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Mortality statistics are useful tools for public-health statisticians, actuaries

and policy makers to study health status of populations in communities and to make

plans in health care systems. Several statistical models and methods of parameter

estimation have been proposed. In this thesis, we review some benchmark mortality

models and propose three alternative statistical models for both epidemiologic data

and survival data.

For epidemiologic data, we propose two statistical models, a Smoothed Seg-

mented Lee-Carter model and a Smoothed Segmented Poisson Log-bilinear model.

The models are modifications of the Lee-Carter (1992) model which combine an age

segmented Lee-Carter parameterization with spline smoothed period effects within

each age segment. With different period effects across age groups, the two models

are fitted by maximizing respectively a penalized least squares criterion and a penal-

ized Poisson likelihood. The new methods are applied to the 1971-2006 public-use

mortality data sets released by the National Center for Health Statistics (NCHS).



Mortality rates for three leading causes of death, heart diseases, cancer and acci-

dents, are studied.

For survival data, we propose a phase type model having features of mixtures,

multiple stages or “hits”, and a trapping state. Two parameter estimation tech-

niques studied are a direct numerical method and an EM algorithm. Since phase

type model parameters are known to be difficult to estimate, we study in detail

the performance of our parameter estimation techniques by reference to the Fisher

Information matrix. An alternative way to produce a Fisher Information matrix for

an EM parameter estimation is also provided. The proposed model and the best

available parameter estimation techniques are applied to a large SEER 1992-2002

breast cancer dataset.
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Chapter 1

Introduction

Mortality statistics provide a useful basis for public health statisticians, actu-

aries and policy makers to study health status of populations in communities and

to make plans in health care systems. Several statistical models and parameter esti-

mations have been proposed, for instance, the Gompertz model, Heligman-Polland

model, Lee-Carter model, Multihit models and First-Hitting time models. In Chap-

ter 2, we review some of their important features, variants and applications.

One of the best known models is the mortality model proposed by Lee and

Carter in 1992. The model was originally proposed for modeling and forecasting

U.S. mortality. Since the Lee-Carter model is relatively simple and performs well

in many applications, it has drawn interest from demographers and epidemiologists

and has been a benchmark in modeling national mortality data in many countries

worldwide. For instance, Wilmoth (1998) applied the model to Japanese mortality

data for the period 1951-1995; Brouhns, Denuit and Vermunt (2002) applied the

model to Belgian mortality data for the period 1960-1998; Lundstrom and Qvist

(2004) fitted the model to Swedish mortality data for the period 1901-2001; and

Booth and Tickle (2003) fitted the model to Australian mortality data for the period

1968-2000. In Chapter 2, we give extensive background references on modifications

of the Lee-Carter model and its variants in techniques for parameter estimation.
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Even though the Lee-Carter model fits well in many applications, we found

that the Lee-Carter model’s property of having a common time trend among different

age groups is not suitable to some applications, for instance, with U.S. cause specific

mortality data, we found that time trend varies by age groups. Therefore, in this

thesis, we propose a modification of the Lee-Carter model for cause specific mortality

data which combines an age segmented Lee-Carter model with spline smoothed

period effects within each age segment. With different period effects across age

groups, two parameter estimation methods are studied: respectively based on a

penalized least squares criterion and a penalized Poisson likelihood.

In Chapter 3, we explore the feasibility of our age segmentation idea for cause-

specific mortality by using the 1971-2006 public use mortality data sets released by

the National Center for Health Statistics (NCHS). Mortality rates for three leading

causes of death, heart diseases, cancer and accidents, are studied. The singular value

decomposition technique in the original Lee-Carter paper is replaced by penalized

least squares parameter estimation in this chapter. Our study suggests advantages

of the age segmented model over the original Lee-Carter model. To increase the

efficiency of our segmented model, we also propose two methods of age-group seg-

mentations in Chapter 3 by applying techniques from clustering analysis. In this

chapter, we further study properties of parameter estimates by a bootstrap method.

The bootstrap is a simulation technique proposed by Efron in 1979 and has been

used for many purposes, such as bias reduction and variance estimation and point-

wise confidence interval construction. Although the bootstrap is known to be a

computer intensive technique, it is very useful in the situation when theoretical cal-
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culation of parameter estimates is too complex, as in the situation of the Lee-Carter

model and its variants ( Brouhns et al., 2005). In this chapter, we apply a Poisson

bootstrap in comparing the original model and our proposed model, with detailed

graphical results shown in Chapter 10.

While our study in Chapter 3 shows that the age-segmented model improves

the original Lee-Carter model in capturing time trends for cause-specific mortality,

we further explore the segmentation concept for age by sex mortality in Chapter 4.

According to Alho (2000), the least squares Lee-Carter model is not quite suited

to mortality data because the errors are assumed to be homoskedastic. Moreover,

since the number of deaths follows a count random variable, the Poisson distribution

is shown to be suited well to mortality analyses (Brillinger 1986 , Brouhns et al.,

2005). Therefore, in this chapter, we apply a penalized Poisson likelihood method

of parameter estimation instead of the penalized least squares used in Chapter 3.

In Chapter 5, we discuss alternative methods of variance estimation and confidence

interval construction and future research directions on the SSLC and SSPB models.

We further study asymptotic properties of parameter estimates obtained from a pe-

nalized likelihood parameter estimation and a bootstrap of the penalized likelihood

method by specializing theorems of Pakes and Pollard (1989) and Chen et al. (2003)

in Chapter 9.

In Chapter 6, we study properties and applications of a phase type family to

survival models. The phase type distribution is defined as the first hitting time

distribution of a Markov process, which was introduced by Neuts in 1975 as a

generalization of the Erlang distribution. The family of phase-type distributions
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is known to be dense among all continuous distributions on the positive real line.

Because the phase type distributions are mathematically tractable and have several

useful features, they are widely applied in many fields of study, such as, in health

care (Faddy and McClean 1999, Fackrell 2009, and Garg et al. 2011) and survival

analysis (Aalen 1995, Olsson 1996).

Although the family of phase-type distributions is mathematically tractable, it

is known that phase-type distributions do not have a unique representation (O’Cin

neide, C.A. 1989) and the phase-type distributions are often over-parameterized.

Parameter estimation of phase type distributions is difficult in practice. Therefore,

many authors propose to restrict the phase type family to some subclasses of phase

type distributions in order to avoid the problem. For example, Bobbio et al.(2003)

restricted the phase type distributions to the subclass of Acyclic Phase Type (APH)

distributions. Many parameter estimation methods have been proposed. One of the

attractive parameter estimation methods is an EM algorithm proposed by Asmussen

et al. (1996). In Chapter 6, we propose a phase type model for survival data having

features of mixtures, multiple stages or “hits”, and a trapping-state. Efficiencies of

the Asmussen EM algorithm and a direct Newton-Raphson optimization method in

phase type parameter estimation are studied by examining to the Fisher Information

matrix. In this chapter, we also provide an alternative way to produce a Fisher

Information matrix for an EM parameter estimation. The proposed model and the

best parameter estimation are then applied to a large SEER 1992-2002 breast-cancer

dataset.

Our new contributions to mortality statistics are distributed throughout this

4



thesis. In Chapter 3 we propose a new modification of the well known Lee-Carter

model which is shown to have advantage over the original model in capturing time

trends for U.S. cause specific mortality data. In this Chapter, we also provide a

parameter estimation method and propose systematic methods for age group clus-

tering. In Chapter 4, we extend our model to a penalized Poisson likelihood method

and compare the two models. In Chapter 5, we suggest alternative methods of

variance estimation and confidence interval construction. In Chapter 6, we pro-

pose a subclass of phase type models and propose a new method to estimate the

Fisher Information matrix for EM parameter estimates in our proposed phase type

model. This method is an application of the Oakes’s formula (Oakes, 1999) for

estimating Fisher Information matrix from general EM parameter estimates and

a Runge Kutta numerical method. In Chapter 9, we specialize Consistency and

Asymptotically normality conditions of Pakes and Pollard’s conditions (1989) and a

normality conditions for a nonparametric bootstrap estimates of Chen et al. (2003)

to penalized likelihood parameter estimates.
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Chapter 2

Introduction to Mortality Models

Mortality data collected over time allow public health statisticians to provide

current age specific mortality snapshots and also to model trends in age specific

mortality. Forecasts of mortality trends, including trends in mortality from specific

diseases, can play an important role in anticipating future costs and demands in the

health care system. Several statistical modeling and estimation techniques have been

developed to meet this challenge, for example, the Gompertz and Makeham models,

the Heligman-Polland model, the Lee-Carter model, multihit models and first hitting

time models. Recent discussions and reviews of mortality models are available in

Alho et al. (2005), Schoen (2006), Girosi and King (2008) and Booth and Tickle

(2008). In this section, we discuss some benchmark models that play important

roles in mortality statistics. Among of the models discussed in this chapter, we will

study modifications of Lee-Carter models in Chapters 3 and 4 and study phase type

models in Chapter 6. To begin, we provide some common notations and concepts

of mortality statistics.

2.1 Basic Notations and Concepts

Let T be a non-negative random variable, the waiting time until occurrence of

an event of interest, such as death. The survival function, the probability that an
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individual survives after a certain time t , is defined as

S(t) = P (T ≥ t).

If T is a continuous random variable with a density f , then the survival func-

tion is the complement of the cumulative distribution function F which is also defined

as

S(t) = P (T ≥ t) = 1− F (t) =

∫ ∞
t

f(s)ds, (2.1.1)

where f is the density function of T . Therefore f(t) = − d

dt
S(t).

Another quantity of interest in mortality models is the hazard intensity, which

is also known as the mortality rate or force of mortality in demography and age-

specific failure rate in epidemiology. The hazard function is defined as

h(t) = lim
δ→0

P (t ≤ T ≤ t+ δ|T ≥ t)

δ
.

For a continuous random variable T with a density, the hazard function is

h(t) =
f(t)

S(t)
= − d

dt
ln(S(t)). (2.1.2)

The corresponding cumulative hazard function is defined by

H(t) =

∫ t

0

h(t)dt = − ln(S(t)). (2.1.3)

2.2 Life Table

A life table, or mortality table, is a table describing age-specific mortality rates

and surviving rates of a population. There are two primary types of life table: (1)

cohort life table representing mortality statistics of a particular birth cohort; (2)
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period (or static) life table representing mortality statistics at a specific year or a

short period of time. To produce a complete cohort life table, all individuals in the

group of study are followed until death, which requires many years of study. There-

fore the cohort life table is not feasible in general practice due to incompleteness

of the dataset. In contrast, a period (static) life table provides mortality statistics

based on what happened at a specific time assuming that the individuals who died

within the year of study were followed from birth. It is more feasible to complete

a period life table than a cohort table because it does not require long term study.

Therefore, life tables in the statistics and demography literature generally refer to

period life tables unless specifically cited as cohort life tables.

To construct a life table, we begin with an initial population of size l0, “the

life table radix”, which is a large number and usually be set to 100,000.

The number of survivors at age x (x = 1, 2, . . .), lx, is defined as

lx = lx−1(1− qx−1),

where qx is the probability of dying at age x, defined as the ratio of the number of

deaths at age x to the number of survivors at age x,

qx =
dx
lx
.

The number of person years lived between age x and x+ 1, Lx is defined as

Lx =

∫ 1

0

lx+udu.

In general practice, Lx is estimated by (Arias, 2006)

Lx =
1

2
(lx + lx+1).
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The total person-years lived above age x, Tx, is defined as the sum of Ly for all

y ≥ x,

Tx =
∞∑
y=x

Ly.

The expectation of life at age x is then defined as

ex =
Tx
lx
.

Table 2.1 shows a sample of a life table published by the National Center of Health

Statistics [Arias, 2006] presenting the quantities described above.

Table 2.1: Life Table for the total population: United States, 2006

Age

Probability Number Number Person Total Expectation

of dying surviving dying years number of of life

in to age x in lived in person-years at age x

age age age lived above

[x, x+ 1) [x, x+ 1) [x, x+ 1) age x

0-1 0.006713 100,000 671 99,409 7,770,850 77.7

1-2 0.000444 99,329 44 99,307 7,671,441 77.2

...
...

...
...

...
...

...

99-100 0.303810 2,494 758 2,115 6,024 2.4

100up 1.00000 1,737 1,737 3,909 3,909 2.3

Explanations of the columns in Table 2.1 are given below [Arias, 2006].

Column 1, Age [x to x + 1), shows the age interval between the two ages (as
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integers).

Column 2, Probability of dying (qx), shows the probability of dying between

ages x and x + 1. This column forms the basis of life table calculations in other

consequent columns.

Column 3, Number surviving (lx), shows the number of persons from the origin

of l0 (100000) who survives to the beginning of each age interval.

Column 4, Number of dying (dx), shows the number of dying in each age in-

terval out of the origin l0 of lives.

Column 5, Person years lived (Lx), shows the total time lived between the

indicated birthdays by all those who reach the earlier birthday.

Column 6, Total number of person years lived (Tx), shows the total number

of person-years that would lived after the beginning of the age interval x to x+ 1.

Column 7, Expectation of life (ex), shows the average number of years remain-

ing to be lived of those surviving to age x.

2.3 Gompertz model

Human mortality description in actuarial science began with life tables, the

earliest of which is credited to John Graunt in 1662. Models describing the pattern

of mortality by age would nowadays be described in terms of hazard rate, termed

force of mortality by actuaries: the famous and influential model of Gompertz (1825)

is an exponential

h(x) = bAx
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for hazard in the age variable x, where b > 0 and A is slightly greater than 1, and

Makeham later (1864) added a constant term to h to allow location-scale shifts of

possible limits,

h(x) = c+ bAx.

These models are presented in actuarial discussions either as formulas for hazard

or for the age-specific death-rates qx = P (x < T < x + 1 |T ≥ x) for one-year

time intervals associated with continuous lifetime random variables T , but for most

purposes these functions qx and h(x) are interchangeable except at advanced

ages. For these and other historical references, see Bowers et al. (1997) and Lin and

Liu (2007). The early actuarial models were intended to model qualitative features

– convexly increasing shape at older ages, decreasing hazard in early childhood, the

combination of which is classically called the ”bathtub shape“– so as to facilitate the

numerical calculation of expected present values under constant rates of compound

interest.

The Gompertz model, which is closely related to the so-called extreme value

distribution, is naturally combined with the Weibull model as being among the small

class of distributions characterized by the fundamental Fisher-Tippett-Gnedenko

(1927-1948) Theorem (Feller 1972, vol.2) as possible distributional limits of maxima

of independent identically distributed sequences {Xi}. Brillinger (1961) highlighted

the relevance of this theorem for actuarial science, including generalizations of this

extreme value theory to limits of dependent and nonidentical sequences of random

variables, and proposed general hazard expressions arising in this way as parametric
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models for use in actuarial work.

2.4 Heligman-Pollard Eight Parameter Model (HP)

The Heligman-Pollard (1980) eight-parameter model is a generalization of the

Gompertz model that allows variation of pattern of mortality curves among different

age ranges: childhood, middle ages and old ages. The model is defined as

qx
1− qx

= A(x+B)C + D exp(−E log2 x

F
) + GHx, (2.4.4)

where x is the age variable.

The model consists of three terms representing different components of mor-

tality. The first term, which is in exponential form represents the fall of mortality

in childhood years. This term contains three parameters: A measuring the level of

mortality; B a parameter accounting for infant mortality; and C measuring the rate

of mortality decline in childhood. The second term represents accident mortality

during middle age, which reflects “accident hump” in mortality curves. The three

parameters in this term are F , E and D indicating respective location, spread and

severity of the accident hump. The last term, which is the Gompertz exponential

term, represents geometric increase of mortality rate in old age due to biological

aging, called senescent mortality. The two parameters in this term are G, repre-

senting base level of senescent mortality, and H, representing the rate of increase of

mortality rates. There are several further extensions of the HP model. For example,

Kostaki (1992) extends the HP model by proposing a nine-parameter version of the

HP model and Sherris and Njenga (2011) apply a Bayesian Vector Autoregressive
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(BVAR) model for the parameters of the HP model to allow for dependence of pa-

rameters in the HP model. The HP model and its variants have been used in several

contexts. For instance, Rogers and Gard (1991) applied the HP model to life table

data for Australia, England and United States; Voulgaraki et al. (2008) applied the

HP model to model mortality curve for small subpopulations; Sharrow et al. (2010)

applied the HP model to study HIV mortality in South America, and Wei et al.

(2011) applied the HP model to study US mortality in 1999-2001.

2.5 Age-Period-Cohort Model

The age-period-cohort (APC) model is a demographic mortality model that

expresses the mortality rate qa,p,c as a superposition

log(qa,p,c) = αa + βp + γc

of age effect (αa, a function of age alone), period effect (βp) and cohort effect (γc),

where period refers to time at diagnosis and cohort refers to date of birth. By their

definitions, the three factor-indices have linear dependence as described by c = A−

a+p, where A is the number of age groups and a (a = 1, ..., A) , p (p = 1, .., P ), and

c (c = 1, .., C) denote indices of age-intervals, period intervals and cohort intervals,

respectively. This relation shows that the APC model is nonidentifiable as we can
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write the relation (Robertson et al. 1999)

log(qa,p,c) = αa + βp + γc

= αa + βp + γc + λ(A− a+ p− c)

= (αa + λ(A− a)) + (βp + λp) + (γc − λc),

where λ is an unidentifiable parameter. This non identifiability has led to many

proposed constraints or side conditions on the three effects which can restore iden-

tifiability. For example, Clayton and Schifflers (1987) restrict the age-period-cohort

models to age-period and age-cohort models. Fienberg and Mason (1979) and Hol-

ford (1983) suggest constraints
A∑
a=1

αa = 0,
P∑
p=1

βp = 0 and
C∑
c=1

γc = 0. Rosenberg

and Anderson (2010, 2012) suggest making the partition incorporate the constraint

c = A− a+ p as the age-period form

log(qa,p,c) = µ+ (αL − γL)(a− ā) + α̃a + (βL + γL)(p− p̄) + β̃p + γ̃p−a+A

and the age-cohort form

log(qa,p,c) = µ+ (αL + βL)(a− ā) + α̃a + (βL + γL)(c− c̄) + β̃c+a−A + γ̃c,

where α̃a, β̃p, and γ̃c are age, period and cohort deviations, αL + βL, αL − γL,

and βL + γL are respective longitudinal age trend, cross-sectional age trend and net

drift. Many other proposed solutions to achieve identifiability are studied in detail in

Robertson et al. (1999) . A generalization of the APC model allowing for continuous

age, period and cohort indices, where mortality rates are modeled by any function

of the three effects, was proposed in Carstensen (2007), via cubic smoothing spline

functions of the three indices.
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2.6 The Lee-Carter model

Lee and Carter (1992) developed a method for modeling and forecasting mor-

tality, including an age effect, a period effect, and another age by period component

that explains the pattern of deviations from the main age effects through a sec-

ondary age effect multiplied by a period specific effect. The model is presented as

follows.

For a = 1, 2, 3, . . . , A and p = p0 + 1, p0 + 2, p0 + 3, . . . , p0 + P , let λa,p

denote the mortality rate from the disease of interest at age a in year p1, where

“age” indexes a single year of age, and the calender year of the observation is

referred to as ‘period’. The mortality rate is estimated by the proportion λ̃a,p of the

observed number of deaths Da,p to the corresponding population size Na,p. The LC

model is defined as

log(λ̃a,p) = αa + βaγp + εa,p, (2.6.5)

where
∑
a

βa = 1 and
∑
p

γp = 0. Here αa represents the fixed effect associated with

age, βa describes the pattern of slopes from the age profile as period p varies, γp

is the time varying parameter and εa,p is the independent error term with mean 0

and variance σ2
ε independent of a and p. The Lee-Carter (LC) mortality model has

been widely used worldwide since 1992. For instance, Wilmoth (1998) applied the

model to Japanese mortality data for the period 1951-1995; Brouhns, Denuit and

Vermunt (2002) applied the model to Belgian mortality data for the period 1960-

1Since a is an integer single age, this λa,p has the same meaning as the death rate parameter

qa used in earlier sections.
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1998; Lundstrom and Qvist (2004) fitted the model to Swedish mortality data for

the period 1901-2001; and Booth and Tickle (2003) fitted the model to Australian

mortality data for the period 1968-2000. Several variations of the LC models both

in terms of parameter estimations and the features of the model itself have been

proposed in the last two decades. In this section, we discuss in detail some well-

known parameter estimations and modifications of the LC model. More discussion

of applications of the LC model and its variants and extensions can be found in

Bongaarts (2004), Booth et al. (2006), Koissi et al. (2006), Girosi and King (2007)

and Booth and Tickle (2008).

2.6.1 The First Singular Value Decomposition

The first parameter estimation method to be discussed here is the first Singular

Value Decomposition (SVD) which is the original estimation method used in Lee and

Carter (1992). It is based on the Singular Value Decomposition Theorem presented

below.

Theorem 2.1 (Singular Value Decomposition). Let A be an m× n matrix of rank

k. Then there is an m ×m orthogonal matrix U, n × n orthogonal matrix V, and

an m× n diagonal matrix D such that

A = UDVT ,

where the diagonal entries of D, called singular values of A, can be arranged to

be nonincreasing. The singular values are nonnegative and exactly k of them are

strictly positive.
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Proof. See Lawson and Hanson (1974).

The parameter estimates of αa for a = 1, . . . , A, are simply the least squares

estimates α̂a =
1

P

p0+P∑
p=p0+1

(
log(λ̃a,p)

)
, a = 1, . . . , A. The parameter estimates of

βa, a = 1, . . . , A and γp , p = p0 + 1, . . . , p0 + P , can be obtained by applying the

Singular Value Decomposition (SVD) to the matrix T = [Ta,p]a,p, where Ta,p =

log(λ̃a,p) − α̂a , a = 1, . . . , A, p = p0 + 1, . . . , p0 + P . According to Theorem 2.1,

there is an A×A orthogonal matrix U, an P ×P orthogonal matrix V and an A×P

diagonal matrix D containing singular values λ1, . . . , λr of T, where r is the rank of

T such that

T = UDVT

=



u1,1 · · · · · · u1,A

...
. . .

...
...

...
. . . . . .

...

uA,1 · · · · · · uA,A





λ1 0 · · · · · · 0

· · · . . . 0
. . . 0

... 0 λr
. . . 0

0 · · · · · · · · · 0





v1,1 · · · · · · vP,1

...
. . .

...
...

...
. . . . . .

...

v1,P · · · · · · vP,P


= λ1u1v

T
1 + · · ·λrurvTr ,

where uj is the jth column of U and vj is the jth column of V.

Therefore the first eigenvalue decomposition of T is λ1u1v
T
1 = βγT . Applying

the constraint
A∑
a=1

βa = 1, the parameter estimates of βa , a = 1, . . . , A and γp , p =

p0 + 1, . . . , p0 + P are defined by

β̂a =
ua,1∑
a

ua,1
: a = 1, . . . , A

and γ̂p = λ1vp,1
(∑

a

ua,1
)

: p = p0 + 1, . . . , p0 + P.
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2.6.2 Expanded Singular Value Decomposition

While the LC model uses only the first singular value components, Renshaw

and Haberman (2003) extended the Lee-Carter model by adding additional singular

value components;

log(λ̃a,p) = αa +
r∑
i=1

β(i)
a · γ(i)p + εa,p,

where
∑
a

β(i)
a = 1 and

∑
p

γ(i)p = 0 for i = 1, . . . , r ≤ min(A,P ). Theorem 2.1 also

implies that β(i) and β(j) are orthogonal for all i 6= j and the same property applies

to γ(k) and γ(l) for all k 6= l. The authors studied when r = 1, . . . , 5 and suggested

that there are significant improvements after adding the second components but not

after adding the 3rd, 4th and 5th components. Therefore the authors recommended

the expanded Lee-Carter model with the first two singular value components. De-

tailed study of numerical comparisons between different numbers of singular value

decomposition components can be found in Ranshaw and Haberman (2003).

2.6.3 Weighted Least Square approach

Wilmoth (1993) extended the Lee-Carter model to take care of the “zero

cell” problem by applying weighted least squares (WLS) with weights equal to the

observed number of deaths in each cell of data matrix. The author also found that

the weighted least squares approach fits data better than the original singular value

decomposition approach for Japanese women in 1951-1990 (Wilmoth, 1993). To

apply the weighted least squares approach , we minimize the objective function

∑
a,p

Da,p

(
log(λ̃a,p)− (αa + βaγp)

)2
, (2.6.6)
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where Da,p is the observed number of deaths at age a in year p. The corresponding

weighted least squares estimates are given as

α̂a =

∑
p

Da,p

(
log(λ̃a,p)− β̂aγ̂p

)
∑
p

Da,p

, (2.6.7)

β̂a =

∑
p

Da,pγ̂p
(

log(λ̃a,p)− α̂a
)

∑
p

Da,pγ
2
p

, (2.6.8)

γ̂p =

∑
a

Da,pβ̂a
(

log(λ̃a,p)− α̂a
)

∑
a

Da,pβ
2
a

, (2.6.9)

which can be solved by an iterative procedure after choosing a set of initial values.

2.6.4 Poisson Log-bilinear model

The original least squares approach used by Lee and Carter in fitting their

model has a drawback of having to assume homoscedastic errors (Alho, 2000).

Therefore the Poisson likelihood version of the Lee-Carter model proposed by Wil-

moth (1993) seems to be better suited to the problem than the original least squares

approach. To apply a Poisson likelihood, we assume that the number Da,p of death

at age a in year p, follows a Poisson distribution with mean λa,pNa,p, where λa,p and

Na,p are the corresponding mortality rate and population size . The mortality rate

is assumed to satisfy the following equation

λa,p = exp(αa + βaγp).
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Therefore the log-likelihood is given by

L(α, β, γ) =
∑
a,p

(
Da,p

(
αa + βaγp

)
−Na,p exp

(
αa + βaγp

))
+ constant. (2.6.10)

To solve for parameter estimates, ones need to solve the following equations:

∑
p

Da,p −
∑
p

Na,p exp(αa + βaγp) = 0 (2.6.11)

∑
p

Da,pγp −
∑
p

Na,pγp exp(αa + βaγp) = 0 (2.6.12)

∑
a

Da,pβa −
∑
a

Na,pβa exp(αa + βaγp) = 0. (2.6.13)

Solving equation 2.6.11, we have α̂a = log


∑
p

Da,p∑
p

Na,p exp(βaγp)

. Parameter esti-

mates of βa and γp can be obtained by applying an iterative method after choosing

a set of initial values. The convergence rate depends on the iteration technique used

in solving the system of equations and the starting values.

An alternative method to solve the system of equations by using an iterative

Newton-Raphson method is also provided in Brouhns et al. (2002) as follows. Given

the initial values α̂
(0)
a = 0, β̂

(0)
a = 1, and γ̂

(0)
p = 0,

α̂(k+1)
a = α̂(k)

a +

∑
p

(Da,p − D̂(k)
a,p)∑

p

D̂(k)
a,p

, β̂(k+1)
a = β̂(k)

a , γ̂(k+1)
p = γ̂(k)p

γ̂(k+2)
p = γ̂(k+1)

p +

∑
p

(Da,p − D̂(k+1)
a,p )β̂(k+1)

a∑
p

D̂(k)
a,p(β̂

(k+1)
a )2

, α̂(k+2)
a = α̂(k+1)

a , β̂(k+2)
a = β̂(k+1)

a

β̂(k+3)
a = β̂(k+2)

a +

∑
p

(Da,p − D̂(k+2)
a,p )γ̂(k+2)

p∑
p

D̂(k+2)
a,p (γ̂(k+2)

p )2
, α̂(k+3)

a = α̂(k+2)
a , γ̂(k+3)

p = γ̂(k+2)
p ,
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where D̂
(k)
a,p = Na,p exp(α̂

(k)
a +β̂

(k)
a γ̂

(k)
p ). The criterion used to stop the iteration proce-

dure is the small increase of the log-likelihood function; 10−6 was used in Brouhns et

al. (2002). By using this method, parameter estimation could be performed by using

the LEM program [Vermunt, 1979a,b]. This method is based on a Newton-Raphson-

type equation applied successively one coordinate at a time and a convergence is

guaranteed if the starting points are close enough to the true values. A reasonable

set of starting points can be obtained by using least square estimates.

Later in 2007, Delwarde et al. found, from their empirical studies, that the

estimated βa’s from the LC and PB models exhibit an irregular pattern of mortality

curves that yields an irregular life table pattern. This could be undesirable from an

actuarial point of view. Therefore, they recommended smoothing the age-specific

component βa : a = 1, ..., A by applying a penalty term
∑
a

(βa − 2β(a−1) + β(a−2))
2

to the log-likelihood function. Their results suggest that this additional step yields

smoother mortality curves.

2.7 Multihit Model

The very fruitful multihit model of cancer incidence was formulated by Ar-

mitage and Doll (1954) based on their observation that cancer incidence for many

different sites and populations approximately follows a power law as a function of

age. The multihit model essentially says that before a malignant tumor becomes

clinically observable, its precursor cell must have passed successively through a series

of independent stages, conceptualized as mutations or newly initiated developmental
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events. The model is defined (Armitage and Doll 1954) as

q(t) = N
p1p2 · · · p(r−1)tr−1

(r − 1)!
,

where q(t) is the incidence rate per person at time t, N is the mean number of

cells at risk per person, pi is the probability of occurrences of the i − th mutation

per unit time, and r is the number of mutations. The key contribution of this

model was a mechanism “explaining”the observed power law: when the r successive

transition rates λ are identical, the power dependence on age is the term tr−1 in the

Gamma(r, λ) density for the sum of r Expon(λ) waiting times, and r = 7 was

proposed in Armitage and Doll (1954).

This model already displays the key features that later characterize phase type

models for mortality: independent, latent stages with exponentially distributed du-

rations. For example, Knudson (1971) advanced a Markovian model (with 6 states

and 7 transition rate parameters) for retinoblastoma development which was later

substantially validated. See Moolgavkar (2004) for references and background on

the 50 years of subsequent development of the multihit idea, which showed a rare

concordance between conceptualized latent stages and mutations described in terms

of molecular genetics. Moolgavkar (2004) explains that multistage cancer causation

models are now explanatory, supported by genetic and other biological evidence,

but that more accurate descriptive transition models must still be developed. Other

Markov chain models of cancer incidence times or death times following diagnosis

and initial treatment have been introduced by many different authors for several

different cancers, such as Manton and Stallard’s (1980) model of breast cancer mor-
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tality. (See additional references to Moolgavkar and to Manton and Stallard for

other examples.)

2.8 First hitting time models

A first hitting time model is a stochastic model having two main compo-

nents (Lee and Whitmore, 2006): (1) a parent stochastic process {X(t)} and (2) a

threshold or a boundary set. The parent stochastic process is a stochastic process

{X(t) : t ∈ T , X ∈ X}, where X(t) is right continuous on the time space T and X

is the state space. The boundary set is any closed set B such that B ⊂ X . The first

hitting time is defined as the first time that the process reaches the threshold or the

boundary set,

T = inf{t : X(t) ∈ B}.

Specific classes of stochastic processes X crossing a constant threshold determine

well known failure time distributions. The best known example, when X is the

Wiener process with drift, is the 2-parameter Inverse Gaussian distribution. Lee

and Whitmore (2006) discuss several other such models, for example, the Bernoulli

process, Poisson process, Gamma process, Ornstein-Uhlenbeck process and more

general Markov processes. Their approach to survival data analysis is to choose

a tractable process X and model survival times through regression models for the

threshold a or initial point x0 = X(0) in terms of observable covariates. More

ambitiously, Aalen and Gjessing (2001) study threshold-crossing times for a much

wider class of continuous-time continuous-state Markov processes with the objective
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of deriving qualitative properties of the hazard functions for crossing times from

the underlying process properties. Among these stochastic models, there are three

classes of processes that draw most attention among researchers: Wiener processes,

Ornstein-Uhlenbeck processes and Markov processes. We will discuss the first two

in this section and the third in Chapter 6.

2.8.1 Wiener Process

A standard Wiener process W (t) is a continuous stochastic process such that

W (t) has independent increments and for s > 0,

E(W (s+ t)−W (t)) = 0, and Var(W (s+ t)−W (t)) = s.

To increase flexibility of the Wiener process for applications, we study the process

X(t) = x0 + µt+ σW (t),

which is called Wiener process with initial value x0, drift coefficient µ and diffusion

coefficient σ. The density of the time T to absorption at zero is found to be (Aalen

et al., 2008)

f(t) =
x0

σ
√

2π
t−3/2 exp

(
− (x0 − µt)2

2σ2t

)
,

which is called an “Inverse Gaussian distribution”. The corresponding survival

function is defined as

S(t) = Φ

(
x0 − µt
σ
√
t

)
− exp

(
2x0µ

σ2

)
Φ

(
−x0 − µt
σ
√
t

)
.

The Wiener process and inverse Gaussian distribution have wide applications in

mortality statistics and survival analysis, such as Lancaster (1972), Whitmore(1998),
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Weitz and Fraser (2001), Lee and Whitmore (2006), Aalen el at. (2008), and Balka

et al. (2009).

2.8.2 Ornstein-Uhlenbeck Process

A natural extension of the Wiener process is to allow a random drift coefficient.

The resulting stochastic process is the so-called Ornstein-Uhlenbeck process, which

satisfies the differential equation

dX(t) = (a− bX(t))dt+ σdW (t). (2.8.14)

Solving the equation (2.8.14), the Ornstein-Uhlenbeck process is also expressed as :

X(t) =
a

b
+
(
X(0)− a

b

)
e−bt + σ

∫ t

0

e−b(t−s)dW (s), (2.8.15)

where W (s) is the standard Wiener process.

The mean and variance of the Ornstein-Uhlenbeck process are given as

E(X(t)) =
a

b
+
(
E(X(0))− a

b

)
e−bt (2.8.16)

V ar(X(t)) = e−2btV ar(X(0)) +
σ2

2b
(1− e−2bt) (2.8.17)

The term (a − bX(t)) represents a force pulling the process X(t) back toward
a

b

which is the asymptotic mean of the process, called “mean reversion” property. This

property is associated with the strict stationarity of the Ornstein-Uhlenbeck process,

which motivated many researchers to apply this process to phenomena that remain

stable over time, such as interest rates and currency exchange rates in financial

contexts, where most applications of the Ornstein-Uhlenbeck appear. However, the
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phenomenon also appears in the context of mortality statistics and survival analysis.

For example, AIDS and other chronic diseases can not be cured but can stay stable

with some treatments. Therefore, the Ornstein-Uhlenbeck process has also attracted

interest in biostatistics. For example, Taylor et al. (1994) applied an Ornstein-

Uhlenbeck process to model longitudinal AIDS data, and Aalen and Gjessing (2004)

introduced the Ornstein-Uhlenbeck process to the context of survival analysis and

biology. Trost et al. (2010) discussed application of the Ornstein-Uhlenbeck process

in a study of liver homeostasis, which is suggested to have stationary behavior

around an equilibrium.

Even though the Ornstein-Uhlenbeck has wide application in many fields of

interest, the first hitting time of the Ornstein-Uhlenbeck process is known to be

available only in the special case where a = 0 and the threshold state is 0 (inde-

pendently derived by Pitman and Yor (1981) and Ricciardi and Sato (1988)). The

special case when a = 0, b = 1, σ2 = 2 [Aalen et al. (2008)] is presented below:

f(t) =

√
2

π
x0

e2t

(e2t − 1)3/2
exp

(
− x20

2(e2t − 1)

)
. (2.8.18)

This has led to an open problem of searching for the first hitting of the

Ornstein-Uhlenbeck in the general case, and alternative indirect approaches have

been proposed. For example, Ricciardi and Sato (1988) derived the first hitting

time in the form of parabolic cylinder function and moment functions. Buonocore

et al. (1987) presented the first hitting time in the form of integral equations, while

Nobile et al. (1985) provided an asymptotic exponential approximation to the hit-

ting time density. However these expressions are not tractable in application. We
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also attempted to study a tractable form of the first hitting time of the Ornstein-

Uhlenbeck mentioned in (2.8.14) for a general threshold stage c which is given in

(2.8.19). The formula is an approximation of the first hitting time of the Ornstein-

Uhlenbeck process starting at an initial state x0 and the threshold state is at point

c ≤ x0. The derivation of the density function is a direct application of density

approximation of general Gaussian processes discussed in Durbin (1985). Lachaud

(2004) applied Durbin’s density approximation to a special case of the Ornstein-

Uhlenbeck process when a = c = 0, which is the case where the equilibrium point

and the threshold state are the same. We extend the formula of Lachaud (2004)

to a general case where the equilibrium point and the threshold state are different.

Our derivation of the formula is a direct application of Durbin (1985) and Lachaud

(2004) and we refer to Chapter 8 for more details in deriving the formula.

f(t) =
ebt
(
a/b(ebt − 1)2 − c(e2bt + 1) + 2x0e

bt
)

σ
√
π

(
b

e2bt − 1

)3/2

× exp

(
−b[(a/b− c)ebt + (x0 − a/b)]2

σ2(e2bt − 1)

)
. (2.8.19)

The special case when a = 0, b = 1, c = 0, this formula coincides with the exact

density given in (2.8.18).
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Chapter 3

Smoothed Segmented Lee-Carter Model (SSLC)

3.1 Introduction

In many demographic and public-health applications, it is important to sum-

marize mortality curves and time trends from population-based age-specific mortal-

ity data collected over successive years, and this is often done through the well-known

model of Lee and Carter (1992). Because of its simplicity and fairly good accuracy,

the LC model has been a benchmark mortality model since 1992. There are sev-

eral applications of the LC model in modeling and forecasting mortality of many

countries around the world as mentioned in Section 2.6. However, not all mortality

dataset are perfectly described by the LC model. Therefore, several improvements

and modifications have been proposed within the last two decades. For example,

Wilmoth (1993) suggested fitting the LC model by using weighted least squares and

Poisson maximum likelihood methods. A further study of the Poisson maximum

likelihood method is found in Brouhns et al. (2002). Booth et al. (2002) suggested

adjusting the period effect terms by applying a Poisson regression model to the an-

nual number of deaths at each age while leaving the age effect terms unchanged.

Ranshaw and Haberman (2003a) proposed a generalized linear modeling approach

to the LC model. Delwarde et al. (2007) fitted the LC model by using penalized

least squares and a penalized log-likelihood.
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All of these methods were developed for the LC model with only one set of

period effects. We found in our data sets that the appropriate period effects across

ages for cause-specific mortality data seemed to differ. This observation was also

observed by other authors, for example, Renshaw and Haberman (2003b), Hyndman

and Ullah (2007), and Girosi and King (2008). They suggested, in their studies, to

keep more than one set of singular value decomposition vectors in the LC model.

In this chapter, we propose another method to accommodate the variation of pe-

riod effect among different age groups. Our new modified LC model combines an

age-segmented LC model with a spline smoothed period effect within each age seg-

ment. The segmented Lee-Carter model is fitted by using an iterative penalized least

squares method. The new method is applied to the 1971-2006 public-use mortality

data sets released by the National Center for Health Statistics (NCHS). Mortality

rates for three leading causes of death, heart diseases, cancer and accidents, are stud-

ied in this research. The results from data analysis suggest that the age-segmented

method improves the performance of the Lee-Carter method in capturing period

effects across ages.

This chapter is organized as follows. Section 3.2 describes background on U.S.

mortality from three selected causes of death: heart diseases, cancer, and accidents.

Section 3.3 explains the details and fitting procedure for the new age-segmented

model. In Section 3.4, the age-segmented method is compared to the original LC

model using the 1971-2006 NCHS public use U.S. mortality data for each of the

three leading causes of death. Bootstrap studies comparing the two models are
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implemented in Section 3.5. Section 3.6 discusses age-segmentation.

3.2 Background on U.S. data for the three leading causes of

mortality

The U.S. mortality data sets used in this research are public-use mortality

data files from 1971-2006 released by the National Center for Health Statistics1. The

population data files are drawn from the U.S. Census Bureau. Underlying causes of

death were classified according to the International Classification of Diseases (ICD).

The causes of death in this data period are coded according to three ICD revisions

which are ICD8, ICD9 and ICD10, and the cause-specific mortality curves show

discontinuities between two consecutive ICD revisions. These discontinuities are

caused by coding differences among ICD revisions. To smooth the mortality curves,

we apply comparability ratios2, the ratio of the number of deaths classified by the

new revision to the number of deaths classified by the previous revision, published

by the National Center for Health Statistics for each data set. Table 3.1 shows ICD

codes and comparability ratios for the three leading causes of death used in this

study3. A comparability ratio for each cause of death is used to multiply the num-

ber of deaths from the previous revision to produce an updated numbers of deaths

to become comparable to the new revision. The process is then repeated until the

numbers of deaths comparable to the most current revision is obtained. For example,

1http://www.cdc.gov/nchs/data access/Vitalstatsonline.htm
2http://www.cdc.gov/nchs/data/nvsr/nvsr49/nvsr49 02.pdf
3http://www.cdc.gov/nchs/data/dvs/comp2.pdf
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the comparability ratio between ICD8 and ICD9 is used to multiply the numbers of

deaths in years 1971-1978 to obtain updated numbers of deaths comparable to the

numbers of deaths in ICD 9. The numbers are then multiplied by the comparabil-

ity ratios between ICD9 and ICD10 to get numbers of deaths comparable to ICD 10.

Table 3.1: ICD codes and Comparability ratios for the three selected causes of death:

heart diseases, cancer and accidents.

Causes of death Heart diseases Cancer Accidents

ICD 8 (1971-1978) 390-398, 140-209 E800-E949

402-404,

410-429

Comparability ratios 1.0126 1.0026 0.9970

between ICD 8 and ICD 9

ICD 9 (1979-1998) 390-398, 140-280 E800-E949

402-404,

410-429

Comparability ratios 0.9852 1.0093 1.0251

between ICD 9 and ICD 10

ICD 10 (1999-2006) I00-I09, C00-C97 V01-X59,

I11-I13, Y85-Y86

I20-I51
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3.3 Age-Segmented Modification of the Lee-Carter Model

3.3.1 Motivation

Within the LC model (2.6.5), we can see that γp is a common parameter of vari-

ation for all ages. When we apply the sequence γp to all ages, we force predicted val-

ues of time trends for all ages to be proportional. Time trend, Ta,p, a = 1, 2, 3, . . . , 84

and p = 1971, . . . , 2006, is the log mortality rate at age a in period p after subtracting

the period average, Ta,p = log(λ̃a,p) −
1

36

2006∑
p=1971

log(λ̃a,p). Figures 3.1-3.3 show that

the proportionality assumption might be true for some age groups but not across

all ages. Therefore, instead of having only one sequence of γp applied to all ages, it

might be a good idea to have a few such sequences. Each sequence is applied to a

specific age-group within which time trends have similar patterns. These age groups

are intervals of consecutive ages which can be categorized by finding the time trends

of log mortality rates in the data sets. Age-segmentation allows flexibility of period

effect patterns by varying γp across age groups. However, having many sequences

of time varying parameters for different age ranges would enormously increase the

number of parameters. To avoid this problem, we use only a few age groups and

then apply a smoothing spline method to smooth out the differences between the

sequences of time varying parameters.

To specify age groups, we consider the smoothed curves of time trends, {Ta,p : p =

1971, .., 2006}, at ages a = 1, 2, 3, ..., 84. The curves that have similar trends are

grouped into the same age group. By considering the patterns of time trends in
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Figures 3.1-3.3, the appropriate age groups are 1-12, 13-36, 37-52 and 53-84 for

heart diseases; 1-36, 37-60 and 61-84 for cancer; and 1-17, 18-34, 35-55 and 56-84

for accidents.
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Figure 3.1: (Left) Smoothed time trends of log mortality rates from heart diseases

at ages 1-84 years; (right) smoothed trends by period, averaged within age groups.
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Figure 3.2: (Left) Smoothed time trends of log mortality rates from cancer at ages

1-84 years; (right) smoothed trends by period, averaged within age groups.
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Figure 3.3: (Left) Smoothed time trends of log mortality rates from accidents at

ages 1-84 years; (right) smoothed trends by period, averaged within age groups.

For each age-group Ai = (ai−1, ai], where i = 1, 2, 3..., I, we define the mean

of time trends within age-group by k
(i)
p =

1

n(Ai)

∑
a∈Ai

Ta,p, when n(Ai) is the number

of ages in age-group Ai. The smoothed curves of means of time trends within age

groups are presented in the right panel of Figures 3.1-3.3. To see if a formal choice

of age groups would improve the fit of the Ta,p by age-group means k
(i)
p ’s , we define

the sum of squared differences (SSD) between time-trends and their group means

by
I∑
i=1

∑
a∈Ai

∑
p

(
Ta,p − k(i)p

)2
. The SSD with a few age groups are 29.56, 15.42, and

11.41, definitely smaller than the respective SSD from a single age-group, 70.71,

44.40, and 50.50, for heart diseases, cancer and accidents. These comparisons are

essentially the same as comparisons of sums of squared errors (SSE) in the context

of Cluster Analysis (Tan et al. 2005, p. 499) . This suggests that a few segmented

age groups can capture time trends better than a single age-group.
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3.3.2 The Age-Segmented Lee-Carter model (SLC)

For a = 1, 2, ..., A and p = p0+1, p0+2, ..., p0+P , assume that the proportion

λ̃a,p of the observed number of deaths Da,p to the corresponding population size Na,p

satisfies the model:

log(λ̃a,p) = αa + βaγp,G(a) + εa,p, (3.3.1)

where
∑
a

βa = 1 ,
∑
p

γp,i = 0 and G(a) = i if a ∈ Ai = (ai−1, ai] for i = 1, 2, ..., I

and εa,p is the independent error term with mean 0 and variance σ2
ε independent of

a and p.

3.3.3 Fitting the model

As mentioned in Delwarde et al. (2007), the estimated α̂a’s are usually smooth

since they represent an average of mortality at age a over the data periods. No

further smoothing of the α̂a’s is needed. Therefore, we need to smooth only the β̂a’s

and γ̂p,G(a)’s. We use penalized least squares to smooth β̂a’s and obtain preliminary

(unsmoothed) estimates for γ̂p,G(a). The sequences of γ̂p,G(a) for fixed a are smoothed

by applying a cubic smoothing spline method with the number of knots varying by

age group.
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3.3.3.1 Fitting and smoothing β̂a’s via iterative penalized least squares

To smooth the β̂a’s, we apply penalized least squares as suggested by Delwarde

et al. (2007) by minimizing

A∑
a=1

p0+P∑
p=p0+1

(log(λ̃a,p)− (αa + βa · γp,G(a)))
2 + σ

A∑
a=3

(βa − 2βa−1 + βa−2)
2. (3.3.2)

The penalized least squares estimate of αa is simply the ordinary least squares

estimate α̂a =
1

P

∑
p

log(λ̃a,p), and the penalized least squares estimates β̂a and

γ̂p,G(a) can be obtained by using an iterative algorithm as follows, with starting

value γ̂
(0)
p,G(a) = p− 1

P

p0+P∑
p=p0+1

p = (p− p0)−
(P + 1)

2
.

For each k = 0, 1, 2, . . ., we solve successively the following equations setting

the gradients ∇β
(k) and ∇γ

(k) of (3.3.2) to 0, to obtain β̂
(k)
a and γ̂

(k)
p,G(a),

A(k) = [X(k) + σ∆′∆] ·B(k),(∑
a∈Ai

(β̂(k)
a )
)
(Γ

(k)
i ) = (B

(k)
i )Ti,

where A(k) and B(k) are column vectors with dimension A, Γ
(k)
i and B

(k)
i are column

vectors with dimensions P and n(Ai), respectively; Ti is a matrix with dimension

n(Ai) × P , X(k) is a diagonal matrix with dimension A × A and ∆ is a matrix of
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dimension (A− 2)× A. These matrices contain the following elements:

A(k) =

[
p0+P∑
p=p0+1

(
log(λ̃a,p)γ̂

(k−1)
p,G(a)

)]
a=1,2,3,...,A

,

B(k) =
[
β̂(k)
a

]
a=1,2,3,...,A

,

B
(k)
i =

[
(β̂(k)

a )2
]
a∈Ai

,

Ti =
[

log(λ̃a,p)− α̂a
]
a∈Ai

,

Γ
(k)
i =

[
γ̂
(k)
p,i

]
p=p0+1, p0+2, p0+3,..., p0+P

,

X(k) = diag
(
(γ̂

(k−1)
p,G(a))

2
)
,

and

∆ =



1 −2 1 . . . 0 0 0

0 1 −2 . . . 0
... 0

0
...

. . . −2 1 0

0 0 0 . . . 1 −2 1


,

where
∑
a

β̂(k)
a = 1,

∑
p

γ̂
(k)
p,i = 0 for all i = 1, 2, 3, . . . , I in the kth iteration step, and

σ is the smoothness parameter selected by cross-validation, which will be discussed

in the next section.

3.3.3.2 Selecting the smoothness parameter by cross-validation

To select the smoothness parameter σ, we follow the cross-validation method

for the LC model suggested by Delwarde et al. (2007). For each a = 1, 2, . . . , A and

p = p0 + 1, p0 + 2, ..., p0 + P , let

ea,p(σ) = log(λ̂a,p)− (α̂−(a,p)a,σ + β̂−(a,p)a,σ · γ̂−(a,p)p,G(a),σ),
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where α̂
−(a,p)
a,σ , β̂

−(a,p)
a,σ , and γ̂

−(a,p)
p,G(a),σ are the penalized least squares estimates obtained

by excluding the observation at age a in year p and log(λ̂a,p) = α̂a + β̂a · γ̂p,G(a). The

selected smoothing parameter is the one that minimizes
A∑
a=1

p0+P∑
p=p0+1

e2a,p(σ).

3.3.3.3 Parameter reduction: Smoothing γ̂p,G(a)’s using a penalized

spline method

The SLC model having more than one sequence of period effect terms increases

the number of parameters of the LC model. Therefore, for fixed SLC parameters

α̂a, β̂a and smoothness parameter σ, we fit a cubic penalized spline to each sequence

of period effects γ̂p,i’s, i = 1, . . . , I, to reduce the number of parameters. This

spline fitting can be done by applying the function “smooth.spline” in the R-package

“stats” for each sequence of period effect terms. For each sequence of period effect

terms, we compute a generalized cross-validation criterion (GCV) for the number

of knots K = 1, 2, . . . , 10, minimized over the penalty parameter. The number K

that minimizes GCV is selected. Having completed the parameter reduction, the

number of parameters for each sequence of γp,i’s, i = 1, . . . , I, is therefore reduced

from the number of period effect terms minus one, P−1, to the number of knots plus

two, K + 2. The SLC model with smoothed period effects is called the “Smoothed

Segmented Lee-Carter” model, or SSLC model.
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3.4 Data Analysis

In this section, we apply the age-segmented LC models to the data for three

specific causes of mortality, namely heart diseases, cancer, and accidents. Statisti-

cal comparisons between the smoothed age-segmented (SSLC) and LC models are

shown based on MSEs, SSEs, and R-Squared. Since corresponding results from the

nonsmoothed age-segmented model (SLC) almost coincide with those of the SSLC

model, while the SLC model requires much larger numbers of parameters, the SLC

versus LC comparisons are not shown.

3.4.1 Heart diseases

Figure 3.4 shows that the curve of the α̂a , a = 1, 2, 3, . . . , 84, is reasonably

smooth. Figure 3.5 shows the plot of β̂a , a = 1, 2, 3, . . . , 84 with various values of

the smoothing parameter: 0, 6000, 8000, 10000, and 30000. The figure suggests that

results for all positive σ are similar. The optimal σ̂ selected by the cross-validation

method is 8000. Figures 3.1 and 3.7 suggest that estimated time trends obtained

from the SSLC model are similar to the raw ones. Table 3.2 shows comparisons of

the number of parameters, SSEs, and MSEs between the LC and the SSLC models.

The number of parameters used in the LC model, 202, is the sum of the number

of α’s, the number of β’s minus one and the number of γ’s minus one, which are

84, 83 and 35, respectively. The number of parameters used in the SSLC model

is the sum of the number of α’s, the number of β’s minus one and the number of

cubic smoothing parameters of γ̂i’s corresponding to the number of knots 7, 10,
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10 and 10 for age group i = 1, 2, 3, 4, respectively. The number of parameters for

the SSLC model is then the sum of 84, 83, 9, 12, 12 and 12, which is 212. Tables

3.2 and 3.3 suggest that the Mean Square Error (MSE) for the whole age range

and for age groups are smaller for the SSLC model, in particular for the 37-52 age

group, within which MSE is reduced by 70 % over the LC model. In the bar-plots

(Figures 3.8-3.9) of R-Squared for ages 1-84 years, where R2
a = 1 − Var(ε̂a,p)

Var(log(λ̃a,p))
,

and ε̂a,p = log(λ̃a,p/λ̂a,p), the SSLC model yields higher R2
a for lower ages (a ≤ 50)

but that the values R2
a are similar in SSLC and LC for older ages (a ≥ 60). The

data analysis suggests that the SSLC model slightly improves the performance of

the LC model in the young age group in the case of heart diseases. However, neither

model fits very well for age group 13-36 years.
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Figure 3.4: Plots of estimated α̂ for heart disease.
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Figure 3.5: Plots of estimated β̂a for heart disease for various values of the smoothing

parameters σ. The optimal σ̂, selected by cross-validation, is 8000.
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Figure 3.6: Period effect terms (γ̂p,i’s , p = 1971, 1972, . . . , 2006; i = 1, 2, 3, 4) and

their smoothed values for heart disease obtained from the SSLC model.
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Figure 3.7: Groupwise estimated time trends of log mortality rates.

Table 3.2: Comparisons of Mean Square Errors and Sum of Square Errors of the LC

model and the SSLC model for heart diseases.

Model Number SSE MSE

of parameters of log rates of log rates

The LC model 202 31.6438 0.0105

The SSLC model 212 23.7874 0.0079
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Table 3.3: Comparisons of Mean Square Errors within age groups of the LC model

and the SSLC model for heart diseases.

Model Ages 1-12 Ages 13-36 Ages 37-52 Ages 53-84

The LC model 0.0419 0.0107 0.0052 0.0008

The SSLC model 0.0317 0.0100 0.0016 0.0007
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Figure 3.8: Bar plots of R-Squared, R2
a = 1−Var(ε̂a,p)/Var(log(λ̃a,p)) : a = 1, .., 60,

of the LC model (red) and the SSLC model (blue) for heart diseases.
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Figure 3.9: Bar plots of R-Squared, R2
a = 1 − Var(ε̂a,p)/Var(log(λ̃a,p)), of the LC

model (red) and the SSLC model (blue) for heart diseases.

Assume that the number of deaths follows the Poisson distribution, Da,p ∼

Poi(Na,pλa,p), which for large Na,p agrees closely with the approximate distribution

from the Central Limit Theorem, N (Na,pλa,p, Na,pλa,p). Then an estimate of the

variance of the crude estimate of log mortality rate is V̂ar(log(λ̃a,p)) =
1

Da,p

and an

approximate 95% pointwise confidence interval of the crude estimate of log mortality

rate is given by

log(λ̃a,p)±
1.96√
Da,p

.

Figures 3.10-3.11 show crude estimates of log mortality rates with estimated 95 %

pointwise confidence intervals and the fitted curves from the LC and SSLC models

at selected ages.
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Figure 3.10: Crude estimates of log mortality rates from heart diseases with 95%

pointwise confidence intervals and the fitted curves from the LC model and the

SSLC model at ages 4 and 34 years.
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Figure 3.11: Crude estimates of log mortality rates from heart diseases with 95%

pointwise confidence intervals and the fitted curves from the LC model and the

SSLC model at ages 44 and 74 years.

We can see from Figures 3.10-3.11 that both models produce similar curves,
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but the fitted curves from the SSLC model fit into the estimated 95% pointwise

confidence intervals of crude estimates better than the fitted curves from the LC

model.

3.4.2 Cancer

The plots of the α̂a’s and β̂a’s , a = 1, 2, 3, . . . , 84, with various smoothing

coefficients are shown in Figures 3.12-3.13. The optimal value of the smoothing

coefficient is 1000. Tables 3.4 and 3.5 show that the MSEs from the SSLC model are

much smaller than from the LC model, in particular for older age groups 37-60 and

61-84 years, in both of which SSLC reduces MSE by approximately one-half. The

number of parameters presented in Table 3.4 are calculated in the same ways as in

Section 3.4.1, where the numbers of knots for the cubic smoothing spline of the γ̂p,i’s

i = 1, 2, 3 are 10, 6 and 6, respectively. Figure 3.14 shows plots of estimated time

trends which are similar to the smoothed curves of time trends shown in Figure 3.2.

Figures 3.15-3.16 show that the SSLC model captures the patterns of age-specific

log mortality rates very well, while the LC model fails to do so, for example at ages

64 and 74 years. As can be seen in Figures 3.17-3.18, correlations between fitted

and raw log mortality rates remain high in the oldest age group for the SSLC model

but low for the LC model, except at ages 77-83 years, where the correlations for the

LC model are higher than for the SSLC model.
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Figure 3.12: Plots of estimated α̂ for cancer.
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Figure 3.13: Plots for cancer of estimated of β̂a for various values of the smoothing

parameter σ. The optimal σ̂, selected by cross-validation, is 1000.
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Figure 3.14: The left panel shows period effect terms (γ̂p,i’s , p =

1971, 1972, . . . , 2006; i = 1, 2, 3, 4) and their smoothed values for cancer obtained

from the SSLC model; the right panel shows the corresponding estimated time trends

of log mortality rates.

Table 3.4: Comparisons of Mean Square Errors and Sum of Square Errors of the LC

model and the SSLC model.

Model Number SSE MSE

of parameters of log rates of log rates

The LC model 202 12.8338 0.0042

The SSLC model 195 10.3700 0.0034
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Table 3.5: Comparisons of Mean Square Errors within age groups of the LC model

and the SSLC model.

Model Ages 1-36 Ages 37-60 Ages 61-84

The LC model 0.0062 0.0028 0.0028

The SSLC model 0.0061 0.0013 0.0015
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Figure 3.15: Crude estimates of log mortality rates from cancer with 95% pointwise

confidence intervals and the fitted curves from the LC model and the SSLC model

at ages 14 and 44 years.
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Figure 3.16: Crude estimates of log mortality rates from cancer with 95% pointwise

confidence intervals and the fitted curves from the LC model and the SSLC model

at ages 64 and 74 years.
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Figure 3.17: Bar plots of R-Squared, R2
a = 1 − Var(ε̂a,p)/Var(log(λ̃a,p)) , a =

1, . . . , 60, of the LC model (red) and the SSLC model (blue) for cancer.
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Figure 3.18: Bar plots of R-Squared, R2
a = 1 − Var(ε̂a,p)/Var(log(λ̃a,p)), of the LC

model (red) and the SSLC model (blue) for cancer.

3.4.3 Accidents

The plots of parameter estimates are shown in Figures 3.19- 3.21. Tables 3.6

and 3.7 show that the SSLC model gives substantially smaller MSEs and SSEs for the

whole age range and for each specific age group than the LC model. The numbers of

parameters presented in Table 3.6 are calculated in the same ways as in Section 3.4.1

where the numbers of knots for the cubic smoothing spline of the γ̂p,i’s i = 1, 2, 3, 4,

are all 9. The SSLC model reduces MSEs by approximately one-third for the age

groups 1-17 and 35-55 years and approximately one-half for the age groups 18-34

and 56-84 years. Figures 3.22-3.23 show that the LC model gives approximately

linear patterns of log mortality rates for all ages but the SSLC model gives different

patterns for different age groups. The predicted pattern obtained from the SSLC
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model is approximately linear for the age group 1-17 years, approximately quadratic

for the age groups 18-34, 35-55 and 56-84 years with different curvatures which agree

closely with the patterns of raw data. The SSLC model captures the patterns of

age-specific log mortality rates better than the LC model, especially, in age group

35-55 years. Figures 3.24-3.25 confirm the result as we can see that the SSLC model

substantially improves R-squared in age group 35-55 years.
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Figure 3.19: Plots of estimated α̂ for accidents.
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Figure 3.20: Plots for accidents of estimated of β̂a for various values of the smoothing

parameter σ. The optimal σ̂, selected by cross-validation, is 1000.
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Figure 3.21: (Left) Period effect terms (γ̂p,i’s , p = 1971, 1972, . . . , 2006; i =

1, 2, 3, 4) and their smoothed values for accidents obtained from the SSLC model:

(right) Groupwise estimated time trends of log mortality rates.
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Table 3.6: Comparisons of Mean Square Errors and Sum of Square Errors of the LC

model and the SSLC model.

Model Number SSE MSE

of parameters of log rates of log rates

The LC model 202 24.7996 0.0082

The SSLC model 211 7.7678 0.0026

Table 3.7: Comparisons of Mean Square Errors within age groups of the LC model

and the SSLC model.

Model Ages 1-17 18-34 Ages 35-55 Ages 56-84

The LC model 0.0095 0.0041 0.0153 0.0047

The SSLC model 0.0032 0.0019 0.0034 0.0020
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Figure 3.22: Crude estimates of log mortality rates from accidents with 95% point-

wise confidence intervals and the fitted curves from the LC model and the SSLC

model at ages 14 and 44 years.
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Figure 3.23: Crude estimates of log mortality rates from accidents with 95% point-

wise confidence intervals and the fitted curves from the LC model and the SSLC

model at ages 54 and 84 years.
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Figure 3.24: Bar plots of R-Squared, R2
a = 1 − Var(ε̂a,p)/Var(log(λ̃a,p)) , a =

1, . . . , 34, of the LC model (red) and the SSLC model (blue) for accidents.
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Figure 3.25: Bar plots of R-Squared, R2
a = 1 − Var(ε̂a,p)/Var(log(λ̃a,p)) : a =

35, . . . , 84, of the LC model (red) and the SSLC model (blue) for accidents.
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3.5 A Bootstrap Study

Bootstrapping is a computer intensive method but is very useful when theoreti-

cal calculation is too complex, as in the situation of Lee-Carter parameter estimation

(Brouhns et al., 2005). Therefore, the only available technique to study properties of

estimates in the family of Lee-Carter models is the bootstrap. Two bootstrap tech-

niques are used in this family of models: Residual bootstrap and Poisson bootstrap.

However, the Poisson bootstrap seems to have received more attention and it pro-

vides reasonable results in the original Lee-Carter model. In this section, we apply

a Poisson bootstrap to obtain estimated biases, estimated variances and pointwise

confidence intervals for estimated log mortality rates. Comparisons of these esti-

mates among the LC, the SLC and the SSLC models are studied. More detailed

graphical results can be found in Chapter 10.

An Algorithm for Poisson Bootstrap

Given an A× P matrix of observed number of deaths Da,p, the Poisson boot-

strap algorithm proceeds as follows:

� Generate B (=1000) replications {D(b)
a,p, b = 1, ..., B} , such that for each a, p

and b, D
(b)
a,p is sampled from the Poisson distribution with meanNa,pλ̃a,p = Da,p.

� Compute α̂
(b)
a , β̂

(b)
a and γ̂

(b)
p,G(a), and log(λ̂

(b)
a,p), for each bootstrap sample {D(b)

a,p, b =

1, ..., B}. The smoothness parameter, σ̂, for each bootstrap replication is fixed

to be the smoothness parameter obtained by cross-validation of the original

data and is not allowed to vary in the bootstrap replications.

58



Bootstrap Estimations of Bias and Variance

For each model, LC, SLC, SSLC, and all (a, p), the bootstrap estimates of

log(λa,p) are defined as

log(λ̂(∗)a,p) =
1

B

B∑
b=1

log(λ̂(b)a,p).

In terms of these, the estimates of bias and variance as in Efron and Tibshirani

(1993) are calculated as

B̂ias(B)(a, p) = log(λ̂(∗)a,p/λ̃a,p) , V̂ar(B)(a, p) =
1

B − 1

B∑
b=1

[
log(λ̂(b)a,p/λ̂

(∗)
a,p)
]2
.

The estimated MSE is then defined by

M̂SE(B)(a, p) = B̂ias
2

(B)(a, p) + V̂ar(B)(a, p).

Our summary figures display root-mean-square biases, averages of the variances and

MSEs across period p for each a = 1, . . . , 84. That is,

B̂ias(B)(a) =

√√√√ 1

36

2006∑
p=1971

B̂ias
2

(B)(a, p) , V̂ar(B)(a) =
1

36

2006∑
p=1971

V̂ar(B)(a, p),

M̂SE(B)(a) =
1

36

2006∑
p=1971

M̂SE(B)(a, p).

Figures 3.26- 3.28 display these root-mean-square biases (top left panel), period-

averaged variances (top right panel), and period-averaged MSEs (bottom), respec-

tively for cause specific crude mortality estimates due to heart diseases, cancer and

accidents. Within each panel of each figure, different line types show the compara-

tive results for the LC, SLC, and SSLC models. It appears in the MSE plots that

the squared biases dominate the variances within the overall MSEs.
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Figure 3.26: Heart diseases: The top left panel shows comparisons of root-mean-

square biases among the LC, the SLC and the SSLC models of log mortality rate

estimates at ages 1-84 years; the top right panel shows comparisons of the corre-

sponding period-averaged variances; the bottom panel shows comparisons of corre-

sponding period-averaged MSEs.

60



0 20 40 60 80

0
.
0

2
0

.
0

6
0

.
1

0

ages(years)

R
o

o
t
−

m
e

a
n

−
s
q

u
a

r
e

 
b

ia
s
e

s

0 20 40 60 80

0
e

+
0

0
4

e
−

0
4

8
e

−
0

4

ages (years)

P
e

r
io

d
−

a
v
e

r
a

g
e

d
 
v
a

r
ia

n
c
e

s

0 20 40 60 80

0
.
0

0
0

0
.
0

0
5

0
.
0

1
0

0
.
0

1
5

ages(years)

M
S

E
s

LC
SLC
SSLC

Figure 3.27: Cancer: The top left panel shows comparisons of root-mean-square

biases among the LC, the SLC and the SSLC models of log mortality rate estimates

at ages 1-84 years; the top right panel shows comparisons of the corresponding

period-averaged variances; the bottom panel shows comparisons of corresponding

period-averaged MSEs.
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Figure 3.28: Accidents: The top left panel shows comparisons of root-mean-square

biases among the LC, the SLC and the SSLC models of log mortality rate estimates

at ages 1-84 years; the top right panel shows comparisons of the corresponding

period-averaged variances; the bottom panel shows comparisons of corresponding

period-averaged MSEs.
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The left panels of Figure 3.26-3.28 suggest that the SLC and SSLC models

reduce biases of estimated log mortality rates for the three causes of deaths and

at most ages. They show moderate improvement in bias across the three causes of

deaths, with the maximum reduction of 63%, 79% and 71% for heart diseases, cancer

and accidents, respectively. The right panels showing period-averaged variances

for the three models demonstrate different results for the three causes of deaths.

Figure 3.26 shows that the SLC and SSLC models produce higher period-averaged

variances than the LC model at earlier ages (1-37 years) with high peaks around

age cut-point 36 (ages 29-38 years). The period-averaged variances under the LC

model are relatively smaller at young ages and larger at old ages. Figure 3.27

suggests high period-averaged variance reductions in all ages for the SSLC model.

The SLC model produces comparable period-averaged variances to the LC model at

young and old ages but substantially smaller period-averaged variances at middle

ages. Figure 3.28 shows that the SLC model produces substantially higher period-

averaged variances than the LC model across ages while the variances are smaller

for SSLC than for the other models. Common observations from Figure 3.26-3.28

are that the SLC and SSLC models produce high variances around age cut-points,

and that the SSLC model produces smaller variance ratios than the SLC model by

approximately 2 − 75%, 11 − 57% and 15 − 53%, respectively, for heart diseases,

cancer, and accidents.
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Bootstrap Confidence Intervals

Two types of pointwise confidence intervals are studied: standard normal confi-

dence interval and percentile confidence interval. Let θ̂ be an estimate of a parameter

θ. The (1− α)100% standard normal confidence interval is given by

[θ̂ − zα
2
· se(θ̂), θ̂ + zα

2
· se(θ̂)],

where se(θ̂) is the estimated standard error of θ̂. The (1− α)100% percentile confi-

dence interval is defined by

[θ̂
α
2

B , θ̂
(1−α2 )

B ],

where θ̂
α

B is the (Bα)th value in the ordered list of the B replications OF θ̂.

The two confidence intervals are compared by considering Percent Error which

is defined by

Percent Error =
∣∣ θ̂B − θ̂N

θ̂N

∣∣× 100%

where θ̂B is the estimate computed from Percentile Interval, and θ̂N is the estimate

computed from Standard Normal Interval.

Table 3.8: Maximum of Percent Error of Confidence Intervals

Causes of Deaths
Maximum Percent Error

Lower CIs Upper CIs

heart diseases 0.560 0.641

cancer 1.482 1.661

accidents 0.079 0.071
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Table 3.8 shows the Percent Errors of the lower and upper bounds of the

Confidence intervals of log mortality rates from heart diseases, cancer and accidents.

We can notice that the percent errors of the percentile confidence intervals from

the standard normal confidence intervals are under 0.7% for heart diseases, under

2% for cancer, and 0.1% for accidents. These results suggest that the normality

assumptions of log mortality rates are satisfied for the three causes of deaths, and

the two different approaches of conducting confidence intervals give similar results.

The two pointwise confidence intervals coincide in most cases, in particular the

pointwise confidence intervals for the αa’s and the log mortality rates, log(λa,p)’s.

Our results indicate that the pointwise confidence interval widths for the parameter

αa’s and the log mortality rates, log(λa,p)’s at old ages are much narrower than

at young ages. These observations conform to a normal distributional behavior

for log λ̃a,p with variance D
(−1)
a,p , since the numbers of deaths are much higher at

old ages than at young ages. Some differences between the two types of pointwise

confidence intervals appear for the parameters β and γp,i as the corresponding his-

tograms of 1000 bootstrapped replications deviate from normal curves. See Chapter

10 for more details. Although the two pointwise confidence intervals are mostly

comparable in our study, the percentile interval is preferred in general because it

has a transformation-respecting property (Efron and Tibshirani, 1993) and avoids

normality assumptions.
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3.6 Discussion

This chapter proposes a new modification of the LC model in modeling histor-

ical data, by segmenting ages at death into a few age categories found by clustering

age-specific mortality patterns over periods. The proposed model has advantages

over the LC model in capturing variations of time trend between different age groups.

The variation of time trend is not clearly seen for all-cause mortality since (Lee and

Carter 1992) time trends for all-cause combined mortality are roughly linear in age.

However, this approximate linearity does not seem to be valid for cause-specific mor-

tality. Therefore our data analyses show our smoothed age-segmented model to be

a superior alternative to the LC model. A further study evaluating the forecasting

performance of the SSLC model could be made in the future.

The main idea of our proposed model is age-segmentation where the age groups

specified in this chapter were chosen by using graphical judgement. More formal

age clustering could be done. For example, we could find the number of age groups

and the set of cut-points that (1) minimize the within-groups sum of squares (SSW)

or (2) minimize the ratio of within-groups mean square (MSW) to between-groups

mean square (MSB). The within-groups sum of squares (SSW) and the between-

groups sum of squares (SSB) are defined by

SSW =
I∑
i=1

∑
a∈Ai

∑
p

(Ta,p − k(i)p )2,

and

SSB =
I∑
i=1

∑
p

n(Ai)(k
(i)
p − kp)2,

66



where k
(i)
p =

1

n(Ai)

∑
a∈Ai

Ta,p and kp =
1

84

84∑
a=1

Ta,p, respectively. The within-groups

mean square (MSW) and the between-groups mean square (MSB) are given by

MSW =
SSW

36(84− I)
, MSB =

SSB

36(I − 1)
, respectively.

The algorithm for method (2) is explained as follows:

(a) Select some candidates for the number I of age groups, and for their break-

points, e.g., by considering the plots of time trends (Figures 3.1-3.3).

(b) Minimize MSW/MSB over all candidates for I and the age group cut-points.

For method (1), the algorithm is the same except that SSW is minimized over cut-

points for a fixed number of age group intervals. Since SSW decreases by definition

as the number of age groups increases, SSW cannot be used as a criterion select the

number of age groups. Comparisons between the two methods and a method based

only on graphical judgement are presented in Table 3.9.
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Table 3.9: Age group specifications obtained by Minimizing the SSW, Minimizing

the ratio MSW/MSB and a Graphical judgement

Diseases/Criteria The number of Cut-points SSW MSW/MSB

age groups

1. Heart diseases

- Minimizing the ratio 3 12,35 11.571 0.0072

MSW/MSB

- Minimizing SSW 4 12,34,46 8.424 0.0074

- Graphical judgement 4 12,36,52 9.171 0.0082

2. Cancer

- Minimizing the ratio 3 18,60 5.829 0.0046

MSW/MSB

- Minimizing SSW 3 18,58 5.829 0.0046

- Graphical judgement 3 36,60 8.155 0.0069

3. Accidents

- Minimizing the ratio 4 15,34,53 6.168 0.0059

MSW/MSB

- Minimizing SSW 4 15,34,53 6.168 0.0059

- Graphical judgement 4 17,34,55 7.133 0.0070
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Table 3.9 shows that the cut-points obtained from the three methods are quite

similar, but there are some differences. For instance, the method of minimizing the

ratio MSW/MSB suggests that we merge the last two age groups for heart diseases

together so that there are only three age groups with cut-points 12 and 35. The

number of age groups obtained from minimizing the ratio MSW/MSB is the same

as that obtained by graphical judgement; the cut-points chosen by methods (1) and

(2) are roughly the same as those chosen graphically, except for slight differences in

the set of cut-points for cancer and accidents.
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Chapter 4

The Smoothed Segmented Log-Bilinear model (SSPB)

4.1 Introduction

Sex differences play an important role in mortality trends due to differences in

genes, biology and behavior between males and females [Lawlor, et al., 2001; Molar-

ius and Johnson, 2002 ; Verbrugge, 1989, and Case and Paxson, 2005]. For instance,

males have higher smoking rates than females, therefore, males have higher risk of

smoking related mortality [Pampel, 2002], whereas females have higher risk of breast

cancers than males. Studies on both sexes combined cannot provide sufficient infor-

mation for future population planning. Therefore, research in sex specific mortality

has stimulated interest from epidemiologists, actuaries, and policy makers in the

last few decades. Studies on sex differences in mortality can be found in Pampel

(2002) and Case and Paxson (2005). Many methodologies have been proposed for

studying differences in mortality rates between males and females both for all causes

of death combined and for cause specific mortality. Among these models, the Lee

Carter model and its variants seem to get the most attention from demographers

and policy makers. For instances, Carter and Lee (1992) applied the Lee-Carter

(LC) mortality model to study sex differences in U.S. mortality using all causes of

death combined data from 1933 to 1988 and drew forecasted differentials from 1990

to 2065. Booth and Tickle (2003) applied a modified LC model to study age-sex
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Australian mortality using 1968-2000 data to forecast mortality to 2031. Wang and

Preston (2009) applied the LC model to study sex-differences in U.S. mortality using

cohort smoking histories from 1971 to 2004 to forecast mortality to 2034.

In Chapter 3, we claimed that the assumption of Lee and Carter in having only

one pattern of time trends for all ages does not hold for cause-specific mortality

and proposed a modification to the LC model, the Smoothed Segmented Lee-Carter

model (SSLC), by segmenting ages at death into a few age categories found by

clustering age-specific mortality patterns over period. That study showed improve-

ment over the LC model in capturing time trends of mortality for cause-specific

mortality data with both sexes combined. In this chapter, we study age-by-sex

cause-specific mortality using U.S. cancer mortality data from 1971 to 2006 released

by the National Center for Health Statistics. A Penalized Poisson Likelihood based

estimation is applied to the age-segmented model in this study instead of using a

penalized least squares method as used in the SSLC model to avoid the drawback of

having to assume homoscedastic errors [Alho, 2000]. The Poisson likelihood version

of the (Smoothed Segmented) Lee Carter model, (SS)LC, is then referred to as the

(Smoothed Segmented) Poisson Log-Bilinear model, (SS)PB. Our study suggests

that variations in time trends across age groups also occur in age-by-sex cause spe-

cific mortality data. Therefore statistical comparisons show improvements of the

SSPB model over the PB model in capturing time trends for cancer age-sex spe-

cific mortality in both males and females. In this chapter, we also perform a study

comparing the SSLC and SSPB models in Section 4.7 by using simulated datasets
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where our results suggest that the two models are compatible.

Section 4.2 of this chapter describes background on cancer mortality data. Section

4.3 introduces the SSPB model and explains our fitting procedure for it. Section 4.4

gives details of a bootstrap study. Comparisons between the SSPB and PB models

for age-sex mortality by using cancer mortality from 1971 to 2006 are performed in

Section 4.5. Section 4.6 discusses sex-differences in U.S. cancer mortality. Section

4.7 compares SSLC and SSPB models. Section 4.8 summarizes the research.

4.2 Cancer Mortality Data

The cancer mortality data used in this study are public use mortality data files

from 1971 to 2006 released by the National Center for Health Statistics1. The corre-

sponding population data files are drawn from the U.S. Census Bureau to compute

age specific mortality rates. The cancer mortality data in this data period are coded

according to the International Classification of Diseases (ICD) revisions 8, 9, and

10, with codes 140-209, 140-180, and C00-C97, respectively. The cause-specific mor-

tality curves show discontinuities between two consecutive ICD revisions caused by

coding differences between the two ICD revisions. To smooth the mortality curves,

we apply comparability ratios2, the ratios of the numbers of deaths classified by the

new revision over the numbers of deaths classified by the previous revision, published

by the National Center for Health Statistics. Comparability ratios of ICD9/ICD8

1http://www.cdc.gov/nchs/data access/Vitalstatsonline.htm
2http://www.cdc.gov/nchs/data/nvsr/nvsr49/nvsr49 02.pdf
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and ICD10/ICD9 are 1.0026 and 1.0093, respectively.

4.3 An Age-Segmented Poisson Log-Bilinear Model

4.3.1 The Model

For a = 1, 2, 3, . . . , A and p = p0 +1, p0 +2, p0 +3, . . . , p0 +P , let Da,p denote

the number of deaths from the disease of interest at age a in year p. The year of the

observation is referred as period throughout this chapter. The death counts Da,p

are assumed to be Poisson distributed with mean Na,p ·λa,p, where Na,p and λa,p are

corresponding population size and mortality rate, respectively. A direct estimator of

the rate λa,p is the ratio λ̃a,p =
Da,p

Na,p

. The mortality rate for the Segmented Poisson

Log-Bilinear model (SPB) is assumed to have the same form as the SLC model in

Chapter 3, that is,

λ̃a,p = exp(αa + βa · γp,G(a)) (4.3.1)

where
∑
a

βa = 1 ,
∑
p

γp,i = 0 and G(a) = i if a ∈ Ai for i = 1, 2, ..., I.

The SSPB model is the SPB model with period effect terms γp,G(a) smoothed over

p. The PB model is the SPB model with only one age group, I = 1.

4.3.2 Age Group Segmentation

Age group segmentation is performed by minimizing the ratio of Within-Group

Mean Square (MSW) to Between-Group Mean Square (MSB) of time trends in the

same way as in Chapter 3, Section 3.6. The time trend Ta,p for a = 1, 2, 3, . . . , 84, and

p = 1971, . . . , 2006, is the log mortality rate at age a in period p after subtracting
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the period averages, Ta,p = log(λ̃a,p)−
1

36

2006∑
p=1971

log(λ̃a,p). The within-group sum of

squares (SSW) and the between group sum of squares (SSB) are defined as

SSW =
I∑
i=1

∑
a∈Ai

∑
p

(Ta,p − k(i)p )2,

and

SSB =
I∑
i=1

∑
p

n(Ai)(k
(i)
p − kp)2,

where k
(i)
p =

1

n(Ai)

∑
a∈Ai

Ta,p and kp =
1

84

84∑
a=1

Ta,p, respectively. The within-groups

mean square (MSW) and the between-groups mean square (MSB) are given as

MSW =
SSW

36(84− I)
and MSB =

SSB

36(I − 1)
, respectively. The optimal set of

age cut points for sex specific mortality due to cancer are {18, 57} and {18, 60} with

the ratios MSW/MSB of 0.00629 and 0.00458 for males and females, respectively.

Detailed plots which are not shown here indicate that time trends between males

and females are different for some age groups. Therefore the two sexes are studied

separately and their cut points are also optimized separately in order to get better

fit to the raw data and yield better results in future forecasting. If males and females

are restricted to have the same cut points, then the minimized ratio MSW/MSB =

0.00547 is attained with the cut points {18, 58}. Using these cut points, Figures 4.1-

4.2 show smooth curves of time trends of log mortality rates for males and females,

respectively.
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Figure 4.1: (Left) Smoothed time trends of log mortality rates from cancer for males

at ages 1-84 years; (right) smoothed log mortality rates by period, averaged within

age groups.
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Figure 4.2: (Left) Smoothed time trends of log mortality rates from cancer for

females at ages 1-84 years; (right) smoothed log mortality rates by period, averaged

within age groups.

75



4.3.3 Fitting the model

As mentioned in Delwarde et al. (2007), the estimated α̂a’s are usually smooth

since they represent an average of mortality at age a over the data periods. No

further smoothing of the α̂a’s is needed. Therefore, we need to smooth only β̂a’s

and γ̂p,G(a)’s. We use a penalized log-likelihood method to smooth the sequence

of β̂ to avoid sudden changes near the cut points of β̂’s and to obtain preliminary

(unsmoothed) estimates for γ̂p,G(a). The sequences of γ̂p,G(a) for fixed a are smoothed

by using cubic smoothing splines with a restricted number of knots to reduce the

number of parameters, as will be discussed in detail in Section 4.3.3.2.

4.3.3.1 Fitting and Smoothing β̂a’s using Poisson Log-Likelihood

To smooth the β̂a’s, we maximize a Penalized Poisson Log-likelihood function

(PL), which is given as :

PL =
∑
a,p

{
Da,p(αa + βa · γp,G(a))−Na,p exp(αa + βa · γp,G(a))

}
− σ

∑
a

(βa − 2β(a−1) + β(a−2))
2, (4.3.2)

where
∑
a

βa = 1, and
∑

p,G(a)=i

γp,G(a) = 0, i = 1, 2, 3, ..., I.

4.3.3.2 Selection of the Smoothing Parameters by Cross-Validation

To select the smoothness parameter σ, we follow the cross-validation method

for the PB model suggested by Delwarde et al. (2007). For each a = 1, 2, ..., A, and
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p = p0 + 1, p0 + 2, ..., p0 + P , let

ea,p(σ) =
√

2 · sign
(
Da,p − δ̂−(a,p)a,p

)√
Da,p ln

(
Da,p/δ̂

−(a,p)
a,p

)
−
(
Da,p − δ̂−(a,p)a,p

)
,

where

δ̂−(a,p)a,p = Na,p exp
(
α̂−(a,p)a,σ + β̂−(a,p)a,σ · γ̂−(a,p)p,G(a),σ

)
is the prediction of the number of deaths at age a in year p obtained by excluding

the observation at age a in year p. The selected parameter is the minimizer of
A∑
a=1

p0+P∑
p=p0+1

e2a,p(σ) within a search domain.

4.3.3.3 Parameter Reduction: Smoothing γ̂p,G(a) via Penalized Splines

The SPB model having more than one sequence of period effect terms in-

creases the number of parameters of the PB model. Therefore, for fixed SPB pa-

rameters α̂a, β̂a and smoothing parameter σ obtained from the Penalized Poisson

Log-likelihood estimation, we fit a cubic penalized spline to each sequence of pe-

riod effects γ̂p,i’s, i = 1, .., I, to reduce the number of parameters. The fitting can

be done with the function “smooth.spline ” in the R-package “stats”[R, 2008] for

each sequence of period effect terms. For each sequence of period effect terms, we

compute a generalized cross-validation criterion (GCV) for the number of knots

Ki = 1, 2, ..., 10, minimized over the penalty parameter. The number Ki that mini-

mizes the GCV is selected. Having completed the parameter reduction, the number

of parameters for each sequence of γp,i’s, i = 1, ..., I, is therefore reduced from the

number of period effect terms minus one, P − 1, to the number of knots plus two,

Ki + 2. The SPB model with smoothed period effects is then referred to as the
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SSPB model.

4.4 A Bootstrap Study

In this section, we apply a Poisson bootstrap to obtain estimated MSEs and

pointwise confidence intervals for estimated mortality rates.

4.4.1 An algorithm for a Poisson Bootstrap

Given an A×P matrix of observed numbers of deaths Da,p, the Poisson boot-

strap algorithm proceeds as follows:

� Generate B (=1000) replications {D(b)
a,p, b = 1, . . . , B} , such that for each a, p

and b, D
(b)
a,p is sampled from the Poisson distribution with meanDa,p = Na,pλ̃a,p.

� Compute α̂
(b)
a , β̂

(b)
a and γ̂

(b)
p,G(a), and λ̂

(b)
a,p, for each bootstrap {D(b)

a,p, b = 1, ..., B}.

Because the cross-validation step mentioned in Section 4.3.3.1 is computation-

ally burdensome, the smoothness parameter, σ̂, for each bootstrap replication

is fixed to be the smoothness parameter obtained by the cross-validation in

the original data and is not allowed to vary in the bootstrap replications.
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4.4.2 Bootstrap Estimation of MSEs and Confidence Intervals

Bootstrap Estimates of MSEs

For each a = 1, 2, . . . , A and p = p0 + 1, . . . , p0 + P , the estimated MSE is

defined as

M̂SE(B)(a, p) =
1

B

B∑
b=1

(
D̂(b)
a,p − D̃a,p

)2
.

Bootstrap Confidence Intervals

The (1− α)100% percentile confidence interval is defined as

[θ̂
(α/2)

B , θ̂
(1−α/2)

B ],

where θ̂(γ) is the (Bγ)’th value of θ̂(b)in the ordered list of the B iterations.

4.5 Data Analysis

In this section, we apply the SSPB model to U.S. cancer age-sex specific mor-

tality for males and females separately. To obtain maximizers for the penalized

log-likelihood function (4.3.2) subject to the corresponding constraints, the function

is transformed to the following equivalent unconstrained optimization problem :

maximize :

NPL :=
∑
a,p

{
Da,p(αa + βa · γp,G(a))−Na,p exp(αa + βa · γp,G(a))

}
− σ

∑
a

(βa − 2β(a−1) + β(a−2))
2 + r(

∑
a

βa − 1) +
I∑
i=1

ri
(
γp,i
)
,
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where r and ri for i = 1, . . . , I, are Lagrange multipliers. Numerical optimization

of the Penalized Poisson Log-likelihood can be performed by using well-documented

optimization functions in any well-tested software such as MATLAB or R (2008).

Our analyses are performed by using a combination of the optimization functions

“nlm” and “optim” in the R-package “stats”[R, 2008]. Some statistical summaries

such as sum of squared deviance residuals, sum of squared Pearson residuals, sum of

absolute errors and root mean squares comparing between the SSPB and PB models

are shown. For each a = 1, ..., A and p = 1, ..., P , the deviance residual is defined as

sign(Da,p − D̂a,p)

√
Da,p · ln(Da,p/D̂a,p)− (Da,p − D̂a,p),

and the Pearson residual is defined as

Da,p − D̂a,p√
D̂a,p

,

where D̂a,p is the estimated number of deaths under the model.

4.5.1 Male Mortality Data

Figure 4.3 shows plots of α̂a’s and β̂a’s, a = 1, . . . , 84 with varies smoothing

coefficients. The optimal value of the smoothing coefficient selected from the cross-

validation is 106. The left panel of Figure 4.4 shows a plot of period effect terms

(γ̂p,i ; p = 1971, ..., 2006 ; i = 1, 2, 3) and their spline-smoothed curves with the

numbers of knots, 8, 9, and 6, for groups 1, 2, and 3, respectively. The right

panel of Figure 4.4 shows estimated time trends, β̂as(γ̂p,G(a)) , a = 1, ..., 84 , where

s(·) is referred to as a spline smoothed function. The figure suggests that the
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estimated time trends obtained from the SSPB model are similar to the raw curves

of time trends in Figure 4.1, but the estimated curves within the same group are

more compressed than the raw curves. Table 4.1 shows that the SSPB model, by

comparison to the PB model but with a smaller number of parameters, reduces the

sum of squared deviance residuals, the sum of squared Pearson residuals, the sum of

absolute errors |Da,p−D̂a,p|, and root mean squares. The number of parameters used

in the PB model, 202, is the sum of the number of α’s (84), the number of β’s minus

one (83) and the number of γ’s minus one (35). The number of parameters used in

the SSPB model is the sum of the number of α’s, the number of β’s minus one and

the number of cubic smoothing parameters of γ̂i’s corresponding to the number of

knots, 8, 9 and 6 for age group i = 1, 2, 3, respectively. The number of parameters

for the SSPB model is then the sum of 84, 83, 10, 11 and 8 which is 196. Table

4.2 shows comparisons of the mean absolute error within age groups. The table

indicates that the SSPB model reduces the mean absolute errors by 47.75 %, 14.84

%, and 22.62 %, for age group 1,2, and 3, respectively. Figure 4.5 shows plots of

raw estimates of mortality rates ages 14, 34, 44 and 74, their fitted values obtained

from the PB, and SSPB models, and their corresponding 95 % bootstrap confidence

intervals. The figures indicates that both models give similar results for middle age

groups (for example, ages 34 and 44 years), but the SSPB model follows the patterns

of raw data better for the young and old age groups (for example, ages 14, and 74

years). Figure 4.6 shows comparisons of the bootstrap MSEs,
1

36

2006∑
p=1971

M̂SE(B)(a, p),

at ages 1-84 years. The figure suggests that the SSPB reduces the MSEs for most

ages except at ages 55-60 years, which are in the neighborhood of the cut point 57.
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A detailed plot, which is not shown here shows that the increases in MSEs3 at these

ages occur because of the rapid changes in estimated time trend patterns between

the two age groups while the raw patterns change gradually .

Table 4.1: Comparisons of sum of squared deviance residuals , sum of squared

Pearson residuals, sum of absolute errors, and root mean squares of death counts

between the PB and the SSPB models

Models Number Deviance Pearson Sum of Root

of parameters residuals residuals absolute errors mean squares

PB 202 133018.5 18472.45 278015.8 158.3407

SSPB 196 75250.9 11540.56 217733.3 127.0154

Table 4.2: Comparisons of mean absolute errors within age groups of the PB and

the SSPB models.

Models Group 1 Group 2 Group 3

PB 14.2603 45.1334 219.4528

SSPB 7.4508 38.4377 169.8063

3Since the smoothness parameter σ̂ is assumed to be fixed for all bootstrap replications, the

MSEs provided here could be underestimated.

82



0 20 40 60 80

−
10

−
9

−
8

−
7

−
6

−
5

−
4

ages(years)

 A
lp

ha
's

0 20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

ages(years)

B
et

a'
s

0
1e+04
1e+05
1e+06(optimal)
1e+07

Figure 4.3: The left panel is the plot of estimates of the α̂a’s for males ; the

right panel shows curves of corresponding β̂a’s. The optimal σ̂, selected by cross-

validation, is 106.
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Figure 4.4: The left panel shows period effect terms( γ̂p,i ; p = 1971, ..., 2006 ; i =

1, 2, 3) for males and their smoothed values obtained from the SSPB model; the

right panel shows the corresponding estimated time trends of log mortality rates
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Figure 4.5: Cancer mortality rate estimates for males at selected ages obtained

from PB (red) and SSPB (blue) models and corresponding 95% bootstrap percentile

pointwise confidence intervals.
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4.5.2 Female Mortality Data

Figure 4.7 shows plots of α̂a’s and β̂a’s a = 1, . . . , 84 with different smooth-

ing coefficients. The optimal value of the smoothing coefficient selected from the

cross-validation is 1e+06. Figure 4.8 shows estimated period effect terms and their

corresponding estimated time trends. Table 4.3 shows that the SSPB gives smaller

values of the sum of deviance residual squared, the sum of Pearson residual squared,

sum of absolute errors and root mean squares, than the PB model. The numbers

of parameters presented in Table 4.3 are calculated in the same ways as in the pre-

vious section where the number of knots for the cubic smoothing spline of γ̂p,i’s for

i = 1, 2, 3 are 10, 6, and 10, respectively. Table 4.4 shows the within-group mean

absolute errors of the SSPB model are slightly smaller than of the PB model in

groups 1 and 2, which are smaller by 13% and 16%, respectively. The SSPB model

reduces the mean absolute error of the PB model in group 3 moderately, by about

32%. Figure 4.3 shows a plot of raw estimates of mortality rates at ages 14, 34,

64, and 74, their fitted values obtained from the PB and SSPB models, and their

corresponding 95 % bootstrap confidence intervals. The figure indicates that fitted

values from both models are similar in group 1 (for example, age 14 years) and 2

(for example, age 34 years). The SSPB model captures the patterns better than the

PB model in group 3, where the raw curves are approximately quadratic but the

PB model produces linear patterns with different slopes. Figure 4.10 shows com-

parisons of bootstrap MSEs 4for all ages. The figure suggests that the SSPB model

4
Since the smoothness parameter σ̂ is assumed to be fixed for all bootstrap replications, the MSEs provided here may be

underestimated.
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gives lower MSEs at most ages in group 1 and 3, but slightly higher MSEs in group

2.

0 20 40 60 80

−
10

−
9

−
8

−
7

−
6

−
5

ages(years)

 A
lp

ha
's

0 20 40 60 80

0.
00

5
0.

01
0

0.
01

5
0.

02
0

ages(years)

 B
et

a'
s

0
1e+04
1e+05
1e+06(optimal)
1e+07

Figure 4.7: The left panel is the plot of estimates of the α̂a’s for females ; the

right panel shows curves of corresponding β̂a’s. The optimal σ̂, selected by cross-

validation, is 106.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

1970 1975 1980 1985 1990 1995 2000 2005

−
30

−
20

−
10

0
10

20
30

40

years of deaths

P
er

io
d 

ef
fe

ct
 te

rm
s

● Gamma(p,1)
Gamma(p,2)
Gamma(p,3)
Smoothed Gamma(p,1)
Smoothed Gamma(p,2)
Smoothed Gamma(p,3)

1970 1975 1980 1985 1990 1995 2000 2005

−
0.

5
0.

0
0.

5

years of deaths

E
st

im
at

ed
 ti

m
e 

tr
en

ds

ages 1−18
ages 19−60
ages 61−84

Figure 4.8: The left panel shows period effect terms( γ̂p,i, p = 1971, . . . , 2006; i =

1, 2, 3) for females and their smoothed values obtained from the SSPB model; the

right panel shows the corresponding estimated time trends of log mortality rates

86



Table 4.3: Comparisons of sum of squared deviance residuals , sum of squared

Pearson residuals, sum of absolute errors, and root mean squares of death counts

between the PB and the SSPB models

Models Number Deviance Pearson Sum of Root

of parameters residuals residuals absolute errors mean squares

PB 202 142223.6 19261.31 299118 174.4439

SSPB 199 72897.45 11611.98 217100 126.2908

Table 4.4: Comparisons of mean absolute errors within age groups of the PB and

the SSPB models.

Models Group 1 Group 2 Group 3

PB 6.9887 53.8389 246.7414

SSPB 6.0579 44.8214 168.2927
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Figure 4.9: Cancer mortality rate estimates for females at selected ages obtained

from PB (red) and SSPB (blue) models and corresponding 95% bootstrap percentile

pointwise confidence intervals.
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Figure 4.10: Comparisons of period-averaged MSEs of death counts between PB

(red) and SSPB (blue) models.
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4.6 A discussion on Sex differences in Cancer mortality

Figures 4.11 and 4.12 show that males have higher mortality rates than females

at ages other than 30-47 years, an interval where the male mortality rates are lower.

Our detailed data analysis which is not shown here suggests that the higher female

mortality rates at ages 30-47 years are due to the much higher mortality of females

than males from breast cancers. Figure 4.12 shows that differences in mortality

rates between the sexes decrease as a function of time for most ages. Time trends

of mortality for both sexes have a similar pattern, decreasing as a function of time

in young and middle age groups. Time trends at old age groups are approximately

unimodal concave for both sexes with different position of the highest peak. Males

have peak mortality rates during 1985-1990, with a decreasing trend after the early

1990’s, while female mortality peaks during 1990-1995 and decreases only after 1995.

This lagged decrease in mortality for females could be caused by their later decreases

in the percentage of smokers [Pampel, 2002]. More studies in sex-difference in

smoking related-mortality can be found in Pampel (2002) and Preston and Wang

(2006).
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Figure 4.11: The top panel shows plots of estimates of the α̂a’s for males and females;

the bottom panels show plot of log mortality rates in 1971 (left) and 2006 (right),

respectively.
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Figure 4.12: Comparisons of log mortality rates between males and females at se-

lected ages.

4.7 Comparison of the SSLC and SSPB models

In this section, a simulation study comparing the SSLC and SSPB models and

further comparisons using two mortality datasets used in Section 4.5 are discussed.

Two simulated datasets used in this section are simulated from a given set of pa-

rameters, α∗a, β
∗
a, γ

∗
p,G(a), a = 1, . . . , 84, and p = 1, . . . , 36, and a given array of

population sizes Na,p, a = 1, . . . , 84, and p = 1, . . . , 36. To preserve the feature

of cause-specific mortality data, these parameters are the parameter estimates ob-

tained in the male cancer mortality studied in Section 4.5.1. The number of age

groups and age cut points are chosen to be the same as in Section 4.5.1.
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The simulation procedures are described below.

[A1 ] Dataset (1) is simulated from the SSLC formula: For a = 1, . . . , 84 and

p = 1, . . . , 36,

1. generate i.i.d. ε∗a,p from a normal distribution ε∗a,p ∼ N (0, σ2
ε ), where

σε = 0.06, 5

2. calculate log(λ̃a,p) from the formula:

log(λ̃a,p) = α∗a + β∗aγ
∗
p,G(a) + ε∗a,p, (4.7.3)

3. generate the number of deaths at age a in year p, Da,p = Na,pλ̃a,p.

[A2 ] Dataset (2) is simulated from the SSPB model: For a = 1, .., 84 and p =

1, .., 36,

1. calculate λ̃a,p from the formula:

λ̃a,p = exp(α∗a + β∗aγ
∗
p,G(a)), (4.7.4)

2. generate the number of deaths at age a in year p, Da,p, from the Poisson

distribution with mean Na,pλ̃a,p, i.e., Da,p ∼ Poi(Na,pλ̃a,p).

Having simulated the datasets
[
Da,p, Na,p

]
, a = 1, . . . , 84 and p = 1, . . . , 36,

as described above, each data set is then fitted by using SSLC and SSPB models

described in Sections 3.3.3 and 4.3.3, respectively. The numbers of parameters, the

5This σε = 0.06 is the estimate σ̂ε =
1

3024

84∑
a=1

2006∑
p=1971

(
log(λ̂a,p)− log(λ̃a,p)

)2
obtained from the

analysis in Section 4.5.1.
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numbers of age groups and age cut points used in the two models are restricted to

be the same as the numbers of parameters, the numbers of age groups and age cut

points used to simulate the data.

In this section, we consider four statistics as estimated loss functions:

S1 =
1

3024

∑
a,p

(D̂a,p −Da,p)
2 (4.7.5)

S2 =
∑
a,p

(log(D̂a,p)− log(Da,p))
2 (4.7.6)

X2
1 =

∑
a,p

(D̂a,p −Da,p)
2

D̂a,p

, (4.7.7)

X2
2 =

∑
a,p

D̂a,p(log(D̂a,p)− log(Da,p))
2. (4.7.8)

The statistics S1 and S2 are special cases of the respectively statistics X2
1 and

X2
2 , respectively, where weights are equal among various a and p.

Under the assumption that Da,p a = 1, . . . , 84 and p = 1, . . . , 36 are indepen-

dent Poisson residuals, Da,p ∼ Poi(Na,pλa,p), the statistic X2
1 is the sum of squares

of
(D̂a,p −Da,p)√

D̂a,p

which is approximately normal. Therefore, X2
1 is approximately

chi-squared distributed. If the estimated numbers of deaths, D̂a,p , were calculated

from maximum log-likelihood estimates, we would expect X2
1 to follow a chi-squared

statistics with the degrees of freedom n−k−1 (Chernoff and Lehmann, 1954), where

k is the number of parameter estimates and n is the number of cells in the (a, p)

table.

By the delta method asymptotic approximation Var(log(Da,p)) =
1

Na,pλa,p
,

which is estimated by
1

D̂a,p

. Therefore, X2
2 is approximately chi-square distributed.

Table 4.5 presents the four statistics calculated from the fitted values from SSLC
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and SSPB models by using dataset (1) generated from the procedure given in (A1).

Table 4.6 presents corresponding statistics by using dataset (2) generated from the

procedure given in (A2). The tables show that the statistic S1 slightly favors the

SSPB model while the statistic S2 slightly favors the SSLC model. The X2
1 and X2

2

favor the model that agrees to the assumption of dataset and produce smaller value

for X2
1 and X2

2 . For example, if the dataset was generated from the assumption of

the SSLC model, the two statistics X2
1 and X2

2 calculated from the SSLC model

will be smaller than from the SSPB model. However, the percentage of differences

PD =
| ST − SW |

ST
× 100, where ST and SW are statistics from the true and wrong

models are very small in most cases. For example, in dataset (1), PD for S1, X
2
1 and

X2
2 are respectively 0.2%, 1.25%, and 1.7% which are very small, but PD for S2 is

quit significantly large in this dataset. In dataset (2), the PD for the four statistics

are very negligible. This result and results from a few more iterations which are not

shown here suggest that the two models could perform similarly and no statistically

significant difference can be seen.
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Table 4.5: Statistics derived from SSLC and SSPB models for a dataset (1) generated

from (A1).

Statistic SSLC SSPB PD (%)

S1 58161.63 58028.66 0.2

S2 10.57923 15.81677 49.5

X2
1 27999.83 28321.96 1.2

X2
2 27682.45 28156.65 1.7

Table 4.6: Statistics derived from SSLC and SSPB models for a dataset (2) generated

from (A2).

Statistic SSLC SSPB PD(%)

S1 2441.144 2407.429 1.4

S2 12.52677 12.69421 1.3

X2
1 2859.789 2839.492 0.7

X2
2 2858.763 2855.919 0.09

4.8 Conclusion

In this chapter, we applied an age-segmented Poisson Log-Bilinear model to

U.S. cancer age-sex specific mortality data. Fitting and smoothing procedures have

been described. Statistical comparisons based on deviance residuals, Pearson resid-

uals, mean absolute errors, and root mean squared errors suggest advantages in cap-
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turing time trends of age-segmentation for cancer age-sex specific mortality data.

These advantages of the age-segmented model appear in the youngest age group

for males and the oldest age group for females. Further studies comparing results

between the two estimation methods: Penalized least squares and Penalized Log-

likelihood methods are also discussed.
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Chapter 5

Discussion and Future Research on SSLC and SSPB models

5.1 Discussion on Poisson Bootstrap

In Chapters 3 and 4, we applied a Poisson bootstrap to study biases and

variances of parameter estimates. The Poisson bootstrap is a common method used

in the Lee-Carter model and its variants in confidence interval construction because

the Poisson distribution is believed to be an appropriate distribution of the numbers

of deaths. However, other methods are also suggested in this family of models such

as Monte Carlo variances suggested by Brouhns et al. (2005), residual bootstrap

suggested by Koissi et al. (2006), or bootstrapping from other distributions of the

numbers of deaths such as multinomial distribution (Brouhns et al., 2005 ). In this

section, we review these alternative methods of variance estimation and confidence

interval construction and suggest alternative methods such as bootstrapping from a

binomial distribution.

5.1.1 Theoretical variance

In the context of the Poisson Log-bilinear model, we minimize the negative

penalized likelihood:

NPL = − 1

N

[ N∑
i=1

l(θ|Xi)− σp(θ)
]

(5.1.1)
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where p(θ) is a polynomial penalty function of degree two and the smoothness

parameter is σ = O(
√
N). To obtain the asymptotic variances of parameters,

∇θNPL = − 1

N

N∑
i=1

∇θl(θ|Xi) +
σ

N
∇θp(θ) (5.1.2)

∇⊗2θ NPL = − 1

N

N∑
i=1

∇⊗2θ l(θ|Xi) +
σ

N
∇⊗2θ p(θ) (5.1.3)

Since the penalty function p(θ) is a second degree polynomial function and

σ = O(
√
N),

σ

N
∇⊗2θ p(θ) is negligible uniformly in θ as N →∞. Therefore∇⊗2θ NPL

is asymptotically equally to ∇⊗2θ NL, where NL is denoted as the negative likelihood

function:

NL = − 1

N

N∑
i=1

l(θ|Xi). (5.1.4)

Therefore, under certain regularity conditions, the asymptotic variances of maximum

penalized likelihood estimates are the same as of the maximum likelihood estimates,

which is estimated by the observed Fisher Information matrix.

5.1.2 Monte Carlo

To obtain variances of parameter estimates via a Monte Carlo study, we follow

the following algorithm given a set of parameters αa, βa and γp,G(a) and an array

[Na,p] : a = 1, .., A, p = p0 + 1, ..., p0 + P of the population size .

For l = 1, .., L,

� generate (α
(l)
a , β

(l)
a , γ

(l)
p,G(a)) from a multivariate normal distribution, the covariance-

covariance matrix can be obtained from an estimated Fisher Information ma-

trix suggested in Brouhns et al (2002).
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� for a = 1, .., A and p = p0 + 1, ..., p0 + P , compute λ
(l)
a,p from the formula:

log(λ(l)a,p) = α(l)
a + β(l)

a γ
(l)
p,G(a).

� for a = 1, .., A and p = p0 + 1, ..., p0 + P , generate the number of deaths D
(l)
a,p

by D
(l)
a,p ∼ Poi(λ

(l)
a,pNa,p, λ

(l)
a,pNa,p).

� compute (α̂
(l)
a , β̂

(l)
a , γ̂

(l)
p,G(a) for a = 1, .., A and p = p0 + 1, ..., p0 + P ) and

estimated mortality rates
[
λ̂
(l)
a,p

]
from the model given in Section 4.3.3.

� the asymptotic variance of estimates θ ∈ {α̂a, β̂a, γ̂p,G(a), λ̂a,p} are calculated

by

V (θ) =
1

L

L∑
l=1

(
θ(l) − θ̄

)2
. (5.1.5)

5.1.3 Bootstrap

The bootstrapping we used in this study is a parametric bootstrap from a

Poisson distribution, some alternative bootstrap techniques are

� Residual bootstrap: The residual bootstrap was applied to construct con-

fidence intervals for parameters of the Lee-Carter and Poisson Log-bilinear

models in Koissi et al. (2006). The algorithm is to generate B replications of

residuals {r(b)a,p} : b = 1, .., B by sampling with replacement and then compute

the corresponding matrices of {D(b)
a,p}. Then the parameter estimates are then

estimated from the generated bootstrap samples.

� Multinomial bootstrap: a bootstrapping from a multinomial distribution is

suggested in Brouhns et al (2005). To apply the method, the numbers of
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deaths D
(b)
a,p, D

(b)
a+1,p+1, .... can be generated from a multinomial with exponent

D• =
∑
k≥0

Da+k,p+k and parameters

Da,p

D•
,
Da+1,p+1

D•
, ...

� Binomial bootstrap: an alternative bootstrapping is to consider the Poisson

distribution as an approximation of the true Binomial distribution of death

counts. The number of deaths Da,p can be seen as

Na,p∑
i=1

Ii,a,p, where

Ii,a,p =


1, if the ith individual in the risk group die at age a in year p;

0, if the ith individual in the risk group survival year p.

The random variable Ii,a,p , i = 1, ..., Na,p follows a Bernoulli distribution with

p = P (Ti,a,p = 1) = λa,p which is estimated by λ̃a,p =
Da,p

Na,p

. Therefore the

number of death Da,p ∼ Binomial(Na,p, λa,p).

5.2 Future research

In chapters 3 and 4, we proposed segmented Lee-Carter models with two pa-

rameter estimation methods, penalized least squares and Poisson log-likelihood. The

segmented models shown to improve to Lee-Carter in capturing time trends in mor-

tality modeling. However, the Lee-Carter model was originally proposed for both

modeling and forecasting. An important direction for future research in this area

is to extend the age-segmented model in a random-effects framework to accommo-

date forecasting. A combination of our fitting procedure and an effective forecasting

method that allows nonlinearity of time trends could dramatically improve the per-
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formance of the original LC model in forecasting future age-specific mortality rates.

Another important research direction is to study asymptotic theoretical properties

of parameter estimates from SSLC and SSPB models. In Chapter 9 of this thesis,

we study asymptotic theoretical properties of maximum penalized likelihood pa-

rameter estimates by specializing theorems of Pakes and Pollard (1989) and Chen

et al. (2003). The results show consistency and asymptotic normality of parameter

of SPB model under regularity conditions given in Chapter 9. However, time vary-

ing parameter estimates of SSPB (γ̂p,i i = 1, . . . , I) are calculated from two steps,

maximum penalized likelihood and smoothing spline, which the results in Chapter

9 do not cover. Further theoretical studies on asymptotic properties of parameter

estimates are needed.
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Chapter 6

Phase Type Models

6.1 Introduction to Phase Type distributions

The phase type waiting time distributions introduced by Neuts in 1975 as a

generalization of the Erlang distribution have been widely used in stochastic models

in queueing and telecommunication (Sengupta 1989, Asmusssen 1992 , Ishay 2002,

Ausin et al. 2004), traffic flow (Thümmler et al. 2006), actuarial science (Lin and

Liu 2007 , Lin and Willmot 1999 2000 , Lee and Lin 2010 ), health care (Faddy and

McClean 1999, Fackrell 2009, and Garg et al. 2011) and survival analysis (Aalen

1995, Olsson 1996).

The phase type distributions are known to be dense (in the sense of pointwise

convergence of distribution functions) among all continuous distributions supported

on the positive half line, and they have been fitted to many well known distributions.

For example, Johnson (1993) fitted Mixtures of Erlang distributions to Lognormal,

Weibull, and Uniform distributions. Thümmler et al. (2006) ) fitted mixtures of

Erlang distributions to Weibull, shifted exponential, Pareto II, and uniform distri-

butions. Asmussen et al. (1996) fitted general phase type distributions to Weibull,

Lognormal and uniform distribution. They are appealing because they include sev-

eral of the most important constructions generally used by applied probabilists to

describe realistically complex waiting time phenomena.
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Even though the phase type (PH) distributions are flexible, it is known that

the phase type distributions do not have unique respresentations as any given PH

distribution can be represented by more than one Markov process (O’Cinneide, C.A.

1989) and the PH distributions are over-parameterized. Therefore fitting PH distri-

butions and parameter estimation become challenging tasks. Most fitting methods

avoid the problem by restricting to some specific subclasses of PH distributions.

For example, Bobbio et al.(2003) restricted the PH distributions to the subclass of

Acyclic Phase Type (APH) distributions, while Thümmler et al. (2006) proposed a

subclass of mixtures of Erlang distributions. In this chapter, we propose a subclass

of phase type models that has features of mixture and multiple states and we fur-

ther study parameter estimations by two different parameter estimation techniques:

direct quasi-Newton-Raphson optimization and an EM algorithm.

This chapter is organized as follows. Section 6.2 introduces the family of

phase type distributions and discusses its properties. In Section 6.3, we discuss

some examples of well-known phase type distributions. Section 6.4 explains our

proposed class of phase type distributions. Parameter estimation of phase type

distribution: direct quasi-Newton-Raphson optimization and an EM algorithm are

studied in Section 6.5. In Section 6.6, we discuss our computational experience with

the phase type parameter estimation. An application of the proposed class of phase

type distributions to the SEER cancer dataset is presented in Section 6.7. Section

6.8 summarizes our study and discusses further research directions.
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6.2 Definition and Properties of phase type Distributions

Consider a Markov process {Yu} with state space E = {1, 2, 3, . . . ,m + 1},

where states 1, 2, 3, . . . ,m are transient and state m+ 1 is an absorbing state. The

corresponding infinitesimal generator matrix Q is given as

Q =

 T t

0 0

 ,

where T is a m × m transition rate matrix for the transient states 1, 2, 3, . . . ,m,

and t is an m× 1 exit rate vector to the absorbing state m+ 1. We assume further

that the initial distribution is a probability vector π of length m + 1. The random

variable Y , defined as the time to absorption of the process Yu is said to have a

phase type distribution with a representation (Q, π). π is (m+ 1) dimensional with

πm+1 = 0 to avoid trivialities.

Theorem 6.1 (Neuts, 1981). Let Y have a phase type distribution with the repre-

sentation (Q, π). Then

(a) The probability distribution of Y is F (y) = 1− π exp(Ty)e,

(b) the probability density function of Y is f(y) = π exp(Ty)t,

(c) the Laplace-Stieltjes transform of Y is l(s) = π(sI−T)−1t,

(d) the moment generating function of Y is m(s) = π(−sI−T)−1t, and

(e) the nth moment of F (·) is µn = (−1)nn!(πT−ne),

where e is the vector of length m consisting of all 1’s, T is nonsingular, and t =

−Te.
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Proof. (a) Let P(t) = {pij(t)}i,j∈E , where pij(t) = P
(
X(t+ s) = j|X(s) = i

)
.

By Kolmogorov’s differential equation,

d

dt
P (t) = P (t)T = TP (t).

Define τ = inf{t ≥ 0 : Xt = m+ 1}.

Then

P (τ > y) = P (Xy ≤ m)

=
m∑
i=1

m∑
j=1

P (X0 = i)P (Xy = j|X0 = i)

=
m∑
i=1

m∑
j=1

πipij(y)

= π exp(yT)e.

Hence F (y) = P (τ ≤ y) = 1− π exp(yT)e.

(b) From (a), f(y) =
d

dy
F (y) = −π exp(yT)Te = π exp(yT)t, since t = −Te.

(c) The Laplace-Stieltjes transform of Y is

l(s) =

∫ ∞
0

e−syf(y)dy

=

∫ ∞
0

e−syπ exp(yT)tdy

= π

∫ ∞
0

exp(−(sI−T)y)tdy

= π
(
sI−T

)−1
t.

(d) Similar to (c), m(s) =

∫ ∞
0

esyf(y)dy = π
(
− sI−T

)−1
t.
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(e) For n ∈ N,
dn

dsn
m(s) = (−1)(n+1)(n!)π

(
sI + T

)−1−n
t.

Then µn =
dn

dsn
m(s)|s=0 = (−1)(n+1)(n!)πT−n−1t = (−1)n(n!)πT−ne

Theorem 6.2 (Neuts, 1981). The states 1, . . . ,m are transient if and only if the

matrix T is nonsingular.

Proof. Let ai for 1 ≤ i ≤ m denote the probability that the process is absorbed into

the state m+ 1, starting at state i.

Therefore,

ai = pi,(m+1) +
∑
j 6=i

pijaj,

=
ti
−Tii

+
∑
j 6=i

Tij
−Tii

aj,

where pij = P (Xn+1 = j|Xn = i).

Therefore

0 =
ti
−Tii

+
∑
j

Tij
−Tii

aj,

or, equivalently,

0 = t + Ta. (6.2.1)

Since t = −Te, we have

0 = Tx, (6.2.2)

where x = e− a.

Therefore, if T is nonsingular, then a = e and the probability of absorbtion at state

m + 1 is certain given that the process starts at state i for all 1 ≤ i ≤ m. In
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contrast, if T is singular, (6.2.2) has a non-zero and non-negative solution. That is

there is at least one 1 ≤ i ≤ m such that 0 < ai < 1. Hence, by a contraposition,

a probability of certain absorbtion implies that T is nonsingular. Therefore, the

theorem is proved.

Theorem 6.3 (Neuts, 1981). If F (·) and G(·) are both continuous PH-distributions

with representations (T, α) and (S, β) of orders m and n respectively, then their

convolution F ∗ G(·) is a PH-distribution with representation (L, γ), where γ is a

row vector of length m+ n:

γ = (α,0n),

and L is a (m+ n)× (m+ n) matrix:

L =

 T tB0

0 S

 ,

where tB0 denotes the m × n matrix tβT containing elements tiβj : 1 ≤ i ≤

m, 1 ≤ j ≤ n.

Proof. From Theorem 6.1, the Laplace transform of (L, α) is

i(y) = γ(yIm+n − L)−1z,

where z =

 0m

s

 is a column vector of length m+ n and s is the exit rate vector

of the phase type (S, β).
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Therefore

i(y) =
(
α,0n

)(
yIm+n − L

)−1
 0m

s



=
(
α,0n

) (yIm −T)−1 (yIm −T)−1tB0(yIn − S)−1

0 (yIn − S)−1


 0m

s



=

(
α(yIm −T)−1 α(yIm −T)−1tB0(yIn − S)−1

) 0m

s


=
[
α
(
yIm −T

)−1
t
][
β
(
yIn − S

)−1
s
]

= l(y) · k(y),

where l, and k are Laplace transforms corresponding to F and G, respectively.

Hence F ∗G(·) is a PH-distribution with representation (L, α).

Theorem 6.4 (Neuts, 1981). A finite mixture of PH-distributions is a PH-distribution.

If (p1, p2, ..., pk) is the mixing density and Fj(·) has the representation (T(j), α(j)), 1 ≤

j ≤ k, then the mixure has the representation α = (p1α(1), p2α2, . . . , pkα(k)), and

T =



T (1) 0 · · · 0

0 T (2) · · · 0

...
...

...
...

0 0 · · · T (k)


.

Proof. Obvious by the statement.

Theorem 6.5 (Neuts, 1981). If F (·) and G(·) are both continuous PH-distributions

of random variables X and Y with representations (T, α) and (S, β) of orders m and
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n respectively, then the distributions F1(·) = F (·)G(·) and F2(·) = 1− [1−F (·)][1−

G(·)], corresponding to min
(
X, Y

)
and max

(
X, Y

)
are also PH-distributions, where

F1(·) has the representation (L, γ) of order mn+m+ n, given by

γ =
[
α⊗ β,0m,0n

]
,

L =


T⊗ In + Im ⊗ S Im ⊗ s t⊗ In

0m×(mn) T 0m×n

0n×(mn) 0n×m S

 .

and F2(·) has the representation
[
T⊗ In + Im ⊗ S, α⊗ β

]
.

We present alternative versions and proofs of Theorems 6.3-6.5 as follows.

Theorem 6.6. Suppose that T1, T2, . . . , Tm are phase type waiting time random

variables.

(a) If (p1, . . . , pm) is a probability vector, then the mixture random variable

T∗ with density
∑m

j=1 pj fTj(x) is also a phase type variable.

(b) The sum T1 + · · · + Tm is a phase type random variable.

(c) Both min{Tj : j = 1, . . . ,m} and max{Tj : j = 1, . . . ,m} are phase

type random variables.

Proof. Let the state spaces, initial distributions, and transition intensities of the

phase type Markov chains Mj whose absorption times are Tj be denoted respectively,

for 1 ≤ j ≤ m, by s ∈ Sj, by πj(s), and by Qj(s1, s2) for s1, s2 ∈ Sj. The Sj

are disjoint. Denote the terminal (death) state in the j-th chain by Dj. In the first

two parts of the proof, we define a Markov chain M with state spaces ∪mj=1Sj, after
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identifying certain states and defining a suitable initial distribution, for which the

absorption time into a designated death state D is the desired random variable.

(a) Now the initial distribution is defined for all j = 1, . . . ,m and s ∈ S by

π(s) =
∑m

j=1 pj πj(s) I[s∈Sj ]. Define the state D ≡ ∪mj=1 {Dj} by lumping the death

states of all the chains Mj into a single death state. The chain M (with intensity

matrix Q) allows only the transitions s 7→ s′ (for s, s′ ∈ Sj for some j) which can

occurs in the component chains Mj. The intensity matrix of M has entries

Q(s, s′) =
m∑
j=1

I[s,s′∈Sj ]Qj(s, s
′) for s, s′ ∈ S

All other transitions are impossible. That is, they have transition intensity 0. In

this chain, the waiting time to absorption is exactly Tj if the initial state lies in Sj,

which is an event of probability pj. Therefore the unconditional absorption time is

distributed according to the mixture with probabilities pj of the distributions of the

respective times Tj, as desired.

(b) Now the initial distribution is defined to be π1(·) on S, and the overall

death state for the new chain is defined as Dm. Moreover, in the newly defined

chain, each transition s 7→ Dj for j = 1, . . . ,m − 1 and s ∈ Sj is disallowed (given

intensity 0), and new transitions (j, s) 7→ (j + 1, s′) for all s′ ∈ Sj+1 are included,

with intensities

Q(s, s′) =
m−1∑
j=1

I[s∈Sj , s′∈Sj+1]Qj(s,Dj) · πj+1(s
′)

That is, in this new chain the transitions to intermediate death-states Dj at

the expiration of the successive waiting times Tj are replaced by transitions to
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the starting states for the Tj+1 chain, with probabilities according to the initial

distribution for the j + 1 chain.

(c) For each of the desired constructions in this part, the state space now

consists of the cartesian product space S ′ = S1×S2×· · ·×Sm; the initial distribution

is defined by

π(s1, s2, . . . , sm) =
m∏
j=1

πj(sj)

and the allowed transitions are, for sk ∈ Sk, k = 1, . . . ,m, by

(s1, s2, . . . , sm) 7→ (s1, . . . , sj−1, s
′, sj+1, . . . , sm) for s′ ∈ Sj

with intensity equal to Qj(sj, s
′). For this Markov chain definition, the absorbing

terminal state-set is defined to be

D ≡ ∪mj=1{(s1, . . . , sm) : sj = Dj for some j = 1, . . . ,m}

in order to achieve min(T1, . . . , Tm) as overall absorption time; and the terminal

state-set is defined as

D ≡ ∪mj=1{(s1, . . . , sm) : sj = Dj for all j = 1, . . . ,m}

in order to achieve max(T1, . . . , Tm) as overall absorption time.

Theorem 6.7 (Asmussen, 2000). The Class of phase type distributions is dense (in

the sense of weak convergence) in the class of all distributions on (0,∞).
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6.3 Examples of common phase type distributions

Exponential distribution

The exponential distribution is the simplest class of phase type distributions

having two states: the initial state and the absorbing state:

1 2
λ

-

Hyper Exponential distributions

A Hyper Exponential distribution or mixture of n Exponential distributions

with intensity rates λ1, λ2, . . . , λn and initial distribution π = (π1, π2, . . . , πn):

1

2
...
...

n

n+ 1

�
�
�
�
���

λn

-
λ2

@
@
@
@@R

λ1

The corresponding density function is f(s) =
n∑
i=1

πiλie
−λis. It has the repre-

sentation [T, π] where

T =



−λ1 0 · · · 0 0

0 −λ2 0 · · · 0

...
...

. . . 0 0

0 0 · · · 0 −λn


.
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Erlang distributions

An Erlang distribution is a convolution of Exponential distributions with the

same transition rate:

1 -
λ

2 -
λ

3 -
λ

· · · -
λ

· · · -
λ

n+ 1

The corresponding density function is f(s) =
λns(n−1)e−λs

(n− 1)!
and the represen-

tation [T,−Te] where

T =



−λ λ · · · 0 0

0 −λ λ · · · 0

...
...

. . . λ 0

0 0 · · · 0 −λ


.

Mixture of Erlang distributions

A mixture of Erlang distributions with intensity rates λ1, λ2, . . . , λn and initial

distribution π = (π1, π2, . . . , πn):

1 -
λ1

. . .
-
λ1

. . .
-
λ1 k1

@
@
@R

λ1

n∑
l=1

kl + 1k1 + 1
-
λ2

. . .
-
λ2

. . .
-
λ2

2∑
l=1

kl

...
... n∑

l=1

kl

-

λ2

n−1∑
l=1

kl + 1
-
λn

. . .
-
λn

. . .
-
λn �

�
��

λn

113



Coxian distributions

A Coxian distribution is a generalization of an Erlang distribution which is

allowed to reach the absorbing state k + 1 from any transient state:

1 -
p1λ1

?

(1− p1)λ1

2 -
p2λ2

?

(1− p2)λ2

3 -
p3λ3

?

(1− p3)λ3

· · · -
plλl
· · ·

. . . . . .

-
pk−1λk−1

k

?

(1− pk)λk

k + 1

It can be represented as [T, π] where

T =



−λ1 p1λ1 · · · 0 0

0 −λ2 p2λ2 · · · 0

...
...

. . . . . . 0

0 0 · · · 0 −λk


.

6.4 A proposed class of phase type distributions

We propose to study statistical inference within a moderately parameterized

phase type model family. The particular topology we consider, displayed in

Figure 6.1 below and cited as Model F, seems to us particularly appropriate

in a survival setting for which the time origin and initial state O correspond

114



to diagnosis and first treatment for a serious disease like a cancer. Immedi-

ately after treatment, direct transitions to death (state D) or a cure/quiescent

state C are possible, but there may also begin a slower process of migration or

mutation of existing diseased or precursor cells, along one or more pathways

the selection of which might depend either on new internal biological events

(e.g., mutations related to environmental or radiologic exposures) or genetics

(alleles related to disease susceptibility). Because of our motivating data illus-

tration involving breast cancer in the following Section, we also are interested

in allowing the data to impose a model structure involving two separate dis-

ease paths, paths which are known (Anderson et al. 2006) to correspond to

positive and negative Estrogen Receptor status in breast cancer. The Markov

chain transition intensities are given in Figure 6.1, and can be understood

more simply by saying that the chain begins by waiting in state O for a time

T1 ∼ Expon((1 + bC + bD)µ), and then jumps to one of the states C, D, 1,

or k1 + 1, with respective probabilities

(pC , pD, p1, p2) =
1

1 + bC + bD
(bC , bD, p, 1− p)

States C and D are absorbing. The chain may reach state D from state O in

one step with probability bD/(1 + bC + bD). The chain reaches state 1 from

state O with probability p/(1 + bC + bD). It remains in state 1 for a random

Expon(λ1 + β1) waiting time T1 and then either jumps to D with probability

β1/(β1 + λ1) or to state 2 with probability λ1/(β1 + λ1). From state 2 it is
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eventually absorbed in D after a random Gamma(k1− 1, λ1) waiting time G1.

The chain reaches state k1+1 from stateO with probability (1−p)/(1+bC+bD).

It remains in state k1 + 1 for a random Expon(λ2 + β2) waiting time Tk1+1

and either jumps to D with probability β2/(β2 + λ2) or to state k1 + 2 with

probability λ2/(β2 +λ2). From state k1 +2 it is eventually absorbed in D after

a random Gamma(k2− 1, λ2) waiting time G2. Note that if β1 = 0, then the

overall waiting time from state 1 to reach D is distributed as Gamma(k1, λ1).

The decomposition into waiting times T1 and G1 accounts separately for

the waiting time to leave state 1 and to progress from 2 to D on the event

1 7→ 2.

In this description, the properties of Markov chains and exponential waiting

times ensure that at all branches, the branching events are discrete trials

independent of all waiting times. If either of the Gamma shape parameters

kj is equal to 1, then the corresponding intensity pair (βj, λj) is unidentifiable

and the two transition arcs with these intensities can be replaced by a single

arc with transition intensity βj +λj. Thus, if kj = 1, without loss of generality

βj = 0.
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(1− p)µ
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Figure 6.1: Markov transition diagram for Model F with immediate cures and fail-

ures, additional direct failures from states 1, k1 + 1, and two failure pathways.

It is apparent from the foregoing paragraph that the absorption time density of

the pictured Model F Markov chain is a mixture with weights pD, p1q1, p2q2,

p1(1− q1), and p2(1− q2) of the Expon((1 + bC + bD)µ), Expon((1 + bC +

bD)µ)∗Expon(β1 +λ1), Expon((1+bC +bD)µ)∗Expon(β2 +λ2), Expon((1+

bC +bD)µ)∗Expon(β1+λ1)∗Gamma(k1−1, λ1), and Expon((1+bC +bD)µ)∗

Expon(β1 + λ1) ∗Gamma(k1 − 1, λ1) densities, where ∗ denotes convolution.

The weights in this mixture add up to 1 − pC < 1 because of the positive

probability pC with which the chain is absorbed at C and never hits D. The

convolutions in these densities are in fact easy to write down in closed form,

for positive integers k1, k2, which makes the densities and survival functions

fully explicit and easy to compute in vectorial form in the likelihood for Model

F based on right-censored survival data. A computing formula that allows
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these calculations to be implemented simply is

POD(t) =
bD

1 + bC + bD
(1− e−µ(1+bC+bD)t)

+
2∑
j=1

p2−j(1− p)j−1

1 + bC + bD

[
qj Exp(µ(1 + bC + bD)) ∗ Exp(βj + λj)(t)

+ (1− qj) Exp(µ(1 + bC + bD)) ∗ Exp(βj + λj) ∗Gam(kj − 1, λj)(t)
]

(6.4.3)

where for S ∼ Exp(a), T ∼ Exp(b), U ∼ Gam(r, λ),

fS+T (t) =
ab

b− a
(e−at − e−bt) , fS+U(t) also explicit.

The Model F Markov chains include a variety of cure models along with the

Erlang-type multi-hit model considered by Armitage and Doll (1954), includ-

ing special cases of that model with up to 3 distinct rates for successive mu-

tation ‘hits’. Models of these types can all be accommodated within cases of

Model F for which p = 0 or p = 1, and we refer to the resulting phase type ab-

sorption times as ‘single path Model F’ densities. As a matter of notation, we

refer to the single-path model F absorption density with p = 1 in Figure 6.1 as

the (bC , bD, µ, β1, λ1) single path density, with shape parameter k1 generally

fixed. The Model F class was designed to include such single-path densities as

well as a large class of two component mixtures of them, which we will find to

be particularly useful in the data illustration of Section 6.7. The formal result

justifying this idea is the following Lemma.

Lemma 6.1. The mixture with weights p and 1 − p of two single-path model

F densities which have respective parameters (bC , bD, µ, β1, λ1) with shape k1
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and (b̃C , b̃D, µ̃, β2, λ2) with shape k2, is again a Model F phase type density

if and only if (1 + b̃C + b̃D) µ̃ = µ̄ ≡ (1 + bC + bD)µ.

Proof. The stated condition is necessary because the two single-path models

respectively have Expon((1 + bC + bD)µ) and Expon((1 + b̃C + b̃D) µ̃)

distributed waiting times until exit from the initial state. See the discussion

immediately following Figure 6.1 to see that each of the phase type single-path

densities is itself a mixture of an exponential density with other convolved

density components; a mixture of two such mixtures cannot be of the same

type unless the single exponential density term in both mixture components

is the same.

Now suppose that the condition of the Lemma holds, and that p 6= 1. Then

the expression of the Model F absorption time density with parameters

(p∗, b∗C , b
∗
D, µ̄/(1 + b∗C + b∗D), β1, β2, λ1, λ2)

as a mixture of an exponential density and convolutions is the same as the

expression for the mixture with weights p, 1− p of the two single-path model

F densities as long as all three of the following equalities hold

p∗

1 + b∗C + b∗D
=

p

1 + bC + bD
,

1− p∗

1 + b∗C + b∗D
=

1− p
1 + b̃C + b̃D

b∗C
1 + b∗C + b∗D

=
pbC

1 + bC + bD
+

(1− p)b̃C
1 + b̃C + b̃D

.
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We solve these equations explicitly for parameters p∗ ∈ [0, 1], b∗C , b
∗
D. First,

taking ratios of the first two of these equations leads to the equality

p∗

1− p∗
=

1 + b̃C + b̃D
1 + bC + bD

· p

1− p

which uniquely determines p∗ 6= 1. Next, substituting the first two equalities

in the third shows that b∗C = p∗bC + (1 − p∗)b̃C . Also, subtracting the sums

of the three equalities from 1 on each side shows that the third equality holds

with C’s and D’s reversed, from which it follows that b∗D = p∗bD + (1− p∗)b̃D.

The proof of the Lemma is complete. 2

6.5 Parameter Estimation of phase type distributions

Many fitting methods for general phase type distributions or subclasses have

been proposed. Four main methods are moment matching (Bobbio et al. 2005),

numerical nonlinear minimization (Johnson 1993), Expectation-Maximization (EM)

algorithms (Asmussen et al. 1996, Olsson 1996), and Bayesian methods (Bladt et

al. 2003, Ausin et al. 2004, and McGrory et al. 2009). In this section, we study two

methods of parameter estimation which are a direct method by applying a numerical

optimization and an EM algorithm proposed in Asmussen et al. (1996).

6.5.1 Direct numerical optimization

A direct numerical optimization study in this section is carried out by applying

the R optimization functions “nlm” and “optim” to the density function mentioned

in (6.4.3).
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6.5.1.1 Simulation Results

In this section, we study a Monte Carlo simulation of the direct method by con-

sidering a specific set of parameters (p, µ, β1, β2, λ1, λ2) = (0.3, 2.0, 0.4, 0.6, 0.2, 0.3),

with (bC , bD) fixed at (0, 0), and (k1, k2) = (4, 3), unless we specify otherwise.

Simulation method

� Generate B (= 1000) replications of a sample of size 20,000 from the true

parameters (p, µ, β1, β2, λ1, λ2) = (0.3, 2.0, 0.4, 0.6, 0.2, 0.3).

� Compute model-based estimators p̂(b), µ̂(b), β̂
(b)
1 , β̂

(b)
2 , λ̂

(b)
1 and λ̂

(b)
2 , for b =

1, . . . , 1000.

The Monte Carlo empirical average of the (ML) parameter estimates θ̂ of θ is defined

as

θ̂(∗) =
1

B

B∑
b=1

θ̂(b),

and the Monte Carlo estimated standard error of the ML estimator, ŜDM(θ̂), is

defined as

ŜDM(θ̂) =

√√√√ 1

B − 1

B∑
b=1

(θ̂(b) − θ̂(∗))2.

Numerical Results

Parameter Estimates and Standard Errors

Table 6.1 shows the Monte Carlo average ML estimates and Monte Carlo

standard errors of our case of study. Since our method finds MLE of parameters
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in logit and log scales, Table 6.2 shows corresponding parameter estimates in logit

and log scales comparing Monte Carlo estimates of standard errors to theoretical

standard deviations, ŜDT (θ̂) =

√√√√ 1

B

B∑
b=1

(
− Ĥ(θ̂)(b)

)−1
, where Ĥ(θ̂) denotes the

Hessian matrix of the log-likelihood at the MLE. Its negative is called the observed

information matrix.

Table 6.1: Monte Carlo Estimates and Standard Errors

sample size = 20,000, replicated B=1000 times

True values Estimates Standard Errors

p 0.3 0.30258 0.09127

µ 2 1.95705 0.15710

β1 0.4 0.39722 0.12143

β2 0.6 0.59999 0.08375

λ1 0.2 0.20050 0.00993

λ2 0.3 0.30539 0.02455
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Table 6.2: Monte Carlo Estimates and Standard Errors

sample size = 20,000, replicated B=1000 times

True values Estimates ŜDM ŜDT

logit(p) -0.8473 -0.8740 0.4503 0.5077

log(µ) 0.6931 0.6681 0.0829 0.0858

log(β1) -0.9163 -0.9777 0.3644 0.3620

log(β2) -0.5108 -0.5206 0.1406 0.1640

log(λ1) -1.6094 -1.6082 0.0500 0.0513

log(λ2) -1.2040 -1.1894 0.0803 0.0867

Variation of Estimates with Sample Size and Model Complexity

In this section, we study performance of the parameter estimates and SE’s as

a function of sample size and of the number of unknown parameters in the phase

type Model F specification.

(1) (p, µ, β1, β2, λ1, λ2) = (0.3, 2.0, 0.4, 0.6, 0.2, 0.3), and (bC , bD) were fixed at (0, 0);

(2) (p, µ, λ1, λ2) = (0.3, 2.0, 0.2, 0.3), and (bC , bD, β1, β2) were fixed at (0, 0, 0, 0).

Tables 6.3 and 6.5 suggest that parameter estimates are more precise as the sam-

ple size increases, and that the sample sizes required for precise estimates depend

strongly on the number of unknown parameters in the model. Tables 6.4 and 6.6

show that as expected, all eigenvalues of the observed information matrix increase

as a function of sample size.
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Table 6.3: Parameter estimates and Standard Errors as a function of sample size N

in phase type (1) Model

True values N=100 N=1000 N=10000 N=20000 N=100000

logit(p) -0.8473 2.6497 1.0691 -0.2915 -0.6784 -0.7075

(SD) (12.7002) (0.1324) (0.5231) (0.4443) ( 0.3226)

log(µ) 0.6931 -0.2841 -0.2016 0.7879 0.7193 0.7257

(SD) (0.3155) (0.1972) (0.0528) (0.0362) (0.0309)

log(β1) -0.9163 -0.0488 0.5981 -0.6760 -0.6298 -0.7500

(SD) (0.7771) (0.2739) (0.2244) (0.2115) (0.1954)

log(β2) -0.5108 1.1044 -8.3523 -0.6643 -0.6472 -0.5876

(SD) (5.7980) (7.5667) (0.1917) (0.1203) (0.0975)

log(λ1) -1.6094 -1.3040 -1.8545 -1.5847 -1.6571 -1.6281

(SD) (0.1604) (0.1584) (0.0609) (0.0537) (0.0238)

log(λ2) -1.2040 -1.4369 -0.9871 -1.1050 -1.2057 -1.2180

(SD) (3.7418) (0.0897) (0.1314) (0.0845) (0.0459)
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Table 6.4: Eigenvalues of negative Hessian matrix of PH Model (1)

N=100 N=1000 N=10000 N=20000 N=100000

1 63.6023 441.5916 2885.8493 6331.3067 32155.1794

2 39.9563 355.6560 2073.2537 2986.6660 16282.5302

3 5.6139 112.7793 1171.5814 2680.9130 12624.1922

4 0.0785 37.2936 383.8410 786.2287 4281.3955

5 0.0687 8.0810 26.9348 46.0570 139.1820

6 0.0055 0.0175 2.9148 4.0965 6.7649

Table 6.5: Parameter estimates and Standard Errors as a function of sample size N

in phase type (2) Model

Parameters N=100 N=1000 N=10000 N=20000 N=100000

logit(p) -0.8473 -0.4273 0.1693 -0.8167 -0.9354 -0.7541

(SD) (0.5218) (0.6391) (0.1859) (0.1469) (0.0571)

log(µ) 0.6931 -1.1358 -0.9828 0.4574 0.7304 0.5782

(SD) (0.9058) (1.0260) (0.2325) (0.1878) (0.0815)

log(λ1) -1.6094 -1.4574 -1.3981 -1.6000 -1.6227 -1.5952

(SD) (0.0941) (0.1538) (0.0332) (0.0256) (0.0101)

log(λ2) -1.2040 -0.6957 -0.6187 -1.1835 -1.2213 -1.1769

(SD) (0.2788) (0.3469) (0.0465) (0.0313) (0.0149)
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Table 6.6: Eigenvalues of negative Hessian matrix of PH Model (2)

N=100 N=1000 N=10000 N=20000 N=100000

1 154.1677 1074.7257 12862.7408 27056.9675 126073.3137

2 57.0719 775.6723 7411.2229 13426.5749 77029.7519

3 4.0446 27.0578 54.9117 88.4556 544.6693

4 0.7497 0.8771 13.6092 21.2520 119.6432

Fisher Information matrix

Let θ be the vector of k parameters of interest and let θ̂ be the vector of its

maximum likelihood estimate. To study behavior of the observed Fisher information

matrix Î(θ), we consider the precision of the linear combination v̂Ti θ̂, where v̂i

for i = 1, . . . , K, are the unit eigenvectors of Î(θ), corresponding to the ordered

eigenvalues λ̂1, . . . , λ̂k of the observed Information matrix.

By the Central Limit Theorem, under the standard regularity conditions of

√
N -consistency and asymptotic normality of MLE’s, for any vector v of length K,

√
N
(
vT (θ̂ − θ)

)
 N

(
0,vT [I(θ)]−1v

)
, (6.5.4)

where I(θ) is the per-observation Fisher information matrix.

By the Spectral Decomposition, the observed Fisher information matrix Î(θ̂)
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can be represented as

Î(θ̂) =

(
v̂1 v̂2 · · · v̂n

)


λ̂1 0 0 0

0 λ̂2 0 0

...
...

. . .
...

0 · · · 0 λ̂k





v̂T1

v̂T2

...

v̂Tk


.

Therefore,

[Î(θ̂)]−1 =

(
v̂1 v̂2 · · · v̂k

)


1

λ̂1
0 0 0

0
1

λ̂2
0 0

...
...

. . .
...

0 · · · 0
1

λ̂k





v̂T1

v̂T2

...

v̂Tk


.

Hence, for all i = 1, . . . , k,

V̂ar
(
vi
T (θ̂ − θ)

)
=

1

N
v̂Ti [Î(θ̂)]−1v̂i

=
1

N
v̂Ti

(
v̂1 v̂2 · · · v̂k

)


1

λ̂1
0 0 0

0
1

λ̂2
0 0

...
...

. . .
...

0 · · · 0
1

λ̂k





v̂T1

v̂T2

...

v̂Tk


v̂i

=
1

Nλ̂i
. (6.5.5)

By the Continuous mapping theorem, λ̂i converges to λi, where λi, i = 1, . . . , k are

the eigenvalues of the Fisher Information matrix I(θ).

In the phase type model specification (1), the per-observation observed Fisher In-

formation Î(θ̂), for sample size N = 105 has eigenvalues 3.2155e − 01, 1.6283e −
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01, 1.2624e − 01, 4.2814e − 02, 1.3918e − 03, 6.7649e − 05. By (6.5.5), the stan-

dard errors obtaining by taking reciprocal square roots,
√

N
λ

, are 1.7635√
N
, 2.4782√

N
, 2.8145√

N
,

4.8329√
N
, 26.8045√

N
, 121.5820√

N
, respectively for the linear combinations of the parameter es-

timates v1 logit(p̂) + v2 log(µ̂) + v3 log(λ̂1) + v4 log(λ̂2)) + v5 log(β̂1) + v6 log(β̂2)

where v = (v1, .., v6) is successively replaced by each of the six unit eigenvectors of

the Information matrix. For the moderate sample size N = 1000, the first eigen-

vector parameter combination −0.0359 logit(p̂) − 0.3966 log(µ̂) − 0.3224 log(λ̂1) −

0.7823 log(λ̂2)) + 0.2087 log(β̂1) + 0.2863 log(β̂2) = −0.2496 with predicted standard

error of 0.0558. The sixth eigenvector combination is 0.8331 logit(p̂)+0.0565 log(µ̂)+

0.4912 log(λ̂1) − 0.2274 log(λ̂2)) + 0.0265 log(β̂1) + 0.0950 log(β̂2) = −0.9420 with

predicted standard error of 3.8448, which shows ill-conditioning of the Information

matrix. In phase type model specification (2), the observed Fisher Information

Î(θ̂), for large sample N = 105 has eigenvalues 1.2601, 0.770, 0.0054, 0.0012. By

(6.5.5), the standard errors obtaining by taking reciprocal square roots,
√

N
λ

, are

0.891√
N
, 1.139√

N
, 13.550√

N
, 28.911√

N
, respectively for the linear combinations of the parameter es-

timates v1 logit(p̂) + v2 log(µ̂) + v3 log(λ̂1) + v4 log(λ̂2)) for each of the four unit

eigenvectors v = (v1, .., v4) of the Information matrix. For the moderate sam-

ple size N = 1000,the first eigenvector parameter combination 0.2155 logit(p̂) −

0.0749 log(µ̂)− 0.4247 log(λ̂1)− 0.8761 log(λ̂2) = 1.5028 with predicted standard er-

ror of 0.028. The fourth eigenvector combination is 0.482 logit(p̂)− 0.859 log(µ̂) +

0.082 log(λ̂1)+0.152 log(λ̂2)) = −1.170 with predicted standard error of 0.814 which

again indicates ill-conditioning of the Information matrix results.
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Next , we study asymptotic properties of the Hessian matrix by comparing two

estimates of the per-observation Fisher Information Matrix: (1) Fisher Information

matrix based on one sample of size 200,000, Î1(θ) =
−Ĥ(θ)

200000
; (2) Fisher Information

matrix based on B (= 1000) replicated simulations of samples of size 20,000, Î2(θ) =

1

B

B∑
b=1

−Ĥ(θ)
(b)

20000
. The specific phase type model studied is phase type (1). Table 6.7

and 6.8 show that Î1(θ) and Î2(θ) are very close which agrees well with the predicted

large-sample convergence of parameter and Information estimates.

Table 6.7: Fisher Information matrix based on one iteration of 200000 simulated

samples, Î1(θ) =
−Ĥ(θ)

200000
.

logit(p) log(µ) log( β1) log(β2) log(λ1) log( λ2)

logit(p) 0.0148 -0.0048 -0.0179 -0.0046 -0.0229 -0.0315

log(µ) -0.0048 0.0950 0.0337 0.1011 0.0041 -0.0191

log( β1) -0.0179 0.0337 0.0542 0.0859 0.0095 0.0065

log(β2) -0.0046 0.1011 0.0859 0.2160 -0.0430 -0.0621

log(λ1) -0.0229 0.0041 0.0095 -0.0430 0.1512 0.0099

log( λ2) -0.0315 -0.0191 0.0065 -0.0621 0.0099 0.1349
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Table 6.8: Fisher Information matrix based on B (= 1000) iterations of 20000

simulated samples, Î2(θ) =
1

B

B∑
b=1

−Ĥ(θ)
(b)

20000
.

logit(p) log(µ) log( β1) log(β2) log(λ1) log( λ2)

logit(p) 0.0193 -0.0061 -0.0179 -0.0106 -0.0240 -0.0296

log(µ) -0.0061 0.1003 0.0316 0.1070 0.0038 -0.0213

log( β1) -0.0179 0.0316 0.0562 0.0733 0.0105 0.0101

log(β2) -0.0106 0.1070 0.0733 0.2203 -0.0411 -0.0631

log(λ1) -0.0240 0.0038 0.0105 -0.0411 0.1644 0.0071

log( λ2) -0.0296 -0.0213 0.0101 -0.0631 0.0071 0.1337

Histogram of parameter estimates (in log and logit scales)

In this section, we exhibit histograms of parameter estimates based on 1000

Monte Carlo iterations with sample size 20000. Parameter estimates are presented

in transformed scales (logit for parameter p, and log for the other parameter argu-

ments). A specific set of parameters (p, µ, β1, β2, λ1, λ2) = (0.3, 2.0, 0.4, 0.6, 0.2, 0.3),

and (bC , bD) were fixed at (0, 0), and k1 and k2 were respectively fixed at 3 and 2.

The overlaid normal curves are centered at the true values and the standard errors

are derived from ŜDT (θ) =

√√√√ 1

B

B∑
b=1

diag
(
− Ĥ(θ)(b)

)−1
. Figures 6.2-6.7 show some

skewness of Monte Carlo simulations of parameter estimates.
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Histogram of 1000 Monte Carlo iterations of logit(p)

logit(p)
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Figure 6.2: Monte Carlo histogram for logit(p).

Histogram of 1000 Monte Carlo iterations of log(mu)

log(mu)
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Figure 6.3: Monte Carlo histogram for log(µ).
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Histogram of 1000 Monte Carlo iterations of log(beta_1)

log(beta_1)
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Figure 6.4: Monte Carlo histogram for log(β1).

Histogram of 1000 Monte Carlo iterations of log(beta_2)
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Figure 6.5: Monte Carlo histogram for log(β2).
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Histogram of 1000 Monte Carlo iterations of log(lambda_1)

log(lambda_1)
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Figure 6.6: Monte Carlo histogram for log(λ1).

Histogram of 1000 Monte Carlo iterations of log(lambda_2)

log(lambda_2)
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Figure 6.7: Monte Carlo histogram for log(λ2).

6.5.2 EM algorithm

One of the most common methods of estimation of parameters in the literature,

applicable in principle to general phase type models, is the EM approach which is
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introduced to phase type parameter estimation by Asmussen et al. (1996) and Olsson

(1996). The method has a companion well-documented and publicly available C

program (Olsson, 1998) which is available for users.

Because of its generality and accessibility of its software, the method has

been widely used in phase type parameter estimations. For instances, Ishay (2002)

applied the method to analyze “Service Times and Customers’ patience” at a call

center of one of Israel’s banks. Fackrell (2009) applied the method to healthcare

datasets, Garg et al. (2011) applied the method to study phase type survival trees

for clustering lengths of patients’ hospital stays.

The general idea of the EM method is first to write down the log-likelihood

function for the complete observations, i.e., the absorption-time dataset augmented

as though all of the intermediate transition times had also been observed. This

log-likelihood, as a function of the free parameter ϑ, is then replaced (the E-step)

by its conditional expectation given the actually observed data, taken with respect

to a hypothetical fixed parameter vector ϑk . Then the conditional expected log-

likelihood given observed data is maximized over ϑ (the M-step), yielding the

next iteration ϑk+1 in the estimated-parameter sequence. The E and M steps

are repeated until the sequence ϑk appears to have converged. The calculation

of conditional expectations in the E-step is performed in the phase type model by

setting up a system of differential equations related to the intensity matrix, for the

unknown transition-intensity parameters, and these equations are solved numerically

by the Runge-Kutta method.
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In this section, we study the EM parameter estimation method and an appli-

cation to a sub-class of our proposed model F. The diagram of interest is as follows.

0

α1

D

α2

1

k1 + 1

2

k1 + 2

k1

k1 + k2

@
@@R

�
���

-
λ1 -
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-
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-
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. . .

. . .
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@@Rλ1
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Figure 6.8: Markov transition diagram for Model F with two failure pathways.

To apply an EM algorithm to a general phase type distribution with state

space {1, ..., k,D} , we consider the embedded Markov chain I0, ..., IM−1, IM = D,

where D is the absorbing state, and the sojourn times S0, ..., SM−1, where M is

the number of jumps until the process reaches the absorbing state D. Define the

transition probability pij as

pij = P(In+1 = j|In = i) =


tij
λi
, i, j = 1, .., k;

ti
λj
, i = 1, .., k, and j = D,

(6.5.6)

where λi is the intensity rate of leaving state i, which is λi = −tii = −
(
ti +

∑
j 6=i

tij
)
.

The density of a complete non-censored observation y is given (Asmussen et
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al. (1996)) as

f(y; π,T) = πi0λi0 exp(−λi0s0)pi0i1 . . . λi(m−1)
exp(−λi(m−1)

s(m−1))pi(m−1)D

= πi0 exp(−λi0s0)ti0i1 . . . exp(−λi(m−1)
s(m−1))ti(m−1)

.

The density of a complete right-censored observation yc is given (Olsson 1996) as

f(yc; π,T) = πi0 exp(−λi0s0)ti0i1 . . . exp(−λi(mc−1)
s(mc−1))ti(mc−1)i(mc)

exp(−λmcsmc),

(6.5.7)

where mc is the observed value of the number of jumps on (0, c] and c is the censoring

time.

The joint density function of the complete observations is given as

f(x; π,Tn;n=1,..,N) =
N∏
n=1

( k∏
i=1

π
B

(n)
i

i

k∏
i=1

exp(t
(n)
ii Z

(n)
i )

k∏
i=1

k∏
j=1,j 6=i

(t
(n)
ij )N

(n)
ij

)
, (6.5.8)

where

B
(n)
i = I{I(n)

0 =i},

Z
(n)
i =

m(n)−1∑
l=0

I{I(n)
l =i}S

(n)
l is the total time the process nth spent in state i, i =

1, . . . , k,

N
(n)
ij =

m(n)−1∑
l=0

I{I(n)
l =i,I

(n)
l+1=j}

is the number of jumps from state i to j, for

i 6= j, i = 1, . . . , k, and j = 1, . . . , k.
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Therefore, the corresponding log-likelihood function for the diagram in Figure 6.8,

assuming that the Markov chain always starts at state 0, is given as

Loglik = −(α1 + α2)

N1∑
n=1

Z
(n)
1 − λ1

N1∑
n=1

k1∑
i=2

Z
(n)
i − λ2

N1∑
n=1

k1+k2∑
i=k1+1

Z
(n)
i

+ log(α1)

N1∑
n=1

N
(n)
12 + log(α2)

N1∑
n=1

N
(n)
1(k1+1)

+ log(λ1)

N1∑
n=1

[ k1−1∑
i=2

N
(n)
i,(i+1) +N

(n)
k1D

]
+ log(λ2)

N1∑
n=1

[ k1+k2−1∑
i=k1+1

N
(n)
i,(i+1) +N

(n)
(k1+k2)D

]
− (α1 + α2)

N1+N2∑
n=N1+1

Z
(n)
1 − λ1

N1+N2∑
n=N1+1

k1−1∑
i=2

Z
(n)
i − λ2

N1+N2∑
n=N1+1

k1+k2−1∑
i=k1+1

Z
(n)
i

+ log(α1)

N1+N2∑
n=N1+1

N
(n)
12 + log(α2)

N1+N2∑
n=N1+1

N
(n)
1(k1+1)

+ log(λ1)

N1+N2∑
n=N1+1

k1−1∑
i=2

N
(n)
i,(i+1) + log(λ2)

N1+N2∑
n=N1+1

k1+k2−1∑
i=k1+1

N
(n)
i,(i+1), (6.5.9)

where N1 is the number of uncensored observations and N2 is the number of right

censored observations.

The maximum likelihood estimates of the parameters {α1, α2, λ1, λ2} are given as

α̂1 =

N1+N2∑
n=1

N
(n)
12

N1+N2∑
n=1

Z
(n)
1

, λ̂1 =

N1+N2∑
n=1

k1−1∑
i=2

N
(n)
i,(i+1) +

N1∑
n=1

N
(n)
k1,D

N1∑
n=1

k1∑
i=2

Z
(n)
i +

N1+N2∑
n=N1+1

k1−1∑
i=2

Z
(n)
i

α̂2 =

N1+N2∑
n=1

N
(n)
1(k1+1)

N1+N2∑
n=1

Z
(n)
1

, λ̂2 =

N1+N2∑
n=1

k1+k2−1∑
i=k1+1

N
(n)
i,(i+1) +

N1∑
n=1

N
(n)
k1+k2,D

N1∑
n=1

k1+k2∑
i=k1+1

Z
(n)
i +

N1+N2∑
n=N1+1

k1+k2−1∑
i=k1+1

Z
(n)
i

. (6.5.10)

In the E-step, the unknown values N
(n)
ij , Z

(n)
i for uncensored observations (n =

1, . . . , N1) are replaced by their conditional expectations given observed data as the
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following (Asmussen et al., 1996):

E(π,T)

(
Z

(n)
i |Y = yn

)
=
ci(yn : i|π,T)

πb(yn|T)
(6.5.11)

E(π,T)

(
N

(n)
ij |Y = yn

)
=
tijcj(yn : i|π,T)

πb(yn|T)
(6.5.12)

E(π,T)

(
N

(n)
i0 |Y = yn

)
=
tiai(yn|π,T)

πb(yn|T)
, (6.5.13)

where a(yn|π,T), b(yn|π,T), c(yn; i|π,T), i = 1, . . . , k are k-dimensional vector

functions defined by

a(y|π,T) = π exp(Ty) (6.5.14)

b(y|π,T) = exp(Ty)t (6.5.15)

c(y; i|π,T) =

∫ y

0

π exp(Tu)ei exp(T(y − u))tdu i = 1, . . . , k. (6.5.16)

The unknown values N
(n)
ij , Z

(n)
i for right-censored observations (n = N1+1, . . . , N1+

N2) are replaced by their conditional expectations given observed data as follows

(Olsson, 1996):

E(π,T)

(
Z

(n)
i |Y > c

)
=
di(c : i|π,T)

πh(c|T)
(6.5.17)

E(π,T)

(
N

(n)
ij |Y > c

)
=
tijdj(c : i|π,T)

πh(c|T)
(6.5.18)

where h(yn|π,T),d(yn; i|π,T) , i = 1, ..., k are k- dimensional vector functions de-

fined by

(6.5.19)

h(c|π,T) = exp(Tc)e (6.5.20)

d(c; i|π,T) =

∫ c

0

π exp(Tu)ei exp(T(c− u))edu, i = 1, . . . , k. (6.5.21)
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Having completed the E-step, the M-step is the performed by replacing the

unknown term in (6.5.10) with conditional expectation derived from the E-step and

maximizing with respect to the parameters. The E- and M- steps are then repeated

until convergence is achieved. The convergence criterion generally used is a small

increase of the log-likelihood for the successive iteration steps. Dempster et al.

(1977) showed that the the log-likelihood function is always at least as large after

as before each EM iteration. That is,

Loglik(θ(k)) ≥ Loglik(θ(k−1)),

for all k.

Dempster et al. (1977) also showed that the likelihood function L(θ(k)) is

bounded above. Therefore, by the Monotone Convergence Theorem, the EM al-

gorithm always converges. However, the convergence rate of this EM algorithm

could be slow. It needs more than 10,000 iterations for some cases and it sometimes

converges to a saddle point rather than the MLE, as is discussed by Asmussen et

al. (1996).

6.5.2.1 Fisher Information Matrix

The Fisher information matrix is very important in studying inference on

parameters by measuring the information that an observation carries about the

unknown parameters. The Fisher information matrix is also used in computing

asymptotic variances and uncertainty of parameter estimators. Unlike the direct

numerical method in section 6.5.1 where the observed Fisher Information matrix
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is automatically produced by the negative estimated Hessian matrix of the log-

likelihood, an EM parameter estimation method does not automatically produce an

estimate of the Fisher information matrix. However, Oakes (1999) proposed a simple

formula to estimate a Fisher Information matrix via the EM algorithm for general

parameter estimation. Bladt et al. (2011) applied Oakes’s method to provide a

method to produce an estimated Fisher Information matrix for a phase type model

in the case where all transition rates are freely varying and are not linked by any

relations. In this study, we provide an alternative method to estimate the Fisher

Information matrix, where some transition paths could share common transition

rates. In this section, we derive the Fisher Information specifically for the family of

phase type models described in Figure 6.8. Our method is a direct application of

Oakes (1999) and the Runge-Kutta method used in the parameter estimation.

Following Oakes (1999), the Fisher information matrix is estimated by substi-

tuting θ1 = θ̂ into

∂2Loglik(θ1; y)

∂θ21
=

{
∂2Q(θ2|θ1)

∂θ22
+
∂2Q(θ2|θ1)
∂θ1∂θ2

}
| θ2=θ1 , (6.5.22)

where

Q(θ2|θ1) = Eθ1(Loglik(θ2 ; z) | y),

and z = (z1, ..., zN) denote the full data for the N observations. Here by substitution

of conditional expectation expressions (6.5.11) - (6.5.13) and (6.5.17) - (6.5.18) into

the conditional expected log-likelihood (6.5.9), we obtain
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Q(θ̂|θ) = Eθ(Loglik(θ̂; z|y))

= −(α̂1 + α̂2)

(
N1∑
n=1

E(Z
(n)
1 |y) +

N1+N2∑
n=N1+1

E(Z
(n)
1 |c)

)

− λ̂1

(
N1∑
n=1

k1∑
i=2

E(Z
(n)
i |y) +

N1+N2∑
n=N1+1

k1−1∑
i=2

E(Z
(n)
i |c)

)

− λ̂2

(
N1∑
n=1

k1+k2∑
i=k1+1

E(Z
(n)
i |y) +

N1+N2∑
n=N1+1

k1+k2−1∑
i=k1+1

E(Z
(n)
i |c)

)

+ log(α̂1)

(
N1∑
n=1

E(N
(n)
12 |y) +

N1+N2∑
n=N1+1

E(N
(n)
12 |c)

)

+ log(α̂2)

(
N1∑
n=1

E(N
(n)
1(k1+1)|y) +

N1+N2∑
n=N1+1

E(N
(n)
1(k1+1)|c)

)

+ log(λ̂1)

N1∑
n=1

( k1−1∑
i=2

E(N
(n)
i,(i+1)|y) + E(N

(n)
k1,D
|y)
)

+ log(λ̂1)

N1+N2∑
n=N1+1

k1−1∑
i=2

E(N
(n)
i,(i+1)|c)

+ log(λ̂2)

N1∑
n=1

( k1+k2−1∑
i=k1+1

E(N
(n)
i,(i+1)|y) + E(N

(n)
k1+k2,D

|y)
)

+ log(λ̂2)

N1+N2∑
n=N1+1

k1+k2−1∑
i=k1+1

E(N
(n)
i,(i+1)|c)

= −(α̂1 + α̂2)

(
N1∑
n=1

c1(yn : 1|π,T)

f(yn)
+

N1+N2∑
n=N1+1

d1(yn : 1|π,T)

S(c)

)

− λ̂1

(
N1∑
n=1

k1∑
i=2

ci(yn : i|π,T)

f(yn)
+

N1+N2∑
n=N1+1

k1−1∑
i=2

di(yn : i|π,T)

S(c)

)

− λ̂2

(
N1∑
n=1

k1+k2∑
i=k1+1

ci(yn : i|π,T)

f(yn)
+

N1+N2∑
n=N1+1

k1+k2−1∑
i=k1+1

di(yn : i|π,T)

S(c)

)

+ log(α̂1)

(
N1∑
n=1

α1
c2(yn : 1|π,T)

f(yn)
+

N1+N2∑
n=N1+1

α1
d2(yn : 1|π,T)

S(c)

)

+ log(α̂2)

(
N1∑
n=1

α1
ck1+1(yn : 1|π,T)

f(yn)
+

N1+N2∑
n=N1+1

α2
dk1+1(yn : 1|π,T)

S(c)

)
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+ log(λ̂1)

N1∑
n=1

λ1

[ k1−1∑
i=2

ci+1(yn : i|π,T)

f(yn)
+
ak1(yn|π,T)

f(yn)

]
+ log(λ̂1)

N1+N2∑
n=N1+1

k1−1∑
i=2

λ1
di+1(yn : i|π,T)

S(c)

+ log(λ̂2)

N1∑
n=1

λ2

[ k1+k2−1∑
i=k1+1

ci+1(yn : i|π,T)

f(yn)
+
ak1+k2(yn|π,T)

f(yn)

]
+ log(λ̂2)

N1+N2∑
n=N1+1

k1+k2−1∑
i=k1+1

λ2
di+1(yn : i|π,T)

S(c)
.

We simplify using the following notations:

ME(n) =



c1(yn : 1|π,T) c2(yn : 1|π,T)

N1∑
n=1

k1∑
i=2

ci(yn : i|π,T)

N1∑
n=1

k1−1∑
i=2

ci+1(yn : i|π,T) +
ak1(yn|π,T)

f(yn)

c1(yn : 1|π,T) ck1+1(yn : 1|π,T)

N1∑
n=1

k1+k2∑
i=k1+1

ci(yn : i|π,T)

N1∑
n=1

k1+k2−1∑
i=k1+1

ci+1(yn : i|π,T) +
ak1+k2(yn|π,T)

f(yn)


,

and

MC(n) =



d1(yn : 1|π,T) d2(yn : 1|π,T)

N1+N2∑
n=N1+1

k1−1∑
i=2

di(yn : i|π,T)

N1+N2∑
n=N1+1

k1−1∑
i=2

di+1(yn : i|π,T)

d1(yn : 1|π,T) dk1+1(yn : 1|π,T)

N1+N2∑
n=N1+1

k1+k2−1∑
i=k1+1

di(yn : i|π,T)

N1+N2∑
n=N1+1

k1+k2−1∑
i=k1+1

di+1(yn : i|π,T)


.

Consequently, the estimated Fisher Information matrix
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L = (Lij) = −
(∂2Q(θ̂|θ)
∂θ̂j∂θ̂i

+
∂2Q(θ̂|θ)
∂θj∂θ̂i

)
θ̂=θ

is given by

Lij =

N1∑
n=1

1

f(yn)

[ ∂
∂θj

ME
(n)
i2 −

∂

∂θj
ME

(n)
i1

]
−

N1∑
n=1

1

(f(yn))2
∂

∂θj
f(yn)

[
ME

(n)
i2 −ME

(n)
i1

]
+

N1+N2∑
n=N1+1

1

f(yn)

[ ∂
∂θj

MC
(n)
i2 −

∂

∂θj
MC

(n)
i1

]
−

N1+N2∑
n=N1+1

1

(f(yn))2
∂

∂θj
f(yn)

[
MC

(n)
i2 −MC

(n)
i1

]
.

The partial derivatives
∂ME(n)

∂θj
and

∂MC(n)

∂θj
are obtained by taking derivative of

the quantities in (6.5.14)-(6.5.16) and (6.5.20)-(6.5.21) and the density function f

as follows.

For j = 1, . . . , 4, define Tθj(y) =
∂

∂θj
exp(Ty) and e(y|π,T) = exp(Ty).

Then

∂

∂y
Tθj(y) =

∂

∂y

∂

∂θj
exp(Ty)

=
∂

∂θj

∂

∂y
exp(Ty)

=
∂

∂θj

(
exp(Ty)T

)
= exp(Ty)

∂

∂θj
T +

( ∂
∂θj

exp(Ty)
)
T

= e(y|π,T)
∂

∂θj
T + Tθj(y)T. (6.5.23)
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Since f(y) = π exp(Ty)t,

∂

∂θj
f(y) = π

( ∂
∂θj

exp(Ty)
)
t + π exp(Ty)

( ∂
∂θj

t
)

= πTθj(y)t + πe(y|π,T)
( ∂
∂θj

t
)
. (6.5.24)

We further define Cθj ,i(y) =
∂

∂θj
c(y; i|π,T) and Dθj ,i(c) =

∂

∂θj
d(c; i|π,T) for

i = 1, .., k.

Then

Cθj ,i(y) =
∂

∂θj
c(y; i|π,T)

=
∂

∂θj

∫ y

0

π exp(Tu)ei exp(T(y − u))tdu

=

∫ y

0

π
∂

∂θj
exp(Tu)ei exp(T(y − u))tdu

+

∫ y

0

π exp(Tu)ei
∂

∂θj
exp(T(y − u))tdu

+

∫ y

0

π exp(Tu)ei exp(T(y − u))
∂t

∂θj
)du,

and

Dθj ,i(c) =
∂

∂θj
d(c; i|π,T)

=
∂

∂θj

∫ c

0

π exp(Tu)ei exp(T(c− u))edu

=

∫ c

0

π exp(Tu)ei
∂

∂θj
exp(T(c− u))edu

+

∫ c

0

π
∂

∂θj
exp(Tu)ei exp(T(c− u))edu.
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Therefore

∂

∂y
Cθj ,i(y) = π

∂

∂θj
exp(Ty)eit

+

∫ y

0

π
∂

∂θj
exp(Tu)eiT exp(T(y − u))tdu

+

∫ y

0

π exp(Tu)ei
∂

∂θj

(
T exp(T(y − u))

)
tdu

+ π exp(Ty)ei
∂t

∂θj
+

∫ y

0

π exp(Tu)eiT exp(T(y − u))
∂t

∂θj
)du

= πTθj(y)eit + πe(y|π,T)ei
∂t

∂θj
+ TCθj ,i(y) +

( ∂
∂θj

T
)
c(y; i|π,T),

(6.5.25)

and

∂

∂c
Dθj ,i(c) = π

∂

∂θj
exp(Tc)eie (6.5.26)

+

∫ c

0

π exp(Tu)ei
∂

∂θj

(
T exp(T(c− u))

)
edu (6.5.27)

+

∫ c

0

π
∂

∂θj
exp(Tu)eiT exp(T(c− u))edu (6.5.28)

=
[
πTθj(c)eie

]
+ TDθ,i +

∂T

∂θj
d(c : i|π,T). (6.5.29)

Therefore, the partial derivatives
∂ME(n)

∂θj
and

∂MC(n)

∂θj
are obtained by solving the

following system of equations:
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� non-censored observations

d

dy
e(y|π,T) = Te(y|π,T)

d

dy
Tθj(y) = e(y|π,T)

∂T

∂θj
+ Tθj(y)T

d

dy
C(y|π,T) = TC(y|π,T) + t⊗ (πe(y|π,T))

d

dy
Cθj(y|π,T) =

(
t⊗

(
πTθj(y)

)
+
( ∂t

∂θj

)
⊗
(
πe(y|π,T)

))
+ TCθj(y|π,T) +

∂T

∂θj
C(y|π,T)

where e(y|π,T) = exp(Ty) , and ⊗ denotes a Kronecker product. The system

of differential equations can be solved by the Runge-Kutta method with the

initial value e(0|π,T) = Ip, and C(0|π,T) = Cθj(0|π,T) = Tθj(0) = Op for

all θj : j = 1, .., 4.

� right-censored observations

d

dc
e(c|π,T) = Te(c|π,T)

d

dy
Tθj(c) = e(c|π,T)

∂T

∂θj
+ Tθj(c)T

d

dc
D(c|π,T) = TD(n)(c|π,T) + e⊗ (πe(c|π,T))

d

dy
Dθj(c|π,T) =

(
e⊗

(
πTθj(c)

))
+ TDθ(c|π,T) +

∂T

∂θj
D(n)(y|π,T)

where e(c|π,T) = exp(Tc) , and ⊗ denotes a Kronecker product. The system

of differential equations can be solved by the Runge Kutta method with the

initial value e(0|π,T) = Ip, and D(0|π,T) = Dθj(0|π,T) = Tθj(0) = Op for

all θj : j = 1, .., 4
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6.5.2.2 Numerical Results

We consider a special case of the phase type model in Figure 6.8 where k1 =

4 and k2 = 2. This is the mixture of Exp(α1) ∗ Gamma(4, λ1) and Exp(α2) ∗

Gamma(2, λ2). We choose a sample size of 100 non-censored observations. The

results suggest that the EM algorithm does not give accurate numerical results.

Parameters True values MLE SD

α1 0.15 0.06476837 0.05564376

λ1 0.15 0.91315934 0.50344497

α2 0.25 0.17920354 0.42455326

λ2 0.12 0.09735084 0.01896362

6.6 Discussion of Computational Experience

In this chapter, we have considered two estimation methods which are direct

quasi-Newton-Raphson optimization and an EM algorithm. The quasi-Newton-

Raphson maximizes the log-likelihood reasonably precise. This method was appli-

cable because of the relative simplicity of Model F, where paths do not connect

except at the Origin and Death states. Tables 6.3 and 6.5 illustrated the need for

large sample sizes to estimate all parameters accurately. Figures 6.2-6.7 also display

histograms allowing the reader to assess the (rather slow) rate of convergence of

distributions of ML estimators to normality as sample sizes get large.

In contrast, the EM method does not give parameter estimates precisely and
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has very slow convergence rates. We applied the EM method to a sample discussed

in Section 6.5.2.2, which is the mixture of Exp(α1) ∗ Gamma(4, λ1) and Exp(α2) ∗

Gamma(2, λ2), with sample size of 100. In our study, we implemented the algorithm

in the R platform using the R-function rk for the Runge-Kutta equation solver. Our

convergence criteria involve smallness of changes in log-likelihood of the order of

accuracy 10−10. As mentioned in Asmussen et al. (1996) , some drawbacks of the EM

algorithm are its slow convergence rate (up to 10000 iterations often being required

for reasonable convergence), and its occasional convergence to a local maximum or

saddle point. Another drawback is that the E-step calculation must be performed

for each observation, which is computationally burdensome in large samples. We

found that very long CPU times are required to achieve convergence in the case

sample sizes as large as 100, even in low-dimensional parametric examples.

Our overall conclusions are that the EM algorithm method of Asmussen et

al. (1996) and Olsson (1996) for fitting phase type survival densities to right-censored

survival data is primarily of theoretical interest, because the method places no re-

striction on the complexity of the underlying Markov chain. But in practice, even

when the models are very simple, simpler than Model F of Figure 6.1, the com-

putation times are prohibitively large even for moderately large datasets, and they

scale roughly proportionately to sample size.
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6.7 Data Analysis: Breast Cancer Mortality

In this Section, we fit the Model F parametric class of densities to the White

Female SEER dataset on mortality in 13 US registries of breast cancer cases di-

agnosed between 1992 and 2001 and followed through 2002. Details concerning

the data, a spline-based fitting methodology, and discussion can be found in An-

derson et al. (2006) . Of the complete dataset of 243,808 cases, we analyzed only

the 198,785-case subset of White females with age at diagnosis from 30 to 89, for

breast-cancer mortality. Although the primary focus of the Anderson et al. study

was to understand the shape of post-diagnosis hazard as a mixture of the disaggre-

gated disease types indicated by Estrogen Receptor (ER) status, we omitted that

covariate from our analysis, since our objective is to learn what a purely parametric

statistical analysis using the model of Section 6.4 could have told about the likely

mixture components of breast-cancer mortality in the combined population.

While Anderson et al. (2006) directly created spline-fitted hazard functions for

their combined and ER-disaggregated study populations, we performed a slightly

more complicated preliminary analysis designed to correct for year-of-diagnosis mor-

tality differences, since Kaplan-Meier curves for the data stratified by diagnosis year

(DiagYr) showed a small but clear trend of decreasing of hazards with DiagYr. The

cumulative hazards were nearly linear for the datasets with DiagYr after 1996, with

a slight concavity over times 6-11 years for earlier DiagYr’s. Since the nonparametri-

cally fitted hazards were therefore approximately proportional across DiagYr, we fit-

ted a Cox proportional hazards model with a dummy variable for DiagYr as the only
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covariate, finding effect coefficients for DiagYr versus 1992 as .007, −.024, −.065,

−.093, −.138, −.161, −.236, −0.285, −0.292. In all of our analyses, 0.5 was added

to the raw survival times of 0:131 months. We present as our basic nonparametric

mortality curve the summary survival curve for that Cox model, to which we fitted

a smoothing spline using the R function smooth.spline, with smoothing parame-

ter spar=0.5. Figure 6.9 shows the corresponding survival density, along with one

computed the same way but with less smoothing (spar=0.25), along with the best

fit that we were able to find to the data, a 6-parameter model which differs slightly

from Model F in removing the direct failure paths with parameters bD µ, β1, β2, and

instead inserting an extra state A between k1 and D, with transition arcs from state

k1 to A and from A to D. In this fitted model, as in all those treated below, k1 = 4

and k2 = 1. (A 5-parameter variant model which looks visually identical to the

6-parameter density in Figure 6.9 is obtained by letting the µ rate-parameter in

Figure 6.1 go to ∞.)
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Figure 6.9: Spline and fitted density functions to the SEER 1992-2002 data on US

white 30-89 female breast cancer mortality following diagnosis.

The solid spline fitted curve in Figure 6.9 closely resembles the summary all

patients survival hazard pictures in Anderson et al. (2006) . The spline fit to the

same Cox model summary survival, but with less smoothing (dotted curve in Fig-

ure 6.9), shows more clearly the overall features of the density which a parametric

model should seek to reproduce. These features include a high initial spike in haz-

ard, a density peak near 20 months, an approximately linear decrease of density

between 20 and 120 months, and a final increase in density between 120 and 130

months. Presumably the initial hazard spike is due to immediate adverse outcomes

from surgery and untreatable advanced stage cancers, and the peak and density

decrease from 20 to 120 months are due to the recent successes in treating a large

fraction of cancers detected at early stages. But we cannot account for the final

upturn in hazard, which our models do not address at all.
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Figure 6.10: Spline and three estimated Model F densities ML fitted to the SEER

1992-2002 data as in Figure 6.9 on US female breast cancer mortality following

diagnosis.

Most of the computational work done in fitting the models displayed in Fig-

ure 6.10 was done on a single set of 20,000 patient records randomly selected from

the full dataset of 198,785 records. Within each model class and fixed parameter

dimension, the right censored survival data log-likelihood was maximized using the

R function nlm, convergence of which was very sensitive to the choice of starting pa-

rameter values. That choice often had to be guided by visual inspection of plotted

density curves, a process which was sufficient for the selection of single path models

within Model F, but adequate starting values for two-path models were found only

using the mixture idea of Lemma 6.1 to combine two separate single-path models.

The models compared visually in this section can be further understood through

their log-likelihood values on the SEER breast cancer data. We first clarify the re-
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lationship between visual fidelity of fitted survival densities and purely statistical

model comparisons via likelihood ratio tests. Table 6.9 displays ML estimated model

parameters and log-likelihoods for the SEER data used in producing Figure 6.10,

i.e., the SEER data on breast cancer mortality following diagnosis for white females

aged 30-89. The loglikelihood differences between the models are large, because of

the large sample size. For purposes of comparison, the log-likelihoods on the same

data for the models whose densities are plotted in Figure 6.9 are −171112 for the

spline-fitted survival density with spar= 0.25, −171699 for the spline-fitted survival

density with spar= 0.5, and −172184 for the best-fitting (6-parameter, 2-path)

model.

Table 6.9: Parameters and log-likelihoods for models in Figure 6.10, with k1 =

4, k2 = 1, β2 = 0.

# par. p µ λ1 λ2 β1 bC bD logLik

4 1 0.0022 0.0190 100. 0 6.493 1.132 -172691

5 1 0.0009 0.0002 100. 0.1864 12.09 2.294 -172640

7 0.0894 0.2747 0.0001 0.0054 0.1194 1.749 0.0229 -172347

The Figures and loglikelihoods shown, and the results of other analyses not

shown, demonstrate clearly that the essential features of the density curves up to

120 months can be captured only by 2-path models, in other words mixture models,

within the phase type model F class. Figure 6.10 also indicates that each increase in

parameter dimension allows an additional visual feature of the empirical smoothed
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density – which the spline fit displays – to be captured by the parametric model:

the 4-parameter one-path model captures roughly the early and late density levels

and the approximate curvilinear pattern of decrease of density or hazard; the 5-

parameter model begins to capture the initial hook (decrease and then increase to

a local peak); and the 2-path 7-parameter model follows (and even exaggerates) the

initial hook, although the less smoothed spline picture in Figure 6.9 does show a

sharp initial density decrease) while closely following the local peak near 20 months.

It is well known that latent class and mixture models often have poorly iden-

tified parameters, sometimes even for strikingly large sample sizes. We have seen

the same phenomenon in the information matrices for the simulated data discussed

in Section 6.5.1.1 above. So we focus next on the Fisher information matrices and

parameter standard errors for the fitted models, expressed for the transformed pa-

rameters, which are subvectors of ϑ = (logit(p), log(µ), log(λ1), log(λ2), log(β1),

log(bC), log(bD)). For models with respectively 4, 5, and 7 parameters, the ranges

of eigenvalues of the respective observed information matrices Î(ϑ̂) were found to

be (1.7, 24078.0), (45.6, 28907.2), and (52.2, 22030.1). Thus, in all of the models

the most accurate linear parameter combinations with unit vector coefficients have

SE’s of order .0065, while the least accurate have SE’s of 0.14 or larger. For example,

the three models give SE’s for logit(λ1), respectively, as 0.486, 0.097, and 0.058;

and the respective SE’s for log(bD) are 0.233, 0.064, and 0.028.

While the phase type models fitted to the large SEER dataset have ill-conditioned
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Fisher information matrices — and therefore at least some parameters which are

very badly identified — one can with some assurance achieve the qualitatively im-

portant finding, that at least two mixture components are needed for a high-quality

parametric fit. The fact that in these data the ER status now represents a medi-

cally observable identifier of two distinct mixture components (which is essentially

the point of the Anderson et al. 2006 article) corroborates this conclusion, and sug-

gests the potential usefulness in new applications of a similar parametric statistical

in detecting the presence of two separate diseases within a single diagnostic category.

6.8 Summary and Discussion

We have surveyed the broad field of parametric models for survival densities,

from the vantage point of the special class of latent state stochastic transition models

known as Phase type models. Our numerical illustrations and data analysis of a real

breast cancer dataset show that even for relatively low dimensional models of this

type, the Fisher Information matrices can be strikingly ill conditioned, and yet that

certain parametric functions reflecting qualitative features of the fitted models —

especially the presence or absence of extra ‘paths’ or mixture components — can

be estimated adequately and have important interpretations. The general point we

have made is that visual features of survival densities may reflect important structure

about underlying mechanism of transition among minimally parameterized latent

states, structure with biomedical importance for the suggestion of future research

directions, such as the search for multiple diseases underlying a single diagnostic
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category.

Parametric models built from mixtures are notoriously difficult to identify

from moderate sample size data. The consequence of this observation for Phase

type survival models is that only models with relatively simple path structure and

state descriptions can have a realistic chance of being fitted stably. For this rea-

son, it may be slightly misguided in biomedical applications to fit the complicated

multistate phase type models for which the EM methods of parameter estimation

were devised. As a consequence, if only models at most of the order of complexity

of our Model F are to be fitted, then direct likelihood computation methods based

on simple properties of exponential variates and mixtures of their convolutions will

be applicable.

The phase type Model F can readily be extended to incorporate regression

terms in terms of biomedical covariates for log transition rates such as log(µ) or

log(λ1). Such survival regression models increase flexibility for joint models of non-

homogeneous populations, in the spirit of the threshold regression models of Lee

and Whitmore (2006). Analogous regressions for Coxian parameters were found to

increase the model likelihood in Faddy and McClean (1999). However, the intro-

duction of unknown coefficients for covariates might also result in ML parameter

estimates with large variances. The identification of the non-intercept regression

coefficients might also be strong, as we have seen for ratios of transition-rates. The

empirical and numerical study of such parametric regression models is a subject of

our further research.
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Chapter 7

Appendix A: Preliminaries on Computational Statistics

7.1 Bootstrap

Bootstrapping, first proposed by Efron (1979), is a class of computer-intensive

simulation techniques widely used for several purposes including bias removal in

parameter estimation, variance estimation, and pointwise confidence interval con-

struction. Bootstrapping could be either nonparametric (original) or parametric. In

this section, we discusses only some features of bootstrap. We refer to Efron and

Tibshirani (1993) for complete practical discussion of Bootstrap and Shao and Tu

(1995) for more mathematical aspects.

7.1.1 Nonparametric Bootstrap

Consider the situation where we want to make inference about a real parameter

θ = t(F) from a sample x = (x1, ..., xn) that follows the unknown distribution F.

A nonparametric bootstrap is to draw sample x∗ = (x∗1, . . . , x
∗
n) with replacement

from the data x = (x1, ..., xn). Therefore, for each replication b of the bootstrap, we

can obtain

θ̂∗(b) = t(x∗b).

157



The bootstrap parameter estimate of θ is defined as

θ̂∗ =
1

B

B∑
b=1

θ̂∗(b),

where B is the number of bootstrap replications. Consequently, the bootstrap esti-

mates of bias and seF (θ̂) are then defined as

B̂iasB = θ̂∗ − θ̂, (7.1.1)

ŝeB =

(
1

B − 1

B∑
b=1

(θ̂∗(b)− θ̂∗)2
)1/2

. (7.1.2)

7.1.2 Parametric Bootstrap

Parametric bootstrap is usually used when a parametric model is fitted to a

data set. To draw a parametric bootstrap sample, instead of drawing a random

sample from the data x, we draw a sample from the parametric distribution F̂par,

where F̂par is the parametric model with model parameter estimates substituted for

the true parameters. After B bootstrap samples are drawn, the bootstrap parameter

estimate of θ, and the bootstrap estimates of bias and seF (θ̂) are calculated in the

same way as in the nonparametric bootstrap.

7.1.3 Bootstrap Confidence Interval

Let X1, . . . , Xn be i.i.d. random variables drawn from an unknown distribution

F , and let θ be the parameter of interest. A (1− α) confidence set for θ is a subset

An(X1, .., Xn) of R such that

P (θ ∈ An(X1, .., Xn)) = 1− α,
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where α is a real number in (0, 1).

A two-sided (1−α) confidence interval of the parameter θ is defined as the interval

(θ(X1, .., Xn), θ(X1, .., Xn)) such that

P (θ ∈ (θ(X1, .., Xn), θ(X1, .., Xn))) = 1− α.

There are several bootstrap approaches to obtain a confidence interval for

bootstrap estimates. In this section, two types of pointwise confidence intervals are

studied: standard normal confidence interval and percentile confidence interval. Let

θ̂ be an estimate of a parameter θ. The (1 − α)100% standard normal confidence

interval is given by

[θ̂ − zα/2 · se(θ̂), θ̂ + zα/2 · se(θ̂)],

where se(θ̂) is the estimated standard error of θ̂. The (1− α)100% percentile confi-

dence interval is defined by

[θ̂
α/2

B , θ̂
(1−α/2)

B ],

where θ̂
α

B is the Bαth value in the ordered list of the B bootstrap replications.

7.2 Spline Smoothing

Smoothing spline is a curve fitting method that is based on piecewise polyno-

mial functions. One well known Spline smoothing method is the cubic smoothing

spline, which is widely used in statistical analysis. In this section, we restrict atten-

tion to the calculation of coefficient parameters of a cubic smoothing spline.

Consider the function f = f(x) on the interval with k knots with coordinates

(x1, f1), ..., (xk, fk). The cubic spline function S = Si is given (Pollock ) for x ∈
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[xi, xi+1] by

Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di, (7.2.3)

where x is in [xi, xi+1].

In cubic splines, three conditions are required:

Si−1(xi) = Si(xi) (7.2.4)

S ′i−1(xi) = S ′i(xi) (7.2.5)

S ′′i−1(xi) = S ′′i (xi). (7.2.6)

From (7.2.3), we have for x ∈ [xi, xi+1]

S ′(x) = 3ai(x− xi)2 + 2bi(x− xi) + ci (7.2.7)

S ′′(x) = 6ai(x− xi) + 2bi. (7.2.8)

From (7.2.4)-(7.2.6) and (7.2.7)-(7.2.8),

bi = 3ai−1hi−1 + bi−1 (7.2.9)

ci = 3ai−1h
2
i−1 + 2bi−1hi−1 + ci−1, (7.2.10)

di = ai−1h
3
i−1 + bi−1h

2
i−1 + ci−1hi−1 + di−1. (7.2.11)

Therefore, given that k knots with k − 1 intervals are used in the cubic smoothing

spline, the number of regression coefficients is k + 2, consisting of 4 parameters in

the first interval and k − 2 parameters in the rest of k − 2 intervals.
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7.3 Runge Kutta Methods

The Runge-Kutta method is a numerical method to approximate a solution of

dy

dx
= f(x, y(x)), y(0) = y0.

The Runge-Kutta method is based on an expansion of the Taylor’s series in a way

that any order N has precision O(hN). Therefore the method can be very pre-

cise when the order increases, however, the computation of higher order terms is

very complicated. The order most commonly used in practice is 4, which leads to

computations that are easy to program yet very precise and stable.

The fourth-order Runge-Kutta formula is given as

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1
2

)

k3 = hf(xn +
h

2
, yn +

k2
2

)

k4 = hf(xn +
h

2
, yn +

k3
2

)

yn+1 = yn +
k1
6

+
k2
3

+
k3
3

+
k4
6

+O(h5).

7.4 Expectation-Maximization Algorithm

The Expectation-Maximum algorithm or the so called EM algorithm is an

iterative method to find maximum likelihood estimates proposed by Dempster et

al. (1977) for incomplete data problems. The algorithm consists of two main steps

which are: (1) the Expectation step (E-step) where missing data are replaced by

theirs expectations and (2) the Maximization step (M-step) where the maximum
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likelihood function is maximized after the missing data are filled.

We begin this section by a definition of maximum-likelihood estimate. Let

X = (X1, ..., Xn) be a random vector with the joint density function f(x|θ). Then

the likelihood function of θ given the data x is defined by

L(θ|x) = f(x|θ).

The maximum likelihood estimate θ̂ of θ is

θ̂ = arg max
θ
L(θ|x).

In the context of the EM algorithms, we consider the situation that the un-

observed complete data X can be represented as (Y, Z), where Y is the observed

data and Z is the missing data. Therefore, on the k iteration, the likelihood func-

tion is approximated by Q(θ, θ(k−1)) = E[L(θ,y|Z)|y, θ(k−1)] in the E-step. The

Q(θ, θ(k−1)) is then maximized in the M-step by choosing θ(k) such that

θ(k) = arg max
θ
Q(θ, θ(k−1)).

The E- and M- steps are then repeated until a convergence is achieved. The

convergent criteria generally used is a small increase of the likelihood for the succes-

sive iteration steps. Dempster et al. (1977) showed that the the likelihood function

is always non-decreased after an EM iteration. That is

L(θ(k)) ≥ L(θ(k−1)),

for all k.
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Moreover, the authors ( Dempster et al. (1977)) also showed that the likeli-

hood function L(θ(k)) is bounded above. Therefore, by the Monotone convergence

theorem, EM algorithm always converges.

Although the convergence of the EM algorithm is guaranteed, the method is

known to have slow convergence rate and sometimes converges to a saddle point

(Wu, 1983]). This leads to many alternatives and modifications for improving the

rate of convergence. For example, Aitken’s method (Aitkin, 1996]), Louis’s method

(Louis,1982) and a Conjugate gradient method (Jamshidian and Jennrich, 1993),

which are the most common methods for speeding up the EM algorithm. We refer

to McLachlan and Krishnan (2008) for intensive studies of the EM algorithm and

its extensions in both theoretical and practical aspects.

7.5 Numerical optimization methods

In this section, we discuss a few numerical optimization methods used in our

projects: Newton-Raphson method and Quasi-Newton method. We refer to Griva

et al. (2009) for more details and variations of numerical optimization methods.

7.5.1 Newton-Raphson method

The Newton-Raphson method is a an iterative method to solve the equation

f(x) = 0,

where x = (x1, . . . , xn) is in Rn and f is twice differentiable.

Let ∇f(x) = (∇f1(x), ...,∇fn(x)) be the Jacobian matrix of the function f .
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Therefore, by the Taylor series expansion around the point xk at the kth iteration

step,

f(x(k+1)) ≈ f(x(k)) +∇fT (x(k))(x(k+1) − x(k)) = 0,

or

x(k+1) ≈ x(k) −∇fT (x(k))f(x(k)). (7.5.12)

The iteration step is repeated until it converges, where under some assumptions of

smoothness and local concavity, the Newton-Raphson method is proved to have a

quadratic rate of convergence (Ortega and Rheinboldt (1970)).

7.5.2 Quasi-Newton method

In the optimization context, the Newton method is applied to the gradient

function of the function to be optimized. Therefore, an evaluation of the second

derivative, ∇2f(x) , or the the Hessian matrix is required in order to apply the

Newton method which could require intensive computations. Therefore, a natural

alternative to the Newton method is to approximate the Hessian matrix by another

matrix Bk that is available by using only the first derivative. This method is so

called the quasi-Newton method. There are many versions of the Quasi-Newton

method varying by the choice of the matrix Bk. One example is the well-known

and widely used method, BFGS, named after its four originator: Broyden, Fletcher,

Goldfarb and Shanno. The formula is given by Griva et al. (2009)

Bk+1 = Bk −
(Bksk)(Bksk)

T

sTkBksk
+

yky
T
k

yTk sk
,

where yk = ∇fT (x(k+1))−∇fT (x(k)) and sk = x(k+1) − x(k).
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The Quasi-Newton methods such as BFGS are proved to have a superlinear rate of

convergence (Byrd et al. (1987)).
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Chapter 8

Appendix B: Derivation of the first hitting time of an

Ornstein-Uhlenbeck Process

In this chapter, we calculate the approximate density function of the first hit-

ting of an Ornstein-Uhlenbeck process (2.8.19) discussed in Section 2.8.2 by applying

Durbin’s Approximation of the First hitting time of a Gaussian Process (Durbin,

1985) and following the algorithm studied in Lachaud (2004). We begin with two

theorems of Durbin (1985) in approximating the first hitting time density of a Gaus-

sian process.

8.1 Durbin’s Approximation of the First hitting time of a Gaussian

Process

Theorem 8.1 (Durbin, 1985). Let
(
Y (t)

)
t≥0 be a centered continuous Gaussian

process with covariance function ρ(s, t) for 0 ≤ s ≤ t. Let p be the density of the

first hitting time of the boundary a = a(t) “coming from below”.

We make the following hypotheses:

(H1) for all t ≥ 0, the boundary function a is continuous at point t and left-

differentiable at point t;

(H2) the covariance function ρ is strictly positive and its first-order partial deriva-
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tives are continuous on the set {(s, t) ∈ R+; 0 ≤ s ≤ t}} with the convenient

left- and right-derivatives at points s = 0 and s = t;

(H3) the variance of the increment Yt − Ys satisfies the condition:

lim
s↑t

V ar(Yt − Ys)
(t− s)

= λt,

with 0 < λt <∞, which is equivalent to:

lim
s↑t

[∂ρ(s, t)

∂s
− ∂ρ(s, t)

∂t

]
= λt,

with 0 < λt <∞.

Then we get the following for p:

∀t ≥ 0, p(t) = b(t)f(t),

where

f(t) =
1√

2πρ(t, t)
exp

[
− a2(t)

2ρ(t, t)

]
,

and

b(t) = lim
s↑t

E
[
I(s, Y )

(
a(s)− Y (s)

)
|Y (t) = a(t)

]
,

where

I(s, Y ) =


1 if the path does not cross the boundary prior to time s,

0 otherwise.

Since the function b in Theorem 8.1 is not easy to calculate, Durbin provided

an approximation of the function b in the following Theorem.
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Theorem 8.2 (Durbin, 1985). The notations are the same as those in Theorem

8.1. Let b1 be defined for all t ≥ 0 by

b1(t) = lim
s↑t

1

t− s
E
[
I(s, Y )

(
a(s)− Y (s)

)
|Y (t) = a(t)

]
=

a(t)

ρ(t, t)

∂ρ(s, t)

∂s

∣∣∣
s=t
− a′(t).

Under the three hypotheses (H1), (H2) and (H3) the function p1 defined for all t ≥ 0

by

p1(t) = b1(t)f(t),

is an approximation of p which is exact in the limit as the boundary becomes in-

creasingly remote.

8.2 The first hitting time of an Ornstein-Uhlenbeck process

In this section, we derive the approximate density function of the first hitting

of an Ornstein-Uhlenbeck process (2.8.19) discussed in Section 2.8.2 by following

the algorithm studied in Lachaud (2004) .

Define a process (Y (t))t≥0 by

Y (t) =
a

b
+
(
x0 −

a

b

)
e−bt −X(t),

where X(t) is the Ornstein-Uhlenbeck process.

The process (Y (t))t≥0 is a centered Gaussian process, with covariance function

ρ(s, t) = σ2/(2b)
[
e−b|t−s| − e−b(t+s)

]
. The process starts at 0 and the first hitting

time is

T x0
c = inf

{
t ≥ 0 : Y (t) ≥

(a
b
− c
)

+
(
x0 −

a

b

)
e−bt

}
.
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The boundary is a(t) =
(
a/b− c

)
+
(
x0 − a/b

)
e−bt.

The hypotheses (H1) and (H2) are clearly satisfied. Next, we check the hypothesis

(H3). Note that, for s ≤ t,

∂ρ(s, t)

∂s
=

∂

∂s

σ2

2b

(
e−b(t−s) − e−b(t+s)

)
=
σ2

2

(
e−b(t−s) + e−b(t+s)

)
and

∂ρ(s, t)

∂t
=

∂

∂t

σ2

2b

[
e−b(t−s) − e−b(t+s)

]
=
σ2

2

[
− e−b(t−s) + e−b(t+s)

]
.

Then

lim
s↑t

[∂ρ(s, t)

∂s
− ∂ρ(s, t)

∂t

]
=
σ2

2
lim
s↑t

(
2e−b(t−s)

)
= σ2 > 0.

In Theorem 8.1, the approximate density function p1 is p1(t) = b1(t)f(t), where

b1(t) =
a(t)

ρ(t, t)

∂ρ(s, t)

∂s

∣∣∣
s=t
− a′(t)

=

((
a/b− c

)
+
(
x0 − a/b

)
e−bt

)
(σ2/2b)(1− e−2bt)

σ2

2
(1 + e−2bt) + b

(
x0 − a/b

)
e−bt

=
b
(

(a/b)
(
1− e−bt

)2 − c(1 + e−2bt
)

+ 2x0e
−bt
)

1− e−2bt
.
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Therefore

p1(t) = b1(t)f(t)

=
b
(

(a/b)
(
1− e−bt

)2 − c(1 + e−2bt
)

+ 2x0e
−bt
)

1− e−2bt

× 1√
2π
√

(σ2/2b)(1− e−2bt)
exp

{
b
[(
a/b− c

)
+
(
x0 − a/b

)
e−bt

]2
σ2(1− e−2bt)

}

=
ebt((a/b)(ebt − 1)2 − c(e2bt + 1) + 2x0e

bt)

σ
√
π

( b

e2bt − 1

)3/2
× exp

{−b[(a/b− c)ebt + (x0 − a/b)
]2

σ2(e2bt − 1)

}
.
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Chapter 9

Appendix C: Asymptotic Properties of Maximum Penalized

Likelihood Estimates

In this chapter, we study asymptotic properties of penalized likelihood esti-

mates by checking conditions of Pakes and Pollard’s consistency and asymptotic

Normality conditions (Pakes and Pollard, 1989). Our results are special cases of

Pakes and Pollard (1989). We further study asymptotic normality properties of

bootstrap estimates from a penalized likelihood model by specializing results of

Chen et al. (2003).

This chapter is organized as follows. Section 9.1 reviews fundamental concepts

of asymptotic statistics. Pakes and Pollard’s consistency and asymptotic normality

conditions are discussed in Section 9.2. Section 9.3 discusses consistency and nor-

mality conditions of penalized likelihood estimates. Section 9.4 discusses asymptotic

normality conditions of bootstrap estimates from a penalized likelihood Model.

9.1 Fundamental Asymptotic Theorems

In this section, reviews of fundamental concepts and theorems used in our

study are discussed.

Definition 9.1. (Casella and Berger, 2002) A sequence of random variables, X1, X2, . . .

converges in probability to a random variable X, denoted Xn →p X, if for every
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ε > 0,

lim
n→∞

P (|Xn −X| ≥ ε) = 0 or, equivalently, lim
n→∞

P (|Xn −X| < ε) = 1.

Definition 9.2. (Casella and Berger, 2002) A sequence of random variables, X1, X2, . . .

converges in distribution to a random variable X, denoted Xn  X, if

lim
n→∞

FXn(x) = FX(x)

at all points x where FX(x) is continuous.

Definition 9.3. (Casella and Berger, 2002) A sequence of random variables, X1, X2, . . .

converges almost surely to a random variable X if for every ε > 0,

P ( lim
n→∞

|Xn −X| < ε) = 1.

Definition 9.4. (Van der Vaart, 1998) A class F of measurable functions f : Ω→

R is called P -Glivenko-Cantelli if∥∥∥∥∥ 1

n

n∑
i=1

f(Xi)− Ef(X)

∥∥∥∥∥
F

= sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X)

∣∣∣∣∣→ 0 a.s.

Definition 9.5. (Van der Vaart, 1998)A class F of measurable function f : Ω→ R

is called P -Donsker if the sequence of processes

{√
n

(
1

n

n∑
i=1

f(Xi)− Ef(X)

)
: f ∈ F

}
converges in distribution to a tight limit process in the space l∞(f).

Theorem 9.1. [Weak Law of Large Numbers], (Casella and Berger, 2002) Let

X1, X2, . . . be i.i.d. random variables with E(Xi) = µi and Var(Xi) = σ2 <∞.

Define X̄n =
1

n

n∑
i=1

Xi. Then for every ε > 0,

lim
n→∞

P (|X̄n − µ| < ε) = 1;
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that is, X̄n converges in probability to µ, or X̄n →p µ.

Theorem 9.2. [Continuous Mapping Theorem] (Van der Vaart, 1998) Let g :

Rk → Rm be continuous at every point of a set C such that P (X ∈ C) = 1.

(i) If Xn  X, then g(Xn) g(X);

(ii) If Xn →p X, then g(Xn)→p g(X);

(iii) If Xn →a.s. X, then g(Xn)→a.s. g(X).

Theorem 9.3. [Central Limit Theorem] (Casella and Berger, 2002) Let X1, X2, . . .

be a sequence of i.i.d. random variables with E(Xi) = µ and 0 < Var(Xi) = σ2 <∞.

Define X̄n =
1

n

n∑
i=1

Xi. Then

√
n

(X̄n − µ)

σ
 N(0, 1).

9.2 Pakes and Pollard’s Consistency and Asymptotic Normality Con-

ditions

Let {Zi}ni=1 be i.i.d. random variable sampled from a distribution P, and let

Θ ⊆ Rk be a finite dimensional parameter set. Let G : Θ → Rl be a deterministic

vector-valued function defined on Θ such that the true value θ0 is the unique solution

to G(θ) = 0. We consider consistency and asymptotic normality conditions of an

estimate θ̂n defined as the minimizer of the length ‖Gn(·)‖. In this section, we

restate Pakes and Pollard’s consistency and asymptotic normality conditions (Pakes

and Pollard, 1989 ) which are applied to our situation in Chapter 4. We refer readers
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to Chen et al. (2003) for an extension of these results to the case of semi-parametric

models and an infinite dimensional parameter space.

Theorem 9.4. (Corollary 3.2, Pakes and Pollard, 1989) Under the following con-

ditions θ̂n converges in probability to the unique θ0 in Θ for which G(θ0) = 0:

(9.4.1) ‖Gn(θ̂n)‖ ≤ inf
θ
‖Gn(θ)‖+ oP (1),

(9.4.2) inf
‖θ−θ0‖>δ

‖G(θ)‖ > 0 for each δ > 0,

(9.4.3) sup
θ

‖Gn(θ)−G(θ)‖
1 + ‖Gn(θ)‖+ ‖G(θ)‖

= oP (1).

Note that

‖Gn(θ)−G(θ)‖
1 + ‖Gn(θ)‖+ ‖G(θ)‖

≤ ‖Gn(θ)−G(θ)‖.

Therefore condition (9.4.3) is implied by condition (9.4.3’) :

sup
θ
‖Gn(θ)−G(θ)‖ = oP (1).

Theorem 9.5. (Theorem 3.3, Pakes and Pollard, 1989) Let θ̂n be a consistent

estimator of θ0, the unique point of Θ for which G(θ0) = 0. If

(9.5.1) ‖Gn(θ̂n)‖ ≤ inf
θ
‖Gn(θ)‖+ oP (n−1/2);

(9.5.2) G(·) is differentiable at θ0 with an l × k derivative matrix Γ of full rank;

(9.5.3) for every sequence {δn} of positive numbers that converges to zero,

sup
‖θ−θ0‖<δn

‖Gn(θ)−G(θ)−Gn(θ0)‖
n−1/2 + ‖Gn(θ)‖+ ‖G(θ)‖

= oP (1);

(9.5.4)
√
nGn(θ0) N(0, V );
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(9.5.5) θ0 is an interior point of Θ;

then

√
n(θ̂n − θ0) N

(
0, (ΓTΓ)−1ΓTV Γ(ΓTΓ)−1

)
.

Note that,

‖Gn(θ)−G(θ)−Gn(θ0)‖
n−1/2 + ‖Gn(θ)‖+ ‖G(θ)‖

≤
√
n‖Gn(θ)−G(θ)−Gn(θ0)‖.

Therefore condition (9.5.3) is implied by condition (9.5.3’):

sup
‖θ−θ0‖<δn

‖Gn(θ)−G(θ)−Gn(θ0)‖ = oP (n−1/2).

9.3 Consistency and Asymptotic Normality Conditions for Penalized

Likelihood Estimates

In this section, we specializing Theorems 9.4 and 9.5 to prove consistency

and asymptotic normality conditions of maximum penalized likelihood parameters.

Let X1, . . . , Xn be a random sample drawn from a distribution P , where the log-

likelihood function l(θ|·) satisfies the conditions:

(A1) The parameter space Θ is compact,

(A2) E(l(θ|X)) is continuous,

(A3) All third-order derivatives
∂3

∂θiθjθk
l(θ|X) exist for all fixed X,

(A4) E(∇l(θ|X)2) <∞ where ∇ is the gradient operator with respect to θ,

(A5) E(∇⊗2l(θ|X)2) <∞ where ∇⊗2 is the Hessian operator with respect to θ.
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The penalized likelihood function is defined as

l(θ|X) =
1

n

n∑
i=1

l(θ|Xi)−
1√
n

[
p(θ)

]
,

where p(θ) is convex and continuous.

In this section, we study consistency and asymptotic normality properties of a pe-

nalized likelihood estimate, θ̂, by checking conditions of Pakes and Pollard (1989).

To apply Theorems 9.4 - 9.5, we define the functions Gn and G as

Gn(θ) = −

[
1

n

n∑
i=1

l(θ|Xi)− E(l(θ0|X1))

]
+

1√
n

[p(θ)− p(θ0)] , (9.3.1)

and

G(θ) = −E
[
l(θ|X1)− l(θ0|X1)

]
. (9.3.2)

(I) Claim :
√
n (‖Gn(θ̂)‖ − infθ ‖Gn(θ)‖)→ 0 a.s.

Note that,

‖ Gn(θ̂) ‖ = inf
θ
‖ Gn(θ) ‖ . (9.3.3)

This verifies conditions (9.4.1) and (9.5.1).

(II) Claim : inf
‖θ−θ0‖>δ

‖G(θ)‖ > 0 for each δ > 0.

Suppose instead that there is a δ > 0 such that inf
‖θ−θ0‖>δ

‖G(θ)‖ = 0. Since Θ

is compact, Cδ = {θ ∈ B : ‖θ− θ0‖ ≥ δ} is closed. Therefore there is a θ′ ∈ Cδ

such that G(θ′) = 0. This contradicts the assumption that θ0 is the unique

point such that G(θ) = 0. Therefore inf
‖θ−θ0‖>δ

‖G(θ)‖ > 0 for each δ > 0. The

condition (9.4.2) is then verified.
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(III) Claim: L = {l(θ|·) : θ ∈ Θ} is P -Glivenko-Cantelli and P -Donsker.

Since l(θ|X) is differentiable as a function of θ, by the Mean Value Theorem,

for all θ1, θ2 ∈ Θ,

l(θ1|X)− l(θ2|X) = ∇l(θ′|X) · (θ2 − θ1), (9.3.4)

where · is the dot product and θ′ = θ1 + λ(θ2 − θ1), 0 < λ < 1.

By the Cauchy-Schwarz inequality,

|l(θ1|X)− l(θ2|X)| ≤
∥∥∥∥sup

θ
∇l(θ|X)

∥∥∥∥ ‖θ2 − θ1‖ . (9.3.5)

Since Θ is compact, L is compact and then E|(sup
θ
∇l(θ|X))| < ∞. Then

(Example 19.7, p.271, Van der Vaart, 1998) L is P -Glivenko-Cantelli and

P -Donsker. That is

sup
θ
‖ 1

n

n∑
i=1

l(θ|Xi)− E(l(θ|X1)) ‖= o(1) a.s., (9.3.6)

and

√
n sup

θ
‖ 1

n

n∑
i=1

l(θ|Xi)− E(l(θ|X1)) ‖= OP (1). (9.3.7)

(IV) Claim : sup
θ
‖Gn(θ)−G(θ)‖ → 0 a.s.

Gn(θ)−G(θ) = −
[ 1

n

n∑
i=1

l(θ|Xi)− E(l(θ0|X1))
]

+
1√
n

[
p(θ)− p(θ0)

]
−
(
− E

[
l(θ|X1)− l(θ0|X1)

])
= −

[ 1

n

n∑
i=1

l(θ|Xi)− E
[
l(θ|X1)

]
+

1√
n

[
p(θ)− p(θ0)

]
.

By (9.3.6),

sup
θ
‖ 1

n

n∑
i=1

l(θ|Xi)− E
[
l(θ|X1) ‖→ 0 a.s. (9.3.8)
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By (9.3.8),

sup
θ
‖ Gn(θ)−G(θ) ‖ ≤ sup

θ

∥∥∥∥∥−[ 1

n

n∑
i=1

l(θ|Xi)− E
[
l(θ|X1)

]∥∥∥∥∥
+ sup

θ
‖ 1√

n

[
p(θ)− p(θ0)

]
‖

≤ o{a.s.}(1) + o(1)

≤ o{a.s.}(1).

Hence sup
θ
‖Gn(θ)−G(θ)‖ = o{a.s.}(1) , and so is oP (1).

Therefore condition (9.4.3) is verified.

(V) Claim: for every sequence {δn} of positive numbers that converges to zero,

sup
‖θ−θ0‖<δn

‖Gn(θ)−G(θ)−Gn(θ0)‖ = oP (n−1/2).

Note that

Gn(θ)−G(θ)−Gn(θ0) = −
[ 1

n

n∑
i=1

l(θ|Xi)− E(l(θ0|X1))
]

+
1√
n

[
p(θ)− p(θ0)

]
+ E

[
l(θ|X1)− l(θ0|X1)

]
+

[
1

n

n∑
i=1

l(θ0|Xi)− E(l(θ0|X1))

]

= −

[
1

n

n∑
i=1

l(θ|Xi)− E(l(θ|X1))

]
(9.3.9)

+
1

n

n∑
i=1

l(θ0|Xi)− E(l(θ0|X1)) +
1√
n

[p(θ)− p(θ0)] .

Let Yn(θ) =
1

n

n∑
i=1

l(θ|Xi)− E(l(θ|X1)). Then, by Taylor series expansion,

Yn(θ) = Yn(θ0) + (θ − θ0)T∇Yn(θ′), (9.3.10)
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where θ′ = θ0 + λ(θ − θ0) and λ ∈ (0, 1).

Therefore

√
n
(
Yn(θ)− Yn(θ0)

)
= (θ − θ0)T

√
n
[
∇Yn(θ′)

]
= (θ − θ0)T

√
n
[ 1

n

n∑
i=1

∇l(θ′|Xi)− E(∇l(θ′|X1))
]

(9.3.11)

Substitute ∇l(θ|Xi) for l(θ|Xi) into (9.3.7) under the condition (A5),

√
n sup

θ
‖
[ 1

n

n∑
i=1

∇l(θ′|Xi)− E(∇θ′|X1)
]
‖= OP (1). (9.3.12)

Since ‖ (θ − θ0) ‖≤ δn = o(1) and (9.3.12) holds,

√
n sup
‖θ−θ0‖<δn

‖
(
Yn(θ)− Yn(θ0)

)
‖= oP (1). (9.3.13)

Since p is continuous and ‖ (θ − θ0) ‖≤ δn = o(1),

sup
‖θ−θ0‖<δn

‖ p(θ)− p(θ0) ‖= o(1). (9.3.14)

Hence, by (9.3.9)- (9.3.14),

sup
‖θ−θ0‖<δn

‖Gn(θ)−G(θ)−Gn(θ0)‖ = oP (n−1/2).

The condition (9.5.3’) is then verified.

(VI) Claim :
√
nGn(θ0) N(0, V ).

Since
{
Xi

}n
i=1

are i.i.d., then by the Central Limit Theorem,

√
nGn(θ0) =

√
n

[
1

n

n∑
i=1

l(θ0|Xi)− E(l(θ|X1))

]
 N(0, V ),

where V = Varθ
(
l(θ0|X1)

)
. Therefore the condition (9.5.4) is verified.
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From (I)-(VI), and Theorems 9.4 and 9.5, θ̂n →p θ0 and
√
n(θ̂n−θ0) is asymp-

totically Normally distributed.

9.4 The Bootstrap

In this section, we study asymptotic normality properties of bootstrap esti-

mates from a penalized likelihood model. We begin our section with two theorems

of Chen, Linton and Keilegom [Chen et al., 2003]. The original versions are stated

for Semiparametric models, but we restrict the theorems to a fully parametric case

in this section.

Let {X∗i }ni=1 be drawn randomly with replacement from {Xi}ni=1.

Let G∗n(θ) =
1

n

n∑
i=1

g(X∗i , θ) for each θ where g : Rk × Rp → R is a measurable

function such that G(θ) = E(g(Xi, θ)) = 0 if and only if θ = θ0.

Theorem 9.6. Suppose that {Xi}ni=1 are i.i.d. and θ0 ∈ int Θ satisfies E(G(Xi, θ0)) =

0; that is θ̂n − θ0 = oa.s.(1); that conditions (9.5.1)- (9.5.6) hold with ‘in probabil-

ity’ replaced by ‘almost surely’ in the conditions (9.5.1) and (9.5.3’). Suppose

(9.6.3B) sup
‖θ−θ0‖<δn

‖ G∗n(θ)−Gn(θ)−
{
G∗n(θ0)−Gn(θ0)

}
‖= op∗(n

−1/2) for all sufficiently

small positive constants δn.

(9.6.4B)
√
n
{
G∗n(θ̂n)−Gn(θ̂n)

}
= N (0, V1) + op∗(1), for some covariance matrix V1.

Then,
√
n(θ̂∗n−θ̂n) converges in distribution to a N (0,Ω) distribution in P ∗-probability.

Theorem 9.7. Let {Xi}ni=1 be i.i.d. with E(g(Xi, θ0)) = 0. Suppose that each

component of g take the form g(x, θ) = gc(x, θ) + glc(x, θ) and satisfies:
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(9.7.1) gc is Hölder continuous with respect to θ, in the sense that

|gc(x, θ1)− gc(x, θ2)| ≤ b(x)‖θ1 − θ2‖s1 ,

for some constant s1 ∈ (0, 1] and some measurable functions b(·) with E[bj(X)]r <

∞ for some r ≥ 2.

(9.7.2) glc is for some r ≥ 2 locally uniformly Lr(P ) continuous with respect to θ:

(
E
[

sup
{θ′:‖θ−θ′‖<δ}

|glc(X, θ′)− glc(X, θ)|r
])1/r

≤ Kδs,

for all θ0 ∈ Θ, for all sufficiently small positive values δ = o(1), and for some

constants s ∈ (0, 1], K > 0.

(9.7.3) Θ is a compact subset of Rp.

Then conditions (9.5.3’) and (9.6.3B) hold.

9.4.1 Asymptotic Normality Properties of Bootstrap Estimates from

a Penalized Likelihood Model

In this section, we study the asymptotic normality of bootstrap estimates from

a penalized likelihood model where the distribution is from the exponential family

by checking assumptions of Theorem 9.6.

(C1) Claim: θ̂n → θ0 a.s.

To prove that ‖θ̂n − θ0‖ = o{a.s.}(1), we can follow the proof of Theorem 9.4

as follows.

From (II) For all δ > 0, there is ε(δ) > 0, such that inf
‖θ−θ0‖>δ

‖G(θ)‖ = ε(δ) > 0.
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Therefore, for all n ∈ N, for all ω in the probability space Ω , ‖θ̂n(ω)−θ0‖ > δ

implies ‖G(θ̂n(ω))‖ ≥ ε(δ). Hence,

P ( lim
n→∞

‖θ̂n − θ0‖ > δ) ≤ P ( lim
n→∞

‖G(θ̂n)‖ ≥ ε(δ)).

So, it suffices to show that ‖G(θ̂n)‖ = o{a.s.}(1).

‖G(θ̂n)‖ = ‖G(θ̂n) +Gn(θ̂n)−Gn(θ̂n)‖

≤ ‖Gn(θ̂n)‖+ ‖G(θ̂n)−Gn(θ̂n)‖

≤ ‖Gn(θ̂n)‖+ o{a.s.}(1)
(
1 + ‖G(θ̂n)‖+ ‖Gn(θ̂n)‖

)
(by (IV)).

(9.4.15)

By rearranging (9.4.15), we have

‖G(θ̂n)‖
(
1− o{a.s.}(1)

)
≤ o{a.s.}(1) + ‖Gn(θ̂n)‖(1 + o{a.s.}(1)). (9.4.16)

From (IV), ‖Gn(θ0)‖ = o{a.s.}(1). Then, from (I),

‖Gn(θ̂)‖ ≤ o{a.s.}(1) + ‖Gn(θ0)‖ = o{a.s.}(1). (9.4.17)

Therefore, by (9.4.16) and (9.4.17),

‖G(θ̂n)‖ = o{a.s.}(1). (9.4.18)

The condition (C1) is then verified.

(C2) Claim: sup
‖θ−θ0‖<δn

‖ G∗n(θ) − Gn(θ) −
{
G∗n(θ0) − Gn(θ0)

}
‖= op∗(n

−1/2) for all

sequences δn = o(1).

Since the function g(x, θ) is convex as a function of θ and Θ is compact, g(x, θ)

is Lipschitz continuous. Therefore, by Theorem 9.7 the condition (9.6.3B) is

satisfied.
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(C3) Claim:
√
n
{
G∗n(θ̂n)−Gn(θ̂n)

}
= N (0, V1) +op∗(1), for a covariance matrix V1.

Following Chen et al. (2003), and by (VI),

√
nGn(θ0) N(0, V ).

By (V) and (C1),

√
n‖Gn(θ̂n)−G(θ̂n)−Gn(θ0)‖ = oP (1). (9.4.19)

Therefore,

√
n
{
Gn(θ̂n)−G(θ̂n)

}
 N(0, V ). (9.4.20)

By Giné and Zinn (1990),

√
n
{
G∗n(θ̂n)−Gn(θ̂n)

}
 N(0, V ).

This verifies condition (9.6.4B).

From conditions (C1)-(C3),
√
n
(
θ̂∗n − θ̂n

)
is asymptotically normally distributed.

183



Chapter 10

Appendix D: Graphical Results for Bootstrap studies in Chapter 3

This chapter is intended to be a graphical supplement for the bootstrap confi-

dence intervals mentioned in Chapter 3. Two types of pointwise confidence intervals

are studied in this chapter: standard normal confidence interval and percentile confi-

dence interval. The parameters used in this study are derived from the SSLC model.

For each parameter θ , the model estimate of the parameter is denoted by θ̂ and the

bootstrap estimate is defined by

θ̂(∗) =
1

B

B∑
b=1

θ̂(b).

The (1− α)100% bootstrap standard normal confidence interval is given by

[θ̂(∗) − zα
2
· se(θ̂(∗)), θ̂(∗) + zα

2
· se(θ̂(∗))],

where se(θ̂(∗)) is the estimated standard error of θ̂(∗).

The (1− α)100% bootstrap percentile confidence interval is defined by

[θ̂
α
2

B , θ̂
(1−α2 )

B ],

where θ̂
α

B is the Bαth value in the ordered list of the B replications.

In many applications including our cases, there are some extreme values present.

These extreme values make the estimated standard deviation too large compared to

the true value and consequently the corresponding normal curve is too flat. To avoid
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such a problem each overlaid normal curve in the histogram of each parameter θ in

this section will be drawn from a normal distribution with mean θ̂(∗) and standard

deviation σ̂θ. The standard deviation σ̂θ is estimated by

σ̂θ =
Q3(θ

∗)−Q1(θ
∗)

Φ−1(0.75)− Φ−1(0.25)
,

where Φ is the standard normal distribution function, and Q1(θ) and Q3(θ) are the

1st and 3rd quartiles of bootstrap values of the parameter θ, respectively.

Heart Diseases

Figures 10.1-10.31 show histograms of bootstrapped samples and graphical

comparisons of 95% bootstrap pointwise confidence intervals and 95% bootstrap

pointwise confidence interval widths between the two types of confidence intervals for

parameter estimates. Figures 10.1-10.5 suggest the comparability between the two

types of intervals of αa’s. Figures 10.6-10.9 show symmetric shapes of histograms for

bootstrapped samples for all αa’s. The 95% bootstrap pointwise confidence interval

widths for αa’s are smaller at old ages than at young ages. Figures 10.10-10.11

demonstrate some differences between the two intervals of βa at young ages, ages

1-12 years. The differences between the two intervals are also noticed for γp,1’s

and γp,2’s as shown in Figures 10.16- 10.17 and 10.20-10.21, respectively. These

differences occur because of non-normality of histograms for the bootstrap samples

as we can see non-symmetric shapes of histograms of β̂a’s , γ̂p,1’s, and γ̂p,2’s in Figures

10.12-10.15, 10.18-10.19, and 10.22-10.23, respectively. Figures 10.32-10.35 show the

corresponding comparisons for log mortality rate estimates at some selected ages.
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The figures show agreements of the two types of 95% bootstrap pointwise confidence

intervals for estimated log mortality rates. Figures 10.36-10.37 show histograms of

bootstrapped samples of log mortality rates at a selected age, 14 years. The figures

confirm the normality assumption of log mortality rate distribution.
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Figure 10.1: Heart diseases: 95% bootstrap pointwise confidence interval widths of

αa : a = 1, . . . , 84 obtained from percentile and standard normal intervals.
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Figure 10.2: Heart diseases : α̂a, α̂
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Figure 10.3: Heart diseases: α̂a, α̂
(∗)
a : a = 22, . . . , 42 and corresponding 95% boot-

strap pointwise confidence intervals.
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Figure 10.6: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of α̂a : a = 1, ...., 21.
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Figure 10.7: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of α̂a : a = 22, ...., 42.
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Figure 10.8: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of α̂a : a = 43, ...., 63.
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Figure 10.9: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of α̂a : a = 64, ...., 84.
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Figure 10.10: Heart diseases: 95% bootstrap pointwise confidence interval widths

of βa : a = 1, . . . , 84 obtained from percentile and standard normal intervals.
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Figure 10.11: Heart diseases: β̂a, β̂
(∗)
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Figure 10.12: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of β̂a : a = 1, ...., 21.
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Figure 10.13: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of β̂a : a = 22, ...., 42.
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Figure 10.14: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of β̂a : a = 43, ...., 63.
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Figure 10.15: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of β̂a : a = 64, ...., 84.
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Figure 10.16: Heart diseases: 95% bootstrap pointwise confidence interval widths

of γp,1 : p = 1971, ..., 2006 obtained from percentile and standard normal intervals.
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Figure 10.17: Heart diseases: γ̂p,1, γ̂
(∗)
p,1 : p = 1971, ..., 2006 and corresponding 95%

bootstrap pointwise confidence intervals.
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Figure 10.18: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of γ̂p,1 : p = 1971, ..., 1988.
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Figure 10.19: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of γ̂p,1 : p = 1989, ..., 2006.
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Figure 10.20: Heart diseases: 95% bootstrap pointwise confidence interval widths

of γp,2 : p = 1971, ..., 2006 obtained from percentile and standard normal intervals.
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Figure 10.21: Heart diseases: γ̂p,2, γ̂
(∗)
p,2 : p = 1971, ..., 2006 and corresponding 95%

bootstrap pointwise confidence intervals.
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Figure 10.22: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of γ̂p,2 : p = 1971, ..., 1988.
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Figure 10.23: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of γ̂p,2 : p = 1989, ..., 2006.
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Figure 10.24: Heart diseases: 95% bootstrap pointwise confidence interval widths

of γp,3 : p = 1971, ..., 2006 obtained from percentile and standard normal intervals.
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Figure 10.25: Heart diseases: γ̂p,3, γ̂
(∗)
p,3 : p = 1971, ..., 2006 and corresponding 95%

bootstrap pointwise confidence intervals.
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Figure 10.26: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of γ̂p,3 : p = 1971, ..., 1988.
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Figure 10.27: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of γ̂p,3 : p = 1989, ..., 2006.
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Figure 10.28: Heart diseases: 95% bootstrap pointwise confidence interval widths

of γp,4 : p = 1971, ..., 2006 obtained from percentile and standard normal intervals.
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Figure 10.29: Heart diseases: γ̂p,4, γ̂
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p,4 : p = 1971, ..., 2006 and corresponding 95%

bootstrap pointwise confidence intervals.
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Figure 10.30: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of γ̂p,4 : p = 1971, ..., 1988.
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Figure 10.31: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of γ̂p,4 : p = 1989, ..., 2006.
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Figure 10.32: Heart diseases: Log mortality rate estimates at age 14 years and 95%

bootstrap pointwise confidence intervals.
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Figure 10.33: Heart diseases: Log mortality rate estimates at age 34 years and 95%

bootstrap pointwise confidence intervals.
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Figure 10.34: Heart diseases: Log mortality rate estimates at age 44 years and 95%

bootstrap pointwise confidence intervals.
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Figure 10.35: Heart diseases: Log mortality rate estimates at age 74 years and 95%

bootstrap pointwise confidence intervals.
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Figure 10.36: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of log(λ̂14,p) : p = 1971, ..., 1988.
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Figure 10.37: Heart diseases: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of log(λ̂14,p) : p = 1989, ..., 2006.
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Cancer

Figures 10.38-10.64 show graphical comparisons of 95% bootstrap pointwise

confidence intervals and 95% bootstrap pointwise confidence interval widths between

the two types of confidence intervals for parameter estimates. Figures 10.38-10.42

and 10.47-10.48 show that the two types of intervals for αa, βa : a = 1, . . . , 84

coincide. Histograms of the bootstrapped samples also agree to the corresponding

normal curves, as shown in Figures 10.43-10.46 and 10.49-10.52 for αa and βa, respec-

tively. Figures 10.53-10.64 also show agreements between the two types of bootstrap

pointwise confidence intervals for period-effect terms γp,i : p = 1971, . . . , 2006 ; i =

1, 2, 3. Figures 10.65-10.68 show the corresponding comparisons for log mortality

rate estimates at some selected ages. Histograms with corresponding normal curves

of bootstrapped samples of log mortality rate estimates at age 14 years are presented

in Figures 10.69-10.70.
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Figure 10.38: Cancer: 95% bootstrap pointwise confidence interval widths of αa :

a = 1, ..., 84 obtained from percentile and standard normal intervals.
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Figure 10.39: Cancer: α̂a, α̂
(∗)
a : a = 1, ..., 21 and corresponding 95% bootstrap

pointwise confidence intervals.
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Figure 10.40: Cancer: α̂a, α̂
(∗)
a : a = 22, ..., 42 and corresponding 95% bootstrap

pointwise confidence intervals.
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Figure 10.41: Cancer: α̂a, α̂
(∗)
a : a = 43, ..., 63 and corresponding 95% bootstrap

pointwise confidence intervals.
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Figure 10.42: Cancer: α̂a, α̂
(∗)
a : a = 64, ..., 84 and corresponding 95% bootstrap

pointwise confidence intervals.
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Figure 10.43: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of α̂a : a = 1, ...., 21.
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Figure 10.44: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of α̂a : a = 22, ...., 42.
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Figure 10.45: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of α̂a : a = 43, ...., 63.
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Figure 10.46: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of α̂a : a = 64, ...., 84.
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Figure 10.47: Cancer: 95% bootstrap pointwise confidence interval widths of βa :

a = 1, ..., 84 obtained from percentile and standard normal intervals.
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Figure 10.48: Cancer: β̂a, β̂
(∗)
a : a = 1, ..., 84 and corresponding 95% bootstrap

pointwise confidence intervals.
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Figure 10.49: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of β̂a : a = 1, ...., 21.
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Figure 10.50: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of β̂a : a = 22, ...., 42.
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Figure 10.51: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of β̂a : a = 43, ...., 63.
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Figure 10.52: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of β̂a : a = 64, ...., 84.
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Figure 10.53: Cancer: 95% bootstrap pointwise confidence interval widths of γp,1 :

p = 1971, ..., 2006 obtained from percentile and standard normal intervals.
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Figure 10.54: Cancer: γ̂p,1, γ̂
(∗)
p,1 : p = 1971, ..., 2006 and corresponding 95% bootstrap

pointwise confidence intervals.
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Figure 10.55: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of γ̂p,1 : p = 1971, ..., 1988.
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Figure 10.56: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of γ̂p,1 : p = 1989, ..., 2006.
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Figure 10.57: Cancer: 95% bootstrap pointwise confidence interval widths of γp,2 :

p = 1971, ..., 2006 obtained from percentile and standard normal intervals.
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Figure 10.58: Cancer: γ̂p,2, γ̂
(∗)
p,2 : p = 1971, ..., 2006 and corresponding 95% bootstrap

pointwise confidence intervals.
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Figure 10.59: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of γ̂p,2 : p = 1971, ..., 1988.
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Figure 10.60: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of γ̂p,2 : p = 1989, ..., 2006.
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Figure 10.61: Cancer: 95% bootstrap pointwise confidence interval widths of γp,3 :

p = 1971, ..., 2006 obtained from percentile and standard normal intervals.
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Figure 10.62: Cancer: γ̂p,3, γ̂
(∗)
p,3 : p = 1971, ..., 2006 and corresponding 95% bootstrap

pointwise confidence intervals.
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Figure 10.63: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of γ̂p,3 : p = 1971, ..., 1988.
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Figure 10.64: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of γ̂p,3 : p = 1989, ..., 2006.
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Figure 10.65: Cancer: Log mortality rate estimates at age 14 years and 95% boot-

strap pointwise confidence intervals.
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Figure 10.66: Cancer: Log mortality rate estimates at age 34 years and 95% boot-

strap pointwise confidence intervals.
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Figure 10.67: Cancer: Log mortality rate estimates at age 44 years and 95% boot-

strap pointwise confidence intervals.
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Figure 10.68: Cancer: Log mortality rate estimates at age 74 years and 95% boot-

strap pointwise confidence intervals.
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Figure 10.69: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of log(λ̂14,p) : p = 1971, ..., 1988.
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Figure 10.70: Cancer: Histograms of 1000 bootstrap replications with corresponding

overlaid normal curve of log(λ̂14,p) : p = 1989, ..., 2006.

Accidents

Figures 10.71-10.101 show histograms of bootstrapped samples and graphical

comparisons of 95% bootstrap pointwise confidence intervals and 95% bootstrap

pointwise confidence interval widths between the two types of confidence intervals

for parameter estimates. The figures suggest that the two types of intervals coincide

in most cases. Figure 10.97 shows small deviations of histograms from normal

curves of γ̂p,3 at middle periods ( years 1991-1995). Figures 10.102-10.105 show

the corresponding comparisons for log mortality rate estimates at some selected

ages. Figures 10.106-10.107 demonstrate histograms of bootstrapped samples of log

mortality rates at a selected age, 14 years. The figures suggest that the bootstrapped

samples of log mortality rate estimates follow normal distributions.
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Figure 10.71: Accidents: 95% bootstrap pointwise confidence interval widths of

αa : a = 1, . . . , 84 obtained from percentile and standard normal intervals.
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Figure 10.72: Accidents: α̂a, α̂
(∗)
a : a = 1, . . . , 21 and corresponding 95% bootstrap

pointwise confidence intervals.
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Figure 10.73: Accidents: α̂a, α̂
(∗)
a : a = 22, . . . , 42 and corresponding 95% bootstrap

pointwise confidence intervals.
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Figure 10.74: Accidents: α̂a, α̂
(∗)
a : a = 43, . . . , 63 and corresponding 95% bootstrap

pointwise confidence intervals.
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Figure 10.75: Accidents: α̂a, α̂
(∗)
a : a = 64, . . . , 84 and corresponding 95% bootstrap

pointwise confidence intervals.
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Figure 10.76: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of α̂a : a = 1, ...., 21.
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Figure 10.77: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of α̂a : a = 22, ...., 42.
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Figure 10.78: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of α̂a : a = 43, ...., 63.
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Figure 10.79: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of α̂a : a = 64, ...., 84.
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Figure 10.80: Accidents: 95% bootstrap pointwise confidence interval widths of

βa : a = 1, . . . , 84 obtained from percentile and standard normal intervals.
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Figure 10.81: Accidents: β̂a, β̂
(∗)
a : a = 1, . . . , 84 and corresponding 95% bootstrap

pointwise confidence intervals.

age= 1 year old

0.018 0.022 0.026

0
10

0
30

0

age= 2 years old

0.018 0.022 0.026

0
10

0
30

0

age= 3 years old

0.020 0.024 0.028

0
10

0
30

0

age= 4 years old

0.020 0.024 0.028

0
10

0
20

0
30

0

age= 5 years old

0.022 0.026 0.030

0
10

0
20

0
30

0

age= 6 years old

0.022 0.028

0
10

0
20

0
30

0

age= 7 years old

0.022 0.028

0
10

0
20

0
30

0

age= 8 years old

0.020 0.026

0
10

0
20

0
30

0

age= 9 years old

0.020 0.026

0
10

0
30

0

age= 10 years old

0.018 0.022 0.026

0
10

0
20

0
30

0
40

0

age= 11 years old

0.018 0.022 0.026

0
10

0
20

0
30

0

age= 12 years old

0.018 0.022 0.026

0
10

0
30

0

age= 13 years old

0.018 0.022 0.026

0
10

0
30

0

age= 14 years old

0.018 0.022

0
10

0
30

0

age= 15 years old

0.015 0.018 0.021

0
10

0
30

0
50

0

age= 16 years old

0.013 0.016 0.019

0
20

0
40

0

age= 17 years old

0.012 0.015

0
20

0
40

0
60

0

age= 18 years old

0.011 0.013 0.015

0
20

0
40

0
60

0

age= 19 years old

0.011 0.013

0
20

0
40

0
60

0

age= 20 years old

0.010 0.012 0.014

0
20

0
60

0

age= 21 years old

0.010 0.012

0
20

0
60

0

Figure 10.82: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of β̂a : a = 1, ...., 21.
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Figure 10.83: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of β̂a : a = 22, ...., 42.
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Figure 10.84: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of β̂a : a = 43, ...., 63.

229



age= 64 years old

−7.82 −7.80 −7.78

0
20

40
60

age= 65 years old

−7.78 −7.76

0
20

40
60

80

age= 66 years old

−7.76 −7.74 −7.72

0
20

40
60

80

age= 67 years old

−7.70 −7.68

0
20

40
60

80

age= 68 years old

−7.66 −7.64

0
20

40
60

80

age= 69 years old

−7.615 −7.595

0
20

40
60

80

age= 70 years old

−7.56 −7.54 −7.52

0
20

40
60

80

age= 71 years old

−7.50 −7.48

0
20

40
60

80

age= 72 years old

−7.40 −7.38

0
20

40
60

80

age= 73 years old

−7.34 −7.32 −7.30

0
20

40
60

80

age= 74 years old

−7.27 −7.25

0
20

40
60

80

age= 75 years old

−7.185 −7.170 −7.155

0
20

40
60

80

age= 76 years old

−7.095 −7.080 −7.065

0
20

40
60

80

age= 77 years old

−7.02 −7.00 −6.98

0
20

40
60

80

age= 78 years old

−6.93 −6.91

0
20

40
60

80

age= 79 years old

−6.830 −6.810

0
20

40
60

80

age= 80 years old

−6.725 −6.705

0
20

40
60

80

age= 81 years old

−6.645 −6.630 −6.615

0
20

40
60

80

age= 82 years old

−6.535 −6.515

0
20

40
60

80

age= 83 years old

−6.430 −6.415 −6.400

0
20

40
60

80

age= 84 years old

−6.330 −6.310

0
20

40
60

80

Figure 10.85: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of β̂a : a = 64, ...., 84.
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Figure 10.86: Accidents: 95% bootstrap pointwise confidence interval widths of

γp,1 : p = 1971, ..., 2006 obtained from percentile and standard normal intervals.
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Figure 10.87: Accidents: γ̂p,1, γ̂
(∗)
p,1 : p = 1971, ..., 2006 and corresponding 95% boot-

strap pointwise confidence intervals.
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Figure 10.88: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of γ̂p,1 : p = 1971, ..., 1988.
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Figure 10.89: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of γ̂p,1 : p = 1989, ..., 2006.
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Figure 10.90: Accidents: 95% bootstrap pointwise confidence interval widths of

γp,2 : p = 1971, ..., 2006 obtained from percentile and standard normal intervals.
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Figure 10.91: Accidents: γ̂p,2, γ̂
(∗)
p,2 : p = 1971, ..., 2006 and corresponding 95% boot-

strap pointwise confidence intervals.
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Figure 10.92: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of γ̂p,2 : p = 1971, ..., 1988.
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Figure 10.93: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of γ̂p,2 : p = 1989, ..., 2006.
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Figure 10.94: Accidents: 95% bootstrap pointwise confidence interval widths of

γp,3 : p = 1971, ..., 2006 obtained from percentile and standard normal intervals.
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Figure 10.95: Accidents: γ̂p,3, γ̂
(∗)
p,3 : p = 1971, ..., 2006 and corresponding 95% boot-

strap pointwise confidence intervals.
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Figure 10.96: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of γ̂p,3 : p = 1971, ..., 1988.
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Figure 10.97: Accidents: Histograms of 1000 bootstrap replications with correspond-

ing overlaid normal curve of γ̂p,3 : p = 1989, ..., 2006.
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Figure 10.98: Accidents: 95% bootstrap pointwise confidence interval widths of

γp,4 : p = 1971, ..., 2006 obtained from percentile and standard normal intervals.
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Figure 10.99: Accidents: γ̂p,4, γ̂
(∗)
p,4 : p = 1971, ..., 2006 and corresponding 95% boot-

strap pointwise confidence intervals.
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Figure 10.100: Accidents: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of γ̂p,4 : p = 1971, ..., 1988.
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Figure 10.101: Accidents: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of γ̂p,4 : p = 1989, ..., 2006.
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Figure 10.102: Accidents: Log mortality rate estimates at age 14 years and 95%

bootstrap pointwise confidence intervals.
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Figure 10.103: Accidents: Log mortality rate estimates at age 34 years and 95%

bootstrap pointwise confidence intervals.
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Figure 10.104: Accidents: Log mortality rate estimates at age 44 years and 95%

bootstrap pointwise confidence intervals.
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Figure 10.105: Accidents: Log mortality rate estimates at age 74 years and 95%

bootstrap pointwise confidence intervals.
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Figure 10.106: Accidents: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of log(λ̂14,p) : p = 1971, ..., 1988.
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Figure 10.107: Accidents: Histograms of 1000 bootstrap replications with corre-

sponding overlaid normal curve of log(λ̂14,p) : p = 1989, ..., 2006.

In conclusion, the 95% percentile pointwise confidence intervals and the 95%

standard normal pointwise confidence intervals coincide in most cases in particular in

cancer and accidents cases. Some differences between the two intervals for parameter

estimates are found in heart diseases. Even through they are mostly compatible, the

percentile intervals are recommended in general cases because it has transformation-

respecting property (Efron and Tibshirani, 1993).

The LC and SSLC estimates of log mortality rates and percentile

confidence intervals

This section shows an exhibition of LC and SSLC estimates of log mortality

rates at some selected ages with their corresponding 95% bootstrap percentile point-

wise confidence intervals for heart diseases, cancer and accidents. Crude estimates
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mentioned in the figures are the logarithms of the proportions λ̃a,p’s.

Heart diseases

1970 1975 1980 1985 1990 1995 2000 2005

−
11

.5
−

11
.4

−
11

.3
−

11
.2

−
11

.1
−

11
.0

−
10

.9

years

Lo
g 

m
or

ta
lit

y 
ra

te
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● Crude estimates
SSLC estimates
LC estimates
SSLC CIs
LC CIs

Figure 10.108: Heart diseases: Log mortality rate estimates at age 14 years obtained

from LC and SSLC models and corresponding 95% bootstrap percentile pointwise

confidence intervals.
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Figure 10.109: Heart diseases: Log mortality rate estimates at age 34 years obtained

from LC and SSLC models and corresponding 95% bootstrap percentile pointwise

confidence intervals.
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Figure 10.110: Heart diseases: Log mortality rate estimates at age 44 years obtained

from LC and SSLC models and corresponding 95% bootstrap percentile pointwise

confidence intervals.
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Figure 10.111: Heart diseases: Log mortality rate estimates at age 74 years obtained

from LC and SSLC models and corresponding 95% bootstrap percentile pointwise

confidence intervals.
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Cancer

1970 1975 1980 1985 1990 1995 2000 2005

−
10

.8
−

10
.6

−
10

.4
−

10
.2

−
10

.0
−

9.
8

years

Lo
g 

m
or

ta
lit

y 
ra

te
s

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

● Crude estimates
SSLC estimates
LC estimates
SSLC CIs
LC CIs

Figure 10.112: Cancer: Log mortality rate estimates at age 14 years obtained from

LC and SSLC models and corresponding 95% bootstrap percentile pointwise confi-

dence intervals.
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Figure 10.113: Cancer: Log mortality rate estimates at age 44 years obtained from

LC and SSLC models and corresponding 95% bootstrap percentile pointwise confi-

dence intervals.
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Figure 10.114: Cancer: Log mortality rate estimates at age 64 years obtained from

LC and SSLC models and corresponding 95% bootstrap percentile pointwise confi-

dence intervals.
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Figure 10.115: Cancer: Log mortality rate estimates at age 74 years obtained from

LC and SSLC models and corresponding 95% bootstrap percentile pointwise confi-

dence intervals.
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Accidents
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Figure 10.116: Accidents: Log mortality rate estimates at age 14 years obtained

from LC and SSLC models and corresponding 95% bootstrap percentile pointwise

confidence intervals.
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Figure 10.117: Accidents: Log mortality rate estimates at age 44 years obtained

from LC and SSLC models and corresponding 95% bootstrap percentile pointwise

confidence intervals.
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Figure 10.118: Accidents: Log mortality rate estimates at age 64 years obtained

from LC and SSLC models and corresponding 95% bootstrap percentile pointwise

confidence intervals.
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Figure 10.119: Accidents: Log mortality rate estimates at age 74 years obtained

from LC and SSLC models and corresponding 95% bootstrap percentile pointwise

confidence intervals.
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