
ABSTRACT

Title of thesis: INTEGRATION OF SYSML WITH
TRADE-OFF ANALYSIS TOOLS

Dimitrios Spyropoulos, Master of Science, 2012

Thesis directed by: Professor John S. Baras
Department of Electrical and Computer Engineering
and ISR

Changes in technology, economy and society create challenges that force us

to rethink the way we develop systems. Model-Based Systems Engineering is an

approach that can prove catalytic in this new era of systems development. In this

work we introduce the concept of the modeling “hub” in order to realize the vision of

Model-Based Systems Engineering and especially we focus on the trade-off analysis

and design space exploration part of this “hub”. For that purpose the capabilities

of SysML are extended by integrating it with the trade-off analysis tool Consol-

Optcad. The integration framework, the implementation details as well as the tools

that were used for this work are described throughout this thesis. The implemented

integration is then applied to analyze a very interesting multi-criteria optimization

problem concerning power allocation and scheduling of a microgrid.

INTEGRATION OF SYSML WITH

TRADE-OFF ANALYSIS TOOLS

by

Dimitrios Spyropoulos

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2012

Advisory Committee:
Professor John S. Baras, Chair/Advisor
Professor Mark Austin,
Professor David Lovell

c© Copyright by

Dimitrios Spyropoulos
2012

Dedication

To my parents, Costas and Maria, and my sister Eirini.

ii

Acknowledgments

I would like to sincerely thank and express my gratitude to my advisor Prof.

John S. Baras for giving me the opportunity to work with him on very challeng-

ing and interesting research problems. With his technical expertise, his insightful

comments and advice helped me to successfully complete this thesis. Dr. Baras

continuous energy and passion for research will always follow me on whatever I do

in the future.

I am also grateful to Prof. Mark Austin for the valuable knowledge I gained

by attending his lectures and for the interesting discussions we had concerning the

Systems Engineering field. Also, I would like to thank Prof. David Lovell for

agreeing to serve on my committee and for his constructive feedback during the

thesis examination.

A special thank to Anthony Anjorin from TU Darmstadt, for his support and

cooperation.

I could not have completed this thesis without the continuous support and love

from my parents, Costas and Maria, and my sister Eirini, and therefore I dedicate

it to them. Moreover, I deeply thank my godparents, Kyrgiakos and Olga, for their

support and encouragement.

These two years I met and became friend with exceptional people, whom I

would like to take the chance to thank for their cooperation, the interesting discus-

sions we had and the free time we spent together.

Finally, I would like to thank Kim Edwards for her efficiency in handling all

iii

the administrative issues, and the ISR staff for always trying to do their best helping

students with official matters.

This work was supported by the National Science Foundation (NSF) under

the award number 10092651-52 to the University of Maryland and by the U.S.

Department of Defense through the Systems Engineering Research Center (SERC)

under Contract H98230-08-D-0171.

iv

Table of Contents

List of Figures vii

1 The Era of Systems 1
1.1 Challenges . 1
1.2 Systems Engineering of Tomorrow . 2

1.2.1 Systems Engineering . 2
1.2.1.1 Basic Characteristics of Systems Engineering 2
1.2.1.2 Document-centric Systems Engineering 5

1.2.2 Model-Based Systems Engineering (MBSE) 6
1.2.3 How MBSE Address Today’s Challenges? 7

2 The Modeling “Hub” 9
2.1 Hub Architecture . 9
2.2 SysML . 10
2.3 Trade-off Analysis and Design Space Exploration 11

2.3.1 Why is it Important? . 12
2.3.2 Consol-Optcad . 13

2.3.2.1 Consol-Optcad Constructs 14
2.3.2.2 Phases of the Optimization 18

3 SysML Integration with Consol-Optcad 22
3.1 Integration Framework . 22
3.2 Consol-Optcad Profile in SysML . 23

3.2.1 Mapping of Constructs between SysML and Consol-Optcad . . 24
3.2.2 Building the Profile . 25

3.3 Metamodeling Layer . 26
3.3.1 Model Transformation . 28

3.3.1.1 eMoflon Toolsuit . 28
3.3.1.2 SysML/UML Metamodel 32
3.3.1.3 Consol-Optcad Metamodel 33
3.3.1.4 Transformation Rules and Code Generation 33

3.4 Tool Adapters . 40
3.4.1 MagicDraw Plug-in . 40

4 Trade-off Analysis of an Electrical Microgrid 45
4.1 A Microgrid and its Components . 45
4.2 Problem Formulation . 50
4.3 Problem Solution using the SysML Consol-Optcad Integration 54

4.3.1 SysML Model of the Problem 54
4.3.2 Solving Problem in Consol-Optcad 61

5 Conclusions and Future Work 68

v

Bibliography 70

vi

List of Figures

1.1 Systems Engineering Environment . 3
1.2 The V Lifecycle Model . 4
1.3 The MBSE Process . 6

2.1 The Modeling Hub . 10
2.2 SysML Diagrams Taxonomy . 11
2.3 The Four Pillars of SysML . 12
2.4 Consol-Optcad Structure . 14

3.1 Integration Framework . 23
3.2 Consol-Optcad Profile in SysML . 26
3.3 SysML Customization Diagram . 27
3.4 Modified Block Definition Diagram Panel 27
3.5 eMoflon Architecture . 29
3.6 eMoflon Detailed System Architecture 30
3.7 Ecore Metamodel . 32
3.8 SysML/UML Metamodel . 34
3.9 Consol-Optcad Metamodel . 35
3.10 Graph Transformation Rules . 36
3.11 Graph Transformation Rule Application (1) 37
3.12 Graph Transformation Rule Application (2) 37
3.13 Object Responsible for the Transformations 38
3.14 Rule for Functional Constraint . 39
3.15 eMoflon Project Structure in Eclipse 40
3.16 Starting MagicDraw from Eclipse Environment 41
3.17 Starting MagicDraw from Eclipse Environment cont’d 41
3.18 MagicDraw Plug-in Software Structure 42
3.19 MagicDraw Plug-in Abstract Software Structure 44

4.1 Microgrid Structure [22] . 47
4.2 Micro Turbine Diagram . 48
4.3 Block Definition Diagram of the Microgrid 55
4.4 Instance Diagram of Microgrid System 56
4.5 Design Parameters of Microgrid Trade-off Model 57
4.6 Parametric Diagram of Microgrid System 58
4.7 Operation/Maintenance Cost Objective and Constraints 59
4.8 Power Demand Functional Constraint 59
4.9 Fuel Cost Objective . 59
4.10 Calling Consol-Optcad from MagicDraw Environment 60
4.11 Consol-Optcad . 60
4.12 Pcomb - Initial Phase . 62
4.13 Functional Constraint - Initial Phase 63
4.14 Pcomb after the 18th Iteration . 64

vii

4.15 Functional Constraint after 18th Iteration 64
4.16 Pcomb - Final Solution . 65
4.17 Functional Constraint - Final Solution 66
4.18 Power Output . 66
4.19 Scheduling Timeline . 67

viii

Chapter 1

The Era of Systems

1.1 Challenges

Last decade we entered a new era where systems complexity has increased

dramatically. Complexity is increased both by the number of components that

are included in each system and their heterogeneity as well as by the dependen-

cies between those components. Developments in the field of network science and

technology allowed for wireless and wireline interconnections between components,

a fact that increased exponentially component dependencies. The so called net-

worked systems are often also distributed and asynchronous, adding one more layer

of complexity.

Moreover, today, systems tend to be more software dependent and that is

another challenge that engineers and people involved in the development of such

systems, face. The challenge is even greater when a safety critical system is consid-

ered, like the software controlling an airplane or a passenger car. There is a need

for development of software that is by proof error-free. Moreover, when software de-

pendent systems interact also with the physical environment then we have the class

of cyber-physical systems (CPS). The key challenge in CPS is to incorporate the

inputs and requirements from the physical environment in the logic of the embedded

software.

1

Nowadays, more frequently we observe systems that cooperate to achieve a

common goal, even though they were not built for that reason. These are called

systems of systems. For example, the Global Positioning System (GPS) is a system

by itself. However, it needs to cooperate with other systems when the air traffic

control system of systems is under consideration. The analysis and development of

such systems should be done extremely carefully mainly because of the emergent

behavior that systems exhibit when they are coupled with other systems.

However, apart from the increasing complexity and the other technical chal-

lenges, there is a need to decrease time-to-market for new systems as well as the

associated costs. This trend is expected to continue.

As it can be understood, due to these challenges and market pressure the whole

process of how systems are designed and developed is changing dramatically. There

is a need for rigorous ways to understand, analyze and develop systems. Percentages

of systems that fail or have cost and schedule overruns confirm this need.

1.2 Systems Engineering of Tomorrow

1.2.1 Systems Engineering

1.2.1.1 Basic Characteristics of Systems Engineering

Systems Engineering is an interdisciplinary holistic approach in dealing with

complex systems throughout their lifecycle [4]. It has its roots in the aerospace

industry, which was the first that faced the challenge to develop extremely complex

2

systems. It focuses on establishing the right processes that will handle risk and

will allow the development of a system on time, on budget and according to the

stakeholders needs. Those processes start from the conceptual phase of the system

and continue until its disposal. Systems Engineering takes into account all the

factors that can affect the system during its lifecycle stages. Such factors are societal,

economic, technical and organizational.

Figure 1.1: Systems Engineering Environment

The development of every system follows a framework that is know as lifecycle

model. This framework emphasizes the stages of development and their sequence.

There are many lifecycle models, although the one that is most favorable today is

the V-model (Fig. 1.2). The V-model incorporates abstraction and decomposition

that are two key concepts in Systems Engineering.

At the beginning of the development the user requirements are defined. Those

requirements describe the concept of operations for the system, which mainly in-

cludes the desired behavior of the system and under what conditions the system

shall operate. Moreover, at this initial stage a plan is developed to specify the way

that the user requirements will be validated. The next stage includes the definition

3

Figure 1.2: The V Lifecycle Model

of system requirements, which are technical requirements that describe in detail the

system under development. System requirements should be developed in such a way

so as to verify the user requirements.

The description of the system architecture follows, including both structural

and behavioral analysis of the system. A system architecture can be analyzed fur-

ther into several subsystems until we reach the step that we define in detail the

system components. Components compose the last level in the hierarchical decom-

position of a system. Usually, the levels of decomposition that are used during the

development of a system is a designer’s choice and is affected by many factors like

system complexity, COTS already available for a bottom up approach and inte-

gration facilitation. However, the components should be neither oversimplified nor

difficult to analyze and develop.

4

The next step as we go down to the structure of the V-model is the development

of the system components. After this step the right hand side of the V-model starts.

In all those stages mainly the products of each level are integrated together, while

simultaneously the result is checked against the specified requirements. The end

result is an operational system that meets all the stakeholder needs.

1.2.1.2 Document-centric Systems Engineering

Till some years ago Systems Engineering was document-centric. In this ap-

proach, documents are the basic product of each process and information about

requirements, system design, system analysis is captured in documents in either

textual or electronic form [1]. Models are developed for different purposes like reli-

ability analysis, design optimization but there were neither connected in a coherent

way nor supported all lifecycle phases. This document-centric method has generic

inefficiencies. Traceability among requirement and system design documents in very

difficult. As a consequence changes in the documentation of the system can cause

errors due to inconsistencies. In addition, maintenance and reusability of system

requirements or design information is also difficult and error prone. Communication

among teams taking part into system development that is based on documents is

slow and requires a lot of effort to avoid misunderstandings and achieve parallel

development. To deal with those inefficiencies and address better the challenges

of today there is a turn towards what is called Model-Based Systems Engineering,

which is analyzed in the next section.

5

1.2.2 Model-Based Systems Engineering (MBSE)

“Model-Based Systems Engineering (MBSE) is the formalized application of

modeling to support system requirements, design, analysis, verification and valida-

tion activities beginning with the conceptual design phase and continuing through-

out development and later life cycle phases”[5]. In contrast with the document-

centric approach, here the models are the main product of each process and are

used for the communication between the different teams that take part in the de-

velopment. In the MBSE environment the information contained in the models

should be consistent through all the phases. Moreover, models need to be developed

carefully in order to meet their purpose. They need to be accurate enough but

simultaneously avoid containing unnecessary details that add to the complexity.

Figure 1.3: The MBSE Process

In Figure 1.3 the core steps of the MBSE process are illustrated. For each

system the starting point is the available information. Afterwards, the initial system

requirements are defined together with the desired measures of effectiveness (MoE).

6

The MoE are used afterwards at the trade-off stage as a criterion for the selection of

the best system configuration. After the requirements phase, the models of behavior

and structure are developed. Then the process continues by mapping the specified

system behavior to the structure. During the MBSE process derivative requirements

are generated and thus, if needed, changes to the system specification are performed.

As it was explained also before, the trade off analysis phase is used to choose the best

feasible solution based on the specified measures of effectiveness. After exploring

the design space and selecting the best alternative the system shall be validated and

verified. This phase is crucial because it makes sure that all the requirements are

satisfied and that the system meets its goals.

1.2.3 How MBSE Address Today’s Challenges?

As it was mentioned in section 1.1 several factors have increased greatly the

complexity of systems. Systems development is an orders of magnitude harder

process today than one decade ago, takes more time and is more prone to errors.

Therefore, there is a need to rethink the way we develop systems. Model-Based

Systems Engineering is a promising approach to this crucial for the economy and the

society problem. While keeping all the advantages of Systems Engineering that help

in reducing complexity and better manage a system development project, MBSE

offers even more capabilities.

The greatest advantage of MBSE is that separates design from production.

That is a major change to the existing status in systems development. Each com-

7

pany could have an “artificial” product made by using only models and then let

other companies compete for the actual manufacturing/production. That will con-

sequently drive costs down and possible reduce time to market. The same method

was used in VLSI with phenomenal success.

The use of models allows for faster and more rigorous communication between

engaged teams and stakeholders. Time overhead to manage system documentation

will be extinct. Fewer errors will come up due to misunderstandings or oversights,

mostly because of the more formal semantics that models offer.

Another characteristic of MBSE is the re-usability of models. A subsystem or

a component model can be used in many systems without the need to be developed

from scratch every time. Time to market as well as the probability of errors will

be decreased, since many parts of the system model will be already completed and

validated. Finally, all the above can lead in achieving a better overall quality for

the system.

8

Chapter 2

The Modeling “Hub”

In section 1.2.2 of the first chapter the Model-Based Systems Engineering ap-

proach to system development was analyzed. Models play a key role in this approach

and are used at every stage of development. A challenge in MBSE is to have models

that are consistent with each other. However, besides having consistent data there

is a need for the models to work together in order to offer a holistic Systems Engi-

neering approach to the designer. In this work the concept of a modeling “hub” is

introduced to deal with this challenge.

2.1 Hub Architecture

As is depicted in Figure 2.1 SysML is in the core of the modeling “hub”,

and is used for the high level design of the system; e.g. by providing annotated

block diagrams of the structure and behavior of complex systems. The main aim

is to integrate this core module with external multi-domain and multidisciplinary

tools, each one used in a different phase of the Systems Engineering development

process [4]. To achieve the integration a three layer approach needs to be followed.

Initially, for the tool we need to integrate, a domain specific profile is implemented

in SysML. Then a model transformation is defined, followed by the implementation

of tool adapters that are used as a middleware for exchanging information between

9

Figure 2.1: The Modeling Hub

the model transformation layer and the other components of the hub. The figure

above presents these layers as well as the areas for which we need to integrate tools

with the core module in order to realize the MBSE vision of offering a holistic system

design experience.

2.2 SysML

SysML is a general purpose modeling language that was developed based on

UML and aims to support the MBSE process by providing ways for the representa-

tion and analysis of complex systems. The structure in Figure 2.2 shows the different

diagrams that are part of the SysML specification. Some of them are exactly the

same as in UML, some other have differences like the activity and the internal block

diagram, and other are completely new like the parametric and the requirement

10

diagram.

Figure 2.2: SysML Diagrams Taxonomy

SysML inserted the concept of requirement diagram in order to better repre-

sent and handle requirements. Apart from representing the requirements, the de-

signer can specify their decomposition and also can allocate low level requirements

to parts of structure. Consequently requirement diagram offers a better traceabil-

ity among requirements and system components. Parametric diagrams are used to

specify equations that characterize the system and link them to system component

properties. The four main parts of a SysML model, which are called the pillars of

SysML, are shown in Figure 2.3. According to these when a system is designed one

should specify the requirements, the system behavior and structure as well as the

parametrics of that system.

2.3 Trade-off Analysis and Design Space Exploration

In this work the focus is on integrating SysML with Consol-Optcad, a trade

off analysis tool that was developed at the University of Maryland [6, 21].

11

Figure 2.3: The Four Pillars of SysML

2.3.1 Why is it Important?

Trade-off is an essential part of the system design process, as it is a principal

methodology for design space exploration. An integration of SysML with a trade off

tool will allow the designer to make decisions faster and with more confidence. The

probability of human error during transfer of data between tools will not exist and

consequently the overall quality and performance of the system will be increased.

This integration becomes even more crucial when we think of today’s systems that

have multiple competing objectives and requirements to satisfy and a lot of design

parameters.

12

2.3.2 Consol-Optcad

Consol-Optcad is a multi-objective optimization tool that allows interaction

between the model and the user. It can handle non-linear objective functions and

constraints with continuous values. In systems development and after the system

structure is defined there is a need to calculate the design parameters that best

meet the objectives and constraints. Usually when we deal with complex systems

and optimality is under consideration, this is not a trivial task. The support of

an interactive tool, like Consol-Optcad, to help the designer resolve the emerging

trade-offs is crucial. A major advantage of Consol-Optcad is that it allows the user

to interact with the tool, while the optimization is under way. The designer might

not know or might not be in position at the beginning to specify what he means by

optimal design. Therefore such interaction with the tool could be of great benefit

[6, 21]. Another key feature of Consol-Optcad is the use of Feasible Sequential

Quadratic Programming (FSQP) algorithm for the solver. FSQP’s advantage is that

as soon as we get an iteration solution that is inside the feasible region, feasibility

is guaranteed for the following iterations as well. Moreover, very interesting is the

fact that besides traditional objectives and constraints Consol-Optcad allows the

definition of functional constraints and objectives, that depend on a free parameter.

Consol Optcad has been applied to the design of flight control systems [13], rotorcraft

systems [14], circuits and others.

The structure of Consol-Optcad Software is depicted in Figure 2.4. The prob-

lem description file is used to specify the problem by using the specific commands

13

of Consol-Optcad. Convert function compiles that file and then Solve is used to

perform the optimization. As it can be seen Solve can communicate with the user

as well as with external simulators and gives as an output the optimal solution.

Figure 2.4: Consol-Optcad Structure

2.3.2.1 Consol-Optcad Constructs

At this section the different constructs of Consol-Optcad that represent com-

mands that the user can specify in the tool environment, will be presented as they

are defined in the user’s guide [6].

Design Parameter

14

Represents a parameter that can be adjusted by the optimization algorithm.

The form of the design parameter command is presented below:

design parameter 〈 identifier 〉

init = 〈 expression 〉

variation = 〈 expression 〉

min = 〈 soft or hard expression 〉

max = 〈 soft or hard expression 〉

Init attribute is the initial value of the parameter, while min and max, if

specified, they provide respectively low and upper bounds for the parameter.

Variation is a quantity indicating the degree of confidence in the initial guess

that the designer provided through init. According to the Consol-Optcad

user’s guide variation should be the difference of the initial value and the next

value the designer would choose if he had to proceed by hand. The variation

is used to scale the initial parameter space according to the formula:

scaled value =
raw value

variation
(2.1)

If the choice of variation is improper the initial progress of the optimization

is slower. The default value is one.

Objective

The objective declares an objective function and has the following form:

objective 〈 quoted string 〉

〈 optimize 〉 〈 pseudo-C code 〉

15

good value = 〈 expression 〉

bad value = 〈 expression 〉

The objective can be either to minimize or to maximize the function. This

is specified at the 〈 optimize 〉 part of the command. The 〈 pseudo-C code 〉

is C-code the returned value of which is the value of the objective function.

Good value represents our desired value for the objective function. Respec-

tively a bad value is used to describe an unfavorable design solution for the

objective function. Another point to illustrate is that when the objective is to

be minimized (maximized) the good value must be smaller (larger) than the

bad value.

Constraint

A constraint in Consol-Optcad has the following form:

constraint 〈 quoted string 〉 〈 soft or hard 〉

〈 pseudo-C code 〉 〈 inequality 〉

good value = 〈 expression 〉

bad value = 〈 expression 〉

The structure of constraint is similar to the objective function and only two

differences exist. First, a constraint can be characterized as soft or as hard in

the 〈 soft or hard 〉 part of the command. Consol-Optcad treats soft constraints

similar to objective functions. It tries to minimize/maximize the value of the

constraint in order to reach as close as possible to the good value. If the

constraint is hard the value of that constraint shall meet the good value for

16

the problem to have a solution. The second difference is that for the constraint

the 〈 inequality 〉 should also be defined. Again if 〈 inequality 〉 is equal to

<= (>=) the good value must be smaller (larger) than the bad value.

Functional Objective

A functional objective has the following form:

functional objective 〈 quoted string 〉

for 〈 identifier 〉 from 〈 expr 〉 to 〈 expr 〉 〈 mesh type 〉 〈 expr 〉

〈 optimize 〉 〈 pseudo-C code 〉

good curve = 〈 pseudo-C code 〉

bad curve = 〈 pseudo-C code 〉

A functional objective is similar to an objective. The difference is that the

functional objective depends on a free parameter, like time, frequency and

therefore the objective should be minimized or maximized for all the values

of that parameter. For that reason, there is a need to define good and bad

curves and not just values. The second row of the command is responsible for

specifying the limits of the free parameter and how the range of the values is

going to be divided. The syntax is similar to a for-command in C.

Functional Constraint

A functional constraint has the following form:

functional constraint 〈 quoted string 〉 〈 soft or hard 〉

for 〈 identifier 〉 from 〈 expr 〉 to 〈 expr 〉 〈 mesh type 〉 〈 expr 〉

〈 pseudo-C code 〉 〈 inequality 〉

17

good curve = 〈 pseudo-C code 〉

bad curve = 〈 pseudo-C code 〉

The differences between an objective and a functional objective described

above, are valid as well for the case of a functional constraint and a constraint.

2.3.2.2 Phases of the Optimization

In the previous section the main constructs, that the designer can use to

specify an optimization problem in Consol-Optcad, were discussed. One of the key

concepts that Consol-Optcad introduces is that of specifying good and bad values for

objectives and soft constraints. These values are used by the optimizer in order to

treat all objectives and soft constraints equally. Having any of the various objectives

or soft constraints achieve their corresponding good value should provide the same

level of satisfaction to the designer. Respectively achieving a bad value should give

the designer the same level of dissatisfaction for any objective or soft constraint. The

formula below is used by Consol-Optcad to normalize the value of any objective or

soft constraint according to their good and bad value:

scaled value =
raw value− good value

bad value− good value
(2.2)

As it can be determined from the formula above a good value corresponds to

a scaled value of 0 whereas a bad value to a scaled value of 1. Apart from objectives

and soft constraints also hard constraints are assigned good and bad values, but

those values are used only in the first phase of the optimization that is going to be

described below.

18

According to M.Fan et al in [6] a problem (P) in Consol-Optcad takes the

following form:

minimize
x

objk(x) ∀k

subject to softi(x) ≤ 0 ∀i

hardj(x) ≤ 0 ∀j

hard boundl(x) ≤ 0 ∀l

,where objk, softi, hardj are scaled values of objectives, soft and hard constraints

respectively and hard boundl represent hard bound constraints on design parame-

ters.

The optimization process has three phases according to feasibility or infeasi-

bility of x with respect to soft and hard constraints. The three phases are listed

below:

• Phase 1: In this phase the design parameters are adjusted to ensure that hard

constraints are satisfied. Problem (P) takes the following form:

minimize
x

max
j

hardj(x)

subject to hard boundl(x) ≤ 0 ∀l

Once all hard constraints are satisfied the optimization process moves to Phase

two.

• Phase 2: All the hard constraints are satisfied when the optimization reaches

this stage. In this phase the main emphasis is on satisfying the soft constraints

19

and problem (P) takes the following form:

minimize
x

max
k,i

{objk(x), softi(x)}

subject to hardj(x) ≤ 0 ∀j

hard boundl(x) ≤ 0 ∀l

When all soft constraints satisfy their good values we move to phase 3. How-

ever, we can have also a feasible design when all soft constraints meet at least

their bad value threshold.

• Phase 3: Since all hard and soft constraints are satisfied when we reach phase

3, all iterations in this phase give feasible design solutions. The main focus is

on minimizing at each step the objective that has the worst value. The form

of the problem (P) is presented below:

minimize
x

max
k

objk(x) ∀k

subject to softi(x) ≤ 0 ∀i

hardj(x) ≤ 0 ∀j

hard boundl(x) ≤ 0 ∀l

As it has been mentioned before a key concept of Consol-Optcad is the inter-

action with the designer. This interaction will take place mostly on phase 2 and 3 of

the optimization process. A last thing to underline is that in the phases described

above functional constraints and objectives were omitted, to make the optimiza-

tion steps easier to explain. The only thing that changes however is the way that

scaled values are computed for functional constraints and objectives. The following

20

formula is used for the normalization of functional objectives and constraints:

scaled value(ω) =
raw value(ω)− good curve(ω)

bad curve(ω)− good curve(ω)
(2.3)

21

Chapter 3

SysML Integration with Consol-Optcad

As it was mentioned in section 2.3 in this work we give emphasis on the inte-

gration between SysML and Consol-Optcad. This section describes the integration

framework and the separate steps that were followed to achieve this integration.

Here is a good point to mention that MagicDraw was the SysML tool that was

used for this integration. SysML is not a tool specific language, but MagicDraw

was used because it is more open than other tools and it can be modified more

easily. To simplify things from now on when integration with SysML is mentioned,

we refer to integration with MagicDraw SysML. This chapter will analyze in detail

the integration framework and the separate steps that were followed to achieve the

integration.

3.1 Integration Framework

Figure 3.1 presents the architecture of the integration together with numbered

steps that need to be followed to complete the integration process. According to the

three layer approach presented in section 2.1, the integration process is divided in

three main parts. The first part, concerns the mapping of the objects between the

two languages (SysML, Consol-Optcad). It also includes the development of specific

semantics that are going to be used for that purpose and in this case a profile of

22

Consol-Optcad in SysML is created. The second part, is the metamodeling layer

where the transformation between the two models takes place. The last part consists

of implementing the appropriate tool adapters.

Figure 3.1: Integration Framework

3.2 Consol-Optcad Profile in SysML

The creation of a Consol-Optcad profile is the first step of the integration

process. Profiling is the mechanism that SysML has in order to allow the designer

to use additional constructs inside the development environment. MagicDraw tool

support that function. After a profile is built and since it gives the user the ability

23

to use constructs of a specific tool directly in SysML, it decreases significantly the

design effort.

3.2.1 Mapping of Constructs between SysML and Consol-Optcad

Before implementing the actual profile in MagicDraw there is a need to match

conceptually the constructs of the two languages. The difficulty of the mapping

process is case dependent. For this work there were not many alternatives and thus

each construct of Consol-Optcad is mapped to a SysML Block. Each SysML Block

has an applied stereotype so that the different constructs of Consol-Optcad can

be distinguished. In the table below the aforementioned mappings are presented.

Moreover, the specific constructs of Consol Optcad that are mentioned here were

analyzed in section 2.3.2.1.

Mapping Table

SysML Constructs Consol Optcad Constructs

SysML BLock with applied stereotype Design Parameters

SysML BLock with applied stereotype Objective

SysML BLock with applied stereotype Constraint

SysML BLock with applied stereotype Problem description file

SysML BLock with applied stereotype Functional objective

SysML BLock with applied stereotype Functional constraint

24

3.2.2 Building the Profile

A SysML Profile is composed by a set of stereotypes and their relationships.

For each stereotype the designer should specify tag values that correspond to at-

tributes of the construct that the stereotype describes. Those tag values should

have a specific value type. The value type can be either a predefined one, like in-

teger, string, real or a user defined value type. A detailed description of profile

building process can be found in MagicDraw user’s guide [7]. In Figure 3.2 the

implemented Consol-Optcad profile is depicted. Each Consol-Optcad construct of

the mapping table is represented in this diagram by a stereotype. The tag values for

each construct were defined according to the Consol-Optcad specification document

[6]. Moreover, four new value types were used in this specification.

Until now the process of building the profile is tool independent. That means

that a profile can be build by the same way in any other tool that supports SysML.

However in MagicDraw two more steps are needed so that the profile can be us-

able. First, a so called customization diagram must be developed. A customization

diagram (Figure 3.3) has one customization class for each stereotype of the profile.

Inside a customization class a user can define rules about this construct and also

specify the value of a set of tags. The only two tags that need to be always set

to a value are the customizationTarget tag and the hideMetatype tag. A detailed

information about all the different tags and their functionality can again be found

on MagicDraw user’s guide [7].

The last step in order to get a working profile in SysML is to modify the

25

Figure 3.2: Consol-Optcad Profile in SysML

block definition diagram so as to have the new constructs on a special section of the

panel. Then a designer can load the new profile inside a project and start using it

by simply drag and drop Consol-Optcad constructs in the block definition diagram

area. Figure 3.4 presents a snapshot of the new block definition diagram panel.

3.3 Metamodeling Layer

The metamodeling layer is the second major part of the integration process.

A metamodeling layer stands one abstraction layer above the actual design imple-

26

Figure 3.3: SysML Customization Diagram

Figure 3.4: Modified Block Definition Diagram Panel

mentation in a modeling language. A metamodel consists of the constructs of a

modeling language together with the rules that specify the allowable relationships

between these constructs. It can be resembled as the grammar of the modeling

27

language.

3.3.1 Model Transformation

At the metamodeling layer model transformations take place. In general a

model transformation is the conversion of a metamodel of one language to the

metamodel of another. There are many alternatives in terms of model transfor-

mation tools, like ATL, GME, eMoflon, QVT. In this research the eMoflon model

transformation tool was used which was developed at TU Darmstadt [9] [10]. In

the sections that follow the architecture of eMoflon tool as well as the actual model

transformation between SysML and Consol-Optcad are described in more detail.

3.3.1.1 eMoflon Toolsuit

The eMoflon tool was chosen instead of other metamodeling tools due to the

following reasons. First of all, graph transformations is the underlying theory for

the model transformations; a fact that makes the semantics strong and can lead to

satisfaction of formal properties such as correctness, completeness and termination.

In addition, the way eMoflon toolsuit is developed allows for graphical representation

of metamodels and transformation rules; a fact that makes the model transformation

process less cumbersome and less error prone. Another advantage of eMoflon is that

it can generate automatically Java code for the model transformations. Since most

of the tools today are implemented in Java, eMoflon code for transformations can

be easily used and integrated in other tools. Finally, the development environment

28

is user friendly, the tool is well documented and it has a strong support/developing

team.

In Figure 3.5 the architecture of the eMoflon tool is presented at a high ab-

straction layer.

Figure 3.5: eMoflon Architecture

A more detailed system architecture of eMoflon is presented in Figure 3.6,

which comes from a recent paper of the eMoflon developing team [10].

As it can be seen the front end of the eMoflon tool is realized in Enterprise

Architect (EA) through a special EA Add-in. Enterprise Architect is an industry

strong Computer Aided Software Engineering (CASE) tool that is used at many

companies. The reasons for choosing EA for the front end part of the system, in-

stead of some other CASE tool, are analyzed by eMoflon team in [10]. The front end

component of the system architecture, should provide the user the capabilities for

specifying metamodels by using class diagrams, unidirectional model transforma-

tions via Story Diagrams SDMs (see section 3.3.1.4) and bidirectional transforma-

tions via triple graph grammars (TGGs). Moreover, the front end component should

have an interface that will allow the stored data to be exported to the Integrated De-

velopment Environment (IDE) component in the correct form. The developed EA

Add-in meets those requirements apart from the capability of specifying bidirec-

29

Figure 3.6: eMoflon Detailed System Architecture

tional transformations using TGGs. According to the eMoflon team this capability

will be available soon. Here is a good point to emphasize that eMoflon does not

30

depend on EA or any other editor. That independence allows eMoflon to be used

as a command line operated code generator and compiler fact that is useful when

trying to automate a process. In addition the eMoflon team is developing a textual

front end for the system.

Another thing to mention about the front end component is that the eMoflon

tool requires all metamodels and other diagrams to be developed according to the

Ecore format. With the increasing popularity of Eclipse and Eclipse Modeling

Framework (EMF), Ecore established as a standard for metamodeling. Ecore is

also isomorphic to a subset of MOF, named EMOF, that is an OMG standard.

Ecore/EMF for the expression of the metamodel allows objects, associations be-

tween them, operations inside each project, attributes and also some simple con-

straints on objects, like multiplicity and relationship. The notation that is used to

build the metamodels is similar to a UML class diagram. Figure 3.7 presents all

the constructs that can be used to develop a metamodel that is compatible with the

Ecore format.

The second major component of the eMoflon system architecture is the IDE,

that is realized by a set of eclipse plug-ins. The CORE set of plug-ins is responsible

for code generation. Through the Model Loader the information from the front end

is stored in EMF format. A TGG compiler converts the TGG model to a set of

unidirectional SDMs. Then all models are compiled through the EMF2FUJABA

compiler to a format understandable by FUJABA. FUJABA (Universität Pader-

born) is a model transformation engine that generates java code for unidirectional

transformations expressed with SDMs. The EMF compliant java code from the

31

Figure 3.7: Ecore Metamodel

SDMs and the metamodels is then merged and forward to the UI set of plug-ins.

The UI is responsible for allowing the user to visualize, navigate through and ma-

nipulate the generated code.

3.3.1.2 SysML/UML Metamodel

In Figure 3.8 the constructs from SysML and UML that can be used for model

transformations are presented. Those constructs are a subset of the two metamod-

els. Actually the way eMoflon is implemented you need to develop a metamodel

with only the constructs that are used in the transformation rules. The files that

contain the whole metamodels in Ecore format need to be imported in eclipse for

the transformations to take place. Until now it is not possible in eMoflon to input

32

large external metamodel files. Because of that, as it was mentioned above, we need

to rebuild part of the metamodel, even though we might have the whole metamodel

structure in a separate file.

3.3.1.3 Consol-Optcad Metamodel

Like with the SysML/UML metamodel, the Consol-Optcad metamodel was

developed in Ecore format (Figure 3.9).

3.3.1.4 Transformation Rules and Code Generation

As it was mentioned above the transformation rules are expressed using Story

Diagrams (SDMs). Story diagrams is a graph grammar language and they provide a

mechanism for defining unidirectional graph transformations. SDMs adopt concepts

from UML class, activity and collaboration diagrams [12].

As described in [9], a rule r:(L,R) defined by an SDM follows the three steps

below when is applied to a graph:

• Find a match m for the precondition L in G

• Delete all the elements that are present in the precondition but not in the

postcondition (Destroy := (L \ R)), to form (G \ Destroy)

• Create new elements that are present in the postcondition but not in the

precondition (Create := (R \ L)), to form a new graph H = (G \ Destroy) ∪

Create

33

Figure 3.8: SysML/UML Metamodel

34

Figure 3.9: Consol-Optcad Metamodel

35

Figure 3.10 presents two graph transformations rules and Figures 3.11 and

3.12 depict how those rules can be applied on graphs. The nodes of these graphs

can be thought as model blocks and the edges as associations between those blocks.

Both examples represent rules that evolve the structure of only one graph. However,

a rule can be defined so as the precondition (left part of the rule) and postcondition

(right part of the rule) are applied to different graphs.

Figure 3.10: Graph Transformation Rules

At this point we focus on the actual eMoflon project for the integration of

SysML with Consol-Optcad. The starting point is the definition of the metamodels

in Enterprise Architect. Both metamodels were presented in sections 3.3.1.2 and

3.3.1.3. For the transformation to take place we need to define a new package that

will contain an object responsible for the transformation. The rules for the model

transformation are defined as operations inside this object (see Figure 3.13).

Each operation has an attached story diagram that specifies the rule. Below

36

Figure 3.11: Graph Transformation Rule Application (1)

Figure 3.12: Graph Transformation Rule Application (2)

37

Figure 3.13: Object Responsible for the Transformations

38

Figure 3.14 corresponds to the rule that creates a functional constraint if a model al-

ready exists. As is going to be described in section 3.4.1 when a functional constraint

block is identified by the developed plug-in the Java function that corresponds to

that rule is called and a Consol-Optcad functional constraint construct is created.

The end result, after applying all the rules for all the objects, is a Consol-Optcad

model that corresponds to the initial SysML model.

Figure 3.14: Rule for Functional Constraint

After defining all the SDMs, the EA models should be exported to eclipse.

Figure 3.15 shows the project structure that we get in eclipse after the export

function of eMoflon in EA is invoked.

39

Figure 3.15: eMoflon Project Structure in Eclipse

3.4 Tool Adapters

Tool adapters work as the “glue” between the different pieces of software.

Their role is to access/change information inside a model and also call the appro-

priate Java functions generated by the eMoflon tool to perform the model trans-

formations. All adapters for this project were developed inside a single MagicDraw

plug-in, which is the way to extend the functionality of MagicDraw. In the next

section the developed MagicDraw plug-in will be analyzed in detail.

3.4.1 MagicDraw Plug-in

The plug-in is the core of the software part of the integration process. It was

developed in the Eclipse platform using Java. Eclipse offers a way to develop a

plug-in inside its environment and then start MagicDraw from Eclipse (see Figures

40

3.16 and 3.17). That makes the development process much easier since debugging

information is immediately accessible through the Eclipse environment [8].

Figure 3.16: Starting MagicDraw from Eclipse Environment

Figure 3.17: Starting MagicDraw from Eclipse Environment cont’d

Figure 3.18 shows the software architecture of the plug-in, which was obtained

using ObjectAid UML tool.

To create a plug-in for Magicdraw we need to implement three classes. Myplu-

gin, which inherits from the Plugin class, is the class that is called when MagicDraw

41

Figure 3.18: MagicDraw Plug-in Software Structure

starts and loads all the available plug-ins. This class is responsible to create a Con-

figurator Class and attach it to the current plug-in. The Configurator class adjusts

the User Interface (UI) of MagicDraw, to show the Consol-Optcad plug-in as a choice

in the MagicDraw environment. The exact panel that this option will be available

is up to the developer of the the plug-in. Moreover, the Configurator class assigns

42

the specific action that will be executed when the user starts the Consol-Optcad

plug-in from MagicDraw’s drop-down menu. In this case the BrowserAction class,

which inherits from the DefaultBrowserAction class, is used to specify the action

that will be performed. Inside the BrowserAction class the MagicDraw API [8] is

used to access both block and parametric diagrams of SysML, and get the needed

information from the model. After the needed data are gathered the functions of the

TransformerImpl class are invoked to perform the transformation. The Transforma-

tionImpl class is part of the project that holds the generated code from the model

transformation. When the transformation is complete, the Consol-Optcad model,

in terms of Java classes, will be available. Here it should be mentioned that all the

code generated by eMoflon for the transformations was made available to the Eclipse

project by importing it as a .jar file, which works like a library. The next thing that

the BrowserAction does is to call the functions available by the Transformation-

ToText class. This class is mainly the adapter of Consol-Optcad. Each function

of this class takes as an input an object of Consol-Optcad in Java and returns the

Problem Description File, which is a text file that contains the problem formulation

description for the Consol-Optcad environment. When all the objects are translated

the plug-in starts Consol-Optcad and automatically opens the Problem Description

File.

Figure 3.19 is the same plug-in architecture but in a more abstract represen-

tation.

43

Figure 3.19: MagicDraw Plug-in Abstract Software Structure

Section 4.3 will illustrate better with the use of an example, the outcome of

the integration process described in this chapter.

44

Chapter 4

Trade-off Analysis of an Electrical Microgrid

In Chapter 3 we analyzed the integration methodology and implementation.

In this chapter the aim is to illustrate the way the integration works through an

example. A trade-off analysis of an electrical microgrid was chosen as an interesting

example for that purpose.

4.1 A Microgrid and its Components

The typical way of producing and distributing power is through a centralized

power system. This way of generating power has served well the humanity during the

last century. However it has some important inefficiencies. To generate power, those

systems use mainly fossil fuels, which are a heavy environmental pollutant and also

are available in reduced quantities year by year. Moreover 50% to 70% of the fuel

used to produce power is lost as heat waste and around 8% of the generated power

is lost in transmission lines. The infrastructure has huge maintenance costs and

its complexity makes the whole system vulnerable and prone to black-outs. Besides

that new investments in this market are difficult due to regulations and large capital

investments that are needed. Finally, the price of electricity for consumers is high

[22].

To address all these shortcomings the notion of Distributed Generation (DG)

45

has been developed. In DG the generating systems are of small scale, their use is

local and they are geographically distributed. Distributed energy resources (DERs)

offer very good power quality with less frequency variations, voltage transients or

other disruptions, they can be used as back-up system for the electrical grid and

also when the demand and charges for electricity are high. Furthermore, DERs

offer low-cost energy, due to the local production, and many of them can be used

as sources of both heat and power [22]. However, DERs can cause problems to

the network, like reverse power flow, excessive voltage rise, increased fault levels,

harmonic distortion and stability problems, because of their independent operation.

To overcome problems caused by independent operation, DERs are grouped together

and together with loads to form what is called a microgrid. A microgrid is operating

as a single controllable entity. In Figure 4.1 a typical structure of a microgrid is

depicted.

As it can be seen the point of common coupling (PCC) is the only connection

point between the microgrid and the utility. A central role in a microgrid’s smooth

operation is played by the Energy Management System, which makes the decisions

about generation and distribution of electrical energy. Those decisions are based on

many factors, like power demand, weather, price of electricity and heat, fuel cost,

emissions cost and government policies, to name a few. The DERs that take part

on a microgrid can be electrical, thermal or a combination. Solar panels, small wind

and hydro generators, micro turbines, diesel engines, fuel cells, gas turbines are

some examples of DERs. At this point, more detailed information will be provided

about the DERs that are used at the example developed to demonstrate the tool

46

Figure 4.1: Microgrid Structure [22]

integration (see section 4.2).

Micro turbine

Micro turbines are small combustion turbines that were developed from tech-

nologies found in large tracks and in the auxiliary power unit (APU) of the

aircrafts. They can produce power between 25-500kW, which is suitable for

small offices, retail stores, hotels, apartment houses and restaurants. The pre-

vailed type is the recuperated micro turbine, which gives efficiencies in the

range of 20-30% and utilizes a variety of fuels, like natural gas, hydrogen,

47

diesel or propane. In Figure 4.2 a schematic of a recuperated micro turbine is

presented [20].

Figure 4.2: Micro Turbine Diagram

The recuperator recovers heat from the exhaust gas and boosts the temper-

ature of the air supplied to the combustor. This increases significantly the

efficiency of the micro turbine. If the micro turbine is used also as a ther-

mal resource then the combined efficiency can reach up to 85%. Table 4.1

illustrates the major advantages and disadvantages of a micro turbine [20].

Fuel Cells

Fuel cells is a technology that is around for a long time and was first used by

NASA. They work similarly to a battery in the sense that an electro-chemical

reaction is used in order to create electrical current. The difference is that for

the chemical reaction fuel cells use hydrogen and oxygen as reactants. Since

those gas reactants can be fed into the fuel cell continuously, the unit will

48

Micro turbine

Advantages compact size, low-weight, low emissions, good efficiencies when used as

source of heat and electricity, long maintenance intervals, can re-use

waste fuels

Disadvantages loss of power output and efficiency in high temperatures, low fuel to

electricity efficiency

Table 4.1: Advantages and disadvantages of a micro turbine

never run down. When we are considering fuel cells as DERs we refer to a

stack of fuel cells, because individual fuel cells can produce only low voltages

[20].

There are many types of fuel cells. In this case the emphasis is on phosphoric

acid fuel cells (PAFC), which is the only fuel cell technology that has been

commercialized. Table 4.2 illustrates the major advantages and disadvantages

of phosphoric acid fuel cells [20].

Phosphoric Acid Fuel Cells (PAFC)

Advantages Quiet, Low emissions, High efficiency, Reliability

Disadvantages High costs, Low power

Table 4.2: Advantages and Disadvantages of Phosphoric Acid Fuel Cells

49

Diesel Engine

Diesel engines need to be coupled with an electrical generator to produce

electricity. However for simplicity we use only the term diesel engine. Diesel

engines are used for the production of electricity for many years. Their biggest

advantage is the high power output and reliability however they produce more

emissions than other DERs. In this work we focus on a Selective Catalytic

Reduction (SCR) Diesel Engine, which has a mechanism to reduce NOX emis-

sions.

4.2 Problem Formulation

We define a Microgrid that consists of three power sources, one microturbine,

one collection of phosphoric acid fuel cells and one diesel engine. The characteristics

of each type of power source are listed in table 4.3 . The data were gathered from

[16], [17] and [18].

The Microgrid is supposed to provide power to a residential building that has

50 apartments. We would like to find an optimal solution in terms of scheduling

and power output of each engine for a period of 24 hours. The optimal solution is

searched while trying to minimize operational cost, fuel cost, emissions and meet

customer demand. We assume that the power source can be turned on and off two

times only during a day. That is valid because of the costs that are associated with

turning on/off each power source.

For the specific problem we define 5 design variables for each power source:

50

Power Source Capacity Efficiency NOX CO2 SO2 KOM

(kW) % (lb/MWh) (lb/MWh) (lb/MWh) ($/kWh)

Phosphoric Acid

Fuel Cells

25 37 0.03 1,078 0.0006 0.00419

SCR Controlled

Diesel Engine

1000 38 4.7 1,432 0.454 0.01258

Micro Turbine 25 25 0.44 1,596 0.008 0.00587

Table 4.3: Characteristics of the power sources

• Pi i = 1, 2, 3 represents the output power of each power source

• ti on1 i = 1, 2, ...N represents the first time that power source i starts to

operate

• ti off1 i = 1, 2, ...N represents the first time that power source i is turned off

• ti on2 i = 1, 2, ..N represents the second time that power source i is turned on

• ti off2 i = 1, 2, ...N represents the second time that power source i is turned

off

The objectives and the demand constraint are described below:

Operational Cost

This objective aims to minimize the total operation and maintenance cost

51

needed for the microgrid. The formula that was introduced in [15] is used:

OM($) =
N∑

i=1

KOMi
Pitioperation,

where N is the number of generating power sources, KOMi
is a constant for

each power source defined in table 4.3, tioperation(h) is the total time period

that power source i is ON and Pi(kW) is the power output of each source.

Fuel Cost

Another objective in our problem is to minimize fuel cost. The following

formula [15] is used to calculate fuel cost:

FC($) =

N∑

i=1

CiRi

Pitioperation
ni

,

where N is the number of generating power sources, Ci($) the price of fuel

that each source utilizes, Ri(gallon/kWh) the consumption rate of each power

source, Pi(kW) is the power output of each source, tioperation(h) is the total

time period that power source i is ON, and ni the efficiency of each power

source.

Emissions

Emissions should also be minimized and they are calculated with the help of

the following formula [16]:

EC($) =

N∑

i=1

M∑

k=1

αk(EFikPitioperation/1000),

where N is the number of generating power sources, M the number of emission

types, αk($/lb) a constant showing the cost of emission k, EFik(lb/MWh) is

52

the emission factor of power source i and emission type k, tioperation(h) is the

total time period that power source i is ON and Pi(kW) is the power output

of each source.

Meet Demand

Meet demand is a functional constraint that corresponds to the power demand

in the fifty apartment residence of the example each time of day. Time is the

free parameter and can take value from 1 to 24. Data from [19] were used to

define an approximate function for the power demand:

Demand(kW) = 50 · (−0.6 sin(
πt

12
) + 1.2),

where t is time.

There are also three constraints that ensure the correct operation of each

generating power unit:

• ti off1 - ti on1 ≥ xi AND ti off2 - ti on2 ≥ xi i = 1, 2, ...N

When a generating power source is turned ON, it shall remain ON for at least

xi(h) time units. If that constraint is not met then the power sources may

malfunction.

• ti on2 - ti off1 ≥ yi

When a generating power source is turned OFF, it shall remain OFF for at

least yi(h) time units. If that constraint is not met then the power sources

may malfunction.

53

The problem has a total of 15 design variables, 10 constraints and 3 objective

functions. In the next sections the description of the problem in SysML will be

presented together with the actual solution is Consol-Optcad.

4.3 Problem Solution using the SysML Consol-Optcad Integration

In this section a solution to the microgrid problem (see section 4.2) using our

integration will be presented. The solution includes both the SysML model of the

problem and the trade-off analysis part in Consol-Optcad, after the transformation

is being performed.

4.3.1 SysML Model of the Problem

The first step towards a solution is to build in SysML the microgrid system

structure as well as specify the trade-off analysis problem by utilizing the constructs

offered by the Consol-Optcad profile (see section 3.2).

The block definition diagram that shows the three power sources that are part

of the microgrid is shown in Figure 4.3. As described in problem formulation each

of the tree power sources will have 5 variables. Those variables are easily recognized

in the block diagram. They represent the output power of each source and the times

the source goes on and off. There is also one constraint block named Transfer. This

constraint block is used in the parametric diagram to pass attribute values of the

power sources to the trade off analysis model. Moreover, this block should have one

input parameter of type ’Real’ and one output parameter of type ’String’.

54

Figure 4.3: Block Definition Diagram of the Microgrid

The process continues by specifying the trade-off analysis model in SysML. For

this part both the SysML block and SysML parametric diagrams are used. The block

diagram represents the constructs of the trade-off analysis, like design variables,

objectives and constraints. Parametric diagram is used to pass the information

from the system structure to the trade-off analysis model. It should be mentioned

that in order to pass parameters of the system for trade-off analysis, an instance of

the system model should be created first (Figure 4.4). That is a trivial process that

can be done automatically by MagicDraw.

The following figures illustrate better the SysML model of the problem. First

of all the fifteen design parameters of the problem are presented in Figure 4.5. As

it can be seen each design parameter has attribute tags that may be filled up by

the designer. Those attributes can be used to bound the design variable or set its

55

Figure 4.4: Instance Diagram of Microgrid System

variation (see section 2.3.2.1). Also each design parameter has an attribute that

is used to obtain the initial value of that parameter. That value comes from the

instance diagram and is transferred through the parametric diagram. Figure 4.6

shows how the process of passing parameters is modeled.

As indicated also above, besides design variables, the objectives and con-

straints that take part in the trade-off study were modeled in SysML. Figures 4.7,

4.8 and 4.9 better illustrate how these constructs look like inside the MagicDraw

environment.

When the hole modeling process in SysML is completed the designer can make

the transformation and start using Consol-Optcad. This can be easily done by se-

lecting the Consol-Optcad choice from MagicDraw’s drop down menu, while having

the parametric diagram open. This process is depicted in Figures 4.10 and 4.11.

56

Figure 4.5: Design Parameters of Microgrid Trade-off Model

57

Figure 4.6: Parametric Diagram of Microgrid System

58

Figure 4.7: Operation/Maintenance Cost Objective and Constraints

Figure 4.8: Power Demand Functional Constraint

Figure 4.9: Fuel Cost Objective

59

Figure 4.10: Calling Consol-Optcad from MagicDraw Environment

Figure 4.11: Consol-Optcad

60

4.3.2 Solving Problem in Consol-Optcad

After modeling the system and the trade-off analysis in the MagicDraw SysML

environment the integration mechanism can be used to automatically transform the

existing model in a problem description file inside Consol-Optcad (see Figures 4.10

and 4.11). For the multi-objective problem that is under consideration, we run the

FSQP algorithm of Consol-Optcad several times with different initial conditions.

Below the best solution found with regard to the examined initial conditions is

presented.

Table 4.4 shows the initial conditions for all the design variables.

DER

Power Output timeON1 timeOFF1 timeON2 timeOFF2

(kW) (h) (h) (h) (h)

Phosphoric Acid

Fuel Cell

15 4 12 17.5 24

SCR Controlled

Diesel Engine

20 0 3 12 24

Micro Turbine 20 4 10 16 20

Table 4.4: Value of Initial Variables

The process followed to solve the problem will be illustrated with a series of

screenshots from the Consol-Optcad environment together with relative comments

61

on each one of them.

Initial Phase

Figure 4.12 shows the performance comb (pcomb) at the beginning of the

optimization process. Pcomb is the structure that Consol-Optcad uses to present to

the user the results of the optimization process at each iteration. Pcomb includes

information on the current value of an objective or a constraint and shows if that

value satisfies the specified limits. Those limits represent good and bad values that

were set by the user and they are marked in pcomb by vertical lines. From the

pcomb, in the aforementioned Figure, it can be seen that one hard constraint is not

satisfied. The normalized value of that constraint is depicted inside a red circle and

the constraint is not met because that value is on the right side of the vertical line

that represents the good value. A hard constraint shall strictly have a value above

the good value limit while a soft constraint shall be at least above the bad value

limit. All other hard constraints and objectives are satisfied at this point.

Figure 4.12: Pcomb - Initial Phase

62

However, the functional soft constraint that represents the need to meet the

energy demand, is not satisfied. This is shown on pcomb (red dot) but is more clear

in Figure 4.13 where the functional constraint curve (blue) is below the good (green)

and the bad (red) curve most of the time.

Figure 4.13: Functional Constraint - Initial Phase

Another thing to mention is that normally until all hard constraints are satis-

fied the user does not interact with the optimization process.

User Interaction (Iteration 18)

At this point all hard constraints are satisfied and all objectives are within

limits, as is depicted also in Figure 4.14.

Moreover, Figure 4.15 confirms that the functional soft constraint meets the

demand. Even through for a small period of time it goes below the good curve, is

considered satisfied because it is specified as a soft constraint. Since all constraints

are satisfied and the objectives are within limits we have a valid, feasible design.

63

Figure 4.14: Pcomb after the 18th Iteration

If the user is satisfied, the optimization can stop here. Also, if we continue the

optimization process without any changes the next iterations will give also feasible

designs, due to the FSQP solver used by Consol-Optcad.

Figure 4.15: Functional Constraint after 18th Iteration

However, one can observe that in order to meet the power demand at this

stage, a lot more power is produced than the needed one. Therefore, we decide to

64

interact with Consol-Optcad and make the limits for fuel cost and emissions tighter

and lower the power output. Those changes intend to force the optimizer to find a

solution that will be more efficient while keep satisfying all constraints and objec-

tives.

Final Solution (Iteration 52)

At the 52nd iteration, we get a design that satisfies all hard and soft constraints

and also meets the new tighter limits for fuel cost and emissions (Figure 4.16).

Figure 4.16: Pcomb - Final Solution

Figure 4.17 confirms that the demand is met and is obvious that because of

the tighter limits on two of the objectives, less power is needed with the current

design to achieve the desired result.

As it was mentioned in section 4.2 for the specific multicriteria optimization

problem five design variables were examined. Figure 4.18 presents the results con-

cerning the output power of each DER at the final design solution.

65

Figure 4.17: Functional Constraint - Final Solution

Figure 4.18: Power Output

Moreover, Figure 4.19 illustrates the scheduling of the DERs during a period

of 24 hours. Also the diagram in this Figure provides information on the total power

at each hour of the day and how much is the contribution of the different DERs.

66

Figure 4.19: Scheduling Timeline

67

Chapter 5

Conclusions and Future Work

In this work we presented the modeling “hub” as a way to realize the Model-

Based Systems Engineering vision and face today’s challenges on complex engineered

systems. Furthermore, we focused on the trade-off and design space exploration part

of that hub and followed the proposed framework in order to integrate SysML with

Consol-Optcad. We provided also details on how each step of the integration was

implemented and what tools were used throughout this process. The SysML Consol-

Optcad integration facilitates the problem formulation for the user and makes a first

step towards having the design and optimization processes interacting and working

in parallel in order to achieve the best possible design. Moreover, a trade-off analysis

of an electrical microgrid was performed to demonstrate the results and utility of

this integration.

However, there are still open issues for future research. First of all, regard-

ing the implemented integration of SysML with Consol-Optcad one future goal is to

make the integration bidirectional. Currently, the integration allows the transforma-

tion of a SysML model to a Problem Description File in Consol-Optcad environment.

A bidirectional integration will allow values obtained from the optimization process

to be returned back to the SysML model. Moreover, most of the multicriteria prob-

lems that occur while designing and developing a complex system, depend on both

68

continuous and integer design variables. This fact unveils the need to modify the

solver of Consol-Optcad in order to handle also integer variables. Another interest-

ing research challenge would be to try to integrate SysML with a trade-off tool that

has many capabilities and is currently widely used in industry, like CPLEX.

In addition, the whole implementation of the modeling “hub” should be inves-

tigated further. The methodology that was proposed and followed in this work for

the trade-off and design exploration part needs to be applied for all other phases of

the Systems Engineering process. The appropriate tools need to be identified and

then an integration with the “hub” should be implemented. This process will help

towards identifying any shortcomings of the current hub architecture and hopefully

at the end the modeling “hub” will provide a powerful toolsuit for holistic systems

development.

69

Bibliography

[1] Sanford Friedenthal, Alan Moore, Rick Steiner, A Practical Guide to SysML
(The MK/OMG Press, 2009).

[2] Mark Austin, Class notes on Systems Engineering Requirements, Design and
Trade-Off (University of Maryland, College Park, MD, 2011).

[3] Mark Austin, Class notes on Systems Engineering Design Projects Validation
and Verification (University of Maryland, College Park, MD, 2011).

[4] Cecilia Haskins, Kevin Forsberg, Michael Krueger, David Walden, Douglas
Hamelin, Systems Engineering Handbook (INCOSE, San Diego, CA, 2011).

[5] International Council on Systems Engineering (INCOSE), Systems Engineering
Vision 2020 (Version 2.03, TP-2004-004-02, September 2007).

[6] Michael K.H.Fan, Andre L. Tits, Jian Zhou, Li-Sheng Wang and Jan Koninckx,
CONSOLE-User’s Manual (Technical Research Report, University of Maryland
and Harvard, Version 1.1, June 1990).

[7] No Magic,Inc., UML Profiling and DSL-User Guide (Version 17.0, 2011).

[8] No Magic,Inc., Open API-User Guide (Version 17.0.1, 2011).

[9] The eMoflon team, An Introduction to Metamodelling and Graph Transforma-
tions with eMoflon (Version 1.4, TU Darmsadt, September 2011).

[10] A. Anjorin, M. Lauder, S. Patzina, A. Schürr, eMoflon: Leveraging EMF and
Professional CASE Tools (INFORMATIK 2011, Bonn, Germany, October
2011).

[11] Alexnder Könings, Andy Schürr, Tool Integration with Triple Graph Grammars
- A Survey (Electronic Notes in Theoretical Computer Science, Volume 148,
Issue 1, Pages 113150 , February 2006).

[12] Thorsten Fischer and Jörg Niere and Lars Torunski and Albert Zündorf, Story
Diagrams: A New Graph Grammar Language based on the Unified Modeling
Language and Java (Universität Paderborn, 2000).

[13] M.B. Tischler, J.D. Colbourne, M.R. Morel, D.J. Biezad, A Multidisciplinary
Flight Control Development Environment and its Application to a Helicopter

70

(Control Systems, IEEE Journal, Volume 19, Issue 4, Pages 22-33, August
1999).

[14] P.J. Potter, W.S. Levine, Parametrically Optimal Control for the UH-60A
(Black Hawk) Rotorcraft in Forward Flight (Master’s Thesis, University of
Maryland, 1995).

[15] H. Vahedi, R. Noroozian, S.H. Hosseini, Optimal Management of MicroGrid
Using Differential Evolution Approach (7th International Conference on the
European Energy Market (EEM), Madrid, Spain, 23-25 June 2010).

[16] F.A. Mohamed, H.N. Koivo Power Management Strategy for Solving Power
Dispatch Problems in MicroGrid for Residential Applications (IEEE Inter-
national Energy Conference and Exhibition (EnergyCon), Manama, Bahrain,
18-22 December 2010).

[17] Sauli Jäntti, Connection of Distributed Energy Generation Units in the Distri-
bution Network and Grid (CODGUNet Project Final Report, Merinova Tech-
nology Center, Vaasa , Sweden, 2003).

[18] W. Morgantown, Emission Rates for New DG Technologies (Regulatory Assis-
tance Project, 2001).

[19] NAHB Research Center, Inc., Review of Residential Electrical Energy Use Data
(Upper Malboro, Maryland, USA, 2001).

[20] The California Energy Commission, Distributed Energy Resource Guide (Cal-
ifornia, USA, 2012).

[21] Michael K.H.Fan, Li-Sheng Wang, Jan Koninckx and Andre L. Tits, Software
Package for Optimization-Based Design with User-Supplied Simulators (IEEE
Control Systems Magazine, Volume 9, Issue 1, Pages 66 - 71, January 1989).

[22] Ashoke Kumar Basua, S.P. Chowdhuryb, S. Chowdhuryb, S. Paul, Microgrids:
Energy management by Strategic Deployment of DERs - A Comprehensive Sur-
vey (Renewable and Sustainable Energy Reviews, Volume 15, Issue 9, Pages
4348-4356, December 2011).

71

