ABSTRACT

Title of thesis: INTEGRATION OF SYSML WITH
TRADE-OFF ANALYSIS TOOLS

Dimitrios Spyropoulos, Master of Science, 2012
Thesis directed by: Professor John S. Baras

Department of Electrical and Computer Engineering

and ISR

Changes in technology, economy and society create challenges that force us
to rethink the way we develop systems. Model-Based Systems Engineering is an
approach that can prove catalytic in this new era of systems development. In this
work we introduce the concept of the modeling “hub” in order to realize the vision of
Model-Based Systems Engineering and especially we focus on the trade-off analysis
and design space exploration part of this “hub”. For that purpose the capabilities
of SysML are extended by integrating it with the trade-off analysis tool Consol-
Optcad. The integration framework, the implementation details as well as the tools
that were used for this work are described throughout this thesis. The implemented
integration is then applied to analyze a very interesting multi-criteria optimization

problem concerning power allocation and scheduling of a microgrid.

INTEGRATION OF SYSML WITH
TRADE-OFF ANALYSIS TOOLS

by

Dimitrios Spyropoulos

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of

Master of Science
2012

Advisory Committee:

Professor John S. Baras, Chair/Advisor
Professor Mark Austin,

Professor David Lovell

(© Copyright by
Dimitrios Spyropoulos

2012

Dedication

To my parents, Costas and Maria, and my sister Eirini.

il

Acknowledgments

I would like to sincerely thank and express my gratitude to my advisor Prof.
John S. Baras for giving me the opportunity to work with him on very challeng-
ing and interesting research problems. With his technical expertise, his insightful
comments and advice helped me to successfully complete this thesis. Dr. Baras
continuous energy and passion for research will always follow me on whatever 1 do
in the future.

I am also grateful to Prof. Mark Austin for the valuable knowledge I gained
by attending his lectures and for the interesting discussions we had concerning the
Systems Engineering field. Also, I would like to thank Prof. David Lovell for
agreeing to serve on my committee and for his constructive feedback during the
thesis examination.

A special thank to Anthony Anjorin from TU Darmstadt, for his support and
cooperation.

I could not have completed this thesis without the continuous support and love
from my parents, Costas and Maria, and my sister Eirini, and therefore I dedicate
it to them. Moreover, I deeply thank my godparents, Kyrgiakos and Olga, for their
support and encouragement.

These two years I met and became friend with exceptional people, whom I
would like to take the chance to thank for their cooperation, the interesting discus-
sions we had and the free time we spent together.

Finally, I would like to thank Kim Edwards for her efficiency in handling all

il

the administrative issues, and the ISR staff for always trying to do their best helping
students with official matters.

This work was supported by the National Science Foundation (NSF) under
the award number 10092651-52 to the University of Maryland and by the U.S.
Department of Defense through the Systems Engineering Research Center (SERC)

under Contract H98230-08-D-0171.

v

Table of Contents

List of Figures

1

The Era of Systems

1.1
1.2

Challenges
Systems Engineering of Tomorrow
1.2.1 Systems Engineering 0oL
1.2.1.1 Basic Characteristics of Systems Engineering
1.2.1.2 Document-centric Systems Engineering
1.2.2 Model-Based Systems Engineering (MBSE)
1.2.3 How MBSE Address Today’s Challenges?

The Modeling “Hub”

2.1
2.2
2.3

Hub Architecture
SysML . . . o
Trade-off Analysis and Design Space Exploration
2.3.1 Why is it Important?
2.3.2 Consol-Optcad

2.3.2.1 Consol-Optcad Constructs

2.3.2.2 Phases of the Optimization

SysML Integration with Consol-Optcad

3.1
3.2

3.3

3.4

Integration Framework
Consol-Optcad Profile in SysML
3.2.1 Mapping of Constructs between SysML and Consol-Optcad . .
3.2.2 Building the Profile
Metamodeling Layer
3.3.1 Model Transformation
3.3.1.1 eMoflon Toolsuit
3.3.1.2 SysML/UML Metamodel
3.3.1.3 Consol-Optcad Metamodel
3.3.1.4 Transformation Rules and Code Generation
Tool Adapters
3.4.1 MagicDraw Plug-in o000

Trade-off Analysis of an Electrical Microgrid

4.1
4.2
4.3

A Microgrid and its Components
Problem Formulation
Problem Solution using the SysML Consol-Optcad Integration
4.3.1 SysML Model of the Problem
4.3.2 Solving Problem in Consol-Optcad

Conclusions and Future Work

Vil

10
11
12
13
14
18

22
22
23
24
25
26
28
28
32
33
33
40
40

45
45
20
o4
54
61

68

Bibliography

vi

70

1.1
1.2
1.3

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

List of Figures

Systems Engineering Environment L. 3
The V Lifecycle Model 4
The MBSE Process 6
The Modeling Hub 10
SysML Diagrams Taxonomy 11
The Four Pillars of SysML 12
Consol-Optcad Structure L. 14
Integration Framework 0. 23
Consol-Optcad Profile in SysML 26
SysML Customization Diagram 27
Modified Block Definition Diagram Panel 27
eMoflon Architecture 29
eMoflon Detailed System Architecture 30
Ecore Metamodel oo 32
SysML/UML Metamodel, 34
Consol-Optcad Metamodel 35
Graph Transformation Rules 36
Graph Transformation Rule Application (1) 37
Graph Transformation Rule Application (2) 37
Object Responsible for the Transformations 38
Rule for Functional Constraint 39
eMoflon Project Structure in Eclipse 40
Starting MagicDraw from Eclipse Environment 41
Starting MagicDraw from Eclipse Environment cont’d 41
MagicDraw Plug-in Software Structure 42
MagicDraw Plug-in Abstract Software Structure 44
Microgrid Structure [22] Lo Lo 47
Micro Turbine Diagram 48
Block Definition Diagram of the Microgrid 55
Instance Diagram of Microgrid System 56
Design Parameters of Microgrid Trade-off Model 57
Parametric Diagram of Microgrid System 58
Operation/Maintenance Cost Objective and Constraints 59
Power Demand Functional Constraint 59
Fuel Cost Objective 59
Calling Consol-Optcad from MagicDraw Environment 60
Consol-Optcad 60
Pcomb - Initial Phaseo 62
Functional Constraint - Initial Phase 63
Pcomb after the 18" Iteration 64

vil

4.15 Functional Constraint after 18" Tteration 64

4.16 Pcomb - Final Solution 65
4.17 Functional Constraint - Final Solution 66
4.18 Power Output 66
4.19 Scheduling Timeline 67

viil

Chapter 1
The Era of Systems

1.1 Challenges

Last decade we entered a new era where systems complexity has increased
dramatically. Complexity is increased both by the number of components that
are included in each system and their heterogeneity as well as by the dependen-
cies between those components. Developments in the field of network science and
technology allowed for wireless and wireline interconnections between components,
a fact that increased exponentially component dependencies. The so called net-
worked systems are often also distributed and asynchronous, adding one more layer
of complexity.

Moreover, today, systems tend to be more software dependent and that is
another challenge that engineers and people involved in the development of such
systems, face. The challenge is even greater when a safety critical system is consid-
ered, like the software controlling an airplane or a passenger car. There is a need
for development of software that is by proof error-free. Moreover, when software de-
pendent systems interact also with the physical environment then we have the class
of cyber-physical systems (CPS). The key challenge in CPS is to incorporate the
inputs and requirements from the physical environment in the logic of the embedded

software.

Nowadays, more frequently we observe systems that cooperate to achieve a
common goal, even though they were not built for that reason. These are called
systems of systems. For example, the Global Positioning System (GPS) is a system
by itself. However, it needs to cooperate with other systems when the air traffic
control system of systems is under consideration. The analysis and development of
such systems should be done extremely carefully mainly because of the emergent
behavior that systems exhibit when they are coupled with other systems.

However, apart from the increasing complexity and the other technical chal-
lenges, there is a need to decrease time-to-market for new systems as well as the
associated costs. This trend is expected to continue.

As it can be understood, due to these challenges and market pressure the whole
process of how systems are designed and developed is changing dramatically. There
is a need for rigorous ways to understand, analyze and develop systems. Percentages

of systems that fail or have cost and schedule overruns confirm this need.

1.2 Systems Engineering of Tomorrow

1.2.1 Systems Engineering

1.2.1.1 Basic Characteristics of Systems Engineering

Systems Engineering is an interdisciplinary holistic approach in dealing with
complex systems throughout their lifecycle [4]. It has its roots in the aerospace

industry, which was the first that faced the challenge to develop extremely complex

systems. It focuses on establishing the right processes that will handle risk and
will allow the development of a system on time, on budget and according to the
stakeholders needs. Those processes start from the conceptual phase of the system
and continue until its disposal. Systems Engineering takes into account all the
factors that can affect the system during its lifecycle stages. Such factors are societal,

economic, technical and organizational.

Complex
Technical
Systems

Systems Engineering

Economic
Factors
{competitors,
market)

Figure 1.1: Systems Engineering Environment

The development of every system follows a framework that is know as lifecycle
model. This framework emphasizes the stages of development and their sequence.
There are many lifecycle models, although the one that is most favorable today is
the V-model (Fig. 1.2). The V-model incorporates abstraction and decomposition
that are two key concepts in Systems Engineering.

At the beginning of the development the user requirements are defined. Those
requirements describe the concept of operations for the system, which mainly in-
cludes the desired behavior of the system and under what conditions the system
shall operate. Moreover, at this initial stage a plan is developed to specify the way

that the user requirements will be validated. The next stage includes the definition

dation Validation
Validation o ___________._._. L PR e ©mew. \Validation \

Planning Reporting
b s L vedmon User Acceptance
: Requirements Traceability Testing
verification
Traceability
_______ System < e Validation - System
--p Requirements =T Traceapiity T T T T T T Testing
'
1
1
Merfication Technical Validation Installation
Traceability Architesture = =—="T..ccapiiy — =" Qualification
Validation Giilkand
Traceabilit nit aj
Désian 4 1Y tegration Testing
System Configuration
and Development

Figure 1.2: The V Lifecycle Model

of system requirements, which are technical requirements that describe in detail the
system under development. System requirements should be developed in such a way
so as to verify the user requirements.

The description of the system architecture follows, including both structural
and behavioral analysis of the system. A system architecture can be analyzed fur-
ther into several subsystems until we reach the step that we define in detail the
system components. Components compose the last level in the hierarchical decom-
position of a system. Usually, the levels of decomposition that are used during the
development of a system is a designer’s choice and is affected by many factors like
system complexity, COTS already available for a bottom up approach and inte-
gration facilitation. However, the components should be neither oversimplified nor

difficult to analyze and develop.

The next step as we go down to the structure of the V-model is the development
of the system components. After this step the right hand side of the V-model starts.
In all those stages mainly the products of each level are integrated together, while
simultaneously the result is checked against the specified requirements. The end

result is an operational system that meets all the stakeholder needs.

1.2.1.2 Document-centric Systems Engineering

Till some years ago Systems Engineering was document-centric. In this ap-
proach, documents are the basic product of each process and information about
requirements, system design, system analysis is captured in documents in either
textual or electronic form [1]. Models are developed for different purposes like reli-
ability analysis, design optimization but there were neither connected in a coherent
way nor supported all lifecycle phases. This document-centric method has generic
inefficiencies. Traceability among requirement and system design documents in very
difficult. As a consequence changes in the documentation of the system can cause
errors due to inconsistencies. In addition, maintenance and reusability of system
requirements or design information is also difficult and error prone. Communication
among teams taking part into system development that is based on documents is
slow and requires a lot of effort to avoid misunderstandings and achieve parallel
development. To deal with those inefficiencies and address better the challenges
of today there is a turn towards what is called Model-Based Systems Engineering,

which is analyzed in the next section.

1.2.2 Model-Based Systems Engineering (MBSE)

“Model-Based Systems Engineering (MBSE) is the formalized application of
modeling to support system requirements, design, analysis, verification and valida-
tion activities beginning with the conceptual design phase and continuing through-
out development and later life cycle phases”[5]. In contrast with the document-
centric approach, here the models are the main product of each process and are
used for the communication between the different teams that take part in the de-
velopment. In the MBSE environment the information contained in the models
should be consistent through all the phases. Moreover, models need to be developed
carefully in order to meet their purpose. They need to be accurate enough but

simultaneously avoid containing unnecessary details that add to the complexity.

Fterate to find feasible solution

Change models

Define
5 Requirements / Explors Design Space
Measures of
Effectiveness S

|
.| Map Behavior 5 Trade-off _J Validation
to Structure Analysis " | &Werification

Create ‘ - s ‘
e Structure ; ! - 4 =
Madel .. = Generate
: = S Based on defined

= Derivative
Requirements

. ST

Ayailable W Create
Information . 4 Behavior ——,

Madel vii: |

Measures of
effectivenass

Figure 1.3: The MBSE Process

In Figure 1.3 the core steps of the MBSE process are illustrated. For each
system the starting point is the available information. Afterwards, the initial system

requirements are defined together with the desired measures of effectiveness (MoE).

The MoE are used afterwards at the trade-off stage as a criterion for the selection of
the best system configuration. After the requirements phase, the models of behavior
and structure are developed. Then the process continues by mapping the specified
system behavior to the structure. During the MBSE process derivative requirements
are generated and thus, if needed, changes to the system specification are performed.
As it was explained also before, the trade off analysis phase is used to choose the best
feasible solution based on the specified measures of effectiveness. After exploring
the design space and selecting the best alternative the system shall be validated and
verified. This phase is crucial because it makes sure that all the requirements are

satisfied and that the system meets its goals.

1.2.3 How MBSE Address Today’s Challenges?

As it was mentioned in section 1.1 several factors have increased greatly the
complexity of systems. Systems development is an orders of magnitude harder
process today than one decade ago, takes more time and is more prone to errors.
Therefore, there is a need to rethink the way we develop systems. Model-Based
Systems Engineering is a promising approach to this crucial for the economy and the
society problem. While keeping all the advantages of Systems Engineering that help
in reducing complexity and better manage a system development project, MBSE
offers even more capabilities.

The greatest advantage of MBSE is that separates design from production.

That is a major change to the existing status in systems development. Each com-

pany could have an “artificial” product made by using only models and then let
other companies compete for the actual manufacturing/production. That will con-
sequently drive costs down and possible reduce time to market. The same method
was used in VLSI with phenomenal success.

The use of models allows for faster and more rigorous communication between
engaged teams and stakeholders. Time overhead to manage system documentation
will be extinct. Fewer errors will come up due to misunderstandings or oversights,
mostly because of the more formal semantics that models offer.

Another characteristic of MBSE is the re-usability of models. A subsystem or
a component model can be used in many systems without the need to be developed
from scratch every time. Time to market as well as the probability of errors will
be decreased, since many parts of the system model will be already completed and
validated. Finally, all the above can lead in achieving a better overall quality for

the system.

Chapter 2

The Modeling “Hub”

In section 1.2.2 of the first chapter the Model-Based Systems Engineering ap-
proach to system development was analyzed. Models play a key role in this approach
and are used at every stage of development. A challenge in MBSE is to have models
that are consistent with each other. However, besides having consistent data there
is a need for the models to work together in order to offer a holistic Systems Engi-
neering approach to the designer. In this work the concept of a modeling “hub” is

introduced to deal with this challenge.

2.1 Hub Architecture

As is depicted in Figure 2.1 SysML is in the core of the modeling “hub”,
and is used for the high level design of the system; e.g. by providing annotated
block diagrams of the structure and behavior of complex systems. The main aim
is to integrate this core module with external multi-domain and multidisciplinary
tools, each one used in a different phase of the Systems Engineering development
process [4]. To achieve the integration a three layer approach needs to be followed.
Initially, for the tool we need to integrate, a domain specific profile is implemented
in SysML. Then a model transformation is defined, followed by the implementation

of tool adapters that are used as a middleware for exchanging information between

Figure 2.1: The Modeling Hub

the model transformation layer and the other components of the hub. The figure
above presents these layers as well as the areas for which we need to integrate tools
with the core module in order to realize the MBSE vision of offering a holistic system

design experience.

2.2 SysML

SysML is a general purpose modeling language that was developed based on
UML and aims to support the MBSE process by providing ways for the representa-
tion and analysis of complex systems. The structure in Figure 2.2 shows the different
diagrams that are part of the SysML specification. Some of them are exactly the
same as in UML, some other have differences like the activity and the internal block

diagram, and other are completely new like the parametric and the requirement

10

diagram.

SyshiL Disgram

[L '
_____ 1
i 1
Behavior Requirement Strueture
Diagram ! Dimgram Diagram
[t 1
I [I | I |
Activity Fequence State Machime Lse Caze Elock Definition Internal Block Package |
Diagrarn Diagram Diagram Dimgram Diagram Diagram Diagram |
jm T ————
| Pammetnc |
1 Dingram
SameasuMLz [e eeme-- |
Modified from LIML 2

pm I
L

Figure 2.2: SysML Diagrams Taxonomy

SysML inserted the concept of requirement diagram in order to better repre-
sent and handle requirements. Apart from representing the requirements, the de-
signer can specify their decomposition and also can allocate low level requirements
to parts of structure. Consequently requirement diagram offers a better traceabil-
ity among requirements and system components. Parametric diagrams are used to
specify equations that characterize the system and link them to system component
properties. The four main parts of a SysML model, which are called the pillars of
SysML, are shown in Figure 2.3. According to these when a system is designed one
should specify the requirements, the system behavior and structure as well as the

parametrics of that system.

2.3 Trade-off Analysis and Design Space Exploration

In this work the focus is on integrating SysML with Consol-Optcad, a trade
off analysis tool that was developed at the University of Maryland [6, 21].

11

1. Structure 2. Behavior

2d ABS, ActwaticnSequince [Saquince L-.,u.,...u
bdd [package] YehicieStructure [ABS-Biock Defrion Di gram] . 1
| definition
=bincks =Bl cks I i Tractios I I ml:H ke I
Lty Frody i Wil T e
pcsinnic . i iy st tim TieoTrnction 51500 Wi chirs D it
bt Cantrolles e state :
machine —
= = e (wommeen %
5 activity! [= ProvandLackup [Act by Disgram] L
el piock] Aot . 5
rdeer Bhac 5 function
L]
€ vy lation| use Dt o9l v O Maodelsle
[] sk a senddci(
e dulmor
realpackage] VifucleSpachcutom
(R pumvments Disgram Brabing Requramerta]
WVilicbe Syitem raking Sebeystem
Sgacificasen Specilicasen
‘Huakin gFavce Aceelm sion
T eqpiremani~ B taurton
Sewppinglistasco AsaiLockPmbsamancs bl B bl

biry 1 511t 1 s
ty surlace” brabing condsioms”

[

3. Requirements 4. Parametrics

Nete that the Pachage and Lge Case diagrame ars mot shown in thie examples, but are respectively par of the structure and behavior pillare

Figure 2.3: The Four Pillars of SysML

2.3.1 Why is it Important?

Trade-off is an essential part of the system design process, as it is a principal
methodology for design space exploration. An integration of SysML with a trade off
tool will allow the designer to make decisions faster and with more confidence. The
probability of human error during transfer of data between tools will not exist and
consequently the overall quality and performance of the system will be increased.
This integration becomes even more crucial when we think of today’s systems that
have multiple competing objectives and requirements to satisfy and a lot of design

parameters.

12

2.3.2 Consol-Optcad

Consol-Optcad is a multi-objective optimization tool that allows interaction
between the model and the user. It can handle non-linear objective functions and
constraints with continuous values. In systems development and after the system
structure is defined there is a need to calculate the design parameters that best
meet the objectives and constraints. Usually when we deal with complex systems
and optimality is under consideration, this is not a trivial task. The support of
an interactive tool, like Consol-Optcad, to help the designer resolve the emerging
trade-offs is crucial. A major advantage of Consol-Optcad is that it allows the user
to interact with the tool, while the optimization is under way. The designer might
not know or might not be in position at the beginning to specify what he means by
optimal design. Therefore such interaction with the tool could be of great benefit
[6, 21]. Another key feature of Consol-Optcad is the use of Feasible Sequential
Quadratic Programming (FSQP) algorithm for the solver. FSQP’s advantage is that
as soon as we get an iteration solution that is inside the feasible region, feasibility
is guaranteed for the following iterations as well. Moreover, very interesting is the
fact that besides traditional objectives and constraints Consol-Optcad allows the
definition of functional constraints and objectives, that depend on a free parameter.
Consol Optcad has been applied to the design of flight control systems [13], rotorcraft
systems [14], circuits and others.

The structure of Consol-Optcad Software is depicted in Figure 2.4. The prob-

lem description file is used to specify the problem by using the specific commands

13

of Consol-Optcad. Convert function compiles that file and then Solve is used to
perform the optimization. As it can be seen Solve can communicate with the user

as well as with external simulators and gives as an output the optimal solution.

SYSTEM DESCRIPTION FILE PROBLEM DESCRIPTION FILE

CONVERT

s

TWO BINARY FILES

(SIMULATOR ,—-—' SOLVE

USER

|

OPTIMAL SOLUTION

7

Figure 2.4: Consol-Optcad Structure

2.3.2.1 Consol-Optcad Constructs

At this section the different constructs of Consol-Optcad that represent com-
mands that the user can specify in the tool environment, will be presented as they

are defined in the user’s guide [6].

Design Parameter

14

Represents a parameter that can be adjusted by the optimization algorithm.
The form of the design parameter command is presented below:
design_parameter (identifier)

init = (expression)

variation = (expression)

min = (soft or hard expression)

max = (soft or hard expression)

Init attribute is the initial value of the parameter, while min and max, if
specified, they provide respectively low and upper bounds for the parameter.
Variation is a quantity indicating the degree of confidence in the initial guess
that the designer provided through init. According to the Consol-Optcad
user’s guide variation should be the difference of the initial value and the next
value the designer would choose if he had to proceed by hand. The variation
is used to scale the initial parameter space according to the formula:
raw_value

scaled_value = ————— (2.1)
variation

If the choice of variation is improper the initial progress of the optimization

is slower. The default value is one.

Objective
The objective declares an objective function and has the following form:
objective (quoted string)

(optimize) (pseudo-C code)

15

good_value = (expression)

bad_value = (expression)

The objective can be either to minimize or to maximize the function. This
is specified at the (optimize) part of the command. The (pseudo-C code)
is C-code the returned value of which is the value of the objective function.
Good_value represents our desired value for the objective function. Respec-
tively a bad_value is used to describe an unfavorable design solution for the
objective function. Another point to illustrate is that when the objective is to
be minimized (maximized) the good_value must be smaller (larger) than the

bad_value.

Constraint
A constraint in Consol-Optcad has the following form:
constraint (quoted string) (soft or hard)
(pseudo-C code) (inequality)
good_value = (expression)

bad_value = (expression)

The structure of constraint is similar to the objective function and only two
differences exist. First, a constraint can be characterized as soft or as hard in
the (soft or hard) part of the command. Consol-Optcad treats soft constraints
similar to objective functions. It tries to minimize/maximize the value of the
constraint in order to reach as close as possible to the good value. If the

constraint is hard the value of that constraint shall meet the good value for

16

the problem to have a solution. The second difference is that for the constraint
the (inequality) should also be defined. Again if (inequality) is equal to

<= (>=) the good_value must be smaller (larger) than the bad_value.

Functional Objective

A functional objective has the following form:

functional_objective (quoted string)
for (identifier) from (expr) to (expr) (mesh type) (expr)
(optimize) (pseudo-C code)
good_curve = (pseudo-C code)

bad_curve = (pseudo-C code)

A functional objective is similar to an objective. The difference is that the
functional objective depends on a free parameter, like time, frequency and
therefore the objective should be minimized or maximized for all the values
of that parameter. For that reason, there is a need to define good and bad
curves and not just values. The second row of the command is responsible for
specifying the limits of the free parameter and how the range of the values is

going to be divided. The syntax is similar to a for-command in C.

Functional Constraint

A functional constraint has the following form:
functional_constraint (quoted string) (soft or hard)
for (identifier) from (expr) to (expr) (mesh type) (expr)

(pseudo-C code) (inequality)

17

good_curve = (pseudo-C code)

bad_curve = (pseudo-C code)

The differences between an objective and a functional objective described

above, are valid as well for the case of a functional constraint and a constraint.

2.3.2.2 Phases of the Optimization

In the previous section the main constructs, that the designer can use to
specify an optimization problem in Consol-Optcad, were discussed. One of the key
concepts that Consol-Optcad introduces is that of specifying good and bad values for
objectives and soft constraints. These values are used by the optimizer in order to
treat all objectives and soft constraints equally. Having any of the various objectives
or soft constraints achieve their corresponding good value should provide the same
level of satisfaction to the designer. Respectively achieving a bad value should give
the designer the same level of dissatisfaction for any objective or soft constraint. The
formula below is used by Consol-Optcad to normalize the value of any objective or

soft constraint according to their good and bad value:

raw_value — good_value

scaled_value = (2.2)

bad_value — good_value

As it can be determined from the formula above a good value corresponds to
a scaled value of 0 whereas a bad value to a scaled value of 1. Apart from objectives
and soft constraints also hard constraints are assigned good and bad values, but
those values are used only in the first phase of the optimization that is going to be
described below.

18

According to M.Fan et al in [6] a problem (P) in Consol-Optcad takes the
following form:
minimmize objr(z) VEk
subject to soft;(x) <0 Vi
hard;(x) <0 Vj
hard_bound;(z) <0 Vi
;where objj, soft;, hard; are scaled values of objectives, soft and hard constraints
respectively and hard_bound; represent hard bound constraints on design parame-
ters.
The optimization process has three phases according to feasibility or infeasi-
bility of x with respect to soft and hard constraints. The three phases are listed

below:

e Phase 1: In this phase the design parameters are adjusted to ensure that hard

constraints are satisfied. Problem (P) takes the following form:

minimize max hard;(x)
@ j

subject to hard_bound;(x) <0 Vi

Once all hard constraints are satisfied the optimization process moves to Phase

two.

e Phase 2: All the hard constraints are satisfied when the optimization reaches

this stage. In this phase the main emphasis is on satisfying the soft constraints

19

and problem (P) takes the following form:

minimize max {objx(z), soft;(x)}

x ki
subject to hard;(z) <0 Vj
hard_bound;(x) <0 Vi
When all soft constraints satisfy their good values we move to phase 3. How-

ever, we can have also a feasible design when all soft constraints meet at least

their bad value threshold.

e Phase 3: Since all hard and soft constraints are satisfied when we reach phase
3, all iterations in this phase give feasible design solutions. The main focus is
on minimizing at each step the objective that has the worst value. The form

of the problem (P) is presented below:

minimize max objrp(z) VEk
subject to softi(x) <0 Vi
hard;(z) <0 Vj

hard_bound;(x) <0 Vi

As it has been mentioned before a key concept of Consol-Optcad is the inter-
action with the designer. This interaction will take place mostly on phase 2 and 3 of
the optimization process. A last thing to underline is that in the phases described
above functional constraints and objectives were omitted, to make the optimiza-
tion steps easier to explain. The only thing that changes however is the way that

scaled values are computed for functional constraints and objectives. The following

20

formula is used for the normalization of functional objectives and constraints:

raw-value(w) — good_curve(w)

(2.3)

led_val =
scaled value(w) bad_curve(w) — good_curve(w)

21

Chapter 3

SysML Integration with Consol-Optcad

As it was mentioned in section 2.3 in this work we give emphasis on the inte-
gration between SysML and Consol-Optcad. This section describes the integration
framework and the separate steps that were followed to achieve this integration.
Here is a good point to mention that MagicDraw was the SysML tool that was
used for this integration. SysML is not a tool specific language, but MagicDraw
was used because it is more open than other tools and it can be modified more
easily. To simplify things from now on when integration with SysML is mentioned,
we refer to integration with MagicDraw SysML. This chapter will analyze in detail
the integration framework and the separate steps that were followed to achieve the

integration.

3.1 Integration Framework

Figure 3.1 presents the architecture of the integration together with numbered
steps that need to be followed to complete the integration process. According to the
three layer approach presented in section 2.1, the integration process is divided in
three main parts. The first part, concerns the mapping of the objects between the
two languages (SysML, Consol-Optcad). It also includes the development of specific

semantics that are going to be used for that purpose and in this case a profile of

22

Consol-Optcad in SysML is created. The second part, is the metamodeling layer
where the transformation between the two models takes place. The last part consists

of implementing the appropriate tool adapters.

Integration Framework

Meta-modeling layer

SysML Consol-Optcad
. :l'_ G ted Code |':

(Tool Adapter (Java) |

i | Yy @
| Tool Adapter (Java) |

|

[ud
~ SysML Consol-Opicad <<prafile=> in SysML Consol-Optcad

Figure 3.1: Integration Framework

3.2 Consol-Optcad Profile in SysML

The creation of a Consol-Optcad profile is the first step of the integration
process. Profiling is the mechanism that SysML has in order to allow the designer
to use additional constructs inside the development environment. MagicDraw tool

support that function. After a profile is built and since it gives the user the ability

23

to use constructs of a specific tool directly in SysML, it decreases significantly the

design effort.

3.2.1 Mapping of Constructs between SysML and Consol-Optcad

Before implementing the actual profile in MagicDraw there is a need to match
conceptually the constructs of the two languages. The difficulty of the mapping
process is case dependent. For this work there were not many alternatives and thus
each construct of Consol-Optcad is mapped to a SysML Block. Each SysML Block
has an applied stereotype so that the different constructs of Consol-Optcad can
be distinguished. In the table below the aforementioned mappings are presented.
Moreover, the specific constructs of Consol Optcad that are mentioned here were

analyzed in section 2.3.2.1.

Mapping Table

SysML Constructs Consol Optcad Constructs
SysML BLock with applied stereotype Design Parameters
SysML BLock with applied stereotype Objective
SysML BLock with applied stereotype Constraint

SysML BLock with applied stereotype Problem description file

SysML BLock with applied stereotype Functional objective

SysML BLock with applied stereotype Functional constraint

24

3.2.2 Building the Profile

A SysML Profile is composed by a set of stereotypes and their relationships.
For each stereotype the designer should specify tag values that correspond to at-
tributes of the construct that the stereotype describes. Those tag values should
have a specific value type. The value type can be either a predefined one, like in-
teger, string, real or a user defined value type. A detailed description of profile
building process can be found in MagicDraw user’s guide [7]. In Figure 3.2 the
implemented Consol-Optcad profile is depicted. Each Consol-Optcad construct of
the mapping table is represented in this diagram by a stereotype. The tag values for
each construct were defined according to the Consol-Optcad specification document
[6]. Moreover, four new value types were used in this specification.

Until now the process of building the profile is tool independent. That means
that a profile can be build by the same way in any other tool that supports SysML.
However in MagicDraw two more steps are needed so that the profile can be us-
able. First, a so called customization diagram must be developed. A customization
diagram (Figure 3.3) has one customization class for each stereotype of the profile.
Inside a customization class a user can define rules about this construct and also
specify the value of a set of tags. The only two tags that need to be always set
to a value are the customizationTarget tag and the hideMetatype tag. A detailed
information about all the different tags and their functionality can again be found
on MagicDraw user’s guide [7].

The last step in order to get a working profile in SysML is to modify the

25

astereotypes
Consol Optcad
[Class]

+name : String ="

+objFunc : Objective [0..']
+constr : Constraint [0.."]

+desParam : Design Parameter [1..7]

+funcObjFunc : Functional Chjective [0..']
+funcConstr : Functional Constraint [0.7] |

estereotypes
Constraint
[Class]

" |+name String=""
+ype : constraint_type
. |Hineq_type : ineg

+function ; String ="

. |+good_value : String ="
- |+bad_value : String ="

asterectypes
Block
[Class]

s -isEncapsulated : Boolean [0.1]

asteretypes
Objective
[Class]

+name : String ="
+optimization_type: mi
+good_valug ; Strin
+had_value : String ="
+function : String = ™

asterectypes
Design Parameter
[Class]

+name : Sfring ="

+variation : String ="
+min_soft_lowbound : String ="
+min_soft_upperbound : String ="
+min_hard : String ="
+max_soft_lowhound : String ="
+max_soft_upperbound ; String ="
+max_hard : String ="

+init ; String ="

sstereotypes
Functional Objective
[Class]

+name : String ="
+How_limit : String ="

+upper_limit : S
+mesh : mesh

+step : String =
+function : String ="
+optimization_type : minmax |
+good_curve ; String ="
+had_curve : String

estereotypes
Functional Constraint
[Class]

+name | String ="
+ype . constraint_type

«ENUMerations cenumerations cenLmerations «enumerations
ineq minmax constraint_type | mesh_type

greater minimize soft by

smaller maximize hard times

dec

lovwy_limit @ String ="
+upper_limit : String =""
+mesh . mesh_ty
+step : String =
+function : String ="
+ineq_type : ineqg
+good_curve : String ="
+had_curve : String ="

Figure 3.2: Consol-Optcad Profile in SysML

The metamodeling layer is the second major part of the integration process.

3.3 Metamodeling Layer

26

block definition diagram so as to have the new constructs on a special section of the
panel. Then a designer can load the new profile inside a project and start using it
by simply drag and drop Consol-Optcad constructs in the block definition diagram

area. Figure 3.4 presents a snapshot of the new block definition diagram panel.

A metamodeling layer stands one abstraction layer above the actual design imple-

eCustomizations T, «Customizations T,
Consol Optcad Design Parameter
«Customization: «Custamization:
customizationTarget= «* Consol Optcad " customizationTarget= <= Design Parameter |
hideMetatype = true hideMetatype = true
showPropertiesWhenMNotApplied = true showPropertiesWhenMothpplied = true
xc:i;’:c'::::m 5\“6 -xCLzlston.\iiafi_an::_ 5%
cCustomization: - =

=Customizatians
customizationTarget= <= Functional Ohjective
hideMetatype = false
showPropertiesWhenhotapplied = true

customizationTarget= «= Ohjective
hideMetatype = true
showPropertiesWhenhlotApplied = true

aCustomizations 5‘0 «Customizations @.3}
Constraint F ional Constraint
cCustormization:] ¥ «Customizations
customizationTarget= «= Constraint customizationTarget= <= Functional Constraint
hideMetatype = true hideMetatype = true
showPropertiesWhenhotApplied = true showProperiesWhenhotApplied = true

Figure 3.3: SysML Customization Diagram

%) Diagram Overview

TradeOff

E Class«Consal Optcads

E Class«Design Parameters
E Class«Objectives

g ClasseConstraints

E Class«Functional Objectives
E ClasseFunctional Constraints
[iE5) Package Diagram

Constraint Block

@ Diornain >
[Walue Type -
[CE] Enumeration

Sigrial

=l Instance

—a Interface

E Flow Specification

]] Park ¥

A Interface Realization hd

A Link,

Figure 3.4: Modified Block Definition Diagram Panel

mentation in a modeling language. A metamodel consists of the constructs of a
modeling language together with the rules that specify the allowable relationships

between these constructs. It can be resembled as the grammar of the modeling

27

language.

3.3.1 Model Transformation

At the metamodeling layer model transformations take place. In general a
model transformation is the conversion of a metamodel of one language to the
metamodel of another. There are many alternatives in terms of model transfor-
mation tools, like ATL, GME, eMoflon, QVT. In this research the eMoflon model
transformation tool was used which was developed at TU Darmstadt [9] [10]. In
the sections that follow the architecture of eMoflon tool as well as the actual model

transformation between SysML and Consol-Optcad are described in more detail.

3.3.1.1 eMoflon Toolsuit

The eMoflon tool was chosen instead of other metamodeling tools due to the
following reasons. First of all, graph transformations is the underlying theory for
the model transformations; a fact that makes the semantics strong and can lead to
satisfaction of formal properties such as correctness, completeness and termination.
In addition, the way eMoflon toolsuit is developed allows for graphical representation
of metamodels and transformation rules; a fact that makes the model transformation
process less cumbersome and less error prone. Another advantage of eMoflon is that
it can generate automatically Java code for the model transformations. Since most
of the tools today are implemented in Java, eMoflon code for transformations can

be easily used and integrated in other tools. Finally, the development environment

28

is user friendly, the tool is well documented and it has a strong support/developing
team.
In Figure 3.5 the architecture of the eMoflon tool is presented at a high ab-

straction layer.

Eclipse

Enterprise Architect (EA)

eMoflon Plug-in

Figure 3.5: eMoflon Architecture

A more detailed system architecture of eMoflon is presented in Figure 3.6,
which comes from a recent paper of the eMoflon developing team [10].

As it can be seen the front end of the eMoflon tool is realized in Enterprise
Architect (EA) through a special EA Add-in. Enterprise Architect is an industry
strong Computer Aided Software Engineering (CASE) tool that is used at many
companies. The reasons for choosing EA for the front end part of the system, in-
stead of some other CASE tool, are analyzed by eMoflon team in [10]. The front end
component of the system architecture, should provide the user the capabilities for
specifying metamodels by using class diagrams, unidirectional model transforma-
tions via Story Diagrams SDMs (see section 3.3.1.4) and bidirectional transforma-
tions via triple graph grammars (TGGs). Moreover, the front end component should
have an interface that will allow the stored data to be exported to the Integrated De-
velopment Environment (IDE) component in the correct form. The developed EA

Add-in meets those requirements apart from the capability of specifying bidirec-

29

o Fromn

% o

Clazs Diagrams Graph Transtormations Trple E-‘aph Grammans
(o) (SDhs)
l
E'p:pnrt.ﬂwmn for EMOF (Ecore)

! e
‘J.r" co SDr '_._.-"_ i

e
$
Yol R [.
Y

Compier
EMFFujaba — Integraior
Compiier = '|
¢ jave |
Wizards

[by

Fu}am
CodaCiens 8

(EMF Templates) B E

:l%"‘-‘ o —

— HelpfLogging
EMF
3 Codeten _Iif
Cars u

Figure 3.6: eMoflon Detailed System Architecture

tional transformations using TGGs. According to the eMoflon team this capability

will be available soon. Here is a good point to emphasize that eMoflon does not

30

depend on EA or any other editor. That independence allows eMoflon to be used
as a command line operated code generator and compiler fact that is useful when
trying to automate a process. In addition the eMoflon team is developing a textual
front end for the system.

Another thing to mention about the front end component is that the eMoflon
tool requires all metamodels and other diagrams to be developed according to the
Ecore format. With the increasing popularity of Eclipse and Eclipse Modeling
Framework (EMF), Ecore established as a standard for metamodeling. Ecore is
also isomorphic to a subset of MOF, named EMOF, that is an OMG standard.
Ecore/EMF for the expression of the metamodel allows objects, associations be-
tween them, operations inside each project, attributes and also some simple con-
straints on objects, like multiplicity and relationship. The notation that is used to
build the metamodels is similar to a UML class diagram. Figure 3.7 presents all
the constructs that can be used to develop a metamodel that is compatible with the
Ecore format.

The second major component of the eMoflon system architecture is the IDE,
that is realized by a set of eclipse plug-ins. The CORE set of plug-ins is responsible
for code generation. Through the Model Loader the information from the front end
is stored in EMF format. A TGG compiler converts the TGG model to a set of
unidirectional SDMs. Then all models are compiled through the EMF2FUJABA
compiler to a format understandable by FUJABA. FUJABA (Universitit Pader-
born) is a model transformation engine that generates java code for unidirectional

transformations expressed with SDMs. The EMF compliant java code from the

31

EObject

[
‘ EModslElernent

EFaEtory ‘ ENameole.‘emem ‘

EPackage ‘ ECiassifier | EEnumLiteral ETvpedEkment ‘
‘ EClass J EDataType ‘ EStucturalFe ature EQperation EParameter
T :
|

EEnum ‘ EAtrbute ‘ EReference

Figure 3.7: Ecore Metamodel

SDMs and the metamodels is then merged and forward to the UI set of plug-ins.
The Ul is responsible for allowing the user to visualize, navigate through and ma-

nipulate the generated code.

3.3.1.2 SysML/UML Metamodel

In Figure 3.8 the constructs from SysML and UML that can be used for model
transformations are presented. Those constructs are a subset of the two metamod-
els. Actually the way eMoflon is implemented you need to develop a metamodel
with only the constructs that are used in the transformation rules. The files that
contain the whole metamodels in Ecore format need to be imported in eclipse for

the transformations to take place. Until now it is not possible in eMoflon to input

32

large external metamodel files. Because of that, as it was mentioned above, we need
to rebuild part of the metamodel, even though we might have the whole metamodel

structure in a separate file.

3.3.1.3 Consol-Optcad Metamodel

Like with the SysML/UML metamodel, the Consol-Optcad metamodel was

developed in Ecore format (Figure 3.9).

3.3.1.4 Transformation Rules and Code Generation

As it was mentioned above the transformation rules are expressed using Story
Diagrams (SDMs). Story diagrams is a graph grammar language and they provide a
mechanism for defining unidirectional graph transformations. SDMs adopt concepts
from UML class, activity and collaboration diagrams [12].

As described in [9], a rule r:(L,R) defined by an SDM follows the three steps

below when is applied to a graph:
e Find a match m for the precondition L in G

e Delete all the elements that are present in the precondition but not in the

postcondition (Destroy := (L \ R)), to form (G \ Destroy)

e Create new elements that are present in the postcondition but not in the
precondition (Create := (R \ L)), to form a new graph H = (G \ Destroy) U

Create

33

Ve

Figure 3.8:

-.= ~ualue :Elnt

SysML/UML Metamodel

93

Figure 3.9: Consol-Optcad Metamodel

Figure 3.10 presents two graph transformations rules and Figures 3.11 and
3.12 depict how those rules can be applied on graphs. The nodes of these graphs
can be thought as model blocks and the edges as associations between those blocks.
Both examples represent rules that evolve the structure of only one graph. However,
a rule can be defined so as the precondition (left part of the rule) and postcondition

(right part of the rule) are applied to different graphs.

L R

L—-R
LER

®

L
o= §
®

Figure 3.10: Graph Transformation Rules

At this point we focus on the actual eMoflon project for the integration of
SysML with Consol-Optcad. The starting point is the definition of the metamodels
in Enterprise Architect. Both metamodels were presented in sections 3.3.1.2 and
3.3.1.3. For the transformation to take place we need to define a new package that
will contain an object responsible for the transformation. The rules for the model
transformation are defined as operations inside this object (see Figure 3.13).

Each operation has an attached story diagram that specifies the rule. Below

36

Step 2 — Rule Application

Rule

Rule

Figure 3.12: Graph Transformation Rule Application (2)

37

«eclassn
Transformer

o

ConsolOptead(EString) :Opteadhiodel

Constraint{0pteadidodel, FroblemDescriptionFile, EString, EStiing, EString, EString, EString, EString) :FroblembescriptionFila

DesignParametenOpteadiiodel, ProblemDeseriptionFile, EString, EString, EString, EString, EString, EString, EString, EString, EString) :ProblemDescriptionFile
FunctionalConstraintOpteadhodel, Problemb escriptionFile, EString, EString, EString, EString, EString, EString, EString, EString, EString, ESting) :FroblembescripticnFile
FunctionalObjective(Optcadhlodel, ProblemDescriptionFile, EString, EString, EString, EString, EString, EString, EString, EString, EString) :ProblembescriptionFile
ObjectiveFunction(OpteadModal, ProblemDezeriptionFile, EString, EString, EString, EString, EString) :ProblamDescriptionFile

Figure 3.13: Object Responsible for the Transformations

38

Figure 3.14 corresponds to the rule that creates a functional constraint if a model al-
ready exists. As is going to be described in section 3.4.1 when a functional constraint
block is identified by the developed plug-in the Java function that corresponds to
that rule is called and a Consol-Optcad functional constraint construct is created.
The end result, after applying all the rules for all the objects, is a Consol-Optcad

model that corresponds to the initial SysML model.

Transtarmer: r.jpmon_al'c_onst.awng (model Opteadidadsl, pdf: ProblembesciptionFile, name: ESting, sonstraint func: EString, low_limit ESting

‘a8 ActivityNode? B

model: L+ model +oontainedroF fpdf: PreblembescriptionFile

+pdf

+eontainedFuncConstraints pdt

funeConstraint: FunctionalConstraint
name:=name
constrai unc:=constraint_func
Tow_limit=low_limit
upper_|

=upper_limit

mesh_type=mesh_type
Hepi=step

Figure 3.14: Rule for Functional Constraint

After defining all the SDMs, the EA models should be exported to eclipse.
Figure 3.15 shows the project structure that we get in eclipse after the export

function of eMoflon in EA is invoked.

39

& Java - SysmiOptcadTransformationfgen/SysmlOptcadTransformationfimpl/Transformerimpl. java - Eclipse

File Edit Source Refactor Mavigate Search MagicDraw Run Project ‘Window Help

N HES IS 0-Q iEE BB IRLACET L H o Eer
f.tg-Padwg_t_a Explorer <l) =5

. g e~
[Lg ConsolOptcad 12 [https: /fsysopt.geoglec

TransformerImpl java &3

P MEY LU MSTLTWUL ——

== end-uger—doc —=%

genevated

o= SysMLConsolOptcadlanguages 16 [htl
3 5 ConsolOptcadtangu.

§ SysMLConsolOptcadLanguages Idb
=l ':% SysmiOptcadTransformation 18 [Rrtps:
g src 13

~.ie ProblemPescriptionFile FunctionalConstraint (OptcadModel model,
ProblewlescriptionFile pdf, String name, String constraint_fune,
String type, String low limit, String upper limit,
Ftring mesh type, String step, 3tring ineq type, String good curve,
gtring bad curve) |
boolean fujaba Huccess = false;
gen FunctionalConstraint funcConstraint = null;
i} SysmioptcadTransfarmation
i SysmloptcadTransformation.impl
2 SysmioptcadTranstormation. util
1B Moflon Libraties
1B Referenced Libraries
I [debug

4/ story pattern LAetivitylNode?
try {
fujaba Success = false:

// check object model iz really hound

oy instances 13 JavaiDM.ensure (model != null);
; Eylib 13 /4 check object pdf is really bound
f_ﬁmodel 13 Java3Dl.ensure (pdf !'= null);
~ |54 moflon. properties 15 /¢ eheck link containedPDF from pdf to model
JavasDM,. ensure (model.equals (pdf. getModel())]

Figure 3.15: eMoflon Project Structure in Eclipse

3.4 Tool Adapters

Tool adapters work as the “glue” between the different pieces of software.
Their role is to access/change information inside a model and also call the appro-
priate Java functions generated by the eMoflon tool to perform the model trans-
formations. All adapters for this project were developed inside a single MagicDraw
plug-in, which is the way to extend the functionality of MagicDraw. In the next

section the developed MagicDraw plug-in will be analyzed in detail.

3.4.1 MagicDraw Plug-in

The plug-in is the core of the software part of the integration process. It was
developed in the Eclipse platform using Java. FEclipse offers a way to develop a

plug-in inside its environment and then start MagicDraw from Eclipse (see Figures

40

3.16 and 3.17). That makes the development process much easier since debugging

information is immediately accessible through the Eclipse environment [8].

& Run Configurations

Create, manage, and run configurations
Run & Java application @

| Mame; |Start MagicOraw ‘
1

| G Ma‘ir_\\\,“w= Arguments | B, JRE | ¥ Classpath | B2 Source | g Environment | =) Comman |
Eclipse Application | Project:

- Java Applet [CansoloptcadPlugin | [prowse..]

(=] Jawa Application |

LT || Ve dass:

o JUnie | com.nomagic. magicdraw.Main [search... |
jﬁ JUnit Plug-in Test

" osGi Framework [tneclude syster libraries when searching For & main dlass

; ﬁ} Task Conkext Plug-in | [include inherited mains when ssarching far a main class

"oy Task Contesxt Test [stop in main

Figure 3.16: Starting MagicDraw from Eclipse Environment

& 'y B ‘E®c i 4 o B [5 (87 2ava |
L A <;:|v

= =0T T e — = o e = =

O 1] Meruactionjava | 1] Browseraction.java 51 [1] TransformationTaTest |72 Tasklist 52 =

=1) de | F = |

o = (ED & I String human name = element.gerHuwanNaree ()2 T |"f=:‘®t=: ¥ XB | 48 1l

3 1= ConsalopteadPugin | |
a |

System. out.println (human name) ;
ZtringTokenizer st = new StringTokenizer (human
String actual nawe="":

EYR

8 s |
£ B IRE System Libre |

) Referenced Lird | T~
(= instances i o i
oMMt o youT tast A AL ot o
dema.tt create = locdl task,
< [Z] LICENSE.COW || 5 -
4 PoLcPP < outine B =H

~*2 TradeStudy.pdf | | e e e—
[TradeStudy.tzt | |) Bl R e e vt § il
| B plugin “~
w= import declarations
BrowserAction

e" BrowserAction()
@ ® printMap{Map} : void

Enterprise edition Ewvaluation Demo version
Reading SYSMOD Usa Case Diagram..

e directory C:iDocuments and Settingsidimitris).magicdrawy17.0.1%cachel953735516 2-
2012-04-02 16:16:26,660 [wain] INFO MODEL - ReflectionHelper.getElementsFactory CREATING & NEW TI
2012-04-02 16:16:26,926 [wain] INFO cow.io_softvare.imi.reflect.ibstractRepository - Created repc

Figure 3.17: Starting MagicDraw from Eclipse Environment cont’d

Figure 3.18 shows the software architecture of the plug-in, which was obtained
using ObjectAid UML tool.

To create a plug-in for Magicdraw we need to implement three classes. Myplu-
gin, which inherits from the Plugin class, is the class that is called when MagicDraw

41

==xlava Classs= =xlava Clase==
& Plugin {3 MDAction
som nemagic.magicdraw plugins com.nomagic. magicdraw.actions
o mDescriptor: PluginDescrigtar @”MDActlnn(Strlng‘Etrlng,KeyEanke,Smng)
éP\ug\nO afMDAmion(mring‘String,irrt,String]
@ getDescriptor() PluginDescriptar @ actionPerformedd ActionEwvert):woid
& setDescriptor(PluginDescriptor): vaid @ updsteState(rvoid

e}‘\ It
& close() boolean
(f‘ IsSuppartedtl baoiean

==lava Classs=
==lava Class=> (2 DefaultBrowserAction
(€] N::::mm _«Java S - mTreec:;:magm magicdraw ui browser.actions
= = (C] Cmrﬁguratur - - .
@ hlyPluging) plugin b WS Aetion Lj:DefaultElruwserACt\Un(Stnng,Sirlng‘KeySIruke,Stnng)
@ Initr):woic eCCuniigurator() o @ =zetTree(Tree)void
@ close(xhoolean © configure(Actionshanager, Treevaid = os oetTree() Tree
@ isBupported()hoolean @ yetPriority(int @ getFirstElement(Tres): BaseElement
@ getFirstElement(rBaseElement
< getSelectedObjectl) Object
@ getSelectedObjects() Collection
==lava Class==
{2 TransformationToText <2Java Class=>
plugin (3 BrowserAction
& TransformationTaText() plugin
G;-S desparam(Bufferediriter String String String, String, String String, String, String String): Bufferedriter @? Broweser Actioni)
EJS objectivelBufferediirter Vector String String String, String String) Buffersd/iriter QS prirthapihdap); void
es constraint(Bufferediiriter Vector String,String String,String, String String):Bufferedhvriter L @ actionPerformed(ActionEvertyvoid
E)S functionalobjective(Butterediriter,Vector String String String String, String String, String String String): Bufferedfiriter
@S functionalconstraint(BufferedWirter vector String, String, String, String String, String String String, String, String): Bufferedhriter
==Java Class== = T
(& Transformerimpl <
Sysml OpteadTransformation.impl
£ Transtormermpl()
¢ eStaticClazs()EClass

@ CongolOptead(String) Optcacdhlode!

@ DesignParameterOptcadiode! ProblembescriptionFile String, String, String, String String String, String String String) ProblemDescriptionFile

@ ObjectiveFunction{Optcadidodel ProblemDescrigtionFile, String, String, String, String String): ProblemDe scriptionFile

@ test(BlockyFunctionalObjective

@ Congtraint{Optcadiiodel ProblemDescriptionFile String, String, String String, String, String): ProblemDescriptionFile

@ FunctionalObjective(Optoadhadel, ProblemDescriptionFile, String String, String String, String, String String, String, String): ProblemDescriptionFile

@ FunctionalConstraint{Optcaditodel ProblemDescriptionFile String, String String, String, String, String String, String, String String):ProblemDescrigtionFile
@ elnvake(int EList=7=).Object

==Java Interface==
&3 Transformer
SysmipteadTrans formation

@ ConsolOptesd String): Optcadiodel

@ DesignParameteriOpteadiodel ProblemDescriptionFile String, String String String, String, String, String String, String); ProblemDescriptionFile

@ OhjectiveFunction{Opteadiiodel ProblemDescriptionFile String, String, String String, String) ProblemDescriptionFile

@ test(Block) FunctionalObjective

@ Constraint{Optcadiiodel ProblemDescriptionFile, String, String String, String, String, String): ProblembescriptionFile

@ FunctionalOhjective(Optcadhodel ProblembescriptionFile String String String, String String, String, String String String) ProblemDescriptionFile

@ FunctionalConstraint{OptcadModel ProblemDescrigtionFile, String, String, String, String, String String, String, String, String, String). ProblemDescriptionFile

Figure 3.18: MagicDraw Plug-in Software Structure

starts and loads all the available plug-ins. This class is responsible to create a Con-
figurator Class and attach it to the current plug-in. The Configurator class adjusts
the User Interface (UI) of MagicDraw, to show the Consol-Optcad plug-in as a choice
in the MagicDraw environment. The exact panel that this option will be available

is up to the developer of the the plug-in. Moreover, the Configurator class assigns

42

the specific action that will be executed when the user starts the Consol-Optcad
plug-in from MagicDraw’s drop-down menu. In this case the BrowserAction class,
which inherits from the DefaultBrowserAction class, is used to specify the action
that will be performed. Inside the BrowserAction class the MagicDraw APIT [8] is
used to access both block and parametric diagrams of SysML, and get the needed
information from the model. After the needed data are gathered the functions of the
TransformerImpl class are invoked to perform the transformation. The Transforma-
tionlmpl class is part of the project that holds the generated code from the model
transformation. When the transformation is complete, the Consol-Optcad model,
in terms of Java classes, will be available. Here it should be mentioned that all the
code generated by eMoflon for the transformations was made available to the Eclipse
project by importing it as a .jar file, which works like a library. The next thing that
the BrowserAction does is to call the functions available by the Transformation-
ToText class. This class is mainly the adapter of Consol-Optcad. Each function
of this class takes as an input an object of Consol-Optcad in Java and returns the
Problem Description File, which is a text file that contains the problem formulation
description for the Consol-Optcad environment. When all the objects are translated
the plug-in starts Consol-Optcad and automatically opens the Problem Description
File.

Figure 3.19 is the same plug-in architecture but in a more abstract represen-

tation.

43

aw Plugin
MyPlugin java Configurator.java BrowserAction.java
= +configurelil) +oetSyshLinformation)
+ereateConfigurator() +assignaction() +eallTransformationFunctions()
+attachConfigurator() +oaliModeTaText()
+startConsolOptead()
ConsolOptcad Adapter eMoflon Code (jar file)
TransformationToTextjava | Transformerimpl.java
+oreateProblemDescriptionFile() +PerformTransformationFunctions()

Figure 3.19: MagicDraw Plug-in Abstract Software Structure

Section 4.3 will illustrate better with the use of an example, the outcome of

the integration process described in this chapter.

44

Chapter 4

Trade-off Analysis of an Electrical Microgrid

In Chapter 3 we analyzed the integration methodology and implementation.
In this chapter the aim is to illustrate the way the integration works through an
example. A trade-off analysis of an electrical microgrid was chosen as an interesting

example for that purpose.

4.1 A Microgrid and its Components

The typical way of producing and distributing power is through a centralized
power system. This way of generating power has served well the humanity during the
last century. However it has some important inefficiencies. To generate power, those
systems use mainly fossil fuels, which are a heavy environmental pollutant and also
are available in reduced quantities year by year. Moreover 50% to 70% of the fuel
used to produce power is lost as heat waste and around 8% of the generated power
is lost in transmission lines. The infrastructure has huge maintenance costs and
its complexity makes the whole system vulnerable and prone to black-outs. Besides
that new investments in this market are difficult due to regulations and large capital
investments that are needed. Finally, the price of electricity for consumers is high
[22].

To address all these shortcomings the notion of Distributed Generation (DG)

45

has been developed. In DG the generating systems are of small scale, their use is
local and they are geographically distributed. Distributed energy resources (DERs)
offer very good power quality with less frequency variations, voltage transients or
other disruptions, they can be used as back-up system for the electrical grid and
also when the demand and charges for electricity are high. Furthermore, DERs
offer low-cost energy, due to the local production, and many of them can be used
as sources of both heat and power [22]. However, DERs can cause problems to
the network, like reverse power flow, excessive voltage rise, increased fault levels,
harmonic distortion and stability problems, because of their independent operation.
To overcome problems caused by independent operation, DERs are grouped together
and together with loads to form what is called a microgrid. A microgrid is operating
as a single controllable entity. In Figure 4.1 a typical structure of a microgrid is
depicted.

As it can be seen the point of common coupling (PCC) is the only connection
point between the microgrid and the utility. A central role in a microgrid’s smooth
operation is played by the Energy Management System, which makes the decisions
about generation and distribution of electrical energy. Those decisions are based on
many factors, like power demand, weather, price of electricity and heat, fuel cost,
emissions cost and government policies, to name a few. The DERs that take part
on a microgrid can be electrical, thermal or a combination. Solar panels, small wind
and hydro generators, micro turbines, diesel engines, fuel cells, gas turbines are
some examples of DERs. At this point, more detailed information will be provided
about the DERs that are used at the example developed to demonstrate the tool

46

-
-

A Transformer

“~{sD]

\ [cB
\\
~
GC
L 4
Shedable
~JLC ¥ Loads
- . Feeder
- Feeder @
Sensitive @
Loads

Figure 4.1: Microgrid Structure [22]

integration (see section 4.2).

Micro turbine
Micro turbines are small combustion turbines that were developed from tech-
nologies found in large tracks and in the auxiliary power unit (APU) of the
aircrafts. They can produce power between 25-500kW, which is suitable for
small offices, retail stores, hotels, apartment houses and restaurants. The pre-
vailed type is the recuperated micro turbine, which gives efficiencies in the

range of 20-30% and utilizes a variety of fuels, like natural gas, hydrogen,

47

diesel or propane. In Figure 4.2 a schematic of a recuperated micro turbine is

presented [20].

Turbine Exhaust

(>

Turivne

Air Filter

Power
Conditioning

Combustor

L

5) (Fuel Injection
System Exhaust
{Heat Recovery)

Gas Compressor
Gas Source

Figure 4.2: Micro Turbine Diagram

The recuperator recovers heat from the exhaust gas and boosts the temper-
ature of the air supplied to the combustor. This increases significantly the
efficiency of the micro turbine. If the micro turbine is used also as a ther-
mal resource then the combined efficiency can reach up to 85%. Table 4.1

illustrates the major advantages and disadvantages of a micro turbine [20].

Fuel Cells
Fuel cells is a technology that is around for a long time and was first used by
NASA. They work similarly to a battery in the sense that an electro-chemical
reaction is used in order to create electrical current. The difference is that for
the chemical reaction fuel cells use hydrogen and oxygen as reactants. Since
those gas reactants can be fed into the fuel cell continuously, the unit will

48

Micro turbine

Advantages compact size, low-weight, low emissions, good efficiencies when used as
source of heat and electricity, long maintenance intervals, can re-use

waste fuels

Disadvantages loss of power output and efficiency in high temperatures, low fuel to

electricity efficiency

Table 4.1: Advantages and disadvantages of a micro turbine

never run down. When we are considering fuel cells as DERs we refer to a
stack of fuel cells, because individual fuel cells can produce only low voltages
20].

There are many types of fuel cells. In this case the emphasis is on phosphoric
acid fuel cells (PAFC), which is the only fuel cell technology that has been
commercialized. Table 4.2 illustrates the major advantages and disadvantages

of phosphoric acid fuel cells [20].

Phosphoric Acid Fuel Cells (PAFC)

Advantages Quiet, Low emissions, High efficiency, Reliability

Disadvantages High costs, Low power

Table 4.2: Advantages and Disadvantages of Phosphoric Acid Fuel Cells

49

Diesel Engine
Diesel engines need to be coupled with an electrical generator to produce
electricity. However for simplicity we use only the term diesel engine. Diesel
engines are used for the production of electricity for many years. Their biggest
advantage is the high power output and reliability however they produce more
emissions than other DERs. In this work we focus on a Selective Catalytic
Reduction (SCR) Diesel Engine, which has a mechanism to reduce NOx emis-

sions.

4.2 Problem Formulation

We define a Microgrid that consists of three power sources, one microturbine,
one collection of phosphoric acid fuel cells and one diesel engine. The characteristics
of each type of power source are listed in table 4.3 . The data were gathered from
[16], [17] and [18].

The Microgrid is supposed to provide power to a residential building that has
50 apartments. We would like to find an optimal solution in terms of scheduling
and power output of each engine for a period of 24 hours. The optimal solution is
searched while trying to minimize operational cost, fuel cost, emissions and meet
customer demand. We assume that the power source can be turned on and off two
times only during a day. That is valid because of the costs that are associated with
turning on/off each power source.

For the specific problem we define 5 design variables for each power source:

20

Power Source Capacity | Efficiency NOx CO, SO- Kowm
(kW) % (Ib/MWh) | (Ib/MWh) | (Ib/MWh) | ($/kWh)

Phosphoric Acid 25 37 0.03 1,078 0.0006 0.00419

Fuel Cells

SCR Controlled 1000 38 4.7 1,432 0.454 0.01258

Diesel Engine

Micro Turbine 25 25 0.44 1,596 0.008 0.00587

e P, 1 =1,2, 3 represents the output power of each power source

L4 ti_onl

operate

Table 4.3: Characteristics of the power sources

i = 1,2,...N represents the first time that power source i starts to

® i ofs1 ¢ =1,2,...N represents the first time that power source i is turned off

® t; ono t=1,2,..N represents the second time that power source i is turned on

® 1 ofp2 © =1,2,...N represents the second time that power source i is turned

off

The objectives and the demand constraint are described below:

Operational Cost

This objective aims to minimize the total operation and maintenance cost

o1

needed for the microgrid. The formula that was introduced in [15] is used:

N
OM($) == Z KOMi‘Pitioperation’

i=1
where N is the number of generating power sources, Koy, is a constant for

each power source defined in table 4.3, ¢ h) is the total time period

Loperation (

that power source i is ON and P;(kW) is the power output of each source.

Fuel Cost

Another objective in our problem is to minimize fuel cost. The following

formula [15] is used to calculate fuel cost:

N
FC<$> — CZRZ operation
1=1

n; ’
where N is the number of generating power sources, C;($) the price of fuel
that each source utilizes, R;(gallon/kWh) the consumption rate of each power
source, P;(kW) is the power output of each source, t;,, (h) is the total
time period that power source ¢ is ON, and n; the efficiency of each power

source.

Emissions

Emissions should also be minimized and they are calculated with the help of

the following formula [16]:

M
EC<$> = Z Z ak(Eﬂkpitioperation/]‘ooo)’
i=1 k=1
where N is the number of generating power sources, M the number of emission

types, ax($/1b) a constant showing the cost of emission k, EF.(1Ib/MWh) is

D2

the emission factor of power source i and emission type &, t;,,., ... () is the

total time period that power source i is ON and P;(kW) is the power output

of each source.

Meet Demand

Meet demand is a functional constraint that corresponds to the power demand
in the fifty apartment residence of the example each time of day. Time is the
free parameter and can take value from 1 to 24. Data from [19] were used to

define an approximate function for the power demand:

t
Demand(kW) =50 - (—0.6 sin(71r—2) +1.2),

where ¢ is time.

There are also three constraints that ensure the correct operation of each

generating power unit:

® tiorf1-tionn > AND G opp0 -tiono > 2 1=1,2,..N
When a generating power source is turned ON;, it shall remain ON for at least
x;(h) time units. If that constraint is not met then the power sources may

malfunction.

® bion2 - Lisofr1 = Yi
When a generating power source is turned OFF, it shall remain OFF for at
least y;(h) time units. If that constraint is not met then the power sources

may malfunction.

23

The problem has a total of 15 design variables, 10 constraints and 3 objective
functions. In the next sections the description of the problem in SysML will be

presented together with the actual solution is Consol-Optcad.

4.3 Problem Solution using the SysML Consol-Optcad Integration

In this section a solution to the microgrid problem (see section 4.2) using our
integration will be presented. The solution includes both the SysML model of the
problem and the trade-off analysis part in Consol-Optcad, after the transformation

is being performed.

4.3.1 SysML Model of the Problem

The first step towards a solution is to build in SysML the microgrid system
structure as well as specify the trade-off analysis problem by utilizing the constructs
offered by the Consol-Optcad profile (see section 3.2).

The block definition diagram that shows the three power sources that are part
of the microgrid is shown in Figure 4.3. As described in problem formulation each
of the tree power sources will have 5 variables. Those variables are easily recognized
in the block diagram. They represent the output power of each source and the times
the source goes on and off. There is also one constraint block named Transfer. This
constraint block is used in the parametric diagram to pass attribute values of the
power sources to the trade off analysis model. Moreover, this block should have one

input parameter of type 'Real’ and one output parameter of type 'String’.

o4

bdd [Package] SimpleExample [BbcksJJ

«blbcks
Grid

McroTurbine,

constrants
transter0 : Transfer
ranster02 : Transfer
franster03 : Transfer
transfer04 : Transfer
ransfer05 : Transfer
transfer06 : Transfer
transfer07 : Transfer
transter08 : Transfer
ransterd : Transfer
transferi0 : Transfer
ransterii : Transfer
ransferi2 : Transfer
fransier13 : Transfer
transfer14 : Transfer
transfer15 : Transfer

parts
TradeStudy : Trade Study

«blocks
MicroTurbine

valies

FuelCels

«constraint»
Transfer
constrants

fy=x}

DieselEnghe

«blocks
FuelCells

«block»
DieselEngine

valies

values
output_pow er : Real

output_pow er : Real i : SR et

i = utput | er : Real ime_ 1 Ra

22-252 : Rg';: Seom. oFH1 -l ime_of 2 : Real

time_on1 : Real time_off2 : Feal time_on1 : Real

time_on2 : Real time_cnt : Aeal time_on2 : Real
= time_on2 : Real

Figure 4.3: Block Definition Diagram of the Microgrid

The process continues by specifying the trade-off analysis model in SysML. For
this part both the SysML block and SysML parametric diagrams are used. The block
diagram represents the constructs of the trade-off analysis, like design variables,
objectives and constraints. Parametric diagram is used to pass the information
from the system structure to the trade-off analysis model. It should be mentioned
that in order to pass parameters of the system for trade-off analysis, an instance of
the system model should be created first (Figure 4.4). That is a trivial process that
can be done automatically by MagicDraw.

The following figures illustrate better the SysML model of the problem. First
of all the fifteen design parameters of the problem are presented in Figure 4.5. As
it can be seen each design parameter has attribute tags that may be filled up by

the designer. Those attributes can be used to bound the design variable or set its

55

«hlocks =
grid.dieselEngine : DieselEngine
output_power=12.10
time_offt = 2.0
fime_off2=24.0
tirme_on1 =50
titne_onz=15.0

shlocks = whlocks
grid.microTurbine : MicroTurbine grid.fuelCells : FuelCells
output_power=10.0 output_power=15.0
tirme_offt = 8.0 titne_offl =12.0
time_off2=23.0 titne_off2 = 24.0
tirne_on1 =0.0 titne_on1 =60
tirne_on2=12.0 time_on2=16.0

Figure 4.4: Instance Diagram of Microgrid System

variation (see section 2.3.2.1). Also each design parameter has an attribute that
is used to obtain the initial value of that parameter. That value comes from the
instance diagram and is transferred through the parametric diagram. Figure 4.6
shows how the process of passing parameters is modeled.

As indicated also above, besides design variables, the objectives and con-
straints that take part in the trade-off study were modeled in SysML. Figures 4.7,
4.8 and 4.9 better illustrate how these constructs look like inside the MagicDraw
environment.

When the hole modeling process in SysML is completed the designer can make
the transformation and start using Consol-Optcad. This can be easily done by se-
lecting the Consol-Optcad choice from MagicDraw’s drop down menu, while having

the parametric diagram open. This process is depicted in Figures 4.10 and 4.11.

56

LS

Figure 4.5: Design Parameters of Microgrid Trade-off Model

Figure 4.6: Parametric Diagram of Microgrid System

58

Figure 4.7: Operation/Maintenance Cost Objective and Constraints

Figure 4.8: Power Demand Functional Constraint

Figure 4.9: Fuel Cost Objective

59

B & Create Symbol Crl+Shift+y

=t

Diocumney Find... g i 2 : 5
[IHTM s E

Auithory GensretsRepart DieselEngine : DieselEngine
Created

402 PM

Etla:. J ParaMagic output_power : Real |
OmMEr-—~ EyIfarmaton Flaw ! |

. time_off1 : Real i
time_off2 : Real |

time_on1 : Real L
time_on2 : Real

Figure 4.10: Calling Consol-Optcad from MagicDraw Environment

| ‘ y=x}
time_off2 : Real . Sl

T RER

—] sconstraints —y: String

ransfer03 : Transfe
{y=x}

time_on1 : Real |

=7 CONSOL for. Windows - TradeStudy
File Edb Yiew DesignParameter Specs Optimization Tools Options Window

— parameter : String |

P_DG_OFF1, P_FC_ON1, P_FC_OFF1, P_FC, P_MT, P_MT_ON1; i = 4 :
return P_MT_OFF2'P_MT_ON2; e p_mt_off2: P_MT_OFF2

good_value =5
bad_wvalue = 2

constraint "“timelimitsDGthree" hard {

+ ' p_mt_ont :P_MT_OM1 |

et i |

I>= good_value =5
ibad_value = 3

p_mt_on2 : P_MT_ON2

constraint "timelimitsFCone" hard {

For Help, press F1 [Currert Teeration: (noned | [OVR | 040212 0% M)

DieselEngine : DieselEngine | ‘ Pri“;feru‘,:]’ra“!fe = = = 1T = T = = I = ==

Figure 4.11: Consol-Optcad

60

4.3.2 Solving Problem in Consol-Optcad

After modeling the system and the trade-off analysis in the MagicDraw SysML
environment the integration mechanism can be used to automatically transform the
existing model in a problem description file inside Consol-Optcad (see Figures 4.10
and 4.11). For the multi-objective problem that is under consideration, we run the
FSQP algorithm of Consol-Optcad several times with different initial conditions.
Below the best solution found with regard to the examined initial conditions is
presented.

Table 4.4 shows the initial conditions for all the design variables.

Power Output | timeon1 | timegrp: | timegnse | timeorrs
DER

(kW) (h) (h) (h) (h)
Phosphoric Acid 15 4 12 17.5 24
Fuel Cell
SCR Controlled 20 0 3 12 24
Diesel Engine
Micro Turbine 20 4 10 16 20

Table 4.4: Value of Initial Variables

The process followed to solve the problem will be illustrated with a series of

screenshots from the Consol-Optcad environment together with relative comments

61

on each one of them.

Initial Phase

Figure 4.12 shows the performance comb (pcomb) at the beginning of the
optimization process. Pcomb is the structure that Consol-Optcad uses to present to
the user the results of the optimization process at each iteration. Pcomb includes
information on the current value of an objective or a constraint and shows if that
value satisfies the specified limits. Those limits represent good and bad values that
were set by the user and they are marked in pcomb by vertical lines. From the
pcomb, in the aforementioned Figure, it can be seen that one hard constraint is not
satisfied. The normalized value of that constraint is depicted inside a red circle and
the constraint is not met because that value is on the right side of the vertical line
that represents the good value. A hard constraint shall strictly have a value above
the good value limit while a soft constraint shall be at least above the bad value

limit. All other hard constraints and objectives are satisfied at this point.

Performance Comb {Iter= 0] {iPhase 1) (MAX_HARD=0.333333)

.Ty'pe |Na.me | Present | Good [Performarice Comb [Bad |

@ Conl timeli... 1.200e+001 3.000e+000 1.000e+000
Conz timeli... 3.000e+000 3.000e+000 1.000e+000
® Con3 timeli... 8.000s+000 4, 000e+000 2.000e+000
® Cond timeli... 5§.500e+000 2,000e+000 1.000e+000
® Con5 timeli... 9.000e+000 2.000e+000 5.000e-001
® Con6 timeli... 6.000e+000 Z.000e+000 5.000e-001
Con? timeli... 6.000e+000 5.000e+000 Z.000e+000
Conf timeli... 6.500e+000 4, 000e+000 Z.000e+000
® Con? timeli... 4.000e+000 5.000e+000 2. 000e+000
@ F... weetde... 2.000e+001 7.715e+001 6.172e+001
® 0bjl fuelcost 2.613e+002 5.000e+002 1. 500e+00%
@ 0bjZ ewissions 4.815e+000 1.000e+001 1.800e+001
0bj3 operat... 3.082e-001 1.000e+000 Z.000e+000

Figure 4.12: Pcomb - Initial Phase

62

However, the functional soft constraint that represents the need to meet the
energy demand, is not satisfied. This is shown on pcomb (red dot) but is more clear
in Figure 4.13 where the functional constraint curve (blue) is below the good (green)

and the bad (red) curve most of the time.

Figure 4.13: Functional Constraint - Initial Phase

Another thing to mention is that normally until all hard constraints are satis-

fied the user does not interact with the optimization process.

User Interaction (Iteration 18)

At this point all hard constraints are satisfied and all objectives are within
limits, as is depicted also in Figure 4.14.

Moreover, Figure 4.15 confirms that the functional soft constraint meets the
demand. Even through for a small period of time it goes below the good curve, is
considered satisfied because it is specified as a soft constraint. Since all constraints
are satisfied and the objectives are within limits we have a valid, feasible design.

63

Performance Comb (lter= 18] (iPhase 2) (MAX_COST_SOFT=10.891323)

& Conl
® Conz
Con3
#® Cond
#® Cons
@ Cont
® Con?
® Cong
& Con?
$F...
0bil
#® 0hiz
® b33

5__I-Ia.me

timeli...
timeli...
timeli...
timeli...
timeli...
timeli...
timeli...
timeli...
timeli...
meetde...
fuelcost

enizsions
operat...

_;Present
1.z200e+001
4.163e+000
g.000e+000
5.500e+000
7.637e+000
4. 395e+000
B.
[
[
4
)
1
3

T44e+000

. 200e+000
. Tade+000
L0Z8e+001
. 13Ze+002
. 249e+001
Ld33e-001

| Good
B
3.000e+000
4. 000e+000
2.000e+000
Z.000e+000
Z.000e+000
5. 000e+000
4.
5
4
5
I
1

000e+000

000e+000

- 000e+000
-§55e+001
- 000e+00%
-000e+001
- 000e+000

_L?erformance Conb

L T R R % T S T B T R B

Figure 4.14: Pcomb after the 18" Iteration

If the user is satisfied, the optimization can stop here. Also,

| Baa]
1.
.000e4+000
. 000e+000
. 000e+000
.000e-001
.000e-001
.000e+4000
L 000e+000
. 000e+000
. G54e+001
. S00e+003
.800e4+001
L 000e+000

000e+000

if we continue the

optimization process without any changes the next iterations will give also feasible

designs, due to the FSQP solver used by Consol-Optcad.

meetdemand

Figure 4.15: Functional Constraint after 18" Iteration

However, one can observe that in order to meet the power demand at this

stage, a lot more power is produced than the needed one. Therefore, we decide to

interact with Consol-Optcad and make the limits for fuel cost and emissions tighter
and lower the power output. Those changes intend to force the optimizer to find a
solution that will be more efficient while keep satisfying all constraints and objec-

tives.

Final Solution (Iteration 52)

At the 52" iteration, we get a design that satisfies all hard and soft constraints

and also meets the new tighter limits for fuel cost and emissions (Figure 4.16).

Performance Comb. (lter= 52) (iPhase 2) (MAX_COST_SOFT= 0.741095)

Ty¥pe Name] Present I Good I Performance Comb I Bad 1
@ Conl timeli... 1.200e+001 3.000e+000 1.000e+000
@ ConZ timeli... 4.144e+000 3.000e+000 1.000e+000
@ Con3 timeli... 6.193e+000 4,000e+000 2.000e+000
@ Cond timeli... 7.302e+000 2.000e+000 L.000e+000
® Con5 timeli... 7.837e+000 Z.000e+000 5.000e-001
@ Cont timeli... 5.8687e+000 2. 000e+000 5.000e-001
& Con7 timeli... 5.273e+000 5. 000e+000 Z.000e+000
® Cond timeli... 4.700e+000 4,000e+000 2.000e+000
@ Con? timeli... 6.662e+000 5.000e+000 2.000e+000
@ F... peetde... 4.135e+001 4.855e+001 3.864e+001
@ 0bjl fuelcost 5.57Ze+002 3.500e+002 G, 500e+002
& 0b3iz emiszions 9.694e+000 &. 000e+000 1.100e+001
@ 0bj3 operat... 3.185e-001 1.000e+000 Z.000e+000

Figure 4.16: Pcomb - Final Solution

Figure 4.17 confirms that the demand is met and is obvious that because of
the tighter limits on two of the objectives, less power is needed with the current
design to achieve the desired result.

As it was mentioned in section 4.2 for the specific multicriteria optimization
problem five design variables were examined. Figure 4.18 presents the results con-

cerning the output power of each DER at the final design solution.

65

Figure 4.17: Functional Constraint - Final Solution

Power Output (kW)
70
5014
60
‘ 2 I 3135
40—
30— —
| 15.99
20— — —
10— E— —
0 - |
M Dieszl Enging WFuelCells IlicraTurhine

Figure 4.18: Power Output

Moreover, Figure 4.19 illustrates the scheduling of the DERs during a period
of 24 hours. Also the diagram in this Figure provides information on the total power

at each hour of the day and how much is the contribution of the different DERs.

66

Total Power Output (KVW)

Total Power Output Timeline

8 9 10 11 12 13 14 15 16 17 18 19 20 2
Time (hours)

Figure 4.19: Scheduling Timeline

67

22 23 24 25

Micro Turbine
B Fuel Cells
M Diesel Engine

Chapter 5

Conclusions and Future Work

In this work we presented the modeling “hub” as a way to realize the Model-
Based Systems Engineering vision and face today’s challenges on complex engineered
systems. Furthermore, we focused on the trade-off and design space exploration part
of that hub and followed the proposed framework in order to integrate SysML with
Consol-Optcad. We provided also details on how each step of the integration was
implemented and what tools were used throughout this process. The SysML Consol-
Optcad integration facilitates the problem formulation for the user and makes a first
step towards having the design and optimization processes interacting and working
in parallel in order to achieve the best possible design. Moreover, a trade-off analysis
of an electrical microgrid was performed to demonstrate the results and utility of
this integration.

However, there are still open issues for future research. First of all, regard-
ing the implemented integration of SysML with Consol-Optcad one future goal is to
make the integration bidirectional. Currently, the integration allows the transforma-
tion of a SysML model to a Problem Description File in Consol-Optcad environment.
A bidirectional integration will allow values obtained from the optimization process
to be returned back to the SysML model. Moreover, most of the multicriteria prob-

lems that occur while designing and developing a complex system, depend on both

68

continuous and integer design variables. This fact unveils the need to modify the
solver of Consol-Optcad in order to handle also integer variables. Another interest-
ing research challenge would be to try to integrate SysML with a trade-off tool that
has many capabilities and is currently widely used in industry, like CPLEX.

In addition, the whole implementation of the modeling “hub” should be inves-
tigated further. The methodology that was proposed and followed in this work for
the trade-off and design exploration part needs to be applied for all other phases of
the Systems Engineering process. The appropriate tools need to be identified and
then an integration with the “hub” should be implemented. This process will help
towards identifying any shortcomings of the current hub architecture and hopefully
at the end the modeling “hub” will provide a powerful toolsuit for holistic systems

development.

69

[1]

2]

[10]

[11]

[12]

[13]

Bibliography

Sanford Friedenthal, Alan Moore, Rick Steiner, A Practical Guide to SysML
(The MK/OMG Press, 2009).

Mark Austin, Class notes on Systems Engineering Requirements, Design and
Trade-Off (University of Maryland, College Park, MD, 2011).

Mark Austin, Class notes on Systems Engineering Design Projects Validation
and Verification (University of Maryland, College Park, MD, 2011).

Cecilia Haskins, Kevin Forsberg, Michael Krueger, David Walden, Douglas
Hamelin, Systems Engineering Handbook (INCOSE, San Diego, CA, 2011).

International Council on Systems Engineering (INCOSE), Systems Engineering
Vision 2020 (Version 2.03, TP-2004-004-02, September 2007).

Michael K.H.Fan, Andre L. Tits, Jian Zhou, Li-Sheng Wang and Jan Koninckx,
CONSOLE-User’s Manual (Technical Research Report, University of Maryland
and Harvard, Version 1.1, June 1990).

No Magic,Inc., UML Profiling and DSL-User Guide (Version 17.0, 2011).
No Magic,Inc., Open API-User Guide (Version 17.0.1, 2011).

The eMoflon team, An Introduction to Metamodelling and Graph Transforma-
tions with eMofion (Version 1.4, TU Darmsadt, September 2011).

A. Anjorin, M. Lauder, S. Patzina, A. Schiirr, eMoflon: Leveraging EMF and
Professional CASE Tools (INFORMATIK 2011, Bonn, Germany, October
2011).

Alexnder Konings, Andy Schiirr, Tool Integration with Triple Graph Grammars
- A Survey (Electronic Notes in Theoretical Computer Science, Volume 148,
Issue 1, Pages 113150 , February 2006).

Thorsten Fischer and Jorg Niere and Lars Torunski and Albert Ziindorf, Story
Diagrams: A New Graph Grammar Language based on the Unified Modeling
Language and Java (Universitdt Paderborn, 2000).

M.B. Tischler, J.D. Colbourne, M.R. Morel, D.J. Biezad, A Multidisciplinary
Flight Control Development Environment and its Application to a Helicopter

70

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(Control Systems, IEEE Journal, Volume 19, Issue 4, Pages 22-33, August
1999).

P.J. Potter, W.S. Levine, Parametrically Optimal Control for the UH-60A
(Black Hawk) Rotorcraft in Forward Flight (Master’s Thesis, University of
Maryland, 1995).

H. Vahedi, R. Noroozian, S.H. Hosseini, Optimal Management of MicroGrid
Using Differential Evolution Approach (7th International Conference on the
European Energy Market (EEM), Madrid, Spain, 23-25 June 2010).

F.A. Mohamed, H.N. Koivo Power Management Strategy for Solving Power
Dispatch Problems in MicroGrid for Residential Applications (IEEE Inter-
national Energy Conference and Exhibition (EnergyCon), Manama, Bahrain,
18-22 December 2010).

Sauli Jantti, Connection of Distributed Energy Generation Units in the Distri-
bution Network and Grid (CODGUNet Project Final Report, Merinova Tech-
nology Center, Vaasa , Sweden, 2003).

W. Morgantown, Emission Rates for New DG Technologies (Regulatory Assis-
tance Project, 2001).

NAHB Research Center, Inc., Review of Residential Electrical Energy Use Data
(Upper Malboro, Maryland, USA, 2001).

The California Energy Commission, Distributed Energy Resource Guide (Cal-
ifornia, USA, 2012).

Michael K.H.Fan, Li-Sheng Wang, Jan Koninckx and Andre L. Tits, Software
Package for Optimization-Based Design with User-Supplied Simulators (IEEE
Control Systems Magazine, Volume 9, Issue 1, Pages 66 - 71, January 1989).

Ashoke Kumar Basua, S.P. Chowdhuryb, S. Chowdhuryb, S. Paul, Microgrids:
Energy management by Strategic Deployment of DERs - A Comprehensive Sur-
vey (Renewable and Sustainable Energy Reviews, Volume 15, Issue 9, Pages
4348-4356, December 2011).

71

