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The growing need of agencies to obtain real-time information on the traffic 

state of key facilities in the systems they manage is driving interest in cost-effective 

deployment of sensor technologies across the networks they manage. This has led to 

greater interest in the sensor location problem. Finding a set of optimal sensor 

locations is a network design problem. This dissertation addresses a series of critical 

and challenging issues in the robustness analysis of sensor coverage and location 

under different traffic conditions, in the context of real-time traffic estimation and 

prediction in a large scale traffic network. 

The research presented in this dissertation represents an important step 

towards optimization of sensor locations based on dynamic traffic assignment 

methodology. It proposes an effective methodology to find optimal sensor coverage 

and locations, for a specified number of sensors, through an iterative mathematical bi-

level optimization framework, The proposed methods help transportation planners 

locate a minimal number of sensors to completely cover all or a subset of OD pairs in 

  



a network without budgetary constraints, or optimally locate a limited number of 

sensors by considering link information gains (weights of each link brought to correct 

a-priori origin-destination flows) and flow coverage with budgetary constraints.  

Network uncertainties associated with the sensor location problem are 

considered in the mathematical formulation. The model is formulated as a two stage 

stochastic model. The first stage decision denotes a strategic sensor location plan 

before observations of any randomness events, while the recourse function associated 

with the second stage denotes the expected cost of taking corrective actions to the 

first stage solution after the occurrence of the random events. 

Recognizing the location problem as a NP-hard problem, a hybrid Greedy 

Randomized Adaptive Search Procedure (GRASP) is employed to circumvent the 

difficulties of exhaustively exploring the feasible solutions and find a near-optimal 

solution for this problem. The proposed solution procedure is operated in two stages. 

In stage one, a restricted candidate list (RCL) is generated from choosing a set of top 

candidate locations sorted by the link flows. A predetermined number of links is 

randomly selected from the RCL according to link independent rule. In stage two, the 

selected candidate locations generated from stage one are evaluated in terms of the 

magnitude of flow variation reduction and coverage of the origin-destination flows 

using the archived historical and simulated traffic data. The proposed approaches are 

tested on several actual networks and the results are analyzed. 
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Chapter 1 Introduction 

 

1.1 Research motivation and objectives 

1.1.1 Research motivation 
 

Transportation system congestion is one of the top concerns affecting 

economic prosperity and people’s way of life. Whatever forms it may take, such as 

vehicles stalled in road traffic networks, cargo stuck at overwhelmed seaports, or 

airplanes circling over crowded airports, congestion costs America an estimated $200 

billion a year (Peters 2007). Traffic congestion leads to side effects, such as drivers’ 

additional travel time cost on the road, extra consumption of fuel, environmental 

pollution, incidents, etc. As estimated by Schrank et al (2005), in 2003 congestion  

costs (based on wasted time and fuel) about $63.1 billion in the 85 urban areas, 

compared to $61.5 billion in 2002. The cost ranged from $1,038 per traveler in very 

large urban areas to $222 per traveler in smaller areas. As a rapidly developing 

technology, sensor networks can be part of an effective strategy to improve the 

overall performance of general traffic networks, contributing to the reduction of  

congestion and its onerous by-products.  Through telecommunication and information 

technologies, sensor networks could form an important component of advanced 

traveler information systems (ATIS) that deliver traveler information to the traffic 

management center (TMC), and provide transportation system users with greater 

transportation options and travel efficiency. Improvements in sensor technology and 

communication systems allow transportation agencies to more closely monitor the 
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condition of the surface transportation system and predict traffic conditions to enable 

proactive traffic management. 

Notwithstanding continuing advances in surveillance and communication 

technologies, the ability to observe flow patterns and performance characteristics of 

dynamic transportation systems remains an important challenge for transportation 

agencies.  As these technologies continue to become more reliable and cost effective, 

demand for travel information is also growing, as is the potential and ability to use 

sensor and probe information in sophisticated decision support systems for traffic 

systems management.  While probe data based on cellular-assisted GPS and other 

cellular phone technologies hold the promise of near-ubiquitous information coverage 

in a network, measurements on system state at given locations using fixed sensors 

remain the backbone of most traffic management centers for traffic management and 

control purposes.   

In order to improve the efficiency of data collection in transportation 

networks, it is critical to understand how sensor placement affects the network 

observability. Furthermore, a new generation of real-time network traffic estimation 

and prediction systems is designed to interact with real-time sensor data to support 

system management decisions through estimation, prediction and control generation 

cycles (Mahmassani et al., 2005). For example, real-time DTA systems such as 

DYNASMART-X and DYNAMIT use sensor measurements on a subset of the 

network links as basis for estimation and prediction of traffic conditions on a quasi-

continuous basis. In particular, the sensor measurements are combined with current 

observation values and historical information to estimate prevailing origin-destination 
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(O-D) patterns and predict their near-term evolution, in addition to predicting the 

network traffic patterns associated with these O-D demands.  

An OD trip table is an important input to a traffic assignment model as well as 

an ITS system. However, the OD demand is typically difficult to obtain due to the 

formulation of the demand estimation and prediction model, such as model order and 

model parameters, and the uncertainty associated with the demand estimation and 

prediction process. Substantial research has been conducted on developing demand 

estimation methods. Generally, demand estimation can be categorized into two 

classes, static and dynamic estimation.  The conventional methods for collecting OD 

trip demand matrix information include the lights-on survey method, license plate 

matching method, postcard questionnaire method, and roadside destination interview 

method, all of which are costly, labor intensive, time consuming and disruptive. The 

problem becomes more acute in regions undergoing rapid development.  In an 

attempt to circumvent these issues, many studies have been conducted on methods for 

analyzing collected link traffic data to estimate and predict OD demand matrices. 

Traffic counts are inherently attractive as data source for OD trip estimation since 

they are non-disruptive to travelers, generally available, and relatively inexpensive to 

collect. The information contained in time varying link traffic counts should increase 

the estimate precision by reducing the time-dependent OD flows’ variance. Since the 

value of information carried by different links is different, it is important to the 

transportation agencies to deploy sensors on those links that can bring maximal value 

of information in order to improve the demand estimation quality. Given the 

deployment and maintenance costs of such installations, most agencies are called 
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upon to determine the number and locations of such sensors across a given network. 

However, most of the existing OD estimation methods have been proposed and/or 

implemented under the assumption of fixed link sensor locations.  

A number of researchers have addressed limited versions of the sensor 

location problem. Most of them formulated the sensor location problem as a flow 

capture and OD coverage problem (Lam and Lo, 1990; Yang and Zhou, 1998; Yim 

et. al, 1998; Bianco et al., 2001). Zhou and List (2006) focused on locating a limited 

set of traffic counting stations and automatic vehicle identification readers in a 

network so as to maximize expected information gain for the subsequent origin 

destination demand estimation problem solution. However, their methods neither took 

into account the interrelation between the sensor coverage and sensor location, nor 

applicability in the context of dynamic traffic assignment. 

 

1.1.2 Research objectives 
 

Driven by the aforementioned motivations, this dissertation addresses a series 

of problems pertaining to deploying finite resources and generating a network 

detection system in a manner that produces minimal estimation errors and maximal 

OD coverage for large-scale urban transportation networks under both deterministic 

and stochastic traffic conditions. To address the above problem, the fundamental 

objectives of this research include: 

1. Formulate and develop a sensor location model that identifies a set of sensor 

locations to maximize the coverage of origin-destination (OD) demand flows while 
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minimizing the demand uncertainty in the estimated OD demand matrix of the road 

network based on dynamic traffic assignment methodology. 

2. Extend the deterministic optimal sensor location model and develop a more robust 

sensor location model that accounts for the demand uncertainty in the dual objectives 

of maximizing long run average demand coverage and information gain. 

3. Develop and test efficient algorithmic implementations for the proposed sensor 

location models to find the optimal/near optimal solution for this NP-hard problem 

with respect to deterministic and stochastic scenarios. 

4. Develop an effective framework for clarifying the value of information brought by 

additional measurement as well as the interactions among different sensors. 

The first objective is mainly intended to optimize sensor numbers and 

locations in the context of known time-dependent OD demand matrices in order to 

maximize the coverage of demand flows and minimize the demand uncertainty. Due 

to the day-to-day traffic pattern evolution, the a priori/historical demand table used in 

the estimation problem formulation (described in the next chapter) may be out-of-date 

and not reflect the prevailing dynamic traffic pattern. It would not be appropriate then 

to load those demands into the network as part of the procedure for finding optimal 

sensor locations. As a matter of fact, an up-to-date origin-destination (OD) matrix is 

imperative in order to find robust sensor locations and sensor coverage that can 

accommodate network disruptions and other uncertainties, such as special events and 

weather.  

In order to characterize those factors, the demand is viewed as a linear 

combination of regular demand, demand structural deviation and random dispersion 
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(Mahmassani and Zhou, 2005). The regular demand is given by the a priori OD 

demand table that can be obtained from survey methods. The structural deviation of 

real-time demand from daily traffic pattern is used to accommodate the network 

uncertainties. The random dispersion reflects the other unobserved/unquantifiable 

factors of the network as well as the inherent stochastic of the daily demand.  

The assignment matrix maps the OD flows onto the link counts and is itself 

dependent on the unknown time-dependent demand flows. It captures three aspects of 

a traffic network: the network topology, the route choice model and the travel time 

across the network (Bierlaire and Crittin 2004). Consequently, it plays a critical role 

in the sensor location problem.  It has been a challenging and important work to 

model time-dependent assignment matrices.  

Two scenarios are taken into account in formulating the dynamic sensor 

location problem. In the first scenario, the minimal optimal sensor locations are 

exploited under the assumption of no budgetary constraint. The second scenario 

depicts the more general and practical situation where the transportation agency look 

for a sensor location plan to deploy finite sensors in large-scale urban transportation 

networks. To reveal the interrelations among sensor locations, sensor coverage, 

unknown actual OD demand and traffic assignment, there is a great need to explore 

ways to allocate sensors so as to generate a network detection system in a manner that 

produces minimal estimation errors at the minimal equipment cost. 

The second objective is to provide a sensor location model when traffic 

dynamics and network uncertainty are accounted for. Although the traffic dynamics 

are considered under the first objective, the traffic network is assumed under 
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deterministic conditions. The second objective is intended to extend the dynamic 

sensor location model under the assumption of recurrent traffic conditions, and 

incorporate the network uncertainty in a mathematic formulation. As part of a 

network planning problem, transportation agencies and planners have to deploy 

limited sensors in the network before the occureence of any non-anticipatable events 

(e.g. incidents, weather, special events, etc).  However, due to the unavoidable 

randomly occurring uncertain events which consequently affect the traffic pattern in 

the traffic network, there is a great need to propose a methodology to identify a robust 

sensor location strategy, which is less sensitive to the network uncertainties. 

The third objective is to build an efficient algorithmic procedure specific to 

the proposed sensor location models. The major concern for the algorithm is to be 

able to find the optimal or near optimal solutions for the proposed problem with 

sufficient accuracy and computational tractability. Due to the nature of the 

combinatorial optimization problem, it is difficult to exhaustively explore the feasible 

region and make discrete choices. In reality, this area of discrete mathematics is of 

practical use and has attracted much attention over the years. Constructing an 

algorithmic procedure for the proposed sensor location models under deterministic 

and stochastic scenarios such that it can find near-optimal solutions within reasonable 

running time is imperative. In addition, the flexibility and ease of implementation of 

the solution algorithm must be taken into account in order to successfully handle 

different real-world applications. 

The fourth objective is trying to illuminate the contribution of the marginal 

value from additional measurement. A sensitivity analysis based method is essential 
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to apply on a real-world traffic network to study the degree of the demand estimation 

error correction influenced by different levels of detection and different sensor 

locations in a portion of a realistic network.  This analysis will provide valuable 

insights about the process of selecting the informative locations for sensors in a 

network. More interestingly, the comparison between the sensitivity analysis results 

and the output from the proposed sensor location model can be used to validate the 

quality and effectiveness of the proposed methodology.  

In sum, the overall objective of this dissertation is to build a framework that 

can help transportation agencies and planners to determine the non-dominated sensor 

location solutions in terms of maximizing OD coverage and information gains for 

real-time traffic estimation and prediction in large-scale networks. In addition, a 

flexible and easily implemented algorithmic procedure is essential in the proposed 

methodology to the actual large urban transportation networks applications. 

 

1.2 Overview of approach 
 

The conceptual framework presented in this dissertation interprets the sensor 

location problem as a value of information problem, which leads to interpretation 

with learning process models. This dissertation aims to present a robust sensor 

location model to enhance the network state estimate and prediction quality and 

reduce the uncertainty of estimated OD demand matrices under various network 

conditions.   

Given historical demand and link observation data, this research starts from an 

objective of minimizing the deviation between the observed and historical link flow 
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counts with a general least square estimator (GLS). In order to accommodate network 

disruptions, a structural state space model (Zhou 2004) is used to represent the actual 

demand, which is decomposed into three components: 

              actual demand= historical demand +structural deviation +random dispersion 

The deviation forms are used in this research since they could capture the 

dynamic traffic pattern temporally and spatially. Moreover, the deviation between 

actual demand and historical demand subsumes the day-to-day evolutionary 

information. Consequently, the structural deviation is modeled as the state variable 

and the objective is to minimize the random dispersion with the GLS estimator. 

As the new observation data become available during each observation time 

interval, the a priori historical demand table can be correspondingly updated. Since 

the value of information obtained from various links is not the same, the problem of 

concern in this dissertation becomes to find informative sensor locations such that the 

uncertainties of the dynamic demand inputs are minimized. As an incremental 

algorithm, a Kalman filter algorithm is a well known approach that can be used to 

solve a least squares problem in a real-time context. In this dissertation, a Kalman 

filtering based bi-objective model is formulated to improve demand estimation 

quality and maximize the OD coverage. 

 An intuitive thought for solving the proposed model is selecting  links 

every time from the directed network , calculating the total link gains each 

time and selecting the locations having the largest link gains. However the 

combination of  links from total  links is
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result in a non-polynomial computational time.  Geoffrion (1970) developed a 

conceptual framework that helps to categorize the methods and solution strategies for 

large-scale mathematical programming.  He called the first category as “master” 

problems which include Projection, Inner Linearization and Outer Linearization. The 

second category consists of solution strategies that can be used to solve the master 

problems in the first category, which include Piecewise, Restriction and Relaxation. 

However, applying those exact algorithms to the proposed sensor location problem 

would consume greater computational resources and require additional attention to 

different realizations. 

A DTA simulation-based bi-level programming technique is used to solve the 

proposed model. In the upper level, a hybrid Greedy Randomized Adaptive Search 

Procedure (HGRASP), which is a combinatorial optimization algorithm, is developed 

to find the feasible solution through reducing the effective size of the feasible solution 

space and exploring the space efficiently. In the lower level, the selected locations 

from the upper level are evaluated using the simulated results, e.g. assignment matrix, 

link information gains, etc. through running user equilibrium (UE) of 

DYNASMART-P (Peeta and Mahmassani (1995). As a dynamic traffic assignment 

(DTA) based simulation tool, DYNASMART-P is used to propagate vehicles along 

their prescribed paths and determine the network traffic state. The information about 

the simulation package can be found in next chapter. 

When such improvements are being made on the sensor location problem, a 

natural extension of the dynamic sensor location model is to account for the network 

uncertainty directly into the model formulation. Uncertainty is one of the important 
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factors that transportation planners and decision makers have to contend with in 

making sensor deployment decisions into a traffic network. The high uncertainties, 

such as locations, durations, severities, induced by the most disasters cause the 

deterministic sensor location model to be less relevant and the nature of this planning 

problem makes itself to a two-stage sequence of decisions. The first stage decision 

denotes a strategic sensor location plan before observations of any randomness 

events, while the recourse function associated with the second stage denotes the 

expected cost of taking corrective actions to the first stage solution after the 

occurrence of the random events. Thus, the proposed sensor location problem is 

further formulated as a two-stage stochastic model with recourse under network 

uncertainty in this research. One important view of the stochastic problem is 

nonanticipativity, which means the planning decisions must be made before a random 

event is observed. In other words, the planning decision is made while the random 

variables are still unknown, so the decision cannot be determined based on any 

particular realized values of the random variables. By viewing the sensor location 

problem as a stochastic optimization problem that takes the network uncertainty into 

account, the aim of the model is to determine robust sensor locations that may not be 

optimal to every possible realization of the un-anticipatory scenarios, but will provide 

good performance under any scenario and perform more robustly with regard to 

extreme cases. A modified dynamic traffic assignment (DTA)-based HGRASP 

solution procedure is proposed in conjunction with an incident generation model to 

find the optimal sensor location plan. 

 11 
 



 

Numerical examples on realistic networks are used to illustrate the proposed 

models and solution algorithms. In addition, a sensitivity analysis is conducted to 

systematically evaluate different sets of sensor locations under certain criteria, such as 

adjacency rules in a large-scale urban transportation network. The analysis considers 

both randomly generated location scenarios as well as scenarios based on engineering 

judgment. The latter considers placing sensors on high volume links on the main 

freeways and arterials. Taken together, the two sets of scenarios provide useful 

insight into the robustness of the real-time DTA estimation and prediction, and the 

effect of location-specific considerations on estimation and prediction quality.  

The test results indicate that the solution of the proposed model is consistent 

and robust under different traffic conditions.   

 

1.3 Dissertation organization 
 

This dissertation comprises six chapters. The second chapter provides an 

overview and discussion of several topics, including OD demand estimation and 

prediction, sensor location problem, and previous related stochastic network design 

research. It also briefly introduces the DYNASMART simulation package. Chapter 3 

first presents a conceptual Kalman filtering based framework for the sensor location 

problem, and a theoretical description of the goals associated with the sensor location 

problem. Then a bi-objective model is proposed followed by the Hybrid Greedy 

Randomized Adaptive Search Procedure (HGRASP) algorithmic procedure. 

Numerical examples are used to illustrate the proposed methodology. Taking the 

network uncertainty into account, Chapter 4 extends the deterministic optimal sensor 
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location problem proposed in Chapter 3 to a stochastic optimal sensor location 

problem and presents a modified HGRASP-DTA solution procedure in conjunction 

with an incident generation model. Chapter 5 includes an analysis that illustrates how 

estimation and prediction of the network performance can be influenced by the 

location and number of detectors in the network. Sensitivity analysis and the 

proposed bi-objective model are applied to implement a series of experiments on a 

real-world large-scale urban transportation network.  Chapter 6 concludes this 

research and delineates some possible areas for further research. 
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Chapter 2 Background Review 

 

2.1 Introduction 
 

Origin-destination (OD) demand matrices play a critical role in many 

important transportation research problems from traffic operation control to 

transportation network planning analysis. As an input to many transportation 

applications, an accurate OD demand matrix becomes extremely important because 

the link flows after loading the demand matrix must be close to the actual values in 

order to estimate the  network state conditions. High cost in terms of  time, budget, 

manpower, etc of traditional methods that combine household-based interviews and 

roadside surveys limit the usefulness of this method in many applications, especially 

in the context of real-time traffic estimation and prediction.  

Information technologies have great potential in improving the network state 

estimation and prediction quality. Recent advances in wireless networking and sensor 

networks significantly have impacted the design of intelligent transportation systems 

(ITS) to make transportation systems safer and more efficient. Numerous exciting 

research challenges exist for designing wireless networking and sensor network 

technologies for vehicle to vehicle, vehicle to infrastructure, and within infrastructure 

sensing and communication applications.  Due to the relatively low cost and ease of 

obtaining  network sensor data, many studies have been conducted regarding the 

methods for analyzing the collected link traffic data to estimate or predict OD 

demand matrices. However, most of those studies were implemented on the 
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assumption of fixed sensor locations in the network. Understanding the relationship 

between sensor location and the quality of the estimated OD demand, as well as 

trade-offs between sensor investments and information gain are critical to the 

agencies’ decision-making in this regard. A number of researchers have addressed 

limited versions of the sensor location problem.  

In the following sections, the relevant studies are reviewed. First, the off-line 

and on-line time-dependent OD estimation and prediction methods are described in 

section 2.2. Section 2.3 reports study efforts on sensor location over the past three 

decades. Section 2.4 reviews the literature on stochastic programming approaches, 

then a simulation-based dynamic traffic assignment system DYNASMART is 

introduced. Finally, the main conclusions are summarized in the closing section.    

 

2.2 Overview of methods for  estimating O-D matrices 

2.2.1 Methods for off-line O-D estimation 
 
 Due to the day-to-day traffic pattern evolution, an up-to-date origin-

destination (OD) matrix is important for real-time network traffic estimation and 

prediction, which integrates the a priori matrix with link counts obtained from the 

low-cost road side sensor stations. The past three decades have seen many studies on 

OD matrix estimation. In general, those studies can be grouped in two categories, 

traffic assignment based approaches and statistical inference approaches. 

The first category includes “information minimization” (entropy 

maximization) models. Zuylen and Williumsen (1980) developed two models based 

on information minimization and entropy maximization principles to estimate an OD 

matrix from traffic counts by reproducing the observed link flows. They introduced a 
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variable  to represent the proportion from origin i to destination that use link  

and assumed proportional traffic assignment. Although they introduced minimum 

external information into the model and turned the problem into a multi-proportional 

problem, the assumption that the assignment matrix is independent of the OD flow 

limited the applicability of their procedure in real world congested networks. Fisk 

(1988) took into account the congestion factor that impacts travel times and 

consequently influences drivers’ path choices and assignment matrix. She combined 

the maximum entropy model and user-equilibrium model into a single mathematical 

problem and transformed the problem into a bi-level programming formulation. 

a
ijp j a

Recognizing that the OD estimation problem is usually an under-specified 

problem, in that the number of OD pairs, which are the unknown variables in this 

problem, is normally greater than the number of link traffic stations, researchers 

integrated the a priori OD matrix with the link counts in order to obtain a unique 

estimated OD matrix. The second category includes maximum likelihood (ML) 

approach, generalized least squares (GLS) approaches and Bayesian Inference 

approach. Spiess (1987) assumed the OD demand can be obtained from independent 

Poisson distributed random variables with unknown means. A ML model was 

formulated to estimate these means to reproduce the estimated link flows consistent 

with the observed link flows. However, his study assumed the assignment matrix is 

constant and determined exogenously. Cascetta (1984) proposed a generalized least 

squares estimator that combines traffic counts with an assignment model. Bell (1991) 

incorporated the inequality constraints and presented a simple iterative algorithm for 

solving the constrained GLS problem and proved its convergence. Maher (1983) 
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assumed the priori OD matrix and the observed link counts follow multivariate 

normal distributions and proposed a Bayesian statistical inference based model to 

update the priori OD matrix.  The general formulation of the static OD estimation is 

as follows 
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where R  and V are dispersion matrices, and  are the target and estimated              

demand matrix, respectively. 

D D̂

Most of the static OD estimation methods assumed that the assignment matrix 

is constant (proportional assignment) and independent of the OD flows. The earliest 

reported study to estimate “time-dependent” OD matrices was implemented for 

dynamic origin-destination flows estimation in an interchange or corridor (Cremer, et. 

al 1981). Cascetta et al. (1993) extended and generalized the static OD estimation 

model and proposed two approaches, simultaneous and sequential estimators, to 

estimate dynamic OD matrices by dynamic traffic assignment modeling.  The 

simultaneous approach estimates the entire OD demand pattern by using counts over 

all intervals simultaneously.         
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In the sequential approach, the demand vectors for a single interval are estimated 

sequentially. 
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where are the objective functions depending on the distributional 

assumptions made on the vectors .  

)(),( 21 •• ff

hd̂

The models for dynamic OD estimation can be categorized into two classes: 

non-DTA based and DTA-Based. In the non-DTA based class, Wu and Chang (1996) 

extend Bell’s (1991) linear system models and proposed a non-assignment based O-D 

estimation method with the inclusion of screenlines to estimate time-dependent O-D 

demand matrices for closed networks. In the DTA based class, Tavana and 

Mahmassani (2000) proposed a bi-level least-squares estimation method using a 

dynamic traffic assignment (DTA) based simulation program to estimate time-

dependent OD. Zhou, et. al.(2003) extended Tavana’s model to a bi-objective model 

with weight function by incorporating a priori OD demand table and multi-day link 

flow counts. 

In recent years, with the availability of new technologies for vehicle tracking, 

automatic vehicle identification (AVI) data have been used to estimate the OD matrix 

with point sensor data (Van der Zijpp et al. (1980), Dixon et al. (2002), Zhou and 

Mahmassani (2006)).  

 

2.2.2 Methods for real-time dynamic O-D estimation and prediction 
 

Dynamic OD demand estimation and prediction is a critical component for 

real-time dynamic traffic assignment. As unknown variable, the time-dependent OD 

demand involves both temporal and spatial dimensions. With respect to the OD 

demand, real-time OD estimation and prediction has become an important element in 

dynamic traffic management systems (Ashok, et. al 1993).  

 18 
 



 

The basic problem of OD prediction is to compute, in real-time, the future OD 

estimates with current network traffic information, such as link counts and 

proportions in conjunction with historical OD flows. Several approaches have been 

proposed in the literature to model the dynamic nature of demand. Okutani (1987) 

proposed a state-space model using an autoregressive process on the OD flows as the 

transition equation to capture temporal interdependencies. However he ignored the 

pattern of the OD trips in a transportation network is determined not only by the 

spatial but temporal distribution of traffic activities, which cannot be modeled by a 

simplistic auto-regressive process. By recognizing this limitation, Ashok et al. (1993) 

used deviations of O-D flows from best historical estimates instead of the O-D flows 

themselves as state-vector in a state-space model. Because of the estimations of not 

only current interval, but prior intervals state variables, his method is very 

computationally intensive. Kachroo, Narayanan and Ozbay (1995) extended this 

approach to account for colored noise in the system. Based on their previous work, 

Ashok and Ben-Akiva (2000) proposed two approaches for real-time estimation and 

prediction of time-dependent OD flow. The first approach is an extension of the 

autoregressive model using the deviation between the actual and historical OD flows. 

In order to keep the estimation procedure computationally tractable, they used 

augmented state-vector and assumed the OD flows in prior time interval hold 

constant. They used the deviations of departure rate from each origin and shares 

headed to each destination in the second approach. 

Recognizing the fact that the prediction of OD matrices and other network 

traffic conditions is more reliable in the near-term (roll period), Peeta and 
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Mahmassani (1995) proposed a rolling approach, previously used in the production-

inventory control literature, to solve large-scale network dynamic assignment in 

quasi-real-time. The rolling horizon implementation of the DTA model recognizes 

that prediction of OD matrices and network conditions is more accurate in the short 

term (roll period), while the uncertainty increases beyond this period. Rather than 

assuming that time-dependent OD matrices and network conditions are known a 

priori for the entire assignment horizon, a more realistic scenario is to consider that 

the information of short-period dynamic OD matrices and network conditions is 

deterministic, whereas information beyond this short period (roll period) will not be 

available until some time later. To illustrate their approach, figure 2-1 shows two 

consecutive stages of PDYNA as well as the interrelationship between PDYNA and 

OD estimation. The stage length of a PYDNA is h units and the simulated link 

proportions in this stage (stage σ-1) and real-time traffic measurements are provided 

to OD demand estimation module for the OD estimation calculation. Following the 

OD demand estimation, the OD prediction component predicts the OD demands of 

the future time period η on the basis of current OD estimation results. The predicted 

OD demand will be utilized by the next PDYNA for predicting network traffic flow 

propagation in stage σ. To guarantee that PDYNA in stage σ finds the OD 

information it is requesting, the prediction horizon η has to be greater than h. 

Similarly, to guarantee that OD estimation in stage k+1 receives the predicted link 

proportions, the OD estimation state length γ  must be less than the PDYNA stage 

length h minus the roll period l. The shaded portion of stage k represents the short-

term duration for which demand information is consider reliable and is referred to as 
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the roll period of l time units. Beyond this point, the OD forecasting and other 

network conditions in the rest port of the stage k are subject to substantial uncertainty.  

The Kalman filter algorithm has been used to accommodate the requirements 

of real-time OD estimation and prediction (Okutani 1987; Ashok and Ben-Akiva 

1993, 2000; Wu and Chang 1996; Kang 1999; Zhou 2004). This algorithm is a 

recursive method that gives a linear, unbiased, and minimum error variance estimate 

of the unknown state vector at each time instant with the incoming observation data. 

Inspired by Ashok and Ben-Akiva (1993)’s work, Bierlaire and Crittin (2004) derived 

a least-square model and used the LSQR algorithm to overcome Kalman filter 

algorithm’s inability to handle large-scale network. Wu (1997) proposed a revised 

Multiplicative Algebraic Reconstruction Technology (MART) algorithm based on a 

normalization treatment and the diagonal searching technique from the nonlinear 

programming methodology for online OD flow updating. 
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Figure 2-1 Rolling Horizon Solution 

order to capture the dynamic nature and nonlinear trend characteristics, 

ni et .al. (1998) and Kang (1999) introduced a general polynomial 

tion framework to formulate the dynamic OD estimation and prediction 

ined it with a Kalman Filter model under the assumption that OD flows will 

tically change within an estimation period. The polynomial trend filter 
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By using the transformation, the OD estimation and prediction problem becomes an 

over-determined problem and the state variables domain becomes linear or quasi-

linear which is the requirement for getting optimal estimation results using the 

Kalman Filtering method.  Combining Ashok et. al (1993) and Kang’s model, Zhou 

(2004) proposed a structural state space model, a Kalman Filtering based OD 

estimation and prediction model, which can be integrated into a DTA simulation 

framework. He integrated historical demand information as well as structural changes 

into a real-time demand process model, in order to provide accurate and robust 

demand prediction under recurrent and non-recurrent conditions. He proposed a linear 

model combing a priori OD estimate , structure deviation  and random 

disturbance  together. By integrating the regular demand pattern, his structure 

model leads to smaller estimation and prediction variance compared to a pure 

polynomial model. The recursive dynamic OD demand estimation and prediction 

procedure integrating the structural state space model and Bang-Bang control logic 

for the real-time traffic system is described as follows. 

τ
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Real-time dynamic O-D estimation and prediction: 

Step 0: Initialization 

Let the initial estimation value be , )(ˆ
00|0 XEX = )( 00|0 XVarP = ,   1=k

Step 1: Prediction 

Predict the mean and covariance estimates from state 1−k to state  after using 

measurements obtained at state 

k

1−k and correcting the state variable estimates at 

state  1−k
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Step 2: Estimation and Correction 

After obtaining the new link proportions and link observation data, the Kalman filter 

gain matrix at state is calculated as follows, k

1
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T
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T
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Using  correcting the predicted and   with the link observation data. kK 1|
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Step 3: Demand Deviation Error Checking 

If  , go to step 4, Otherwise, if , Let . If , Let 

, Where 

[ ULX kk ,ˆ
| ∈ ] LX kk <|

ˆ LX kk =|
ˆ UX kk >|

ˆ

UX kk =|
ˆ L  and U are the lower boundary and upper boundary of the 

demand deviations. 

Step 4: Estimation of real-time demand 

After obtaining the new demand deviations , update the a priori estimated OD 

demand using . From (1), it can get 
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ˆ
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Step 5: If reaches the simulation horizon, done; otherwise let 1+= kk , go to step 1. 

 

2.2.3 Methods for distributed dynamic O-D demand 
 

As noted, the focus for application of dynamic traffic assignment models to 

support real-time traffic management decisions requires the ability to execute these 

procedures on large-scale, real-world networks.  As such, it is not sufficient to 

develop and illustrate procedures that may work on a small network, in order to 

demonstrate algorithm design issues or properties.  It is necessary to address the 

challenges associated with real-world networks and applications. A major challenge 

arises from the need to process large amounts of traffic data and generate information 

supply strategies in real-time, resulting in computationally intensive control 

architectures that are often a key barrier to their implementation.  Building a dynamic 

O-D distributed modeling framework is a logical approach to overcome the 

limitations of current-generation computing platforms. 

Generally, decomposition approaches applied in the DTA arena can be 

classified into three categories: (1) distributing independent work onto different 

CPU’s; Peeta, et al (1999, 2004) distributed the system optimization and user 

equilibrium of the Multiple User Classes Time-Dependent Traffic Assignment 

(MUCTCDTA) algorithm onto different computers; (2) developing more 

computationally efficient algorithms for parallel/distributed modes (Ziliaskopoulos, et 

al 1997, Jiang 2004, Lo et al 1999); and  (3) light global control/independent subnets 
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design (Hawas et al 1997, Jayakrishnan et al 1999, Chiu, et al 2002, Liu et al 2004). 

Decomposition approaches of network OD demand matrices for large scale networks 

have gained considerable attention as a research topic that is attracting larger numbers 

of researchers working in this field. 

 

2.3 Overview of Sensor Location Problem Approaches    
  

O-D demand estimation using link traffic counts is a well known 

underspecified problem, in that the number of links with count stations is usually less 

than the total number of O-D pairs in the network. As a matter of fact, not all of the 

links convey the same amount of information; some links even make no or slight 

contribution to update/improve the a priori OD matrix.  Thus, how to deploy a 

limited number of sensors in a traffic network to achieve maximal information 

content in the observed data and increase the reliability of an estimated O-D matrix 

becomes an important research topic. 

    Although the quality and quantity of sensor data are considered as essential 

inputs to an OD estimation problem, most of the demand estimation and prediction 

methods were built under the assumption of a given subset of link sensors. Aware of 

the inherent connection between the OD estimation and link observation counts, 

several researchers have approached the sensor location problem as an OD covering 

problem.  Lam and Lo (1990) proposed “traffic flow volume” and “O-D coverage” 

criteria to determine priorities for locating sensors. By employing a concept of 

maximum possible relative error (MPRE) to bound the real relative error, Yang et al. 

(1991) formulated a simple quadratic programming problem and showed that if an 
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OD pair is not covered by a sensor, the MPRE is infinite. The MPRE is defined as the 

maximum possible relative deviation of the estimated OD matrix from the true one 

                                ∑
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Yang and Zhou (1998) further proposed four basic rules for the sensor location 

problem based on the MPRE.  

• Rule 1: OD covering rule: A certain portion of trips between any OD pair 

should be observed. 

• Rule 2: Maximal flow fraction rule: For a particular OD pair, link with the 

maximal fraction of that OD flow should be selected. 

• Rule 3: Maximal flow-intercepting rule: Under a certain number of sensor 

constraint, the maximal OD pairs should be observed. 

• Rule 4: Link independent rule: The resultant traffic counts on the selected 

links should not be linearly dependent.  

Ehlert et al.(2006) extended Yang and Zhou’s work by taking the existing 

sensors into account and sought the second-best solution. Yim et al. (1998) evaluated 

maximal net O-D capture rule and maximal total O-D captured rule on a large-scale 

network. Bianco et al. (2001) proposed an iterative two-stage procedure which 

focuses on maximizing “coverage” in terms of geographical connectivity and size of 

the O-D demand population. Chootinan et al. (2005) formulated a bi-objective model 
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to locate traffic counting stations for the purpose of OD matrix estimation. They 

considered the maximal covering rule while minimizing the sensor quantity as two 

conflict conditions and proposed a multi-objective method to balance those two 

criteria. Yang et al. (2006) formulated an integer linear programming model to solve 

a screen line-based sensor location problem. Pravinvongvuth et al. (2005) proposed a 

methodology for selecting the preferred plan from the set of Pareto optimal solutions 

obtained form solving the multi-objective automatic vehicle identification (AVI) 

reader location problem constrained by the resource limitation as well as the O-D 

flow coverage.  

Based on the assumptions that an active sensor can provide path flows and 

each edge in the network associated with exact two paths, Gentili and Mirachandani 

(2005) considered the sensor location problem as a set covering problem and 

proposed some graph theoretic based models to locate active path-ID sensors on a 

network. They presented a problem formulation and analyzed three different 

scenarios depending on the number of conventional (passive) sensors already 

installed in the network. However, they did not take into account the factors that link 

volume and correlations among different sensors may also influence the sensor 

locations in a network. Moreover, their assumptions that tried to capture all of the 

network path flows in conjunction with one link associated exactly with two path 

flows may be difficult to fulfill in terms of the market penetration rate and the 

uncertainty of the travelers’ route choices decisions due to the anticipated or un-

anticipated network traffic disturbances in a general road network, especially in a 

large-scale congested network. 

 28 
 



 

The general approach used to address this problem relies on heuristics, 

especially greedy algorithms (Yang and Zhou 1998). These algorithms basically seek 

to find the most important location first and locate a sensor there. Then find second-

most important location and continue until reaching a pre-specified termination 

criterion (# of sensors or no significant improvement).  

The aforementioned studies were all implemented under the measurement 

error free assumption, and their objective is maximization of O-D coverage. None of 

the studies were intended to reduce the uncertainty in the O-D matrix estimation 

through sensor deployment.  Zhou and List (2006) focused on locating a limited set of 

traffic counting stations and automatic vehicle identification readers in a network so 

as to maximize expected information gain for the subsequent origin destination 

demand estimation problem solution. 

 All existing sensor location approaches assume that static traffic patterns on 

the network prevail. Those methodologies ignored an import common source of 

temporal variability in the link-level performance, the nonstationary characteristics of 

cross-traffic, which leads to the static models unable to capture the traffic dynamics. 

In addition, the static sensor location models are not robust under different traffic 

conditions. 

 

2.4 Overview of Stochastic Programming Approaches and Incident Generation 
Approaches 
 

The transportation system is one of the most complicated dynamic social 

systems, as it includes road systems, vehicles, control systems as well as the inherent 

uncertainties due to the interactions among different components or unavoidable 
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unpredictability (randomness) caused by disasters, such as hurricane, earthquake, 

flood, bio/chemical/nuclear hazards or traffic incidents. 

Mahmassani (1984) presented an overview of evaluation approaches for 

uncertainty in transportation systems. He categorized five different types of 

uncertainties in the evaluation of transportation systems. (1)Unexpected events and 

unforeseen situations, such as major political disturbances or unanticipated 

technological fails; (2) The exogenous states affecting the transportation systems, 

such as new administration, economic boom or bust etc; (3) Uncertainty in the values 

of measured or predicted impacts usually as a result of the modeling activity; (4) 

Fuzziness or vagueness characterized with the description of a performance measure 

in transportation systems; (5) Uncertainty as to the preferential or normative basis of 

the evaluation. This includes inclusion uncertainty, appropriate trade-offs among 

criteria, the risk attitudes of the decision makers in the decision process, the biases of 

the actors in the planning process.  The approaches to deal with those uncertainties 

include (1) Reducing uncertainty; (2) Structuring the decision process; (3) Evaluation 

and design criteria and guidelines; and (4) Explicit evaluation techniques. 

A stochastic programming model can incorporate the uncertainties into the 

formulation. Two types of models are usually studied: (i) Multi-stage recourse 

problems and (ii) Chance constrained problems. A traditional two-stage stochastic 

programming with recourse model is formulated into two stages. Decisions are 

implemented before the random events are observed in the first stage, after which, a 

response action made in the second stage is applied to each outcome of the random 

events that might be observed in the first stage. 
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The classical two-stage stochastic linear program model with recourse was 

first proposed by Dantzig (1955) and Beale (1955) to solve the linear model under 

uncertainty, which can be formulated as follows (Birge 1997): 
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where yx,  are variables, are parameters,  are realization-dependent 

random variables for each 

Abc ,, hTq ,,

ω . Ω∈ω denotes the system realization of random events; 

For a given realization ω , the second stage problem data ( ) ( ) ( )ωωω hTq ,,  become 

known. If the recourse function in the second stage is given, the stochastic program 

can be converted to an ordinary deterministic equivalent program. 

Stochastic mathematical models have been widely applied in the 

transportation and operation research areas. Gendreau et al. (1996) reviewed the 

stochastic vehicle routing studies during the past decades from a theoretical aspect. 

Waller and Ziliaskopoulos (2001) introduced a two stage stochastic model with 

recourse to solve the network design problem by accounting for uncertain network 

system demand and traffic conditions. Sawaya et al. (2001) proposed a multistage 

stochastic model with recourse to design real-time traffic control strategies to respond 

the freeway congestion caused by unexpected incidents through taking into account 

demand variations and incident severities. Liu and Fan (2007) introduced a two stage 

stochastic model to support making retrofit decisions with considering the random 

occurred earthquakes.  
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Uncertainty in demand may result in the underestimation of the system 

performance, such as total system travel time, which leads to sub-optimal planning 

decisions (Waller, Schofer and Ziliaskopoulos, 2001). The potential advantages 

achieved by explicitly including the minimization of the variation of the estimated 

OD demand into the objective function include:  

1) It will potentially reduce the computation intensiveness and model 

complexity; in order to develop robust improvement schemes for road network, 

Waller et al..(2001) analyzed the traffic assignment results by enumerating every 

possible demand scenario. Yin et al. (2004) proposed sensitivity based model and 

scenario based model to examine the network travel time under different level of 

demand. The small range of demand variation resulted from demand uncertainty 

reduction by strategically deploying sensors in the network, leads to less possible 

demand scenarios and increases the system robustness;  

2) It potentially increases the robustness of the model. A typical stochastic 

model’s objective usually only optimizes the expectation of the distribution of the 

objective value while ignores the higher moments. Minimization of the expected 

variance of the estimated OD demand reflects the decision maker’s risk aversion to 

the uncertainty and to find a robust solution that is valid to various possible random 

scenarios. 

A challenge in the sensor location problem is how to detect the occurrence  of 

highly uncertain incidents in the network. The MUTCD (Maryland SHA, 2006) 

defines a traffic incident as an emergency road user occurrence, a natural disaster, or 

other unplanned event that affects or impedes the normal flow of traffic. It divides the 
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traffic incidents into three general classes of duration, each of which has unique 

traffic control characteristics and needs. These classes are: (a). Major—expected 

duration of more than 2 hours; (b). Intermediate—expected duration of 30 minutes to 

2 hours; and (c). Minor—expected duration under 30 minutes. 

Martin et al. (2001) examined various incident detection technologies, which 

include computer-based automatic incident Detection (AID), Video Image Processing 

(VIP) and detection by cellular telephone call-ins. They compared different 

algorithms, such as pattern recognition, catastrophe theory, statistical, and artificial 

intelligence, to find the potential incident location. Chiu, et al. (2001) assumed the 

occurrence of incidents on link follows a Poisson process.. The system 

uncertainties are conceptually modeled by a scenario tree which describes system 

uncertainty evolution across all stages.  

n na

 

2.5 Overview of DYNASMART 
 

Dynamic Traffic Assignment (DTA) is a core capability required for the 

operation of Advanced Transportation Management Systems (ATMS) and Advanced 

Traveler Information Systems (ATIS).  DYNASMART is a state-of-the-art Traffic 

Estimation and Prediction System (TrEPS) mesoscopic simulation software package 

for effective support of transportation network planning and operations decisions 

(offline version DYNASMART-P) and ATMS/ATIS in the ITS environment (real-

time online version DYNASMART-X). 
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2.5.1 Overview of DYNASMART-P    
 

DYNASMART-P is a state-of-the-art dynamic network planning, analysis and 

evaluation tool. It represents the traffic interactions in the network and models the 

evolution of traffic flows in a traffic network resulting from the travel decisions of 

individual drivers. The model is also capable of representing the travel decisions of 

drivers seeking to fulfill a chain of activities, at different locations in a network, over 

a given planning horizon. Due to its inherent characteristics that explicitly describe 

traffic processes and their time-varying properties and explicitly represent traffic 

network elements, i.e. signal, VMS diversion strategies, etc, DYNASMART-P is 

more advantageous than static assignment tools. 

The embedded components, such as simulation component that moves 

individual vehicles in the detailed represented network according to macroscopic 

traffic flow relations under some simulation assignment approach (i.e. SO, UE, one-

shot simulation), path-processing component that determines the path level attributes 

(i.e. travel time) given the link level attributes (i.e. link types, link length, etc.) from 

the simulator component, behavioral component that provides the drivers in the 

network alternative paths or additional information (VMS, radio, etc)  during non-

recurrent congestions, make DYNASMART-P achieve a balance between 

representation detail, computational efficiency, and input data requirements.  

DYNASMART-P generates various performance statistics over time for each 

link in the network at both the aggregate and disaggregate levels. Those measures of 

effectiveness (MOE) include vehicle level, such as vehicle trips, speeds, densities and 

queues, path level, such as vehicle trajectory, and network level, such as average 
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travel times, average stopped times, and the overall number of vehicles in the 

network. 

DYNASMART-P is modeled and featured as an offline operational tool and 

its primary distinction from the online version (DYNASMART-X, described in 2.5.2) 

is that DYNASMART-X comprises real-time dynamic traffic assignment descriptive 

and normative capabilities with other components, such as demand estimation and 

forecasting, consistency checking and updating, and parallel and distributed 

capabilities of different mode. With a specific designed data interface, (such as XML, 

SOAP, Figure 2-4), DYNASMART-X can interact with external real-time sensor data 

collected throughout the network. 

 

2.5.2 Overview of DYNASMART-X    
 

With widespread deployment of sensor technologies that feed traffic data into 

modern TMC’s, it is imperative to leverage the investment in hardware into tangible 

benefits for the traveling public. Beyond the traditional responses to traffic incidents, 

such as police and EMS dispatch, methodological developments such as simulation-

based DTA systems contribute to providing real-time decision support capabilities in 

TMC’s. Because they are based on a representation of actual network traffic 

dynamics, real-time DTA systems enable the estimation and prediction of traffic 

conditions as events occur and new situations unfold in a network. Predicted 

information is an important element of next-generation advanced traveler information 

systems. The ability to evaluate the impact of different operational measures under 
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alternative short-term scenarios is essential to the modern management of 

transportation corridors. 

DYNASMART-X is a state-of-the-art real-time TrEPS (Traffic Estimation 

and Prediction System) for effective support of Advanced Traffic Management 

Systems (ATMS) and Advanced Traveler Information Systems (ATIS). 

DYNASMART-X interacts continuously with multiple sources of real-time 

information, such as loop detectors, roadside sensors, and vehicle probes, which it 

integrates with its own model-based representation of the network traffic state. The 

system combines advanced network algorithms and models of trip-maker behavior in 

response to information in an assignment-simulation-based framework to provide 

reliable estimates of network traffic conditions; predictions of network flow patterns 

over the near and medium terms in response to various contemplated traffic control 

measures and information dissemination strategies and routing information to guide 

trip-makers in their travel. One of the most important capabilities of a real-time traffic 

simulation system, which distinguishes it from a model intended for off-line planning 

applications, is to be able to estimate and predict time-varying OD demand adaptively 

with incoming real-time traffic sensor data.  Establishing and developing an 

appropriate OD estimation/prediction model is an essential requirement in 

DYNASMART-X.  State mapping matrices, Kalman filter process noise variance-

covariance matrices, and measurement noise variance-covariance matrices are three 

sets of key parameters required in the current implementation of OD 

estimation/prediction in DYNASMART-X. 
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Figure 2-2 illustrates the demand data flow of a real-time DTA system. Based 

on a Kalman filter real-time OD demand estimation and prediction algorithm, OD 

estimation module utilizes real-time traffic measurement data (link counts per 

observation interval) to update OD demand, which followed by the OD demand 

prediction. By using the predicted OD demand, PDYNA generates simulated link 

proportions on all observed links and the vehicle routing policy, which will be fetched 

by OD estimation module for the next several departure intervals and then the OD 

demand estimation module starts with the variables from last state. Consistency 

checking and updating is an important function incorporated in DYNASMART-X to 

ensure consistency of the simulation-assignment model results with actual 

observations, and to update the estimated state of the system accordingly. Another 

external support function is intended to perform the estimation and prediction of the 

origin-destination (OD) trip desires that form the load onto the traffic network, and is 

as such an essential input to the simulation assignment core. 
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           Figure 2-2 Demand Data Flow of Real-Time DTA System 
 

The functionality of DYNASMART-X is achieved through judicious selection 

of modeling features that achieve a balance between representational detail, 

computational efficiency and input data requirements (Mahmassani, et. al 2002). 

DYNASMART-X consists of a set of components designed to perform its intended 

functions. The first component is the graphical user interface (GUI). The second 

component is the database. The third component comprises the algorithmic modules 

that perform the DTA functional capabilities. These modules are: 1) state estimation; 

2); state prediction; 3) OD estimation; 4) OD prediction; and 5) consistency checking 

and updating. The fourth and final component is the set of CORBA programs used to 

implement the scheduler and the data broker. Figure 2.3 depicts a high-level view of 
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the DYNASMART-X system structure and the interrelationship among the 

components and modules. 

 

 

                                 Figure 2-3 DYNASMART-X Functional Diagram  
 

The algorithmic component is the main entity in the system. It is responsible 

for implementing various DTA tasks. The purpose of the state estimation module 

(RTDYNA) is to estimate the current traffic states in the network. The state 

prediction module (PDYNA) on the other hand provides future network traffic states 

for a pre-defined horizon. The OD estimation module (ODE) is responsible for 

estimating the coefficients of a time-varying polynomial function that describes the 

OD demand in the current stage. The OD prediction module (ODP) calculates the 

demand that is generated from each origin to each destination at each departure time 

interval of the current and future stages. Finally, the consistency checking modules 
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are responsible for minimizing the deviation or discrepancy between what is 

estimated by the system and what is occurring in the real world, in an effort to control 

error propagation. DYNASMART-X implements two levels of consistency checking: 

short term and long term. The short term one (STCC) uses the link densities and 

speeds of the simulator to evaluate the consistency of the flow propagation with the 

real world and correct the simulated speeds. Long term consistency checking (LTCC) 

calculates scaling factors that are applied in the next execution instance of RTDYNA. 

An updating function runs in parallel with the STCC and LTCC tasks. The remaining 

components in the system serve as supporting entities to the algorithmic component. 

The GUI component aims to provide a convenient environment for executing the 

algorithms by allowing users to enter input data and enabling users to view and 

analyze simulation results "on the fly". Users can see both the current and future 

network traffic states as generated by the state estimation and state prediction 

modules, respectively. Traffic statistics are provided at both the link and network 

levels. Also available are performance plots of the short-term and long-term 

consistency checking modules. Other features include the ability to view paths, 

temporal demand pattern, as well as attributes of nodes, links and the network. 

 
 

2.5.2.1 Processed data information 
 

The STCC, LTCC, and ODE in DYNASMART-X use observation data from 

different numbers of intervals. So the data is processed using two data interface 

procedures. One is External XML Data Interface, which obtains the detector data 

(count, speed, and occupancy) from the online XML website which specifies the 
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XML specific data schema every time interval, and then writes to an internal XML 

data file-DataInterface.xml (density), which keeps latest several durations data. The 

other is Internal XML Data Interface, which is used by STCC, LTCC, and ODE in 

DYNASMART-X to read the observed data based on their running time from internal 

XML data file-DataInterface.xml. The flowchart of the data processing procedure is 

shown in figure 2-4. It describes a XML data interface between DYNASMART-X 

system and external real world. Through the data interface, the real-time 

measurements during every observation interval are capable of being continuously 

provided to the simulation system. 
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Figure 2-4 Surveillance Data Processing in DYNASMART-X 
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Figure 2-5 depicts the high-level structure of the system and the basic data 

flow model. The simulation proceeds in a rolling horizon fashion (Peeta and 

Mahmassani, 1995). The state estimation (RTDYNA) is executed periodically (every 

assignment interval), and continuously provides up-to-date estimates of the current 

state of the network. The state prediction (PDYNA) is executed less frequently (every 

roll period) and projects the current network state for a period in the future (the stage 

length), and the incorporated Multiple User Class (MUC) algorithm provides the 

route guidance information (Peeta and Mahmassani, 1995). The OD Estimation and 

Prediction modules provide the time-dependent OD desires in the network to be used 

in the simulation-assignment procedures of the state estimation and prediction. They 

also run periodically. The Consistency Checking modules interface with the 

surveillance data collected from sensors and probes in the network, and correct some 

of the state estimation variables for discrepancies between the estimated values and 

the measured ones. They run periodically, and their respective periods are design 

parameters that can vary according to the particular network being modeled and the 

experimental setting.  
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Figure 2-5 XML Real-Time Data Interface 
 
 
2.5.2.2 Multiple scenario prediction methodology 
 

DYNASMART-X includes both real-time traffic estimation and prediction 

elements. It interfaces with an external environment consisting of the entire traffic 

network in an urban area with all its static and dynamic elements, which include the 

network topology and geometry, traffic control devices, human users with their 

complex behavioral structure, in addition to the information being disseminated to 

users by various means. The information element is of central importance in defining 

the operational role of DYNASMART-X as a predictive, rather than merely reactive 

real-time system, since it also contributes to the information being supplied to users 

and traffic control systems (Mahmassani, 1998). There are two instances in 

DYNASMART-X where message-based asynchronous communication is useful 
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between DYNASMART- X and the external environment. The first is the 

publisher/subscriber communication pattern that links DYNASMART-X to its clients 

(or to external systems). The second is event notification in the reverse direction, i.e. 

to notifying the simulation engine of external events that need to be processed, for 

example, incidents and VMS status changes. Figure 2-6 shows the different message 

channels that are implemented. First, the subscribed client (the GUI in the figure, e.g. 

the TMC operator) is notified regularly about internal events that are occurring in the 

engine. For example, that the current PDYNA instance (state prediction instance) has 

finished execution. Once notified, the GUI can take the appropriate action. For 

example, it can contact data-broker (DBK) to get the latest estimate of the network 

state, and update the display. 

 

 

                         Figure 2-6 Message Channels between Engine and Clients  
 

On the other hand, once an incident is detected on the traffic network, the user 

inputs the incident parameters via the GUI, and a notification message is sent 
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immediately to the management component (MAN), the “control center”, describing 

this incident. MAN immediately dispatches the incident information to RTDYNA 

(also via a message, thus RTDYNA is implemented as a Message Target), which 

places this information into a queue. Before the next instance of RTDYNA is 

launched, this queue is scanned and the traffic events are processed as necessary. The 

state estimation (RTDYNA) is executed periodically (every assignment interval), and 

continuously provides up-to-date estimates of the current state of the network. 

RTDYNA then transfers the entire set of state variables that define the network and 

the traffic conditions at that instant to PDYNA, which will use the current network 

state as a starting point to project a period in the future (the stage length) (Mahfoud 

2005). 

Multiple PDYNA instances allow the operator to evaluate multiple traffic 

control/management strategies in real-time fashion. From the standpoint of evaluating 

control strategies online, multiple instances of PDYNA can be initiated and executed 

in parallel, with each taking the same initial network state but different control and 

information provision strategy (Figure 2-7). There are two modes in which multiple 

PDYNA can be activated; sequential mode and real-time mode. Sequential mode runs 

multiple instances of PDYNA sequentially, while the real-time mode will 

simultaneously run the multiple instances of PDYNA under the real-time clock. The 

sequential mode implements the rolling horizon logic in an artificial way that 

preserves the logical dependence between the modules, but without enforcing any 

timing constraints on their execution. It is intended for off-line testing of the system. 

The real-time mode implements the rolling horizon simulation logic with all the 
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applicable timing constraints. Figure 2-7 shows the different running time for 

sequential mode and real-time mode. The running time of sequential mode is the 

summation of the PDYNA0( ) and PDYNA1( ) while the running time of real-time 

mode depends on the maximum running time of PDYNA0( ) and PDYNA1( ). 

1t 2t

1t 2t

 

Figure 2-7 Comparison of Execution Time of Sequential Mode & Real-Time Mode 
 
 
2.5.2.3 Real-time traffic management decision support methodology 
 

The ability to evaluate multiple traffic management strategies in quasi real-

time using DYNASMART-X can aid in decision support and can improve the ability 

of the traffic management center to respond to unfolding situations including 

incidents, congestion and other unexpected events, through provision of traffic 

information to travelers and deployment of various control measures. To summarize 

the process from a TMC operator’s standpoint, the DYNASMART-X simulator runs 

as it normally would, making predictions and estimations on the basis of real-time 

information. When a change in traffic conditions occurs, the simulator will change to 

reflect the conditions on the basis of the real information it is receiving. If an 

unplanned disturbance occurs, the operator at the TMC can inform DYNASMART by 

making changes to reflect the disturbance (e.g. implementing an incident of 
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corresponding severity). This allows the simulator to adjust for changes to the 

physical network or control processes and more accurately replicate field conditions. 

The ability to assess multiple alternative management strategies is desired when 

traffic conditions worsen or an unplanned event occurs. When this is the case, the 

TMC operator can construct strategies or plans for mitigating the traffic problems. 

For example, if an accident occurs and two lanes on a 3-lane highway are closed; the 

TMC operator informs DYNASMART that only one lane is functioning at the 

incident location and can then develop strategies for routing vehicles around the 

accident or altering the control plans around the incident location. Once the TMC 

operator has devised response strategies, they can be implemented as different 

instances of PDYNA. Each instance of PDYNA receives information from RTDYNA 

as described previously. The results each PDYNA instances provide the TMC 

operator the ability to see the results of implementing each of the alternate strategies. 

Once the TMC operator has selected a strategy and implemented it in the field, the 

TMC operator inputs the changes in the DYNASMART GUI to reflect the changes 

that were made in the field. 

 

2.6 Summary 

 
An accurate OD matrix plays a critical role in applications of DTA models to 

support advanced transportation management and traveler information systems. 

Because an OD matrix is prohibitively expensive to obtain directly, it is often 

estimated using measurement data from the traffic network. Because each observation 

link may contain different information, the proper deployment of the sensors as well 
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as the use of statistically based OD estimators are essential for successful traffic 

management system. Clearly, uncertainty is associated with the demand estimation or 

prediction. It is important to take the uncertainty into the sensor location model 

formulation in order to exploit a set of robust sensor locations in terms of providing 

high quality of estimated demand with regard to extreme cases.  In this chapter, the 

relevant background concerning OD demand estimation/prediction methods under 

static/dynamic traffic assignment are reviewed, followed by an overview of different 

existing sensor location approaches, and overview of stochastic programming 

approaches with the incident generation methods. Then, the simulation based 

dynamic traffic assignment tool, DYNASMART (offline version and online version) 

is introduced. Finally, a multiple scenario prediction methodology of DYNASMART-

X is presented.     
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Chapter 3 Finding Near-Optimal Sensor Locations for Large-
Scale Network Under Deterministic Network Condition 

 
 
 

3.1 Introduction 
 

The sensor location problem could be viewed from a value of information 

perspective. Sensors continuously provide information that help characterize the 

status of the network. Using this information in conjunction with “knowledge” (i.e. 

historical data, previous estimation or prediction outputs) could enhance a model’s 

estimation and prediction performance (see Figure 3-1).  Adding sensors to the 

network at specific locations could be evaluated with regard to the additional value 

that these sensors provide to the ability to estimate and predict network flow patterns 

(e.g. OD demands, path flows, link flows, point speeds), provide travel time 

information, or provide better control strategies. 

Ideally, one would want sensors on all the links in the network. This would 

reduce the error associated with the state estimation to the system error. Focusing on 

the sensor location problem, the principal goal of this chapter is to identify the 

locations which provide the most value given a limiting constraint on the number of 

sensors, and propose an associated mathematical model and efficient solution 

procedure based on dynamic traffic assignment methodology to strategically deploy 

the given number sensors in large scale road networks. The solution procedure 

operates in two steps. In step one, a restricted candidate list (RCL) is generated from 

choosing a set of top candidate locations sorted by link flows. A predetermined 

number of links is randomly selected from the RCL according to a link-independent 
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rule. In step two, the selected candidate locations generated from step one are 

evaluated in terms of the magnitude of the flow variation reduction and O-D flow 

coverage using archived historical and simulated traffic data. 

 

 
 

Figure 3-1 Estimation and Prediction Enhancement Information 
 

Two sensor location problems are proposed and analyzed in this chapter. One 

is to find a minimal number of sensors and locations to cover a percentage (0%-

100%) of the time-dependent traffic flows on the network.  The other is to identify a 

set of given number sensor locations that maximize the coverage of origin-destination 

(O-D) flows of the road network, while minimizing the uncertainty of the estimated 

time-dependent O-D demand matrix. Considering demand coverage and uncertainty 

reduction simultaneously, the second case is formulated as a bi-objective problem. 

The rest of this chapter comprises four sections. Section 3.2 presents a 

framework for approaching the sensor location problem and discusses models that 

can be used for both of the cases with and without budgetary constraint. Section 3.3 
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includes an analysis that illustrates the information gains and trade-offs associated 

with various sensor location schemes. Section 3.4 examines the results produced by 

the proposed models. Section 3.5 summarizes the chapter. 

 

3.2 Conceptual Framework 
 

The sensor location problem is more than a simple coverage problem. Even if 

every link of the entire network has a point sensor installed, the network path flows 

may still not be uniquely determined. In the case without budgetary constraint, the 

objective of the proposed problem is to minimize the number of sensors while 

covering all the O-D flows during each observation time interval in the network.  This 

case can be categorized as a set covering optimization problem. However, in most 

cases, it might be difficult to have the sensors fully installed on the entire road 

network due to the budgetary constraint. With the given number of sensors, the goal 

becomes to capture the network traffic flows as much as possible and minimize the 

network performance uncertainty using the information brought by every sensor. 

Thus the importance of a location depends on the value of information/knowledge 

that it can bring to the problem. 

 

3.2.1 General Least Squares OD Demand Estimator 
 

Consider a network with  observation link,  zones ( ) and 

 OD pairs. 

obsn Zonen Zonenji ∈,

ODn τ  represents the departure interval of each OD pair. Assume the true 

OD demand can be decomposed into three components, a priori estimation , 

structural deviation τ
),( ji  between the actual demand and a priori estimated demand 

τ
),( jid τ

),(
ˆ

jid
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of OD p ), ji  during departure time int rval air ( e τ  and random or τξ ),( ji where 

))(,0(~ ˆ),( −Dji PNτξ  is the estimation error (Zhou 2004). The linear combination c

 err

an 

porary physical changes of the transportation network, 

 the relationship between the unknown OD flow and measurements 

mbination with a random e measurement error

 

be described as follows: 
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For convenience, stage symbol t  is dropped off he odel derivation. 
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matrix that mapping demand D into link countsC . D  ( 1xnxq ) is a structural 

deviation vector, 0)( =εE , Rεε =)(E , 

Ĥ ( nxnxq

OD

T R is a known symmetric, positive-definite 

matrix. 

Eq.3.3 represents a general non-linear relation between the deviation of link 

traffic counts and the unknown demand structural deviation including the confounded 

error terms. Because of the non-linearity, the combined error tl ,υ  is not white noise. 

For the reason of the focus of this research is sensor locations, we assume that the 

sum of error terms and the interaction terms is a normal distribution with zero mean 

and unknown dispersion, but since the interactions and the error terms are ignored, it 

may result in possible inaccuracy results and an biased and inefficient estimator (an 

efficient estimator by definition is the one with the lowest variance among all 

unbiased estimators, and it will be further discussed later in this chapter). Note that 

Eq.3.3 uses the structural deviation as the state variable in order to capture trip 
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pattern

 because they can take both positive and negative values (Askok et al.. 

2000). 

d residual . Its use in the 

context of GLS estimation does not require any distributional assum  and 

3.3),  

  (3.5) 

s and their temporal and spatial variations. Moreover, under the normal 

distribution of the traffic variables, i.e. link counts, OD flows, etc, the deviation 

formation is more amenable to approximate the normal distribution than the traffic 

variables

sεThe objective is to minimize the sum of square

ptions

according to the general-least-square estimation (the notations referred to section 

)ˆ()ˆmin(arg 1 )(DHCR)(DHC −−−−= −TJ
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, the resultant closed form GLS estimator is 
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Assuming the measurement errors are uncorrelated, e.g. I
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Note that for any matrix , the , such 

S estimator (referred to 

as Aitken estimator) and analyzed two cases, stochastic and deterministic observation 

CHHHD TT 1ˆ −=−

that if matrix H is of full rank, then the least squares solution )(−D is unique and 

minimizes the sum of squared residuals. In another word, the link counts on each 

observed link needs to be linearly independent with each other. 

According to Aitken’s theorem (1935), the GLS estimator )(ˆ −D  is the 

minimum variance linear unbiased estimator in the generalized regression model. 

Cascetta (1984) discussed the statistical properties of the GL

H )()()( TT rankrankrank HHHHH ==
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error (GMSE). He pointed out that if the a priori estimator and 

assignment model were co

ity constraint is the best linear unbiased estimator (BLUE). In this research, 

the simulated assignment matrices are assumed to represent the actual one. 

es

ith simulation data in terms of mean square error (MSE/Risk) and generalized 

mean square 

rrectly specified, the Aitken estimator with inactive 

inequal

Using time-varying weighting matric  K and , the recursive form can be 

expressed as 

 (3.8) 

Since  

ˆ

+ DD

D

Substituting (3.4) and (3.8) into (3.9), it gets 

'' +−+−+=

−++
~

)(
  (3.10) 

'K

KCDKD +−=+ )(ˆ)(ˆ '

))(ˆ −=−D (~
)(~)( ++=+ DD
  (3.9) 

Kε)(DKI)DKH(K

DεHDKDDKD −+=+ ))(~()(~ '

)(D − or )(D +  is unbiased. That is ˆ ˆ

⎪⎩

⎪
⎨
⎧

=−

=+
⇒

⎪⎭

⎪
⎬
⎫

−+=−+=−

++=++=+

0))(DE(

0))(DE(

))(DE(D))(DE(D))(DE(

))(DE(D))(DE(D))(DE(
~

~

~~ˆ

~~ˆ
 (3.11) 

nd (3.11) give 

+−−=+

By definition, 0)( =εE , (3.10) a

KH)(I' −=    (3.12) K

Substituting (3.12) into (3.9) 

D~ Kε)(DKH)(I)( ~  (3.13) 

By definition, the posteriori error variance covariance matrix ) ( ODOD nxn
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))(DE( T+− ~
  (3.14) 

))(D)(DE(

)(D))((DE()(DE()(P
T

D

++=

++−+=+
~~

~~~
ˆ

KRKKH))(I(KH)P(I +−−−= ˆ

Substituting (3.13) into (3.14),  

TT
D Kεε)(DKH)Kεε)(()(DKH)((I)(P +−−+−−=+ˆ

D

T~~
 (3.15) 

To minimiz + , the first-order optimization condition (FOC) needs to be 

satisfied, 

e )(PD̂

02KR)H(KH)P2(I
K

T
D

D +−−−=
∂ ˆ

ˆ )(P
=

+∂
  (3.16) 

Thus, the optimal weight matrix, which is referred to as Kalman gain matri

D ˆˆ

As an incremental algorithm, Kalman filter algorithm is used to solve a least square 

problem in a real-time context, 

x is 

1TT R))H((HP)H(PK −+−−=  (3.17) D

K  is a Kalman gain matrix ( ). Substituting 

(3.17) into (3.15), the minimal updated variance covariance matrix is 

obsOD nxn

)(KH)P(I)(P DD −−=+ ˆˆ   

m

(3.19)  

Equation (3.15) can

1 −−− (3.20) 

t mal estimation and filtering 

relationship can be found in Gelb (1974).   

If we assume that the measurement error is independent, then R is a diagonal 

matrix. So, Equation (3.19) can be written as 

(3.18) 

A simple for  of Kalman gain matrix can be expressed as 

1T
D R)H(PK −+= ˆ  

 be also expressed as 

HRH)(P)(P DD +−=+ ˆˆ   1T1

More de ailed derivations and analysis about the opti
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R
)H(P T

D +ˆK =   (3.21) 

The matrix is a mapping matrix, mapping the OD demand flow to the link counts; 

if it is assumed to be an identity matrix, one would get  

H

R
K D= ˆ  (3.22) 

From (3.4).(3.8), (3.9) and (3.12), it can get             

             ))(DHK(C)(D)(D −−+−=+

)(P +

)))
                                                           (3.23)     

 

The Kalman filter method is a recursive approach for estimating an unknown 

state vector at each instancekD k , ,.....2,1=k  in a discrete linear stochastic system 

that gives a linear, unbiased and minimum error variance estimate. Eqs. (3.17), (3.18) 

nd (3.23) can be derived from the standard Kalman filtering procedure. Detailed 

erivations and analysis about the optimal estimation and filtering relationship can be 

found in Gelb (1974). Thus, the sensor location problem becomes a traffic state 

arning process (Figure 3-2, similar to the sequential algorithm of Chui & Chen 

(1991)) that seeks to locate sensors which recursively add valuable information to 

update estimates (in terms of mean and variance) on the network traffic states. The 

key question is how to characterize the value of additional information from a new 

detector in traffic state estimation and prediction. 

 

 

a

d

le
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3.2.2 Link Kalman Gain and Uncertainty 

Link Kalman gain lK  in the sensor location problem can be interpreted as the 

summation of information gain brought by each O-D flow that intercepted by link 

 

l. 

A simple form of Kalman gain matrix can be expressed as Eq.(3.21).  

                                                   
R

)H(P
K

T+
=  D̂

pparently, it is “proportional” to the network estimate uncertainty and “inversely 

proportional” to the measurement noise. Thus the goal of locating sensors would then 

be to identify those places with less measurement noises and additional measurements 

that minimize uncertainty resulting covariance matrix

A

)(PD +ˆ

KH m

ents. New m

. Eq.(3.18) says that 

given a priori demand uncertainty, large link information gain provides large 

uncertainty reduction. The above covariance updating formula clearly links the a 

priori uncertainty and a posteriori uncertainty, and easures the degree of 

uncertainty reduction due to inclusion of new measurem easurements can 

come from a single sensor or multiple sensors. can be viewed as a matrix 

specifying the value of additional information.  

 

KH
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Figure 3-2 State Learning Process in Sensor Location Problem 

flows. Moreover it discloses that the product of 

is more likely to be large and more uncertainty reductions are obtainable if 

 those O-D pairs with large variances, or more O-D 

airs. 

 

 

Eq.(3.17) shows that the gain matrix is more sensitive to the measurement 

error than the demand uncertainty for each unknown O-D flows and covariance 

between different unknown 

T)H(PD −ˆ

selected locations can intercept

p Another issue about the weighting matrix K  is the inverse of 

( R)H(HPD +− T
ˆ ). If one only considers THH for multiple possible sensors, the 

inverse of THH specifies the correlation of measurements among multiple sensors. 

)(−DP)  

a
T

aDa

T

a )H(PH
)H(P

−

−

ˆ

aD

r
K

+
= ˆ

 

)(KH)P(I(P DD −) −=+ ˆˆ  

K  

))(DHK(C)(D)(D −−+−=+
)))

 

)+(PD
)  

)(D +
)
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T)H(HPD −ˆ , furthermore, describes the measurement correlation on the basis of 

existing estimate variance and covariance. If T)H(HP − is large, it means that either D̂

e highly correlated with each other or they are correlated with 

ate, then the inverse is small and the weight factor becomes 

e more measurement error the less uncertainty reduction there 

r the estimates. 

ˆ

link,  may be obtained by a scalar inversion. Otherwise, the 

n procedures, such as the Davidon-Flecher-Powell procedure 

 solve unconstrained GLS problem without through matrix 

T . 

 

3.2.3 T

new senor data could b

the current estim

insignificant. Clearly, th

will be fo

If the link counts are statistically assumed independent, the inversion of 

matrix R)H(HP +− T  can be avoided (Chui & Chen (1991)). For each individual 

1

D

ˆ )−+− l
T

ll R)H(P(H D

multivariate minimizatio

(Scales 1985) that used to

inversion can be used to yield 1
ˆ )( −+− R)H(HPD

he Assignment Matrix 
 

The assignment matrix maps the O-D flows onto the link counts. The two 

main classes of assignment process are proportional assignment that the assignment 

matrices are independent with O-D flow and equilibrium assignment that link flows 

depend on the link capacity. Clearly, it is an import input to the sensor location 

problem. In the context of dynamic traffic assignment (DTA), the assignment matrix 

is not constant, and themselves are dependent with the unknown time-dependent 

demand flows. It captures three aspects of a traffic network: the network topology, 
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the route choice model and the travel time across the network (Bierlaire and Crittin 

2004). 

Let h
twl ,,α represents the fraction of thw  O-D flow that left its origin at 

departure time t and traversed over link l  during observation interval h . hα defines 

time-dependent link path indicator. It equals 1 if path flow p left origin at departure 

time t and traversed over link l  during observati

tpl ,,

on interva  denotes path flow 

cho  

and link path incidence as 

follows:. 

l. tpq ,

ice probability that select path p during departure time t . Cascetta et. al (1993) 

h

             ∑

shows the relationship between link flow proportion  twl ,,α

∈

h

 the 

ehicles are uniform distribution in a packet and travel times are observable, Cascetta 

 path incidence and travel time. 

Howev

ti

r s

stochasticity of the assignment matrix. In the first approach, a random error is 

=
Kp

tptpltwl q )*( ,,,,, αα                                                 (3.24) 

Eq.(3.24) shows that the assignment matrix is determined by the route choice 

fraction and network traffic flow propagation. Based on the assumptions that

h

v

et. al (1993) derived a relationship between the link

er, it has different error sources that may lead network representation deviating 

from the actual network causing erroneous travel time estimation and/or incorrect 

path flow choice split. Those include (1) demand estimation errors (2) path estimation 

errors (3) traffic propagation errors (4) internal traffic model structure errors (5) on-

line data observation errors (Doan et al 1998). Those errors may result in biased and 

inconsistency O-D estimations. Ashok et. al (2002) analyzed condi ons that part or 

all of the travel times a e endogenou . They proposed two approaches to model the 

h
tv
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introduced to the unknown actual assignment matrix h
twl ,,α , such that h

t
h
t

h
t v+= αα ˆ . 

As an alternative approach induced from Eq.(3.24), the assignment matrix is defined 

as a function

Due to the computation complexity and intensiveness of the assignment 

matrix in a large scale network, the time-dependent assignment matrix is obtained 

from a dynamic traffic assignment model based simulation software DYNASMART-

P (Mahmassani et. al 2000) in this research. The user-equilibrium (UE) and system-

optimal(SO) procedures are integral components of DYNASMART-P (Peeta & 

Mahmassani 1995). The drivers in the network were assumed to take the paths 

consistency with those generated from the dynamic user equilibrium assignment. 

 

The sensor location problem is a network design problem while the traffic 

pattern and behavior are dynamic that could be influenced by different factors, such 

as land use, special events, weather, etc. It is a trade-off to the decision makers to 

make his/her decisions between the system uncertainty reduction and O-D flow 

coverage. An O-D pair  is regarded as being covered if  path flow of that O-D 

 of travel time and route choice fraction, ),(h qTF=α . pht

3.2.4 Gain Collection and O-D Demand Coverage 
 

w t
pw

pair is intercepted by at least one of sensors in the network, where pwf ,  is defined as a 

path flow of O-D pair w  along path p departed from origin during time interval t . If 

an O-D pair is uncovered, the demand of that particular O-D pair is not impacted by 

the network sensors and thus cannot be inferred from the observed flow.  

f ,

t
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The sensor location problem in this chapter is considered as a bi-objective 

problem under the assumption of recurrent traffic condition. One of the objectives is 

to minimize the demand uncertainty and the other is to maximize the O-D demand 

coverage as follows:     

                        

( )

⎪
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⎪
⎪
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dd
MinZFMin

τ

ττ

τ

ττ

0

)26.3(*)(*)(ˆ)

)25.3(
||

)(ˆ

)(

,

2

1

           

Eq.(3.25) is minimizing the deviation between the actual O-D demand and the 

estimat a posteriori demand across over all of the O-D pairs and the whole 

planning time horizon. Eq.(3.26) is maximizing the O-D flow coverage by the 

network sensors. Note that 

,

)(•I

in du

is an indicator function that assures an O-D demand 

flow departed from an orig ring time interval τ  is counted only once in time t . 

However, the ground truth O-D trips us

transla

,1

Figure 3-3 conceptually shows that the efficient frontier of domain RL, which 

tion set, yields set of possible location sets depending on the 

reference of the decision maker to the link information gains or OD flow coverage. 

Various methods, such as weighting objectives method, hierarchical optimization 

method, trade-off method, global criterion method, goal programming method, min-

ually unknown. Eq.(3.25) thus can be 

ted into maximizing total link information gains as discussed earlier 

as ∑∑∑
∈ ∈ ∈

=
T Al Ww

zkZFMax
τ

τ )*()( .  lwl

is the non-dominated solu

p

 64 
 



 

max optimum, method of distance functions, have been developed to find the Pareto 

optimal set. The linear weighting method exploring the efficient frontier is used in 

this study (conceptually showed in figure 3-2), which helps the decision maker 

etermine the different weight combinations to get the best compromise solution set d

*Z . Specifically if the decision maker is preferring the O-D flow coverage in terms of 

dy c re

uncertainty,   the ratio of

the nami  traffic information and control operation to ducing the system 

1 . Otherw 
1

2 >
w
w

ise if the decision maker is more concerned 

about minimizing the system uncertainty based on the a priori demand, the ratio of 

1< .  
1

2

w
w

 

 t reFigure 3-3 Graphic Definition of he Pa to Optimal 

OD Flow agCover e 

Link Inform
ation G

ains
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Z2 
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This theoretical discussion is intended primarily to frame the analysis 

con  a conceptual framework for contemplating 

an

 

3.3 Model Formulation 
 

This section presents methodological approaches in the context of dynamic 

traffic assignment to two variants, without and with budgetary constraint, of the 

sensor location problem. The first methodology is focused on solving the sensor 

lo udgetary constraint). 

Th v t n problem with a 

g

 

3
 

Let of nodes 

an

ducted in the next section, and provide 

d understanding the sensor location problem of interest.  

cation problem with an unlimited number of sensors (without b

e second methodology is focused on sol ing the sensor loca io

iven number of sensors (with budgetary constraint).  

.3.1 Notations and Problem Definition 

),( AVG = represents a directed traffic network, with the set V

mA = . Defines: d the set A of edges with the size

:set of zones, consisting of n zones, size of set N nN =

:I set of origin zones, consisting of 

 

zones 

set of links, consisting of links, size of set 

n

:J set of destination zones, consisting of n zones 

:A LKn LKnA =  

:W set of O-D pairs, size of set ODnW =  

set of links with measurements, size of set :L mnL =  

:t
rR set of paths connected O-D pair r at departure time t  
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:K set of paths of the network, size of set kK = , ⋅⋅⋅∪∪⋅⋅⋅∪∪= t
rRRRk 1

2
1
1  

:a subscript for link in network, Aa∈  

:w subscript for OD pair in network, Ww∈  

:i subscript for origin zone in network, Ii∈  

:j subscript for destination zone in network,  Jj∈

:
21 ,

t
wwP  a priori demand covariance between OD pair  and  at time ,          

) 

1w 2w  t

            Rt
ww ∈

21 ,  

:C vector of measurements ( xnl

:H mapping matrix ( ODl nxn ) mapping the demand flow to link counts  

:D demand vector, consisting of ODn  entries D

P

1

∈),( jid  

:)(D + a posteriori estimated demand vector, )(D +∈+)(),( jid  

:

:ˆ )(D − a priori estimated demand vector, consisting of  entries 

ˆ

ODn )(D −∈− ˆ)(ˆ
),( jid  

ˆ ˆ

~ )(D +  a posteriori estimated demand  error matrix  

:~ )(D −  a priori estimated demand  error matrix 

:)(P −  a priori variance covariance matrix of the demand matrix D̂

 a posteriori variance covariance matrix of the demand matrix 

:  the ground truth O-D trips of O-D pair 

:ˆ )(PD +

τ
wd w  at departure time τ  

)(ˆ −τ
wd : a priori estimated demand of O-D pair w  at departure time τ  

)(ˆ +τ
wd : the posteriori estimated demand of O-D pair w  at departure time τ  

))(,( −jiCov : a priori variance covariance matrix of the demand matrix 
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))(,( +jiCov  :a posteriori variance covariance matrix of the demand matrix 

t
wlk , : Kalman gain of link l  rom O-D pair w  at time t  

th ,τ : Assignment proportion of O-D pair w  on link l  departed at time 

f

, τ   at wl

observation time interval 

 T: set of all departure time intervals in the estimation period. 

t   

:ε vector of random noise quantities corrupting the measurements 

 

3.3.2 Unlimited Network Sensors  
 

Yang et al. (1998) formulated a binary integer program to determine the 

minimum number of sensor locations required to satisfy an OD covering rule for a 

 OD matrix and path selection. 

                  

Aa
a

),0(~ RN

road network with a given priori

Aaz

Wwzaaw

∈=

∈≥∑
tosubject

zMinimize

a

Aa

∑

∈

∈

:
 

;

,1,0

,1δ

Where 1=az if a sensor is located on link a and zero otherwise  1=awδ  if some trips 

etw , cross link een O-D pair w Aa∈b  and zero otherwise. It can be shown that the 

atisfies the OD covering rule and that selected links 

will be

resultant sensor location solution s

 independent. A large network containing many OD zones and a significant 

number of links may be difficult to solve with this formulation. A heuristic used to 

solve the proposed formulation might only find a set of feasible or sub-optimal 

solutions instead of the optimal set. This is due to the trade-off between computation 

time and solution quality. In addition, Yang’s model (1998) is based on static traffic 
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assignment and considers an OD pair covered once a sensor is located on a single link 

of the paths between that particular OD pair. In reality, the path set between OD pairs 

evolves with time of the day. Thus, this OD covering model does not provide a valid 

result in that not every OD pair is assuredly covered at all times through the day.  

To account for sensor location problems on large scale networks with time 

varying flows (e.g. determined using Dynamic Traffic Assignment (DTA) 

methodology), a method is proposed that considers time varying path-determinant. 

This model will result in a set of sensor locations on the links along the paths 

covering a subset of OD pairs, which experience OD demand flows in excess of a 

minimu

ll ing 

binary l

 the OD pairs with flow 

beyond

        

D

waw

Aa

∈∈∈=

∈≥∈≥∑

m number of trips,ζ , where ζ is a threshold termed as a “ degree” to the 

relevant OD pairs at any time interval. Note that sensor location problem is mainly 

determined by the route choice and traffic assignment. Consequently, the fo ow

τ τ

integer program formulation of the Deterministic Optima  Sensor Location 

Problem (DOSLP-1) is presented, subject to the coverage of

 a predefined “relevant degree”ζ . 

 

τ

tosubject

zMinimizeOSLP a− ∑

⎣ ⎦ TWwAaDTAfromdassignment

Aaz

TdwhereWwz

a

w
Aa

aaw

∈=
∈

τ

,1,0
   

∈

τδ

τζδ

τ

ττττ

,,,

,,1
      

τ

:

1

 69 
 



 

Wh 1=τ
az if a sensor is located on link a during departure time ere τ  and zero 

otherwise. 1=τδ  if some trips of OD pair w with departure time aw τ  pass over link 

Aa∈ , and 0 otherwise. T is the planning horizon for sensor data collection. 

 

3.3.3 Limited Network Sensors  

Although a sensor network with full sensor coverage can infer all the O-D 

flows in a network, the mostly occurred s

to deploy a given number of sensors in a large road network 

subject to the budgetary A is section examines the 

lo n m 

i the link d - w

a mption of recurrent traffic condition. Using the linear 

weight

ces. The deterministic 

ptimal sensor location problem (DOSLP) with limited sensor number is formulated 

 

ituation to the transportation planners and 

decision makers is 

 constraint. s aforementioned, th

sensor catio  proble with a finite number of sensors being placed, which 

simultaneously consider maxim zing  information gains an  O D flo  

coverage under the ssu

ing method, the bi-objective optimization problem could be aggregated to a 

single objective optimization problem. The weights 21 , ww  are determined by the 

decision maker’s preference according to his/her experien

o

as 2−DOSLP .  
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The objective function (3.27) is composed of link information gains and O-D 

flow coverage. Constraint (3.28) shows that the summation of weights of all 

bjectives must be 1.  Constraint (3.29) indicates the total available sensors is 

121 ww =+

∑

30.3(,, 21
,,,

,,

,

2

2211

2

221

Wwwk

t Ww
llwwwlw

t Ww
wlww

t
wl ∈∀=

≤ ∈

≤ ∈

τ

ττ
τ

L . o

Constraint (3.30) is the information gain on link brought by the measurement 

of O-D pair  during observation interval 

Constraint (3.31) is an indicator function that assures an O-D flow departed 

from its origin during time interval 

l

 1w t . 

τ  is counted only once in time .  

Constraint (3.32) is the assignment matrix coming from DYNASMART-P 

simulation result.  

Constraint (3.33) specifies the simulation horizon. Constraint (3.34) is the 

non-negative constraint to the state variable.  

t
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Constraint (3.35) indicates a binary decision variable. If the sensor location is 

selected, the decision variable is 1; otherwise it is 0. 

  Since the two objectives are valued in different measurement scales, each 

 must be normalized before its weight is applied, 

s follo

  

objective of objective function (3.27)

a ws: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪⎧
t

wlk ,
⎨

−

−
+= ∑∑∑ ∑ ∑∑

∈ ∈ ∈ ∈≤ ∈ ∈Tt Al Ww Tt Al
l

t
wl

Ww

w
l zhI

d
d

wz
k

wMaxF
τ

τ
τ

*)(*
)(ˆ

)(ˆ
)*()( ,

,
max

2
max

1Ζ        (3.36) 

where { }twlkMaxk t
wl ,,,,max ∀=

in

, is the maximal link information gain across the 

plann { }ττ ,),(ˆ)(ˆ
md −g horizon. ax wdMax w ∀=− , is the maximal a priori O-D demand. 

In matrix form, Eq.3.36 reduces to 

                  
⎭
⎬

⎩
⎨ ⋅⋅+⋅= ∑∑

∈∈ TtTt d
w

k
wMaxF )()()(

max
2

max
1 ZIZΖ t                         (3.37) 

is a ( )1∗ vector, tK is a )(

⎫⎧ DK tt

where Z An AOD nn ∗  link gain matrix of contributions by 

the sensors to the OD pairs ring interva is a  vector during 

 is a 

An important issue about model DOSLP-2 is that the measurements did not 

lay any role in the proposed model. This feature facilitates the evaluation of the 

lected locations especially to a large-scale traffic network. 

 du l t , tD T
ODn )1( ∗

interval t , tI )  matrix during interval t .  ( AOD nn ∗

p

se

 

3
 
.3.4 Model Robustness  

In order to assess the impact of different sensor location strategies in 

conjunction with the O-D demand estimator error reduction, the root mean squared 

error (RMSE) of the O-D demand will be calculated in order to check the quality of 
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the estimated O-D matrix. The root mean squared error (RMSE) is simply the square 

root of the MSE. 

Proposition:  The proposed deterministic optimal sensor location model (DOSLP-2) 

always

 
A and es

 produces the minimal MSE across all other O-D estimators. 

Proof:  In statistics, the mean squared error (MSE) is defined as (Greene, 2000) 
 

])ˆ)(ˆ[()ˆ()ˆ|( TEVarMSE θθθθθθθ −−+=                      (3.37) 

s aforementioned, the GLS O-D dem timator is unbiased; thus its MSE matrix 

is its covariance matrix. The MSE of the O-D estimator is  

HRH)(P)(P 1T1
D

1
D

−− +−=+ ˆˆ   

Since )(PD −ˆ  is a priori variance covariance matrix of the demand matrix and the 

objective of the DOSLP-2 model is implicitly minimizing )(ˆ

−

+DP , the MSE that based 

on the proposed models thus is the minimal statistics inference across all other 

estimators.  This completes the proof □

 

The proposed models are computationally intensive. Model DOSLP-1 is a 

binary integer programming model, and the Branch-and-bound (BnB) can be used to 

solve this kind of problem. BnB is a problem solving strategy that is commonly used 

in solving computationally intensive integer programs. Due to its adaptability, BnB 

has been used in a variety of search algorithms, such as best-first search and depth-

first search, as well as others. 

Model DOSLP-2 is non-convex. Thus a global optimal solution is not 

guaranteed to exist. The solution procedure is formulated as a bi-level stochastic 

 

3.4 Solution Procedure 
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integer programming. The upper level is seeking the potential locations according to 

some selection rules, while at a lower level, the selected locations are evaluated using 

e results simulated by running user equilibrium from DYNASMART-P (Peeta & 

ahmassani 1995). 

 

3.4.1 Unlimited Network Sensors  

 Algorithm 3.1 illustrates the solution procedure for model DOSLP-1 based on 

Branch-and-Bound methodology. 

 

th

M

 

Algorithm 3.1 

Step 0: Run DYNASMART-P (Mahmassani et. al 2000) with a priori OD demand 

loaded to get δ aw
τ , 0,,, τττ =∈∈∈ TWwAa , 0

0

ττ ζζ =  

Step 1: If T<τ , filter out those OD pairs whose flow less than .  Run Branch-

to solve the binary integer mo

ion time interval

τζ

and-Bound procedure del to obtain the solution 

set τz of DOSLP -1 during observat τ . Otherwise if T≥τ , 

{ }τazZ ∪= , Stop. 
τ T∈

Step 2: Set 1+=ττ , τζ  to satisfy the OD coverage percentage in time interval  τ ;  

go to step 1. 

 

 

 

 

 

3.4.2 Limited Network Sensors  
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The major difficulty to solve DOSLP-2 is associated with the calculation of 

the Kalman gain matrix, because matrix inversion occurs at each time interval. The 

computational intensity is especially noticeable in a large-scale network. The 

sequential algorithm by Chui & Chen (1991) has been designed to avoid direct 

computation of the inversion of the matrix, R)H(HP T
D +−ˆ  by assuming 

independence of the link measurement errors.  

DOSLP problem is a NP-hard problem. The likelihood optimization in (3.27) 

is quite formidable, and we are not aware of any method for computing the global 

maximum except by a brute force examination of each possible solution that select 

n links every time from the network ),( AVG , calculate the total link gains each time 

link gains. However the search space is 

  links from total  links, namely 

m

and then select the locations with the larg st e

the combination of mn LKn

)!(!
!

mm

LK n
n
n

⎟
⎠

⎞
⎜
⎝

⎛

mLK

LK

nnn −
=⎟⎜ which results in a non-polynomial computational time. This 

explosion of the search space precludes the brute force appro ch in  

networks.  It is imperative to develop an efficient and tractable solution procedure to 

fin s le networks. 

etermining the global optimal solution is prohibitive in most cases, a 

su gramming technique is used in this study 

to solve the proposed sensor location problem. The proposed algorithm is a recursive 

e  level, a Greedy Randomized Adaptive Search 

rocedure (GRASP), as a combinatorial optimization algorithm, is developed to find 

feasible solutions through reducing the effective size of feasible solution space and 

a  all but very small

d an optimal set of senor locations for large ca

While d

boptimal algorithm based on bi-level pro

selection process. In the upp r

P
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exploring

construc

 the space efficiently. In the lower level, the selected locations from the 

upper level are evaluated using the simulated results, e.g. assignment matrix, link 

information gains, etc. through running user equilibrium (UE) of DYNASMART-P. 

Details about user equilibrium (UE) and system optimization (SO) can be found in 

Peeta and Mahmassani (1995).  

 
3.4.2.1 Hybrid Greedy Randomized Adaptive Search Procedure (HGRASP) 
 

Greedy Randomized Adaptive Search Procedure is a multi-start or iterative 

sampling method (Lin & Kernighan, 1973, Feo & Resende 1995, Festa & Resende 

2001, Pitsoulis and Resende 2001), with each GRASP iteration composed of two 

phases, a solution construction phase, where a randomized greedy solution is 

constructed, and a solution improvement (local search) phase, which starts at the 

ted solution and applies iterative improvement until a locally optimal solution 

is found.  The procedure of the HGRASP procedure for the proposed sensor location 

problem is as follows: 

 
Algorithm 3.2 

Step 0 (Initialization): Set −∞== )( ** ZFF , where *Z  is the solution vector 

representing the best locations found so far. 

Step 1 (Construction & Searching): Repeat if GRASP stopping criterion is not 

satisfied. 

(a). Construct a greedy randomized solution Z    

(b). Local Search (Tabu Search): finding local optimal vector 'Z  in the  

neighborhood )(ZN   
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(c). Up

 are randomly 

a mmarized different 

random element selection methods to build a list of best candidates but not 

e list is called restricted 

nables the heuristic to diversify the 

exploration in the search space.  This selection technique enables the heuristic to 

diversify the exploration in the search space.  In this study, a randomly 

generated

date Solution: if ')'(,)'( *** ZZZZ ==> andFFletFF , go to step 1 

Step 2 (Best Solution Found): Return the best locations found *Z   

In the construction phase, the candidate elements ranked with respect to a 

greedy function, which measures the benefit of choosing each element,

selected one by one at each time. Pitsoulis nd Resende (2001) su

necessarily the top candidates in each HGRASP iteration. Th

candidate list (RCL). This selection technique e

]1,0[UNIF∈α  value coupled with an adaptive greedy function were used to 

build the RCL at each HGRASP iteration. Below is the procedure followed in the 

construction phase: 

 
Construct a greedy randomized solution 

Step 0 (Initialization)

Z    

: { }=ZSet  

Step 1 (Construction): Repeat until the total lee ments in set equal to the number of 

sensors  

(a). ⎨
⎧

∈−== ∑∑ w
t

wl
ll AldhccMaxc ττ ,))(ˆ*(ˆ|ˆˆ ,

,max , where is the maximal link  

      f

Z

mn  

⎭
⎬
⎫

maxĉ
⎩ ≤ ∈t Wwτ

low across the entire planning horizon T  

(b). { }maxˆ*ˆ| ccAlRCL l ρ≥∈= , where [ ]1,0∈ρ  is a scalar. 

(c). Pick l  at random from RCL, while { }TtZllRLLl zz
t
rkk ∀∈∉ ),(| ≤∈ ,  
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(d). { } {lAA }\, =  

tion set

lZZ ∪=

Step 2: Return the solu  Z  

 

)( z
t
r lR  is a set of paths that traverse link  connecting O-D pair zl r  during 

time interval t ; L denotes the set of links comprising path k .  Step 1(c) shows that 

the candidate link l  cannot be on any path k  that traversed the counting stations on 

those selected links in set

k

Z . The inherent idea in step 1(c) is to select links with large 

information gains while keeping the rank of assignment matrix H  full. By keeping 

the selected links independent, the procedure is trying to acquire more information. It 

should be noted that the measurements from those locations between which there are 

no intermediate intersections or entry/exit ramps are highly correlated with each other 

and will not contribute new traffic information. Step (1(c)) rules out the 

aforementioned possible sensor sites that may be located on the upstream or 

downstream points or do not have any entry or exit points between them.  

Generally speaking, the solutions from the HGRASP construction phase are 

not usually locally optimal, thus a local search procedure needs to be employed to 

exploit the neighborhood of solution n each HGRASP iteration. Tabu 

Search, introduced by Glover (1987), is a metaheuristic method for intelligent 

problem solving (Glover and Laguna, 1993). The power and essential feature of Tabu 

search is the systematic adaptive use memory to record historical information for 

guiding the search process. The use of the short term memory strategy (Tabu list) 

helps to forbid (or tabu) the moves in pre-defined iterations (Tabu tenure) that might 

revisit recently visited solutions. The Tabu tenure helps to prevent cycling.  A move 

)(ZN Z i
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applied to a solution will be a Tabu move if the Tabu conditions identified by the 

attributes (i.e. sensor locat satisfied. However, with the aspiration level 

conditions, the Tabu status can be overruled if some Tabu solution has attractive 

results.   

The following describes the local search procedure for the proposed sensor 

location problem. Recenc ry functions were used to identify the 

starting and ending iteratio uring the time that the attribute is Tabu-

active. A dynamic neighborhood structure was employed in this study. 

 
Local Search: finding loca the neighborhoo   

Step 0 (Initialization) , empty the tabu list 

Step 1: Repeat until the stoppin s satisfied 

(a) (Drop Move). Randomly choose a location 

ion) are 

y-based Tabu memo

ns of an attribute d

l optimal vector 'Z  in d )(ZN

: 0=kSet

g criterion i

Zx∈  

(b) (Add Move). Set ath se  at step 

 , where 

= kk 1+ , ),( kxN is the  p t of the neighborhood of x

k { }TtxjiRllkxN t ≤∈= )(|),( ),( .       

A lo ormulati mine the selection probability, which let all 

of the links likely be selected while those links with larger flows have higher 

likelihood to be selected. 

≤0,

git f on is used to deter

∑
∈ ),( kxNi

e ⋅

⋅

=
ˆ

ˆ

c

c

l i

l
eP

α

α

                                                        (3.38) 

here  is the probability for choosing link  lP l  w
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∑∑= w
t

wl
l dhc ττ (ˆ*(ˆ ,

,
≤ ∈

∈−
t Ww

kxNl
τ

),(,))  is the summation of simulated link flows 

on link  during planning horizon l T  

           α  is a scaling parameter 

Scanning the Tabu list, if the selected link  is not on the list or if the selected 

link  is on the list, but aspiration criteria is met, put this link at the bottom of the 

list. Otherwise, ignore this link and choose another link , Set  { }

l

l l

'l ( ) lxZZ ∪= }/{'  

(c) (Update). If )'()(,'),()'( ZZZZZZ FFSetFF ==> , update the Tabu list and 

aspiration conditions. 

Step 2: Return the local optimal solution se

f current solution 

ll the stopping criteria satisfied. Thus the locations of the final result could be either 

independent or dependent that depends on decision makers’ preference to reducing 

demand u inty or increasing O-D flow coverage. The HGRASP-DTA flow chart 

of the proposed process is shown in Figure 3-4. 

t Z  

 

The proposed HGRASP-DTA heuristic starts from a set of initially 

independent locations, and iteratively explores the neighborhoods o

ti

ncerta
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Figure 3-4 Hybrid GRASP-DTA bi-level solution procedure 
 

 

 

 

Randomly construct an 
initial location from RCL 

Update tabu list and 
aspiration conditions 

Evaluate the selected 
Locations with DTA 

Simulated Results 

      Start 

TS Stopping Criterion  
        Satisfied? 

     End 

Update current  
 location set 

No

Yes

    GRASP Stopping 
   Criterion Satisfied? 

Yes

No
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3.5 Numerical Illustration 
 

A series of examples based on a small 6-node network is used to demonstrate

the proposed methodology. In order to facilitate ability to compare the results of this 

research to the recent results of Zhou and List (2006), the same example network was 

used.  

The first e ample is a single point sensor location, according to the set-up in 

figure 3-5. O  pair 2 is from node 1 to node 

; OD pair 1 has two routes; and 70% of the flow travels along path 

while the remaining 30% of the flow travels along path 

 

x

D pair 1 is from node 1 to node 2 and OD

3 { }2541  

{ }25641 . Both OD 

pairs have a flow volume of 20 units. Assum
⎡

=−
1
04

)(P , meaning that OD pair 

 has a he st ndard deviation of the 

easurement error for a sensor is assumed to be 5% of the corresponding true flow 

olume. 

 

 

e ⎥
⎦

⎤
⎢
⎣0D̂

larger a priori variance than OD pair 2. T a1

m

v

Base Case 
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(a)  One sensor for OD pair (1->2) 
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Figure 3-5 Examples of Single Point Sensor Locations 

  
 

Figure 3-5 illustrates single point sensor locations in the network. Sensor in 

(a) covers O-D pair 1 with larger variance and produces larger gain than that in (b)

Since the sensor in (c) covers both O-D pairs and intercepts more OD flows in these 

three scenarios, it gets the largest gain through the observation counts even though it 

has larger measurement error than that in (a) and (b). If the error in (c) is reduced to 1, 

as in (a) and (b), it has R=1,

1 3 

2 

4 

5 

6 

. 

[ ]TK 0.1667    0.6667= , and 8337.0=Gain , producing 

larger info

 

rmation gain. 

[ ]
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1667.06667.0

112
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(c)  One sensor for both OD pair  

   Zone      Loop detector  
 

       

(b)  One sensor for OD pair (1->3) 
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(a)  Assignment error-free with link proportion 0.7 

[ ]
[ ]

9459.0

09459.0

07.0)3.07.0(

2

1

2

=

=

=+=

∑
=w

a

T

K

K

HR

 
1 

2 5 

3 4 6 
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(b)  STD of link proportion estimation errors  
                (from traffic assignment)=0.3 

 

r free link proportion estimate and the measurement error 

proportional to the link flow scenario. The gain in scenario (a) is 1.1429, which is 

greater than all the scenarios in Figure 3-5. This indicates that the measurement error 

can reduce the link information gain. Scenario (b) shows that the link proportion 

estimation error could also reduce the information gains. Although the sensor in 

cenario (c) covers both OD pairs, it still cannot produce the largest information gain 

because of the largest measurement error in the three scenarios. Even when the 

 
 
 

Figure 3-6 Examples of Single Point Sensor Locations with Route Choice 
 

 

Figure 3-6 shows the examples of single sensor locations with route choice. 

Scenario (a) shows an erro

S
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(c)  Assignment error-free with link proportion of 0.3 

   Zone             Loop detector  
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[ ]TK 4237.05085.0=measurement error is reduced to 1, the gain matrix is  and the 

gain is 0.9322.  
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d) Two uncorrelated sensors for both OD pairs 
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Figure 3-7 Examples of Two Point Sensor Locations 

 

Figure 3-7 shows examples of two sensor locations.  Scenario (a) covers O-D 

pair 1, S vers O-D pair 2, Scenario (c) and Scenario (d) covers

  Zone             Loop detector  
  

 

 

cenario (b) co  both O-D 

pairs, S

 

cenario (e) covers O-D pair 1 but the two sensors have measurement error 

correlation between them. As expected, scenario (c) collected the larger gains than 

other scenarios since it covers both OD pairs and the two sensors are independent 

with each other. Although scenario (d) covers both OD pairs as well, the information 

gain is smaller than scenario (c) due to the linear dependence of the two observations. 

Comparing (a) and (e), the correlation of measurement errors made some reduction of 

the information gain.  
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Figure 3-8 Examples of Three Point Sensor Locations 
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Figure 3-8 shows the examples of three sensor locations. The scenario (e) 

least information gain since the three sensors covered only ocollected the ne OD pair 

hile other scenarios cover both OD pairs. Scenario (a) produces the best gain 

 independence of the sensor data.  

000

w

because of the link

An interesting finding from above examples is that more sensors do not 

always result in more information gain. Scenario (c) with 2 sensors in figure 3-6 

( 3.1=Gain ) has larger gains than most scenarios in figure 3-7. Even if the two cases 

have the same measurement errors, the scenario (e) in figure 3-8 covering 1 OD pair, 

has ⎥
⎤

⎢
⎡

=
3077.03077.03077.0

K , 9231.0
⎦⎣

=Gain , which is less than that in 

)(

derived based on the BLUE assumption which explained the reason why the 

independent sensor data always produced the largest gains. The following 

observations are made from the aforementioned example results. In order to 

maximize the information gains, (1) the sensors need to be located on the links that 

can intercept the most OD flows; (2) the sensor observation data should be linearly 

independent; (3) more sensors do not necessarily mean larger information gains; an

scenario (c) in  figure 3-6. 

Under the assumption that the simulated assignment matrix reflects the actual 

route choice in the proposed sensor location problem, it can be proved by the general 

linear regression that only if the assignment matrix  has full rank, the OD demand 

estimator  is the best linear unbiased estimator (BLUE). The gain matrix was 

d 

(4) the low

H

ˆ −D

er the measurement error, the more gains the system could attain. 
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3.6 Summary 

This chapter presents the sensor location problem in two different scenarios, 

without and with budgetary constraints. In the first scenario, the senor location 

problem is viewed as an O-D covering problem under dynamic traffic assignme

 

nt. In 

the sec

 a bi-level stochastic integer 

program

Recognizing the importance of sensor location and its relationship to the 

stimation, this chapter built a connection between these two 

critical

ond scenario, a Kalman filtering based model is presented to explore time-

dependent maximal information gains and O-D demand coverage across all the links 

in the network. The solution procedure is formulated as

ming. The upper level is seeking the potential locations according to some 

selection rules, while at the lower level, the selected locations are evaluated using the 

simulated results by running user equilibrium of DYNASMART - P. A hybrid greedy 

randomized adaptive search heuristics is developed for finding the near optimal 

sensor locations to circumvent the computational complexity of the proposed 

problem.  

quality of OD demand e

 issues and considered demand estimation error based on Kalman filtering 

algorithm in the sensor location model formulation.  
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Chapter 4 A Two-Stage Stochastic Model for the Sensor 

 

decisions. T

Location Problem in a Large-Scale Network 
 
 

4.1 Introduction 
 
 Uncertainty is one of the major factors that transportation system analysts and 

planners have to deal with in making transportation planning decisions. As part of 

network operational planning, transportation agencies may be in position to deploy a 

limited number of sensors in the network before any unpredictable events (e.g. 

incidents, weather, special events, etc). However, due to unavoidable day-to-day 

traffic demand evolutionary uncertainties and randomly occurring uncertain events 

which affect the traffic pattern in the network, there is a great need to develop a 

methodology to identify a valid sensor location strategy, which performs more 

robustly with regard to extreme cases. Network uncertainties, such as location, 

duration, and severity associated with most disasters limit the applicability of the 

deterministic model proposed in the last chapter under these situations.  The nature of 

this design problem under uncertainty presents itself as a two-stage sequence of

he first stage decision  produces a strategic sensor location plan before 

observations of any random events, while the recourse function associated with the 

second stage denotes the expected cost of taking corrective actions to the first stage 

solution after the occurrence of the random events. Thus, the dynamic sensor location 

problem is formulated as a two-stage stochastic model with recourse in this chapter. 

The proposed stochastic optimal sensor location model in this chapter is 

extended from the deterministic model presented in the previous chapter by 
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accounting for network uncertainty in a mathematical program. The aim of the model 

is to determine valid sensor loca ns that may not be optimal for every possible 

realization of the un-anticipated cases

tio

, but perform more robustly with regard to 

extreme cases and thus is hedged against various network random occurrences. 

The objective of this chapter is to provide a model that can be used to gain 

insight into the sensor location problem when both traffic dynamics and network 

uncertainty are accounted for in the model formulation. 

The rest of this chapter is comprised of four sections. Section 4.2 introduces 

the potential problems for approaching the stochastic optimal sensor location 

problem. Section 4.3 proposes a model formulation for the stochastic sensor location 

problem and discusses an incident generation model under Poisson probability 

distributi tion 4.5 

mmarizes the entire chapter. 

4.2 Pro
 

on assumption. Section 4.4 presents a model solution procedure. Sec

su

 

blem Statement 

Sensor locations play a critical role in reducing the uncertainty of the 

estimated OD demand and consequently improve the quality of the predicted network 

OD demand as well as the system performance. It is generally recognized that 

incidents could lead to rapid deterioration of network performance.  The stochastic 

model presented for the sensor location problem is used to evaluate the locations 

selected a priori, before incidents occurred, under different incident scenarios defined 

in terms of location, severity, and duration of the incident(s).  By incorporating the 

impacts of randomly occurring incidents on the traffic pattern into the model 
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formulation, this chapter extends the deterministic model to a stochastic model. It 

seeks to maximize the long-run average OD coverage and minimize the long-run 

average demand uncertainty in response to different incident realizations subject to a 

budget constraint. 

 One challenge inherent in the sensor location problem is the randomness of 

the events (i.e. incident location, duration, severity, etc) as well as the subsequent 

impact on the associated traffic pattern and traveler behavior dynamics.  A stochastic 

programming framework is built to incorporate the uncertainty involved in this 

problem

ndom incident realizations. The system uncertainties can conceptually 

be modeled by a scenario tree which describes system uncertainty evolution across all 

 into the model formulation. Note that although the proposed stochastic 

model is general with regard to various types of uncertain events, this research is only 

focused on the impacts due to network traffic incidents. Without considering specific 

incidents, a set of sensor locations is identified in the first stage subject to budgetary 

constraints; a recourse decision is then made in the second stage based on the specific 

incident realizations in the network, which are consequently defined as random 

variables. Note that the location plans from the deterministic model can be used as the 

initial candidate locations in the stochastic model. 

 Another challenge in this sensor location problem is how to model the 

occurrence of highly uncertain incident events in the network. Chiu et al. (2001) 

assumed the occurrence of incidents on link na  follows a Poisson process, and 

calculated the likelihood of n incidents occurring on link na using Bayesian statistical 

method. A method based on their incident generation model is adopted in this study 

to generate ra
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stages. The scenario tree with all possible incident scenarios (low severity

n link ) on its leaves is used to produce 

robust r loc n

 

w h Scenarios on Leaves 

 

4
 

s astic ptimal Sensor 

L stoc astic mixed integer model framework is 

p vel, the traffic planner makes decisions on 

se the ng run average OD flow coverage 

an e 

n In the lower level, the network users are assigned to the time-

d n rou s given the sensor locations 

d n are subject to the incident realizations. In this 

study, the network users are presumed to have full knowledge of the travel times over 

Ls , 

medium severity Ms , high severity Hs  o iL

senso  strategies (Figure 4-1). atio

      Figure 4-1 Scenario Tree for SOSLP it

.3 Problem Formulation 

Due to the intrin ic characteristics of the proposed Stoch O

ocation Problem (SOSLP), a bi-leve hl 

resented in this section.  In the upper le

nsor placement in the network, to maximize lo

d minimize the expected uncertainty of the estimated OD demand subject to th

budget limitatio . 

ependent user equilibrium or system optimizatio te

etermined from the upper level a d 

Ls  Ms  Hs  

1L  2L  nL  1+LScenario 
n  2+nL  nL2 22 +nL  nL3  

Stage 1 

Stage 2 

 12 +nL  
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al fl w pattern is consequently assumed to be a user 

eq hat for 

 E, the travel time on all used paths, no matter which combination 

of , are equal and less than or 

e time that would be experienced by a single vehicle on any unused 

p  e m

lo a i brium 

co

 t l are integer binary variables, which 

ons. The decision variables in the lower level are the 

as the time-dependent user equilibrium paths. The 

lo ork of P eta and Mahmassani 

(1 u er the assumption that detours 

fo c ent scene would have only 

negligeable effect on the network performance. Given the small portion of the 

impacted vehicles to the total number of vehicles in a large-scale congested network, 

this assumption is reasonable. Due to the computational intensity and complexity of 

the assignment matrix in a large scale network, the time-dependent assignment matrix 

in this study is obtained from a simulation-based dynamic traffic assignment model 

software DYNASMART-P (Mahmassani et al. 2000), described in Chapter 2. The 

notation and problem below before the model 

fo

 

l the routes of interest. The traffic o

uilibrium (UE) which was initially introduced by Wardrop (1952), namely, t

each OD pair, at U

 travel routes and departure times the traveler choose

equal to the trav l 

ath. The UE constraints in the lower level of the propos d stochastic opti al sensor 

cation problem (SOSLP) result in a m thematical program with equ li

nstraints (SMPEC) (Patriksson and Wynter, 1999).  

The decision variables of he upper leve

denote the sensor locati

signment matrices induced by 

wer level equilibrium problem is based on the w e

995) and Chiu, Huynh and Mahmassani (2001), nd

llowed by impacted vehicles before reaching the in id

 definition are first introduced 

rmulation. 
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4.3.1 No b
 

L ents a directed traffic network, with the set of nodes 

and the 

tation and Pro lem Definition 

et ),( AVG = repres V

set A of edges with the size mA = . Defines: 

N        Set of zones, consisting of n zones, size of set nN =  

        Set of origin zones, consisting of n zones I

ωI       Set of nodev s where impacted vehicles receive reassignment under scenarioω  

        Set of destination zones, consisting of n zones J

A         Set of links, consisting of links, size of set LKn LKnA =  

W        Set of O-D pairs, size of set ODnW =  

mnL =  L         Set of link  ws ith measurements, size of set 

ω (e.g. (ωω        Probability of a random event P = ξPP )ωξ= ) 

t of all random events Ω         Se

ω         Random event ( Ω∈ω ) with respect to the probability space ),( PΩ  

a          Subscript for link in network, Aa∈  

w         Su s Ww∈  b cript for OD pair in network, 

i           Subscript for origin zone in network, Ii∈  

ω         Subscript for the node where impacted vehicles receive reavi ssignment under  

            scenarioω  

j          Subscript for destination zone in network, Jj∈  

)  Set of outbound links from node n  (nOB
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)(nIB   Set of inbound links to node  n

   Set of links terminating at node n  )(nC

ω,t
n     Number of the out of network vehicles from node n during time t  uO nder  

            scenarioω  

ω,t
n     Number of the vehicles entering netwoI rk from node during time  under 

   

n t

        scenarioω  

ω,t     Number of vehicles generated at node n durinnE g time  under scenario t ω  

ω,t     Total number of vehicles that enter link am a  during time  under scenariot ω  

ω,t
ad      Total number of vehicles that exit link  during time  under scenarioa t ω  

a  during time  under scenariot ω  ω,t
ax      Number of vehicles on link 

T          Planning horizon 

λ         Objective function weight, 10,, 21 ≤≤= λλλλ  

τ          Superscript denoting departure time interval, T≤≤τ0  

ω  ωV        Set of vehic s le that are impacted by scenario

ω        Set of vehicles that are not imO pacted by scenarioω  

U          Set of all vehicles. ωω OVU +=  

u           Superscript for impacted/non-impacted vehicles, ωω ovu ,=  

[ ]ωω
es TT ,   Incident ω duration 

ωτ ,,
,

u
jiR    Set of paths connected origin i and destination j during departure time τ      

             under scenarioω  for impacted/non-impacted vehicles 

K        Set of paths of the network, size of set kK = , ⋅⋅⋅∪∪⋅⋅⋅∪∪= t
jiRRRk ,

1
3,1

1
2,1  
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)(uk     Subscript for the paths of impacted/non-impacted vehicles in the network    

             under scenarioω , ωτ ,,
,)( u
jiRuk ∈  

ωτ ,,u
)(,, ukjiT    Experienced travel time of the network vehicles (impacted or non-impacted)  

leaving from  to destination  i j along path at departure  time)(uk τ  under 

scenarioω               

v  Minimal travel time for the impacted vehicles rerouting from node i to  

              destination 

ωτ
ωπ ,,

)(,, vkjiv v
ω

j along the path under scenario)(vk ω  

)(, jid   a-priori estimated OD demand from origin i to destination ˆ −τ j  at departure  

               time τ  

ωτ ,,
)(,,ˆ v

vkjir     Number of impacted vehicles  leaving from to destination ωv  i j along  

  path under scenario)(vk ω  

aaC          Link capacity 

ω,~t
aC        Reduced capacity of link a when incident occurred on it during time  under  

              scenario

 t

ω  

lz           Decision variable of the upper level problem 

               

     a priori variance covariance of the between OD pair  and  at time ,  

               

     a priori variance covariance matrix of the demand matrix 

    a posteriori variance covariance matrix of the demand matrix 

⎩
⎨
⎧ ∈∀

=
Otherwise

Alllinkonlocatedsensortheif
zl ,0

,,1
 

t
wwP

21 , 1w 2w  t

RPt
ww ∈

21 ,  

:ˆ )(PD −

:ˆ )(PD +
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:ar            Standard deviation of the measurement error corrupting the measurem

          Kalman gain of link  brought by O-D pair  at time under scena

ents 

ω,
,

t
wak a w  t  rioω  

ωτ ,,
,
t
wah         Assignment proportion of O-D pair  on link  departed at time w a τ  during 

                observation time interval  under scenariot ω  

ωτ
ω
,,
,,

t
jii v

h        Time-dependent node-path incidence indicator                

              Mapping matrix ( ) mapping the demand flow to link counts

               Number of random events (incidents) in the network 

              First stage objective function (e.g. ) 

              Second stage value function with random argument 

              Expected second stage recourse function 

⎪
⎩

⎪
⎨

⎧

=
otherwise

ttimeatifrom
leavingaretimedepartureatjtoifromgeneratedvehiclesif

h v
t

jii v

,0

,1
,,
,,

ωωτ

τ

ω  

H ODl nxn   

S

F L+= xcF Tmin

Q

Q

E               Mathematical expectation operator 

               Random vector ( , if indexed by time) with realizations as 

                  (without boldface) 

              Binary random variable  

                  

            Incident severity described as percentage of link capacity reduction u

ξ tξ ξ  

t
aξ

⎩
⎨
⎧

=
otherwise

ttimeduringalinkonoccursincidentift
a ,0

,1
ξ  

ωσ nder  

ω                    scenario

∆               Length of a time interval 
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)     A binary indicator variable                

⎩
⎨
⎧ ∀>

=
Otherwise

wattimebyeredbeennothaswandhif
hI

t

wa ,0
,,,cov0,1

)(
,,

,

ωωτ

 

 
Akin to the determ

( ,,
,
ωτ t

wahI

wat ,,, ωτ

4.3.2 Model Formulation 

inistic model, the problem objectives are to maximize the 

expecte

n gains.  

           

d OD coverage and minimize variation of the estimated OD matrix under 

different scenario Ss∈ . Eq (4-0) shows the relation between the demand a posteriori 

variance and the link informatio

                                 )(KH)P(I)(P DD −−=+ ˆˆ                             (4-0) 

Apparently, the maximization of the link information gains K and the inimization 

of the uncertainty of the estimated OD demand )(PD

m

+ˆ  are mathematically equivalent. 

The problem hence can be formulated as follows, 

                                            [ ]{ })),(()(Pr ZHZ ωQFMaxJ +=  

                                            { }),((()( ZHZ ξ ))ωQEFMax +=                (4-0-1) 

where ,((( ZHξ )))ωQE  referred to as a recourse function. In this study, there are no 

first-stage costs ( 0)( =zF ) in the objective function since the first-stage variable a  

is reflected by

is

z

∑
∈

≤
Aa

. The second stage value function can be formulated as 

follow m arguments:   

a Lz

s, with the rando

∑∑∑ ∑∑∑
∈ ∈ ∈ ∈ ∈ ∈Tt Aa Ww Tt Aa

aw
Ww

jiaaw ,,2,1

The

−+= a
ttt zhIdzkzQ )*)(*)(ˆ()*()),(( ,,, ωτω λλωH         (4-0-2) 

 weights 21 ,λλ  re

or link gains.  

flect the decision maker’s relative preference for OD coverage  
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4.3.2.1 Stochastic Optimal Sensor Location Problem (SOSLP) 
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The objective function (4-1) is to maximize the long run average of the 

second-stage random values under stochastically occurred incident in the network. A 

recourse decision can be made in the second stage to correct the locations due to the 

change of traffic pattern caused by the random incidents. Note that the deterministic 

model is a special case of the proposed stochastic model without considering incident 

scenarios ( 0=S ). 

Constraint (4-2) shows that the summation of weights of all objectives should 

equal to 1. Constraint (4-3) ensures that the total number of network sensors is within 

the budget/resource limitation. 

Constraint (4-4) is the information gain contributed by link a  through the 

observation of O-D pair 1w  during observation interval t  under scenarioω . It denotes 

that the time-dependent link information gain is a function of time-dependent link 

roportion values (assignment matrix). The scenario-dependent link proportion value 

leads to an

p

 a r dom recourse function. There are several details to note about the link 

inform

21 ,

uncertainty level of each OD pair and 

Assignment matrix ( ) connects link observations to the OD demand. If a link can 

intercept those OD pairs with a large variance, or a link can intercept more than one 

OD pairs, then the product of  is more likely to be lar e and more 

information gain matrix  is the inverse of τ ,,
,,

,
2211

** t
aw

t
ww

t
w hPh . If one only 

ation gain matrix ω,
,1

t
awk . First, it is the product of ωτ ,,

,, 221
* t

aw
t

ww hP . The a priori 

variance covariance matrix ( tP ) indicates the existing estimated demand ww

covariance between different OD pairs. 

H

ωτ ,,
,, 221

demand uncertainty reductions are obtainable. The second detail about the link 

* t
aw

t
ww hP g

ω,
,1

t
awk ωτω,

,a
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considers ωτωτ ,,
,

,,
, 21

* t
aw

t
aw hh  for multiple possible sensors, the inverse of 

ωτωτ ,,,, * tt hh specifies the correlation of measurements among m,, 21 awaw ultiple links. 

Furthermore, ** ttt hPh  describes the measurement correlation on the basis 

m HPH

network 

time-de

ωτωτ
2211 awwwaw

of existing estimated variance and covariance. If ωτωτ ,,
,,

,,
, 2211

** t
aw

t
ww

t
aw hPh  is large, 

meaning that either new senor data could be highly correlated with each other or they 

are correlated with the current estimate, then the inverse is small and the weight 

factor becomes insignificant. Recall that generalized linear regression (GLS) has the 

same ter 1)−T , indicating the extent of information/knowledge obtained from 

observations.  

Constraint (4-5) expresses the link proportion values as a function of 

,,
,,

,,
,

(

pendent link flows. Function ))(ˆ(( ,1 −τ
ωψ jidf is a complicated non-linear 

function, which embeds the impact of traffic link flow, routing policy, signal control, 

traffic demand, etc. on the link proporti

Analyt

on values over a planning horizon. 

ically, the assignment matrix is determined by the route choice fraction and 

network traffic flow propagation (Cascetta et. al (1993)).  

∑∑= u
ukw

ut
ukaw

t
aw qh ,,

)(,
,,,

)(,,
,,

, )*( ωτωτωτ α  
u uk )(

ut  under scenariowhere )(,, ukaw  is the link-path incidence fraction for OD pair ωτα ,,, w ω , 

ωτ ,,
)(,

u
ukwq  is the average fraction of choosing path )(uk at departure time τ  for OD pair 

w  under scenarioω . Based on the assumption that the vehicles are uniformly 

distributed in a packet and travel times are observable, Cascetta et. al (1993) derived 

a relationship between the link path incidence and travel time. Due to its dynamic 
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complexity, link proportion values in this study are obtained from DYNASMART-P 

simulation results, as they would be in practical applications. 

Constraints (4-6) and (4-7) state the time-dependent user equilibrium 

principle. With the non-negative path flow conservation, these two constraints are the 

general first-o der r conditions for the dynamic user equilibrium. The paths connecting 

node i  where the impacted vehicles reroute under scenarioωω
v  to any destination 

during any departure time can be divided into two categories: those carrying flow, on 

traint (4-8) specifies the reduction of link capacity due to the occurrence 

stic incident on this link. The ows a 

pre-specified distribution (Poisson distribution in this research).  Constraint (4-9) 

denotes the node flow conservation under scenario

which the travel time must be minimal; and those not carry flow, on which the travel 

time must be greater than or equal to the minimal travel time. 

Cons

of a stocha  probability of incident occurrence foll

ω . Constraint (4-10) represents the 

link flow conservation. It shows that flows on a link during observation time interval 

 are determ nd vehicles on that link during last time 

hicles on a link during any 

l is determined by the demand and the corresponding link proportion 

alu th . 

ent variable. 

 a non-linear function of traffic demand and 

eterm

t ined by the inflow, outflow a

interval 1−t . 

Constraint (4-11) expresses that the number of ve

time interva

e ωτ ,,v ,, aji

Constraint (4-12) expresses the time-dependent node-path incid

Similar to constraint (4-5), it is

d ined by the interaction of different components, such as link traffic flow, 

incident characteristics, signal data, etc. It is obtained from DYNASMART-P 
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simulation in this study.  Constraint (4-13) expresses the number of impacted vehicles 

rerouting to any other destination at any time interval, as determined by the OD 

demand and the node-path incidence variable under scenarioω . 

Constrain  (4-14) states that the total travel timet  for an OD pair is the 

summation of the travel time along each possible path of that particular OD pair 

under scenarioω . Instead of assuming that the vehicles leaving an origin during any 

departure interval act like a single user (discrete packet approach), this study assumes 

that those vehicles are continuously spread over the interval between the “head” and 

listic than the time-average link flow 

ssumption which assigns the link-path incidence fraction either 1 or 0. In addition, 

is assumption reflects more closely the simulation package’s philosophy.    

Constraints (4-15) and (4-16) represent the number of vehicles leaving and 

entering a link. Constraints (4-17) and (4-18) represent the number of vehicles 

leaving and entering a node. 

Constraint (4-19) expresses that the departure time is always less than or equal 

to the current observation time. Constraints (4-20) and (4-21) define two binary 

integer variables. Constraint (4-22) makes sure all variables are non-negative. 

 
 
4.3.2.2 Random Incident Generation Model 
 

An incident generation model based on the model proposed by Chiu, Huynh 

and Mahmassani (2001) is used in this study to generate network random incidents. It 

is assumed that (1) occurrence of incidents on link  follows Poisson process with 

“tail” of the packet (continuous packet approach) (Cascetta and Cantarella, 1991) and 

thus 10 ,,
,, ≤≤ ωτ t
ajih . This assumption is more rea

a

th

n a
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occurrence rateλ ; (2) the occurrence rateλ  is identical on all the links;  (3) each link 

has some probability of having an incident on it; and (4) the incidents are indepen

of each other.  Due to different link congestion levels at different time intervals, the 

incident occurrence probability is different from time interval to time interval and 

from location to location. Then the probability that n incidents occur on link a durin

time interval is 

                  

dent 

g 

 t  

!
))((

)(
)(

n
etfL

nxP
tfLn

aat
a

aaλλ −⋅
==  

where )(tfa  is the link flow at time interval t  on link a .  For simplicity, this study 

assumes that the incident probability is not time-dependent and has the following 

expression: 

                 
!

)~(
)(

~

n
efL

nxP
aa fLn

aa
λλ −⋅

==                                                    (4-23) 

where  

a

λ : occurrence rate per unit length and unit flow of the network 

aL : length of link a. 

af
 
~ : total volume of link flow across the simulation horizon T , ∑= aa tff )(

∈Tt

~  

 

 

                   

The probability of an incident occurring in the network is 

∑
⋅⋅== ∈

∈
∑ Ai

i
Ai

iall eLfxP
~

))(()1( λ                                                 (4-24) 

 
According to Bayes’ theorem, the conditional probability that an incident occurs on 

link a, given there is one incident occurred in the n

⋅− ii Lf )(~ λ

etwork is as follows, 
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Eq.(4-25) says that the incident occurrence probability on link a is the ratio of 

the weighted lane-miles of link a to the total weighted lane-miles if one incident 

happens. Thus, the likelihood of an incident occuring on a link is proportional to the 

link length, number of lanes and congestion level. 

Similarly, the probability of one incident occurring on link a and the other 

incident on link b when two incidents happens is given by:  

)0()1(
1|1                           (4-25) 

 

( )

2

,

))~((

~~
)2(

)0()1()1(

∑

,

)()(*2

2|1,1

∈

⋅⋅⋅

−−

⋅
=

=
=⋅=⋅=

====ba

LfLf
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Note that the probability of two incidents occurring on the same link is  

               

Ai
ii

bbaa

all

baba

Lf

wP
xPyPxP

                         (4-26) 
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a Lf

Lf
wxP                                   (4-27) 

onger length, more lanes and larger flow 

xhibit higher incident occurrence probability.  

 

The above results show that links with l

e

4.3.2.3 Deterministic equivalency of SOSLP model 
 

))),((( ZHξ ωQE  is the expected OD coverage and link information gain under 

different scenarioω , i.e. one incident, two incidents, three incidents, etc. Under finite 

discrete distribution assumption of the random scenarios, SOSLP can be formulated 

as a deterministic equivalent program as follows: 
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 where          

                        

The above deterministic equivalent model converts the SOSLP to a mixed 

integer non-linear model. The integer L-Shaped based algorithm or local search 

heuristics, such as simulated annealing or Tabu search can be applied to this problem. 

Unfortunately, for a large scale network and its induced thousands of realizations, the 

L-shaped method would consume greater computational resources to solve the 

complicated linear problem and require additional attention to decomposition 

techniques, such as Benders’ decomposition, to take advantage of the model structure. 

Within Benders’ framework, two different types of linear programming models 

would need to be solved: a master problem that solves for the first stage variables, 

and a series of sub-problems that deal with second stage variables. Although the sub-

problems in the SOSLP are always feasible, the SOSLP is not a convex problem due 

to the complicated dynamic characteristics of the assignment matrix.  This provides 

(4-28) 
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the motivation to develop a uristics, which can find robust solutions to the 

given large-scale non-convex stochastic program. 

 

4.4 Solution Procedure 
 

The hybrid Greedy Randomized Adaptive Search Procedure (HGRASP) 

solution procedu roposed e prev chapter to e the deterministic model 

is modified to search for the best solution for the stochastic model.  The candidate 

sensor locations are evaluated by the multiple user class procedur e 

DTA assignment sim (Peeta & Mahmassani 1995). 

Once an incident r

nd test he

re p  in th ious solv

e integrated in th

ulation tool, DYNASMART-P 

ealization )(ω  is detected, the affected vehicle paths and theis 

associated nes are delinea All newly generated vehicles (during the incident) 

from these impacted origin te impacted vehicles that would have 

originally traversed the incident link are classified as user class , provided with 

diversion guidance to take such routes th inimize their travel time. All other 

vehicles will be classified as u nd will retain their original assigned paths.  

The next section illustrates the modified hybrid greedy randomized adaptive search 

procedure. 

 

4.4.1 Hybrid eedy Ra ve Search Procedure (HGRASP) 
 

Greedy Randomized Adap Search Procedure is a multi-start or iterative 

sampling method (Lin & Kernighan, 1973, Feo & Resende 1995, Festa & Resende 

2001, Pitsoulis and Resende 2001), with each GRASP iteration composed of two 

phases on is 

 zo ted. 

zones and the en-rou

ωv

at m

ser class ωo a

 Gr ndomized Adapti

tive 

, a solution construction phase, where a randomized greedy soluti
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constructed, and a solution improvement (local search) phase, which starts at the 

es iterative impro

cedure flow chart for the SOSLP, which 

constructed solution and appli vement until a locally optimal solution 

is found. Figure 4-2 depicts the solution pro

is summarized in the following steps: 
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Randomly construct an 
initial location from RCL 

Figure 4-2 Hybrid GRASP-DTA bi-level solution procedure for SOSLP 

Update tabu list and 
aspiration conditions 

Evaluate the selected locations with 

passing throu
DTA simulation. Divert traffic that 

gh the incident location 
to other UE paths 

     Start 

TS St opping Criterion  
        Satisfied? 

Update current  
 location set 

No

Yes

    GRASP Stopping 
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     End 

No

   

Repeat for K 
incident 

realizations 

No 
Incident 

One 
Incident 

Two 
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HGRASP-DTA Solution Procedure for SOSLP 

Step 0 (Initialization): Set −∞== )( ** ZFF , where *Z  is the solution vector 

representing the best locations found so far. 

Step 1 (Construction & Searching): Repeat if GRASP stopping criterion is not 

satisfied. 

(a). Co

            

).Draw a random number

nstruct a greedy randomized solution Z    

(b).Local Search (Tabu Search): find local optimal vector 'Z  in the   

neighborhood )(ZN   

1. Generate random incident realization 

1a α  from a uniform distribution (0,1) 

]1,0[UNIF∈α , and map it to the corresponding Poisson distribution 

probabilit enerate number of incy jp  to g idents scenario( jw = ); 

1b).Draw a random number β from a uniform distribution (0,1) 

]1,0[UNIF∈β , and map it to the corresponding conditional Poisson 

distribution probability )|1,,1( 1,.1
jwaaP jaa j

=== L  on links; 

2. cation Evaluate the selected sensor lo s  with DTA simulation. Divert 

Step 2 (Best Solution Fo

'Z

traffic that passes through the incident location to other UE paths 

3. Go back to 1 and repeat for k incident realizations 

(c). Update tabu list and solution: if ')'(,)'( *** ZZZZ ==> andFFletFF . If Tabu 

search stopping criterion is not satisfied, go to (b), otherwise go to (a).    

und): Return the best locations found *Z   
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In the construction phase, the candidat

greedy function which measures the benefit of choosing each location, are randomly 

selected one by one at each time.  Pitsoulis and Resende (2001) summarized different 

random element selection methods to build a list of best candidates but not 

necessarily the top candidates during every HGRASP iteration. The list is called a 

restricted candidate list (RCL). This selection technique enables the heuristic to 

ly 

e locations, ranked with respect to a 

diversify the exploration in the search space.  In this study, a random

generated ]1,0[UNIF∈α  value coupled with an adaptive greedy function were used to 

CL at each HGRASP iteration. Below is the procedure followed in th

nstruction phase:. 

onstruct a greedy randomized solution    

Step 0 

build the R e 

co

 
C  Z

(Initialization): { }=ZSet  

Step 1 (Construction): Repeat until the total elements in set Z equal to the number of 

sensors L  

(a).
⎭
⎬

⎩
⎨ ∈−== ∑∑ ⎫⎧

≤ ∈

tll τωτ ˆ,, , where is the 

aximal link flow under the normal traffic condition across the entire planning 

orizon

t Ww
wlw AldhtctcMaxc

τ

,))(*()(ˆ|)(ˆˆ 0
,max maxĉ

m

h  T  

(b). { }maxˆ*ˆ| ccAl [ ]1,0∈ρl ρ≥∈ , whereRCL =  is a scalar. 

(c). Pick l  at random from RCL, while { }WwTtZllRLLl t ∈≤∈∀∈∉ ,,),(|  wkk

(d). 

zz

{ } { }lAAl \, =∪= ZZ  

Step 2: Return the solution set Z  
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)( z
t
w lR  is a set of paths that traverse link zl  and connect O-D pair w  during 

time interval t ; L  denotes the set of links on path k .  Step 1(c) shows that the 

candidate link l  cannot be on any path k  that traversed those selected links in set Z . 

The inherent idea in step 1(c) is to select links that can contribute greater information 

gains while keeping the rank of assignment matrix H  full. By keeping the selected 

links uncorrelated, the procedure can obtain more information, as described in 

Section 3.4 in conjunction with the DOSLP.   

Again as with the DOSLP, the solutions from the HGRASP-DTA construction 

phase are usually not locally optim

k

al, and a local search procedure is employed to 

exploit the neighborhood of solution during every HGRASP iteration. A 

similar Tabu search procedure is applied here as well. The steps are repeated for 

completeness: 

 
ocal Search: finding local optimal vector  in the neighborhood   

tep 0 (Initialization) , empty the tabu list 

tep 1: Repeat until the stopping criterion is satisfied 

) (Drop Move). Randomly choose a location 

)(ZN Z

L 'Z )(ZN

S : 0=kSet

S

(a Z∈x  

(b) (Add Move). Set is the  path set of the neighborhood of  at step 

 , where 

1+= kk , ),( kxN x

k { }TtxRllkxN t
ji ≤≤∈= 0),(|),( ),( .       

A logit formulation is used to determine the selection probability, which let all 

of the links likely be selected while those links with larger flows have higher 

likelihood to be selected. Therefore, any link with flow has the probability to be 

selected, but those links with higher congestion were more likely to be selected. 
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⋅ĉlα

here  is the probability of choosing link 

w
t
lw kxNldh τωτ ),(,))(ˆ*( 0,,

,  is the summation of simulated link    

flows on link  in planning horizon 

           

 lP l  w

∑∑=lĉ ∑
≤ ≤ ∈

∈−
Tt t Wwτ

l T  

α  is a scaling parameter 

Scanning the tabu list, if the selected link  is not on the list or if the selected 

link  is on the list, but aspiration criteria is satisfied, put this link at the bottom of 

l

l l

( ) { }lx ∪= }/{' ZZ  the list. Otherwise, ignore this link and choose another link 'l , Set  

 (c) (Update). If )'()(,'),()'( ZZZZZZ FFSetFF ==> , update the tabu list and 

aspiration conditions. 

(d) If tabuKk ≤ , where tabuK is the maximal tabu iterations, goto (a), otherwise, go to 

step 2 

Step 2: Return the local optimal solution set Z  

 

 

The proposed HGRASP-DTA heuristic starts from a set of initially 

uncorrelated locations that intercept the largest OD flows, and iteratively explores the 

neighborhood of current solution till the stopping criteria being satisfied. However, 

the decision makers’ preference to reduce system uncertainty or increase O-D flow 

coverage in the long run affects the final sensor placement. 
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4.5 Sum
 

e simulated and observed link counts by 

conside

 

 

 

mary 

Uncertainty is pervasive in transportation planning and has a significant 

influence in the transportation evaluation and decision making. With particular 

emphasis on the time-dependent OD demand estimation problem under a variety of a 

priori unknown incident scenarios, this chapter proposed a two-stage stochastic 

model with recourse to find an optimal set of sensor locations, subject to a budget 

constraint, with the dual aim of maximizing the long run expectation of the link 

information gains and the OD flow coverage in a large scale traffic network  The 

proposed model is based on the time-dependent link measurement equations, with the 

aim of minimizing the deviation between th

ring different error sources, such as link measurement errors, estimation 

errors, and etc. A modified HGRASP-DTA search procedure is used to find the near 

optimal sensor locations in the context of dynamic traffic assignment and stochastic 

scenarios.  
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Chapter 5 Sensitivity and Experimental Analysis of Sensor 

t the complexity of the analytical derivation and are used in the 

proposed models in order to capture the network traffic patterns and dynamics. The 

sensitivity analysis of estimation and prediction quality is conducted in this chapter 

using the DYNASMART-X real-time DTA system. The analysis considers both 

randomly generated location scenarios as well as scenarios based on engineering 

judgment. The latter considers placing sensors on high volume links on the main 

freeways and arterials. Taken together, the two sets of scenarios provide useful 

insight into the robustness of the real-time DTA estimation and prediction, and the 

effect of location-specific considerations on estimation and prediction quality. The 

DOSLP and SOSLP models are tested on an actual large-scale network. The results 

are evaluated and compared with those from the sensitivity studies to assess the 

respective performance of the proposed models. The value of additional information 

rom a new sensor in traffic status estim  in 

rms of its contribution to the demand uncertainty reduction. 

Location Problem Methods 
 
 

5.1 Introduction 
 

This chapter aims to evaluate the performance of the proposed models under 

different conditions in terms of the value of available information from deployment of 

network sensor locations. With regards to the complexity of the assignment matrices 

in the context of real-time traffic estimation and prediction, simulated assignment 

matrices that obtained from a dynamic traffic assignment based simulation software 

can circumven

f ation and prediction is also characterized

te
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The principal objectives of this chapter include: (1) illustrate the effectiveness 

of the proposed models with the real-world application using actual data; (2) evaluate 

the opt

stness of the estimated demand 

matrix to the sensor numbers and locations. The proposed methodologies are 

expected to prov le networks for 

al-time traffic estimation and prediction.  

e proposed set covering model under the assumption of an unlimited number of 

sensors for two medium-size networks, and thereafter scenarios under a limited 

number of sensors are tested. Section 5.3 evaluates the performance of optimal sensor 

locations derived from different methods with budgetary constraints in a large scale 

network. It starts with sensitivity studies with respect to the number and location of 

the sensors in terms of impact on the traffic estimation and prediction under real-time 

information. Next, the results obtai

 

imal sensor locations derived from the static model and dynamic model; (3) 

determine the marginal value obtained from each additional sensor, in terms of the 

demand estimation errors and OD flow coverage in the context of traffic dynamics; 

(4) demonstrate the influence of the network uncertainty on the  sensor locations; and 

(5) perform sensitivity analyses to assess the robu

ide insight on optimal sensor deployment in large sca

re

This chapter is organized as follows. Section 5.2 evaluates the performance of 

th

ned from the proposed DOSLP and SOSLP 

methodologies are analyzed under stochastic and deterministic scenarios. Finally, the 

major conclusions are summarized. 
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5.2 Unlimited Network Sensors for two Medium-Size Networks 

In order to illustrate the proposed OD covering model, Figure 5-1
 

 shows the 

sensor locations for two networks: 1) Fort-Worth, TX, with 147 sensors that cover 

156 OD pairs (13 TAZ), including 180 nodes and 445 links and 2) Irvine, CA, with 

238 sensors that cover 3660 OD pairs (61 TAZ) , including 326 nodes and 626 links. 

The a priori “relevant degree” =0 under the dynamic traffic assignment. The time 

period of interest is the morning peak from 6:30AM-8:30AM.  Figure 5-2 shows the 

solution results for the static model proposed by Yang et al. (1998). The same 

networks using static information result in having 12 sensors and 44 sensors 

respectively.  

 

τζ

 
 

Fig rk 

Irvine Network Fort-Worth 
 

ure 5-1 Sensor Locations by DTA in Fort-Worth & Irvine Netwo
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 Fort-Worth Irvine Network 

Figure 5-2 Sensor Locations by Static Model in Fort-Worth & Irvine Network 
 

The results of the dynamic model show that due to the traffic dynamics, more 

air in the network across time than 

those 

sensors are needed in order to cover each OD p

obtained by solving the sensor location problem based on static traffic 

assignment.  Figure 5-3 shows the minimum number of required sensors for each 

departure time intervalτ  over the analysis horizon. 
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Figure 5-3 Number of Sensors for Each Time Period 

 

5.2.1 Sensitivity Analysis on the Number of Sensors and Percentage OD      
Coverage  
 

A sensitivity analysis is performed to explore the relationship between the 

number of sensors and level of OD coverage in a network. The purpose of this 

analysis is to explore the marginal value, in terms of percentage coverage, of adding 

sensors to the network. The analysis also provided a platform to investigate the effect 

of sensor location on the OD demand coverage rate.  

By setting an appropriate  in each departure time interval 

Netwo

τζ τ  and solving 

the corresponding DOSLP -1 model, Figure 5-4 shows the different sensor numbers 

quired to provide diff orth, TX and Irvine, 

CA networks under the dynamic model. As expected, to cover more OD pairs, more 

sensors have to be installed in the network.  These results also indicate that obtaining 

re erent levels of OD coverage in the Fort-W
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greater t e in the 

number of sensors. In addition, the results show that a fairly low number of 

han 50% OD coverage for either network require a significant increas

judiciously-placed sensors can provide a substantial amount of coverage.  
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5-5 shows 23 sensors covering 50% of the O-D demand flow on the 

Fort-W

and coverage.  

Network

 
 

Figure 5-4 Sensors Covering Percentage OD Demand 
 

 

Figure 

orth, TX test network, and 52 Sensors covering 60% of the O-D demand flow 

on the Irvine, CA test bed network.  Interestingly, the sensors are mostly distributed 

along the freeways, in which the links have higher flows than that on the arterial 

streets. The results reveal that if budget is constrained, deploying sensors along the 

freeway would make sense in terms of maximization of the O-D dem
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Figure 5-5 Partial OD Demand Coverage on Different Network 

 

 
This section evaluates the methodologies under the assumption of a limited 

number of sensors. First the sensitivity analyses of estimation and prediction quality 

vis a vis both sensor location and sensor coverage percentage in a network are 

performed, and then the solutions from the deterministic model (DOSLP) and 

stochastic model (SOSLP) are analyzed in stochastic and deterministic scenarios 

respectively. To illustrate the effects of network uncertainty on the sensor locations, 

the sensor locations and network performance from the deterministic model (DOSLP) 

are compared to those obtained by solving the sensor location problem based on the 

stochastic model (SOSLP) under different scenarios.  

 

Fort-Worth 
 

 

5.3 Limited Network Sensors for a Large-Scale Network 

Irvine Network 



 

5.3.1 Maryland CHART Network Description 

The experiments are performed on the CHART network in Maryland which 

was developed for use in real-time traffi

 

c management. Started in the mid 80’s, 

CHART (Coordinated Highways Action Response Team) is the highway incident 

management program of the Maryland State Highway Administration (MDSHA). The 

study area is concentrated on the area surrounding the I-95 corridor between 

Washington, D.C. and Baltimore, MD. The network is bounded by I-695 to the north, 

I-495 in the south, US 29 in the west and I-295 in the east. The network includes four 

main freeways (I-95, I-295, I-495 and I-695), as well as two main arterials (US29 and 

Route 1).  The Maryland CHART network reduces to 2,182 nodes, 3,387 links and 

111 zones.  It also includes 262 signals.  Figure 5-6 shows the Maryland CHART 

network and signal locations. There are 14 working loop detectors deployed in the 

CHAR

 in processing and 

terpreting the real-time traffic data and the actuated signal data. The time horizon of 

 from 6:30AM to 8:30AM during which there are totally 

119,18

T study area.  The locations of these detectors are shown in Figure 5-7. Ten of 

the detectors are located on I-95, two are located on I-495 and another two are located 

on MD-32.  The detector information is frequently invoked

in

interest is the morning peak

9 vehicles generated.  The DYNASMART-P simulation-based traffic 

assignment tool (Mahmassani et. al 2000) is used to load the time-dependent OD 

demand onto the network and assign paths to the vehicles. 
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Figure 5-6 Maryland CHART Network 
 

Link 1778
Point Sensor

 

 
Figure 5-7 Existing Sensor Locations in Maryland CHART Network 



 

5.3.2 Sensitivity Analysis of the Sensor Location and Estimated OD Matrix 

 Quality 
 

Two types of sensitivity analysis of estimation and prediction quality vis a vis 

ge in a network were conducted in this 

section

ks focusing 

X real-time traffic simulator on the Maryland 

and also to learn how their location affects estimation and prediction 

here are three parts in this section. The first part explains the procedure used 

art introduces an analysis measure on the sensor locations and numbers to 

the link performance estimation and prediction, and the third part presents scenario 

descriptions a

 
 
5.3.2.1 Experiment Data Synthesis 

Within the study there are only 14 existing loop detectors (figure 5-7). These 

detectors collect and report data in 5-minute intervals. This detector information can 

both sensor location and level of sensor covera

. First a number of random sensor location scenarios were generated and 

analyzed. This set of analyses illustrates how the number of sensors in the network 

can influence the estimation and prediction results and also how distribution in the 

network can produce various results. A second set of location scenarios were 

generated using engineering judgment to place sensors on high volume lin

on the main freeways and arterials. The analysis is conducted using the simulation 

assignment based DYNASMART-

CHART network. The purpose is to explore the significance of adding sensors to the 

network 

performance. 

T

to construct the sensor information, when observation data was not available. The 

second p

nd results from different scenarios are analyzed. 
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be obtained from Center for Advanced Transportation Technology (CATT), 

Maryland DOT and Maryland SHA.  Information describing detector location, as well 

as detector data is available from the CATT laboratory webpage (CATT 2004). 

Each detector data file contains timestamp information, detector location, 

traffic direction, vehicle counts, vehicles/hour, speeds, and percent occupancy.  

Sensors collect 24-hour data in 5 minute intervals. The percent occupancy refers to 

the percentage of time the detector was occupied during the 5 minute interval.  The 

speed is the average speed recorded over the 5 minute interval. The vehicles/hour is 

the 5 

 evaluation are 

erformed at the overall system level.  Calibration itself is separated into two types: a 

priori calibration of structural relations, and real-time adaptive updating of the 

calibrated models and parameter values. For these purposes a set of real-time data 

pre-processed was developed from the CATT laboratory databases. Necessary 

checking and judgment were exercised to retain consistency between the raw data and 

the pre-processed data.  Data for the 14 links with reliable real-time data were 

minute vehicle count converted to an hourly flow rate (ex. count =120, 

vehicles/hour = (120 vehicles/5 minutes)*(60 minutes/hour) = 1440 vehicles/hour). 

The vehicle count is the number of vehicles observed during the 5 minute interval. 

The DYNASMART-X prototype is calibrated and evaluated according to its 

overall system functionality, rather than its individual modules, using the available 

data, with possible enrichment from other sources.  The primary areas of 

calibration/evaluation are traffic estimation, traffic prediction, consistency 

checking/updating, and OD estimation/ prediction. Calibration and

p
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processed for October 28 and November 1 - 5, 2004.  This data was used as the basis 

of the network calibration and validation.   

For the experiments conducted in this research, limited real-time data were 

available. Therefore experimental data that is used to mimic real-time sensor 

information was synthesized using a dynamic traffic assignment methodology (i.e. 

DYNASMART-P). To start, there is a time-dependent OD demand table, estimated 

using link counts coupled with a historical static demand table. This matrix is treated 

as the “ground truth” for experimental purposes. The ground truth OD demand is 

loaded onto the network using a dynamic traffic assignment simulation program to 

enerate both link counts and density (simulated link measurements). The values 

ecome the “sen

Note that to ensure the internal consistency between link flow measurements 

nd density measurements, this study uses simulated link measurements as estimation 

put, instead of

.3.2.2 Analysis Measures 
 

In order to interpret the influence that a given set of sensors has on the ability 

to estimate and predict network flow patterns, the root mean squared error (RMSE) of 

the link densities will be calculated for “all” of the links in the network. Note that 

generation links will not be included in these calculations. The calculation is as 

follows:                    

    

g

b sor data” or “observations” in the synthetic data set. 

a

in  the actual link observations from the field data.  

 
 
5
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where, 

   Cl,t = observed density for link l during time interval t  (ground truth output) 

  C',l,t = simulated density for link l during time interval t (simulated output) 

  L is a set of links used in statistical calculations; |L| is the total number of links in the 

set  

  T is number of time intervals 

   In a given scenario, the RMSE is calculation across all the links and across all 

of the time inter

.3.2.3 Sensor Analysis Results 

Each set of experiments was performed using a 6-hour simulation from 4AM 

to 10AM.  To o not unduly 

fluence the results, the analysis period was reduced to 5 hours (4:30AM to 

9:30AM).  

In developing the sensor location scenarios a few constraints were placed on 

the selection process. First the links sorted based on flow and the links with higher 

flow were considered to be more attractive.  In addition, when consecutive links do 

not have access points between them, only one of the links was selected. Also, if a 

link is selected for sensor location, the two upstream and downstream links were not 

selected for sensor placement. The two rules were implemented in order to reduce 

correlation in the selected links and produce larger coverage of the network. The 

vals.  

 
 
5
 

 ensure that network loading and network discharge d

in

 128 
 



 

adjacency rules were not applied to ramps that connected to freeway links which had 

sensors. These selection constraints will be referred to as “filters”. 

 

5.3.2.3.1 Random Sensor Location Analysis 
 

The first set of experiments is focused on 20 scenarios in which sensors are 

placed in the network on the basis of “random” selection. The selection of the sensor 

locations was not entirely random, in that they were selected at random from a subset 

of filtered links. This subset included the top 220 links sorted by link flow and filtered 

to meet the selection constraints. These 20 scenarios are described below: 

Scenario 1-5: 5 runs with 20 sensors chosen randomly from the top 220 filtered 

sensors 

cenario 6-10: 5 runs with 30 sensors chosen randomly from the top 220 filtered 

nsors 

cenario 11-15: 5 runs with 40 sensors chosen randomly from the top 220 filtered 

cenar

S

se

S

sensors 

S io 16-20: 5 runs with 80 sensors chosen randomly from the top 220 filtered 

sensors 
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Figure 5-8 RMSE for Randomly Selected Sensor Locations 
 

Figure 5-8 shows a plot of the RMSE for the estimation and prediction for 

each of the scenarios. From the figure one can observe the effects of the random 

location selection. Within each level of detection (i.e. 20, 30, 40 and 80 sensors) the 

random locations clearly produce variations in the results. In terms of estimation, 

Scenario 1 (20 sensors) is performing the worst, followed by Scenario 6 (30 sensors) 

and Sc

hree worst scenarios (Figures 5-9--5-11), each of these 

scenarios lacks significant coverage on I-95 (the freeway with the most traffic). 

enario 2 (20 sensors). Also in terms of estimation Scenario 16 (80 sensors) is 

performing the best, followed by Scenario 3 (20 sensors) and Scenario 5 (20 sensors). 

Figures 5-9 -5-14 depicts the locations of these sensors in the network. The fact that 

two of top three best and worst scenarios in this analysis have with 20 sensors, 

emphasizes the value of good sensors placement. Given the ability to place 20 sensors 

in the network one would aim to place them to achieve the best results and not 

misplace them and obtain the worst.   

In the case of the t
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Scenario 2 is performing the best out of the three and has the most coverage on I-95, 

as well as 10 additional detectors. Examining the three best scenarios (Figures 5-12--

5-14), there are also a few  commonalities. The most obvious is that each of these 

scenarios provides significant detection on I-495 (the east/west freeway at the 

southern edge of the network). In addition, each of these scenarios appears to provide 

detection at or around freeway access points throughout the network. 

 

 
 

Figure 5-9 Scenario 1 (20 Sensors) Sensor Locations 
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Figure 5-10 Scenario 6 (30 Sensors) Sensor Locations 
 
 
 

 
 

 
Figure 5-11 Scenario 2 (20 Sensors) Sensor Locations 
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Figure 5-12 Scenario 16 (80 Sensors) Sensor Locations 
 
 

 
 

Figure 5-13 Scenario 3 (20 Sensors) Sensor Locations 
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Figure 5-14 Scenario 5 (20 Sensors) Sensor Locations 
 

5.3.2.3.2 Judgment Based Sensor Location Analysis 
 

The second set of sensor location scenarios were generated using engineering 

judgment to place sensors on high volume links focusing on the main freeways and 

arterials. This set of scenario analyses should reveal the benefits of adding additional 

sensor to specific areas in the network. This analysis includes the 9 scenarios 

described below (each of the scenarios conforms to the filtering criteria): 

Scenario 21: top 10 links on I-95 SB and I-95 NB (20 links total) 

Scenario 22: top 5 links on I-95 SB, I-95 NB, I-295 SB and I-295 NB (20 links total)  

Scen  I-

295 NB (30 links

: -95 95 NB, I- B, I-295  1 SB te 

s tota

ario 23: top 10 links on I-95 SB and I-95 NB and top 5 links on I-295 SB and

 total) 

Scenario 24 top n I 5 links o  SB, I- 295 S  NB, Rte and R

1 NB (30 link l)  
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Scenar

Figure 5-15 shows a plot of the RMSE for the estimation and prediction for 

each of the scenarios.  The set of scenarios was developed to allow for the exploration 

of tradeoffs in locating the sensors on different freeways, arterials and crossroads. 

With this in mind, comparing Scenario 21 (10 links on I-95 SB and I-95 NB) and 

Scenario 22 (5 links on I-95 SB, I-95 NB, I-295 SB and I-295 NB), both 20 sensor 

scenarios, one can conclude that locating sensors on I-95 is more valuable than 

placing them on I-295. This result is consistent with the trends observed in the 

random selection analysis.  

io 25: top 10 links on I-95 SB and I-95 NB and top 5 links on eastbound and 

westbound crossroads (30 links total)  

Scenario 26: top 5 links on I-95 SB, I-95 NB, I-295 SB, I-295 NB, Rte 1 SB, Rte 1 

NB, US29 SB and US29 NB (40 links total)  

Scenario 27: top 10 links on I-95 SB and I-95 NB and top 10 links on eastbound and 

westbound crossroads (40 links total)  

Scenario 28: top 10 links on I-95 SB and I-95 NB, top 5 on I-295 SB and I-295 NB, 

and top 5 links on eastbound and westbound crossroads (40 links total)  

Scenario 29: top 10 links on I-95 SB, I-95 NB, I-295 SB, I-295 NB, Rte 1 SB, Rte 1 

NB, US29 SB and US29 NB (80 links total) 
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RMSE For Judgement Based Sensor Locations
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Figure 5-15 RMSE for Judgm t Based Sensor Locations 

 
 

The next sets of comparisons provide less obvious insights.  A comparison 

between Scenario 21 and Scenario 23 or 24 shows that Scenarios 23 and 24 produce 

no significant changes in performance even though there are more sensors. These 

additional sensors in this scenario were placed on a much lower volume arterial and 

sensors could not produce the same level of performance even though there were 

mo es 

ot improve over Scenario 25.  This result can be attributed to the reduction in 

sensors on I-95.  

Scenarios 22 and 24 are subsets of scenario 26. Scenario 26 performs the 

worst but has the most detection, while Scenario 22 performs the best and has the 

least detection. The explanation for this is that the additional sensors have been 

pla to 

atch both the freeway and arterial sensor information.  An approach that can be 

best manage this 

en

re of them.  A similar result is obtained with Scenario 26, whose performance do

n

ced on arterials with much lower volume and the model is in conflict in trying 

m

used to accommodate this conflict and the model’s ability to 
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situatio

oint Analysis Results 
 

ses, random selection method of 

have occurred. First, a random selection of the sensor locations is likely to provide 

less correlation than the scenarios that were developed based on engineering 

judgment. The second reason that may have lead to the better performance in the 

random analysis scenario  I-695, when the 

ju ased analysis did not. Freewa

e the estimation pe

n would be to provide a weighting scheme which placed high value on links 

with higher volume.  

Scenario 29 is a scenario with 80 sensors. Scenario 26 is a subset of this 

scenario. As expected that Scenario 29 outperforms Scenario 26. In this case, critical 

freeway sensors are added on I-95 and I-295, in addition to the sensors on the minor 

arterials Route 1 and US 29. 

Scenarios 25, 27 and 28 all consider the addition of sensors to east/west 

crossroads. Again, the results are implying that the addition of sensors on lower 

volume arterials produces a decline in estimation performance.  

Overall, these results suggest that high volume freeways are more valuable as 

sensor locations than low volume arterials. The analysis also suggests that increasing 

the number of sensors on freeways is valuable. 

 

5.3.2.3.3 J

Looking at the results from both of the analy

sensor location produced lower RMSE. There are a couple of reasons that this may 

s is that they included sensors on I-495 and

dgment b ys I-495 and I-695 are high volume freeways 

that can greatly influenc rformance in the network, and possible the 
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model would have performe  in the nt sc had t eways

been excluded.

 sen tion  is a  opt n pro at ca

very difficult to solve, d t th  an optimal 

 not e itivity a

a nu e k  n

explore the significance of ad senso w lso to ide in

about the process of selec e loca r se  a , into

m  sen tion rmula

 

esign and Result Analysis 
 

In this section, the proposed mathematic models and their associated 

HGRASP-DTA heuristic procedures are tested on the CHART network. As explained 

in last chapter, the deterministic model (DOSLP) is a special case of the stochastic 

model (SOSLP) under network normal condition. The simulation experiments were 

implemented on an Intel Xeon CPU 3.20GHZ 64 bits machine with 8G memory. All 

the algorithms are implemented in Visual Fortran and Visual C++ on the Windows 

platform with Windows XP professional operation system. The time horizon of 

interest is the morning peak period from 6:30AM to 8:30AM. As the a priori variance 

and covariance matrix is not available, it is assumed that the a priori demand variance 

is 20% of the demand volume of the corresponding OD pairs in the time-dependent 

historical demand table. The perturbed time-dependent table is loaded to the 

simulation software, DYNASMART-P to generate link measurements and time-

d better  judgme enarios hese fre  not 

  

The sor loca problem complex imizatio blem th n be 

ue to the size of the problem and the fac at

solution may

nd sensor 

xist. The purpose of the sens nalysis of the sensor location 

mb o ther t e performanc

ding 

 of networ

rs to the net

est ionimat

ork and a

and predictio

 prov

 is to 

sights 

ting th tions fo nsors in network  the 

athematic sor loca model fo tion. 

5.3.3 SLP Model Experimental D
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dependent assignment matrix.  The standard deviation of the link flow measurement 

error is set to 10% of the corresponding simulated link flow.  

The HGRASP stopping criterion in this study is set to 10 iterations. The Tabu 

searching stopping criterion is set to 50 iterations and the Tabu table size is set to 10 

links with the Tabu tenure as 2 (the aspiration strategy allows for the revisit of a Tabu 

move after 2 of the trial moves). The size of the RCL is 364 links that have the 

highest link flows in the network across the simulation horizon.   

In this study, “stochastic scenario” is defined as a scenario realization under 

uncertainty. “Deterministic scenario” is defined as a scenario realization under 

normal (recurrent traffic) conditions. Based on the CHART network incident statistics 

data in

y occu

Table 5 - 1 CHART Network Incident Data Collected in Year 2001 and 2002 

 year 2001 and 2002 (table 5-1) (Liu et al. 2004), it is assumed in this study 

that one or two incidents ma r at the same time during each incident realization. 

The probability of having one or two incidents in the network would be 0.36 and 0.14 

under the assumption of the same link incident occurrence rate 810*4 − /veh-lane-mile-

day throughout the network.  The start time of an incident is 7:00AM and end time is 

7:40 AM with severity 0.7, namely the remaining available capacity of the incident 

link becomes 0.3 or 30 percent of the original link capacity. The impacted traffic 

diversion rate is assumed to be 80%. 

 

Year 2001 Year 2002 Available Records 
Records Total (%) Records Total (%) 

Disabled Veh 16,236 58.6 13,752 41.9 CHART II 
ent 8Database Incid ,743 33.6 19,062 58.1 

Paper Form (Both Type) 2029 7.8 N/A N/A 
Total 26,008 100 32,814 100 
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In the proposed HGRASP-DTA solution procedure associated with the 

SOSLP model, each candidate Tabu move is evaluated under a set of incident 

realizations and every incident realization requires a single run of the simulation. 

Apparently, more incident realizations will cause not only better network scenarios 

representation but also more computational time that is proportional to the network 

size. A Ranking Similarity Index can be used to compare the solution similarity 

generated by two different realizations (Chiu et al.. 2001). In this study, we set the 

inciden ndidate sensor location set as 50, which makes the total 

simulation runs 10*50*50=25,000. In order to balance computational feasibility and 

solution reliability, it is assumed that impacted vehicles diverted before reaching the 

incident scene would not affect the vehicles on the alternative routes, given the 

relatively small portion of impacted vehicles in a large-scale congest network. The 

vehicle trajectory under normal conditions is considered as the base case; when an 

incident occurs, the impacted origin and destination zones are delineated. All newly 

generated vehicles (during the incident) from these impacted origin zones and the en-

route impacted vehicles that would have originally traversed the incident link will be 

classified as user class , provided with diversion guidance to the alternative routes. 

All other vehicles will be classified as user class and will retain their original 

assigned paths.   

Figure 5-16 shows five most likely incident locations based on the Poisson 

probability distribution assumption in the Maryland CHART network where three 

cat n 495 

westbound. Considering the large morning commute traffic volumes from Baltimore 

t realization for a ca

ωv

ωo

lo ions (a, c, e) are on I-95 southbound and the other two locations (d, b) o  I-
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to Washington DC and from Maryland to Northern Virginia in the real world, those 

potential incident locations are reasonable. Interestingly, the existing fourteen 

detectors in the CHART network depicted in figure 5-7 are deployed mainly along 

the freeways and in the neighborhood of those most likely incident locations in figure 

5-16.  

 

e

a
c

d 
b

Figure 5-16 Five Most Likely Incident Locations in Maryland CHART Network 

 

e width of the blue line that connects origin zone and destination zone is 

proportional to the OD volumes of the corresponding OD pair. 

 

Figure 5-17 depicts the zone boundaries and traffic volume among different 

zones in the CHART network across the two hour (6:30AM-8:30AM) simulation 

horizon. Th
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Figure 5-17 Two-Hour Traffic Volume (6:30AM-8:30AM) in CHART Network 

 

For this reason, it is essential to understand the effect of the magnitude of 

the we

 

 
5.3.3.1 Effect of the Objective Weight on the Sensor Locations 
 

As discussed earlier, weights on the OD coverage and total link information 

gains affect the sensor placement, which consequently influence the demand 

estimation. 

ight on the sensor locations, such that an appropriate weight in the objective 

function can be determined. The magnitude of the weightλ , the decision maker’s 

preference to the total link information gain, was varied from 0 to 1.0. The effect of 

varying this weight is shown in table 5-2 where the maximal number of sensors in the 

network is 30. As demonstrated in table 5-2, the sensitivity of the optimal sensor 

locations determined by the stochastic model and deterministic model were tested 

under different scenarios (stochastic scenario and deterministic scenario). The 

network total OD flow coverage, total link information gains and the associated 

demand uncertainty reduction were calculated under different scenarios with a variety 
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of weights scaled from 0 to 1. The total uncertainty reduction is calculated using 

Eq.(5-1) 

∑∑ ∑∑
                                                 

∑∑ −twP )(,

                      (5-1) 

t w
tw,

+−−

t w

t w
tw

t w
P )()( ,

Where P )( is the total a priori demand variance, 

twP ,

∑∑ − ∑∑ +
t w

posteriori demand variance. 

 

Table 5 - 2 OD Coverage and Information Gains for Various Scenarios by 30 Sensors 

twP )(,  is the total a 

No Incident (Deterministic Scenario) 
 

Stochastic Model Solution 
 

 
Deterministic Model Solution

 
 

Weights 
(Link 

Information 
Gains, OD 
Coverage) 

)1,( λλ −  

Total   
OD 

Flow 
Covered 

Total 
Information 

Gain 

Total  
Demand 

Uncertainty 
Reduction 

Total   
OD 

Flow 
Covered 

Total 
Information 

Gain 

Tota
Dema

Uncerta
Reduction 

l  
nd 
inty 

(0.0,1.0) 70,756 222.00 12.96% 72,490 232.59 13.90% 
(0.2,0.8) 70,186 238.70 14.60% 72,153 272.89 15.97% 
(0.4,0.6) 67,624 256.73 15.29 % 72,153 272.89 15.97% 
(0.6,0.4) 61,341 276.05 3% 71,088 277.17 16.98% 16.4
(0.8,0.2) 61,341 276.05 3% 71,088 277.17 16.98% 16.4

  .09% (1.0,0.0) 61,341 276.05 16.43% 69,786 277.47 17
With Incidents (Stochastic Scenario) 

  
inistic Model  Solution Stochastic Model Solution Determ

Weights 

Information 
Gains, OD 
Coverage) 

(Link 

)1,( λλ −  

Expected  

 
Covered 

xpe
rm

pe
em
cer

Reduc

E

Flow 
Covered 

I  
G

cted 

 
Reduction 

OD 
Flow

E cted Ex
Info ation 

n 
D

UnGai

cted 
and  
tainty 
tion 

xpected 
OD 

Expected 
nformation

ain 

Expe
Demand 

Uncertainty

(0.0,1.0) 30 232.91 13.97 7 92% 72,4 % 0,700 221.79 12.
(0.2,0.8) 74 272.76 15.92 70 68% 72,0 % ,158 239.21 14.
(0.4,0.6) 72,074 272.76 15.92 67 21% % ,565 256.37 15.
(0.6,0.4) 71,004 276.75 16.61 61 26% % ,253 275.30 16.
(0.8,0.2) 71,004 276.75 16.61 61 26% % ,253 275.30 16.

  (1.0,0.0) 69,705 06 16.93 61 2  49% 277. % ,053 76.07 16.
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As expected, different weig ales re  dif ocati tions, d 

l ation gain is increased h the a ntati the w  Table 2 

shows that dem cove  improvement and demand uncertainty reduction are two 

confl ting obj es. ely, d nd co e pe e is ecessa y 

proportional to the dema stimat quality. r no etwor ditions, e 

d c m  can ve mu ore link information gains and flow coverage 

than the corresponding stochastic m l. For e a tions, t l 

in  gai  277 nd tot ow cov  is 6  whe

ht sc sult in ferent l on solu  an

ink inform wit ugme on of eight.  5-

and rage

ic ectiv Nam ema verag rcentag  not n ril

nd e ion  Unde rmal n k con  th

eterministi odel  achie ch m

ode xample, under norm l condi ota

f normatio n is .47 a al fl erage 9,786 n 1 =λ  obtained 

from the determ stic m el, whi he total inform

flow coverage is 61,341 using the stochastic m Und tochastic scenario, e 

expected OD flow coverage and information s fro  stoc model are 

greater than those obtained by so g the s  loc roble sed on e  

d ic m l. Fo mple, under stochastic scenario, the expected OD flow 

coverage is 70,700 and the expected information gain is 221.79 from the deterministic 

model when

ini od le t ation gain is 276.05 and total 

odel. er the s  th

 gain m the hastic 

lvin ensor ation p m ba  th

eterminist ode r exa

0=λ , while e expec flow co e is and ation gain 

is 232.91 from the stochastic mode  additio  the enso ement, the 

d ic m l un  deter istic scenario can achieve larger dem d 

uncertainty reduction and OD flow erage th at u  sto c scena . 

This can be explained by the fact that the det istic  did nsider e 

vehicle rerouting during on, such that it cannot capture 

the impacted vehicles that took alternative routes when incidents occurred in the 

n

 th ted verag 72,430  inform

l. In n, for same s r plac

eterminist ode der min an

 cov an th nder the chasti rio

ermin model  not co  th

 the incident in the formulati

etwork.  
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From table 5-2 one can also find that location solutio  not m h 

s  the ts f

 the ns are uc

ensitive to weigh or 6.0≥λ  in both models. The l xpla  is that e 

sensors are more likely located on those links an in t OD  with large 

v j ive un cores the reduction of dem uncerta y 

H e de nd uncertainty is assumed to be proportional to the corresponding 

dem ives t  links intercepting large OD volumes a higher 

li f be  selec  It also lains w ither of those m s sensi e 

t t w  the  of det n is low  less 0 se HA T 

ikely e nation  th

that c tercep  pairs

ariances when the ob ect ders and int

o , thwever ma

and in this study, which g hose

kelihood o ing ted.  exp hy ne odels i tiv

o ighthe we hen level ectio  (i.e,  than 3 nsors in C R

network). A weight 6.0=λ is therefore used in the subsequent experi

 In order to illustrate the weight effect on the sensor placement, figures 5-18 

and 5-19 display the optim

ments.  

al sensor location plans obtained from the SOSLP model 

for 30 sensors when 1=λ  and 0=λ . Sensors in figure 5-18 are mainly deployed 

along the freeways to intercept those OD pairs with large volumes and obtain 

maximal link information gains.  Figure 5-19 shows that sensors (1, 2 and 3) are 

deployed on the entry/exit links in order to capture the maximal OD flows. Other 

sensors in figure 5-19 are mostly distributed along the boundary entry/exit links of the 

OD zones with large demand to provide detection at or around freeway and arterials 

access points throughout the network. As a commonality, both of the sensor location 

plans locate the sensors on freeways, arterials and crossroads. 
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Figure 5-18 30 Sensor Locations by SOSLP model in CHART Network ( 1=λ ) 
 

1 

2 

3 

 

Figure 5-19 30 Sensor Locations by SOSLP model in CHART Network ( 0=λ ) 
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Figure 5-20 illustrates the relationship between the OD pair coverage 

percentage and weight of 30 sensors obtained from the DOSLP and SOSLP models in 

stochastic and deterministic scenarios. From the figure, one can observe that 30 

sensors can cover at least 50% of the OD flows in the CHART network for both 

models regardless of the scenarios. In addition, one can also find from the figure that 

the OD coverage percentages from the stochastic model in stochastic scenario and 

deterministic model in deterministic scenario are higher than those obtained based on 

the stochastic model in deterministic scenario and deterministic model in stochastic 

scenario.  

 

Figure 5-20 O-D Flow Coverage with Different Weight 
 
 
 
5.3.3.2 Effect of Sensor Number on the Sensor Locations 
 

This section evaluates the sensor coverage and link information gains of the 

10-sensor and 30-sensor plans obtained from the SOSLP model under the stochastic 

scenario with 6.0=λ . The principal goal of this section is to demonstrate the 

marginal value of the newly added sensors in terms of real-time traffic status 

estimation and prediction. 
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Table 5-3 denotes the time-dependent demand uncertainty reduction of the 6 

hig o 

8 2 tim

hest variances across the OD pairs in the morning peak period from 7:00AM t

6.0=λ:00AM (1 e intervals) in the stochastic scenario with  for the 10- sensor 

plan. The tota

pa s les 1.5  f  t e  t n

ti l.   As shown, demands from origin zone 41 to destination zone 1 are the 

highest across the OD pairs in the study network during most tim rvals. I

a  six  pair ith the est dem arian ss th pairs ar

covered by at least one sensor in nine time intervals out total nterval

Note that although traffic from origin zone 86 to destinat e 91  covere

during the 7:20A 7:30A  time interval, it is red a ds b ensor o

link 1938, located on I-95 thboun

le 5- rther strates t OD pairs associated with l timatio

errors are covered by more sensors, which how  do n ays re n greate

uncertainty reduction due to the ma tainty xampl

OD pair (83, 85) during 7:00AM-7:05AM is ered ee s and th

u  redu n is 2 % whi e OD p m o ne 8 stinatio

zone 85 during 7:15AM-7:20AM overed o se and certaint

reduction is 37.21%. Table 5-3 also ws that c dy  and penden

dem agnitude affect the dema ati ults. xample, the deman

uncertainty of OD pair (87, 85) durin :10AM M c  by t sors wa

reduced 56.43%, however the uncertainty for the same OD pair covered by the sam

set of sensors was reduced 37.21% d g 7:15 A :20A

l number of OD pairs of the CHART network is 12,210 and each OD 

ir carrie s than % OD lows of the otal OD d mands of he correspo ding 

me interva

e inte n 

ddition, the  OD s w larg and v ce acro e OD e 

 of 12  time i s.  

ion zon  is not d 

M- M  cove fterwar y the s n 

 sou d.  

Tab 3 fu  illu tha arge es n 

ever ot alw sult i r 

gnitude of the original uncer . For e e, 

 cov by thr ensors e 

n ycertaint ctio 6.59 le th air fro rigin zo 7 to de n 

is c by tw nsors the un y 

 sho  traffi namics time-de t 

and m nd estim on res For e d 

g 7 -7:15A overed wo sen s 

e 

urin M-7 M.  
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 3 L f Tim penden D Pairs w e 6 H  Va  of 10 

sensors 0

Table 5 - ist o e-de t O ith th ighest riances

6.=λ )  (

Weights 
) 

                         easured k ID 
,913,10 758,1938 ,1950 250,2

              M  Lin      
( 6.0=λ (56 95,1 ,1946 ,1989,2 317) 

Time  
Interval 
(Total 

Demand) 

 
Origin 
Z

D
Z

Historical  
5 –m e 
Demand 

%
Dem
To 
To

Post
Vari

Var
Reduction 

(%

# of
Senso
Cover

erior   of iance  
ance inutest and rs 

one ) ed one the 
tal 

41 1 58 1.15 120 1 .87 0.18 1 
87 85 55 1.09 60 49.98 .61 2 

 

8 91 55 1.09 79 34 1 .60 .21 
 

86 91 45 0.89 59 2 1 .23 6.88 
7:00AM- 
   7:05AM 

83 85 45 0.89 59 2 3 .46 6.59 (5035 
veh/5min) 4 1 45 0.89 7610 .38 5.70 1 

41 1 72 1.49 193.34 6.76 1 
87 85 54 1.12 37 67 2 .63 .73 

 

8 91 51 1.06 78 24 1 .81 .25 
 

34 1 41 0.85 64 3.57 1 .84 
7:05AM- 
   7:10AM 

92 91 40 0.83 64 0.00 0 (4832 
veh/5min) 83 85 40 0.83 57.38 10.33 3 

87 85 53 1.12 48 5.95 6.43 2 
86 91 44 0.93 56 27 1 .01 .67 

 

41 1 44 0.93 72 5.77 1 .97 
 

78 27 41 0.87 66 0.91 2 .63 
7:10AM- 
   7:15AM 

8 91 41 0.87 65 2.05 1 .86 (4739 
veh/5min) 40 1 38 0.80 55 4.51 10 .16 1 

41 1 51 1.09 93 9.94 .70 1 
8 91 48 1.02 75 18 1 .34 .25 

 

88 31 40 0.85 62 2.55 1 .37 
86 91 39 0.83 54 10 1 .71 .07 
40 1 39 0.83 58 3.90 1 10 .47 

 
7:15AM- 
   7:20AM 

(4684 
veh/5min) 87 85 37 0.79 34.39 37.21 2 

41 1 53 1.09 94.84 15.59 1 
87 85 52 1.07 98.69 8.76 2 
8 91 47 0.97 73.55 16.76 1 

86 91 44 0.91 77.44 0.00 0 

 
 

7:
   7

95 10 42 0.86 62.55 11.36 2 

20AM- 
:25AM 

(4858 
veh/5min) 40 110 35 0.72 46.16 5.79 1 

41 1 56 1.14 113.67 9.38 1 
87 85 49 1.00 80.49 16.19 2 
40 110 44 0.90 67.46 12.89 1 
83 85 42 0.85 68.16 3.40 3 
86 91 41 0.83 67.24 0.00 0 

 
 

7:25AM- 
   7:30AM 

veh/5min) 34 1 39 0.79 58.91 3.17 1 
(4914 
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41 1 62 1.25 132.29 13.96 1 
87 85 52 1.05   81.83 24.35 2 
40 110 46 0.93 78.28 7.51 1 
8 91 41 0.83 61.44 8.63 1 

83 85 38 0.77 56.10 2.88 3 

 

7:30AM- 

(4955 
veh/5min) 

 

   7:35AM 

86 91 37 0.75 51.85 5.32 1 
41 1 58 1.15 114.88 14.62 1 
86 91 51 1.01 89.00 14.46 1 
8 91 51 1.01 75.47 27.46 1 

87 85 50 0.99 85.65 14.35 2 
83 85 45 0.89 74.93 7.50 3 

 

7:35AM- 
   7:40AM 

(5036 
veh/5min) 34 1 43 0.85 69.11 6.55 1 

 

41 1 59 1.16 123.66 11.19 1 
8 91 53 1.04 66.08 41.18 1 

87 85 52 1.02 88.58 18.10 2 
95 10 45 0.89 61.28 24.35 2 

 
 

86 91 43 0.85 65.34 11.66 1 

7:40AM- 
   7:45AM 

42 0.83 65.26 7.51 3 
(5079 

veh/5min) 83 85 
41 1 63 1.25 133.58 15.86 1 
8 91 54 1.07 77.41 33.64 1 

87 85 53 1.05 75.48 32.83 2 
86 91 42 0.83 67.73 4.00 1 
40 110 41 0.81 63.78 5.14 1 

 
 

(5037 

7:45AM- 
   7:50AM 

veh/5min) 34 1 40 0.79 61.24 4.31 1 
87 85 52 1.05 91.38 15.51 2 
41 1 50 1.00 90.66 9.34 1 
86 91 49 0.99 83.24 13.33 1 
8 91 47 0.95 68.32 22.68 1 

34 1 40 0.80 58.62 8.40 1 

 
 

   7:55AM 

veh/5min) 43 110 36 0.72 51.44 0.76 1 

7:50AM- 

(4973 

41 1 56 1.15 95.99 23.48 1 
8 91 501 1.03 72.46 27.54 1 

95 10 42 0.86 61.85 12.34 1 
86 91 40 0.82 64.00 0.10 1 
40 110 40 0.82 59.33 7.30 1 

 

7:55AM- 

(4875 

 

   8:00 AM 

veh/5min) 34 1 39 0.80 54.46 10.48 1 
* The total number of vehicles in the 2-hour period is 119,189 vehicles 

 
ensor location plan obtained based on the 

SOSLP

Figure 5-21 shows the optimal 10-s

 model for the CHART network with 6.0=λ .  The traffic Analysis Zones 

(TAZ) with high traffic volumes and the top five most likely incident locations are 

also displayed in this figure. S 1 on link 913 intercepts the westbound traffic ensor 

flows on I-495 from origin zone 41 to destination zone 1, which carries the highest 
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volume across the OD pairs in the study network in the morning peak period. Sensor 

5 on link 1095 intercepts the eastbound traffic on I-495. Sensors 4,6,7,9 and 10, all 

located on I-95, intercept the northbound and southbound traffic. Sensor 2 is located 

on U  I-

295 in figure 5-21. This result re

locating sensors on I-95 is more valuable udget 

S-29. Note that sensors are mainly located along I-95, and no sensors are on

affirms the earlier finding in section 5.3.2 that 

than placing them on I-295 when the b

is constrained.  

 

8 

9 

10 

     Figu ensor Locatio btained SLP in T Netw
 

able 5-4 displays the time-dependent demand uncertainty reduction with the 

six high ariances across the OD pairs in the morning peak period from 7:00AM to 

8:00AM under the stochastic scenario with

re 5-21 10 S n Plan O  from SO  CHAR ork 

 

T

est v

6.0=λ  for the 30-sensor location plan 

obtained from the SOSLP model. Compared to the results of the 10-sensor plan in 

d 

b

e

a
c

6 

7 

2 
3 

4 

        Point Sensor 
              

Zone Boundary
1 

Incident Location 5 

 151 
 



 

table 5-3, additional new sensors in this plan covered more OD pairs. Meanwhile, OD 

airs associated with a large variance in the network are covered by additional new 

se . 

For example, all of the six OD pairs a st demand variance across the OD 

pairs are covered  at least one sensor in  pair 

y a ble e A

covered by two sensors in table 5-4, resulting in  uncerta ducti

OD pair arries the  OD volu oss all t airs in

of the ti s, it was cov  one sen ble 5-3  uncer

reductio than 24%. Ho it is cov 3 senso le 5-4 

significa ment (over 5 ertainty ) is o during

time in the largest r  (89 ng d he 7:

7:40AM interval. In addition, table 5-4 shows that OD pair (95, 10) is cover

and 8 se ctively durin M-7:25A 7:40AM M, resu

in 100% uncertainty reduction. Note that altho  30-sen  leads

significant improvement in the  uncerta ction c d to th

sensor plan, OD pair (86, 91) is still not covered by any sensor time in

 

p

nsors, which result in a significant improvement in the demand estimation quality

 with the l rge

by  10 out of 12 time intervals. While OD

(92, 91) was not covered b sensor in ta  5-3 during tim 7:05AM-7:10 M, it is 

on 38.74% inty re . For 

 (41,1), which c  largest mes acr he OD p  most 

me interval ered by sor in ta  and the tainty 

n was less wever, ered by rs in tab and a 

nt improve 0% unc  reduction btained  each 

terval, with eduction .46%) occurri uring t 35AM-

ed by 7 

nsors respe g 7:20A M and -7:44A lting 

ugh the sor plan  to a 

demand inty redu ompare e 10-

during terval 

7:20AM-7:30AM in table 5-4.  
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Table 5 - 4 List of Time-dependent OD Pairs with the 6 Highest Variances of 30 

6.0=λ ) sensors (

Weights 
( 6.0=λ ) 

                                       Measured Link ID      
 (37,48,308,426,526,764,952,967,1051,1258,1267,1373,1446,1732,1853,1859, 
1863,1874,1887,1898,1950,1989,2036,2126,2199,2237,2252,2504,2522,2547)        

Time  
Interval 
(Total 

Demand) 

 
Origin 
Zone 

 
Dest 
Zone 

Historical  
5 –minute 
Demand 

% of 
Demand 
To the 
Total 

Posterior 
Variance 

Variance 
Reduction 

(%) 

# of
Senso
Covered

 
rs 

 

41 1 58 1.15 72.22 46.33 3 
87 85 55 1.09 88.81 26.60 1 
8 91 55 1.09 34.87 71.18 2 

86 91 45 0.89 49.77 38.55 2 
83 85 45 0.89 60.60 25.18 2 

 

7:00AM- 

(5035 

 

   7:05AM 

veh/5min) 4 110 45 0.89 65.16 19.55 3 
41 1 72 1.49 32.81 84.18 3 
87 85 54 1.12 75.71 35.09 1 
8 91 51 1.06 63.17 39.28 2 

34 1 41 0.85 46.72 30.52 3 
92 91 40 0.83 39.20 38.74 2 

 

7:05AM- 

veh/5m

 

   7:10AM 
(4832 

in) 83 85 40 0.83 58.58 8.46 2 
87 85 53 1.12 79.06 29.64 1 
86 91 44 0.93 43.93 43.27 2 
41 1 44 0.93 33.49 56.75 3 
78 27 41 0.87 66.93 0.46 1 
8 91 41 0.87 37.03 44.93 2 

 
 

7:10AM- 
   7:15AM 

(4739 
veh/5min) 40 110 38 0.80 34.71 39.92 3 

41 1 51 1.09 46.70 55.11 3 
8 91 48 1.02 19.17 79.20 2 

88 31 40 0.85 34.19 46.58 5 
86 91 39 0.83 50.71 16.65 2 
40 110 39 0.83 41.60 31.63 3 

 
 

7:15AM- 
   7:20AM 

(4684 
veh/5min) 87 85 37 0.79 43.79 20.04 1 

41 1 53 1.09 45.04 59.91 3 
87 85 52 1.07 105.81 2.17 1 
8 91 47 0.97 65.85 25.47 2 

86 91 44 0.91 77.44 0.00 0 
95 10 42 0.86 0.01 99.89 7 

 

   7:25AM 

veh/5min) 

 
7:20AM- 

(4858 
40 110 35 0.72 36.75 25.01 3 
41 1 56 1.14 52.04 58.52 3 
87 85 49 1.00 90.42 5.85 1 
40 110 44 0.90 57.44 25.82 3 
83 85 42 0.85 69.43 1.61 2 
86 91 41 0.83 67.24 0.00 0 

 

7:25AM- 

(4914 

 

   7:30AM 

veh/5min) 34 1 39 0.79 42.15 30.72 3 
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41 1 62 1.25 74.53 51.53 3 
87 85 52 1.05 96.12 11.13 1 
40 110 46 0.93 57.38 32.21 3 
8 91 41 0.83 27.08 59.73 3 

83 85 38 0.77 56.62 1.97 2 

 

7:30AM- 

(4955 
veh/5min) 

 

   7:35AM 

86 91 37 0.75 50.51 7.77     2 
41 1 58 1.15 14.19 89.46 3 
86 91 51 1.01 80.61 22.52 2 
8 91 51 1.01 61.67 40.72 2 

87 85 50 0.99 93.38 6.62 1 
83 85 45 0.89 78.16 3.52 2 

 

7:35AM- 
   7:40AM 

 

(5036 
veh/5m 34 1 43 0.85 51.43   30.47     3 in) 

41 1 59 1.16 39.25 71.81       3 
8 91 53 1.04 56.21 49.97 1 

87 85 52 1.02 98.28 9.13 1 
95 10 45 0.89 0.00 100.00 8 
86 91 43 0.85 61.23 17.21 2 

 
 

7:40AM-
   7:45AM

(5079 
veh/5min) 83 85 42 0.83 67.46    4.39     2 

 
 

41 1 63 1.25 51.61 67.49 3 
8 91 54 1.07 81.79 29.87 3 

87 85 53 1.05 95.99 14.56 1 
86 91 42 0.83 67.73 4.01 2 
40 110 41 0.81 50.88 24.33 3 

 
 

7:45AM- 
   7:50AM 

(5037 
veh/5min) 34 1 40 0.79 46.20    27.81     3 

87 85 52 1.05 103.29 4.50 1 
41 1 50 1.00 47.77 52.22 3 
86 91 49 0.99 79.64 17.07 2 
8 91 47 0.95 23.01 73.95 2 

34 1 40 0.80 43.66 31.78 3 

 
 

7:50AM- 
   7:55AM 

(4973 
veh/5min) 43 110 36 0.72 36.59 29.42     4 

41 1 56 1.15 56.66 54.83 3 
8 91 501 1.03 34.74 65.26 2 

95 10 42 0.86 15.05 78.67 7 
86 91 40 0.82 62.57 2.24 2 
40 110 40 0.82 46.65 27.11 3 

 
 

7:55AM- 
   8:00 A

(4875 
veh/5min) 34 1 39 0.80 40.84   32.88     3 

M 

* The total number of vehicles in the 2-hour period is 119,189 vehicles 

    

The results in tables 5-3 and 5-4 indicate that significant improvements in  

uncertainty reduction could be attained by deploying additional new sensors into the 

network to intercept more OD flows. Unfortunately, although some OD pairs 

associated with large variances in table 5-3, such as (8, 91) and (40,110) have been 
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covered by additional new sensors in table 5-4, they still have significant associated 

uncertainty due to the magnitude of the original uncertainties.  It is imperative to help 

transportation planners decide whether to deploy new sensors so as to cover those 

unobserved OD pairs that may have small variances or continue focusing on those 

covered OD pairs that still have large variances. The next section aims to characterize 

e marginal value of the newly added sensors in terms of demand estimation and 

ow coverage.   

.3.3.3 Sensor Marginal Value  

The sensor location problem is viewed in this study from the perspective of 

e value of information. Sensors continuously provide information that helps 

haracterize the status of the network  The key question here is how to characterize 

e marginal value from a newly added sensor in the context of traffic status 

stimation and prediction. A sensitivity analysis is conducted to explore the 

lationship between the number of sensors and level of OD coverage as well as 

etween the number of sensors and level of demand uncertainty reduction in the 

etwork. The purpose of this analysis is to explore the marginal value, in terms of 

ow percentage coverage and demand uncertainty reduction, of adding sensors to the 

network. The analysis also provides a platform to investigate the effect of sensor 

location on the OD demand coverage rate.  

Tables 5-5 and 5-6 list the expected/total OD coverage, expected/total link 

information gain and expected/total uncertainty reductions for different number of 

sensors in the network with 

th

fl

 
 
5
 

th

c

th

e

re

b

n

fl

6.0=λ obtained from DOSLP and SOSLP models in 
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stochastic and deterministic scenarios. The uncertainty reductions are calculated using 

Eq.5-1. 

 

Table 5 - 5 Statistics of Different Optimal Sensor Location Plans in Stochastic 

Scenario ( 6.0=λ  ) 

G(2182,3387) Problem Size  
),( AVG  With Incidents (Stochastic Scenario) 

Sensor Plan 
(Stochastic Model Solution) 

Expected   
OD Flow 
Covered 

(%) Network 
OD Coverage 

Expected 
Information 

in 

(%) 
Expected  

Uncertainty 
Reduction 

Ga

5 Sensors 31,295 26.26% 68.27 6.69 % 
10 Sensors 47,132 39.54% 96.45 7.42 % 
1 11.07 % 5 Sensors 47,809 40.11% 156.60 
20 Sensors 62,988 52.85% 180.43 12.85% 
25 Sensors 59,776 50.15% 244.86 15.91% 
30 Sensors 71,004 59.97% 276.75 16.61% 
35 Sensors 66,662 55.93% 366.34 25.33 % 
40 Sensors 68,476 57.45% 407.54 27.18 % 
45 Sensors 75,202 63.09% 408.13 27.36% 

 With Incidents (Stochastic Scenario) 
Sensor Plan 

(Deterministic Model 
Solution) 

Expected   
OD Flow 
Covered 

(%) Network 
OD Coverage 

Expected 
Information 

in 

(%) 
Expected  

Uncertainty 
Reduction 

Ga

5 Sensors 28,616 24.01% 52.13 2.49% 
10 Sensors 44,662 37.47% 93.11 6.28% 
15 Sensors 52,618 44.15% .81 9.91% 127
20 Sensors 57,963 48.63% 174.95 12.05% 
25 Sensors 59,302 49.75% 238.38 15.36% 
30 Sensors 61,253 51.39% 275.30 16.26% 
35 Sensors 61,762 51.82% 318.99 18.20 % 
40 Sensors 65,506 54.96% 398.90 26.45% 
45 Sensors 72,522 60.85% 403.06 27.15% 

* The total number of vehicles in the 2-hour period is 119,189 vehicles 
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Table 5 - 6 Statistics of Different Optimal Sensor Location Plans in Deterministic 

Scenario ( 6.0=λ  ) 

G(2182,3387) Problem Size  
),( AVG  No Incident (Deterministic Scenario) 

Sensor Plan 
(Stochastic Model Solution) 

Total   
OD Flow 
Covered 

(%) Network 
OD Coverage 

Total 
Information 

Gain 

(%) Total  
Uncertainty 
Reduction 

5 Sensors 31,406 26.35% 68.51 6.71%  
10 Sensors 47,233 39.63% 96.79 7.43%  
15 Sensors 47,885 40.18% 156.81 11.08% 
20 Sensors 63,042 52.89% 180.28 12.84% 
25 Sensors 59,860 50.22% 235.27 14.91% 
3 16.43% 0 Sensors 61,341 51.47% 276.05 
35 Sensors 66,715 55.97% 316.64 17.33% 
40 Sensors 68,509 57.48% 398.33 26.40% 
45 Sensors 72,234 60.60% 406.18 27.34% 

 No Incident (Deterministic Scenario) 
Sensor Plan Total   

Covered 

(%) Network Total 

Gain 

(%) Total  
ty 

Reduction 
(Deterministic Model 

Solution) 
OD Flow OD Coverage Information Uncertain

5 Sensors 28,674 24.06% 72.09 7.49% 
10 Sensors 44,780 37.57% 103.09 8.28% 
15 Sensors 52,710 44.22% 128.11 9.93% 
20 Sensors 57,985 48.65% 184.93 13.04% 
25 Sensors 60,373 50.65% 239.02 15.38% 
30 Sensors 71,088 59.64% 277.17 16.98% 
35 Sensors 71,790 60.23% 318.29 18.15% 
40 Sensors 75,519 63.36% 399.71 26.45% 
45 Sensors 75,555 63.39% 429.11 28.09% 

* The total number of vehicles in the 2-hour period is 119,189 vehicles 

 

As expected, more sensors cover more O-D flows in both scenarios. The 

inclusion of additional link flow observations determined through optimally- selected 

additional sensor locations improves the precision of the estimated trip matrix in that 

the posteriori O-D demand variance is reduced.  
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Table 5-5 shows that, in the stochastic scenario, the SOSLP model achieved 

larger improvement in demand uncertainty reduction and flow coverage than those 

obtained based on the DOSLP model. Similarly, table 5-6 demonstrates that, in the 

determ

hastic model is not significantly greater than that 

btained based on the deterministic model.  

Note that in table 5-5, the OD coverage by 30 sensors under the stochastic 

scenario is 71,004, which is grea t covered by 35 s (66,662). 

However, the information gain of the 30 sens maller than 

that from or plan (366.34). It illustrates the fact that maximization of the 

sensor network coverage does not necessarily result in the largest improvement of the 

overall OD demand estimation quality. 

Figure 5-22 plots the infor  the different sensor 

location pl hows that the gain obtained f e stochastic 

model in the stochastic scena  all four cas e the link 

information gain obtained fro el in stocha ario is the 

smallest. Figure 5-23 i numb ensors  and 

the O-D flow coverage rate. It confirms the previous finding in section 5.2 that 

inistic scenario, the deterministic model performs better than the stochastic 

model in terms of demand coverage and uncertainty reduction. The results from table 

5-5 and 5-6 conffirm the effect of the traffic dynamics on the sensor locations. The 

marginal value of information from additional sensors can be characterized in terms 

of  the demand coverage increase rate and uncertainty reduction rate.  In addition, the 

results show that, in the stochastic scenario, the marginal reduction in uncertainty due 

to an additional sensor in the stoc

o

ter than tha  sensor

or plan is 276.75, which is s

 the 35-sens

mation gains obtained from

ans.  It s  link information rom th

rio is the largest in es whil

m the deterministic mod stic scen

llustrates the relationship between the er of s
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obtaining greater than  requ  significant 

increase in the number of sensors. It show

 flows and 45 sensors covered 60% O-D flows. Both figures 5-22 and 5-23 show 

that th

 50% OD coverage of the network

s that 20 sensors covered around 50% of the 

ires a

O-D

e sensors’ marginal value is reduced in terms of the flow coverage rate or 

demand uncertainty reduction when more sensors are deployed into the network. 

 

 

Figure 5-22 Information Gain for Different Sensor Location Plan 
 

 

 

Figure 5-23 O
 

D Flow Coverage for Different Sensor Location Plan 
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Figures 5-24 and 5-25 show the different optimal sensor location plan

OSLP models. 

s 

obtained from the SOSLP and D  The figures indicate that ,more 

deployed 495 ac e SOSLP model in the 

stochastic scenario than under SLP model in the deterministic scenario. This is 

explained by the high incident probability along these two freeways due to the large 

OD  example, under sensor location plan (a), in figure 5-24, three sensors 

ong I-495, while in the corresponding plan 

in figure 5-25, there are two sensors on I-

 

 
 
 
 

 
 

 

 

 

 

 
 
 
 
 

sensors were  along the I-95 and I- cording to th

 the DO

volume. For

are deployed along I-95 and two sensors al

95 and two sensors on I-295. In addition, 

more sensors in figure 5-24 are deployed on or close to the freeways and main 

arterials compared to the those obtained based on the DOSLP model in figure 5-25. 

 

 

 
 

 

 

 

 

 

 160 
 



 

 161 
 

 

 
                                   (a) (b) 

(d) (c) 

 (e) (f) 

 
Figure 5-24 Sensor Locations Plan for (a) 5 Sensors, (b) 10 Sensors, (c) 15 Sensors, 

(d) 20 Sensors, (e) 25 Sensors, (f) 30 Sensors from SOSLP Model 
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 (a) (b) 

 
(d) (c) 

 

 
 
Figure 5-25 Sensor Locations Plan for (a) 5 Sensors, (b) 10 Sensors, (c) 15 Sensors, 

(d) 20 Sensors,(e) 25 Senso

                 

rs, (f) 30 Sensors from DOSLP Model 

(e)               (f) 



 

5.3.4 R
 

MART-P.  A 

historic

 DYNASMART-X applied in the 

obustness Analysis with Real-Time OD Estimation and Prediction 

This section implements the robustness analysis of different sensor location 

plans obtained from the SOSLP model to evaluate the performance of the proposed 

stochastic model under different degrees of real-time information availability, and 

characterize the marginal value of newly added sensors in terms of traffic status 

estimation and prediction.  

For the experiments conducted in this section, limited real-time field data 

were available. Therefore the experimental data that is used to mimic real-time sensor 

information was synthesized using a dynamic traffic simulator, DYNAS

al time-dependent matrix corrected by the actual link counts is treated as the 

“ground truth” for experimental purposes. The ground truth OD demand is loaded 

onto the network using DYNASMART-P to generate both link counts and density 

(simulated link measurements). The values become the “sensor data” or 

“observations” in the synthetic data set.  The sensor data served as input to a real-time 

dynamic traffic assignment package, namely DYNASMART-X (Mahmassani et al. 

1998) to evaluate the different sensor plans performance in the network estimation 

and prediction. 

Another input to the procedure is the a priori OD demand matrix.  It was 

obtained in this case by perturbing the “ground truth” matrix—assuming it was 80% 

under-estimated. This a priori OD matrix is then combined with the sensor data (from 

the ground truth simulation) for real-time traffic estimation and prediction.   Table 5-7 

summarizes the scheduling parameters of
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experim

Table 5 - 7 System Scheduling Parameters 

ent.  It defines the module execution frequency and length as well as the 

observation sampling frequency.   

 

 Parameter Value 

Assignment Interval 5 min 

Observation Interval for LTCC or STCC 5 min 

 

parameters 
General 

Observation Interval for ODEC 5 min 

RT-DYNA Roll Period 0.5 min 

P-DYNA Roll Period 5 min 

P-DYNA Prediction Horizon 20 min 

ODE State Length 5 min 

ODP Execution Cycle 10 min 

ODP Prediction Horizon 45 min 

Long Term Consistency Checking Cycle 
(LTCC Period) 

5 min 

 

 

Module 
parameters 

Short Term Consistency Checking Cycle 
(STCC Period) 

5 min 

 

 

 
    

The a priori link estimation density is generated by loading the a priori 

(perturbed OD matrix in this study) demand onto the network, while the online link 

estimation density is the real-time dynamic traffic assignment results by integrating 

the (true) real-time link observation data with the a priori demand into the estimation. 

In order to interpret the influence that different sensor plans have on the ability to 
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estimate link-level traffic states, the Root Mean Squared Error (RMSE) in link 

density is selected as the performance measure: 

 

( )

obs

tl
tltl

n

CC∑ −
,

2'
,,

where, 

   C

RMSE =                              (5-2) 

imulated output) 

= Number of total observations 

 the network average link density RMSE with 1 minute 

Tabl

l,t = observed density on link l during time interval t  (ground truth output) 

  C',l,t = simulated density on link l during time interval t (s

  obsn

Table 5-8 depicts

observation time interval. The existing 14-sensor location plan serves as the 

benchmark to compare the effects of optimal sensor location plans on the traffic 

estimation. It shows that as more sensors are deployed into the network, the 

estimation error is monotonically reduced. These results demonstrate that optimally 

deployed sensors could improve the network state estimation quality when utilizing 

the on-line estimator.  

e 5 - 8 Network Average Link Density RMSE with Different Optimal Sensor 

Location Plan 

        Density A priori Link Online Link Density (%)Percentage 
Sensor Plan Density Estimation Estimation Improvement  

5 Sensors 28.50 21.37 25.02% 
10 Sensors 28.50 20.84 26.88% 

Exiting 14 Sensors 28.50 20.73 27.26% 
20 Sensors 28.50 20.63 27.61% 
30 Sensors 28.50 20.50 28.07% 
40 Sensors 28.50 19.91 30.14% 
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Figure 5-26 shows the estimated link density on link 1778 (figure 5-7) to 

further illustrate the effect of different sensor locations on the network state 

estimation quality. As expected, the online density estimation exhibits a slower 

changing pattern than the corresponding observation value.  In addition, comparing to 

the a priori estimation, the 20-sensor location plan can recognize and capture the 

density changes on the link. 

 

Figure 5-26 Estimated Link Density on Link 1778 
 
 

The time-dependent average network link density RMSE at 5 minute time 

uce average link 

ensity errors. Moreover, the additional information from newly added sensors can 

improve the quality of network traffic status estimation. In addition, Figure 5-27 

illustrates that the estimation errors of the link density are proportional to the network 

congestion level. 

 

 

 

 

intervals are plotted in figure 5-27.  It shows that the sensors can red

d
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Figure 5-27 Time-Dependent Average Link Density RMSE  

 
 

In order to interpret the influence of different sensor plans to the accuracy of 

the estimated OD demand, the RMSE at 5 minute time interval in terms of the time-

dependent OD demand (6:30AM-8:30AM) is selected as the performance measure: 

( )
od

w
twtw

n

dd
RMSE

∑ −
=

,,

                                 (5-3) 

where, 

   twd ,

t

2'

e figure that the estimation errors of the demand and the 

luctuation of the error decrease with the newly added sensors in the network.  

 

 

 = Ground-Truth demand of OD pair w  during time interval t 

  '
,twd  = Estimated demand of OD pair w during time interval t (simulated output) 

  odn = Number of OD pairs 

Figure 5-28 plots the time-dependent RMSE of different sensor location plans. 

One can observe from th

f
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Figure 5- 28 Time-Dependent Demand RMSE in Different Sensor Location Plan 
 
 

The average demand RMSE is plotted in Figure 5-29 for different sensor 

plans. In a given sensor location plan, the RMSE is calculated across all the OD pairs 

and across all of the time intervals. As expected, more optimally deployed sensors 

lead to greater demand estimation error reduction. 

 

 

Figure 5- 29 Demand RMSE in Different Sensor Location Plan 
 

 

r OD Demand A prio



 

5.4 Summary 
 

Increasingly, sensors or detectors are being deployed to monitor network 

conditions. Installing and maintaining sensors in a transportation network can be 

expensive. This chapter explores ways to efficiently allocate resources so as to 

generate a network detection system in a manner that produces minimal estimation 

errors and minimal equipment costs. 

The sensor location problem is interpreted as a value of information problem, 

whic

several valuable insights about the process of selecting the locations for sensors in a 

netw  judgment alone 

is a s the 

part e 

free

TX and  coverage 

and

network

recurren  A large-scale network, Baltimore-Washington network 

(CH

associat

conditio

investigated. The network performance of different optimal sensor location plans 

btained based on DOSLP and SOSLP model is analyzed.  Sensitivity analysis on the 

h leads to interpretation with learning process models. The analysis provided 

ork. The difficulty of determining best locations on the basis of

n important caveat to learn from the study.  A second valuable result wa

icular emphasis on the improvement added by placing sensors on high volum

ways. Numerical experiments based on two medium size networks, Fort-Worth, 

 Irvine, CA are used to demonstrate the relationship between the OD

 sensor number based on dynamic traffic assignment methodology.  

The SOSLP model is an extension of the DOSLP model by considering the 

 uncertainty in conjunction with the essential impacted vehicles in the non-

t congestion.

ART) is used to illustrate the proposed DOSLP and SOSLP models and their 

ed HGRASP-DTA solution procedures under normal and uncertain traffic 

ns. The effect of the magnitude of the weight on the link information gain is 

o
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weight and sensor location is used to evaluate the robustness of the proposed 

ethod

MSE analysis demonstrates that sensor’s number and location play a 

ritical

m ologies.  In addition, a series of experiments helps to characterize the marginal 

value of newly added sensor in traffic status estimation and prediction. The estimated 

demand R

c  role in the demand estimation quality.  

In summary, the experiments provide and confirm the following important 

findings for the sensor location problem: (1). The sensors need to be located on the 

links that can intercept the most OD flows; (2). The sensor observation data should be 

linearly independent; (3). More sensors do not necessarily mean larger information 

gains; (4). The lower the measurement error, the more gains the system can obtain; 

(5). Maximization of the sensor network coverage does not necessarily make the 

largest improvement in the overall OD demand estimation quality. 

The next chapter provides an overall summary and conclusions to this 

research. The research contributions and future possible extensions of the sensor 

location problem are highlighted. 
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Chapter 6 Conclusions and Future Research 

This chapter summarizes the research work presented in this dissertation. 

Section 6.1 draws overall conclusions regarding the proposed framework, 

contribution to the sensor location problem for real-time traffic estimation and 

outlines several directions for future research in this area. 

 

6.1 Ove
 
 Origin-destination (OD) demand is an important input to various 

transportation network modeling problems. Substantial research has been conducted 

on demand estimation and prediction to obtain reliable demand for urban traffic 

networks. However, all existing demand estimation approaches were implemented 

under the assumption of given sensor locations. Hence the motivation for research on 

reducing the demand uncertainty through optimal sensor deployment in a network. 

difficult to

exist. The existing lim

focused on flow capture and OD coverage und

flow pattern. W

dissertation presents a fram

simultaneously into account based ) 

 

methodology and findings. Section 6.2 presents the author’s perspective on the 

prediction in large-scale networks. Section 6.3 discusses further extensions and 

rall Conclusions 

The sensor location problem is a complex optimization problem that could be 

 solve because of its size, and the fact that an optimal solution may not 

ited body of research on the sensor location problem is mainly 

er the assumption of a static traffic 

ith a heavy emphasis on the OD demand estimation problem, this 

ework that takes demand estimation and sensor location 

on dynamic traffic assignment (DTA

 171 
 



 

met d

that nee

terms o

time-de

(DOSL btained from the 

DO

state un

events,

associa

pairs a

reason,  (SOSLP) model is developed, 

based on the DOSLP model, by incorporating the network uncertainty into the model 

formula

 

ty of network states.  

ho ology. It views the sensor location problem as a traffic status learning process 

ds sensors to add valuable information that can be used to update estimates (in 

f mean and variance) of the network traffic status in conjunction with the 

pendent demand coverage.  

This dissertation starts from a deterministic optimal sensor location problem 

P). It discusses demand coverage of different sensor plans o

SLP model and their subsequent effect on the estimation quality of the network 

der two situations, with and without budgetary constraints. Because uncertain 

 such as incidents, natural disasters, etc, may impact the vehicle paths and the 

ted traffic pattern, the DOSLP model solution may not cover the impacted OD 

nd correct the demand estimation errors of the associated OD pairs. For this 

 a stochastic optimal sensor location problem

tion.  

 

6.1.1 Deterministic Optimal Sensor Location Problem (DOSLP) 

 The ability to observe flow patterns and performance characteristics of 

dynamic transportation systems remains an important challenge for transportation 

agencies, notwithstanding continuing advances in surveillance and communication 

technologies.  In order to improve the efficiency of data collection and data support to 

the new generation of real-time network traffic estimation and prediction systems, it 

is critical to understand how sensor deployment affects the network observability and 

the estimation quali
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 This dissertation presents the deterministic optimal sensor location problem 

ource limitations. Aware of the 

 location 

problem

oiting the near 

l complexity 

of the p

 

 

(DOSLP) under two situations, without and with budgetary constraints. In the first 

situation, the senor location problem is viewed as an O-D covering problem based on 

dynamic traffic assignment methodology. It is formulated as a binary integer 

programming model (DOSLP-1). However, in most real world applications, the 

number of sensors is constrained by budget/res

inherent connection between the OD estimation problem and the sensor

, a Kalman filtering based model (DOSLP-2) is presented to explore time-

dependent maximal information gains and O-D demand coverage across all links in 

the network in the second situation.  

The Branch-and-bound (BnB) method, which is commonly used to solve 

computationally intensive integer problems, is used to solve DOSLP-1. Recognizing 

that the DOSLP-2 model is non-convex, the solution procedure is formulated as a bi-

level stochastic integer program. The upper-level seeks potential locations according 

to some selection rules, while at the lower level, the selected locations are evaluated 

using the simulated results by running a user equilibrium simulation-based DTA 

procedure (in this case using the DYNASMART-P softwar). A hybrid greedy 

randomized adaptive search heuristic is developed for efficiently expl

optimal sensor locations because of the network size and computationa

roposed problem. 
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6.1.2 Stochastic Optimal Sensor Location Problem (SOSLP) 

   Uncertainty is one of the major factors that transportation system analysts 

and planners have to deal with in making transportation planning de

 

cisions. It plays a 

e of unanticipated events (e.g. incidents, weather, 

ecial

ified HGRASP-DTA search procedure of DOSLP 

gy.  

 

 

critical role since transportation agencies and planners have to deploy limited sensors 

in the network before the occurrenc

sp  events, etc), which will subsequently impact the vehicle paths and traffic 

pattern in the network. Thus, the quality of the network state and estimated trip matrix 

may be impaired because the sensor location solutions from DOSLP may not be able 

to capture the impacted OD flows in the occurrence of the uncertain events.  Based on 

a two stage stochastic model and iterative bi-level solution framework, this research 

extends the DOSLP to a stochastic problem and proposes a robust formulation 

SOSOLP to accommodate the un-anticipated network events in seeking to achieve the 

objectives of enhancing the long-run expectation of OD demand estimation quality 

and maximizing the long-run expectation of OD flow coverage under stochastic 

network environments. 

 By assuming that the occurrence of incidents on a link follows a Poisson 

process, and that likelihood of incident occurrence on a link is obtained from  

Bayesian statistical method, a mod

is used to find the near optimal sensor locations based on dynamic traffic assignment 

methodolo
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6.1.3 Research Findings 

 To circumvent the difficulties of 
 

obtaining real-time link count data and 

istorical variance and covariance of the OD demand, this research uses a synthetic 

ata set from a DTA-based simulator, DYNASMART-P, albeit for a real network 

onfiguration, to evaluate the performance of the proposed models.  The extensive 

umerical  experiments conducted as part of this research resulted in the following 

key findings: 

1. Sensors should be located on those links so that they can maximally intercept 

OD flows; 

2. The sensor observation data should be linearly independent;  

3. Adding more sensors does not always generate larger information gain; 

4. The lower the measurement error is, the more gains the system could attain; 

5. Maximization of sensor network coverage does not necessarily yield the 

largest improvement in the overall OD demand estimation quality; 

6. In the presence of network uncertainty, a two-stage stochastic model 

accounting for impacted vehicles can provide more robust and accurate 

estimates than the deterministic model for OD demand flow and network link 

performance. 

7. The sensor location strategies from the proposed models provide more robust 

and accurate demand estimates and larger OD flow coverage than the existing 

static sensor location model based on the static traffic assignment 

methodology. 

 

h
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6.2 Research Contributions 
 

This section presents specific contributions of this research to the theoretical 

etwork. 

f the existing methodologies for sensor networks are based on static traffic 

ngineering judgment. Another drawback of the static sensor location models is their 

le path evolution, especially 

ll OD demand estimation 

olution procedure for actual large-scale networks, or are unable to respond to the 

 assignment (Mahmassani 

 

and algorithmic development of the sensor location problem in a large-scale traffic 

n

 To date, there are few studies conducted on the sensor location problem. Most 

o

assignment assumptions and use OD flow coverage and flow capture as the objectives 

to locate the sensors. The major limitation of the static sensor location models is that 

they cannot capture the traffic interaction among vehicles and adjacent links, which 

may result in solutions that could perform  worse than placement based on general 

e

inability to capture the traffic dynamics, such as the vehic

in a congestion network. Furthermore, an important finding in this study is that 

locating sensors exclusively on the basis of flow coverage maximization does not 

ecessarily lead to the largest improvement in the overan

quality. In addition, existing static sensor location models either lack efficient 

s

network uncertainty and its consequential impact on traffic conditions. 

 To circumvent the principal difficulties in estimating the dynamic link 

proportion matrices, a dynamic traffic simulator is used to propagate the vehicles 

long the user equilibrium paths and determine the system state.  Based on the a

simulation-based solution methodology for dynamic traffic

1998), this dissertation provides dynamic models that can be used to gain insight into 
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the sensor location problem when traffic dynamics and network uncertainty are 

affic assignment assumption and exploits the 

m under different 

tions for real-time 

rovides the following key contributions to the sensor location problem: 

r location problem. It 

which leads the problem to the learning process models. The proposed 

duction. In addition, it introduced the traffic dynamics and network 

nfolds. 

importance of optimal sensor locations in a large-scale network.  

accounted for. It generalizes the static tr

optimal sensor location strategies based on dynamic traffic assignment methodology. 

ith a heavy emphasis on the OD demand estimation probleW

scenarios, Kalman filtering based dynamic sensor location model formulations and 

heir associated algorithms are constructed to find robust solut

estimation and prediction applications in large-scale networks. This dissertation 

p

• This research introduced a new perspective in the senso

interpreted the sensor location problem as a value of information problem, 

Kalman filtering model based bi-objective framework provides a flexible and 

tractable approach to incorporate OD flow coverage and demand uncertainty 

re

uncertainties into the sensor location problem formulation, which essentially 

captures the impacted OD flows when the uncertainty u

• This research explored ways to allocate resources to create a network 

detection system in a manner that produces minimal estimation errors and 

minimal costs. It systematically analyzed the relationships among the sensor 

locations, time-dependent OD coverage and demand estimation error 

correction. The sensitivity analysis on the effects of sensor locations and 

sensor numbers to the network status estimation and prediction reveals the 
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• A two-stage stochastic model provides an integrated framework to account for 

orks in the sensor location problem. It 

ultiple incident 

time by diverting the impacted vehicles to alternative routes. 

ocedure, the 

main for 

the sensor location problem in the context of real-time traffic estimation and 

 

xploit the robust sensor locations for the purpose of real-time traffic estimation and 

nder static traffic assignment. The proposed models and solution procedures were 

TA systems, and were rigorously 

the inherent uncertainty in traffic netw

proposed an incident generation model and considered m

scenarios. Furthermore, the proposed SOSLP model classified the impacted 

and un-impacted vehicles into different classes to minimize the user travel 

•  This research proposed an effective and tractable solution pr

Hybrid Greedy Randomized Adaptive Search Procedure (HGRASP-DTA). 

The procedure is used to solve large-scale NP-hard problem for general traffic 

networks. It efficiently searches for robust solutions in the feasible do

prediction in large scale networks 

In sum, this dissertation systematically proposes a new methodology to 

e

prediction to support advanced traffic management and traveler information systems 

in an urban transportation network context. More importantly, this dissertation 

strengthens the inherent connection between sensor location and the demand 

estimation problem, rather than formulating this problem as an OD coverage problem 

u

systematically integrated into off-line and on-line D

tested and evaluated using field data as well as synthetic data based on several 

realistic networks. 
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6.3 Future Research and Extensions 
 
 As an initial effort in introducing traffic dynamics and incorporating network 

room for further 

 underline a methodology to optimally 

e 

stimation, etc. Furthermore, it is useful to find second-optimal sensor locations in 

). Develop the sensor location problem as a chance-constrained model 

ncertainty provides new insight for deploying sensors in a realistic large scale 

al, such 

uncertainty into the sensor location problem, several aspects of the proposed 

ramework and solution algorithms in this dissertation leave f

investigation and improvement. This section outlines several major directions of 

future research and extensions of this dissertation. 

 (1). Extension to other network state estimation and prediction applications 

In this research, the proposed models

deploy limited sensors for demand estimation error correction. The first natural 

extension is to incorporate new observed data sources into the model formulation and 

ind the optimal locations for those new observation facilities as a supplement to thf

traditional point sensors. The second extension for future research is to deploy the 

sensors for other traffic state estimation and prediction applications, such as estimated 

travel time reliability, measuring and predicting traffic travel time and link state 

e

addition of the existing sensors for a sensor network. Another extension of the sensor 

location problem is to develop an effective framework for integrating the OD 

decomposition strategy into the online simulation-based DTA system. 

(2

The proposed two-stage stochastic optimal sensor location model under 

u

network. A further study would be to formulate the sensor location problem as a 

hance-constrained model to maximize the probabilities of reaching certain goc
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as introducing a stochastic threshold constraint. The constraint could be that a link 

will be considered to install a sensor only if a minimum level of demand is captured 

ation models were investigated using synthetic data sets. 

rther insight on the effects of actual data to the performance of models. For 

ith 

rvation data could be used to further evaluate the robustness of the proposed 

ources could be considered to increase the network observability and enhance the 

ample, AVI (automated vehicle identification) data, 

large-scale 

 scale 

solution 

or a minimum level of link information gain is obtained at that site. 

(3). Evaluate the proposed dynamic sensor location model with real-world data and 

ore diverse types of data sources. m

 In order to circumvent the difficulties of obtaining the real-world link count 

data, historical variance-covariance data and the incident occurrence probabilities, the 

proposed dynamic sensor loc

However, the real-world data contain actual traffic information and can provide 

fu

example, network simultaneously occurred incidents are assumed independent w

each other and synthetic incident severity was used in this research, the actual 

bseo

models under the realistic traffic conditions. In addition, using data from other 

s

demand estimation quality. For ex

or link densities obtained from processed video imaging data, could be incorporated 

into the proposed location model.  

(4). Develop a more efficient and tractable solution algorithm for 

networks 

 Since the properties and general efficient method to solve large

stochastic integer programming are scarce, efficient algorithms and 
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procedures, such as decomposition methodologies to solve the proposed two-stage 

stochastic model are undoubtedly needed. 
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