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Abstract— This paper proposes a novel algorithm for a
quadrotor to replan its motion in the event of one, two or three
rotor loss. Further, during the course of its replanned trajectory,
the MAV avoids collision with static obstacles including the
ground.

Index Terms— Quadrotor, Optimal control, Dynamic tra-
jectory planning, Obstacle avoidance, Sampling-based motion
planning

I. INTRODUCTION

Autonomous aerial robots are increasingly used for risky
outdoor applications such as firefighting, search and rescue,
surveillance in uncharted territories, etc. An event of struc-
tural damage or addition of slung load is highly likely in such
scenarios. This would result in an unanticipated change in the
dynamics of the system and hence, require the quadcopter
to revise its motion planning strategies in order to complete
the mission statement.

This project addresses replanning in the specific case of
single, two opposing, or three rotor loss. Given that the micro
aerial vehicle (MAV) identifies the type of failure correctly,
it has to replan its motion ‘on-the-fly’. We refer this problem
as ‘high-stakes motion replanning’. The overall goal of this
research is to develop and characterize general techniques
that can be applied to any aerial vehicle that must relearn
how to move in a high-stakes scenario. In this research, we
plan to extend ideas from motion replanning by incorporating
ideas from system identification, numerical optimal control
and Monte Carlo tree search.

Specifically, the MAV’s mission statement is to fly along
a predefined trajectory while avoiding static or dynamic
obstacles, which is perceived only when the aerial robot is
sufficiently close enough to the obstacle. These maneuvers
have to be performed even in the event of rotor loss. We plan
to use a quadrotor as the test platform. Quadrotors are an
ideal platform for this research because they have nontrivial
dynamics and control, VTOL capabilities, and also are easier
to assemble and widely popular.

Such a mission statement might find relevance in ware-
house management and delivery logistics. In warehouses, an
aerial robot taking stock of the inventory in a pre-defined
path has to avoid obstacles in the form of manual forklifts
or racks being moved by ground robots. In the event of an
unprecedented damage, it has to fly back to the control sta-
tion while still avoiding the dynamic obstacles. In the outdoor
scenario of aerial package deliveries, robot’s dynamics might
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be altered due to the change in the distribution of the payload,
and its major obstacles are buildings, trees and poles.

Paper Organisation: Section II states the related work and
the methodology is outlined in section III. The remainder of
the paper is organised as follows, Section V describes the
modelling of the dynamics and open loop response of the
quadrotor. Section VI states the control law during normal
operation and in case of rotor loss. Section VII proposes
the motion planning strategy including collision avoidance,
and an optimal control policy to achieve it. Finally, results
are discussed in Section VIII and Section IX states our
conclusions and scope for future work.

II. RELATED WORK

In the relevant control literature, strategies in the event
of propeller loss have been proposed and validated [1][2].
Such controllers are designed to stabilize about a stable
equilibrium and have a cascaded structure comprising of
separate position and attitude controllers, which might not
be the best solution in the case of executing aggressive
maneuvers. We would like to incorporate optimal strategies
for full-state control at all instants. Also, in the event of
rotor loss, the system dynamics abruptly changes due to the
increase in non-linearities and dominance of higher order
dynamics as discussed in [3].

[4] proposes an elegant way of constructing random
search trees based on region of attraction of local trajectory
controllers. The constructed tree in the form of “funnels”
ultimately causes the system to go from start to goal. An
LQR controller is synthesised for tracking a time-optimal
trajectory. Further, the performance analysis and region of
attraction are constructed using Lyapunov functions. This
project aims to extend the results to higher order and fast
dynamic systems.

Extensive research in sampling-based motion planning for
dynamic environments [5][6] has been carried out recently.
We intend to extend notions from such dynamic planning
algorithms to the case of internal change in vehicle dynamics
in addition to those in the environment. Related work in the
intersection of control and planning [4][7] often implement
a non-linear feedback controller synthesis and optimisation
of a cost/value function.

With increasing on-board computational capabilities, nu-
merical approaches to optimal control of quadrotors have be-
come popular [8]. Unlike analytical controllers, these adopt a
direct multiple shooting approach [9] and solve the complex
problem by using an off-the-shelf optimization solver. Such



controllers use recursive quadratic programming technique to
significantly improve the convergence behaviour and reduce
the computing time.

This work will incorporate ideas from sampling-based
dynamic motion planning to construct feasible time-optimal
trajectories and implement numerical optimal control algo-
rithms to track these trajectories. The control strategies will
change according to the vehicle state i.e. one, two, three or
four operational rotors. The sampling would be based on the
feedback provided by the controller about its own capabilities
and performance. Lastly, an appropriate collision avoidance
framework [10] would be implemented to avoid obstacles in
the workspace.

III. METHODOLOGY

This work is aptly divided into controller synthesis and
motion planner design. The algorithm generates a random
exploring tree based on the possible values of the available
rotor thrust inputs. The dynamics are modelled considering
the quadrotor system and the actuator system separately, the
former modelled using Newton-Euler approach [11][12]. The
actuator dynamics are modelled based on test-bench studies.
In the event of rotor loss, some of the branches cease to
exist and hence, the search tree has to be repaired and the
motion needs to be replanned. The same is true for dynamic
obstacles as discussed in [5].

The developed algorithms will be first tested and analysed
on a suitable simulation platform. Initial open-loop simula-
tions will be run in MATLAB/Simulink owing to the ease of
implementation. Later, we intend to use DRAKE [13] library
in C++ for simulating the complex non-linear quadcopter
dynamics. MCTS and motion planning will be implemented
through efficient C++ codes. Using C++ throughout will help
to prototype and test ideas in a safe sand-box, yet provide
quick migration from simulation to the real vehicle.

The quadrotor test platform comprises of an off-the-
shelf frame and motors, NAVIO autopilot by Emlidr and
Raspberry Pi as the computational resource. Software will
be implemented using ROS and C++ which will enable us
to use open source code for software system components that
we will not be modifying, e.g., sensor interfaces, localization
filters, etc. Vehicle state (position and orientation) feedback
would be obtained from the VICONr motion capture system
installed at Dr. Otte’s Laboratory and broadcast to the
quadrotor using a wireless router.

IV. PROBLEM FORMULATION

The problem is divided into path-planning and controls
sub-problems, formulated as follows,

A. Path-Planning Problem

The robot exists in the workpsace, W and motion is
planned in the configuration space, C. Additionally, we have
a collision checker, fcc : C → [true, false]. C-free space
is defined as Xfree = {x ∈ C : fcc(x) = false}. Given
Xstart, Xgoal ∈ Xfree, determine a feasible path, σ :

[0, 1] → Xfree. The solution path would be concatenation
of edges,

σ = σ1 ⊕ σ2 ⊕ ....⊕ σn
where, edges, σi are characterised by nodes (vi−1, vi)

B. Control Problem
Given the state space, S and the control space, U , dy-

namics model, ṡ(t) = f(s(t), u(t)), along with the system
parameters such as inertia, mass and thrust coefficients,
determine a control policy, π : S → U such that, s(0) = vi−1

and s(T ) = v′i, Where, v′i ∈ Bδ(vi) and T is the constrained
finite horizon. The δ-ball is defined as, Bδ(v) = {x ∈ S :
||x− v|| < δ}

V. DYNAMICS MODELLING
The degrees of freedom of a quadrotor along with body

frame and earth frame are illustrated in Fig. 1.

Fig. 1. Quadcopter Model [14] and reference frames

A. Equations of motion
The dynamic model of the quadrotor are derived using

Newton-Euler formulation [11], [12]. Dynamics of any rigid
body under the influence of external forces, F and moments,
τ expressed in a rotating frame of reference (body axes) is,[

mI3×3 0
0 J

] [
v̇
ω̇

]
+

[
ω ×mv
ω × Jω

]
=

[
F
τ

]
(1)

Where, m is the mass, J the inertia matrix, v the body
linear velocity and ω is body angular rates. In the case of
quadrotors, (1) can be reformulated as,

ξ̇ = v

mv̇ = −mge3 + Fd + Re3T

η̇ = Wηω

Jω̇ = −ω × Jω − Jr(ω × e3)Ω + τd +M

(2)

Where, Fd and τd are the drag forces and moments, re-
spectively. R ∈ SO(3) is the rotation matrix from the body
frame to earth frame, and Wη is the transformation matrix
for angular velocities [11]. e3 =

[
0 0 1

]T
and g is

acceleration due to gravity. Thrust, T and Moment, M are
defined as,

T = k

4∑
i=1

Ω2
i
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3)

 (3)



where, Jr is rotor inertia, Ωi the rotor speed, and Ω is the
net rotor speed. k is the thrust co-efficient, d the counter-
moment drag co-efficient and l is the arm length. Simplifying
(2) and further assuming that the aerodynamic drag is not
predominant in rolling and pitching motion, the rotational
dynamics can be expressed as,

ṗ =

(
Jyy − Jzz
Jxx

)
qr − Jr

Jxx
qΩ +

1

Jxx
Mφ

q̇ =

(
Jzz − Jxx

Jyy

)
rp+

Jr
Jyy

pΩ +
1

Jyy
Mθ

ṙ =

(
Jxx − Jyy

Jzz

)
pq − γr +

1

Jzz
Mψ

(4)

ω =
[
p q r

]T
is body angular rates and γ > 0 is

the aerodynamic drag opposing the yawing motion of the
quadrotor. Consequently, dynamics of the position in the
inertial frame, including the velocity drag term, b are,

ẍE = −bxẋE +
1

m
(cosψ sin θ cosφ+ sinψ sinφ)T

ÿE = −by ˙yE +
1

m
(sinψ sin θ cosφ− cosψ sinφ)T

z̈E = −bz ˙zE − g +
1

m
(cos θ cosφ)T

(5)

B. Open Loop Simulation

The mathematical model with the system parameters is
simulated in Simulink and the open-loop behavior was stud-
ied. It is observed that quadrotors are under-actuated systems,
with 6 degrees of freedom and only 4 inputs. Therefore, the
rotor speed inputs are designed so as to activate each of the
4 controllable degree of freedom - z, φ, θ and ψ.
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Fig. 2. Simulation: Speed input to the 4 rotors, Ωi

The simulation progresses at steps of 0.005s until 2
seconds. The entire simulation time is divided into 4 intervals
for each of the controllable DOF. In the first 0.5s, all the
rotor speeds are increased from the hover speed, decreased
and increased back. This increases and decreases the thrust
and hence, the quadrotor ascends to a higher altitude. In the
next 0.5s, a sinusoidal rolling moment is created by changing
the speeds of rotors 2 and 4. Similarly, pitching and yawing
moments are created by changing the corresponding rotor
speeds as shown in Fig. 2.
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Fig. 3. Simulation: Rotational angles

The complex coupling between the rotational dynamics
is observed from Fig. 3. As expected, rotations were not
observed in the first 0.5s. In the next 0.5s, only rolling
motion is observed - increasing and settling at around 20◦.
Due to the pitching moment input in the next interval, the
pitch angle shows similar behavior as that of roll angle. It is
worthwhile to note that, due to the coupling, even rolling and
yawing motions are observed during this interval. And in the
final interval, even though only yawing moment was applied,
the quadrotor rotates about all the three axes. Therefore, such
a simple choice of inputs delineates the dynamic coupling
between the rotational degrees of freedom. It is noted that
the coupling is more evident when the roll and pitch angles
are high due to the kinematic equations described in (4).
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Fig. 4. Simulation: Translational position

From Fig. 4, a positive roll angle drives the quadrotor in
the negative yE axis, whereas a positive pitch drives it in
positive xE direction. After the initial 0.5s, the total thrust
of the rotors had remained close to that during hover. Thus,
the deviations of the roll and pitch angles from the zero
values decrease the value of the thrust in the direction of
the zE axis. Consequently, the quadcopter accelerates in the
direction of the negative zE axis and descends after the first
0.5s.

A few simulations were run by switching off 1,2 and 3
rotors for 0.25s during hover. The open loop response were
studied and the results have been elucidated through the
following plots.



0 0.05 0.1 0.15 0.2 0.25

Time (s)

-20

0

20

40

60

80

100

A
n

g
le

s
 (

d
e

g
)

roll ( )

pitch ( )

yaw ( )

Fig. 5. Simulation: One rotor loss, Ω4 = 0

From Fig. 5, it is observed that the roll angle increases
unboundedly due to the unbalanced roll moment created due
to loss of rotor-4 loss. Due to the gyroscopic coupling, the
pitch angle also starts to increase, but at a lower rate.
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Fig. 6. Simulation: Two opposing rotor loss, Ω2 = Ω4 = 0

Fig. 6 and 7 illustrate the angle dynamics in case of 2 rotor
loss. Due to the system dynamics, 2 adjacent and 2 opposite
rotor loss will have different characteristics as corroborated
in the open loop responses. In the case of 2 opposing rotor
loss (rotor-2 and rotor-4), only unbalanced yawing moment
exists and hence the yaw angle starts to change. However,
the rate is much slower than in the first case, alluding to the
fact that the yaw dynamics are inherently slower than roll
and pitch.
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Fig. 7. Simulation: Two adjacent rotor loss, Ω3 = Ω4 = 0

In the scenarios of loss of 2 adjacent rotors (Fig. 7) and 3
rotors (Fig. 8), it is observed that there will be unbalanced
moments along all the 3 directions and hence, roll, pitch and
yaw angles deviate from the equilibrium hover case and that
too at a faster rate in the 4th case.
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Fig. 8. Simulation: Three rotor loss, Ω2 = Ω3 = Ω4 = 0

Therefore, for this set of system parameters, it seems
that an appropriate autopilot should recognize the failure
and switch to an appropriate controller within 0.1-0.15s to
minimize the chances of a crash.

VI. CONTROL LAW
During normal operation of 4 rotors, it is possible to

control the full attitude (roll, pitch, yaw) of the quadrotor
by varying the 4 rotor speeds appropriately [15][14]. The
position is then controlled by varying the attitude, thus tilting
the net thrust vector towards the desired position. However,
when the vehicles loses one or more propellers, the rotational
sub-system loses its controllability and hence, one can no
longer control the full attitude of the vehicle. Therefore, the
strategy adopted in this paper is to control the attitude to
only one degree of freedom, a unit stationary in the inertial
frame and represented by n =

[
nx ny nz

]T
in the body

frame. The dynamics of this unit vector is given by the Euler
equation,

ṅ = −ωb × n (6)

The goal of the attitude controller is to maintain this unit
vector stationary in the body frame, mathematically, ṅdes =
0. This unit attitude vector could be then oriented along the
desired position, thus guaranteeing position control.

A. Reduced Attitude kinematics and Equilibrium solution

In the event of rotor loss, the net moments acting on the
quadrotor frame will non-zero and hence, a static equilibrium
does not exist. The equations of motion are solved to derive
the dynamic equilibria (represented by an overbar) in the
hover case.

˙̄ωb = 0

˙̄n = 0
(7)

From (6), n̄ = ε̄ ω̄, ε̄ defined such that,

||n̄|| = 1 (8)



Enforcing the force balance equation,

T̄ n̄z = mg (9)

In order to solve for the equilibrium condition, we have to
solve 8 equations (7)-(9) to determine 11 unknowns, (n̄x,
n̄y , n̄z), (p̄, q̄, r̄), ε̄ and (Ω̄1, Ω̄2, Ω̄3, Ω̄4). For each rotor
loss, there will be an addition of a constraint equation,
Ωi = 0. In the case of 3 rotors loss, there will be 11
equations and 11 unknowns and hence, the equilibrium
solution would be unique, if it exists. For two and one rotor
loss scenarios, additionally we require 1 and 2 constraint
relations, respectively.

1 rotor loss: Without any loss of generality, we assume
that the 4th rotor has failed. The equilibrium state is a 2-
dimensional hyper-plane in the 10-D space. Hence, we have
to come up with 2 constraint equations to get a equilibrium
point. Intuitively, from (4), we set Ω1 = Ω3, and Ω2 = λΩ1.
The nonlinear equations (7)-(9) are solved using the fsolve

routine in MATLAB. The equilibrium states as a function of
the parameter, λ are studied through the following plots.
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Fig. 9. Reduced attitude vector

From Fig. 10, it is observed that the angular velocity of
the quadrotor is minimum at 18.60rad/s for λ = 0.82.
Therefore, this is chosen to be the parameter value and the
corresponding equilibrium state is,

n̄ = (0, 0.45, 0.89)

ω̄b = (0, 8.27, 16.67)

Ω̄i = (565.37, 463.61, 565.37, 0)

(10)
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The inputs were given to the system starting from the state
as described in (10) and the system response was studied.
From Fig. 12, we observe that the we have periodic roll
and pitch motion and continuous yawing motion, indicating
that we do not have control over yaw. The fact that roll and
pitch are bounded gives us some hope that we could possibly
control the reduced attitude of the quadrotor.

0 0.5 1 1.5 2

Time (s)

-200

-150

-100

-50

0

50

100

150

200

A
n

g
le

s
 (

d
e

g
)

roll ( )

pitch ( )

yaw ( )

Fig. 12. Simulation: rotational angles with inputs as defined in (10)

2 rotor loss: The case of 2 opposite rotors failing is
addressed first, assuming rotors 2 and 4 have failed. From
(4) and (7)-(9), it is intuitive to have rotors 1 and 3 to rotate
at the same speed to balance out the pitching moment. Then,
the equilibrium conditions are derived to be,



n̄ = (0, 0, 1)

ω̄b = (0, 0, 30.05)

Ω̄i = (618.55, 0, 618.55, 0)

(11)

The system response to these inputs is similar to the one in
Fig. 6. The case of 2 adjacent rotors failing will be considered
in future work.

3 rotor loss: In this particular scenario, the number of
constraint equations equal the system unknowns and hence,
we have only one equilibrium solution. Assuming that only
rotor-1 is functional,

n̄ = (0.41, 0, 0.91)

ω̄b = (14.74, 0, 32.93)

Ω̄i = (915.32, 0, 0, 0)

(12)
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Fig. 13. Simulation: Rotational angles Ω1 = 915.32 rad/s, Ω2 = Ω3 =
Ω4 = 0

Again similar trends for rotational angles are observed in
Fig. 13 as in 1 rotor out case (Fig. 12). This subtly hints
at controllability of the reduced attitude (roll, pitch) of the
system.

All the above mentioned equilibrium are stable, verified
by analysing the sign of ṅ and ω̇b in the neighborhood of
the equilibrium state. Having stated that, the next step would
be to design a controller to drive the system to the desired
attitude and hence position.

B. Controllability

The controllability of the system needs to be investigated
before controller synthesis. This section proves that the
reduced attitude vector is controllable near the equilibrium
states described in the previous section. The state vector, X
corresponding to the reduced attitude is [nx ny nz p q r].
The state dynamics are described by the control-affine form,

Ẋ = f(X) + g(U) (13)

Where, f(X) and g(U) are from (4) and (6). The devia-
tion from the equilibrium point is denoted by, X̃ = X−X̄ .
The system is linearised about the equilibrium point using

first-order Taylor expansion and represented in the state space
form as,

˙̃X = AX̃ +BU (14)

Where, A is defined as follows. B depends on the scenario
and will be discussed in the next section.

A =
∂f

∂X

∣∣∣∣
X=X̄

(15)

A =


0 r̄ −q̄ 0 −n̄z n̄y
−r̄ 0 p̄ n̄z 0 −n̄x
q̄ −p̄ 0 −n̄y n̄x 0
0 0 0 0 a1r̄ + a4 a1q̄
0 0 0 a2r̄ + a5 0 a2p̄
0 0 0 a3q̄ a3p̄ a6

 (16)

Where, the constants are defined in (27). Since, the re-
duced attitude vector,n is of unit magnitude, it suffices to
control nx and ny . That is, nz is controlled through the
constraint relation. Therefore, the state vector is effectively
[nx ny p q r].

1 rotor loss: With three rotors available, there are only
2 control inputs possible (other input is derived from the
desired thrust). An intuitive choice of inputs are,

u1 = f3 − f1

u2 = f3 + f1

(17)

f1 and f3 are solved using the above equation. f2 is
determined from the equation,

f1 + f2 + f3 = Tdes (18)

The state matrices, A and B then are,

A(3) =


0 r̄ 0 −n̄z n̄y
−r̄ 0 n̄z 0 −n̄x
0 0 0 a1r̄ + a4 a1q̄
0 0 a2r̄ + a5 0 a2p̄
0 0 a3q̄ a3p̄ −a6

 (19)

B(3) =


0 0
0 0
0 −b1
b2 0
0 b3

 (20)

The controllability of the system is investigated by ob-
serving the row rank of the controllability matrix, C(3) =
[B(3) A(3)B(3) A2

(3)B(3) A3
(3)B(3)]. For the system

matrices (19)-(20), the rank is 5 implying full row rank.
Therefore, the linearized system is controllable near the
equilibrium state.

2 rotor loss: In this case, there will be effectively only
one input to the reduced attitude controller given by,

u = f3 − f1 (21)

f3 and f1 are calculated by including the desired Thrust
equation,

f3 + f1 = Tdes (22)



Similar analysis was carried out with the same choice
of state vector as in the previous section. However, for
the choice of inputs, the row rank turned out to be 4
implying non-controllability. Therefore, the control over r
was compromised, further justified by its sluggish rate of
dynamics.

Therefore, the corresponding state matrices are

A(2) =


0 r̄ 0 −n̄z
−r̄ 0 n̄z 0
0 0 0 a1r̄ + a4

0 0 a2r̄ + a5 0

 (23)

B(2) =


0
0
0
b2

 (24)

The controllability matrix, C(2) =
[B(2) A(2)B(2) A2

(2)B(2) A3
(2)B(2)] has full row

rank and hence, the linearized system is controllable, at
least near the equilibrium state.

3 rotor loss: In this case, the only input to the system is
f1 with which both the position and the attitude needs to be
controlled. Here, we utilize f1 to control attitude and place
just an inequality constraint that,

u = f1 ≥ mg (25)

For the same choice of state vector, the linearized system
was found to be controllable. Hence, A(1) = A(2) given by
(23). The control matrix is,

B(1) =


0
0
0
−b2

 (26)

The constants appearing in the matrices are defined as
follows,

a1 = (Jyy − Jzz)/Jxx
a2 = (Jzz − Jxx)/Jyy
a3 = (Jxx − Jyy)/Jzz b1 = l/Jxx
a4 = −JrΩ/Jxx b2 = l/Jyy
a5 = JrΩ/Jyy b3 = (d/k)/Jzz
a6 = −γ/Jzz

(27)

C. LQR Controller Synthesis

The role of attitude controller is to track ndes, output
by the position controller. An appropriate mixer model
then calculates the rotor speeds from the inputs given by
the attitude controller. A finite-horizon LQR controller was
designed with the defined state matrices, A and B. The
choice of LQR controller is largely because of its optimality
and smoothness of actuator inputs. For a linear system as
in (14), an LQR controller gives the linear feedback control
law that minimizes the cost functional (28),

J =

∫ T

0

(XTQX +UTRU)dt+XT (T )P1X(T ) (28)

U = −KX (29)

Where, K is given by,

K = R−1BTP (t) (30)

P is determined by solving the Riccati ODE with the
terminal constraint P (T ) = P1,

ATP + PA− PBR−1BTP +Q = −Ṗ (31)

1 rotor loss: The state error cost matrix, Q is diagonal
with cost values of 20 for attitude deviations and 1s2 on the
angular rates. The input cost matrix, R is diagonal with a
value of 1N−2. The K matrix is determined using the lqr

routine in MATLAB,

K(3) =

[
−4.04 −1.85 −0.01 1.06 −0.30
1.95 −4.04 −1.06 −0.01 0.13

]
(32)
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Fig. 14. Simulation: Convergence of reduced attitude with LQR controller
ndes = [0, 0.45, 0.89]

From Fig. 14, it is observed that the reduced attitude vector
converges to the desired set-point after a period of oscillatory
transient response for 2s.
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Fig. 15. Simulation: Euler angles with 3 functional rotors controlled using
the proposed LQR controller

Fig. 15 depicts the settling of Roll (φ) and Pitch (θ) angles
albeit with steady-state error, and the unconstrained spinning
along the yaw axis.



2 rotor loss: The state error cost matrix, Q is diagonal
with cost values of 100 for attitude deviations and 0s2 on
the angular rates. The input cost matrix, R is diagonal with
a value of 0.75N−2. The K matrix is determined using the
lqr routine in MATLAB,

K(2) =
[
−25.89 −25.79 −0.09 1.02

]
(33)
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Fig. 16. Simulation: Convergence of reduced attitude with LQR controller
ndes = [0, 0, 1]

From Fig. 16, the transient response lasts longer and has
more oscillatory behaviour than the one-rotor out scenario.
An additional integral control had to be added to remove the
steady-state error associated with this controller.

3 rotor loss: The state error cost matrix, Q is diagonal
with cost values of 100 for attitude deviations and 1s2 on
the angular rates. The input cost matrix, R is diagonal with
a value of 4N−2. The K matrix is determined using the lqr

routine in MATLAB,

K(1) =
[
6.56 2.61 0.08 −0.73

]
(34)
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Fig. 17. Simulation: Convergence of reduced attitude with LQR controller
ndes = [0, 0, 1]

Compared to the previous 2 scenarios, the oscillations are
far more prominent and have a really high frequency. The

reduced attitude system takes a lot more time (approx. 15s)
to settle to the desired setpoint as seen in Fig. 17. This
is because there is only one actuator to control the entire
system.

The performance of the attitude controller largely depends
on the choice of our cost matrices, Q and R. Therefore, more
attention needs to be given to tuning these matrices according
to our requirements. More in-depth theoretical analysis is
required to characterize the system’s behaviour in response
to the cost matrices.

VII. MOTION PLANNING

Given that we have an attitude controller, we then design
the high-level position controller and motion planner. The
architecture of the feedback system is such that position
controller will output the desired attitude trajectory which
would be tracked by the designed controller as mentioned in
the previous section. A cascaded approach is adopted because
of the notable difference in the pace of the dynamics of the
position and the attitude dynamics.

A. Position Control

The translational position of the quadcopter is controlled
by varying the total thrust and the direction of attitude
vector, hence varying the direction of the acceleration. Let
the translational deviation of the vehicle from the desired
position be denoted by d, in the inertial frame. The desired
acceleration is derived so as to force the position dynamics
resemble a second order system, described below,

d̈des = −kpd− kdḋ (35)

In order to achieve this desired acceleration, the Thrust vector
should be,

ndesn̄zTdes = mR−1(d̈des − g)

T = f1 + f2 + f3 + f4

(36)

Where, R is the transformation matrix from body to inertial
frame and fi are individual rotor thrusts. For the one rotor
case, it is noted that one doesn’t have enough control inputs
to control the full system and hence, condition on the desired
thrust magnitude is relaxed. That is f1 is determined solely
by the attitude controller.

(35) is analogous to a PD controller and the gains are tuned
such that we have fast convergence and sufficient difference
in the time-scales of the dynamics of the 2 sub-systems -
attitude and position. Further, different gains were chosen
for the horizontal DOF (x, y) and vertical DOF (z). This
is justified for the nature of the mission profile considered,
discussed in the next section.
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Fig. 18. 1-rotor loss simulation: Convergence of translational position to
(1.5, −1) with altitude held at 3 m

As observed in Fig. 18, the translational position converge
to the desired setpoint after 7-8 seconds. A steady-state error
of 0.25-0.3 m was observed, which has to be taken into
account when designing the motion planner.
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Fig. 19. 2-rotor loss simulation: Convergence of translational position to
(0, −1) with altitude held at 3 m

A higher steady-state error and a longer settling time
was observed than the previous case. This implies that
the parameters associated with the motion planner have to
account for this. For the one rotor scenario, the desired thrust
was out of bounds of the thrust limits and hence, only hover
control was possible.

B. RRT

Quadrotors are highly dynamic systems requiring fast so-
lutions for path-planning problems. Therefore, exact methods
such as combinatorial, based on geometric path-planning
are not so relevant. Also, it doesn’t make sense to snap
on an artificial grid on our configuration-space and use
grid-based methods such as A* or D*-lite. Discretizing the
space (configuration or action) limits the capabilities of
the continuous system which might be critical especially

in the scenario of rotor failures. Therefore to address all
these shortcomings, a sampling based motion planner, RRT
[16] was chosen to solve the path-planning problem. The
algorithm has been outlined as follows,

Algorithm 1 RRT FLY(qstart,qgoal)
1: V ← qstart
2: E ← φ
3: while V ∩ qgoal = φ do
4: u← randomSample

5: v ← closestNeighbor

6: w ← extend(v, u, ε)
7: w′ ← FLY(v, w) . 2-point BVP solver
8: if collisionFree(v, w′) then
9: V ← V ∪ {w′}

10: E ← E ∪ {(v, w′)}

The control strategy discussed in the previous section
acts as our 2-point BVP solver, FLY(v, w). The controller
ensures that a control policy exists such that starting from
v, the quadcopter converges to an δ-ball around w within a
finite time, T .

VIII. NUMERICAL VERIFICATION

The considered workspace measures 12m × 12m × 6m.
Assuming the altitude is held constant at 3m, the Configura-
tion space is IR2. Obstacles are assumed to be ceiling-high
cylinders of radius 1m, similar to pillars. Therefore, in the
xy-plane, they are modelled to be circular. The quadrotor
is considered to have a volume for the purposes of obstacle
avoidance. Collision detection is carried out at small intervals
along the edge. L2-norm is used as the distance metric.
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Fig. 20. Simulation: Path determined by RRT-based motion planner when
one rotor has failed. Green - solution branch, Magenta - explored tree edges,
Black - obstacles



From Fig. 20, it is observed that the quadrotor is able to
fly through small passages even though a rotor has failed.
However in the case of 2 rotor failure, Fig. 21, the δ-ball
of position error increases in size, therefore, the quadrotor is
more prone to crashes if it flies close to the obstacles. Hence,
it takes a more roundabout route to the goal position. It is
also observed that in the latter case, the number of sampled
nodes and time taken to determine the path is higher than
the first one.
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Fig. 21. Simulation: Path determined by RRT-based motion planner when
two rotors have failed

As mentioned earlier, in the event of 3 rotor failure, the
required thrust exceeds the rotor constraints and therefore,
position control is not feasible. Hence, the only solution
would be to hover and land safely in such a scenario.

IX. CONCLUSION

This paper addresses the complete problem of path-
planning and control of quadrotors in the event of rotor
failure. It presented the characterisation of the changes in
quadcopter dynamics when one, two or three rotors fail. It
elaborated on the synthesis of optimal control strategies to
track attitude and position. A cascaded control architecture
was proposed and justified. The attitude controller was metic-
ulously designed by considering the equilibrium solutions
and system controllability.

This control policy is used as an approximate 2-point BVP
solver in RRT-based planner, converging to a δ-ball around
the terminal node. Although, RRT doesn’t require solving the
2-point BVP, the proposed algorithm, RRT FLY, could be
extended to asymptotically optimal sampling based motion
planners such as RRT∗ and RRT#. We intend to incorporate
such notion of optimality in the motion planning problem in
future work.

Further work needs to be done in studying the effect of
the various parameters (controller gains, ε, δ) on the system
response and devise a systematic approach to tune these
parameters depending on the scenarios. Another interesting
line of research would be to address the combined problem of
path-planning and control instead of the existing hierarchical
structure. One possible solution would be to explore the C-
space using regions of attraction instead of one-dimensional
edges [4]. This is best visualised as funnels around control-
lable optimal trajectories. Finally, the developed algorithms
would be tested on a physical test platform and experimental
conclusions would be drawn.
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