
ABSTRACT

Title of dissertation: ESSAYS ON THE ECONOMICS
OF EDUCATION

Erin Elizabeth Moody
Doctor of Philosophy, 2013

Dissertation directed by: Professor John Ham
Department of Economics

This dissertation explores several facets of the economics of education. The

first chapter explores the impact of intradistrict public school choice on the relation-

ship between house prices and elementary school test scores. Previous research has

established a positive relationship between house prices and school quality in set-

tings where students do not have opportunities for intra-district public school choice.

I examine a program of intra-district school choice in Jefferson County, Kentucky.

Using a boundary regression discontinuity approach, I estimate that the presence

of school choice weakens the relationship between house prices and local school test

scores. My estimates suggest that a five percent increase in a local school’s test

scores would lead to no more than two to three tenths of a percent increase in house

prices. This response is concentrated in areas where houses are farther from the

schools available in their choice set. This chapter also explores parents’ preferences

in a case where intradistrict school choice is available. I find that parents care about



both their proximity to schools and the test scores of schools.

In chapter 2, I investigate the impact of high school music classes on student

academic achievement. Other researchers have documented a positive correlation

between participation in music and academic achievement. However, there is a

strong possibility that this correlation is driven by selection into music. Using

propensity score matching, I estimate the causal impact of high school music classes

on several academic outcomes. The results indicate that taking at least one music

class in high school leads to increases in enrollment at a postsecondary school,

increases in enrollment at a four-year college, increases in high school test scores,

and small increases in students’ high school academic GPA. The largest effects are

found for students who participate in high school band.
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Chapter 1: Introduction

The topic of education has been a part of many areas of research in economics

for many years. In the most traditional sense, economists measure education by

years of schooling. However, this measurement overlooks all of the complex intrica-

cies of education.

Different schools offer a different quality of education. Different classes lead

to different experiences. Education is also directly tied to non-educational activities

and decisions. Many schools offer extracurricular activities, which add another

component of complexity to the idea of what education is. Additionally, educational

choices can impact household decisions, such as where to live.

This dissertation explores several facets of the economics of education. The

second chapter explores the impact of intradistrict public school choice on the re-

lationship between house prices and elementary school test scores. Research has

established that, in the absence of school choice, house prices are very responsive to

school test scores. Because one’s address typically determines one’s public school,

the choice of where to live also typically determines which school one’s children will

attend. Then, it makes sense that parents will be willing to pay a premium in order
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to send their child to a better school.

In chapter 2, I examine how the relationship between house prices and elemen-

tary school test scores are affected by the way that students are assigned to schools.

In Jefferson County, Kentucky, elementary schools students are assigned to a cluster

of schools and are not required to attend their local school. Students and parents

may rank up to four elementary schools that are within their cluster. The school

district then uses these rankings to assign students to schools.

In my main empirical approach, I explore the relationship between house prices

and school test scores in Jefferson County, KY using a boundary fixed effects ap-

proach that has been widely used in the literature. This strategy is advantageous

compared to a traditional Ordinary Least Squares approach because it allows me to

control for unobserved neighborhood characteristics shared by houses near the same

catchment-area boundary. The first step in the analysis is to restrict the sample

to houses very close to schools’ catchment area boundaries. In this way, I can re-

strict comparison to houses that are geographically close together. Houses that are

geographically close should share similar neighborhood characteristics. Therefore,

conditional on house characteristics, I can assume that the only difference between

houses on the opposite side of a shared boundary is the quality of the schools avail-

able to each house. Then, by including a set of boundary fixed effects, I can control

for unobserved neighborhood characteristics shared by houses near the same bound-

ary.
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The results of this approach demonstrate a very small relationship between

local school test scores and house prices in Jefferson County. The estimated coeffi-

cient on school test scores is about ten times smaller than what has been estimated

in school districts that do not offer any type of school choice.

As an extension of the boundary fixed effects approach, I also explore the

impact of cluster schools’ characteristics on house prices. This exploration is an im-

portant contribution to the literature, because it is not theoretically obvious what

parents prefer in their child’s school. I investigate whether house prices are respon-

sive to changes in the test scores of non-local cluster schools. I also explore the

importance of schools’ proximity to one’s house.

This results indicate that parents’ preferences in Jefferson County are difficult

to understand. The system of school choice is complicated, so it is not surprising

that the results are not definitive. The results suggest that parents care about the

proximity to the school that their child will attend and that parents also care some

about the quality of the cluster schools.

Using these results, I further extend my analysis to explore how accessibility

to school choice affects the relationship between house prices and school test scores.

Because of the design of the elementary choice program, the accessibility of school

choice varies throughout the district. For example, in areas where the available set

of choice schools are, on average, geographically closer to one’s home, school choice

is a more accessible option than when the choice set of schools are, on average, far
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from one’s home.

I examine how the relationship between house prices and school quality differs

for houses that have access to many schools versus houses that do not. My results

indicate that in areas where houses have more access to choice, house prices are less

responsive to changes in local school test scores. The results are more ambiguous for

whether the relationship between house prices and the quality of available schools

is affected by accessibility to school choice.

In the third chapter, I study the impact of high school music classes on stu-

dents’ academic outcomes. This topic is of interest because there has been much

debate in recent years over the importance of music education. Some individuals

argue that music education can improve performance in other academic areas, such

as math and science. Other individuals argue that time spent in music education

takes away from time that could be spent on more math and science courses. I

examine whether participation in high school music classes leads to changes in ACT

and SAT test score, academic GPA, whether a student attends college, and whether

a student drops out.

To empirically investigate these effects, I utilize two empirical approaches:

OLS with school fixed effects and propensity score matching. Each approach has

advantages and disadvantages. The advantage of OLS with school fixed effects is

the ability to include fixed effects. The disadvantages of OLS are its restrictive

functional form and the fact that it generally restricts the average treatment effect
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on the treatment to be equal to the average treatment effect (though this may not be

true once fixed effects are estimated). Propensity score matching does not restrict

the average treatment effect on the treated to be equal to the average treatment

effect, and it allows for a less restrictive functional form. However, propensity

score matching is unable to accomodate school fixed effects; therefore, the matching

estimates may be biased upward.

The data used is the Education Longitudinal Study of 2002 from the National

Center for Education Statistics, which surveys approximately 15,000 high school stu-

dents and follows these student for several years. These data are ideal for propensity

score matching because there are many variables that affect both the likelihood of

taking a music class and the outcome variables.

The results demonstrate that music classes have large effects on academic

outcomes. I estimate that taking at least one music class in high school leads to .8

percentage point decrease in dropping out of high school, which is a fifteen percent

decline. Taking at least one music class also leads to large increases in enrollment

at a postsecondary school, increases in enrollment at a four-year college, and small

increases in students’ academic GPA. Taking at least one music class also leads to

approximately two percent improvement in ACT or SAT test scores.

The largest effects are found for students who participate in high school band.

High school band students see a five to eight percentage point increase in post-

secondary school attendance and an approximately five percentage point increase

5



in four-year college attendance. Band students also see statistically significant in-

creases in SAT and ACT scores, scoring approximately three percent higher on both

tests. Participating in high school band also leads to increases of about two tenths

of a points in students’ academic GPA.
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Chapter 2: The Impact of Intradistrict School Choice on the Rela-

tionship between House Prices and Elementary School

Quality

2.1 Introduction

In recent years, a large body of research has estimated the impact of school

choice on academic outcomes. However, much less is known about the impact of

school choice on non-academic outcomes. One such important outcome is house

prices. In this paper, I investigate the effect of intradistrict public school choice on

the relationship between school quality and house prices.

Previous research has established a positive relationship between house prices

and school quality in school districts where there is no school choice (Black (1999);

Downes and Zabel (2002); Fack and Grenet (2010); Figlio and Lucas (2004); Kane

et al. (2006) are a few examples1). The intuition behind this relationship is that

local school quality is an important determinant of one’s residential location decision.

Parents prefer to live in a location that offers a higher quality education for their

children. In a school district where one’s address determines one’s school, home

buyers bid up the price of a house near a better school. Thus, the desirability of the

1For an extensive review of the literature on the relationship betweeen house prices and school
quality, see Black and Machin (2010).)
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local school is capitalized into house prices.

In this chapter, I investigate how the relationship between house prices and

school quality is affected by a change in the relationship between home address and

school assignment. Specifically, if parents are allowed to choose from among several

public schools within a district, instead of being assigned to a single school based on

their address, how will this change the relationship between house prices and school

quality?

Additionally, this chapter explores the parents’ preferences in the presence

of intadistrict school choice. When parents can choose a school instead of being

assigned to one, I expect that additional factors beyond local school quality will

be capitalized in house prices. Parents presumably place value on the quality of

the available non-local schools. They also may place value on the distance of their

house to potential schools. The extent to which parents value each of these factors is

not obvious. I will use several different measures of quality and distance to explore

parents’ preferences.

In order to explore these questions, I examine an extensive program of public

school choice in Jefferson County, Kentucky. The Jefferson County Public School

District (JCPS) contains the city of Louisville and the entirety of Jefferson County.

It is the 28th largest school district in the United States, with approximately 98,000

students (Snyder and Dillow, 2011)2. As I will describe in detail later, elementary,

middle, and high school students all have the option of exercising school choice.

I will focus on elementary schools for two reasons. First, there are many more

elementary schools than middle or high schools. Second, the choice program at the

elementary level is structured slightly differently from the choice program in middle

2This statistic is based on Fall 2008 enrollment figures. JCPS enrollment numbers are compa-
rable to Detroit City Public Schools (97,000) and Baltimore County Public Schools (103,000).
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and high schools and is more suitable for my empirical approach.

I hypothesize that house prices will be less responsive to local school quality

(as measured by test scores) when students have the opportunity to exercise choice,

compared to a situation where students cannot exercise choice. In a scenario where

there is school choice, parents are no longer required to live in a specific geographical

area in order to send their children to their preferred school. As a consequence, I

expect that parents’ willingness-to-pay for a home near a high quality local school

will be less than their willingness-to-pay if the district did not offer choice.

As a practical matter, the hypothesis that school choice will weaken the rela-

tionship between house prices and school quality is difficult to test. First, I must

address the endogeneity of house characteristics and school quality. In a traditional

hedonic price regression, a consumer’s choice over a good such as housing amounts

to choosing the preferred bundle of house and neighborhood characteristics (e.g.

square footage, income of neighbors, school quality). In the hedonic regression,

school quality may be correlated with unobserved characteristics of a house’s neigh-

borhood. For example, better schools tend to be located in wealthier neighborhoods.

If individuals are willing to pay a premium not just for a better school but also to

live in a neighborhood with these unobserved characteristics, then this will bias the

effect of school quality on house prices.

To address this issue, I adopt a regression discontinuity approach developed

by Black (1999). This approach has been utilized extensively in the literature (See

Black and Machin (2010) for a review of the literature.). The first step in the

analysis is to restrict the sample to houses very close to schools’ catchment area

boundaries. In this way, I can restrict comparison to houses that are geographically

close together. Houses that are geographically close should share similar neighbor-

hood characteristics. Therefore, conditional on house characteristics, I can assume
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that the only difference between houses on opposite sides of a shared boundary is the

quality of the schools available to each house. Then, by including a set of boundary

fixed effects, I can control for unobserved neighborhood characteristics shared by

houses near the same boundary.3

In addition to the endogeneity of school quality, another empirical difficulty

will be how to measure school choice. The school choice program is in place for the

entirety of the time period for which I have data; therefore, I need to use another

source of variation in the availability of school choice within the district. Because

of the design of the elementary choice program, the accessibility of school choice

varies throughout the district, causing some areas to have more choice and some to

have less choice. For example, in areas where the available set of school choices are,

on average, geographically closer to one’s home, school choice is a more accessible

option than when the school choices are, on average, farther from one’s home.

In areas where choice is more accessible, I expect house prices to be less re-

sponsive to local school quality changes than in previous studies, because parents

can more easily send their child to an alternative school. My results support this

hypothesis. The coefficient estimate of the impact of local school quality changes

on house prices is about 2.5 times smaller in areas with more choice compared to

areas with less choice.

Additionally, I expect house prices to be responsive to changes in other school

quality measures (in addition to one’s local school quality), once school choice is

available. I find that when a house is, on average, far from any available school

choices, house prices are more responsive to changes in local school quality and

less responsive to changes in cluster school quality. This finding suggests that par-

3I will eliminate boundaries where this assumption is unlikely to hold, such as school boundaries
that are also natural boundaries, like rivers or major highways.
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ents value a smaller distance from their house to their child’s school. I also find

that when a house is far from the best schools, house prices are more responsive to

changes in local school quality and less responsive to changes in cluster school qual-

ity. This suggests that parents value the quality of the available schools in addition

to proximity to these schools.

One point that should be kept in mind is that this school choice program is

unique to Jefferson County, Kentucky. The way students are assigned to schools

and the way they choose schools is complicated and unlike other school districts in

the United States. For this reason, the results may not be generalizable to other

school districts in the US. This is simply an exploration of the relationship between

house prices and test scores within this very interesting school district.

The remainder of the chapter is structured as follows: Section 2.2 provides

background on the JCPS choice program. Section 2.3 presents a conceptual frame-

work. Section 2.4 describes the data. Sections 2.5 through 2.8 present my empirial

strategies and main results. Section 2.9 contains extensions and robustness checks.

Section 2.10 concludes.

2.2 Background

The Jefferson County Public School District is the 28th largest school district

in the United States. To my knowledge, it is one of the few school districts in the

United States that offer school choice to all of its students.4 The type of school

choice available is intradistrict public school choice, such that students may choose

from among public schools within their district.5

4Chicago Public Schools has a system of public school choice that is most comparable to that
in Jefferson County.

5Other types of school choice are interdistrict, where some students may have the option of
attending a school that is not in their school district. The term school choice can also refer to

11



In 1992, JCPS introduced the school choice plan that I study.6 At the elemen-

tary level, students may apply to any elementary school that is within their cluster.

A cluster is defined as a group of 5 to 12 elementary schools, where a student who

lives in the catchment area of any one of the cluster schools may apply to attend

any school that is in the same cluster. There are a total of twelve clusters in JCPS.

Figures 2.1 and 2.2 display the division of clusters, with 6 clusters shown per map

to make the distinctions between clusters more visible.

One will notice that the clusters are mostly non-contiguous. Cluster 9 is the

only completely contiguous cluster within the county. By contiguous, I mean that

every school within the cluster is bordered by at least one other school in the same

cluster, and there are no geographic holes in the cluster. In this way, Cluster 9 is

very different from the other clusters. Many school catchment areas do not share

any part of their border with a school area in the same cluster (e.g. most schools

in cluster 11). The clusters were structured in this way in order to have a more

diverse population of students in each cluster.7 Though the cluster schools can be

far apart, each student is guaranteed free transportation to any school within his or

her cluster.

Students may apply to any of the schools within their assigned cluster. The

process is illustrated in Figure 2.3 and works as follows. First, the student is ten-

tatively assigned to a residence-based school based on the student’s home address.

the availability of charter schools or private schools. Jefferson County does not have any charter
schools. It also does not allow for interdistrict school choice.

6The school choice program was a modification of a busing system that was implemented in
1975 as a result of a court order to desegregate (Kleber, 2001) The school choice plan that I study
was again modified in 2010.

7Because JCPS includes both the city of Louisville and the rest of Jefferson County, the district
varies from very urban to very rural. Like many cities in the US, the inner-city area is mostly
black, and the county becomes more white as one moves away from the city center. In order to
increase racial diversity, the school district requires that at least one school from a mostly black
neighborhood be included in every cluster. Thus, most clusters contain both urban and rural
schools.
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I call this the local school. In Figure 2.3, a student who lives within the hatched

area is assigned to school A as his or her local school school. The hatched area is

what is typically referred to as the catchment area for a school. In a district where

there is no school choice, students who live within the catchment area of a school

are definitively assigned to that school. Thus, the first step of the assignment pro-

cess in JCPS is identical to the process for assigning students to a residence-based

school in a district where there is no choice, except that the assignment in JCPS is

not mandatory, nor does the assignment guarantee the student a spot at the local

school.

As a result of the residence-based school assignment, a student also knows the

cluster to which he or she belongs. All school areas that are shaded gray in Figure

2.3 belong to the same cluster as the hatched school. The student who lives in the

hatched area may apply to school A and/or any of the schools in the gray areas.

Similarly, if a student lives in a gray area, he or she may apply to school A or any

other schools in the gray area.

To apply to a school, a student must submit a choice application. Approxi-

mately fifty percent of JCPS students submit such an application. On the applica-

tion, students may rank up to four school choices within their cluster.8 The school

district reviews the applications and assigns each student to a school.

The assignment process is based soley on three criteria: the address of the

student, the student’s race, and the school’s capacity constraints. Students who

8Transfers between clusters are allowed. However, transfers are considered on a case by case
basis, and parents must provide documentation for why they would like their child to attend
a school in a different cluster. The most common reasons for transfers are if a student’s sibling
attends a school in a different cluster, a student having behavioral problems that they believe can be
addressed in a different cluster, or if a student needs special attention (such as a learning disability)
and there is a school in a different cluster better suited to handle that student. Approximately
10% of students attend a cluster that is not their assigned cluster. This information was obtained
by speaking directly with the school district.
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live in the catchment area of a school are given first priority to attend that school.

Students who do not submit a choice appliation are assumed to prefer the local school

but may be sent to other schools if the local school faces capacity constraints. If

there are more applicants than space permits, a student will be somewhat randomly

selected to attend the school (I describe this process with two scenarios below).

Additionally, schools must have a demographic make-up of at least fifteen percent,

but no more than fifty percent, black students. Where the school lies between those

racial guidelines is up to the principal of the school. The applications are divided

into four groups: black males, black females, white males, and white females. A

computer randomly sorts each list. The principal then selects a number of students

from each list that satisfies the racial guidelines and the capacity constraints. The

application data are discarded each year after the assignment process is completed

and thus are not available to me. What the reader should take away from this

process is that applications to schools are not merit-based. Additionally, a student

has the best chance of getting a spot at a school if he or she lives in the catchment

area of that school.

To illustrate this point, I describe two scenarios below to illustrate the ways

in which students may be assigned to a school such that the racial and capacity

constraints are satisfied.

Scenario 1

Suppose there are 100 seats available at new school A. 200 students apply.

Seventy-five of these students are from school A’s assignment area. Of these students

25 are black, and 50 are white. Of the 125 students who applied from outside A’s

assignment area, 55 are black, and 70 are white. School A will admit all 75 of the
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students from its assignment area. It is then up to the principal to fill the remaining

spots. The students who applied from outside A’s assignment area will be divided

into four groups: white males, white females, black males, and black females. A

computer will place the names within each group in a random order. The principal

will then choose how many students to accept from each group. While he or she

may choose the race and gender of the remaining students, the principal must start

at the top of each list and work down, such that selection within each list is random.

Even in this simple case, the eventual outcome is uncertain. Because the

school is already 25% black, the principal could potentially choose only white stu-

dents to fill the remaining seats. Following the same argument, the principal could

also choose only black students without violating the racial guidelines. According

to anecdotal evidence, the choice is up to the preferences of the principal and the

needs of other schools within the cluster. If several other schools have too many

black applicants, for instance, then it is likely that school A will accept more black

students and send the remaining white applicants to other schools in the cluster.

See the next scenario for this possibility.

Scenario 2

Suppose there are 100 seats available at new school B. Two-hundred students

apply. 150 of these students are from school B’s assignment area. Of these students

125 are black, and 25 are white. Of the 50 students who applied from outside B’s

assignment area, 40 are black, and 10 are white. The school must be no more than

50% black. Therefore, all white applicants will be accepted. But this brings the

school to only 35% white. Additional white applicants must come from students
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who listed the school as second, third, or fourth place, or from students who did not

send in a choice application at all. Relating this scenario to scenario 1, some white

students who listed school A as a first choice may be sent to school B in order to

increase the percentage or white students at school B.

Additional scenarios could be discussed, but one can already see that the

assignment process has the potential to be complex. The racial guidelines, combined

with priority to local residents, makes assignment and application strategic in an

unpredictable way to the econometrician. Because my unit of observation is the

house, I do not know the race of any household members, nor do I know how they

ranked schools in the application process. What I do know is that a student has the

best chance of getting a spot at a school if he or she lives in the catchment area of

that school. However, because of the choice options, parents do not need to live near

their preferred school in order to send their child to that school. For this reason, I

hypothesize that the prices for houses near the best schools will not be bid as high

as they would have been in the absence of school choice.

In the next section, I describe my conceptual framework for examining the

relationship between local and/or neighborhood school quality and house prices.

2.3 Conceptual Framework

There is a large body of research examining the relationship between house

prices and school quality. My analysis is based on the hedonic price model developed

by Rosen (1974). In this model, the price of a house can be described as a function

of the house’s observable characteristics (number of bedrooms, square footage, etc.)

and its neighborhood characteristics. For instance, if a house is located near a

very nice public park, we might expect to see a higher price for that house, which
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would reflect the homeowner’s value of the park. If we assume that the house and

neighborhood characteristics enter the equation linearly, we can write this model as:

ln(price)i,n = β0 +Xiβ1 +Nnβ2 + εi,n, (2.1)

where Xi is a vector of house characteristics, which includes school quality, and Nn is

a vector of neighborhood characteristics. The coefficients on these vectors describe

a household’s marginal willingness-to-pay for each characteristic.

Given that we expect that parents prefer higher quality education for their

children, we would expect that houses located in the catchment area of better schools

to fetch a higher price than houses located in the catchment area of lesser quality

schools. The literature has found that when school quality is measured using test

scores, houses in the catchment area of schools with higher test scores sell for higher

prices (Black (1999); Downes and Zabel (2002); Fack and Grenet (2010); Kane et al.

(2006)). Black (1999) and Fack and Grenet (2010) find that a five percent increase

in test scores leads to an increase of house prices of between 1.5 and 2.5 percent.

The smallest estimates in the literature come from Bayer et al. (2007) who find that

a five percent increase in school quality leads to a one percent increase in house

prices.

Parents in Jefferson County may not be willing to pay as much of a premium

for living in the catchment area of a good school as they would have paid in the ab-

sence of school choice. Machin and Salvanes (2010) utilize a difference-in-differences

strategy before and after the implementation of school choice reform in Norway to

identify the impact of school quality on house prices. They find that the house price

premium for local school quality falls by at least fifty percent when school choice is

introduced.
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Second, parents will now care about characteristics of many schools, not just

the local school. Without school choice, parents need not care about the quality

of other schools in the district. With school choice, there is a non-zero probability

that a child may attend a school other than the local school. Then, even if the

local school is the parents’ preferred school, parents may pay more to have better

alternatives to the local school as insurance against the possibility that their child

may not be given a spot in the local school.

The relationship between house prices and non-local school characteristics is

relatively understudied. (Machin and Salvanes (2010), Hastings et al. (2005), and

Reback (2005) are the studies that I am aware of.) For this reason, it is not obvious

what parents’ preferences are in this case. Parents may prefer to live in a cluster

where the average school quality is higher. They may prefer a cluster where one or

two schools are very good, and not care about the quality of the other schools. They

may be very risk averse and care about the quality of the worst possible school that

their child could attend.

Alternatively, parents may care more about the distance from their house

to their child’s school. Hastings et al. (2005) examine the implementation of an

intra-district school choice program in Mecklenburg County, North Carolina. Using

parents’ school choice applications, they find that parents value both quality and

proximity highly. There is reason to believe that parents in Jefferson County may

value proximity highly. According to records kept by JCPS, it is not uncommon

for children to travel more than an hour each way between their house and their

school. This is due to students attending cluster schools that is far from their

homes. Knowing this and knowing the results from Hastings et al. (2005), I expect

that parents may pay more to live in a cluster where the available schools are close

by. I use a variety of independent variables in my analysis to investigate parents’
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preferences with regard to the cluster schools.

2.4 Data

The data for this chapter come from two primary sources. House price data

were obtained from the Jefferson County Property Value Administrator. These

data contain information about all residential arms-length sales in Jefferson County

between 2000 and 2006. For each house, I know its street address, sale date, year

built, number of stories, square footage, acreage, number of bathrooms, whether it

has a basement, whether it has a garage, and whether it has central air-conditioning.

Table 2.1 displays summary statistics for houses in my sample. Column 1

contains all houses from all years. Column 2 restricts the sample to houses that are

within 2000 feet of a school area boundary, which is a standard distance used in the

literature. Column 3 uses houses that are on the “high” side of a boundary. By

high, I mean that the test score of the house’s local school is higher than the test

score of the local school on the opposide side of the boundary. Similary, column 4

uses houses that are on the “low” side of a boundary.

Moving from the full sample to the sample of houses near the boundary, one

will notice that the overall quality of houses diminishes. Houses are slightly smaller,

are on smaller lots, have few stories, etc. However, these differences are not statisti-

cally significant. The decline in quality is due to the fact that the density of housing

is much lower in rural areas. I lose more of my sample in the rural areas than in the

inner-city, poorer areas. This drives the average quality down.

When comparing houses on the high side of a boundary to houses on the

low side of a boundary, prices are higher on the high side. However, other house

characteristics are similar on both sides of the boundary.
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School information was obtained from the Kentucky Department of Education

school report cards and JCPS Data Books. For each school, I have information about

its test scores, student demographics, attendance and disciplinary records, as well

as teacher characteristics. I primarily make use of the test score information.

As is common in the literature, I use test scores as my measure of school

quality. Each year, in January or February, JCPS publishes a report card for each

school. During the time period I study, these report cards were mailed annually to

every student’s home. The report card displays the results from several Kentucky

testing measures, a national test, and other school characteristics such as teachers’

education levels and attendance rates. In addition to these report cards, JCPS

publishes an annual Data Book, which contains information about all schools. One

can view the test scores of all schools in one central location. Anecdoctal evidence

suggests that real estate agents utilize both the report cards and the Data Book when

working with a home buyer. Thus, school quality measures are easily available and

are provided to parents searching for homes.

My primary measure of school quality is the school’s average percentile ranking

on the nationally standardized Comprehensive Test of Basic Skills (CTBS/5). All

third graders in KY took the CTBS5 in each year in my sample. The schools report

scores in reading, math, and language arts. My regressions primarly make use of the

composite score, since results from individual tests are not qualitatively different.9

Table 2.2 displays school summary statistics. Columns 1 through 12 correspond to

cluster 1 through 12. Column 13 contains the summary statistics for all clusters.

There is some variation in the average quality of the clusters; however, most

9While test scores for Kentucky tests are also available, I choose not to use these scores for
a variety of reasons. First, the test itself has changed many times. Second, there is anecdotal
evidence that many individuals do not support the Kentucky testing system. Third, the tests
consist primarily of open-response type questions, which makes the scoring system subjective and
also makes year-to-year comparisons quite difficult.
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clusters are close to the mean test score percentile of around fifty-one percent. The

last row shows the average across all years of the test score of the best school in

the cluster. There is more variation in the test score of the best school than in

the average of all cluster schools. On average, schools with higher test scores tend

to have teachers with more years of experience and more teachers with master’s

degrees. Schools with higher test scores also have lower per-pupil spending. The

school tax rate in Jefferson County is a flat rate throughout the county, and the

money from the entire county is pooled before being distributed to each school.

JCPS tends to increase spending in schools that are not performing as well.

I combine school and house data using ArcGIS, a geographic information sys-

tem for working with maps and geographic information. JCPS provided me with

the exact boundaries for each elementary school area. Additionally, I have the ex-

act street address for every house. By geocoding the house addresses, I am able

to assign each house to a residential-area school and also to a cluster. I can also

calculate the distance from each house to every school in its cluster.

I make further use of ArcGIS when restricting my sample to houses near bound-

aries. I am able to calculate the distance from each house to its nearest boundary,

where a boundary is a segment of a total school area boundary that separates only

two schools. I then draw a buffer zone 2000 feet around each boundary.10 I se-

lect only houses within this buffer zone for my analysis. Houses that are near two

boundaries are assigned to the closest boundary.11 Houses near boundaries that are

geographic dividers, such as rivers or parks, are dropped from the sample.

102000 feet is the standard distance used in the literature. I also do the analysis using a distance
of 1000 feet. The results are qualitatively similar.

11Excluding these houses does little to affect the estimates. Because catchment areas can be
small within the city, there did not seem to be a standard way to choose a distance within which
houses would be excluded from the sample. The previous literature has also assigned houses to
their closest boundary when a house is close to two boundaries.
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2.5 Estimating the Impact of Local School Quality on House Prices

To begin, I utilize an empirical approach first used by Black (1999). This

approach has been widely used in the literature that estimates the impact of school

quality on house prices. Without boundary fixed effects, the estimating equation in

this case is

ln(price)i,s,n,t = α + βQualitys,t +Xiδ + Znγ +Ws,tφ+ λt + εi,s,n,t, (2.2)

where ln(price)i,s,n,t is the natural log of the price per square foot of house i assigned

to local school s in neighborhood n at time t, Qualitys,t is some measure of school

quality available to house i, Xi is a vector of house characteristics (number of stories,

year built, square footage, etc), Zn is a vector of neighborhood characteristics (racial

composition, percent below the poverty line, percent homeowners, etc), and Ws,t, a

vector of school characteristics (such as per-pupil spending, student-teacher ratio,

and attendance rate).

This approach will lead to biased coefficients if there are unobserved house and

neighborhood characteristics that are correlated with school quality. To reduce this

bias, Black (1999) proposed a boundary fixed effects approach (also referred to as a

boundary discontinuity approach), which I use as my baseline empirical strategy.

First, I restrict my sample to include only houses that are within 2000 feet

of a catchment-area boundary. Figure 4 displays the houses that will be selected.

Houses near the same boundary should have similar neighborhood characteristics.

A 2000 foot buffer zone is drawn around each boundary. Houses that lie within

this buffer zone are included in my sample. In addition to restricting the sample

in this way, I also estimate a full set of boundary fixed effects. The identification
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assumption is that the only difference between houses that share a boundary is the

quality of the local school and potentially also the quality of the cluster (conditional

on house characteristics). Equation 2.2 then becomes:

ln(price)i,s,b,t = α + βQualitys,t +Xiδ + θb + λt + εi,s,b,t. (2.3)

θb is a vector of boundary fixed effects, which should account for any unobserved

characteristics shared by houses on either side of a particular boundary. Notice that

neighborhood characteristics no longer need to be included, as the key assumption

for this strategy is that houses near the same boundary share the same neighborhood

characteristics. I estimate equation 2.3 for houses less than 2000 feet from a school

area boundary. Standard errors are clustered at the school level.12 I expect β to be

positive.

Before presenting the results, one should consider the possibility that test

scores are a proxy for other school characteristics. Due to the racial capacity con-

straints in schools, it is possible that test scores are a proxy for other characteristics,

such as the racial composition of a school. Alternatively, test scores might be a proxy

for student/teacher ratio or the quality of teachers. Bayer et al. (2007) show that

households prefer to self-segregate by race. Parents then may also prefer to send

their child to a school where he or she is in the majority race. I do not directly test

for this, but it is a possibility.

Table 2.3 presents results using the local school’s CTBS total score as the

independent variable. Column 1 displays the results from estimating equation 2.2

without any controls, a baseline OLS regression of price on test scores. The co-

12One could also cluster at the boundary level, or the cluster level. It is not obvious what the
appropriate level of clustering is. The standard procedure in the literature is to cluster at the
school level.
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efficient on the test score implies that a five percent increase in local school test

score is associated with a two percent increase in house prices. Column 2 presents

the results from estimating equation 1 with controls for house characteristics and

year effects, the standard hedonic model. Though the estimates from Columns 1

and 2 are biased, it is important to note that both coefficients are positive and

demonstrate a strong correlation between house prices and local school test scores.

Column 3 presents results from estimating equation 2.2 on the sample of houses

that are less than 2000 feet from a school area boundary. This column shows that

the later results are not driven by the restricted sample. Column 4 displays my

preferred estimation results. Here, I estimate equation 2.3, the boundary fixed

effects approach. The coefficient on school quality is much smaller than in previous

columns. Comparing column 3 to column 4, the magnitude of the coefficient falls

by about eighty percent. This drop is consistent with the literature that uses a

boundary fixed effects approach. Other researchers have found that the addition of

boundary fixed effects causes the coefficient on school quality to fall by at least fifty

percent (Bayer et al., 2007; Fack and Grenet, 2010).

Estimates obtained when the sample is restricted to houses less than 1000

feet from a catchment area boundary are qualitatively similar and are presented in

Appendix Table 2.1.

A comparison of the magnitudes of my coefficient estimates to those from the

literature shows that these estimates are much smaller than those from the literature

that examines the responsiveness of house prices to school quality in the absence

of school choice. Black (1999) found that parents are willing to pay two and a half

percent more in house prices for a five percent increase in test scores. Based on

a mean composite test score percentile of fifty percent, a five percent increase in

the local school’s composite test scores scores in Jefferson County would lead to
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between two and three tenths of a percent increase in house prices. These estimates

are approximately ten times smaller than those found previously in the literature in

settings with no school choice. This is a substantial difference.

This difference is consistent with the existing research that focuses on districts

with schools choice. Reback (2005) examines the impact of the adoption of several

school choice programs on house prices in Minnesota. He finds that properties

appreciate significantly in school districts that students may transfer out of. In

school districts that accept transfers, property values declined. Machin and Salvanes

(2010) find that the house price premium for local school quality falls by at least

fifty percent when school choice is introduced in a school district in Norway. Thus,

both this chapter and previous research suggest that the presence of school choice

doesn’t just slightly diminish the effect of school test scores on house prices. The

presence of school choice substantially mitigates the impact of local school quality

on house prices. In Jefferson County, the impact of school test scores on house prices

is very small.

These results could alternatively imply that preferences in Jefferson County

are dramatically different from preferences in other school districts. Or, it might

be the case that school quality is being mismeasured, because I have included only

local school test scores in the analysis so far. This possibility leads to a natural

follow-up. Are other schools’ test scores capitalized into house prices instead of the

local school’s test score?

2.6 Estimating the Impact of Cluster School Quality on House Prices

In the previous section, I found that house prices respond less to local school

quality in a district with school choice than they do in the absence of school choice.
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I expect that characteristics of other available schools will also be capitalized into

house prices. However, it is not obvious which characteristics of available schools

will be important to parents and students. Will the quality of the closest schools

be capitalized into house prices? Or will it be the quality of the best schools? The

distance to the best schools?

Hastings et al. (2005) examine the implementation of an intra-district school

choice program in Mecklenburg County, North Carolina. Using parents’ school

choice applications, they find that parents value both quality and proximity highly.

Based on these findings, I also examine the extent to which parents value cluster

school quality and proximity to cluster schools in JCPS. To estimate the relationship

between house prices and these characteristics, I explore the relationship between

house prices and several different measures of cluster school characteristics.

First, I regress house prices on a measure of cluster school quality. The first

measure is simply an average of the CTBS composite scores of the top three highest

scoring schools in one’s cluster13:

(CTBS1 + CTBS2 + CTBS3)

3

For the second measure, I include each of the top three cluster schools’ test scores

separately to allow more flexibility in the estimation. Third, I measure cluster

quality as a weighted average of the CTBS scores of the top three highest scoring

schools in one’s cluster, where the weights are the inverse distance from the house

to each school:

3∑

i=1

CTBSi ∗ (
1

Distance to Si

)

3∑

i=1

1

Distance to Si

13The local school is included in the set of available cluster schools.
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I expect the coefficient on each measure of cluster quality to be positive.

Table 2.4 presents results from regressing house prices on the three measures

of cluster school quality. All columns include estimates of year effects and controls

for house characteristics. The sample is restricted to houses less than 2000 feet from

a catchment-area boundary. Columns 1-3 do not include boundary fixed effects.

Columns 4-6 do include boundary fixed effects.

As expected, there is a positive relationship between average cluster school

quality and house prices when fixed effects are not estimated. When fixed effects

are included, the magnitudes of the coefficients drop substantially and are sometimes

the wrong sign. When each school’s test scores enter into the regression separately,

the coefficients on the top two schools’ scores are very small, and the coefficient

on the first and second best schools are actually negative. Most of the effect is

captured in the third best school’s test score. This suggests that parents may care

about the worst possible schools that their child could attend. This would make

sense in Jefferson County, as clusters seem to be designed such that each cluster has

at least one of the district’s better schools.14 Thus, every cluster has at least one or

two good options. Where the clusters begin to differ is in how many good schools

they have and how many bad schools they have. Recall that parents may rank up

to four schools on their application. If parents are worried that their child may end

up attending their third choice school, it makes sense for the quality of the third

best school to be capitalized into house prices.

Regarding the negative coefficient on the first and second best schools, it is

not clear what is driving this result. Without boundary fixed effects, the coefficients

are positive. It is not until boundary fixed effects are estimated that the coefficient

14Technically, the clusters are designed to have several schools with different racial compositions.
Because the racial composition is correlated with test score, this effectively means that each cluster
has schools with varying levels of test scores.
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becomes negative.

Comparing the magnitude of the coefficient on cluster schools’ test scores to

the coefficient on local school test score, the results are inconclusive as to whether

house prices are more responsive to the quality of cluster schools or local schools.

Without boundary fixed effects, the coefficient on the third best cluster school is

slightly higher than the coefficient on the local school test score. However, when

boundary fixed effects are included, the coefficient on local school test score is about

twice this size of the coefficient on the third best cluster school. It makes sense that

parents would pay more attention to the test scores of the local school, as this is

the school that their child is most likely to attend.

With regard to boundary fixed effects, recall that we know that the coefficient

on local school quality is biased without the inclusion of boundary fixed effects,

because it is positively correlated with unobserved neighborhood characteristics. In

Table 2.3, I included a full set of boundary fixed effects to account for this bias.

When the current specification is estimated with a full set of controls and boundary

fixed effects, the coefficient on cluster quality becomes very small, occasionally the

wrong sign, and of less statistical significance. This is true for all measures of cluster

quality. It is unclear exactly what is driving these results. It could be that the

fixed effects are exacerbating measurement error. It may be that cluster quality is

unimportant or has unexpected effects on house prices. Furthermore, it is plausible

that the boundary fixed effects approach is inappropriate and/or insufficient in this

context.15

15It is not obvious how cluster school quality is correlated with unobserved neighborhood quality.
Because cluster schools are not necessarily near one’s house, there need not be a positive correlation
between one’s own neighborhood quality and cluster school test scores. In fact, it could be that
because better schools are located in better neighborhoods, the impact of a high-scoring cluster
school’s neighborhood on house prices would be negative, as one’s own neighborhood becomes
relatively less desirable. It is unclear how to account for this bias, and it is also likely that
boundary fixed effects do not properly overcome this bias.
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Even though I cannot definitively determine the extent to which cluster school

quality is capitalized into house prices, as the coefficients vary in both magnitude

and sign, the results provide additional support for the estimate of local school

quality’s impact on house prices. The estimate of the impact of local school quality

on house prices is similar to what was estimated in Table 2.3 without boundary

fixed effects. Estimates with the boundary fixed effects are similar to column 4 of

Table 2.3.

2.7 Estimating the Importance of Proximity

Next, I estimate the importance of proximity. First, I regress house prices

on the test scores of the closest cluster schools. Second, I regress house prices on

both test scores and the distance from one’s house to available schools. I estimate

variants of the following equation:

ln(price)i,s,b,t = α + β1Qs,t + β2Distancei,s + β3(Qs,t ×Distancei,s)+

3∑

c=1

[φ1,cQc,t + φ2,cDistancei,c + φ3,c(Qc,t ×Distancei,c)] +Xiδ + θb + λt + εi,s,b,t,

(2.4)

where Distancei,s is the distance (in thousands of feet) from house i to the local

school s, and Distancei,c is the distance from house i to cluster school c.

Table 2.5 presents the results from regressing house prices on the test scores of

While approximately thirty percent of students attend a school that is not their local school,
those students are fairly evenly distributed amongst the cluster schools. On average, five percent
of students from a given school area attend the top cluster school. Whether this is because parents
did not choose this school or because the school was oversubscribed, I cannot know. Access to the
school choice applications would be necessary to conduct further investigations of the relationship
between cluster school quality and house prices. Unfortunately, those records are not available
from the school district.
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the three cluster schools closest to each house. Distance measures are not included

in this preliminary regression. The magnitude of the coefficient on test scores of

cluster schools is positive and statistically significant, except for the third closest

cluster school.

One will also notice that when test scores of each school enter the regression

equation separately, the test score of the local school (which is also typically the

closest school) has the largest impact on house prices. As schools become progres-

sively farther away, the magnitude of the coefficients declines, indicating that house

prices become less responsive to changes in the school’s test scores as the available

school gets farther away. This suggests that both test scores and the proximity of

one’s available schools are important, confirming Hastings et al. (2005)’s result that

proximity is an important decision when parents apply to schools.

In the next two tables, I estimate the full specification of equation (2.4). I

will estimate this equation twice. The first time, I rank the cluster schools by test

scores, meaning cluster school 1 will be the highest scoring cluster school, and cluster

schools 2 and 3 will be the next two highest scoring cluster schools. The second time,

I rank the cluster schools by proximity, meaning cluster school 1 will be the closest

cluster school, and cluster schools 2 and 3 will be the next two closest schools.

Table 2.6 show results from estimating the impact of distance on house prices

using the highest scoring cluster schools. For local schools, the coefficient on dis-

tance is negative when the interaction term is not included, implying that as you

move farther from the school, house prices decline. When the interaction between

test score and distance is included, the coefficient on distance is positive, and the

coefficient on the interaction is negative. Though the coefficients are not statisti-

cally significant, the signs are as expected. The coefficients imply that when test

scores are low, house prices decrease as one moves closer to the school. But when
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test scores are high, house prices increase as one moves closer to the school.

For the cluster schools, the results are more ambiguous. The coefficients on

cluster distances and the interactions are very small, statistically insignificant and

mostly the wrong sign. Given that the system of school choice in Jefferson County

is very complicated, it is not surprising that the results are unclear. Because many

cluster are, on average, very similar, and because the distance between schools varies

dramatically both within and across clusters, it is difficult to infer the degree to

which parents value distance from and quality of cluster schools. To further explore

the importance of proximity, I next estimate a similar relationship; however, the

cluster schools will now be ranked by proximity, rather than by test scores.

The columns of Table 2.7 estimate the same relationships as columns 3-6 of

Table 2.6, except that the cluster schools are ranked by their distance from the

house of interest, instead of by test score. All coefficients have a higher statistical

significance than in Table 2.7. But, again, the magnitudes and the signs of the

coefficients are still occassionally the wrong sign.

In general, Tables 2.6 and 2.7 suggest that, for cluster schools, distance is

slightly more important than the quality of the school. This makes sense for Jefferson

County. The distances between cluster schools can be large. Some parents report

that their student rides the school bus for more than one hour each way, and some

students must ride more than one bus to get to school. With such large distances

to travel, it is not surprising that parents place a lot of weight on how close they

might be to potential schools.

Beyond this preference for proximity, the results also suggest that determining

the preferences of parents living in Jefferson County is not a simple matter. Because

of the non-contiguity of clusters, parents must carefully examine their location with

regard to a number of factors: the possibile distances from potential schools to their
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house, the potential quality of potential schools, and the likelihood of acceptance at

each school.

Though Tables 2.6 and 2.7 provide less clear results, Tables 2.4 and 2.5 suggest

that parents care about both proximity and the test scores of potential schools. In

the next section, I use these results to develop a strategy to test the impact of varied

degrees of school choice on the relationship between house prices and school quality.

2.8 Estimating the Impact of Access to School Choice

To directly estimate the impact of school choice on the relationship between

house prices and school quality, I make use of parents’ preferences for particular

cluster school characteristics and exploit the design of the cluster system in JCPS.

Recall that most clusters in JCPS are non-contiguous, meaning that school catch-

ment areas generally do not share a catchment area boundary with other schools

in the same cluster. Because of this non-contiguity, some houses are far away from

the available cluster schools and other houses are relatively close to their available

cluster schools. Additionally, there are differences in the quality of nearby or far

away cluster schools.

Because of these differences, the accessibility of choice varies throughout both

the school district and one’s cluster. To illustrate this point, consider two ficticious

clusters, A and Z. Cluster A contains schools A, B, C, and D. Cluster Z contains

schools W, X, Y, and Z. Suppose the average test score in each cluster is the same.

Also suppose that school A and school Z have the same test score. Now, consider two

families, one that lives in school A’s catchment area and one that lives in school Z’s

catchment area. Based on test scores, the clusters are essentially identical. However,

suppose that schools A, B, C, and D are all less than five miles from the house in
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school A’s catchment area. And suppose that schools W, X, and Y are all more than

fifteen miles from the house in school Z’s catchment area. Even though both houses

have the option of choosing a school other than their local school, that option is

more accessible to the family in school A’s catchment area because the house is very

close to all of the available schools.

The previous section revealed several results regarding parents’ preferences.

First, parents care about proximity. Second, parents care about the test scores of

cluster schools. Third, parents may care about the worst possible outcome for their

child and thus care about the marginal cluster school that is ranked near last but

could still be attended. Based on these observations, I make several assumptions

about the accessibility of choice. I claim that when a house is very close to its cluster

schools, choice is very accessible, and when a house is very far away from its cluster

schools, choice is much less accessible. I also claim that when a house is very close

to the best cluster schools, choice is more accessible compared to houses far from

the best cluster schools.

Based on these assumptions, I can now test whether house prices are more or

less responsive to changes in school quality when there is more or less school choice.

I expect that the coefficient on local school test scores will be higher for houses

in areas where choice is less accessible compared to houses in areas where choice

in more accessible. I expect that the coefficients on cluster school test scores will

be lower in areas where choice is less accessible comapred to houses in areas where

choice is more accessible.

I test whether house prices are more or less responsive to changes in school

quality when there is more or less school choice by dividing my sample based on

the accessibility of choice and then estimating the relationship between house prices

and school quality for each group in the sample. To do this, I first construct several
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measures of school choice accessibility. Below, I describe each measure of accessi-

bility. For each measure, choice is most accessible when the value of the measure is

smallest.

1. The average of the distances between a house and its three closest cluster schools.

2. The average of the distances between a house and all cluster schools.

3. The distance between a house and the best cluster school.

4. The average distance between a house and the top three cluster schools.

After constructing the measures, I divide the sample into quartiles of each

measure, such that the lowest quartile has the most choice accessibility and the

highest quartile has the least choice accessibility. For each measure, I then estimate

a new regression equation, where I interact the indicators of choice accessbility

quartile with the school quality variables to test whether houses are more or less

responsive to changes in school quality when the accessibility of choice is different.

The estimating equation is

ln(price)i,s,b,t = α +
4∑

q=1

[βq(Qualitys,t × Qq)] + Xiδ + λt + εi,s,b,t, (2.5)

where Qualitys,t is the test score of the local school and Qq are dummy variables

indicating that the house belongs to the qth quartile of choice accessibility. Qq

can correspond to any of the four accessibility measures described previously. Each

dummy variable is also included in the estimating equation. Equation 2.5 will also

be modified to include measures of cluster quality interacted with choice quartile:
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ln(price)i,s,b,t = α +
4∑

q=1

[βq(Qualitys,t ×Qq) + γq(Qualityc,t ×Qq)] +Xiδ + λt + εi,s,b,t,

(2.6)

where Qualityc,t is first the weighted average of top three cluster schools’ test

scores and then the average of the closest three schools’ test scores.

Tables 2.8 - 2.11 show the results from estimating equation 2.6. Each table

uses a different measure of choice accessibility to divide the sample into quartiles.

Each set of rows uses a different measure of cluster school availability to divide

the sample into quartiles. Column 1 of each table estimates the effect of the local

schools’ test score interacted with each quartile. In columns 2 though 5, cluster

schools’ test scores interacted with quartile are also included. In all columns, I also

include controls for each quartile, year effects, and house characteristics. Though I

have not been displaying the results that do not include boundary fixed effects, I do

include these estimates in the following tables. I do this because the results change

so dramatically with the inclusion of boundary fixed effects that it is important

to see this change. I will first discuss the estimated coefficients on local school test

scores, and then I will discuss the estimated coefficients on cluster school test scores.

2.8.1 Local School Quality Effects

In table 2.8, the school choice accessibility index is measured as the average

distance to all cluster schools. This means that houses in quartile 1 are, on average,

closest to their cluster schools. Houses in quartile 4 are, on average, farthest from

their cluster schools. The impact of local school quality on house prices is largest

for households that are, on average, farther from cluster schools. This makes sense;
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if one is far from the available cluster schools, then we would expect parents to care

more about the local school, which is nearby. In columns 2 and 3, the coefficient on

local school quality for houses far from cluster schools is three to four times higher

than this coefficient for houses close to cluster schools. However, one should not

rely on the estimates from columns 2 and 4 because they do not use boundary fixed

effects. The pattern of the coefficients is still present in columns 1, 3, and 5, though

the coefficients are not as dramatically different.

In table 2.9, the school choice accessibility index is measured as the average

distance to the closest three cluster schools. I chose three schools because parents

are allowed to rank up to four schools. These results echo the results of table 2.8.

Even with fixed effects included, the effect of local school test scores on house prices

is largest for houses that are farthest from the closest three cluster schools.

Tables 2.9 and 2.10 incorporate both distance and quality into the choice

accessibility index. In table 2.9, the index is measured as the average distance to

the highest scoring three cluster schools. As in tables 2.8 and 2.9, one can see that

the largest effects of local school test scores on house prices are found for houses

farthest from the best cluster schools. This result is even more pronounced than

in tables 2.8 and 2.9. In table 2.10, the choice index is distance to the single best

school in the cluster. Again, when a house is far from the high scoring cluster school,

house prices are more responsive to changes in local school test scores.

2.8.2 Cluster School Quality Effects

For all measures of school choice accessibility, houses that have less access

to choice because they are farther away from the available schools are the most

responsive to local school quality. Houses that have the most access to choice are
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not as responsive to changes in their local school quality.

The results are not so clear-cut with respect to cluster school test scores. When

examining the impact of cluster school test scores on house prices, an interesting

pattern emerges that is present is all of tables 2.8 through 2.11. Without fixed

effects, house prices are much more responsive to cluster school test scores when

they are very close to the cluster schools, compared to when houses are far from

the cluster schools. However, when fixed effects are estimated, this pattern usually

disappears, and occasionally the reverse effect emerges, such that house prices are

most responsive to cluster school test scores when they are farthest from cluster

schools. This is true whether cluster test scores are measured as simply the average

test score of all cluster schools or a weighted average of test scores, where the weights

are the distance from each house to its cluster schools.

Theoretically, it is difficult to know what we expect to happen with respect

to cluster school test scores. The most obvious expectation is that when choice is

less accessible, parents care less about the cluster schools and more about the local

school. However, it could be the case that when choice is more accessible, parents

care less, in general, about the quality of each school. If they are close to many

schools, then one of the desirable factors of a school has been met - its proximity;

quality may then play less of a role in choosing a school.

As before, there are several difficulties arise when estimating the impact of

cluster “quality” on house prices. The question of what measure of quality to use is

not easily answered. Do parents see the quality as the average test score of the cluster

schools? Do they look at the best test score? Do they look at some combination

of test scores and distance to one’s house? The results from the previous section

indicated that parents care about both test scores and proximity. However, the

initial estimates of the relationship between cluster school test scores and proximity
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are not precise enough to let one know for sure exactly what measures of cluster

“quality” are important. This is most certainly and area where more research can

and needs to be done.

2.9 Extensions and Robustness Checks

My primary results support the hypothesis that school choice mitigates the

responsiveness of house prices to changes in local school quality. In this section, I

extend my analysis to show that my results are robust to different methodologies.

First, I examine whether my identification assumption is likely to hold.

2.9.1 Exploring Identification

My identification strategy rests on the assumption that houses that are geo-

graphically close have similar unobservable characteristics. Ultimately, my identi-

fication strategy cannot be tested. However, I can test the extent to which houses

close to a boundary have more similar observable characteristics than houses farther

away from a boundary.

What I want to test is whether houses located in a better school’s area are

observably better houses in terms of square footage, number of stories, etc. In

particular, for houses that are near a boundary and in a better school’s area, are

these houses better than houses that are near the same boundary but in the lower-

scoring school’s area? To answer this question, I first assign each house to either

the “low” or the “high” side of the boundary. A house is on the high side if its

residential-area school has higher test scores than the school on the opposite side of

the boundary16.

16I compare schools’ CTBS total scores to determine high or low status.
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I then regress each house characteristic on boundary fixed effects and a set of

distance dummy variables. Each distance dummy variable measures the distance

from the house to the boundary, in .05 mile increments. I include only houses for

which the gap between low and high is at least as large as the median gap.

Figure 5 presents the results in a series of graphs. The graphs are constructed

by plotting the coefficients on the distance dummy variables from the above regres-

sions. A negative distance means that the house is on the low side of the boundary.

The first panel presents the results for CTBS reading percentile. By construc-

tion, there should be a jump at the boundary; this jump is indeed pronounced.

The next panel presents the results for the natural log of price (inflation adjusted).

Interestingly, there is not a large jump in price at the boundary. However, prices

are on average higher on the high side of the boundary.

The remaining graphs display the coefficients on other characteristics. Notice

that the distance from the boundary is allowed to reach up to one mile. The relevant

area for my identification strategy is to compare the coefficients less than 2000 feet

(or approximately one half mile) away from the boundary. We expect to see more

of a trend as the distance gets larger.

The coefficient on acreage is very stable across boundaries. For square footage,

houses tend to to have slightly higher square footage on the high side of the bound-

ary. Stories and home age are rather variable but they appear to be reasonably

continuous on either side of the boundary.

The statistical tests for the presence of discontinuities at the boundary are

presented in Table 2.12. The tests reinforce what the graphs suggest. Test scores

and house prices change discontinuously at catchment area boundaries. However,

other home characteristics change continuously. This finding lends support to my

identification strategy. Because there are no sharp discontinuities in observable char-
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acteristics when one moves from the high side of the boundary to the low side, this

suggests that there will not be discontinuities in unobservables across the boundary.

2.9.2 Fack and Grenet (2010)

An extension of Black’s strategy was used by Fack and Grenet (2010) to es-

timate the relationship between house prices and school quality for middle school

students in Paris, France. This approach improves upon the boundary discontinuity

approach in some ways. One problem with the boundary discontinuity approach

is its inability to deal with houses that are close to the same boundary but still

geographically far apart. For instance, I restrict my sample to houses that are 2000

feet from a school assignment boundary. However, if the boundary is long, say 5,000

feet, then two houses on opposite sides of the boundary and opposite ends of the

boundary could be much more than 5,000 feet apart. In this case, the identifica-

tion assumption of the boundary fixed effect method may fail. In response to this

issue, Fack and Grenet (2010) proposed an extension of Black’s strategy. As I show,

the method used by Fack and Grenet also introduces a lot of noise into the mea-

surements. Because of this shortcoming, it is not ideal for this context, where the

estimates are already very small. Additionally, Fack and Grenet do not prove that

their estimates are consistent or that the standard errors are correct. Because of

this, one should be cautious in interpreting the results from using their method.

The method works as follows. For each house, I construct a counterfactual

sale price, which is based on home sales that occurred near the home of interest but

on the opposite side of the boundary. The difference in price between the sale of

interest and the counterfactual sale is the dependent variable.

To be more specific, the counterfactual price is a weighted average of the sale
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price of houses located within a specified radius (2000 feet) of the house of interest,

but on the opposite side of the school boundary. The weights are the inverse of the

distance from the house of interest to each house included in the counterfactual sale

price calculation. Hence, the counterfactual price is calculated as:

ln pricei′,s′,b,t =
J∑

j=1

1

di,j∑J

j=1

1

di,j

ln pricej,s′,b,t, (2.7)

where di,j is the distance from house i, the house of interest, to house j on the

opposite side of the boundary. Figure 6 compares the process for selecting houses

for this procedure compared to the boundary fixed affects approach. With this

method, I draw a circle of radius 2000 feet around a house that is within 2000 feet

of the boundary. The houses that fall into this circle and are on the opposite side

of the boundary will be used to construct the counterfactual sale.

The regression equation is then as follows:

ln pricei,s,b,t−ln pricei′,s′,b,t = β(Qualitys,t−Qualitys′,t)+(Xi−Xi′)δ+(εi,s,t−εi′,s′,t)
17

(2.8)

I estimate this equation using OLS. My identifying assumption is that neigh-

borhood characteristics change continuously over space, while school quality changes

discontinuously. Standard errors are clustered at the school level.

The results of this procedure are presented in Table 2.13. Column 1 displays

the coefficient estimates from estimating equation (6) without control variables.

Column 2 includes these controls. One can compare column 2 to the estimates in

column 4 of Table 2.3. The results are very similar. The coefficient estimates from

17I contruct counterfactual house characteristics the same way that I construct counterfactual
sales. This differs from Fack and Grenet, who use regression-adjusted house prices to construct
the counterfactual house prices. This eliminates the need for house characteristics in the main
estimating equation. However, it introduces more measurement error.
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the current method are slightly larger than those from the boundary fixed effects

approach. Columns 3 and 4 include estimates of the effect of cluster school quality

on house prices. The estimates are slightly smaller than those obtained from the

boundary fixed effects approach, but they are qualitatively similar.

2.9.3 Other Extensions

As an additional robustness check, I utilize the approach of Bayer, Ferreira,

and McMillan (2007). They show that the inclusion of both boundary fixed effects

and neighborhood characteristics drives the coefficient on local school quality down

even further. Though they are ultimately able to make use of restricted Census data

in much of their analysis, they also estimate a boundary fixed effects regression with

Census block-group level neighborhood characteristics. The characteristics used are

percent of block group that is black, percent of block group with at least a college

degree, and the average block group income.

There are 556 Census block groups in Jefferson County. I assign a house

to a block group by matching the geocoded house addresses to Census shapefiles.

There will naturally be some measurement error in the neighborhood characteristics.

Sometimes houses that share a boundary will be in the same block group. Other

times they will be in different block groups. There may be several block groups per

boundary. However, I follow Bayer et al. (2007) as closely as possible and compare

my results.

The results are presented in Table 2.14. One of the findings of Bayer et al.

is that the inclusion of neighborhood characteristics in addition to boundary fixed

effects causes the estimate of the house price premium for school quality to fall

by about fifty percent. Column 2 presents my results with boundary fixed effects
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but without neighborhood characteristics. Column 4 presents results with both

boundary fixed effects and neighborhood characteristics. Consistent with Bayer et.

al., the coefficient on local school quality does fall. It does not fall by fifty percent,

only by about twenty. However, this is a decline from an already small coefficient.

This finding lends more support to their conclusions that the boundary fixed effects

approach does not fully account for unobserved neighborhood characteristics. In

this research, it further supports the hypothesis that school choice mitigates the

impact of local school quality changes on house prices. With a mean test score of

fifty, a five percent increase in test scores implies an increase in house prices of less

than two-tenths of a percent.

2.10 Conclusion

In this chapter, I investigate the relationship between school quality and house

prices in the context of intradistrict school choice. I find that the estimated impact

of local school quality on house prices is much smaller than what has been estimated

in school districts without school choice. The literature has found that a five percent

increase in local school quality leads to a one to three percent increase in house prices.

I estimate that a five percent increase in the local school’s test score percentile would

lead to between one and three tenths of a percent increase in house prices.

This effect is primarily observed in houses that have the least opportunities to

exercise choice in this school district. Using the distance to cluster schools as a way

to measure school choice accessibility, I find that as the proximity to cluster schools

increases, the house price premium for local school quality declines. For houses that

are, on average, close to their cluster schools, the coefficient on local school quality

is up to four times smaller than the coefficient on local school quality for houses
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farthest from their cluster school.

Additionally, as the proximity to cluster schools increases, the house price

premium for cluster school quality increases. Together with the previous result, this

finding is consistent with previous research that finds that parents care about the

distance between their house and their child’s school.

Overall, this chapter shows that, under school choice, the impact of local school

quality on house prices is smaller. I also show that parents prefer high scoring schools

and schools that are close to their home. Further exploration using parents’ choice

applications in addition to the empirical approach used here could shed more light

on the impact of school choice on parents’ preferences.
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Table 2.1: House Summary Statistics

All <2000ft High Low
Houses From Boundary Side Side

Price $152,112 $144,547 $148,793 $140,430
(90,204) (79,820) (82,100) (77,325)

Sq. Footage 1,465 1,428 1,457 1,400
(615.7) (579.8) (595.9) (562.4)

Stories 1.323 1.320 1.324 1.316
(0.386) (0.383) (0.393) (0.373)

Acreage 0.249 0.235 0.236 0.235
(0.343) (0.259) (0.235) (0.279)

Home Age 43.38 44.24 42.93 45.52
(24.51) (24.75) (24.49) (24.93)

Assessed Value 151,653 143,403 147,811 139,129
(94,316) (84,214) (87,153) (81,037)

No. Bathrooms 1.723 1.682 1.717 1.649
(0.740) (0.718) (0.725) (0.710)

Air Conditioning 0.894 0.884 0.892 0.875
(0.308) (0.321) (0.310) (0.330)

Attached Garage 0.267 0.254 0.266 0.242
(0.442) (0.435) (0.442) (0.428)

Detached Garage 0.365 0.374 0.369 0.379
(0.482) (0.484) (0.483) (0.485)

Garage Sq. Footage 290.4 284.7 289.9 279.6
(274.7) (270.2) (270.2) (270.1)

Basement 0.623 0.615 0.621 0.610
(0.485) (0.487) (0.485) (0.488)

% of Students in Catchment
Area Attending:

Local School 0.696 0.696 0.694 0.699
(0.129) (0.133) (0.133) (0.133)

#1 School 0.0514 0.0531 0.0482 0.0578
(0.0563) (0.0568) (0.0517) (0.0609)

#2 School 0.0427 0.0435 0.0399 0.0469
(0.0499) (0.0501) (0.0461) (0.0535)

#3 School 0.0454 0.0464 0.0477 0.0452
(0.0531) (0.0535) (0.0527) (0.0543)

Distance (in 1,000’s of feet) to:
Local School 0.900 0.927 0.957 0.898

(0.618) (0.594) (0.608) (0.578)
#1 Cluster School 5.570 5.479 5.594 5.368
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(3.164) (3.155) (3.132) (3.174)
#2 Cluster School 5.482 5.377 5.325 5.428

(2.997) (2.983) (2.847) (3.109)
#3 Cluster School 5.618 5.574 5.521 5.625

(3.162) (3.176) (3.191) (3.161)
Closest Cluster School 2.366 2.327 2.288 2.364

(1.509) (1.526) (1.411) (1.628)
2nd Closest Cluster School 3.692 3.624 3.516 3.728

(1.850) (1.833) (1.692) (1.954)
3rd Closest Cluster School 5.261 5.228 5.069 5.383

(2.384) (2.378) (2.280) (2.459)

Observations 36,348 28,807 14,183 14,624
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Table 2.6: Estimates of the Importance of Proximity, Cluster Schools Ranked by Test Scores

(1) (2) (3)

Local Composite Test Score 0.00268*** 0.00330*** 0.00247***
(0.00023) (0.00048) (0.00055)

Distance to Local School -0.00331* 0.00433 0.00521
(0.00171) (0.00572) (0.00581)

Local Composite Test Score × Distance -0.00014 -0.00015
(0.00009) (0.00009)

Composite Test Score (#1 Cluster School) 0.00102**
(0.00041)

Composite Test Score (#2 Cluster School) 0.00070
(0.00075)

Composite Test Score (#3 Cluster School) 0.00025
(0.00058)

Distance to #1 Cluster School -0.00064
(0.00083)

Distance to #2 Cluster School 0.00000
(0.00079)

Distance to #3 Cluster School -0.00074
(0.00058)

Cluster Comp. Test Score × Dist. (#1 School) 0.00001
(0.00001)

Cluster Comp. Test Score × Dist. (#2 School) 0.00000
(0.00001)

Cluster Comp. Test Score × Dist. (#3 School) 0.00002
(0.00001)

(1) Clustered standard errors in parentheses

(2) *** p<0.01, ** p<0.05, * p<0.1

(3) All columns include controls for house characteristics and year effects.

(4) All columns include boundary fixed effects.

(5) Sample is restricted to houses within 2000ft of a catchment area boundary.
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Table 2.7: Estimates of the Importance of Proximity, Cluster Schools Ranked by Distance

(1) (2) (3)

Local Composite Test Score 0.00268*** 0.00330*** 0.00327***
(0.00023) (0.00048) (0.00049)

Distance to Local School -0.00331* 0.00433 0.00722
(0.00171) (0.00572) (0.00554)

Local Composite Test Score × Distance -0.00014 -0.00019**
(0.00009) (0.00009)

Composite Test Score 0.00129***
(Closest Cluster School) (0.00040)

Composite Test Score 0.00145***
(2nd Closest Cluster School) (0.00050)

Composite Test Score -0.00188***
(3rd Closest Cluster School) (0.00056)

Distance to Closest Cluster School -0.00025
(0.00169)

Distance to 2nd Closest Cluster School 0.00147
(0.00151)

Distance to 3rd Closest Cluster School -0.00316***
(0.00097)

Cluster Comp. Test Score × 0.00000
Distance (Closest School) (0.00003)

Cluster Comp. Test Score × -0.00001
Distance (2nd Closest School) (0.00003)

Cluster Comp. Test Score × 0.00007***
Distance (3rd Closest School) (0.00002)

(1) Clustered standard errors in parentheses

(2) *** p<0.01, ** p<0.05, * p<0.1

(3) All columns include controls for house characteristics and year effects.

(4) Sample is restricted to houses within 2000ft of a catchment area boundary.
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Table 2.12: Testing the Difference in Means Across Boundaries

High Test Low Test Test of
Score Side Score Side Difference Difference

Mean Mean in Means t-statistic

Local School Test Score 60.71 43.63 17.08 14.84

Price 148,793 140,430 8,363 3.13

Sq. Footage 1,457 1,400 57 1.58

Stories 1.324 1.316 0.008 1.69

Acreage 0.236 0.235 0.001 -0.44

Home Age 42.93 45.52 -2.59 -0.95

(1) Column 4 reports the t-statistic for a test of the hypothesis that the mean of the house

characteristic does not vary across school catchment area boundaries. The test conditions on

boundary fixed effects and adjusts for clustering at the catchment area level.

(2) Sample is restricted to houses within 2000ft of a catchment area boundary.
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Figure 2.1: JCPS Clusters 1 - 6
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Figure 2.2: JCPS Clusters 7 - 12
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Figure 2.3: Assignment of Clusters
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Figure 2.4: Selecting Houses within 2000 Feet of a Boundary

Capture Area using Black Method
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Figure 2.5: Test Scores and House Characteristics Near the Boundary
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Figure 2.6: Selecting Houses to Create a Counterfactual Sale

Capture Area using Fack and Grenet

Capture Area using Black Method
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Chapter 3: Do Music Classes Lead to Improved Student Outcomes?

3.1 Introduction

In recent years, with many school districts facing sharp budget cuts, the impor-

tance of music education has been hotly debated. Often, music education is one of

the first place schools districts look to make cuts in expenses. However, many argue

that music has an important place in our children’s education. Some contend that

participation in music can lead to improved academic achievement. This paper in-

vestigates the relationship between high school music participation and educational

outcomes. Specifically, I examine whether participation in high school music classes

affects high school graduation, college attendance, high school GPA, SAT scores,

and ACT scores. The results suggest that participating in music classes improves

student outcomes along all of these dimensions. The largest effects are found for

students who participate in band.

Theoretically, participation in high school band or chorus could have positive

or negative effects on student outcomes. It is possible that, in the absence of music

classes, students would be taking more math, science, or other academic courses. If

more of these courses lead to improved academic acheivement, then music classes

could distract students from more important subjects and consequently lowering

their outcomes.

Other the other hand, music may promote creativity, work ethic, and abstract
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thinking. To the extent that these qualities lead to improved academic outcomes,

then students who take music classes may be more likely than their non-music peers

to graduate from high school and to attend college. Additionally, music classes

could expose some students to high-achieving peers whom they otherwise might not

interact with. If having friends who go to college increases one’s own likelihood

of attending college, then participating in music classes could improve outcomes

through peer effects.

A variety of research examines the impact of music on academic achievement.

Perhaps the most well-known is that which documents the “Mozart effect” (Rauscher

and Ky, 1994). The authors find that after listening to a Mozart sonata for ten

minutes, college students perform better on a spatial reasoning test. However, the

students do not perform significantly better on any of the other tests administered

during the experience. Additionally, despite many attempts to replicate these re-

sults, most studies are unable to find a significant effect of listening Mozart on more

than one specific spatial reasoning test (see Steele et al. (1999) for a meta-analysis).

In another experiment, Rauscher et al. (1997) find that children who received piano

lessons scored significantly higher than the non-music group on an object assembly

task.

Many other researchers have documented a positive correlation between par-

ticipation in music and academic achievement. However, there is a strong possibility

that this correlation is driven by selection into music. Music lessons are costly, and

students from poor families often cannot afford these lessons. In general, students

who participate in music tend to come from families at a higher socio-economic sta-

tus (Elpus and Abril, 2011; Kinney, 2010). Because students from affluent families

are also more likely to attend college or to receive higher test scores, a positive cor-

relation between music participation and academic achievement does not necessarily
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imply a causal relationship.

To my knowledge, there has been no research on the relationship between music

participation and academic achievement in the economics literature. In general,

there is a very small literature that estimates the causal impact of music classes on

academic achievement. I investigate the impact of music participation on student

outcomes using both OLS with school fixed effects and propensity score matching.

There are advantages and disadvantages to both strategies. One strength of

OLS is that I can estimate school fixed effects using this method, while propensity

score matching cannot accommodate fixed effects. By estimating school fixed effects,

I can control for the effect of each school on students’ academic outcomes. However,

one disadvantage of OLS is that it compares treated observations to the average of

all untreated observations (or, to untreated individuals within the same school in the

case of school fixed effects). Therefore, one might be hesitant to conclude that OLS

is estimating a causal relationship. The advantage of propensity score matching

over OLS is that matching will match treated students with only the comparison

students who share propensity scores.

Additionally, one should be cautious when comparing the OLS with school

fixed effects results to the propensity score matching results. OLS without school

fixed effects restricts the average treatment effect on the treated (ATT) to be equal

to the average treatment effect (ATE). In this case, the ATT is the average treatment

effect of music courses on students who take music courses. Though it is not obvious

whether OLS with school fixed effects still restricts ATT to be equal to ATE, OLS

estimates the ATE and one must assume that the ATT is equal to the ATE in order

to recover the ATT. Propensity score matching directly estimates the ATT. If the

ATT is not equal to the ATE when using OLS with fixed effects, then the propensity

score matching effects and OLS effects may not be comparable.
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My primary outcome measures are whether the student graduates from high

school, whether the student attends college, academic GPA, SAT score, and ACT

score. Then, using college attendance as an example, the ATT is the difference in

college attendance of a student who participates in a high school music class and

what that student’s likelihood of college attendance would have been if he or she

had not participated in a high school music class.

In the next section, I describe the related literature. Section 3.3 describes

the Data. Section 3.4 will present my empirical strategy. Section 3.5 discusses my

results, and in Section 3.6, I conclude.

3.2 Literature

Though the relationship between music and academic achievement has not

received much attention in the economics literature, it has not been ignored in other

fields. Among the supporters of the music, there are two major lines of reasoning

for why music education is important. The first group argues that music helps

students become better at other subjects like reading and math. The second group

argues that, whether or not music leads to improved perfomance in other academic

subjects, music is important as its own subject. They argue that music is not to be

justified by what it can do for reading and mathematics; instead, music education

is justified by teaching what no other subject can teach. See Mark (2002, 2005) for

a discussion of music education advocacy in the United States.

It is important to think about these two claims when researching this area. If

music is not found to improve academic achievement, would this imply that music

classes are not worthwhile? Furthermore, there is still a debate over what consti-

tutes academic acheivement. I have carefully considered the dependent variables
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of interest for this paper with these claims in mind. When evaluating education

programs, a common outcome variable is a student’s test score.

The College Board in 2010 reported that students who take four years of arts

and music classes while in high school score 102 points higher on the SAT than their

non-music counterparts (Americans for the Arts, 2010). Elpus (2013) estimates the

impact of high school music classes on SAT scores using ordinary least squares with

school fixed effects. He finds that music classes have no impact on SAT scores.1

Following this line of research, I estimate the impact of music participation on SAT

scores, ACT scores, and students’ academic GPA. But, even if music classes do not

improve test scores, the question of whether music classes are important to education

is still unanswered.

It is still unclear to researchers what some test scores are actually measuring.

Whether they are a good measure of achievement is debatable. However, what

economists and policy-makers generally agree on is that a desirable goal for all young

adults is to increase educational attainment. Completion of high school improves

labor market and earning opportunities in individuals’ adult lives. Completion of

college further improves these outcomes (Card, 1999). For these reasons, I also

test whether participation in high school music classes leads to fewer high school

dropouts and increases in matriculation to college.

There is a vast literature outside of economics supporting a positive rela-

tionship between music and several different academic outcomes. However, the

extent to which studies are able to identify a causal relationship and not just a

correlation varies dramatically (Babo, 2004; Cheek and Smith, 1999; Costa-Giomi,

1One should note that some of Elpus’s control variables are likely to be endogenous. In par-
ticular, he defines treatment as taking a music class during any year of high school. However, the
control variables for prior academic achievement are measured in 9th and tenth grade, meaning
they could be affected by music participation. He also includes the amount of time spent watching
TV and playing video games each week.
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2004; Graziano et al., 1999; Helmrich, 2010; Legg, 2009; Schellenberg, 2004, 2006).

Many researchers have noted that the positive relationship between music and aca-

demic achievement may be caused by selection bias (Kinney, 2008, 2010; Winner and

Cooper, 2000). These researchers show that there are many systematic differences

between music and non-music students prior to the students’ participation in music

classes. For example, students who select into music classes are more likely to be

from wealthier families. They are also more likely to be from two-parent homes.

Studies that do not account for these differences will suffer from selection bias.

The first research that, to my knowledge, uses econometric techniques to es-

timate a causal relationship is Elpus (2013). Elpus estimates the impact of partici-

pation in high school music classes on SAT scores using a regression approach with

school fixed effects. He finds no effect of music classes as a whole on SAT scores.

However, he does find a small effect of participation in band on SAT scores. I use

this paper as a model for my own research. Like Elpus, I use the Education Longi-

tudinal Survey of 2002. I also begin my analysis with a regression approach using

school fixed effects. I extend Elpus’s research by examining additional dependent

variables, including college attendance, academic GPA, ACT scores, and high school

completion. I additionally modify his empirical strategy by eliminating some of his

control variables which are likey to be endogenous. Specifically, I eliminate tenth

grade test scores as a control variable, because this is observed post-baseline. I also

eliminate variables that indicate how many hours each week are spent watching TV,

playing video games, or working.

I further extend the literature by using propensity score matching. Propensity

score matching can be used to correct for selection bias, making it well-suited for

answering this question. As compared to OLS with school fixed effects, propensity

score matching has a less restrictive functional form. However, it must also satisfy
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several of its own strict assumptions. I will discuss these strengths and limitations

in section 3.4. In the next section, I describe the data used for this study.

3.3 Data

The data for this research come from the Education Longitudinal Study of

2002 (ELS 2002). The purpose of the survey was to monitor the transition of a

national sample of high school student as they progressed from tenth grade through

high school and on to postsecondary school and/or work. It is a longitudinal study

that follows the same students throughout their high school career and beyond.

Approximately 15,000 tenth grade students from 750 schools across the United

States were surveyed in 2002. In the baseline survey, students were tested in reading

and mathematics to provide a baseline achievement level. Students were also asked

a variety of questions about their attitudes and experiences, such as their attitude

toward school, whether they participated in extra-curricular activites, how much

time they spend on homework, whether they had taken an Advanced Placement

course, etc.

Students were surveyed again in 2004 and 2006. In the 2004 survey, infor-

mation was gathered about colleges applied to, whether the student enrolled in a

postsecondary school, and whether the student completed high school. Students

were also asked about their employment and earnings. This survey provides the

outcome measures for my analysis. My main outcomes of interest are whether the

student completed high school, whether the student ever attended college, SAT

score, ACT score, and four-year academic GPA.

In addition to the student information, parents were also surveyed in the base

year to obtain additional information. I have information about mother’s education,
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father’s education, family income, family structure, socio-economic status, and a

variety of other variables from the parent survey.

I also have access to students’ transcript information, which lists every course

in which the student was enrolled and the student’s grade in the course. I make use

of the transcript data in order to identify which students are music students. I use

several definitions for a music student. The most general definition identifies music

students as those students who earned credit for one or more music courses during

high school. However, one may argue that the baseline controls variables could

coincide with treatment if this definition is used. If a student participates in music

in the 9th grade, then some control variables would not truly be “pre-treatment”

variables. In order to ensure that all control variables are observed pre-treatment, I

define treatment as participating in music in 10th, 11th, or 12th grade.

Unfortunately, this definition creates another difficulty. Defining treatment as

participation in a music class in 10th, 11th, or 12th grades opens the possibility

that students who took music classes in 9th grade will be in the comparison group.

However, this definition is better than the alternative, because I am not explicitly

using concurrently observed treatment and control variables. Additionally, while

having 9th grade music students in the comparison group is not ideal, this should

bias the estimates downward, which isn’t a large concern. Selection bias should lead

to estimates that are biased upward, so it is not too concerning to have a factor that

biases the estimates downward.

An alternative to including 9th grade music students in the comparison group

is to drop these students from the sample. I will do this in section 3.6. However, as

I will show, it is not the ideal way to define the treatment and comparison groups.

The inability to obtain clearly defined treatment and control groups is certainly

a drawback of this research. While the ELS data contain a great deal of information,
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surveys such as this could be improved by asking questions about past achievement

and activities. A richer set of baseline variables could improve causal estimates.

However, even with the addition of richer baseline variables, there would likely still

be concerns about estimating a causal effect. If high school music affects academic

achievement, then it’s possible that elementary and middle school music also affects

academic achievement. If this is true, then this creates the possibility that OLS has

omitted variable bias and that the conditional independenc assumption is violated

in propensity score matching. Unfortunately, these are not things I can test for

with the data available. But it is something to keep in mind when interpreting the

results.

In addition to estimating the effect of music participation on academic out-

comes, I also separately estimate the effect of band or choir on academic outcomes.

Elpus (2013) found different effects of music classes on SAT scores for band students

versus choir students, and so I continue to extend his research by estimating the

impact of band and choir on several additional outcomes. One might expect to see

different results for band versus choir students. Band students are required to read

music, whereas not all choir students need to have this skill. If reading music is sim-

ilar to learning a language, then having this ability might cause the band students

to think differently.

I make use of one final definition of a music student in this research. I examine

students who earned one or more credits of music in 10th, 11th, or 12th grade. I

use this definition of music to investigate whether the impact of music is primarily

through students who take many music classes or if the effect is present for students

who take any music classes.

In order to define music in so many different ways, I had to very carefully

examine the ELS transcript data. With the help of an expert in both music edu-
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cation and the ELS 2002 data, I reviewed the transcript data to ensure that the

information was properly coded. First, any courses coded as arts courses were re-

viewed to ensure that no music courses were incorrectly listed as a visual art, dance,

or theater class. Second, within the music classes, each course had to be properly

identified as a band, chorus, or “other music” course. Other music includes music

theory, piano courses, general music courses, etc. See Elpus (2013) for a full review

of the transcript data cleaning process.

3.3.1 Summary Statistics

Table 3.1 displays summary statistics from the data. Column 1 shows summary

statistics for all students. Column 2 contains students who enrolled in at least one

music class during any grade in high school, and column 3 shows student who did not

participate in a music class. The music indicator is broken down into type of music

student. I examine band students, choir students, students who earned more than

1 credit of music, and students who participated in music in at least the 10th, 11th,

or 12th grade. Approximately thirty-two percent of students participated in at least

one music class during high school. Elevent percent of students participate in band,

and sixteen percent of students participate in chorus. Of the music students, only

about half earn at least one full credit of music. Eighty percent of music students

take at least one music class in 10th, 11th, or 12th grade.

Comparing columns 2 and 3, one can see that students who participated in

music are more likely to attend college and more likely to attend a four-year college.

Music students are less likely to drop out of high school. These students are also

more likely to have received an academic honor and are less likely to have taken

a remedial math or reading class. The music students’ parents are more educated,
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have a higher family income, and are more likely to participate in a parent-teacher

organization.

When one compares the characteristics of schools that music students attend,

one sees that music students are more likely to attend a private school than a public

school. They are also more likely to attend urban schools than rural or suburban

schools.

The summary statistics are consistent with the patterns that exist in the liter-

ature. We see that music students are more likely to have higher academic achieve-

ment. However, given their advantage in socio-economic status and other areas,

a careful analysis is required to determine whether there is a causal relationship

between music participation and student outcomes. The next section describes my

empirical approach for testing this relationship.

3.4 Empirical Strategy

I use propensity score matching to estimate the impact of high school band or

chorus participation on student outcomes.

Define treatment as participation in a music class at the baseline. Let Mi=1

if a student is in the treatment group and 0 otherwise. Let Yi represent the student

outcome of interest. For ease of exposition, I consider dropping out of high school to

be the main outcome of interest when I discuss the empirical methodology. Yi,1 indi-

cates whether student i dropped out of high school and received treatment, and Yi,0

indicates whether she dropped out of high school and she did not receive treatment.

I estimate the average treatment effect on the treated (ATT). While the average

treatment effect (ATE) may be interesting, it represents the effect of treatment on

an individual drawn randomly from the sample and is not easily estimated. The
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goal of this paper is not to say what would occur if all students were to take a music

class. Instead, I am interested in the effect of music classes on those students who

take them. Thus, the ATT is more suitable. The ATT can be expressed as follows:

ATT = E[Yi,1 − Yi,0|Mi = 1] = E[Yi,1|Mi = 1]− E[Yi,0|Mi = 1]. (3.1)

The right-hand side of equation (3.1) is the difference between whether a student

drops out of high school if she participates in a high school music class and whether

she drops out of high school if she does not participate in a high school music class.

The first term, E[Yi,1|Mi = 1], can be obtained from the data. However, the

second term, E[Yi,0|Mi = 1], is not observable. This term represents whether the

student would have dropped out of high school if we could go back in time and have

her not participate in a music class. Though we cannot observe this term, matching

allows me to estimate the term using the outcomes of students in the sample who did

not participate in music classes. In essence, I match treated individuals to untreated

individuals who are very similar on observable characteristics. Once individuals are

matched, the students in the comparison group are as similar as possible to the

treated group along observable characteristics, and treatment can be considered

a random event. This requires that the conditional independence assumption be

satisfied, which I explain in Section 3.4.1.

In practice, matching individuals based on observable characteristics can be

problematic when there are a large number of characteristics on which to match.

In order to match individuals, I would divide the data into subgroups based on

observed characteristics. Each subgroup containing a treated individual would also

need to contain an untreated individual. As the number of variables increases, the
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number of subgroups increases, and it becomes increasingly difficult to find match

for each of the treated individuals.

To overcome this problem, Rosenbaum and Rubin (1983) introduced the propen-

sity score. The propensity score, p(Z), is defined as the conditional probability of

treatment given a vector of observable characteristics, Z:

p(Z) = Prob(Mi = 1|Z)

.

The basic strategy of propensity score matching is to match individuals based on

their propensity score, rather than on their observed characteristics. In this way,

the dimensionality problem can be reduced to a single index.

Rosenbaum and Rubin show that, if Yi,0 is independent of treatment status

given Z, then Yi,0 is also independent of treatment status given p(Z) = Prob(Mi =

1|Z). As a result, matching can be performed on a single index p(Z) instead of on

all of the variable in Z.

3.4.1 Propensity Score Matching Methodology

3.4.2 Identification

Two identification assumptions are used for matching. The first is the con-

ditional independence assumption (CIA). This assumption states that, conditional

on observable characteristics, Z, the distribution of the outcome variable of interest

for the treated group in the absence of treatment is the same as the distribution of

the outcome variable of interest for the comparison group. It can be expressed as

follows:
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CIA: Yi,0 ⊥Mi|Z.

Given the previous Rosenbaum and Rubin result, the CIA can be rewritten as

Yi,0 ⊥Mi|p(Z).

The conditional independence assumption allows the counterfactual outcome for

the treatment group to be inferred from the outcomes of the comparison group, and

then any differences between the two groups can be attributed to treatment. For

this assumption to be plausible, one must have available a large amount of variables

that affect both treatment and the outcome variable. The ELS 2002 contains many

variables that determine whether students participates in high school music classes,

whether they graduate from high school, whether they attend college, and their test

scores. This richness makes it well-suited for using matching techniques.

The second identification assumption is the common support condition. This

condition states that there must be substantial overlap between the treatment and

comparison group in the value of the propensity score. If, for example, the treat-

ment group is very likely to receive treatment, then there may not be an adequate

comparison group for the treated group. For estimating the ATT, I need a positive

probability of observing untreated individuals at each value of Z, P (M = 1|Z) < 1.

If P (M = 1|Z = z0) = 1, then at Z = z0, I would observe only treated individu-

als. Because there are many students who do not participate in high school music

classes, the common support condition is not an issue in this context.
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3.4.3 Implementation

To implement propensity score matching, I break the process down into two

steps. The first step is to estimate the propensity score. I estimate the propensity

score using a probit model. I select the conditioning variables to control for factors

expected to affect both the decision to participate in high school band or chorus and

whether the student graduates from high school and attends college.

The propensity score specification varies slightly, depending on the definition of

treatment, so that the balancing test (which I will describe in detail later) is satisfied.

In general, the specification will include age, race, gender, whether the student had a

computer at home, the region in which the school is located (Northeast, South, West,

or Midwest), and the student’s 9th grade GPA. I also include characteristics of the

student’s family, such as the mother’s education, father’s education, family income,

and family’s socio-economic status. Additionally, I include several characteristics of

the student’s school. These include whether the school is public or private; whether

the school is urban, suburban, or rural; the percent of teachers who are certified to

teach in their field; the percentage of students who receive free or reduced lunch;

and the percentage of student who have limited English proficiency.

The next step in the estimation procedure is to match individuals based on

their propensity score and estimate the ATT. Applied economists have used many

different matching estimators. The choice of a matching estimators determines

two factors. It determines how an individual is matched to a group of comparison

individuals. It also determines the weighting approach for how the weighted outcome

of the comparison group will be computed and then assigned to a treated individual.

I use kernel matching.
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ŷi =

∑

j∈{M=0}

K(
pi − pj

h
)yj

∑
j∈{M=0} K(

pi − pj

h
)
,

where pi is the treated individual’s propensity score, pj is a comparison individual’s

propensity score, K() is the kernel used, and h is the bandwidth. Treated individ-

uals are matched only with comparison individuals where pi − pj falls within this

bandwidth. Then, within the bandwidth, comparison individuals whose propen-

sity score is closer to that of a treated individual will receive higher weight. I use

the Epanechikov kernel in the matching procedure. The bandwidth is 0.1.2 After

matching the individuals, the estimates of ŷi will be used to estimate the effect of

high school band or chorus on student outcomes.

3.5 Results

3.5.1 OLS Model

I begin by presenting results of an Ordinary Least Squares regression of the

outcome variables of interest on a student’s participation in high school music classes

in 10th, 11th, or 12th grade. The regression takes the form

Yi = βMi + δZiδ + εi, (3.2)

where Mi is a dummy variable that indicates whether the student participated in a

high school music class in 10th, 11th, or 12th grade, Zi is a matrix of individual and

family characteristics, and Yi is a dummy outcome variable. For high school drop

2I estimated the results using bandwidths varying from 0.05 to 0.15, and the results were not
sensitive to choice of bandwidth.
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outs, Yi is 1 if the student dropped out of high school and 0 otherwise.3 For college

attendance, Yi is 1 if the student ever attended college and 0 otherwise. Other

dependent variables include the student’s SAT score, ACT score, and academic

GPA.

Table 3.2 displays the results from estimating equation (3.2). Panel A displays

a baseline estimation of the effect of music classes in 10th, 11th, or 12th grade

on various outcome variables; no control variables are included in Panel A. Panel

B esimates this relationship controlling for individuals and family characteristics.

Panel C includes controls for 9th grade GPA in addition to individual and family

characteristics. Panel D further adds school fixed effects. Panel E is the same

as Panel D, except that school characteristics are included as control variables in

place of the school fixed effects. Propensity score matching will not allow for school

fixed effects due to dimensionality constraints. Instead, I can only include school

characteristics. Panel E should be compared to Panel D to see how the estimates

differ when school characteristics are used as control variables in place of school

fixed effects.

Finally, Panel F includes control variables for hours spent watching televi-

sion or playing video games each week. This panel is included as a comparison

to Elpus (2013)’s research. In his regression, his preferred estimates include these

additional variables. Though these variables are likely endogenous, I include them

as a comparison to his previous work.

For all estimates, standard errors are clustered at the school level. Each cell

in the table represents a separate regression.

3One may be concerned about using dropping out as an outcome variable if many students
are dropping out of high school very early on. Fortunately, only approximately fifteen percent of
students who drop out are doing so prior to their junior year. I will eliminate from my sample
those students who drop out prior to 11th grade. This eliminates 130 students.
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The outcome variables are whether the student drops out of high school,

whether the student attends a post-secondary institution, whether the student at-

tends a four-year college, the student’s SAT score, the student’s ACT score, and

the student’s academic GPA. The academic GPA is defined as the students GPA

in only academic courses. Thus, grades in music classes and/or other non-academic

courses have been removed from the calculation.

Panel A shows a strong correlation between participating in high school music

classes and all of the outcome variables. Student who participate in music are eleven

percentage points more likely to attend college. Students who take music classes

are approximately four percentage points less likely to drop out of high school. The

correlation is strongest for band students and for students who earned at least one

full music credit.

In Panel B, when individual and family control variables are included, the

magnitudes of the coefficients decrease. In Panel C, when control for 9th grade

GPA is included, the magnitudes of the coefficients decline dramatically. Most

of the coefficients are at least five times smaller than in the baseline estimation.

These results are all consistent with the idea that the correlation between music

and academic achievement is driven partly by selection.

Panel D builds off of Panel C by additionally estimating school fixed effects.

This panel contains my preferred OLS specification. This panel contains the richest

set of controls without including potentially endogenous variables. Additionally, the

school fixed effects should control for the effect of a student’s school on both music

participation and academic achievement. The coefficient on music participation is

smaller for nearly every definition of music student and for nearly every outcome

variable than in the baseline correlation. The results indicate that participating in

music increases the likelihood of attending a postsecondary institution and improves
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academic GPA. Music classes also appear to affect whether a student will drop out

of high school. Based on the averages of the variables, the results suggest that

taking a music class leads to a four percent increase in attending a postsecondary

institution and improve academic GPA by two percent.

The relationship between music and academic achievement is strongest for

band students. The results indicate that participating in band increases the likeli-

hood of attending a postsecondary school by six percent and increases the likelihood

of attending a four-year college by seven percent. Band students also see increases

in both SAT and ACT scores of approximately two percent.

Panel E replaces the school fixed effects in Panel D with school characteristics.

These variables are whether the school is public or private; whether the school is

urban, suburban, or rural; the percent of teachers who are certified to teach in their

field; the percentage of students who receive free or reduced lunch; and the per-

centage of student who have limited English proficiency. Although in theory, these

characteristics can vary over time, in practice they do not vary enough to be in-

cluded in the regression along with school fixed effects. Therefore, a regression with

school fixed effects does a better job than a regression with this set of school charac-

teristics at capturing variation across schools in factors that may affect achievement

and that are correlated with taking music classes. But because I am not able to es-

timate school fixed effects with the propensity score matching approach, it is useful

to explore the differences that arise when school characteristics are included in the

regression in place of school fixed effects.

Overall, the estimates that use school characteristics as controls are fairly

similar to the estimates that arise from using school fixed effects. The most simi-

lar estimates are those where the dependent variable is attending a postsecondary

institution, attending a four-year college, and academic GPA. When the dependent

91



variable is dropping out, the estimates with school fixed effects are slightly larger,

though the estimates that use school characteristics are generally not statistically

significant. The most notable discrepancy between the estimates is in the estimated

effect of music on ACT and SAT scores. Without school fixed effects, the estimated

treatment effects are much larger than when these effects are estimated with school

fixed effects. Because of this discrepancy, I am cautious in concluding that propen-

sity score matching is truly estimating the causal impact of music classes on ACT

or SAT scores.

Panel F further includes time-use control variables, which are hours per week

spent watching television and hours per week spent playing video games. Though

these variables are likely endogenous, I have included them because they are used

in the research done by Elpus (2013). The specification used in Panel E is nearly

identical to that used by Elpus. His only outcome variable is SAT score, and my

results are very similar to his results when SAT score is the dependent variable.

Whether these variables are endogenous or not, they have little impact on the results.

I exclude these controls from future regressions.

Though I have included many control variables and a full set of school fixed

effects, one might still be wary of the results. Based on the summary statistics,

we know that students who participate in high school music also tend to be from

more educated and more affluent families. Since students who participate in music

differ from non-music students along observable characteristics, it is also likely that

they differ along unobservable characteristics. OLS is restrictive in its functional

form and, without fixed effects, requires that the Average Treatment Effect on the

Treated be equal to the Average Treatment Effect. Because I am estimating school

fixed effects, it is not clear exactly what treatment effect is being estimated and if

ATT is still equal to ATE in this case. In order to address these restrictions, I now
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use a different method of estimating the causal effect of music classes on academic

achievement. The next section discusses the results of propensity score matching.

3.5.2 Propensity Score Matching Results

The first step of propensity score matching is to estimate the propensity score.

Table 3.3 presents the probit marginal effects estimates of the propensity score for

each definition of music student. Compared to non-music students, music students

are more likely to be female, more likely to be black, have a higher 9th grade

standardized test score, and are more likely to live in a two-parent home. In addition,

music students’ parents are more educated, though they are not likely to have a

higher income.

Among students who did not participate in music, some have a predicted

probability of participating in music that is lower than the predicted probability

of music participationg among students in the treatment group. I enforce common

support by excluding students with propensity scores lower than the minimum of

the treatment group. This excludes approximately 40-50 students, depending on

the definition of music student. I also exclude students who attend a school that

does not offer music classes.

Tables 3.4 through 3.6 present results of the balancing test of the hypothe-

sis that the mean of each variable is equal between the treatment and comparison

groups. The definition of treatment is different in each table. The balancing test

ensures that, on average, students in each group have similar observable character-

istics. For all variables, the results of a paired t-test indicate that the means of each

variable for the treatment and comparison groups are not statistically different. The

balancing condition is safisfied for all definitions of music student.
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Table 3.7 displays the results of the propensity score matching estimates of

the effect of 10th, 11th, or 12th grade music participation (also sub-divided into

band or choir participation) on six measures of academic achievement. Each cell

in the table represents a separate estimation procedure. Thus, cell one shows the

estimate of the impact of taking at least one music class on whether a student

drops out of high school. Refer to Table 3.3 to see the full list of covariates for

each specification. Standard errors are block bootstrapped by school using 800

replications. The bandwidth is 0.1. Results using a bandwidth of 0.05 or 0.15

are similar but not displayed. Neither the coefficient magnitudes nor the level of

statistical significance is very sensitive to choice of bandwidth.

Recall that the OLS model without fixed effects estimates the average treat-

ment effect and restricts the average treatment effect to be equal to the average

treatment effect on the treated. It compares the average high school drop out rate

and college attendance rate for music students and non-music students.4 Propensity

score matching identifies a slightly different effect, the average treatment effect on

the treated. The ATT is an estimate of the effect of participating in band or chorus

on high school outcomes among students who participated in band or chorus. Unlike

OLS, the propensity score matching method eliminates non-music students who are

too different from the music students.

For students who took at least one music class in 10th, 11th, or 12th grade,

the estimated treatment effect is generally slightly larger than what was estimated

with both OLS with school fixed effects and OLS with school characteristics in place

of fixed effects. This finding could have a few different explanation.

It could be that the treatment effect is in fact larger than what the OLS es-

4With fixed effects, it is not clear exactly what treatment effect is being estimated. I have
estimated the effects both with and without school fixed effects. Only for the estimations without
fixed effects am I definitively estimating the ATE.
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timates suggested. If one wants to infer the ATT from OLS estimates, one must

assume that the ATT is equal to the ATE. Propensity score matching does not force

such a restriction, which could allow the ATT to be closer to its true value. Alter-

natively, it might be the case that school fixed effects are necessary to estimate a

causal effect and that, without them, propensity score estimates are still biased up-

ward. Unfortunately, it is not possible to know for sure which is true. However, even

though propensity score matching yields somewhat higher estimates, they are not

dramatically higher, which suggests that the estimates may be close to estimating

the causal effect.

The results suggest that taking at least one music class lowers the likehood of

dropping out of high school by about eight tenths of a percentage point. The mean

drop-out rate is 5.2%, suggesting that participation in at least one high school music

class lowers the likelihood of dropping out of high school by fifteen percent.

Students who took at least one music class are also three percentage points

more likely to attend a postsecondary institution (which is similar to the treatment

effect with OLS) and three percentage points more likely to attend a four-year col-

lege. Based on the mean levels of these variable, this implies a four percent increase

in postsecondary school attendance and a seven percent increase in matriculation

to a four-year college. Taking a music class also improves academic GPA by nearly

a tenth of a point, which is a three percent increase.

The effect of music classes on ACT and SAT scores is very similar to what

was estimated using OLS with school fixed effects. This is true for music classes

in general and for band students. For choir students, the estimated coefficients are

much larger when using propensity score matching. It is not obvious why this would

be the case.

The largest effects are found for students who participated in band. Partici-
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pation in band has a statistically significant effect on every academic achievement

outcome. Band students are nearly eight percentage points more likely to attend a

postsecondary institution. This effect is twice the size of the impact of at least one

music class on attendance at a postsecondary institution. Band also improves SAT

scores by more that thirty points and improves ACT scores by more than half of a

point. Additionally, participating in band improves one’s academic GPA by almost

two tenths of a point.

There are several reasons why one might expect to see the largest effects for

band students. First, participation in band requires discipine. Student must practice

their instrument on their own. They must pay attention during rehearsals. They

may also be required to attend activities outside of the school day. Also, band

requires a special set of skills. Unlike students in other music classes, band students

must read music. While reading music is helpful for choir, it is not necessary. It is

possible that the ability to read music improves students’ academic abilities.

Both the propensity score matching estimates and the OLS estimates suggest

that music classes have large effects on academic outcomes. In the next section, I

use two different definitions of treatment to further explore this relationship.

3.6 Alternative Definitions of Treatment

3.6.1 Music in 10th, 11th, or 12th Grade Only

For both OLS and for propensity score matching, it is important that any

control variables be observed prior to treatment. Therefore, I defined treatment to

be taking a music class in 10th, 11th, or 12th grade, so that any variables observed

in 9th grade could be used as control variables.

An alternative way to define treatment would be to restrict treatment to those
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who participated in music in 10th, 11th, or 12th grade only. The advantage of this

definition is that the treatment group very clearly did not receive treatment prior

to the baseline. However, this definition of treatment also has several problems.

First, by defining treatment as taking a music class in only 10th, 11th, or

12th grade (and specifically not in 9th grade), I am putting any student who took a

music class in 9th grade in the comparison group. This is far from an ideal division

of treatment and comparison groups. When music participation is defined as taking

a music class in only 10th, 11th, or 12th grade, seventy percent of students that

took at least one music class at any time in high school are considered to be in the

comparison group. Said another way, seventy percent of students who take a music

class in high school take a music class in 9th grade.

Additionally, students who take a music class in 9th grade actually take more

music classes on average than the treatment group. Forty percent of students who

took a music class in 9th grade earn three or more credits of music. Fifteen percent

earned 4.5 credits or more. Among students who took at least one music class in any

grade, only twenty-five percent earned three or more credits in music, and only ten

percent earned 4.5 credits or more. Only five percent of students who took music in

10th, 11th, or 12th grade only earned three or more credits of music. Additionally,

the sample of students who only took a music class in 10th, 11th, or 12th grade is

fairly small compared to the number of student who took a music class in any grade.

While thirty-two percent of all students took at least one music class, only eleven

percent of students took a music class in 10th, 11th, or 12th grade only.

In addition, students who take music in 10th, 11th, or 12th grade are not

representative of music students in general. Table 3.8 displays summary statistics

for all students, music students, non-music students, students who took a music class

in 10th, 11th, or 12th grade only, and for students who either did not take music or
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did not take music in only 10th, 11th, or 12th grade (which would be students who

took music classes in at least 9th grade).

Along individual and family characteristics, the students who took music only

in 10th, 11th, and 12th grade are often more similar to the general student popu-

lation than they are to students who took at least one music class. Additionally,

twenty-five percent of students who did not take music in only 10th, 11th, or 12th

grade did take at least one music class. Thus, there are many treated students in

the comparison group.

To address the issue of treated students being included in the control group, I

can exclude from the sample any student who took a music class in 9th grade. This

would exclude about twenty-two percent of the total students and approximately

seventy percent of the students who took at least one music class. The results from

this estimation are displayed in Table 3.9. The results from the full sample are

presented as a comparison. The results from the restricted sample are surprisingly

similar to the results from the full sample. This suggests that the results may not

be driven by the 9th grade students who are taking a lot of music classes. One

might expect that eliminating students who take the most music classes (9th grade

music students) from the sample would diminish the magnitude of the coefficients.

Because this does not occur, a natural question is whether more music classes lead

to more improved outcomes or whether the full effect of music classes on academic

achievement can be captured by just one music class.

3.6.2 Students Earning One or More Music Credit

In order to explore whether the intensity of music participation affects the

relationship between music classes and academic outcomes, I now define treatment
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as earning one or more full credit in music during one’s high school career. One

credit of courses is equivalent to one year. Therefore, these students have either

taken at least one full year of music or have taken multiple courses that add up to

one credit of music. Approximately fifty-five percent of students who take at least

one music class earn one or more full credit of music. By defining treatment in this

way, I can explore whether the effect of music classes on academic achievement is

greater for students who take more music classes.

Table 3.10 displays the results of this estimation, using both OLS and propen-

sity score matching. The estimate of the impact of any high school music class on

academic outcomes is also shown as a comparison. Looking at the OLS results,

the magnitudes of the coefficients are larger when the treatment is taking one or

more music credit compared to taking any music class. This finding suggests that

more music classes lead to even better outcomes. The results are similar when using

propensity score matching. With the exception of attending a four-year college,

taking one or more credits of music has a larger impact on academic outcomes than

does taking at least one music class.

I can directly test this hypothesis by regressing academic outcomes on the

number of music credits earned in high school. Table 3.11 displays these results.

In addition to number of music credits, I also include music credits squared to

investigate whether the effect changes depending on how many credits one has.

The results indicate that earning more music credits improves academic out-

comes. Whether this effect dimiinishes with the number of credits earned is unclear.

The coefficient on music credits squared is not statistically significant in any regres-

sion, but it is consistent in some cases with a dimishing treatment effect.
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3.7 Extension to the Effect of Participating in Extracurricular Ac-

tivities

A natural question is whether the approaches taken here could be used to

measure the effect of participating in extracurricular activities on academic achieve-

ment. Consider the standard matching estimators to estimate the treatment on the

treated of extracurricular activities. There are two problems in applying match-

ing here. First, eighty-four percent of students partake in extracurricular activities,

leaving only sixteen percent of the students as the comparison group, and it is well

known that matching estimators do poorly in this situation (see, e.g., Ham et al.

(2011)). Secondly my view is that those not partaking in any extracurricular ac-

tivities will make up a very select group, i.e. much more select than taking or not

taking music classes, and I only have 9th grade GPA to deal with the selection.

Thus, I decided not to pursue matching estimators.

Standard OLS estimates of the the effect of partaking in extracurricular ac-

tivities can only control for selection through school fixed effects, and again this

approach will provide unconvincing estimates. Perhaps the best approach is to use

a regression which conditions on both 9th grade GPA and school fixed effects. As

in the current chapter, this can be thought of as a simple matching estimator. I ran

this regression and found the effect of partaking in extracurricular activities to have

positive effects on academic achievement. Parcipation in at least one extracurricular

activity is estimated to lead to a nine percentage point decrease in dropping out of

high school, a nineteen percentage point increase in attendance at a postsecondary

institution, a tenth of a point increase in academic GPA, and a half point increase in

ACT scores. However, I am not convinced that this approach sufficiently deals with
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selection, and thus have chosen not to make this analysis into a separate chapter.

3.8 Conclusion

This research investigates the impact of high school music classes on student

academic achievement. Very little research has been able to estimate a causal rela-

tionship between music classes and academic outcomes. I find evidence that while

selection bias is driving some of the positive correlation between music and academic

achievement, there seems to be a strong causal impact of music class on academic

outcomes.

I utilize two empirical approaches to estimate a the causal relationship be-

tween music classes and academic outcomes. First, I use OLS with school fixed

effects. Second, I use propensity score matches. Each approach has advantages and

disadvantages. For both approaches, a drawback is that the data disclose nothing

about a student’s prior musical activities. I must assume that the treatment effect

estimates the impact of high school music classes on academic outcomes. However,

it is likely that students who take high school music classes also took middle school

music classes. And if these middle school music classes also have a positive impact

on academic outcomes, then this research will overstate the treatment effect.

When comparing OLS with school fixed effects and propensity score matching,

the advantage of OLS with school fixed effects is the ability to include fixed effects.

When I replace fixed effects with school characteristics, the estimated treatment

effects are slightly higher, suggesting that school characteristics will not capture

all of the effect of individuals’ school on academic outcome. The disadvantages of

OLS are its restrictive functional form and the fact that it generally restricts the

average treatment effect on the treatment to be equal to the average treatment
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effect (though this may not be true once fixed effects are estimated). Propensity

score matching does not restrict the average treatment effect on the treated to be

equal to the average treatment effect, and it allows for a less restrictive functional

form. However, propensity score matching is unable to accomodate school fixed

effects. Because of this, the matching estimates may be biased upward.

The results suggest that taking at least one music class in high school leads to

a fifteen percent decrease in the likelihood of dropping out of high school. Taking at

least one music class also leads to large increases in enrollment at a postsecondary

school, increases in enrollment at a four-year college, and small increases in students’

academic GPA. Taking at least one music class also leads to approximately two

percent improvement in ACT or SAT test scores.

The largest effects are found for students who participate in high school band.

High school band students are between five and eight percentage points more likely

to attend a postsecondary school and approximately five percentage points more

likely to attend a four year college. Band students also see statistically significant

increases in SAT and ACT scores, scoring approximately three percent higher on

both tests. Participating in high school band also leads to increases of about two-

tenths of a points in students’ academic GPA. There are several reasons why the

band students might see larger results. One reason is because band students are

required to read music. Like speaking another language, reading music requires

individuals to think in different ways. Another reason that band students might see

more improvements over other music students is that band students will generally

need to practice outside of school. This requires discipline and a more intense study

of music. Both of these factors could lead to improved outcomes.

The propensity score matching results are similar in magnitude to the OLS re-

sults, though the estimated treatment effects are slightly larger when using propen-
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sity score matching. This finding suggests that with a large number of control

variables, OLS with school fixed effects does quite well in estimating the effect of

music classes on student academic outcomes. It also suggests that propensity score

matching may overestimate the treatment effect, as it cannot be estimated with

school fixed effects.

In addition to the positive impact of taking any music class on academic out-

comes, I find that taking more music classes leads to even more improved outcomes.

Each credit of music earned increases the likelihood of attending college by one

percentage point. Earning more music credits effects similar gains on the other

academic outcomes.

This paper demonstrates a strong positive effect of taking music classes on

improving academic outcomes. The results are robust to different specifications,

different samples, and different definitions of music student. Further research should

further explore the types of music that are most beneficial. Additional work explor-

ing the impact of the intensity of music study would also be beneficial.
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Table 3.1: Summary Statistics

(1) (2) (3)
All Music Non-Music

Students Students Students

Music Variables:

Music Student 0.324 1.000
(0.46785)

Choir Student 0.156 0.482
(0.36276) (0.49972)

Band Student 0.111 0.343
(0.31414) (0.47478)

At Least 1 Music Credit 0.177 0.546
(0.38138) (0.49793)

Music in 10th, 11th or 12th Grade 0.258 0.798
(0.43760) (0.40175)

Academic Outcomes:

ACT 21.5 22.1 21.2
(5.05) (5.05) (5.01)

SAT 1005 1027 991
(207.26) (205.72) (207.02)

Dropout 0.052 0.026 0.064
(0.22136) (0.15868) (0.24488)

Attend Postsecondary School 0.753 0.829 0.715
(0.43136) (0.37698) (0.45138)

Attend 4-yr College 0.451 0.529 0.413
(0.49761) (0.49921) (0.49232)

Individual Characteristics:

Female 0.502 0.584 0.463
(0.50001) (0.49299) (0.49865)

Black 0.158 0.151 0.161
(0.36479) (0.35830) (0.36782)

Asian 0.116 0.111 0.119
(0.32063) (0.31366) (0.32389)

Other Race 0.121 0.085 0.139
(0.32631) (0.27870) (0.34544)

Hispanic 0.144 0.102 0.165
(0.35135) (0.30208) (0.37089)

English Native Lang. 0.831 0.873 0.811
(0.37447) (0.33310) (0.39140)

Academic Honor 0.353 0.407 0.326
(0.47783) (0.49138) (0.46894)

Club Participation 0.238 0.282 0.216
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(0.42572) (0.44987) (0.41177)
Ever took Remedial Course 0.115 0.109 0.118

(0.31874) (0.31142) (0.32218)

Family Characteristics:

Two Parents 0.749 0.764 0.741
(0.43384) (0.42482) (0.43793)

Mother HS 0.268 0.252 0.276
(0.44303) (0.43395) (0.44711)

Mother Some College 0.329 0.345 0.322
(0.46999) (0.47531) (0.46727)

Mother College 0.183 0.208 0.172
(0.38707) (0.40572) (0.37729)

Mother ≥College 0.089 0.105 0.082
(0.28513) (0.30706) (0.27371)

Father HS 0.281 0.278 0.283
(0.44963) (0.44811) (0.45037)

Father Some College 0.264 0.269 0.261
(0.44058) (0.44341) (0.43922)

Father College 0.178 0.192 0.171
(0.38259) (0.39426) (0.37670)

Father ≥College 0.140 0.166 0.127
(0.34667) (0.37239) (0.33294)

Parent in PTO 0.262 0.302 0.241
(0.43953) (0.45917) (0.42765)

Mother Native US 0.779 0.819 0.760
(0.41472) (0.38547) (0.42734)

Father Native US 0.780 0.815 0.762
(0.41419) (0.38800) (0.42566)

Family has Computer 0.888 0.909 0.878
(0.31506) (0.28737) (0.32748)

$25k ≤Fam. Inc. ≤50k 0.305 0.295 0.309
(0.46032) (0.45618) (0.46224)

$50k ≤Fam. Inc. ≤75k 0.204 0.214 0.199
(0.40291) (0.41028) (0.39927)

Family Inc.≥75k 0.281 0.308 0.269
(0.44969) (0.46182) (0.44322)

SES 0.042 0.144 -0.007
(0.74301) (0.72596) (0.74614)

School Characteristics:

Private 0.204 0.258 0.195
(0.4028) (0.4377) (0.3964)

Urban 0.346 0.387 0.339
(0.4756) (0.4873) (0.4734)
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Rural 0.173 0.161 0.175
(0.3781) (0.3679) (0.3797)

Suburban 0.482 0.451 0.486
(0.4997) (0.4978) (0.4998)

% Ltd English Proficiency 4.28 3.31 4.44
(8.34) (7.56) (8.45)

% Free Lunch 24.34 25.42 24.17
(25.57) (27.29) (25.29)

% Teachers Certified 91.97 90.76 92.15
(18.28) (20.20) (17.96)

Region:

Northeast 0.180 0.188 0.176
(0.38390) (0.39076) (0.38052)

South 0.367 0.331 0.385
(0.48210) (0.47054) (0.48658)

West 0.199 0.177 0.210
(0.39962) (0.38133) (0.40764)

N 15,370 4,970 10,400
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Table 3.3: Propensity Score Estimation Results

(1) (2) (3)
Music Band Choir

Student Student Student

9th Grade GPA 0.04623*** 0.04339*** 0.02587***
(0.00685) (0.00444) (0.00789)

Female 0.08044*** 0.00396 0.16166***
(0.00964) (0.00607) (0.02848)

Black 0.04325** 0.02010* 0.02111
(0.01791) (0.01119) (0.01389)

Asian 0.02813 0.02790* 0.01016
(0.02247) (0.01652) (0.01715)

Other Race -0.01597 -0.01535 0.00292
(0.01955) (0.01177) (0.01546)

Hispanic -0.03697* 0.02352 -0.03461**
(0.02003) (0.01512) (0.01379)

English Native Lang. 0.03316 0.04129*** 0.00577
(0.02022) (0.01045) (0.01581)

Two Parents 0.00574 0.00247 0.00211
(0.01257) (0.00790) (0.00920)

Mother HS -0.03086 -0.00412 -0.01089
(0.02028) (0.01403) (0.01519)

Mother Some College 0.00549 0.00932 0.00981
(0.02246) (0.01542) (0.01701)

Mother College 0.03306 0.02158 0.01557
(0.02760) (0.01940) (0.02079)

Mother >College 0.02697 0.02373 0.00398
(0.03333) (0.02382) (0.02421)

Father HS 0.06181*** 0.03248** 0.04390***
(0.02046) (0.01528) (0.01633)

Father Some College 0.06347*** 0.04525*** 0.02856*
(0.02230) (0.01692) (0.01728)

Father College 0.06404** 0.03651* 0.04998**
(0.02686) (0.01992) (0.02198)

Father >College 0.08108** 0.04126* 0.06322**
(0.03165) (0.02339) (0.02664)

Mother Native US 0.04773** 0.01744 0.04373***
(0.02106) (0.01294) (0.01435)

Father Native US -0.03910* -0.01024 -0.00597
(0.02237) (0.01417) (0.01660)

Fam. Computer 0.01843 0.01777* 0.00598
(0.01731) (0.01058) (0.01295)

25K ≤ Family Inc. ≤ 75K -0.01685 0.00398 0.00279
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(0.01610) (0.01041) (0.01194)
Fam. Inc.≥ $75K -0.06397*** -0.02836** -0.00519

(0.02025) (0.01232) (0.01535)
SES 0.01528 0.01845* -0.01583

(0.01786) (0.01121) (0.01480)
Northeast -0.02561 -0.03344*** -0.04334***

(0.01618) (0.00773) (0.00992)
South -0.09316*** -0.02515*** -0.08576***

(0.01195) (0.00718) (0.00793)
West -0.04474*** -0.03197*** -0.04700***

(0.01476) (0.00816) (0.00931)
Private 0.00851 -0.01199 -0.00494

(0.01678) (0.00914) (0.01172)
% Free Lunch 0.00073*** 0.00069*** -0.00077***

(0.00026) (0.00016) (0.00020)
Urban -0.00975 -0.01467** -0.01115

(0.01161) (0.00722) (0.00840)
Rural 0.06371*** 0.04993*** 0.01432

(0.01374) (0.00939) (0.01519)
% Teachers Certified -0.00046 0.00046** -0.00102***

(0.00029) (0.00020) (0.00020)
% Ltd English -0.00351*** -0.00122** -0.00069

(0.00076) (0.00050) (0.00056)
Northeast × Private -0.01512 0.03764

(0.02814) (0.02334)
Black × Private -0.02987 -0.00382

(0.03735) (0.02670)
Female × SES 0.00657

(0.01084)
Female × GPA -0.02404**

(0.00987)
Female × Rural 0.03408*

(0.02011)

(1) *** p<0.01, ** p<0.05, * p<0.1
(2) Standard errors in parentheses
(3) Coefficients are marginal effects from probit estimation.
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Table 3.4: Balancing Test. Treatment = Music in 10th, 11th, or 12th Grade

Difference Paired t-statistic

Ninth Grade GPA -0.0033 -0.16
Female 0.00796 0.57
Black 0.00439 0.45
Asian 0.0016 0.18
Other Race -0.00184 -0.25
Hispanic -0.00348 -0.45
English is Native Lang. 0.00127 0.14
Two Parents 0.00116 0.1
Mother HS -0.00184 -0.15
Mother Some College 0.00556 0.41
Mother College -0.00175 -0.15
Mother ≥ College -0.00169 -0.19
Father HS -0.00243 -0.19
Father Some College 0.00492 0.38
Father College 0.0029 0.25
Father ≥ College -0.00314 -0.29
Mother US Native -0.00134 -0.13
Father US Native -0.00198 -0.19
Family has computer 0.00102 0.13
$25k ≤ Family Income ≤ $50k 0.00223 0.16
$50k ≤ Family Income ≤ $75k -0.00256 -0.19
Family Income ≥ $75k -0.00256 -0.19
SES 0.00059 0.03
Northeast -0.00031 -0.03
South 0.00099 0.07
West -0.00247 -0.23
Private -0.00571 -0.46
% Free Lunch 0.158 0.24
Urban -0.00304 -0.23
Rural 0.01064 0.88
% Certified -0.019 -0.03
% Ltd English -0.0311 -0.17
Northeast × Private -0.00107 -0.18
Black × Private 0.00038 0.1
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Table 3.5: Balancing Test. Treatment = Choir Student

Ninth Grade GPA 0.0089 0.29
Female 0.01377 0.74
Black 0.00091 0.07
Asian 0.00286 0.25
Other Race 0.0006 0.06
Hispanic -0.003 -0.3
English is Native Lang. 0.0044 0.37
Two Parents 0.00168 0.1
Mother HS -0.00251 -0.14
Mother Some College 0.00387 0.2
Mother College -0.00359 -0.21
Mother ≥ College 0.0029 0.24
Father HS 0.00492 0.27
Father Some College 0.00067 0.04
Father College 0.00296 0.18
Father ≥ College -0.00327 -0.21
Mother US Native 0.00053 0.04
Father US Native 0.00288 0.21
Family has computer 9E-05 0.01
$25k ≤ Family Income ≤ $50k 0.00166 0.08
$50k ≤ Family Income ≤ $75k -0.00324 -0.17
Family Income ≥ $75k -0.00324 -0.17
SES 0.00253 0.09
Northeast 0.00416 0.26
South -0.01033 -0.57
West 0.01177 0.79
Private -0.0005 -0.03
% Free Lunch -0.045 -0.06
Urban -0.01217 -0.67
Rural 0.01442 0.83
% Certified -0.257 -0.28
% Ltd English 0.0632 0.25
Northeast × Private -0.00138 -0.14
Black × Private 0.00273 0.43
Female × SES -0.00144 -0.06
Female × GPA 0.0402 0.65
Female × Rural 0.01013 0.65
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Table 3.6: Balancing Test. Treatment = Band Student

Difference Paired t-statistic

Ninth Grade GPA 0.0238 0.74
Female 0.00903 0.39
Black 0.00302 0.19
Asian 0.00128 0.09
Other Race -0.00598 -0.53
Hispanic -0.00936 -0.74
English is Native Lang. 0.00685 0.54
Two Parents 0.00219 0.12
Mother HS -0.00087 -0.04
Mother Some College 0.0037 0.16
Mother College 0.00049 0.02
Mother ≥ College 0.00107 0.07
Father HS -0.00218 -0.11
Father Some College 0.0093 0.43
Father College 0.00024 0.01
Father ≥ College -0.0019 -0.11
Mother US Native 0.00569 0.35
Father US Native 0.00496 0.3
Family has computer 0.00503 0.44
$25k ≤ Family Income ≤ $50k 0.00862 0.37
$50k ≤ Family Income ≤ $75k -0.00313 -0.14
Family Income ≥ $75k -0.00313 -0.14
SES 0.01036 0.33
Northeast -1E-05 0
South -0.0011 -0.05
West -0.00871 -0.51
Private -0.00915 -0.49
% Free Lunch 0.287 0.27
Urban -0.00492 -0.24
Rural 0.01395 0.65
% Certified 0.36 0.49
% Ltd English -0.0823 -0.28
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