ and Z̃ form a dual pair (i.e they are

centralizers of each other in G̃) in G̃ (It is obvious that Z̃ commutes with the

whole of H̃. Nothing more can commute because G1 ⊆ p(H̃).) We state this as a

lemma:

Lemma 3.2.3 The subgroups H̃ and Z̃ form a dual pair in G̃.

We have K̃ = H̃Z̃ = G̃
N/d
+ Z̃. Since G̃1 ⊆ K̃, we have K̃ = H̃Z̃ = G̃

N/d
+ G̃1Z̃ =

G̃
N/d
+ G̃n

+. Since k = (n,N/d), this gives us K̃ = G̃k
+. That G̃

N/d
+ G̃n

+ ⊆ G̃k
+ is

obvious. The other implication follows from the fact if d = (a, b) and r and s are

integers such that d = ra+sb then r(a/d)+s(b/d) = 1. Therefore g = gr(a/d)gs(b/d)

for any positive integers a and b. This gives us that G̃k
+ ⊆ G̃

N/d
+ G̃n

+.

From the definition of K̃ we get that Z(K̃) = Z(H̃) (If something commutes

with K̃ then it must commute with Z̃ and therefore must be in H̃). Also Z(H̃) =

H̃ ∩ Z̃. This follows from lemma 3.2.3 and the fact that anything in the center

of H̃ must be in Z̃. An application of lemma 3.2.2 gives us:

Lemma 3.2.4 Z(K̃) = Z(H̃) = H̃ ∩ Z̃ = {zx|x ∈ F∗N/dk}.

Next we prove that CentG̃Z(K̃) = K̃.

Lemma 3.2.5 CentG̃Z(K̃) = K̃.
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Proof. Let zx ∈ Z(K̃). By lemma 3.2.4 x = aN/dk for some a ∈ F∗.

{g, zx} = (det(g)n−1, x)N

= (det(g)n−1, aN/dk)N .

Thus g ∈ CentG̃Z(K̃) ⇔ (det(g)(n−1)N/dk, a)N = 1 ∀a ∈ F∗

⇔ det(g)(n−1)N/dk ∈ F∗N

⇔ det(g) ∈ F∗k (lemma 3.2.2)

We get CentG̃(Z(K̃) = G̃k
+

= K̃.

Thus all conditions imposed on K̃ and H̃ in section 3.1 are satisfied when we

specialize to the case G = GL(n).

Now we have H̃ = G̃
N/d
+ and K̃ = G̃k

+.

Also G̃1Z(H̃) = G̃
nN/dk
+ .

We are ultimately interested in understanding the restriction of representa-

tions to G̃1. Restriction from H̃ to G̃1 is easily understood if the extension from G̃1

to H̃ is central (i.e G̃1Z(H̃) = H̃). That is the case precisely when G̃
nN/dk
+ = G̃

N/d
+

i.e iff n/k = 1. Since k = (n,N), we are in the above case only when n|N . We

summarize this in a lemma:

Lemma 3.2.6 H̃ = G̃1Z(H̃) if and only if n|N.

Therefore, from now on, we further assume that n|N.
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We examine our situation again:

1 → µN → G̃→ G→ 1

where n divides N and we assume N = nN0.

3.3 A character formula.

Given a genuine, admissible, irreducible representation Π of G̃, we will write the

character of Π|fG1
in terms of ΘΠ. We will apply the results of section 3.1 to our

situation.

We have:

G̃1 ⊂ H̃ ⊂ K̃ ⊂ G̃. From the calculations in section 3.2, we have:

1. H̃ = G̃
N/d
+ and

2. K̃ = G̃n
+.

The lemma 3.1.1 gives us:

Lemma 3.3.1

Π| eGn
+

=
∑

x∈F∗/F∗n

πx

where π is an irreducible representation of G̃n
+.

A word on notation. Here x is a representative of a coset of G̃/G̃n
+. We are

writing x ∈ F∗/F∗n because G̃/G̃n
+ ' F∗/F∗n via the determinant map. Therefore

x ∈ F∗/F∗n represents an element of g ∈ G̃ with determinant x.

We have shown earlier that (proof of lemma 3.1.1) χπx(zy) = χπ(zy)(x, y)
n−1
N

where zx denotes any element of G̃ of the form (xI, ζ). Here ζ is a N th root of

unity.
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We also have:

1. Z(G̃) = {zx|x ∈ F∗N/d}

2. Z(G̃n
+) = {zx|x ∈ F∗N0/d}. (lemma 3.2.4.)

We perform a calculation: χπ(zz′)−1ΘΠ(zz′g) = χπ(z)−1ΘΠ(zg) for z ∈
Z̃N0/d, z′ ∈ Z̃N/d.

Therefore χπ(z)−1ΘΠ(zg) is well-defined for z ∈ Z̃N0/d/Z̃N/d.

∑

z∈Z̃N0/d/Z̃N/d

χπ(z)−1ΘΠ(zg) =
∑

z∈Z̃N0/d/Z̃N/d

χπ(z)−1
∑

x∈F∗/F∗n

Θπx(zg)

=
∑

x∈F∗/F∗n

∑

z∈Z̃N0/d/Z̃N/d

χπ(z)−1χπx(z)Θπx(g).

We evaluate
∑

z∈Z̃N0/d/Z̃N/d

χπ(z)−1χπx(z).

Let us use the notation z = zy where y ∈ F∗No/d and use the fact F∗No/d/F∗N/d '
F∗/F∗n (this is true because µN ⊂ F∗), then by lemma 3.1.1:

∑

z∈Z̃N0/d/Z̃N/d

χπ(z)−1χπx(z) =
∑

y∈F∗/F∗n

(x, yNo/d)n−1
N

=
∑

y∈F∗/F∗n

(x, y)
(No)n−1/d
N

=
∑

y∈F∗/F∗n

(xNo(n−1/d), y)N .
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If (xNo(n−1/d), y)N = 1 for every y ∈ F∗ then we have xNo(n−1/d) ∈ F∗N by the

non-degeneracy of the Norm-residue symbol. This forces x ∈ F∗n by lemma 3.2.2.

We obtain:
∑

z∈Z̃N0/d/Z̃N/d

χπ(z)−1χπx(z) 6= 0

if and only if x = 1.

Therefore,

∑

z∈Z̃N0/d/Z̃N/d

χπ(z)−1ΘΠ(zg) = |ZNo/d/ZN/d|Θπ(g).

We obtain,

Θπ(g) = | 1

F∗N0/d/F∗N/d
|

∑

z∈Z̃N0/d/Z̃N/d

χπ(z)−1ΘΠ(zg).

Now we use the fact that π| eGN/d
+

= |No/d|σ (lemma 3.1.3 applied to our situation).

We have:

Theorem 3.3.1 Let Π be an irreducible, genuine representation of G̃. Let π be

a summand in the restriction of Π to G̃n
+. Also let σ be the irreducible component

of π restricted to G̃
N/d
+ . Then:

Θσ(g) =
d

No

1

|F∗/F∗n|
∑

z∈Z̃N0/d/Z̃N/d

χπ(z)−1ΘΠ(zg).

This gives us the character of any summand of Π restricted to G̃
N/d
+ in terms of

its central character and the character of Π. Because upon restriction from G̃
N/d
+

to G̃1, an irreducible representation remains irreducible, the above theorem also

gives the character of σ as a representation of G̃1.
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3.4 Centers of Cartan subgroups.

We define a Cartan subgroup of G̃ or G̃1 to be the inverse image of a Cartan

subgroup of the corresponding linear group. These are non-abelian in general,

and their centers play an important role. We will be able to see some aspects of

this in the last chapter of the thesis when we study orbital integrals. An element

of a covering group is said to be regular (semi-simple) if its projection in the

linear group is regular (semi-simple).

We state a lemma.

Lemma 3.4.1 Let T be a Cartan subgroup of G with inverse image T̃ in G̃.

Then

1. The center of T̃ is p−1(ZN/dTN).

2. The center of T̃ ∩ G̃1 is p−1(ZNo/dTN ∩G1).

Proof.

For the first part we refer to [9] for proof. For the second part we note that

if g /∈ p−1(ZNo/dTN ∩ G1) then zg /∈ p−1(ZN/dTN) for any z ∈ Z̃N0/d. By the

first part, ΘΠ(zg) = 0 for every genuine representation Π of G̃ (ΘΠ vanishes

on any element of T̃ not in the center of T̃ because T is commutative and ΘΠ

is a conjugation invariant genuine function). By theorem 3.3.1 Θσ(g) = 0 for

every genuine irreducible representation σ of G̃1. Given any σ we can extend via

center to G̃
N/d
+ and then induce to G̃ (via G̃n

+.) to obtain an irreducible, genuine

representation Π of G̃ and then apply theorem 3.3.1. By the fact that genuine

representation separate non-conjugate points, we obtain that g /∈ Z(T̃ ∩ G̃1). The

proves for regular elements. For a general element, we use a continuity argument.
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The other inclusion is obvious since Z̃N0/d commutes with every element of G̃1

and p−1(T n) commutes with T̃ .

Definition 3.4.1 We say that a regular element g ∈ T̃ is relevant if it is con-

tained in the center of T̃ [1].

We conclude this chapter by proving the existence of a special kind of genuine

character.

3.5 Existence of a special kind of character on

Z̃N0/d.

We want to define a genuine character µ of Z̃N0/d such that µ(zxN , ζ) = ζ ∀x ∈
F∗.

Lemma 3.5.1 The cocycle c used for the definition of G̃ splits over Z̃N .

Proof.

Let x = aN , y = bN with a, b ∈ F∗. By the formula for calculating cocycles

([9]):

c(zx, zy) =
∏
i<j

(x, y)N

= (x, y)
n(n−1)/2
N

= (a, b)
N2n(n−1)/2
N

= 1.
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Since Z̃N = ZN × µN (the cocycle is trivial on ZN), we can define a

character χ of ZN × µN by χ(xNI, ζ) = ζ.

Let µ̄ = IndZ̃N0/d

gZN
(χ) = ⊕µi where i runs over some finite set. Since Z̃N0/d is

abelian (can be verified by the commutator formula, 2.3.1) all µ′is are characters.

Let µ be any of the µ′is. Then, by Frobenious reciprocity:

< µ̄, µ >
Z̃N0/d

=< χ, µ|gZN >gZN .

Hence we have a character µ of Z̃N0/d such that µ(zxN , ζ) = ζ. This also gives us

that µ is genuine.
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Chapter 4

Lifting of Characters

4.1 Lifting from G to G̃.

In this section we summarize results on lifting of characters from G to G̃. This is

very similar what has been done in [1]. There are some changes because in our

case n may not be equal to N.

We first define transfer factors in this setting. Recall the Weyl denominator

for G is given by ∆(g) =
∏

i<j |xi − xj|F/|xixj|
1
2

F if g is a regular semisimple

element with (distinct) eigenvalues xi (in an algebraic closure F of F).

Definition 4.1.1 Suppose h ∈ G, g ∈ G̃ are regular semisimple elements satis-

fying hNxN/d = p(g) for some x ∈ Z(G).

We denote s(h)Nu(h) by h∗. Here u(h) = ±1 ∈ µn is defined by [10] (we take

u(h) = 1 if N is odd), and s : G→ G̃ is any section. We define τ(h, g) by

(h∗)−1g = (p(h∗)−1g, τ(h, g)). (4.1)

Also let

∆ω̃(h, g) = b
∆(h)

∆(g)
ω̃((h∗)−1g). (4.2)

Here ω̃ is any genuine character of Z̃N/d and b = N/d|Nn/d| 12 ([7].)
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Let π be a representation of GL(n) with central character χπ satisfying χπ(ζI) =

1 for all ζ ∈ µN . Suppose g is a regular semisimple element of G̃, so p(g) is con-

tained in a Cartan subgroup T of G. Let ω̃ be a character of Z̃N/d satisfying

ω̃(xN , 1) = χπ(x) for all x ∈ F∗. Let

tω̃∗ (Θπ)(g) =
∑

{h∈T/Z|(h∗)−1g∈Z̃N/d}

∆ω̃(h, g)Θπ(h). (4.3)

We fix ω̃ once and for all.

This is a conjugation invariant function on the regular semisimple elements

of G̃. If there exists an irreducible, genuine, admissible representation of G̃, say

π̃, such that Θπ̃ = tω̃∗ (Θπ) we say that π and π̃ correspond via ω̃ and denote π̃ by

tω̃∗ (π). Note that in the above case ω̃ = χπ̃.

We state the conjecture of Kazhdan-Flicker in two hypotheses [1].

Hypotheses I Let π be an irreducible representation of G such that χπ(ζI) = 1

for all ζ ∈ µN . We say Hypotheses I holds for π if tω̃∗ (π) is 0 or ± the character

of an irreducible representation of G̃. If this holds we define the virtual represen-

tation tω̃∗ (π) by tω̃∗ (Θπ) = Θtω̃∗ (π). Furthermore if tω̃∗ (π) 6= 0 define ε(π) = ±1 so

that ε(π)tω̃∗ (π) is a representation.

Hypotheses II Every genuine irreducible unitary representation of G̃ is iso-

morphic to ε(π)tω̃∗ (π) for some irreducible unitary representation π satisfying

Hypothesis I.

We state some conditions when the above hypotheses are true [1]. Hypotheses

I and II are true for n = 2 [6]. Hypotheses I is true if π is a discrete series repre-

sentation. In this case tω̃∗ turns out to be a bijection between a subset of discrete

series of G and the genuine discrete series of G̃. This means that Hypotheses II
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holds for the discrete series representations. If tω̃∗ (π) is supercuspidal then π is su-

percuspidal but the converse is not true. If π is tempered then Hypotheses I holds

under certain conditions ([7]), Proposition 26.2). If π is tempered and satisfies

Hypotheses I then tω̃∗ (π) is tempered and ε(π) = 1. Subject to certain conditions

([7]) tω̃∗ bijectively maps a subset of irreducible tempered representations of G to

genuine, irreducible, tempered representations of G̃.

We also have for any α ∈ F̂∗

tω̃∗ (πα
N) = tω̃∗ (π)α. (4.4)

This follows immediately from (4.3).

4.2 Parameters for G̃1.

Let π be an irreducible, admissible representation of G satisfying χπ(ζI) =

1 ∀ζ ∈ µN . Let t∗(π) = Π.(We assume π satisfies hypothesis I.)

Definition 4.2.1 Let X be the set of pairs (π, χ) where:

1. π is an irreducible representation of G, with central character χπ satisfying

χπ(ζI) = 1 ∀ζ ∈ µN .

2. χ is the central character of some summand of tω̃∗ (π) restricted to G̃n
+. Call

the above summand Lo(π, χ). All χ’s are distinct (lemma 3.3.1 and the

remarks after it).

3. Let L(π, χ) be the irreducible component obtained upon restriction of Lo(π, χ)

to G̃
N/d
+ . We are considering L(π, χ) as a representation of G̃1 (lemma

3.1.3).
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Let α ∈ F̂∗. We want to define an action of α on the symbols Lo(π, χ). We use

the same letter α as an element of F̂∗ and as a character on G (which is defined

naturally using the determinant).

Let α ∗ Lo(π, χ) = Lo(πα, χβ) for some β ∈ F̂∗. We will determine what α

and β should be to make the action meaningful.

Since χπα(µN) = 1 ⇔ α = αNo
o for some αo ∈ F̂∗.

To determine β, we note that in L(π, χ), χ satisfies the following equation:

χ(xNI, 1) = χπ(x) ∀x ∈ F∗ (4.5)

This is true because χπ(x) = χΠ(xNI, 1) ∀x ∈ F∗ and the central characters of

all summands in the restriction to G̃n
+ are extension of χΠ. Actually the above

criterion characterizes the summands in the restriction.

Using the above fact we get:

βχ(xNI, 1) = χπα(x)

⇒ β(xN)χ(xNI, 1) = χπ(x)α(xn)

Because χ(xNI, 1) = χπ(x)

⇒ β(xN) = αo(x
N)

⇒ β = αoγ where γ ∈ F̂∗/F∗N .

We will take γ = 1. We have chosen β = αo. Since αω̃(xN , 1) = χπαNo(x), it

is a valid choice for the central character of the lift of παNo. Also αχ = αω̃ on

Z̃N/d. Hence the above defined action is well-defined.

Definition 4.2.2 For any α ∈ F̂∗ define α ∗ Lo(π, χ) = Lo(πα
No , αχ).
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We observe that αNo = 1 ⇒ α ∗ Lo(π, χ) = Lo(π, χ).

αn∗Lo(π, χ) = Lo(πα
N , αnχ) = Lo(π, χ)⊗α. The last equality is true because

t∗(παN) = t∗(π)α.

Now χ is a genuine character of Z̃N0/d. All such χ’s satisfying χ(xNI, 1) =

χπ(x) ∀x ∈ F∗ can be parametrized by elements ν of F̂∗No/d satisfying ν(xN) =

χπ(x) for x in F∗.

In fact any such χ is given by:

χ(xNo/dI, ζ) = µ(xNo/dI, ζ)ν(xNo/d).

where µ is defined in section 3.5.

We note that Lo(π, µν) is the same as Lo(π, χ) because

χ(xNoI, ζ) = µ(xNoI, ζ)ν(xNo). We will often denote Lo(π, µν) by Lo(π, χν) or

even by Lo(π, χ) if there is no chance of ambiguity. Since µ is fixed, we will

suppress it in the notation.

Instead of looking at ν we can consider ν as a character of F∗ and then look at

νNo/d. This we do by extending ν to a character of F∗ and calling it ν1 and then

observing that ν(xNo/d) = ν1(x)
No/d and then labelling ν1 also by ν. We will be

doing this from now on. This will not matter as we will always be considering

νNo/d in any calculations. We will also refer to such a χ by χν .

From L(π, χ), we want to define a representation of PGL(n,F).

Definition 4.2.3 Define M(π, χν) = πν−No.

Since χπν−No (x) = χπ(x)ν−N(x) = 1, M(π, χν) defines a representation of

PGL(n,F).

Also παNo(να)−No = πν−No . This gives us M(π, χν) = M(παNo , αχν).
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From the relation αn ∗ Lo(π, χ) = Lo(π, χ)α, we get that L(παN , χαn) =

L(π, χ).

Let x = (π, χν) , x′ = (π′, χ′ν′).

M(x) = M(x′)

⇒ ¯πν−No = ¯π′ν ′−No

⇒ π = π′(νν ′−1)No .

Hence we obtain:

(νν ′−1) ∗ Lo(π
′, χ′).

M(x) = M(x′) ⇒ x′ = α ∗ x for some α ∈ F̂∗.

Definition 4.2.4 Define

Ln
st(π, χ) =

∑

α∈cF∗/dF∗n'µ̂n

L(παNo , χα).

We also define:

Lst(π, χ) =
∑

α∈µ̂n/µ̂
n
e
n

L(παNo , χα)

where e=(n,No).

We are factoring by µ̂
n
e
n because we want to take care of those characters α of

µ̂n which satisfy αNo = 1.

Let π be an irreducible representation of PGL(n,F), and let π′ denote π

pulled back to G. Assume π′αNo satisfy Hypothesis 1 for all α ∈ F̂∗. Define

Lst(π) = Lst(π
′, 1).

We have Lst(π, χ) = Lst(πα
No , χα) ∀α ∈ F̂∗.
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4.3 Orbit Correspondence.

For g ∈ G, let ḡ be the image of g in PGL(n,F).

Definition 4.3.1 For h in G, define a map φ : G→ G1 by φ(h) = det(h−No)hN .

Since φ(zh) = φ(h) ∀z ∈ Z, φ actually gives a map from PGL(n,F) to G1.

Lemma 4.3.1 1. For every h ∈ PGL(n,F) and g ∈ G, φ(ḡhḡ−1) = gφ(h)g−1.

2. If h is a regular semi-simple element, then any pullback of φ(h) is relevant.

Proof. 1.) follows from the definitions while 2.) follows from the fact that

Z(T̃ ∩ G̃1) = Z̃N0/dT̃N ∩ G̃1. (see lemma 3.4.1.)

Suppose h ∈ G, g ∈ G1 satisfy:

hNxN/d = zg for some z, x ∈ Z.

Multiplying by det(h−No), we get:

φ(h) = g det(h−No)z

= g−1φ(h) = det(h−No)zx−N/d.

g−1φ(h) has determinant 1 as g ∈ G1 Hence the Right-hand-side is a scalar

matrix with determinant 1.

Thus g = ζφ(h) where ζ ∈ µn. Note that ζ does not depend on the choice of

z, x.

Conversely, If g = ζφ(h) with ζ ∈ µn then hN = zg.
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Note that if hNxN/d = zg with z, x ∈ Z, g ∈ G1 then z ∈ µnZ
No/d. But

we have assumed that the field F has all the N th roots of unity. This gives us

that µn = µNo
N . Hence z actually comes from ZNo/d This observation will be very

important when we define the transfer factors in the next section.

Definition 4.3.2 We say h ∈ PGL(n,F), g ∈ G1 weakly correspond, written as,

h↔ g, if for any(equivalently all) h′ ∈ G with h̄′ = h, we have

h′NxN/d = zg for some z, x ∈ Z.

Equivalently, g = ζφ(h) for ζ ∈ µn.

If h
weak↔ g define ζ(h, g) ∈ µn by g = ζ(h, g)φ(h).

4.4 Transfer Factors.

Definition 4.4.1 Suppose h ∈ G, g ∈ G̃1 satisfy

hNxN/d = p(zg). (this implies z ∈ Z̃N0/d.)

Define

cn =
nde

|F∗/F∗n|No

where e = (n,No). and

∆ω̃
µ(h, g) = cnµ(z)−1∆ω̃(h, zg)

where µ is as defined in section 3.5 and because z ∈ Z̃N0/d, everything is well-

defined.

When we finally derive the stable character formula, it will be clear why we

defined cn in the above manner.
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Lemma 4.4.1 ∆ω̃
µ(h, g)ω̃(x−N/d) is independent of z, x and hence of ω̃. (By

ω̃(xN/d) we mean ω̃(xN/d, 1)).

Proof. We have hNxN/d = p(zg), hNuN/d = p(yg) ⇒ y = zζ(u
x
)−N/d.

Also

µ(y)−1∆ω̃(h, yg)ω̃(u−N/d) = µ(zζ(
u

x
)N/d)−1∆ω̃(h, zζg(

u

x
)N/d))ω̃(u−N/d)

= bµ(z)−1ζ−1 ∆(h)

∆(g)
ω̃((h∗)−1zg)ω̃(x−N/d)ζ.

= µ(z−1)∆ω̃(h, zg)ω̃(x−N/d).

Above steps follow because of properties of µ and the fact that ω̃ is genuine. That

proves ∆ω̃
µ(h, g)ω̃ is independent of z, x.

From now on we will denote∆ω̃
µ(h, g)ω̃ (h

weak↔ g) by ∆µ.

Lemma 4.4.2 ∆µ(h, g) = ∆µ(λh, g) ∀λ ∈ F∗.

Proof. Note that if p(zg) = hNxN/d then p(z(λN , 1)g) = (λh)NxN/d.

Also ∆µ(λh, g) = cnµ((λN , 1)z)−1∆ω̃(λh, z(λN , 1)g)ω̃(x−N/d). Since µ|gZN = ι

we get µ((λN , 1)z) = µ(z). Since ∆(h) = ∆(λh), we only need to check the ω̃

part.

ω̃(((λh)∗)−1z(λN , 1)g)ω̃(x−N/d) = ω̃(z(λN , 1)gλ−N(h∗)−1)ω̃(x−N/d)

= ω̃((h∗)−1zg)ω̃(x−N/d)

Therefore ∆µ(λh, g) = ∆µ(h, g).

We note that ω̃((h∗)−1zg)ω̃(x−N/d) = τ(h, zg).(as defined in section 2)

Definition 4.4.2 Suppose h ∈ PGL(n,F), g ∈ G̃1 such that h
weak↔ p(g), choose

h′ ∈ G such that h̄′ = h, define ∆µ(h, g) = ∆µ(h′, g).

By lemma 4.4.2, this is independent of the choice of h′.
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4.5 Stable Character Formula.

We derive the character formula relating the character of an irreducible represen-

tation of PGL(n,F) to the character of a virtual representation Lst of G̃1.

Fix a µ as defined in section 3.5. We recall:

Lst(π) =
∑

α∈cµn/cµn
n/e

L(παNo , χα).

where e = (n,No).

Theorem 4.5.1 Let π be an irreducible representation of PGL(n,F), for which

Lst(π) is defined. Then for g, a regular semi-simple element of G̃1, we have

ΘLst(π)(g) =
∑

φ(h)=p(g)

∆µ(h, g)Θπ(h).

Proof. We first calculate ΘL(π,χν)(g) for arbitrary (π, χν) ∈ X.

ΘL(π,χν) =
d

No|F∗/F∗n|
∑

z∈Z̃N0/d/Z̃N/d

χν(z)
−1Θt∗(π)(zg)

=
d

No|F∗/F∗n|
∑

z∈Z̃N0/d/Z̃N/d

∑

{h∈T/Z|hNxN/d=p(zg)}
χν(z)

−1∆ω̃(h, zg)Θπ(h)

Next we evaluate χν(z)
−1∆ω̃(h, zg)Θπ(h).
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χν(z)
−1∆ω̃(h, zg)Θπ(h) = µ(z)−1ν(p(z))−1∆ω̃(h, g)Θπ(h)

=
1

cn
ν(p(z))−1∆ω̃

µ(h, g)Θπ(h)

=
1

cn
ν(p(z))−1νNo(h)∆ω̃

µ(h, g)Θπν−No (h).

Now

ν(p(z))−1νNo(h) = ν(p(z)−1)ν(det(h)No).

Also hNxN/d = p(zg) ⇒ φ(h) = det(h)−Nop(g)p(z)xN/d.

We get φ(h)−1p(g)x−N/d = det(h)Nop(z−1).

Therefore, χν(z)
−1∆ω̃(h, zg)Θπ(h) = 1

cn
ν(ζ(h̄, g))∆µ(h̄, g)Θπν−No (h̄).

where h̄ denotes the image of h in PGL(n,F). We have used the fact that

χν(x
−N/d, 1) = ω̃(x−N/d) ∀x ∈ F∗ and that µ(xN/d, 1) = 1 ∀x ∈ F∗.

We finally have:

ΘL(π,χν)(g) =
1

No|F∗/F∗n|
∑

z∈Z̃N0/d/Z̃N/d

∑

hNxN/d=p(zg)

d

cn
ν(ζ(h̄, g)∆µ(h̄, g)Θπν−No (h̄)

=
d

No|F∗/F∗n|
1

cn

∑

h
weak↔ g

ν(ζ(h̄, g))∆µ(h̄, g)Θπν−No (h̄)

=
d

cnNo|F∗/F∗n|
∑

ν(ζ)
∑

φ(h)=ζp(g)

∆µ(h, g)Θπν−No (h)

We have used that µn = µNo
N . This makes sure that ν(ζ) is well-defined.

Replacing (π, χν) by (παNo , αχν) we get:

d

cnNo|F∗/F∗n|
∑

(αν)(ζ)
∑

φ(h)=ζp(g)

∆µ(h, g)Θπν−No (h) (h ∈ PGL(n,F)).
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Summing over α, we get:

|(µ̂n)
n
e |ΘLst(π,χν)(g) =

d

cnNo|F∗/F∗n|
∑

ζ∈µn

∑

α∈µ̂n

ν(ζ)α(ζ)
∑

φ(h)=ζg

∆µ(h, g)Θπν−No (h).

By the orthogonality of characters of µn, this equals

nd

cnNo|F∗/F∗n|
∑

φ(h)=g

∆µ(h, g)Θπν−No (h).

By our choice of cn, we finally have:

ΘLst(π,χν)(g) =
∑

φ(h)=p(g)

∆µ(h, g)Θπν−No (h).

This proves the theorem

4.6 Inversion

Notation: Let

Lcµn
st =

∑

α∈cµn

L(παNo , αχν).

For ζ ∈ µn, define:

Lζ(π, χν) =
∑

α∈cµn

α(ζ)L(παNo , αχ).

By summing over ζ ∈ µn and using Fourier inversion on µn, we get L(π, χν) =

1
n

∑
ζ∈µn

Lζ(π, χν).

We also note that:

α(ζ)ΘL(παNo ,αχν
(g) = χν(zζ)

−1ΘL(παNo ,αχν
(zζg).

Inserting this into the definition gives:
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Lemma 4.6.1 For all ζ ∈ µn we have:

ΘLζ(π,χν)(g) = χν(zζ)
−1Θµ̂n

Lst(π,χν
(zζg).

Using Section 4.5 we obtain:

ΘLζ(π,χν)(g) = |µ̂n

n
e |χν(zζ)

−1
∑

h∈PGL(n,F),φ(h)=ζp(g)

∆µ(h, gzζ)Θπν−No (h)

= eν(ζ)−1
∑

h∈PGL(n,F),ζ(h,g)=ζ−1

∆µ(h, g)Θπν−No (h)

where e = (n,No).
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Chapter 5

Lifting of Functions and Orbital Integrals

In this chapter we specialize to the case when n = N . Recalling the notation from

chapter 4 , we observe that d = No = 1. This means that the two subgroups G̃n
+

and G̃
N/d
+ coincide. All the results in this chapter for the case n = N are expected

to be true for the general case where n|N without any major changes in the proofs.

We present this case because this involves less technicalities and simpler notation

making the concepts more conspicuous. The following statements are true:

1. The groups Z̃ and G̃n
+ form a dual pair in G̃ and Z(G̃n

+) = Z̃.

2. The group G̃n
+ is an extension of G̃1 via its center i.e G̃n

+ = G̃1Z̃.

We therefore need only a one-step restriction of a genuine, irreducible repre-

sentation Π from G̃ to G̃n
+. (section 3.1: H̃ and K̃ coincide.)

5.1 Lifting of functions

Notation: We will identify µ̂n with F̂∗/F̂∗
n
. A general element of µ̂n will be

denoted by α. ν will in general denote an element of F̂∗ such that ν|µn = α. We

will also use να to denote the same when ν is being used to denote a more general
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element of F̂∗. We fix a genuine character µ of Z̃ (as in previous chapter) and

define χν(zx) = µ(zx)ν(x) for any ν ∈ F̂∗. Similarly for any α ∈ µ̂n, we define

χα(zζ) = µ(zζ)α(ζ). Thus we have defined χα on the center of G̃1 and χν is its

extension to the center of G̃n
+.

Let f̃ be a genuine function on G̃1 such that f̃(z̃g) = χα(z)−1f̃(g) for every z̃

in Z̃(G̃1). Here α ∈ µ̂n and χν is a character of Z(G̃1) = p−1{ζI|ζ ∈ µn}.
From now on the class of such functions will be denoted by C∞(G̃1)α.

Let π be an irreducible, admissible representation of G satisfying χπ(ζ) = 1

where ζ is any nth root of unity. The representation L(π) is the lift of π to G̃

and it breaks up as sum of representations having distinct central characters on

G̃n
+. From section 4.2, we see that the above central characters are characterized

by elements of ν ∈ F̂∗ such that ν(xn) = χπ(x) ∀x ∈ F∗. We label each sum-

mand as Lo(π, ν) and denote the restriction of Lo(π, ν) to G̃1 by L(π, ν). Here

ν is any character of Z(G) such that νn = χπ. Such ν exists because of the

assumptions made on π (exact sequence 2.1). Similarly, we will use Lo(πνα, ννα)

and L(πνα, ννα) to denote similar representations by taking πνα and lifting it to

L(πνα) and then restricting it to G̃n
+ and G̃1.

This simplifies the notation from chapter 4. There we had used Lo(π, χν)

since the parametrization was by χν ’s where ν was really a (No/d)
th power of

a character of F∗. Here the center of G̃n
+ is Z̃ and hence ν ∈ F̂∗. Therefore

parametrization by χν ’s is the same as parametrization by ν’s. Similarly we

denote the restriction of Lo(πνα, ννα) to G̃1 by L(πνα, ννα). The representation

L(πνα, ννα) does not depend on the extension να of α and depends only on α. This

was shown in the previous chapter while we were defining Lst(π, ν) (section 4.1).

We will use this notation to avoid confusion since we are denoting a character of
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µn by α and that of F∗ by ν.

Assume that for some ν in the above list we have ν|µn = α (For any other

ν, we will see later on that ΘL(π,ν)(f̃) = 0 ). We extend f̃ from G̃1 to G̃n
+ by

extending to Z̃:

Definition 5.1.1 Let f̃ ∈ C∞(G̃1)α. Define the extension by A(f̃ , ν) satisfying

A(f̃ , ν)(z̃g) = χν(z̃)
−1A(f̃ , ν)(g) where now z̃ could be any element of Z̃. Thus

A(f̃ , ν) is defined on the whole of G̃n
+ because G̃n

+ = G̃1Z̃.

Note that A(f̃ , ν) is well-defined because of the transformation property f̃

satisfies over the center of G̃1. Center of G̃1 is just the pullback of the nth roots

of unity from G1. We now compute ΘL(π,ν)(f̃).

ΘL(π,ν)(f̃) =

∫
fG1/Z̃(fG1)

f̃(g)ΘL(π,ν)(g)dg

Since G̃1/Z̃(G̃1) = G̃n
+/Z̃ we have

ΘL(π,ν)(f̃) =

∫
eGn
+/Z̃

A(f̃ , ν)(g)ΘLo(π,ν)(g)dg

Next we observe that (G̃n
+/Z̃

n)/(Z̃/Z̃n) = G̃n
+/Z̃. The constant |Z̃/Z̃n| = n2 (in

the case when n is coprime to the residual characteristic of F. In other cases it

differs by some power of p ). We get:

ΘL(π,ν)(f̃) =
1

|Z̃/Z̃n|

∫
eGn
+/ fZn

A(f̃ , ν)(g)ΘLo(π,ν)(g)dg

We now evaluate the integral

∫
eGn
+/ fZn

A(f̃ , ν)(g)ΘLo(π,ν′ )(g)dg

for any ν
′
satisfying ν

′n
= χπ.
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This equals ∫
eGn
+/Z̃

∫

Z̃/ fZn

A(f̃ , ν)(g)ΘLo(π,ν′ )(g)dg

The transformation properties of A(f̃ , ν) and the fact that G̃n
+ = G̃1Z̃ and

G̃n
+/Z̃ = G̃1/G̃1 ∩ Z̃ ensure that

ΘL(π,ν)(f̃) =

∫
eGn
+/Z̃

∫

Z̃/ fZn

A(f̃ , ν)(g)ΘLo(π,ν
′
)(g)dg

=

∫
fG1/fG1∩Z̃

∫

Z̃/ fZn

A(f̃ , ν)(g)ΘLo(π,ν
′
)(g)dg

=

∫
fG1/fG1∩Z̃

A(f̃ , ν)(g)ΘLo(π,ν′ )(g)dg
∑

Z̃/ fZn

ν−1ν
′
(z̃)

= 0

if ν 6= ν
′

The above calculation and the fact that

L(π) =
∑

νn=χπ

L(π, ν)

gives us:

ΘL(π,ν)(f̃) =
1

|Z̃/Z̃n|

∫
eGn
+/ fZn

A(f̃ , ν)(g)ΘL(π)(g)dg

Definition 5.1.2 Let B(f̃ , ν) be the function obtained by extending A(f̃ , ν) to

the whole of G̃ by defining it to be zero outside G̃n
+.

We observe that B(f̃ , ν) satisfies the transformation property by the central

character of L(π) on the center G̃.

We have:

Lemma 5.1.1 Let f̃ ∈ C∞c (G̃1)α and ν|µn = α. Then

ΘL(π,ν)(f̃) = ΘLo(π,ν)(A(f̃ , ν)) =
1

|Z̃n\Z̃|
ΘL(π)(B(f̃ , ν))
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This equals 1
|F∗/F∗n|ΘL(π)(B(f̃ , ν)) by definition.

Definition 5.1.3 Let C(f̃ , ν) be a function on G obtained by using Kazhdan-

Flicker lifting [7] such that C(f̃ , ν) satisfies C(f̃ , ν)(zg) = χπ(z)−1C(f̃ , ν)(g) ∀z ∈
Z(G) and

ΘL(π)(B(f̃ , ν)) = Θπ(C(f̃ , ν))

Thus we have obtained a relation just like Kazhdan-Flicker [7]. There a

similar relation was obtained between G̃ and G. We have a relation between

G̃1 and G. In Kazhdan-Flicker, they started with a function on G̃ transforming

by the central character χL(π) of L(π). We have started with a function on G̃1

transforming by the central character of L(π, ν). We have obtained a function

on G transforming with respect to the central character χπ. We have used the

results of [7] in doing so.

Here Θπ(C(f̃ , ν)) is given by the integral:

∫

G/Z

Θπ(g)C(f̃ , ν)(g)dg

Thus, using χπ = νn, and modifying C(f̃ , ν) by ν, we obtain:

Θπ(C(f̃ , ν)) =

∫

G/Z

Θπν−1(g)C(f̃ , ν)ν(g)dg

where C(f̃ , ν)ν(g) = C(f̃ , ν)(g)ν(det(g). Observe that C(f̃ , ν)ν is a C∞c function

on G/Z = PGL(n,F). We have ΘL(π,ν)(f̃) = Θπν−1(νC(f̃ , ν)).

Definition 5.1.4 Let D(f̃ , ν) be the function νC(f̃ , ν).

It will be shown later in this section that D(f̃ , ν) is independent of the choice

of the extension ν of α from µn to the whole of F∗.

We have proved:
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Proposition 5.1.1 Let f̃ ∈ C∞c (G̃1)α. Let π be any irreducible, admissible rep-

resentation of G satisfying χπ(ζI) = 1 ∀ζ ∈ µn. Also we assume that ν ∈ F̂∗

such that νn = χπ and ν|µn = α. We have:

ΘL(π,ν)(f̃) = Θπν−1(D(f̃ , ν))

Now we make a general observation:

Let f̃ ∈ C∞c (G̃1). Then f̃ can be written as:

f̃ =
∑

α∈cµn

f̃α

where

f̃α ∈ C∞c (G̃1)α

This is true because C∞c (G̃1) =
⊕

α∈cµn
C∞c (G̃1)α. We can actually see that

f̃α(g) =
1

n

∑
zζ

f̃(gzζ)χα(zζ).

Lemma 5.1.2 Let f̃ ∈ C∞c (G̃1)α. We assume π, ν as in proposition 5.1.1 and

that νn = χπ. Then:

ΘL(π,ν)(f̃
α) = 0 unless ν|µn = α.

Proof. Let us assume that ν|µn = αo and αo 6= α. This allows us to choose

a ζ ∈ µn such that αo(ζ) 6= α(ζ).
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ΘL(π,ν)(f̃) =

∫
fG1

f̃(g)ΘL(π,ν(g)dg

=

∫
fG1

f̃(gzζ)ΘL(π,ν(gzζ)dg

= α−1(ζ)αo(ζ)

∫
fG1

f̃(g)ΘL(π,ν(g)dg

= α−1(ζ)αo(ζ)ΘL(π,ν)(f̃).

This forces ΘL(π,ν)(f̃) = 0.

Let f̃ ∈ C∞c (G̃1). We write f̃ =
∑

β∈cµn
f̃β. We recall that

ΘLst(π,ν) =
∑

να∈cF∗/dF∗n

ΘL(πνα,ννα)

where we use the identification F̂∗/F̂∗
n ' µ̂n. In the definition of ΘLst(π,ν), να is

any extension of α from µn to the whole of F∗ (in other words just the pullback

of α via the restriction map from F̂∗ → µ̂n) . Any two such extensions of α will

differ by an element of F̂∗
n

and so L(πνα, ννα) will be independent of the choice

of να.

Then we have, using above lemma:

ΘLst(π,ν)(f̃) =
∑

α∈cµn

ΘL(πνα,ννα)(f̃)

=
∑

α∈cµn

ΘL(πνα,ννα)(
∑

β∈cµn

f̃β)

=
∑

α∈cµn

ΘL(πνα,ννα)(f̃
ννα|µn)

= Θπν−1(
∑

α∈cµn

D(f̃ ννα|µn , ννα))

We summarize the above calculation:
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Proposition 5.1.2

ΘLst(π,ν)(f̃) = Θπν−1(
∑

α∈cµn

D(f̃ ννα|µn , ννα))

For f̃ ∈ C∞c (G̃1)α, we will show that D(f̃ , ν) does not depend upon the choice

of the extension ν of α.

Let γ be any semi-simple, regular element of G. Let γ̃ denote the element

(γ, 1)nu(γ) of G̃. We are considering only those γ for which γ̃ is regular, semi-

simple (see [10] for definition of u).

Define

F (γ,B(f̃α, ν)) = ∆(γ̃)

∫
fT n\ eG

B(f̃α, ν)(g−1γ̃g)dg

where ∆(γ̃) is the transfer factor and T̃ is the pullback of the cartan T which is

the centralizer of γ in G. We also note that T̃ is the centralizer of γ̃ inside G̃

because γ̃ ∈ T̃ n.

We now have:

∆(γ̃)

∫
fT n\ eG

B(f̃α, ν)(g−1γ̃g)dg = ∆(γ)

∫

T\G
C(f̃α, ν)(g−1γg)dg. (5.1)

(By results of [7].)

Let ν and ρ be characters of F∗. Suppose they agree on µn. Let f̃ ∈ C∞c (G̃1)

and f̃α ∈ C∞c (G̃1)α be as before. Then f̃α transforms with respect to χν as well as

χρ. We extend f̃α to a function B(f̃α, ν) on G̃ and then apply Kazhdan-Flicker

lift to obtain a function C(f̃α, ν) on G (cf. [7]). Since ν and ρ agree on µn,

χν also agrees with χρ on the center of G̃1 and so we can also extend f̃α to a

function B(f̃α, ρ) on G̃ and apply Kazhdan-Flicker lift to obtain C(f̃α, ρ) on G.

We investigate the relationship between C(f̃α, ρ) and C(f̃α, ν).
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In the above case, there exists a δ ∈ F̂∗ such that ν = ρτ where τ = δn. (refer

chapter 1)

Using the fact that G̃n
+ = G̃1Z̃, we write γ̃ = zyγ̃1 where γ̃1 is an element of

G̃1.

Let g−1zy = zyg
−1ζg where ζg = (1, ζg) is an element of µn. (recall that G̃ is

the central extension of G via µn.)

Each term has the integrand B(f̃α, ν)(g−1zyζgγ̃1g). Note that ζg is central in

G̃.

Because of the transformation properties satisfied by B(f̃α, ν) we have:

B(f̃α, ν)(g−1γ̃g) = χ−1
ν (y)B(f̃α, ν)(g−1ζgγ̃1g).

Since γ̃1 ∈ G̃1, we have g−1ζgγ̃1g ∈ G̃1.

Replacing ν by ρ and using the fact that B(f̃α, ν) agrees with B(f̃α, ρ) on

G̃1, we obtain

B(f̃α, ρ)(g−1γ̃g) = χ−1
ρ (y)B(f̃α, ν)(g−1ζgγ̃1g).

From ν = ρτ , it follows that χ−1
ρ (y) = χ−1

ν (y)τ(y).

We have:

B(f̃α, ρ)(g−1γ̃g) = χ−1
ν (y)τ(y)B(f̃α, ν)(g−1ζgγ̃1g).

Now we push χ−1
ν (y) inside to obtain:

B(f̃α, ρ)(g−1γ̃g) = τ(y)B(f̃α, ν)(g−1γ̃g).

Here y = det(γ)ζ where ζ can be any element of µn. But then τ(ζ) = 1

because τ = δn. We have:

B(f̃α, ρ)(g−1γ̃g) = τ(det(γ))B(f̃α, ν)(g−1γ̃g) = δ(det(γ̃))B(f̃α, ν)(g−1γ̃xg).
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Now we use equation 5.1 applied to B(f̃α, ν) and B(f̃α, ρ) and obtain:

∫

T\G
C(f̃α, ρ)(g−1γg)dg =

∫

T\G
τ(det(γ))C(f̃α, ν)(g−1γg)dg

for every semi-simple γ ∈ G.

Therefore by Weyl Integration formula [7] we have

Θπ(C(f̃α, ρ)) = Θπ(τC(f̃α, ν))

for all π such that π is irreducible and satisfies χπ(ζ) = 1 ∀ζ ∈ µn

Thus we can choose C(f̃α, ρ) = τC(f̃α, ν)

i.e C(f̃α, ρ)(g) = τ(det(g))C(f̃α, ν)(g) Note that many other choices of C(f̃α, ρ)

will satisfy the above equality but we make this choice in order to produce a

candidate for C(f̃α, ρ) satisfying certain conditions (which form the contents of

the next lemma). These conditions ensure that the final function, Γ(f̃), we have

on PGL(n,F) is independent of various parameters. That gives us the Stable

character formula (theorem 5.1.1). We call this the stable formula because we

are summing over all the characters of µn and ensuring that it does not depend

upon any particular character.

Multiplying both sides of the above equality by ρ(det(g)) gives us

ρ(det(g))C(f̃α, ρ)(g) = ρ(det(g))τ(det(g))C(f̃α, ν)(g)

= ν(det(g))C(f̃α, ν)(g).

We have the relation:
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Lemma 5.1.3 With all the above conventions we have:

ρC(f̃α, ρ) = νC(f̃α, ν)

where ρ(g) means ρ(det(g)) and similarly for ν.

D(f̃α, ρ)(g) = ν(det(g))C(f̃α, ρ)(g) by definition (recall notation from the

previous section). Lemma 5.1.3 implies that D(f̃α, ν) is independent of the choice

of ν and hence can be denoted by D(f̃α). This means that while constructing

D(f̃α) we could have chosen ν to be any element of F̂∗ satisfying ν|µn = α.

Definition 5.1.5 Let Γ(f̃) =
∑

α∈cµn
D(f̃α)

Note that for any ν ∈ F̂∗ , Γ(f̃) also equals
∑

α∈cµn
D(f̃ ννα|µn)) where να|µn =

α. With the above calulations in hand and proposition 5.1.2 we have:

Theorem 5.1.1 Let f̃ ∈ C∞c (G̃1). Then there exists a function Γ(f̃) ∈ C∞c (PGL(n,F))

such that we have the following relation:

ΘLst(π,ν)(f̃) =
1

|F∗/F∗n|Θπν−1(Γ(f̃).

where π is any admissible, irreducible representation of G satisfying χπ(ζ) = 1

for every ζ ∈ µn and ν ∈ F̂∗ satisfies νn = χπ.

5.2 Cartan subgroups of G and Gn
+

The aim of this section is to obtain a relation between Cartan subgroups of G

and those of Gn
+. We also relate the conjugacy classes of Cartan subgroups of

the two groups. We are doing all this because later on we will apply the Weyl
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Integration Formula to the results of the previous section and then we will need

to understand the conjugacy classes of Cartan subgroups of the two groups in

question.

First we define a Cartan subgroup.

Definition 5.2.1 Let G be an algebraic group defined over the field F. A Cartan

subgroup of G is defined to be the centralizer of a regular, semi-simple element of

G.

Let T be a Cartan subgroup of G. Let T+ denote the subgroup T ∩ Gn
+.

Then T+ is its own centralizer in Gn
+. This is true because a regular, semi-simple

element of Gn
+ will also be regular in G. That follows from the fact that G1 is

the derived subgroup of G and Gn
+ = G1Z(G). By a similar argument one can

see that any Cartan subgroup of Gn
+ can be obtained by intersecting a Cartan

subgroup of G with Gn
+.

We summarize the above:

Lemma 5.2.1 Let T be a Cartan subgroup of G. Then T ∩ Gn
+ is a Cartan

subgroup of Gn
+ and every Cartan subgroup of Gn

+ is of the above form.

Next we investigate the relation between conjugacy classes of Cartan sub-

groups in G and Gn
+. We wish to understand the distinct conjugacy classes of Gn

+

in terms of conjugacy classes of G.

Let N(T ) denote the normalizer of T in G and N+(T+) the normalizer of

T+ in Gn
+. Also let W (T ) denote the Weyl group of T and W+(T+) the Weyl

group of T+ in Gn
+. We use Φ(G) to denote the set of distinct conjugacy classes
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of Cartan subgroups in G and denote its general element by [T ] (the conjugacy

class obtained from T ). Similary, Φ(Gn
+) denotes the set of distinct conjugacy

classes of Cartan subgroups of Gn
+ and R denotes its general element.

Because of the above lemma, any conjugacy class of Cartan subgroups in Gn
+

comes from a conjugacy class in G. We need to understand how many distinct

conjagacy classes can occur in Gn
+ from a single conjugacy class in G.

Lemma 5.2.2 Let T be a Cartan subgroup of G. Let S consist of elements of G

which are distinct coset representatives of Gn
+\G(' F∗/F∗n). For any g ∈ G, let

T g = g−1Tg. Then the set

{T g
+|g ∈ S}

contains all representatives of all conjugacy classes of Cartan subgroups of Gn
+

corresponding to the conjugacy class of T . Also the number of distinct conjugacy

classes in the above set is |Gn
+N(T )\G|.

Proof. It is obvious that two cartan subgroups T and T
′
can be conjugate

in G but T+ and T
′
+ may not be conjugate inside Gn

+. If they are not then they

must be conjugate by some element of Gn
+\G since the element conjugating T

and T
′

must be in some non-trivial coset Gn
+ in G. The number of repetitions

will be |Gn
+\N(T )Gn

+| because conjugating by any element of T will give back T+

while conjugating by Gn
+ will keep us in the same conjugacy class in Gn

+. This

proves the lemma.

Definition 5.2.2 Let YT be the coset representatives, hw, of Gn
+\G such that all

[T hw
+ ] are distinct conjugacy classes i.e distinct elements of Φ(Gn

+).

From the above lemma |YT | = |Gn
+N(T )\G|.

We state a prelimnary result which will be needed in section 5.4.
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Lemma 5.2.3 Let Φ(G),Φ(Gn
+), YT be as above. Then: {[R] ∈ Φ(Gn

+)} =

∪[T ]∈Φ(G){[T hw
+ ]|hw ∈ YT}.

The proof of the above lemma follows from lemmas 5.2.1 and 5.2.2 and the

definition of YT .

The lemma below relates N+(T+) to N(T ).

Lemma 5.2.4 N+(T+) = N(T ) ∩Gn
+.

Proof. Let γ ∈ T+ be a regular element. Then γ is regular in G. Then

T = CentG(γ). Let hw ∈ N+(T+) and let t ∈ T . Let γ
′
= h−1

w γhw.

We evaluate (hwth
−1
w )(γ)(hwt

−1h−1
w ). This equals hwtγ

′
t−1h−1

w . Since hw ∈
N+(T+), γ

′ ∈ T+ ⊆ T , t commutes with γ
′
and we obtain that the above expres-

sion equals hwγ
′
h−1

w = γ. This proves that hwth
−1
w ∈ T and hence hw ∈ N(T ).

This proves N+(T+) ⊆ N(T ) ∩Gn
+. The other implication is obvious.

Let ι be the injective map:

ι : N+(T+) → N(T ).

It is easy to see that ι induces an injective map which also we denote by ι:

ι : W+(T+) → W (T )

Thus W+(T+) can be realized as a subgroup of W (T ). It is a normal subgroup

because both T and N+(T+) are normal subgroups of N(T ).

We now find an expression regarding the order of W+(T+)\W (T ). This will

be very useful in the next section.

Lemma 5.2.5 |W+(T+)\ W (T )| = |TGn
+\N(T )Gn

+|
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Proof. We have:

W+(T+)\ W (T ) '

T (Gn
+ ∩N(T ))\N(T ) =

TGn
+ ∩N(T )\N(T ) '

TGn
+\N(T )Gn

+

because T (Gn
+∩N(T )) = TGn

+∩N(T ). This is true because T ⊆ N(T ). The last

step follows by an isomorphism theorem of groups and because Gn
+ is a normal

subgroup of G. This proves the lemma.

We note from the last line of the proof above that

W+(T+)\ W (T ) ' TG1\N(T )G1

since Z(G) ⊂ T and Gn
+ = G1Z(G). All results in this section are valid for G1 in

place of Gn
+ because of the fact that Gn

+ = G1Z(G).

Now we consider the non-linear groups and state similar results.

Let p : G̃ → G be the map defined by p(g, ζ) = g. We define the Cartan

subgroups of G to be those obtained by pulling back the Cartan subgroups of G

by means of p. Let T̃ = p−1(T ). We define T̃+, N(T̃ ), N+(T̃+),W (T̃ ),W+(T̃+) in

exactly the same way and it turns out that each of the above groups is a pullback

of the corresponding linear group via the map p. We have |W (T̃ )| = W (T )|
and |W+(T̃+)| = |W+(T+)| and lemma 5.2.5 holds in the non-linear setting. This

is what we will be using in section 5.4. The definition of Φ(G̃) and Φ(G̃n
+) is

exactly analogous to that of Φ(G) and Φ(Gn
+). We define, YT̃ to be those coset

representatives of G̃n
+\G̃ such that [T̃w

+ ] are all distinct elements of Φ(G̃n
+).
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5.3 Matching of orbital integrals

Suppose f̃ ∈ C∞c (G̃1)α and ν|µn = α. We relate the orbital integrals of A(f̃ , ν)

over G̃n
+ and that of B(f̃ , ν) ove G̃. Earlier we had obtained a relationship between

ΘLo(π,ν)(A(f̃ , ν) and ΘL(π)(B(f̃ , ν). The orbital integral relation is dual to this

relation. We use this in the next section and apply the Weyl Integration Formula

to obtain a relation between the characters of L(π, ν) and L(π). Let γ be any

regular, semi-simple element of G1 and let γ̃ = (γ, 1)nu(γ). This is very similar

to the work of Kazhdan and Kazhdan-Flicker where exactly the same approach

was followed to obtain a relation between the characters of π and L(π).

Denote the orbital integral of a function f over the group G at a regular,

semi-simple element γ ∈ G by FG(γ, f) i.e

FG(γ, f) = ∆(γ)

∫

G(γ)\G
f(g−1γg)dg

where G(γ) is the centralizer of γ in G and dg denotes the right-invariant quotient

measure on the homogeneous space G(γ)\G. How this is chosen will be specified

when it is being used for certain calculations.

We will consider F eG(γ̃, B(f̃ , ν)). Let T̃ be a Cartan subgroup of G̃ (which

means it is the pullback of a Cartan subgroup T of G). We assume that γ̃ ∈ T̃ be

a regular element (i.e (γ, 1)nu(γ) is regular). We also assume that γ̃ ∈ G̃1 because

we will be considering orbital integrals of γ̃ with respect to three different groups:

G̃, G̃n
+, G̃1.

As before, ν ∈ F̂∗ such that ν|µn = α. By these conventions, we have:

F eG(γ̃, B(f̃ , ν)) = ∆(γ̃)

∫
eG(eγ)\ eG

B(f̃ , ν)(g−1γ̃g)dg.

where G̃(γ̃) is the centralizer of γ̃ in G̃ and dg is the right-invariant quotient
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measure on the homogeneous space G̃(γ̃)\G̃ with normalizations to be specified

later.

We state one immediate property of F eG(γ̃, B(f̃ , ν)):

Lemma 5.3.1 Let δ ∈ T̃ such that δ /∈ Z(T̃ ). Then F eG(δ, B(f̃ , ν)) vanishes for

every f̃ ∈ C∞c (G̃1)α for any α.

Proof. The proof follows because the orbital integrals are conjugation in-

variant functions. Since T is commutative and T̃ is not (in our case Z(T̃ ) = T̃ n,

section 3.4.1) we can find δo ∈ T̃ such that δo
−1δδo = ζδ where ζ 6= 1. The lemma

follows because f̃ is a genuine function.

Let us denote the space of coset representatives of G̃(γ̃)G̃n
+\G̃ by Weγ. We use

the isomorphism of the homogeneous spaces

(G̃n
+ ∩ G̃(γ̃)\G̃n

+)\(G̃(γ̃)\G̃) ' G̃(γ̃)G̃n
+\G̃

to obtain

F eG(γ̃, B(f̃ , ν)) =

∆(γ̃)
∑

h∈Weγ

∫
eGn
+∩ eG(eγ)\ eGn

+

A(f̃ , ν)(h−1g−1γ̃gh)dg.

We recall here that A(f̃ , ν) is just the restriction of B(f̃ , ν) from G̃ to G̃n
+.

A word about notation. The elements h are really coset representatives. They

are actually elements of G̃ but we make a choice for the calculations. Because of

right-invariance of dg the choice of h (as coset representatives) does not matter

and the calculations following this do not depend on any particular choice.

We would like to make the summation run over some set independent of γ̃.

Since dg is right-invariant, this can be achieved by letting h run over G̃n
+\G̃('

F∗/F∗n) and comparing the two sides.
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Let S(g) = G̃n
+\G̃n

+G̃(g) for any g ∈ G̃. We have:

F eG(γ̃, B(f̃ , ν)) =

1

|S(γ̃)|∆(γ̃)
∑

h∈ eGn
+\ eG

∫
eGn
+∩ eG(eγ)\ eGn

+

A(f̃ , ν)(h−1g−1γ̃gh)dg

Using the above equation, we deduce that for any zy ∈ Z̃ (i.e p(zy) = yI for

some y ∈ F∗.):

F eG(zyγ̃, B(f̃ , ν))

=
1

|S(zyγ̃)|∆(γ̃)
∑

h∈ eGn
+\ eG

∫
eGn
+∩ eG(zyeγ)\ eGn

+

A(f̃ , ν)(h−1g−1zyγ̃gh)dg.

Since G̃n
+ commutes with Z̃, we have g−1zy = zyg

−1.

Also h−1zy = zyh
−1(y, det(h)). We use these facts along with the transformation

properties of A(f̃ , ν) to obtain:

Lemma 5.3.2 Let zy ∈ Z̃. Then

F eG(zyγ̃, B(f̃ , ν))

=
1

|S(zyγ̃)|∆(γ̃)
∑

h∈ eGn
+\ eG

(y, det(h))χ−1
ν (zy)

∫
eGn
+∩ eG(zyeγ)\ eGn

+

A(f̃ , ν)(h−1g−1γ̃gh)dg

Using the fact G̃n
+ ∩ G̃(zyγ̃) = G̃n

+ ∩ G̃(γ̃) and taking χν to the other side, we

obtain:
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χν(zy)F eG(zyγ̃, B(f̃ , ν)) =

1

|S(zyγ̃)|∆(γ̃)
∑

h∈ eGn
+\ eG

(y, det(h))

∫
eGn
+∩ eG(zyeγ)\ eGn

+

A(f̃ , ν)(h−1g−1γ̃gh)dg =

1

|S(zyγ̃)|
∑

h∈ eGn
+\ eG

(y, det(h))F h
Gn

+
(γ̃, A(f̃ , ν))

where we use the notation:

F h
Gn

+
(γ̃, A(f̃ , ν)) =

∆(γ̃)

∫
eGn
+∩ eG(eγ)\ eGn

+

A(f̃ , ν)(h−1g−1γ̃gh)dg

The above relation and the fact that F eGn
+
(γ̃, A(f̃ , ν)) = FfG1

(γ̃, f̃) (see com-

ments towards the end of this section) imply that χν(zy)F eG(zyγ̃, B(f̃ , ν)) is in-

dependent of the choice of the extension ν of α. Furthermore zy can be assumed

to be coming from Z̃n\Z̃(' F∗/F∗n). This can be seen by observing either side

of the above lemma. We will sometimes say y ∈ F∗/F∗n or just y also instead of

zy ∈ Z̃n\Z̃ when there is no chance of confusion.

Since h ∈ G̃n
+\G̃ and G̃n

+\G̃ ' F∗/F∗n via the det (the determinant) map, we

will use hx instead of h from now on where the subscript x implies that hx has

determinant x ∈ F∗/F∗n.

Now F eG(γ̃, B(f̃ , ν)) vanishes outside Z(T̃ ) = T̃ n. If we assume γ̃ ∈ T̃ n, then

we have G̃(γ̃) = T̃ ( T̃ commutes with γ̃ because T̃ n is the center of T̃ and the

centralizer of p(γ̃) is T in the linear group) and F eG(zyγ̃, B(f̃ , ν)) vanishes for

zy /∈ Z̃n\T̃ n ∩ Z̃ (see lemma 5.3.1) Let k1 = |G̃n
+\G̃n

+T̃ |, we have:
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χν(zy)F eG(zyγ̃, B(f̃ , ν)) =

1

k1

∑

hx∈ eGn
+\ eG

(y, x)F hx

eGn
+

(γ̃, A(f̃ , ν))

for zy ∈ Z̃n\T̃ n ∩ Z̃. For remaining zy ∈ Z̃n\Z̃(' F∗/F∗n), we have

0 =
1

|S(zyγ̃)|
∑

hx∈ eGn
+\ eG

(y, x)F hx

eGn
+

(γ̃, A(f̃ , ν))

Since the LHS is 0, we can replace |S(zyγ̃)| by k1. Thus for every y ∈ F∗/F∗n

(really we mean zy ∈ Z̃n\Z̃), we have:

Lemma 5.3.3

χν(zy)F eG(zyγ̃, B(f̃ , ν)) =

1

k1

∑

hx∈ eGn
+\ eG

(y, x)F hx

eGn
+

(γ̃, A(f̃ , ν))

Taking sum over y ∈ F∗/F∗n:

∑
y

χν(zy)F eG(zyγ̃, B(f̃ , ν)) =

1

k1

∑

hx

∑
y

(y, x)F hx

eGn
+

(γ̃, A(f̃ , ν))

By orthogonality of characters, we have the theorem:

Theorem 5.3.1 With above notations:

F eGn
+
(γ̃, A(f̃ , ν)) =

k1

|F∗/F∗n|
∑

y∈F∗/F∗n

χν(zy)F eG(zyγ̃, B(f̃ , ν))
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We state another version of lemma 5.3.3 which we are going to use in the next

section. Let us choose representatives of G̃n
+\G̃ and fix them. As before, we still

denote them by hx. We might sometimes use the notation hx ∈ F∗/F∗n. (Since

G̃n
+\G̃ ' F∗/F∗n via the determinant map. This has been discussed in section

5.2.) By conjugation by hx, we can define an isomorphism:

θhx : G̃(γ̃) → G̃(γ̃)hx

Therefore θhx can also be considered as an isomorphism between the groups

G̃n
+G̃(γ̃) → G̃n

+G̃(γ̃)hx and hence also between the homogeneous spaces

G̃(γ̃)\G̃n
+G̃(γ̃) → G̃(γ̃)hx\G̃n

+G̃(γ̃)hx . We also note that as spaces

G̃(γ̃)\G̃n
+G̃(γ̃) ' G̃(γ̃) ∩ G̃n

+\G̃n
+ and similarly for G̃(γ̃)hx . Let dghx be the mea-

sure on G̃(γ̃)hx ∩ G̃n
+\G̃n

+ compatible with dg (we had mentioned in the beginning

of this section regarding the how we would choose the measure) in the sense that:

∫
eGn
+∩ eG(eγ)\ eGn

+

A(f̃ , ν)(h−1
x g−1γ̃ghx)dg =

∫
eGn
+∩G(eγ)hx\ eGn

+

A(f̃ , ν)(g−1γ̃hxg)dghx

which is the same as saying:

F hx

eGn
+

(γ̃, A(f̃ , ν)) = F eGn
+
(γ̃hx , A(f̃ , ν))

Thus we have the following version of lemma 5.3.3

Lemma 5.3.4

χν(zy)F eG(zyγ̃, B(f̃ , ν)) =

1

k1

∑

hx∈ eGn
+\ eG

(y, x)F eGn
+
(γ̃hx , A(f̃ , ν))
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Finally we say a few words as to how the orbital integral of a function f̃ ∈
C∞c (G̃1)α over G̃1 is related to the orbital integral of A(f̃ , ν) over G̃n

+. In order

to get the orbital integral over G̃1, we use the bijection of sets:

(G̃(γ̃) ∩ G̃n
+)\G̃n

+ ' (G̃(γ̃) ∩ G̃1)\G̃1.

to obtain :

FfG1
(γ̃, f̃) = F eGn

+
(γ̃, A(f̃ , ν))

In the above equality, the measure on the quotient space on the left hand side is

normalized according to the isomorphism between the two quotient spaces.

We will prove in the the next section that lemma 5.3.4 and the Weyl Inte-

gration formula can be used to obtain a relation between ΘL(π,ν) and ΘL(π) as

functions of elements of respective groups. We had obtained this relation by

studying the restriction properties of L(π) in the previous chapter.

5.4 The Character formula: Another proof.

Let π, ν be as before and let α = ν|µn =. Let f̃ ∈ C∞c (G̃1)α. Given a subgroup

H of G, H̃ denote the pullback of H in G̃ through the map p : G̃→ G. We have

the following relations from the previous sections in this chapter (lemmas 5.1.1,

5.3.4):

ΘLo(π,ν)(A(f̃ , ν) =
1

|F∗/F∗n|ΘL(π)(B(f̃ , ν)) (5.2)

F eG(zyγ̃, B(f̃ , ν) =
1

k1

χ−1
ν (zy)

∑

hx∈ eGn
+\ eG

(y, x)F eGn
+
(γ̃hx , A(f̃ , ν)) (5.3)
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We wish to use the above relations to obtain a relation beteen ΘL(π,ν) and

ΘL(π) as characters evaluated on elements of respective groups. We can use this

relation and the one between ΘL(π) and Θπ (from the work of K-F) to obtain a

relation between ΘL(π,ν) and Θπν−1 .

Using the Weyl Integration formula, the first relation gives:

∑

[T ]∈Φ(Gn
+)

|W (T̃ )|−1

∫

Z̃\T̃
∆ΘLo(π,ν)(γ̃)F eGn

+
(γ̃, A(f̃ , ν))dγ̃ =

1

|F∗/F∗n|
∑

[T ]∈Φ(G)

|W (T̃ )|−1

∫
fZn\T̃

∆ΘL(π)(t)F eG(t, B(f̃ , ν)dt

(5.4)

where we are assuming that if T̃ is a maximal torus in G̃. We choose measures

dγ̃ on Z̃\T̃ and dt on Z̃n\T̃ so that above equation is valid.

Let us define a function on the regular elements of G̃n
+:

l∗(π, ν)(γ̃) =
1

|F∗/F∗n|
∑

y∈F∗/F∗n

χ−1
ν (zy)ΘL(π)(zyγ̃)

We denote by Θl∗(π,ν) to denote the distribution obtained on C∞c (Gn
+) by inte-

grating against l∗(π, ν). We consider the sum

∑

hw

∫

Z̃\T̃ hw∩ eGn
+

∆(γ̃)l∗(π, ν)(γ̃)F eGn
+
(γ̃, A(f̃ , ν))dγ̃ (5.5)

where hw are coset representatives of G̃n
+\G̃ ' F∗/F∗n via the determinant map.

In hw, w denotes the determinant of hw. We will sometimes also use the notation

hw ∈ F∗/F∗n though we will mean the same as above. We denote h−1
w T̃ hw by T̃ hw .

In the above summation, we would like the sum to run only over those hw’s such

that the all the tori, T̃ hw ∩ G̃n
+, are not conjugate in G̃n

+ i.e run over YT . Later

on we will divide by a constant (depending upon T̃ ) to provide a remedy to this

situation. We consider the above sum because in chapter 3 we proved that

ΘLo(π,ν)(γ̃) =
1

|F∗/F∗n|
∑

y∈F∗/F∗n

χ−1
ν (zy)ΘL(π)(zyγ̃))
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and now we are interested in obtaining the same result by a different method.

We want to prove:

Lemma 5.4.1 Let [T ] ∈ Φ(G). Then

∑

hw∈YT

|W+(T+)|−1

∫

Z̃\T̃ hw∩ eGn
+

∆(γ̃)

l∗(π, ν)(γ̃)F eGn
+
(γ̃, A(f̃ , ν))dγ̃ =

|W (T )|−1 1

|F∗/F∗n|∫
fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(γ̃, B(f̃ , ν))dγ̃

We will simplify the sum 5.5 and use the results of the previous sections in

proving this lemma. Then we sum over all [T ] ∈ Φ(G) and apply the Weyl

integration formula to obtain (this will be explained in detail later on):

Lemma 5.4.2

Θl∗(π,ν)(A(f̃ , ν)) =
1

|F∗/F∗n|ΘL(π)(B(f̃ , ν))

for every f̃ ∈ C∞c (G̃1)α.

After some more calculations, this will enable us to establish l∗(π, ν) =

Lo(π, ν). Now we proceed to consider the sum 5.5 and simplify it using the results

of previous sections.

We note that F eGn
+
(γ̃, A(f̃ , ν)) vanishes outsite Z̃T̃ n

hw

. Also we observe that

Z̃\Z̃T̃ n
hw

= Z̃ ∩ T̃ n
w\T̃ n. The last group is a quotient of Z̃n\T̃ n

hw

by the

subgroup Z̃n\Z̃ ∩ T̃ n
hw

. Hence we replace Z̃n\T̃ n
hw

for Z̃\T̃ hw ∩ G̃n
+ as the set

on which we are performing the integration.

We evaluate:

∫
fZn\fT n

hw
∆(γ̃)l∗(π, ν)(γ̃)F eGn

+
(γ̃, A(f̃ , ν))dγ̃
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for any hw ∈ F∗/F∗n. We start with hw = 1 and then evaluate for general hw by

comparing it to the case when hw = 1.

We can pull the summation outside and use theorem 5.3.1 and obtain:
∫

fZn\fT n

∆(γ̃)l∗(π, ν)(γ̃)F eGn
+
(γ̃, A(f̃ , ν))dγ̃ =

k1

|F∗/F∗n|2
∑

zv ,zu∈F∗/F∗n

∫
fZn\fT n

χ−1
ν (zuz

−1
v )∆(γ̃)ΘL(π)(zuγ̃)F eG(zvγ̃, B(f̃ , ν)dγ̃

We note that both ΘL(π) as well as F eG vanish outside T̃ n and hence we can

let zu, z
−1
v run over Z̃n\Z̃ ∩ T̃ n which we denote by UT̃ . We make a change of

variables zvγ̃ → γ̃ and then label zy = zuz
−1
v . Let us denote |UT̃ | by k2. We also

use the fact that dγ̃ is left-invariant Haar-measure and therefore:

We have a lemma

Lemma 5.4.3
∫

fZn\fT n

∆(γ̃)l∗(π, ν)(γ̃)F eGn
+
(γ̃, A(f̃ , ν))dγ̃ =

k1k2

|F∗/F∗n|2
∑
y∈UT̃

χ−1
ν (zy)

∫
fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(zyγ̃, B(f̃ , ν)dγ̃

We add here that we can also let the sum run over y ∈ UT̃ whenever conve-

nient. We can do this because F eG vanishes outside T̃ n.

We first evaluate
∫

fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(zyγ̃, B(f̃ , ν)dγ̃

for any zy ∈ UT̃ .

We use equation 5.3 to obtain:

∫
fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(zyγ̃, B(f̃ , ν)dγ̃ =

1

k1

χ−1
ν (zy)

∑

hx∈ eGn
+\ eG

(y, x)

∫
fZn\fT n

ΘL(π)(γ̃)F eGn
+
(γ̃hx , A(f̃ , ν)dγ̃
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where γ̃hx = h−1
x γ̃hx.

The previous lemma holds for T̃ replaced by T̃ hw where hw is any coset rep-

resentative of G̃n
+\G̃. If we sum lemma 5.4.3 over all such T̃ hw , we obtain:

∑

hw

∫
fZn\fT n

hw
∆(γ̃)l∗(π, ν)(γ̃)F eGn

+
(γ̃, A(f̃ , ν))dγ̃ =

k1k2

|F∗/F∗n|2
∑
y∈UT̃

χ−1
ν (zy)

∑

hw

∫
fZn\fT n

hw
∆(γ̃)ΘL(π)(γ̃)F eG(zyγ̃, B(f̃ , ν)dγ̃

We are hence eventually interested in simplifying and evaluating:

∑

hw∈F∗/F∗n

∫
fZn\fT n

hw

∑
y∈UT̃

∆(γ̃)ΘL(π)(γ̃)F eG(zyγ̃, B(f̃ , ν)dγ̃

We have another lemma:

Lemma 5.4.4

∑

hw∈F∗/F∗n

∫
fZn\fT n

hw
∆(γ̃)ΘL(π)(γ̃)F eG(zyγ̃, B(f̃ , ν)dγ̃ = 0

for y 6= 1.

Proof. We have using equation 5.3

∫
fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(zyγ̃, B(f̃ , ν)dγ̃ =

1

k1

χ−1
ν (zy)

∑

hx∈ eGn
+\ eG

(y, x)

∫
fZn\fT n

ΘL(π)(γ̃)F eGn
+
(γ̃hx , A(f̃ , ν)dγ̃

where γ̃hx = h−1
x γ̃hx.

If we make a substitution g̃ = γ̃hx , and use the fact that ΘL(π) is conjugation

invariant, we obtain

1

k1

χ−1
ν (zy)

∑

hx∈ eGn
+\ eG

(y, x)

∫
fZn\fT n

hx
ΘL(π)(g̃)F eGn

+
(g̃, A(f̃ , ν)dg̃hx
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where dg̃hx denotes the measure on Z̃n\T̃ n
hx

which is compatible with dγ̃ in the

sense that it is defined in a manner that the two integrals are equal.

Now we evaluate

∫
fZn\fT n

hw
∆(γ̃)ΘL(π)(γ̃)F eG(zyγ̃, B(f̃ , ν))dγ̃

Exactly the same analysis gives us that:

∫
fZn\fT n

hw
∆(γ̃)(zy)ΘL(π)(γ̃)F eG(zyγ̃, B(f̃ , ν))dγ̃ =

1

k1

χ−1
ν (zy)

∑

hx∈ eGn
+\ eG

(y, x)

∫
fZn\fT n

hwhx
ΘL(π)(g̃)F eGn

+
(g̃, A(f̃ , ν).

Hence, by sustituting hu = hwhx, we see that

∫
fZn\fT n

hw
∆(γ̃)χ−1

ν (zy)ΘL(π)(γ̃)F eG(zyγ̃, B(f̃ , ν))dγ̃ =

1

k1

χ−1
ν (zy)

∑

hu∈F∗/F∗n

(y, uw−1)

∫
fZn\fT n

hu
ΘL(π)(g̃)F eGn

+
(g̃, A(f̃ , ν).

We pull out (y, w−1) from the above equation and comparing it to the expression

obtained for w = 1, we have

∫
fZn\fT n

hw
∆(γ̃)ΘL(π)(γ̃)F eG(zyγ̃, B(f̃ , ν))dγ̃ =

(y, w−1)

∫
fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(zyγ̃, B(f̃ , ν))dγ̃

If we now sum over hw ∈ F∗/F∗n, we obtain

∑

hw

∫
fZn\fT n

hw
∆(γ̃)ΘL(π)(γ̃)F eG(zyγ̃, A(f̃ , ν))dγ̃ =

∑

hw

(w−1, y)

∫
fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(zyγ̃, A(f̃ , ν))dγ̃
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The RHS equals zero if y 6= 1.

This proves the lemma.

Thus, using lemma 5.4.3, we have:

∑

hw

∫
fZn\fT n

hw
∆(γ̃)

1

|F∗/F∗n|(
∑

y∈F∗/F∗n

χ−1
ν (zy)ΘL(π)(zyγ̃))F eGn

+
(γ̃, A(f̃ , ν))dγ̃ =

k1k2

|F∗/F∗n|
∫

fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(γ̃, B(f̃ , ν))dγ̃

Hence, we also get:

∑

hw

∫

Z̃\Z̃ fT n
hw

∆(γ̃)
1

|F∗/F∗n|(
∑

y∈F∗/F∗n

χ−1
ν (zy)ΘL(π)(zyγ̃))F eGn

+
(γ̃, A(f̃ , ν))dγ̃ =

k1

|F∗/F∗n|
∫

fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(γ̃, A(f̃ , ν))dγ̃

because

(
∑

y∈F∗/F∗n

χ−1
ν (zy)ΘL(π)(zyz̃γ̃))F eGn

+
(z̃γ̃, A(f̃ , ν)) =

(
∑

y∈F∗/F∗n

χ−1
ν (zy)ΘL(π)(zyγ̃))F eGn

+
(γ̃, A(f̃ , ν))

for every z̃ ∈ Z̃ and

(Z̃n\T̃ n
hw ∩ Z̃)\(Z̃n\T̃ n

hw

) ' Z̃ ∩ T̃ n
hw\T̃ n

hw ' Z̃\Z̃T̃ n
hw

.

Also |Z̃n\Z̃ ∩ T̃ n
hw | = |Z̃n\Z̃ ∩ T̃ n| = k2 for every hw ∈ F∗/F∗n.

In the Weyl Integration formula the sum ranges over distinct Cartan sub-

groups. We therefore write the above equation such that we include only those

hw ∈ F∗/F∗n for which all [T hw
+ ] 6= [T+], i.e over hw ∈ YT . (Recall notation from

section 5.2. Also note that it is the same whether we talk of Cartan subgroups

in G or in G̃.) We are interested in non-conjugate Cartan sub-groups of G̃n
+

corresponding to T̃ . Thus we obtain:
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|G̃n
+\N(T̃ )G̃n

+|
∑

hw

∫

Z̃\Z̃ fT n
hw

∆(γ̃)l∗(π, ν)(γ̃)F eGn
+
(γ̃, A(f̃ , ν))dγ̃ =

k1

|F∗/F∗n|
∫

fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(γ̃, B(f̃ , ν))dγ̃

where now hw runs over the set YT .

Now we multiply both sides with |W+(T+)|−1 and take the constant

|G̃n
+\W (T̃ )G̃n

+|−1 to the other side to obtain:

|W+(T+)|−1
∑

hw∈YT

∫

Z̃\Z̃ fT n
hw

∆(γ̃)

l∗(π, ν)(γ̃)F eGn
+
(γ̃, A(f̃ , ν))dγ̃ =

|W+(T+)|−1|G̃n
+\N(T̃ )G̃n

+|−1 k1

|F∗/F∗n|∫
fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(γ̃, B(f̃ , ν))dγ̃

This gives us, from a previous lemma (5.2.5):

∑

hw∈YT

|W+(T hw
+ )|−1

∫
∆(γ̃)

l∗(π, ν)(γ̃)F eGn
+
(γ̃, A(f̃ , ν))dγ̃ =

|W (T )|−1 1

|F∗/F∗n|∫
fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(γ̃, A(f̃ , ν))dγ̃

(5.6)

This proves the lemma 5.4.1. We recall the definition of the function l∗(π, ν)

on G̃n
+. (defined earlier in this section)

l∗(π, ν) =
1

|F∗/F∗n|
∑

y∈F∗/F∗n

χ−1
ν (zy)ΘL(π)(zyγ̃).

Note that l∗(π, ν) has the property that l∗(π, ν)(zyγ̃) = χν(zy)l
∗(π, ν)(γ̃) for

every zy ∈ Z(G̃n
+) = Z̃. We will use l∗1(π, ν) to denote the restriction on G̃1 and
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Θl∗1(π,ν) to denote a distribution on C∞c (G̃1) by integrating a function against

l∗1(π, ν). We do not know as of now whether l∗1(π, ν) is the character of some

representation.

Now we consider equation 5.6 and sum it over all non-conjugate maximal tori

of G̃, i.e over all elements of Φ(G) (see notation in section 5.2.) and obtain

∑

[T ]∈Φ(G)

∑

hw∈YT

|W+(T hw
+ )|−1

∫

Z̃\Z̃ fT n
hw

∆(γ̃)

l∗(π, ν)(γ̃)F eGn
+
(γ̃, A(f̃ , ν))dγ̃ =

1

|F∗/F∗n|
∑

[T ]∈Φ(G)

|W (T )|−1

∫
fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(γ̃, A(f̃ , ν))dγ̃.

(5.7)

Now we use lemma 5.2.3 to obtain:

∑

[T ]∈Φ(Gn
+)

|W+(T hw
+ )|−1

∫

Z̃\T̃ hw
+

∆(γ̃)

l∗(π, ν)(γ̃)F eGn
+
(γ̃, A(f̃ , ν))dγ̃ =

1

|F∗/F∗n|
∑

[T ]∈Φ(G)

|W (T )|−1

∫
fZn\fT n

∆(γ̃)ΘL(π)(γ̃)F eG(γ̃, A(f̃ , ν))dγ̃.

(5.8)

An application of the Weyl Integration Formula gives us:

Θl∗(π,ν)(A(f̃ , ν)) =
1

|F∗/F∗n|ΘL(π)(B(f̃)).

Using equation 5.2, we get

Θl∗(π,ν)(A(f̃ , ν)) = ΘLo(π,ν)(A(f̃ , ν)).

Because A(f̃ , ν) is just the extension of f̃ by χν and G̃n
+ = G̃1Z̃, we have
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Lemma 5.4.5

Θl∗1(π, ν)(f̃) = ΘL(π,ν)(f̃)

for every f̃ ∈ C∞c (G̃1)α. Recall that α ∈ µ̂n and ν|µn = α.

We recall that given any f̃ ∈ C∞c (G̃1) we can write f̃ as

f̃ =
∑

δ∈cµn

f̃ δ.

We also recall that ΘL(π,ν)(f̃
δ) = 0 unless δ = α. This was lemma 5.1.2.

Based on this motivation, we have a similar lemma:

Lemma 5.4.6 Θl∗1(π,ν)(f̃
δ) = 0 unless δ = ν|µn.

Proof. Assume δ 6= α. Thus there exists a ζ ∈ µn such that δ(ζ) 6= α(ζ). We

have

Θl∗1(π,ν)(f̃
δ) =

∫
fG1

Θl∗1(π,ν)(γ̃)f̃
δ(γ̃)dγ̃

We can substitute g̃ = ζγ̃. The transformation properties of l∗1(π, ν) and f̃ δ

imply that

Θl∗1(π,ν)(f̃
δ) = αδ−1(ζ)Θl∗1(π,ν)(f̃

δ)

Since αδ−1(ζ) 6= 0, we have proved the lemma.

We have the theorem:

Theorem 5.4.1

ΘL(π,ν) = l∗1(π, ν) =
1

|F∗/F∗n|
∑

y∈F∗/F∗n

χ−1
ν (zy)ΘL(π)(zyγ̃)

Proof. It follows from 5.4.5 and 5.4.6 that

Θl∗1(π, ν)(f̃) = ΘL(π,ν)(f̃)
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for every f̃ ∈ C∞c (G̃1). This implies that ΘL(π,ν)(f̃) can be obtained by integration

against the function l∗(π, ν). This proves the theorem.

We had derived this in chapter 3 by alternate means. We substitute the

relation from section 4.5 (we have done this calculation in 4.5)

ΘL(π)(γ̃) =
∑

hn=p(eγ)

∆(h, γ̃)Θπ(h)

into theorem 5.4.1 to obtain:

ΘL(π,ν)(γ̃) = α(ζ)
∑

hn=ζp(eγ)

∆µ(h, γ̃)Θπν−1(h).

Replacing ν by ννδ and π by πνδ for any δ ∈ µ̂n, we obtain:

ΘL(πνδ,ννδ)(γ̃) = αδ(ζ)
∑

hn=ζp(eγ)

∆µ(h, γ̃)Θπν−1(h).

Taking a sum over δ ∈ µ̂n, we finally have:

Theorem 5.4.2

ΘLst(π,ν)(γ̃) = ∆(γ̃)
∑

hn=p(eγ)

∆µ(h, γ̃)Θπν−1(h)

where, we recall from chapter 3 that:

ΘLst(π,ν) =
∑

δ∈cµn

L(πνδ, ννδ).
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Chapter 6

Applications to Local Fields

Let F be a p-adic field (i.e a finite extension of Qp). Let E/F be a finite extension

of order n with the norm map N : E∗ → F∗. We also assume that µn ⊆ F∗

and that n is coprime to p. We will make the above assumptions throughout

this chapter except where stated otherwise (at the end of the proof of theorem

6.0.5) We will determine the structure of the group F∗/N(E∗) by analyzing orbital

integrals. Classical proofs of this are algebraic in nature.

We have used the Norm residue symbol in all our analysis. Since this symbol

comes out of Local Class Field Theory we will give an alternate explicit definition

of a symbol satisfying the properties of the Norm residue symbol (section 2.1). We

can then derive all the results of this thesis using this symbol and its properties

(all that has been used regarding the Norm residue symbol are the properties

stated in section 2.1) and then we would be having all our results without using

the results from Local Class Field Theory.

In this chapter we use the results on orbital integrals from the previous chapter

and prove the following theorem about Local Fields ([20], Pages 196, 172):

Theorem 6.0.3 Let E/F be a finite Galois extension of degree n with Gal(E/F)

denoting the Galois group. Let Gal(E/F)ab be the abelianization of Gal(E/F).
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Assume µn ⊂ F. Then there exists a map σ : F∗ → Gal(E/F)ab such that the

sequence

1 → N(E∗) → F∗ σ→ Gal(E/F)ab → 1

is exact.

In order to prove theorem 6.0.3 we first prove the following two theorems:

Theorem 6.0.4 Let E/F be a finite abelian extension of degree n. Assume µn ⊂
F. Then there exists a map σ : F∗ → Gal(E/F) such that the sequence

1 → N(E∗) → F∗ σ→ Gal(E/F) → 1

is exact.

Theorem 6.0.5 Let E/F be a finite extension of degree n. Assume µn ⊂ F. Let

E1 be the maximal abelian extension of F inside E. Then

NE
F (E∗) = NE1

F (E1∗).

Theorem 6.0.3 follows from the above mentioned theorems because Gal(E/F)ab

is the Galois group of the maximal abelian sub-extension of F inside E.

The proof of both the above theorems follow from results of last chapter. We

proceed to describe them. Assumptions and notation will be the same as in the

last chapter. In particular we assume that we are considering the n-fold cover of

G = GL(n).
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6.1 Explicit definition of a symbol on F∗ × F∗

Now we will give an alternate explicit definition of a symbol satisfying the prop-

erties of the Norm residue symbol (section 2.1). We can then derive all the results

of this thesis using this symbol and its properties (all that has been used regard-

ing the Norm residue symbol are the properties stated in section 2.1) and then

we would be having all our results without using the results from Local Class

Field Theory.

Now we define the symbol τ following [20] (Pg. 210). First we fix some

notation. Let RF be the ring of integers of F and R∗F the group of units in RF.

We denote the residue field of F by kF and let |kF| = q. For any element x ∈ RF,
let x̄ be its image in kF.

Let a, b ∈ F∗. Let α be the valuation of a and β of b. We define a map

c : F∗ × F∗ → R∗F by

c(a, b) = (−1)αβ a
β

bα
.

Next we define τ : F∗ × F∗ → µn by

τ(a, b) = c̄(a, b)
q−1

n

Proposition 6.1.1 For a, a
′
, b ∈ F∗, τ satisfies the following properties:

1. τ(a, b)τ(a′, b) = τ(aa′, b) and similar for the argument b.

2. τ(a, b)τ(b, a) = 1

3. τ(a, 1− a) = 1

4. {a : τ(a, x) = 1∀x ∈ F∗} = F∗n
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5. τ(a,Nb)F = τ(a, b)E where E is a finite field extension of F where b ∈ E∗

and N : E∗ → F∗ denotes the norm map.

We note that 4 gives us that τ : F∗/F∗n × F∗/F∗n → µn is a perfect pairing.

Proof. Properties 1and 2 can be easily verified using the definition of τ. We

refer to [13], Pg. 98 for a proof of 3. To prove 4, we first assume that x is a

unit and obtain that the valuation of a is a multiple of n. Next we assume x to

be the uniformizer and obtain a ∈ F∗n. We use Hensel’s lemma ([20], II.2) for

this. To prove 5, we prove it first for the cases when E/F is unramified, tamely

totally ramified, and totally ramified with the degree of ramification a power of

p. For the tamely totally ramified case we use the fact that for such extensions

the uniformizer in E satisfies an irreducible polynomial of the form Xe − π = 0

where e is the degree of ramification and π is a uniformizer in F. The other two

cases follow by definitions. Since we have F ⊂ L ⊂ K ⊂ E with L/F unramified,

K/L tamely totally ramified and E/K totally ramified with order a power of p

([11], chapter 2), this proves 5 for any extension E.

We construct the covering group of G using τ instead of the standard Norm

residue symbol. For the construction we refer to chapter 2. All the properties

and calculations regarding the covering group can be formulated in terms of τ.

For example we can quote the commutator formula (proposition 2.3.1) in terms

of τ . Once we have that we can proceed to perform the analysis in chapters 3,4,

and 5 using τ .
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6.2 Orbital Integrals

In this section we will assume that the construction of non-linear group in chapter

2 has been done using τ and all the results will be stated in terms of τ. We will

mostly quote results from chapter 5 in that regard and also perform some analysis

using orbital integrals in from chapter 5. We will perform all our analysis in terms

of τ.

Let α ∈ µ̂n. We recall that Z(G̃1) = p−1{ζI|ζ ∈ µn.} Let f̃ ∈ C∞c (G̃1)α. Let

ν ∈ F̂∗ such that ν|µn = α. From theorem 5.3.1 and the discussion at the end of

section 5.3, we have:

Theorem 6.2.1

FfG1
(γ̃, f̃) =

k1

|F∗/F∗n|
∑

y∈F∗/F∗n

χν(zy)F eG(zyγ̃, B(f̃ , ν))

where k1 = |G̃n
+\G̃n

+T̃ | and γ̃ is a regular, semi-simple element of T̃ .

Let γ̃ ∈ T̃ n. Then G̃(γ̃) = T̃ . Recalling the definition of Weγ (section 5.3),

we note that Weγ = G̃n
+T̃\G̃. If we consider lemma 5.3.2 and take a sum over

zy ∈ Z̃n\T̃ n ∩ Z̃, we obtain:

∑

zy∈fZn\fT n∩Z̃

F eG(zyγ̃, B(f̃ , ν))

= ∆(γ̃)
∑

zy∈fZn\fT n∩Z̃

∑

hx∈Weγ

τ(y, det(hx))χ
−1
ν (zy)

∫
eGn
+∩T̃\ eGn

+

A(f̃ , ν)(h−1
x g−1γ̃ghx)dg.

We change the order of summation on the right hand side, get χν(zy) on the

left side, and use lemma 5.3.3 to obtain:
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∑

zy∈fZn\fT n∩Z̃

χν(zy)F eG(zyγ̃, B(f̃ , ν))

=
∑

hx∈Weγ

∑

zy∈fZn\fT n∩Z̃

τ(y, det(hx))F
hx

eGn
+

(γ̃, A(f̃ , ν)).

Since γ̃ ∈ Z(T̃ ) = T̃ n (lemma 3.4.1), we have F eG(zyγ̃, B(f̃ , ν)) = 0 if zy /∈
Z̃n\Z̃ ∩ T̃ n. Therefore we can extend the summation in the LHS to run over

F∗/F∗n. Then we use theorem 5.3.1 to obtain:

∑

hx∈Weγ

∑

zy∈fZn\fT n∩Z̃

τ(y, det(hx))F
hx

eGn
+

(γ̃, A(f̃ , ν))

=
|F∗/F∗n|

k1

F eGn
+
(γ̃, A(f̃ , ν).

Now we use the fact that F eGn
+
(γ̃, A(f̃ , ν)) = FfG1

(γ̃, f̃) (this follows from dis-

cussion towards the end of section 5.3) and Weγ = T̃ G̃n
+\G̃. We use the notation

cx =
∑

zy∈fZn\fT n∩Z̃ τ(y, det(hx)) to obtain

∑

hx∈T̃ eGn
+\ eG

cxF
hx

fG1
(γ̃, f̃)

=
|F∗/F∗n|

k1

FfG1
(γ̃, f̃)

(6.1)

In general if f̃ ∈ C∞c (G̃1) then

f̃ =
∑
α∈µn

f̃α.

where f̃α ∈ C∞c (G̃1)α. (see discussion after proposition 5.1.1) By equation 6.1,

we have for each α,
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∑

hx∈T̃ eGn
+\ eG

cxF
hx

fG1
(γ̃, f̃α)

=
|F∗/F∗n|

k1

FfG1
(γ̃, f̃α)

Upon summing over α ∈ µ̂n, we obtain

∑

hx∈T̃ eGn
+\ eG

cxF
hx

fG1
(γ̃, f̃)

=
|F∗/F∗n|

k1

FfG1
(γ̃, f̃)

(6.2)

for any f̃ ∈ C∞c (G̃1).

Let us recall here that an element in G̃ is said to be regular (semi-simple)

if its projection in G is regular (semi-simple). Since γ̃ is a regular, semi-simple

element of T̃ , h−1
x g−1γ̃ghx is conjugate to γ̃ in G̃1 (here g ∈ G̃1) if and only if hx

is the trivial element of T̃ G̃n
+\G̃. This is true because G̃(γ̃) = T̃ . We note here

that the projections of γ̃ and γ̃hx are also not conjugate inside G1. Since γ̃ and

γ̃hx (for all hx ∈ T̃ G̃n
+\G̃) are semi-simple elements their conjugacy classes in the

linear group G1 are closed and we can have a compact open neighborhood, U ,

of p(γ̃) not intersecting some compact open neighborhood of any p(γ̃hx) for any

hx ∈ T̃ G̃n
+\G̃ (we remind here that by hx we mean coset representatives). We

can pull back this compact open subset to G̃1. Define a function f̃ on p−1(U)

such that for (g, ζ) ∈ p−1(U), f̃(g, ζ) = ζ and zero outside p−1(U).

Therefore we have a genuine function f̃ ∈ C∞c (G̃1) such that FfG1
(γ̃, f̃) = 1

and F hx

fG1
(γ̃, f̃) = 0 for any non-trivial hx. Similarly we can find f̃xo ∈ C∞c (G̃1)

such that F
hxo

fG1
(γ̃, f̃xo) = 1 and F hx

fG1
(γ̃, f̃xo) = 0 for x 6= xo in T̃ G̃n

+\G̃. Upon
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comparing coefficients on both sides of F hx

fG1
when hx is non-trivial, which is to

say that hx /∈ T̃ G̃n
+, we obtain:

cx =
∑

zy∈fZn\Z̃∩fT n

τ(y, det(hx)) = 0

Comparing coefficients when hx is trivial gives:

|Z̃n\T̃ ∩ G̃n
+| =

|F∗/F∗n|
k1

where we recall that k1 = |G̃n
+\G̃n

+T̃ |.
We summarize the above calculation in a lemma:

Lemma 6.2.1 Let hx denote any coset representative of T̃ G̃n
+\G̃. Also let cx =

∑
zy∈fZn\Z̃∩fT n τ(y, det(hx)). Then cx 6= 0 if and only if hx ∈ T̃ G̃n

+. If hx ∈ T̃ G̃n
+

then cx = |Z̃n\T̃ ∩ G̃n
+|.

6.3 Results on Local Fields

We now apply the results of the previous section to Local Class Field Theory. In

the case when T is given by a field extension, E, of F we note the the image of

T̃ under the det map is N(E∗) ⊂ F∗. We get k1 = |N(E∗)/F∗n|. We have have

proved the following:

Proposition 6.3.1 Let E/F be a field extension of order n. Then

∑

y∈(F∗∩E∗n)/F∗n

τ(y, x) = 0

if and only if x /∈ N(E∗).
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Remark 6.3.1 It should be noted here that this proposition gives us a sufficient

condition for an element of F∗ to be in N(E∗).

Proof. It is easy to see that if x ∈ N(E∗), then τ(y, x) = 1 for every

y ∈ F∗ ∩ E∗n/F∗ where N(E∗) denotes the norm map. Let x = N(a) and y = bn

for some a, b ∈ E∗ with b satisfying bn ∈ F∗. The desired identity follows from the

fact that τ(N(a), b)F = τ(a, b)E where a ∈ E∗, b ∈ F∗.
For the other side if τ(y, x) = 1 for every y ∈ (F∗ ∩ E∗n)/F∗n then

∑
y∈(F∗∩E∗n)/F∗n τ(y, x) 6= 0. Therefore cx 6= 0 and hence hx ∈ T̃ G̃n

+ from lemma

6.2.1. Since det(hx) = x, this ensures that x ∈ N(E∗).

This tells us that the character τ( , x) is a non-trivial character of (F∗ ∩
E∗n)/F∗n if and only if x /∈ N(E∗). Since τ : F∗/F∗n × F∗/F∗n → µn is an exact

pairing, we deduce that:

Proposition 6.3.2

F∗/N(E∗) ' ((F∗ ∩ E∗n)/F∗n)b

where ((F∗ ∩ E∗n)/F∗n)b represents the group of characters of (F∗ ∩ E∗n)/F∗n.

If we identify the group of characters, we obtain:

Proposition 6.3.3 We have a non-canonical isomorphism between the following

groups:

F∗/N(E∗) ' (F∗ ∩ E∗n)/F∗n

Now we will use proposition 6.3.1 to prove theorems 6.0.4 and 6.0.5.

Let E/F be a finite abelian extension of order n. By Kummer theory, E =

F[a1, a2, . . . , ar] where ai ∈ E form a minimal set of generators satisfying a
n/di

i =
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yi ∈ F for some set of positive integers di|n. We choose {di} such that they are

highest integers satisfying a
n/di

i ∈ F. Such a set of generators exist because µn,

the nth roots of unity, are in F. Then Gal(E/F) ' ⊕r
i=1 Z/(n/di)Z.

We define a map σ : F∗ → Gal(E/F) by

σ(x)(ai) = aiτ(a
n
i , x).

for every generator ai and σ(x)(a) = a for a ∈ F. Then σ maps each ai to some

root of the equation xn/di − yi = 0. Therefore we see that σ(x) is a well-defined

element of Gal(E/F). Also σ(x) ≡ 1 if and only if x ∈ N(E∗) (this follows from

proposition 6.3.1).

Therefore

Lemma 6.3.1

σ : F∗/N(E∗) → Gal(E/F)

is an injective map.

Now we compare the order of both groups. By proposition 6.3.3, we have

|(F∗ ∩ E∗n)/F∗n| = |F∗/N(E∗)|. So by lemma 6.3.1, we obtain |(F∗ ∩ E∗n)/F∗n| ≤
∏r

i=1 n/di.

But F∗n〈ad1
1 , a

d2
2 , . . . , a

dr
r 〉/F∗n ⊆ (F∗∩E∗n)/F∗n as multiplicative subgroups of

F∗/F∗n. Since di are maximal integers satisfying a
n/di

i ∈ F∗, we obtain

|F∗n〈ad1
1 , a

d2
2 , . . . , a

dr
r 〉/F∗n| =

r∏
i=1

n/di.

This proves that

r∏
i=1

n/di ≤ |(F∗ ∩ E∗n)/F∗n| ≤
r∏

i=1

n/di

giving
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Lemma 6.3.2

|(F∗ ∩ E∗n)/F∗n| =
r∏

i=1

n/di

and hence the surjectivity of σ. Theorem 6.0.4 follows from lemmas 6.3.1 and

6.3.2. We state it again.

Theorem 6.3.1 Let E/F be a finite abelian extension of degree n. Assume µn ⊂
F∗. Then there exists a map σ : F∗ → Gal(E/F) such that the sequence

1 → N(E∗) → F∗ σ→ Gal(E/F) → 1

is exact.

Corollary 6.3.1 Let E/F be an abelian field extension of F and E1 and E2 be two

abelian field extensions of F inside E with N i (i=1,2) the corresponding Norm

maps. Then N1(E1) = N2(E2) if and only if E1 = E2. We assume that µN ⊆ F
where N = |E/F|.

Proof.

Since N1(E1) = N2(E2) we have from the above theorem that |Gal(E1/F)| =
|Gal(E2/F)| = n. Therefore |Ei/F| = n for i = 1, 2. By lemma 6.3.2 we obtain

(F∗∩E∗n1 )/F∗n = (F∗∩E∗n2 /F∗n. From results in Kummer theory ( [11] ) we know

that E→ (E∗n∩F∗)/F∗n defines a one-one correspondence between subfields lying

between F and F[n] and the subgroups of F∗/F∗n where F[n] is the maximal field

extension of F of exponent n. This gives E1 = E2. The converse is obvious.

Next we prove theorem 6.0.5.

Let E be a field extension of F with |E/F| = n. Let E1 be the maximal

subextension of F inside E. We wish to prove that:

NE
F (E∗) = NE1

F (E1∗).
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One side is immediate: NE
F (E∗) ⊆ NE1

F (E1∗) follows because of the transitivity

of the Norm map.

We will use proposition 6.3.3. Let |E1/F| = d. Then we have the non-canonical

isomorphisms:

F∗/NE1

F (E1∗) ' F∗ ∩ E1∗d/F∗d (6.3)

and

F∗/NE
F (E∗) ' (F∗ ∩ E∗n)/F∗n. (6.4)

If a ∈ E∗ satisfies an ∈ F∗ then F[a]/F is cyclic (µn ⊂ F) and hence F[a] ⊆ E1.

This gives a ∈ E1 and therefore E∗n ∩ F∗ ⊆ E1∗n ∩ F∗. The other containment is

obvious giving us E∗n ∩ F∗ = E1∗n ∩ F∗. This allows us to write the relation (6.4)

as:

F∗/NE
F (E∗) ' F∗ ∩ E1∗n/F∗n. (6.5)

To complete the proof we have a lemma:

Lemma 6.3.3 Let n = dk. Define a homomorphism of multiplicative groups

φ : F∗ ∩ E1∗d → F∗ ∩ E1∗n by φ(x) = xk. Then φ induces an isomorphism:

F∗ ∩ E1∗d/F∗d φ→ F∗ ∩ E1∗n/F∗n.

We see that from this lemma and relations (6.3) and (6.5) we obtain:

F∗/NE
F (E∗) ' F∗/NE1

F (E1∗).

Since NE
F (E∗) ⊆ NE1

F (E1∗), this gives us theorem 6.0.5 stated in the beginnning

of this chapter.

Corollary 6.3.2 We have defined the symbol τ for the case (p, n) = 1 and so we

cannot use it for the case p|n. If we replace the symbol τ with the classical Norm-

residue symbol (which we have used throughout this thesis in previous chapters)
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then the proof of theorem 6.0.5 remains exactly the same. This amounts to proving

theorem 6.0.5 for the case p|n assuming the existence of nth Norm-residue symbol

on field F. This uses local class field theory but gives a different proof of theorem

6.0.5 (For classical proof refer [20] Page No. 168).

We proceed to prove lemma 6.3.3.

Proof.

Clearly, φ is well-defined, since if x = ad, a ∈ F∗, then φ(x) = an ∈ F∗n.
Let x ∈ F∗ ∩ E1∗d, x = yd, y ∈ E∗ such that φ(x) ∈ F∗n. Then:

xk ∈ F∗n

⇒ yn ∈ F∗n

⇒ y ∈ F∗

The last line follows because µn ⊂ F∗.

Therefore φ is injective.

We only need that φ is surjective. That forms the contents of the next lemma.

In the proof so far we have not used that fact that E1 is an abelian extension of

F. Note that we use this fact in the next lemma.

Lemma 6.3.4 Let E1/F be an extension with |E1/F| = d. Let x ∈ E1∗ such that

xn = a ∈ F∗ where d|n. Then, in fact, xd ∈ F∗. We are assuming µn ⊂ F.

Proof. Let |F[x]/F| = e and let G = Gal(F[x]/F). Then G is a quotient group

of (Z/nZ)∗ and is hence abelian.

Let α ∈ G. Then α(x) = xζaα where ζ is a primitive nth root of unity.

Define ψ : G→ Z/nZ by ψ(α) = aα.
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It is easy to check that ψ is a homomorphism. If aα = 0 then α(x) = x and

therefore α fixes the whole of F[x] and is the trivial element. This proves that ψ

is injective. We obtain that G is cyclic of order e. Let ρ be a generator of G so

that aρ = n/e. Therefore ρ(xe) = (ρ(x))e = (xζn/e)e = xe. This gives us that G

fixes xe and therefore xe ∈ F∗. Since e|d we obtain xd ∈ F∗.

6.4 Recapitulation

In this section we briefly go over the principal ideas involved in the proof of

theorems 6.0.4 and 6.0.5. We also compare our proof with the proof given in [20].

We start with a p-adic field F with the residue field kF such that |kF| = q.

Therefore F has q− 1 roots of unity (Hensel’s lemma). We consider an extension

E/F such that |E/F| = n divides q − 1. We consider E as a cartan subgroup, TE

of GL(n,F) and consider orbital integrals over the pull back of TE in the n-fold

covering group of GL(n,F). We use the following tools in our analysis:

• Construction of covering groups, calculation of commutators for the tori

in covering groups (this uses the transfer map in K-theory when we deal

with elliptic tori). This calculation essentially gives us the center of the

cartan subgroups in covering groups and is the main ingredient in proving

proposition 6.3.1 which is used to prove theorems 6.0.4 and 6.0.5. One

should note that the corresponding calcluation with the linear group will

not yield anything useful to us.

• The fact that Cent eG(T̃ n
E ) = T̃E. This follows from the fact that CentG(TE) =

TE i.e TE is a maximal torous in G.
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• Orbital Integrals on T̃E are conjugation invariant functions on regular semi-

simple elements of T̃E and that semi-simple elements in an algebraic group

have closed conjugacy classes.

We use above methods to compare orbital integrals on G̃ and G̃1 and obtain

a sufficient condition (proposition 6.3.1) for an element of F∗ to fall inside the

subgroup N(E∗). This condition in turn leads to the theorem 6.0.4 if E/F is

abelian and to theorem 6.0.5 in the general case.

We are not able to say from our methods that σ in theorem 6.0.4 is the

Artin map constructed in [20]. In [20], the Artin map is constructed by using

methods of group cohomology and class formations. These methods yield all the

properties of Artin map as well as the fact that the kernel of the Artin map is

N(E∗). However, from our methods we are able to prove that the map we have

constructed has kernel N(E∗). Our proof is direct in the sense that we start with

an element of F∗ and determine a necessary condition for it to be in N(E∗). This

is very different from the approach of [20]. In [20], a direct proof a given in the

case when E/F is unramified or cyclic and totally ramified without using class

formations. Both proofs are very different from one another and use filtrations,

exact sequences, etc. In contrast the proof obtained here is independent of the

fact that E/F is unramified or totally ramified and is analytic in nature.

Our analysis raises some important questions:

1. Why should we expect a completely arithmetic result like theorem 6.0.3 to

follow from our methods which are mostly of harmonic analysis on non-

linear groups or rather what is the philosophical cause to explain the kind

of result we have obtained from the methods we have used? Comparing
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the proof given in [20] it is natural to ask what does analysis on non-linear

groups has to do with the algebraic methods in the proof of this theorem?

2. Is there some more general object or technique which when understood can

answer the above question?
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