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Compared to the most commonly used binary computers, the Fibonacci computer 

has its own research values. Making study of Fibonacci radix system is of 

considerable importance to the Fibonacci computer. 

Most materials only explain how to use binary coefficients in Fibonacci base to 

represent positive integers and introduce a little about basic arithmetic on positive 

integers using complicated but incomplete methods. However, rarely have materials 

expanded the arithmetic to negative integers with an easier way. 

In this thesis, we first transfer the unsigned binary Fibonacci representation with 

minimal form(UBFR(min)) into the even-subscripted signed ternary Fibonacci 

representation(STFRe), which includes the negative integers and doubles the range 

over UBFR(min). Then, we develop some basic operations on both positive and 

negative integers by applying various properties of the Fibonacci sequence into 

arithmetic. We can set the arithmetic range equivalent to 64-bit binary as our daily 

binary computers, or whatever reasonable ranges we want. 
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Chapter 1: Introduction 

1.1 Mathematical Foundation 

There are many ways to represent numbers, among which binary and decimal are 
two most familiar uniform base number systems. It is obvious that useful codes are 
closely related to the number systems upon which they are based. Therefore, in search 
for other comparable or even better codes, it is worthy of looking for number systems 
that have algebraic structure as well as mathematical properties most useful to coding 
theory. The Fibonacci sequence of numbers, which is also named the golden section 
sequence, is such a special system. Introduced in 1202 by the mathematician 
Leonardo Fibonacci, theories and applications of Fibonacci numbers in modern 
mathematics began to develop rapidly starting since 60th years of the 20th century 
[1]. In the first Section, we will explore the mathematical foundation of Fibonacci 
sequence, including the simplest but critical properties for the Fibonacci numbers and 
Fibonacci coding theory. 

1.1.1 Simplest Properties for The Fibonacci Numbers 

The Fibonacci sequence is the series of numbers that obey some specific rule, 
which can be written as: 

 
																											0, 1, 1, 2, 3, 5, 8, 13, 21, 34… (1.1) 

																																									 
It’s apparent that the Fibonacci numbers are a recurrence numerical sequence, 

beginning with 0 and 1, and the next number is calculated by adding up the two 
numbers before it. Therefore, the Fibonacci sequence of numbers can be defined by 
the linear recurrence equation [2]: 

 
																									𝐹/ = 𝐹/12 + 𝐹/14;	𝐹6 = 0, 𝐹2 = 1 (1.2)																	 

 
Sometimes we will use the alternate form [3] of this equation 𝐹/ = 𝐹/72 − 𝐹/12 for 

the convenience of deduction and calculation. If needed, we can expand the Fibonacci 
sequence by including the negative-subscripted Fibonacci numbers like 𝐹12, 𝐹14 …, 
which also follows the above recurrence relation. 

As to the connection between the Fibonacci sequence and the golden section, here 
is the general term formula: 

 

																				𝐹9 = 1 5
1 + 5
2

9

−
1 − 5
2

9

	 1.3 	 
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The Fibonacci sequence of integers is closely related to irrational numbers [4], 
which is very intriguing. And φ = (1 + 5) 2 = 1.6180… is famous as the golden 
ratio [5].  

In this thesis, we will not use the knowledge of the gold section, but only the 
following simplest mathematical properties of the Fibonacci numbers [2, 6]: 

 
𝐹2 + 𝐹4 +⋯+ 𝐹9 = 𝐹974 − 1 1.4  

 
𝐹2 + 𝐹= + 𝐹> +⋯+ 𝐹4?12 = 𝐹4? 1.5  

 
𝐹4 + 𝐹@ + 𝐹A +⋯+ 𝐹4? = 𝐹4?72 − 1 1.6  

 
Based on the recurrence relation, we can attain (1.4) - (1.6) by mathematical 

reasoning as follows: 
For the equation (1.5), 

																				𝐹2 + 𝐹= + 𝐹> +⋯+ 𝐹4?12 = 𝐹4/12

?

/B2

= 𝐹4/ − 𝐹4/14

?

/B2

= 𝐹4/

?

/B2

− 𝐹4/14

?

/B2

= 𝐹4/

?

/B2

− 𝐹4/

?12

/B2

= 𝐹4? 

 
For the equation (1.6), 

																			𝐹4 + 𝐹@ + 𝐹A +⋯+ 𝐹4? = 𝐹4/

?

/B2

= 𝐹4/72 − 𝐹4/12

?

/B2

= 𝐹4/72

?

/B2

− 𝐹4/12

?

/B2

= 𝐹4/72

?

/B2

− 𝐹4/72

?12

/B2

+ 𝐹2 = 𝐹4?72 − 1 

 
For the equation (1.4), in accordance with (1.5) and (1.6), 
 

																					𝐹2 + 𝐹4 + ⋯+ 𝐹4?12 + 𝐹4? = 𝐹4? + 𝐹4?72 − 1 = 𝐹4?74 − 1 

1.1.2 Fibonacci Coding 

 Recalling the classical binary code which we are all familiar with, the essence of it 
is that every number can be represented as: 
 

N = 𝑏9122912 + 𝑏9142914 + ⋯+ 𝑏/122/12 + ⋯+ 𝑏626 1.7  
 

where 𝑏/ ∈ 0,1  is a binary coefficient, 2/(𝑖 = 0, 1, 2, … , 𝑛 − 1) is the weight of the 
i-th digit. 

Besides, we have the following mathematical property of binary numbers, which is 
of considerable importance to the binary system computer: 
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2912 + ⋯+2/ + ⋯+ 22 + 26 = 29 − 1 1.8  
 
Using the similar idea, we find that every number is the sum of a collection of 

different Fibonacci numbers, which will be proved in Chapter 2. Thus, the n-bit 
Fibonacci code means the following positional representation of natural numbers: 
 

N = 𝑎9𝐹9 + 𝑎912𝐹912 + ⋯+ 𝑎/𝐹/ + ⋯+ 𝑎4𝐹4 + 𝑎2𝐹2 1.9  
 

where 𝑎/ ∈ 0,1  is also a binary coefficient, 𝐹/(𝑖 = 1, 2, 3, … , 𝑛) is the weight of the 
i-th digit.  

The n-bit Fibonacci code (1.9) can be abbreviated as (1.10), which is called an 
unsigned binary Fibonacci representation (UBFR) of a non-negative integer N: 
 

N = 𝑎9𝑎912 …𝑎/ …𝑎4𝑎2 1.10  
 
The brief notation (1.10) consists of the n bits, starting from the highest bit 𝑎9 to 

the lowest bit 𝑎2.  
It should be noted that there are several unsigned binary Fibonacci representations, 

which means we can choose different sets of Fibonacci numbers to represent the same 
number. As we will introduce in Chapter 2, among these representations, the minimal 
form and the maximal form of UBFR are of particular interest. Besides, there are 
conversions from binary expressions to multilevel expressions, such as ternary 
Fibonacci representations, and quaternary Fibonacci representations. Besides, the 
coefficients are not limited to zero and unity. 

1.2 Fibonacci Logic System Introduction 

As is known to all, we can have different logic systems to express the same 
number. Binary and decimal systems are two typical representatives of the 
conventional uniform base number systems. Besides, mixed base systems are widely 
applied to measurements. 

We use the binary system in almost all computers, since the binary system 
computer has its unique, incomparable advantages over other common systems such 
as ternary or decimal systems. However, the binary system still has some 
shortcomings and inconvenience in applications. Therefore, we are always searching 
for possible comparable or even better systems, and the Fibonacci system is 
apparently a good choice because of its fault tolerance [7] resulting from the 
redundancy presented in the Fibonacci base. 

1.2.1 Computer for Binary Base 

The conventional computers with binary base have three most important 
advantages as: 

1.  It’s technically easy to implement. It is easy to use a bi-stable circuit to 
represent binary digits 0 and 1. 
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2. It’s highly reliable. Since we only use digits 0 and 1 in binary system, it’s much 
safer during transmission and processing, which ensures high reliability of the 
computer. 

3. The operation rules are simple. Compared with decimal numbers, the operation 
rules of binary numbers are much simpler, which not only simplifies the structure of 
the arithmetic units, but also improves the speed of operations. 

However, binary system computers do have their defects, such as difficulty of 
memory and read. What’s more, the binary system is an incomplete set if we delete 
some weight 2/ on the i+1 digit. Every number has its unique representation in the 
base 2 system, which indicates the binary system is not very fault-tolerant. 

1.2.2 Computer for Fibonacci Base 

Comparing the classical binary code (1.7) with the unsigned binary Fibonacci code 
(1.9), as well as comparing the property for the binary numbers (1.8) with the 
properties for the Fibonacci numbers (1.4) - (1.6), we can find both have some similar 
parts. We have a good opportunity using Fibonacci numbers as a base to create 
effective algorithms for Fibonacci calculators, since we can adopt the advantages 
present in the binary system like simple expressions, similar mechanisms.  

Another important point is that the Fibonacci system forms a complete set by itself 
or even when any one of the Fibonacci numbers is absent from the system, the 
property of which is not present in the binary system. If any one of the Fibonacci 
numbers is deleted, we still can express every non-negative integer. Therefore, we 
can pursue the goal of fault tolerance using the simplicity property of the Fibonacci 
system. 

At the end of this section, we want to show an example of getting started in the 
research of the Fibonacci device. 

Based on Zeckendorf’s theorem introduced in the next Chapter, scientists Alexey 
Stakhov, Alexey Borisenko and Svetlana Matsenko displayed a Fibonacci counter for 
the minimal form [1] as a comparison with the classical binary counter.  
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Figure 1.1 The Fibonacci counter for the minimal form [1] 
 
As the figure 1.1 shows, the regular structure of the Fibonacci counter can be of 

unlimited length, which is the same as for the binary counter. We will not describe 
the structural and functional details of this counter, since it is not what we are going 
to discuss in this thesis. But we want to point out that the Fibonacci counter gives 
some advantages over the conventional binary counters. First, It’s noise-immune. 
This is achieved as the result of the presence of the “forbidden” state in the Fibonacci 
counter. Second, it has high speed. This is caused by the absence of the preceding 
carry-overs needed in the binary counters, which saves much time. Third, it is 
informational reliable, since it consists of a block for error checking. 

Therefore, it makes sense to use the Fibonacci counter instead of the classical 
binary counter, if we require some device with the properties of high noise immunity, 
sufficiently high speed but with familiar regular structure.  

By this example, we want to show that the Fibonacci counter for the minimal form, 
based on Zeckendorf’s theorem, is the first step for the deep research of reliable 
Fibonacci computers. It inspires us to continue developing the Fibonacci systems, 
figuring out some basic operations among numbers rather than limited to counting. 
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1.3 Project Overview  

According to the contents introduced above, it is worth studying the Fibonacci 
logic system deeper. The Fibonacci code has valuable mathematical properties, 
deserves more research, and these properties make the Fibonacci system better than 
the binary system in some places. Therefore, it makes sense to sufficiently utilize the 
previous knowledge of the Fibonacci numbers and go further to develop some easier 
ways to perform basic operations in the Fibonacci system. 

1.3.1 Overview of The Project 

In this project, we first need to review and sufficiently make use of the important 
mathematical properties of the Fibonacci numbers, because these are the bases of our 
project. We study the knowledge of Zeckendorf’s theorem and deduce the minimal & 
maximal forms from it. There are several unsigned binary Fibonacci Representations, 
but the UBFR for the minimal form is the most widely used for Fibonacci codes. 

Most materials only explain how to use binary coefficients in Fibonacci base to 
represent non-negative integers, and a small number of them introduce some basic 
arithmetic on non-negative integers through complicated but incomplete methods. 
However, rarely have materials expanded the Fibonacci expressions and the 
arithmetic to negative integers. Even though some papers mentioned a little about the 
negative expressions and arithmetic, such as using complementation, those methods 
are impractical because of complication and waste of bits used as sign symbols. 

In order to realize the negative representations and operations more easily, we 
transfer the UBFR(min) into multilevel Fibonacci representations like the ternary 
Fibonacci representation, or the quaternary Fibonacci representation. Then, we find 
the even-subscripted signed ternary Fibonacci representation(STFRe) is the optimal 
one to realize our goal. STFRe can easily solve the issues in expressions of negative 
integers, double the operation range compared with UBFR(min), and thus make the 
basic arithmetic much less complicated. 

Based on STFRe, we develop the four fundamental operations in the Fibonacci 
system: addition, subtraction, multiplication and division. This method can easily 
process both non-negative and negative integers and solves the overflow problem 
without unnecessary bits. 

Finally, since our daily computers are usually 32-bit binary or 64-bit binary, we 
can set the arithmetic range equivalent to 64 bits for comparison. It should be noted 
that the arithmetic range is not limited to 64 bits but whatever reasonable ranges we 
require. 

1.3.2 Contributions of The Thesis  

1. Implementation of Fibonacci arithmetic based on the STFRe{-1,0,1}. 
1) Develop principles for the four fundamental arithmetic operations, namely 
addition, subtraction, multiplication and division, on integers based on the 
STFRe{-1,0,1}. 
2) Solve carry problems occurring in the arithmetic operations. 
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3) Create flowcharts for the whole procedures of the four arithmetic 
operations. 
4) Write programs to implement the four arithmetic operations on the 
computer. 

 
2. Handling of overflow problem. 

1) Develop some clever ways to check overflow occurring in the arithmetic 
operations. 
2) Apply overflow checking methods to the practical use to avoid further 
mistakes or unnecessary steps. 
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Chapter 2: Fibonacci Representations 

2.1 Unsigned Binary Fibonacci Representation 

As we have mentioned in the previous Chapter, every non-negative integer is the 
sum of some set of Fibonacci numbers. Usually we will exclude the Fibonacci 
number 𝐹2 and start with 𝐹4 to represent a number, which will be explained in the 
next Sections. According to [7], although using 𝐹2 is convenient for error correction, 
starting with 𝐹4 gives a more “efficient system” to process. 

It should be noted that different sets of Fibonacci numbers can have the same sum, 
thus those sets represent the same positive integer. For example, if we want to express 
the number 3 in the Fibonacci system, we can either represent 6 by 𝐹4 + 𝐹> = 6 or by 
𝐹4 + 𝐹= + 𝐹@ = 6. Thus, there are two sums for 6. It is the result of the completeness 
property of the Fibonacci base. 

In the Fibonacci system, every non-negative integer can be expressed with 
appropriate coefficients. Since the binary Fibonacci representation(BFR) in (1.10), 
namely N = 𝑎9𝑎912 …𝑎/ …𝑎4𝑎2, is the basic form in the system, we will get started 
with it.  

2.1.1 Zeckendorf’s Theorem 

As mentioned above, given an arbitrary non-negative integer, usually there are 
several possible expressions available in the BFR. For example, if we want to 
represent the number 3 in the 4-bit Fibonacci system, i.e. 𝑎@𝑎=𝑎4𝑎2, we can either 
express as 3 = 𝐹4 + 𝐹= = 0110 or as 3 = 𝐹@ = 1000. The representation is for the 
most significant bit on the left. Here, “4-bit” means we use 4 Fibonacci numbers, 
from 𝐹2 to 𝐹@, as weights to represent a non-negative integer, and we usually set the 
coefficient 𝑎2as 0 for generality, which will be explained later. The representation is 
written from the most significant digit to the least significant digit, left to right. 

The redundancy property discussed above is what we desire for a fault tolerant 
computer [8]. However, in order to make Fibonacci calculations and operations 
performed easily, we prefer to express every number in a uniform, unique form. Thus, 
among all those redundant expressions, we want to use algorithms to choose a fixed, 
unique expression in the application of the Fibonacci system. 

Then here comes the important Zeckendorf’s theorem [9]. But before proving it, 
we need to firstly verify another theorem, labeled as “Theorem 1” in [1]: Given an 
arbitrary positive integer N, it has exactly one representation in the form:  

 
𝑁 =	𝐹/ + 𝑟 2.1  

 
where 𝐹/(𝑖 = 2, 3, 4, … ) is some Fibonacci number, and r is some non-negative 

integer subjected to: 
 

0 ≤ 𝑟 < 𝐹/12 2.2  
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First we can directly find that (2.1), (2.2) and (1.2) indicate the range of N must be 
𝐹/ ≤ 𝑁 < 𝐹/72. What we need to prove next is that the inequality is unique for each 
positive number N.  

Now let’s prove this in detail. Recalling (1.1), we have the Fibonacci sequence as 
{𝐹6 = 0, 𝐹2 = 1, 𝐹4 = 1, 2, 3, 5, … , 𝐹/, 𝐹/72, … }. Based on the recurrence relation (1.2), 
it’s obvious that starting from the lowest Fibonacci number 𝐹4 = 1, the Fibonacci 
sequence is strictly increasing. Since any positive integer N is no less than 1, we can 
pick exactly one pair of adjacent Fibonacci numbers 𝐹/ and 𝐹/72 from the Fibonacci 
sequence, and that pair should have the following inequality relationship with a given 
positive integer N: 
 

𝐹/ ≤ 𝑁 < 𝐹/72 2.3  
 
In terms of the inequality (2.3) as well as both positive integers of 𝐹/ and N, we 

define the following difference: 
 

𝑟 = N − 𝐹/ 2.4  
 

where r is a non-negative integer. We find (2.1) is an alternate form of (2.4). 
Then subtracting 𝐹/ from each number in (2.3), we get: 
 

0 ≤ N − 𝐹/ = 𝑟 < 𝐹/72 − 𝐹/ 2.5  
 
Based on the difference (2.4) and the alternate form of recurrent relation (1.2), we 

finally have the condition (2.2), and the whole proof is done. 
Usually a number system is most useful in operations if it has a unique 

representation of every integer. Therefore, we need some unique expression in the 
Fibonacci systems to easily process the calculations. Then here comes Zeckendorf’s 
theorem: Every positive integer can be expressed as the unique some of non-
consecutive Fibonacci numbers [1]. 

To prove Zeckendorf’s theorem, we should demonstrate the following two points: 
1. Every positive integer can be expressed as some of non-adjacent Fibonacci 
numbers. 2. For each positive integer, it’s Zeckendorf representation is unique. 

Proof. Using the idea of the theorem proved above, we come upon a simple 
algorithm to deduce the Zeckendorf representation. Suppose we want to represent a 
positive integer N in the n-bit Fibonacci code, the weights of which, from highest to 
lowest, are listed as follows: 

 
𝐹9, 𝐹912, … , 𝐹/72, 𝐹/, … , 𝐹4, 𝐹2 2.6  

 
It’s obvious the positive integer N is subjected to the condition 

 
0 < 𝑁 < 𝐹972 2.7  

 
because in terms of (2.3) and (2.4), the binary coefficient 𝑎972 = 1 and we need the 
extra weight 𝐹972.  
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Now let’s compare the positive number 𝑁 < 𝐹972 with the weight 𝐹9 in the highest 
digit: If 𝐹9 ≤ 𝑁 < 𝐹972, then the corresponding binary coefficient 𝑎9 = 1. Then we 
set the remainder r2 = 𝑁 − 𝐹9. According to the previous theorem, r2 should satisfied 
the condition 0 ≤ r2 < 𝐹912. Therefore, the coefficient 𝑎912 adjacent to 𝑎9 must be 
0. If N < 𝐹9, we directly set 𝑎9 = 0 and the remainder r2 = 𝑁.  

After the first comparison, we need to check whether r2 = 0. If r2 = 0, then we 
just need to set all the other coefficients as 0 and the Zeckendorf representation is 
finished. If r2 is still a positive integer, we continue a comparison between r2 and the 
next adjacent Fibonacci number candidates 𝐹914, … , 𝐹/72, 𝐹/, … . In terms of the 
previous theorem, we can find the exact one pair of adjacent Fibonacci numbers 𝐹/ 
and 𝐹/72 , connected with r2 in the inequality 𝐹/ ≤ r2 < 𝐹/72. Therefore, it comes to 
the corresponding 𝑎/ = 1. And since the remainder 𝑟4 = 𝑟2 − 𝐹/ satisfies the 
condition 0 ≤ r4 < 𝐹/12, it automatically follows 𝑎/12 = 0. 

Based on the simple algorithm mentioned above, we can deduce all the binary 
coefficients 𝑎9, 𝑎912, … , 𝑎/72, 𝑎/, … , 𝑎4, 𝑎2  to represent the positive integer N, and 
the representation contains the property that no consecutive coefficients 𝑎/72 and 𝑎/ 
are both equal to 1. Besides, the representation is unique, because the previous 
theorem demonstrates that the inequality 𝐹/ ≤ 𝑁 < 𝐹/72 for each positive number N 
is unique. Therefore, the proof of Zeckendorf’s theorem is done. 

Here, we give an example to illustrate the whole procedure discussed above. 
Suppose we want to represent a positive integer 𝑁 = 50 in the 10-bit Fibonacci code:  

I. Since 34 = 𝐹R ≤ 𝑁 = 50 < 𝐹26 = 55, we set 𝑎26 = 0 and 𝑎R = 1.  
II. Set the remainder 𝑟 = 	𝑁 − 𝐹R = 50 − 34 = 16. Automatically follows 𝑎S = 0.  
III. Compare the remainder 𝑟 with the next adjacent Fibonacci numbers starting 

from 𝐹T, 𝐹A, 𝐹> … until we find 13 = 𝐹T ≤ 𝑟 = 16 < 𝐹S = 21. Set 𝑎T = 1.  
IV. Set the remainder 𝑟 = 	𝑟 − 𝐹T = 16 − 13 = 3. Automatically follows 𝑎A = 0.  
V. Compare the remainder 𝑟 with the next adjacent Fibonacci numbers starting 

from 𝐹>, 𝐹@, 𝐹= … until we find 3 = 𝐹@ ≤ 𝑟 = 3 < 𝐹> = 5. Set 𝑎> = 0 and  𝑎@ = 1.  
VI. Set the remainder 𝑟 = 	𝑟 − 𝐹@ = 3 − 3 = 0. Set the remaining binary 

coefficients 0s, namely 𝑎= = 𝑎4 = 𝑎2 = 0. Terminate the procedure. 
VII. The Zeckendorf representation is 𝑁 = 50U = 0101001000 
It is worth mentioning that in the Zeckendorf representation, 𝑎2 is always equal to 

0. The reason is: If we have 𝑎4 = 1, it automatically follows 𝑎2 = 0 as proved above. 
If we have 𝑎4 = 0, it indicates currently the remainder 𝑟V is subjected to the 
inequality 0 ≤ 𝑟V < 𝐹2 = 1, meaning that  𝑟V is exactly 0 and 𝑎2 should be 0. 
Therefore, the binary coefficient 𝑎2 is always equal to 0 based on the Zeckendorf 
representation. 

Therefore, the maximum positive integer M that can be expressed by the n-bit 
Fibonacci code in the Zeckendorf representation is: 
 

M = 𝐹9 + 𝐹914 + ⋯+ 𝐹@ + 𝐹4 = 𝐹972 − 1											𝑖𝑓	𝑛	𝑖𝑠	𝑒𝑣𝑒𝑛
𝐹9 + 𝐹914 + ⋯+ 𝐹> + 𝐹= = 𝐹972 − 1											𝑖𝑓	𝑛	𝑖𝑠	𝑜𝑑𝑑

2.8  
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It’s apparent that the positive integer should be less than the weight 𝐹972, if we 
want to express it in the n-bit Zeckendorf representation. This in turn proves the 
constraint in (2.7). 

2.1.2 The Maximal & Minimal Forms 

We have different forms of the Fibonacci representation to represent a non-
negative integer, including binary and other multilevel Fibonacci representations. 
Among BFRs, we are especially interested in the maximal and the minimal forms. 
These two forms make calculations and operations in the Fibonacci systems much 
easier because of their uniqueness. 

The Zeckendorf representation is also called the minimal form of the unsigned 
binary Fibonacci representation, abbreviated as the UBFR(min) and it is unique. As 
we have discussed above, the UBFR(min) has two special properties: 

1. In every UBFR(min), the lowest bit 𝑎2is always equal to 0. Therefore, any n-bit 
Fibonacci code (1.10) in the minimal form can be expressed as: 

 
𝑁 = 𝑎9𝑎912 …𝑎/ …𝑎40 2.9  

 
And we can further abbreviate (2.9) as N = 𝑎9𝑎912 …𝑎/ …𝑎4 for convenience. The 

truncated n-bit Fibonacci code starts from the lowest bit 𝑎4. 
2. In every UBFR(min), no two adjacent bits can be 1 together. This means after 

each bit 𝑎/72 = 1, it automatically follows 𝑎/ = 0. In the Boolean functions, the 
property is written as [10, 11]: 

 
𝑎/72𝑎/ = 0,					𝑖 = 2,3, … , 𝑛 − 1	 2.10  

 
Based on the process of the algorithm, it’s obvious that the UBFR(min) consists of 

the least number of 1s compared to the other forms of UBFR to represent the same 
non-negative integer. We can use the simple algorithm mentioned before to obtain the 
n-bit UBFR(min) for an arbitrary non-negative integer N, which is subjected to 𝑁 <
𝐹972. It should be noted that the # of bits n is subjected to 𝑛 ≥ 2, otherwise it’s 
meaningless, since 𝑎2 is excluded from consideration. Here comes the flow chart of 
the minimal representation: 
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Figure 2.1 Flowchart for algorithm to obtain UBFR(min) 
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The maximal form of the UBFR, abbreviated is the UBFR(max), as its name 
implies, is a unique representation consisting of the most number of 1s compared to 
the other forms of BFR to represent the same non-negative integer. And in the 
Boolean functions, the UBFR(max) has the following property [12]: 

 
𝑎/72 + 𝑎/ ≥ 1,					𝑖 = 2,3, … , 𝑛 − 1 2.11  

 
This Boolean expression means every two consecutive bits must contain at least 

one 1 in the maximal form. 
In terms of the recurrence relation (1.2), we can transfer from the minimal to the 

maximal via: Each time we replace “100” by “011” from right to left (or from left to 
right). And repeat this step until there is no more “100” in the representation. 

For example, in the 8-bit UBFR(min), the number 𝑁 = 30 is expressed as 𝑁 =
30 = 𝐹S + 𝐹A + 𝐹4 = 10100010. It should be noted that we exclude 𝑎2 from the 
expression from now on because it’s always 0 in the UBFR(min). Based on the 
maximal form rule, we have the transferring steps as follows: 

 
𝑁 = 30 = 10100010 
															= 10011010 
															= 01111010 

 
In terms of the maximal form rule, we find there is no two adjacent 0s existing in 

the UBFR(max) except the integer 0. The integer 0 has the same expression 00…0
9

 

both in the n-bit UBFR(min) and UBFR(max). 
In reverse, we can transfer from the maximal to the minimal via: Each time we 

should replace “011” by “100”. But it should be a left-to-right scan (i.e. from the 
highest to the lowest bit) to avoid accumulation of the left-propagating carries [14]. 
And we need to repeat this step until no two adjacent 1s occur together. Here, we 
recover the maximal form of 𝑁 = 30 obtained above to its minimal form: 

 
𝑁 = 30 = 01111010 
															= 10011010 

                                                          			= 10100010 
 
One more thing, any UBFR can be transferred to the UBFR(min) using the 

minimal form rule, and transferred to the UBFR(max) using the maximal form rule. 
Usually, we choose the UBFR(min) for calculations and operations of non-negative 

integers. In addition to its property of uniqueness, we have the following advantages: 
1. It can be directly deducted by the simple algorithm shown in figure 2.1 without 

intermediate steps. 
2. It contains the lowest number of 1s. Compared to the other UBFRs, we can 

avoid as many carries as possible when doing some calculation with the UBFR(min). 
And it looks simple and clear. 

3. It can be easily converted to the signed ternary Fibonacci representation (STFR), 
which will be discussed later in detail. 
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2.2 Binary to Multilevel Conversion 

We find in both the UBFR(min) and the UBFR(max) so far we have represented 
the non-negative integers. Even if we include the Fibonacci number with negative 
subscripts (like 𝐹12, 𝐹14…), it’s still difficult to express the non-negative integers. 
The reason is that the values of the negative-subscripted Fibonacci numbers are with 
alternating signs. For example, based on the recurrence relation, we have 𝐹12 = −1, 
𝐹14 = 1, 𝐹1= = −2, 𝐹1@ = 3…, which makes the negative integers hard to be 
included only by binary Fibonacci representations. 

 In the binary coefficient Fibonacci system, if we want to include the negative part, 
we need to adopt some methods such as using complemented representations or sign-
magnitude representation [7]. However, those methods are either wasting more bits or 
inconvenient to implement. 

In order to figure out some easier way, we attempt to convert the binary 
coefficients to the multilevel coefficients in the Fibonacci logic system. And in the 
next two sub-sections, we are going to talk about quaternary conversions and ternary 
conversions in details.  

Through these conversions, we can efficiently process the calculations as well as 
extend the range to the negative part, which are added features of the Fibonacci 
numbers in addition to redundancy.  

2.2.1 Unsigned Quaternary Fibonacci Representation 

First, let’s recall the general formula of the n-bit UBFR excluding 𝑎2 to express a 
non-negative integer N: 
 

𝑁 = 𝑎/𝐹/

9

/B4

,					𝑎/ ∈ 0, 1 2.12  

 
The maximal integer than can be represented in this formula is 

 

𝑀 = 𝐹/

9

/B4

= 𝐹974 − 2	

 
Therefore, the general n-bit UBFR is in the range of 0,𝑀 . The flowchart in figure 

2.2 shows a conversion algorithm to obtain a general n-bit UBFR for a given non-
negative integer N [7]. 
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Figure 2.2 Flowchart for algorithm to obtain a general UBFR 
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In order to compare figure 2.1 and figure 2.2, we still exclude 𝑎2 from 
consideration and set 𝑎2 = 0 in figure 2.2. Indeed, 𝑎2 can be included in figure 2.2. 
The differences between figure 2.1 and figure 2.2 are: 

Figure 2.1 is the minimal form of UBFR, which contains the least number of 1s 
and complies with the rule (2.10). Figure 2.2 is just a general form of UBFR without 
special rules. 

Given n-bit capacity, in the UBFR(min), the maximal value is 𝑀 = 𝐹972 − 1; in a 
general UBFR, the maximal value is 𝑀V = 𝐹974 − 2. It’s obvious that 𝑀 < 𝑀V under 
the premise that 𝑛 ≥ 2, since that we utilize the available Fibonacci numbers as many 
as possible in a general UBFR. 

    After we obtain an n-bit UBFR for a given non-negative integer N in terms of 
the flowchart in the figure 2.2, we can use it to generate an unsigned quaternary 
Fibonacci representation using only even-subscripted Fibonacci numbers (the 
definition is that we only use even-subscripted Fibonacci numbers, the corresponding 
coefficients of which can have four different candidates in the range {-1,0,1,2}, to 
represent a non-negative integer), i.e. UQFRe [13]: 

 
𝑞4/a = 𝑎4/12 + 𝑎4/ − 𝑎4/72 2.13  

 
where 𝑞4/a ∈ −1,0,1,2 , 𝑖 = 1, 2, … , 𝑘, and the superscript 𝑒 just emphasizes that we 
only use even-subscripted Fibonacci numbers. 𝑎c ∈ 0,1 , 𝑗 = 1,2, …𝑛 is the binary 
coefficient in the corresponding n-bit UBFR. And we have k = 𝑛/2 . 

Therefore, we can use the UBFR and its corresponding UQFRe to represent the 
same integer N: 

 

N = 𝑎/𝐹/

9

/B4

= 𝑞4ca 𝐹4c

?

cB2

,					𝑘 =
𝑛
2 2.14  

  
It should be noted that in the UQFRe converted from an n-bit UBFR, there are still 

about n coefficients but with all the odd-subscripted coefficients always equal to 0. 
And the even-subscripted coefficients q4/a  can take four possible values among {-
1,0,1,2}, which is shown in the table 2.1 [3]: 
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Table 2.1 Conversion from UBFR to UQFRe 
 
As [15] mentions, if we subtract 1 from all subscripts in (2.13), we can easily use 

the same n-bit UBFR to get the unsigned quaternary Fibonacci representation using 
only odd-subscripted Fibonacci numbers, i.e. UQFRo. The relation is very analogous 
to (2.13): 

 
𝑞4/12h = 𝑎4/14 + 𝑎4/12 − 𝑎4/ 2.15  

 
where 𝑞4/12h ∈ −1,0,1,2 , i = 1, 2, … , 𝑘V and the superscript 𝑜 just emphasizes that 
we only use odd-subscripted Fibonacci numbers. 𝑎c ∈ 0,1 , 𝑗 = 1,2, …𝑛 is the binary 
coefficient in the corresponding n-bit UBFR. And we have 𝑘V = 𝑚/2 + 1. It’s 
obvious that in UQFRo, the odd-subscripted coefficients 𝑞4/12h  has the same value 
range as the even-subscripted ones. 

Compared with the n-bit UBFR, we only need to take about n/2-bit of digits into 
consideration when using the corresponding UQFRe or UQFRo, since the other half 
must be 0. However, it seems that both UQFRe and UQFRo still can not express the 
negative integers. What’s worse, the coefficients of them have four possible values to 
choose from, which makes expressions as well as calculations even more 
complicated.  

In fact, we use the UQFR to bring up the STFR (the definition is that we use non-
negative-subscripted Fibonacci numbers, the corresponding coefficients of which can 
have three different candidates, to represent both negative and non-negative integers), 
which is the most important topic in our thesis. 

Condition !"#$% !"# !"#&% '"#( = !"#$% + !"# − !"#&%
0 0 0 0 0
1 0 0 1 -1
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 0
6 1 1 0 2
7 1 1 1 1

,-./ − 01− ,2./(	41(55#6#(70	4178(9:#17
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2.2.2 Signed Ternary Fibonacci Representation 

In terms of [15], there are several unsigned ternary Fibonacci representations 
existing. Among them, we have two special representations that only use even-
subscripted Fibonacci numbers, called the UTFRe{-1,0,1} and the UTFRe{0,1,2}.  

In fact, both UTFRe{-1,0,1} and UTFRe{0,1,2} are two special examples of the 
UQFRe. Recalling the table 2.1, it shows how to convert the binary coefficients in a 
general UBFR to the quaternary coefficients in the corresponding UQFRe. If we use 
the unique UBFR(min) instead of an arbitrary one, we can eliminate the possible 
quaternary coefficient 2. The reason is that in every minimal form, no two adjacent 
bits are 1 together, which indicates that the cases 3, 6 and 7 will not occur based on 
the UBFR(min). Therefore, the UTFRe{-1,0,1} is derived from the UBFR(min). 
Instead if we use the unique UBFR(max), we can eliminate the possible quaternary 
coefficient -1. Since in every maximal form, every two adjacent bits should at least 
have one 1, which indicate that only cases 2, 3, 5, 6 and 7 are possible in the 
UBFR(max). Thus, we can use the UBFR(max) to deduce the UTFRe{0,1,2}. 

Although the UTFRe{-1, 0, 1} and the UTFRe{0,1,2} are all unique ternary 
representations, we are especially interested in the UTFRe{-1,0,1}. Through a simple 
form of complementation, i.e. -1 <-> 1 and 0 <-> 0, we can easily convert a positive 
number N to its corresponding negative –N, or vice versa. Here are three examples: 

1. We are given a positive integer 𝑁2 = 5 = 𝐹A − 𝐹@ = 1 − 1	0. It should be noted 
that in the UTFRe{-1,0,1}, we usually omit the odd-subscripted bits, and start with 
the lowest ternary bit 𝑡4. Then, if we make the complementation on every bit of 𝑁2, 
we can easily obtain the negative one as −𝑁2 = −110 = −𝐹A + 𝐹@ = −5. 

2. Given a negative integer 𝑁4 = −12 = −𝐹A − 𝐹@ − 𝐹4 = −1 − 1 − 1, making 
the same complementation, we directly get the positive one as −𝑁4 = 111 = 𝐹A +
𝐹@ + 𝐹4 = 12. 

3. If given the integer 0, it’s apparent that we still get 0 after the complementation. 
Therefore, the UTFRe{-1,0,1} automatically leads to the signed Fibonacci 

representation using only even-subscripted Fibonacci numbers, namely STFRe{-
1,0,1}. And the relation of the UBFR(min)-to-STFRe{-1,0,1} conversion is as 
follows: 

 
𝑡4/a = 𝑎4/12 + 𝑎4/ − 𝑎4/72 2.16  

 
where 𝑡4/a ∈ −1,0,1 , i = 1, 2, … , 𝑘, and the superscript 𝑒 just emphasizes that we 
only use even-subscripted Fibonacci numbers. 𝑎c ∈ 0,1 , 𝑗 = 1,2, …𝑛 is the binary 
coefficient in the corresponding n-bit UBFR(min). And we have k = 𝑛/2 . We find 
(2.16) is almost the same as (2.14). That’s why we say the UTFRe{-1,0,1} is a special 
example of the UQFRe above. Besides, we notice that in the STFRe{-1,0,1}, we can 
use the sign of the most significant nonzero coefficient to determine the sign of the 
integer, which is based on (1.6): 
 

𝐹4? + 𝐹4?14 + ⋯+ 𝐹@ + 𝐹4 = 𝐹4?72 − 1 < 𝐹4?74 
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After making the simple complementation, the negative integers are contained in 
the STFRe{-1,0,1} and a doubling of range over the UBFR(min) is realized.  In the n-
bit UBFR(min), the maximal integer is M = 𝐹972 − 1 and thus the range is 0,𝑀 . 
And now after the UBFR(min)-to-STFRe{-1,0,1} coefficients conversion, the range 
is doubled as −𝑀,𝑀 . 

What’s more, we can make the conversions of UBFR(min)-to-UTFRo{-1,0,1} and 
UBFR(max)-to-UTFRo{0,1,2} simply by subtracting 1 from all subscripts in (2.16), 
the manner of which is almost the same as (2.15). Through making the 
complementation, namely -1 <-> 1 and 0 <-> 0, the negative integers can be included 
and hence the UTFRo{-1,0,1} is automatically transferred to the STFRo{-1,0,1}. 

Derived from the n-bit UBFR(min), we have the STFRe{-1,0,1} 
 

N = 𝑡4/a 𝐹4/

?

/B2

,					𝑘 =
𝑛
2 2.17  

 
and the STFRo{-1,0,1} 
 

N = 𝑡4/12h 𝐹4/12

?l

/B2

,					𝑘V =
𝑛
2 + 1 2.18  

 
Since UBFR(min) is unique, STFRe{-1,0,1} and STFRo{-1,0,1} are also unique 

based on the conversion rules. 
We find both 𝑡4/a  and 𝑡4/12h  are in the set {-1,0,1}, which makes the ternary addition 

and subtraction very easy to implement. If we are required to calculate the sum of the 
two integers 𝑁2 and 𝑁4 in the n-bit Fibonacci system, we can express 𝑁2 in the 
STFRe{-1,0,1} and express 𝑁4 in the STFRo{-1,0,1}. Then, we can directly obtain 
their sum expressed in the STFR using full-subscripted Fibonacci numbers, called 
STFRf{-1,0,1}, by interleaving the bits of 𝑁2 and 𝑁4: 
 

𝑁2 + 𝑁4 = 𝑡/𝐹/

m

/B2

,					𝑚 = 𝑛 + 1 2.19  

 
where 
 

𝑡/ =
𝑡/a,					𝑖𝑓	𝑖	𝑖𝑠	𝑒𝑣𝑒𝑛
𝑡/h,					𝑖𝑓	𝑖	𝑖𝑠	𝑜𝑑𝑑

2.20  

 
Through the same method, we can easily get the difference between 𝑁2 and 𝑁4. 
The advantages of the above method are:  
1. We can immediately get the sum or the difference by interleaving, without an 

actual calculation. 
2. There is no need to worry about carries. 



 

 

20 
 

3. The STFR contains the negative integers in calculations, which is an 
improvement compared to the UBFR. 

4. When both STFRe{-1,0,1} and STFRo{-1,0,1} are available, it is simple for 
actual hardware implementations such as the register loading [3].  

However, there are still some problems with this method: 
1. In the example, we only consider about the addition or the subtraction between 

two integers. If there is a third added or minuend, we can’t get the answer only 
through interleaving. Although we can do full- to even-/odd- subscript conversions 
introduced in [3] and continue using the interleaving method, it’s still very 
complicated and has many preliminary preparation transformations to implement. 

2. In addition to addition and subtraction, we also need to figure out how to solve 
multiplication and division, which are more complicated than the previous two. It’s 
apparent that the method of interleaving is not enough. 

3. If we have three STFRs to process, namely processing the STFRe{-1,0,1}, the 
STFRo{-1,0,1} and the STFRf{-1,0,1}, it is messy and more error prone for 
complicated operations, which  

Based on the disadvantages mentioned above, it is a better idea to do calculations 
using a uniform form. Therefore, we first use the simple algorithm in figure 2.1 to 
obtain the UBFR(min) for 𝑁2 and 𝑁4, and then convert both into the STFRe{-1,0,1} 
or STFRo{-1,0,1}.   

 2.3 Advantages of The STFRe{-1,0,1} 

In this Chapter, we demonstrate how to express a non-negative integer in the 
UBFR(min), which is the first step to introduce decimal numbers into the Fibonacci 
system. Then, since the UBFR(min) can only represent the non-negative integers, we 
try conversions between different Fibonacci representations. Finally, we choose to 
express integers and implement their operations with the STFRe{-1,0,1}. 

And below are the advantages of the STFRe{-1,0,1}:  
1. It doubles the range of numbers over the UBFR(min) by including the negative 

part.  
2. It allows the expressions of both the non-negative integers as well as their 

negative ones to be realized easily, without using the Fibonacci numbers with 
negative subscripts or wasting more bits for the sign. We only need to invert all 
ternary coefficients in the number N’s STFRe{-1,0,1} to obtain –N. 

3. We can directly know the sign of an integer by checking the most significant 
non-zero bit of its STFRe{-1,0,1}. 

4. Compared to the other Fibonacci representations mentioned before, it is most 
useful for hardware implementations using three-state devices [3], which indicates a 
further step for realizing the Fibonacci computer. 

5. Compared to the STFRo{-1,0,1}, the STFRe{-1,0,1} is more convenient when 
processing carries in calculations, which will be explained in the next Chapter. And 
since the binary computer is usually 64 bits, using the STFRe{-1,0,1} is more 
intuitive for the comparison between the binary device and the Fibonacci one. 

Finally, we display some examples in table 2.2 to illustrate the decimal-to-
UBFR(min)-STFRe{-1,0,1} conversion. 
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Table 2.2 Decimal-to-UBFR(min)-to-STFRe{-1,0,1} conversion 

!"#$%&'− )* −+,-. %$/ − )* − 01-."{−3, 5,3}	8*/9":;$*/

!"#$%&'	
0<;)"%

+,-.(%$/)*?	)@" 	&A;*'B)" 	9&'B" 01-."{−3, 5,3}
&C &D &E &F &G &H &I &3 )C" )E" )G" )I"

-30 1 0 1 0 0 0 1 0 -1 -1 0 -1
-20 0 1 0 1 0 1 0 0 -1 0 0 1
-10 0 0 1 0 0 1 0 0 0 -1 -1 1
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 1
2 0 0 0 0 0 1 0 0 0 0 1 -1
3 0 0 0 0 1 0 0 0 0 0 1 0
4 0 0 0 0 1 0 1 0 0 0 1 1
5 0 0 0 1 0 0 0 0 0 1 -1 0
6 0 0 0 1 0 0 1 0 0 1 -1 1
7 0 0 0 1 0 1 0 0 0 1 0 -1
8 0 0 1 0 0 0 0 0 0 1 0 0
9 0 0 1 0 0 0 1 0 0 1 0 1
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Chapter 3: Fibonacci Arithmetic Based on The STFRe 

3.1 Principle of The Four Fundamental Operations 

In order to better understand the mechanism of how a base number system 
represent numbers, we can express an integer as the scaler product [14] 

 
𝑁 = 𝐃 ⋅ 𝐖 3.1  

 
where 𝐃 is a row vector of digits in the representation, and 𝐖 is a column vector of 
weights corresponding to the digits. Usually, the weight vector is written in the order 
with the decreasing subscripts as: 

 
𝐖 = … ,𝑤/, 𝑤/12, … , 𝑤4, 𝑤2, 𝑤6 3.2  

 
We know that the weight vector 𝐖 is derived from its base vector 𝐁: 
 

𝐁 = … , 𝑏/, 𝑏/12, … , 𝑏4, 𝑏2, 𝑏6	 3.3  
 

where 𝑏6 is usually equal to 1. And the relationship between 𝐖 and 𝐁 is: 
 

𝑤? = 𝑏/

?

/B6

3.4  

 
Here are some examples to demonstrate the expression in (3.1): 
1. The binary system and the decimal system are two most typical representatives 

of the uniform base systems. The integer 36 can be obtained as 36 = 1	0	0	1	0	0 ⋅
2>	2@	2=	24	22	26 s in the binary system with the uniform base 2, and 36 = 3	6 ⋅
102	106 s in the decimal system with the uniform base 10. 

2. The mixed base systems are usually applied to measurements. As an example for 
the imperial units of weight measurement {tons, hundredweights, stones, pounds, 
ounces}, the base vector is 𝐁 = [20, 8, 14, 16, 1]. And according to (3.4), it derives 
the weight vector as 𝐖 = [35840, 1792, 224, 16, 1]s to unify the units in ounces. 

As to the Fibonacci logic system, we can use the same idea to represent integers. In 
the unsigned binary Fibonacci system, i.e. UBFR, the Fibonacci numbers can be used 
in the weight vector 𝐖 as 𝐖 = … ,𝐹>, 𝐹@, 𝐹=, 𝐹4, 𝐹2 s = [… , 5, 3, 2, 1, 1]s (the least 
significant weight on the rightmost) and the digit vector 𝐃 is composed by the binary 
element 𝑎/ ∈ 0, 1 . To represent a given non-negative integer N using an n-bit 
UBFR, the scalar product is written as: 

 
N = 𝑎9, 𝑎912, … , 𝑎4, 𝑎2 ⋅ 𝐹9, 𝐹912, … , 𝐹4, 𝐹2 s 3.5  
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It’s obvious that (3.5) is exactly the same as (1.9). Since we mainly focus on the 
minimal form of the UBFR, i.e. UBFR(min), which is also called the Zeckendorf 
representation, the scalar product (3.5) is subjected to the following two conditions:  

1. We set 𝑎2 = 0, meaning that we always omit the weight 𝐹2 in the UBFR(min).  
2. We have the relationship 	𝑎/72𝑎/ = 0, 𝑖 = 1, 2, 3, … , 𝑛 − 1, namely no two or 

more adjacent bits being 1s. 
For example, the number 32 is represented as 32 = 𝐹S + 𝐹A + 𝐹@ = 21 + 8 + 3 in 

the UBFR(min), thus the corresponding scalar product is written as: 
 

32 = 1	0	1	0	1	0	0	0 ⋅ 21	13	8	5	3	2	1	1 s 
 
As to the scalar product of the integer N in the STFRe{-1,0,1}, which is converted 

from the UBFR(min), (3.5) is changed as: 
 

N = 𝑡4?a , 𝑡4?14a , … , 𝑡@a, 𝑡4a ⋅ 𝐹4?, 𝐹4?14, … , 𝐹@, 𝐹4 s 3.6  
 

where the even-subscripted ternary coefficient 𝑡4/a  is obtain from the corresponding 
UBFR(min) by the relation (2.16). Therefore, to represent the same number 32 using 
the STFRe{-1,0,1}, the scalar product is written as: 

 
32 = [1	1	1	0] ⋅ 21	8	3	1 s 

 
The scalar product (3.6) is very useful in this thesis, since it not only helps us better 

understand the properties of the STFRe{-1,0,1}, but also makes the Fibonacci 
calculations using STFRe{-1,0,1} easier to do, which will be discussed in this 
Chapter later. 

There is little previous work discussing basic arithmetic operations on integers in 
the Fibonacci system, especially using the STFRe{-1,0,1}, which contains many good 
advantages. Therefore in this thesis, our main purpose is to develop practical and 
simple algorithms to perform some basic arithmetic operations in the Fibonacci 
system, like addition, subtraction, multiplication and division, on both positive and 
negative integers using the STFRe{-1,0,1}.  

3.1.1 Addition & Subtraction 

Most of the new algorithms discussed in this Chapter can be developed either by 
resembling the conventional arithmetic methods used in binary and decimal systems, 
or by improving the arithmetic ideas applied to the UBFR(min) in [14].  

Among the four major arithmetic operations, addition and subtraction are the 
simplest two. Therefore, let’s start the discussion about addition first. Analogous to 
the binary system, in the STFRe{-1,0,1}, the sum of two given integers is calculated 
by adding each pair of ternary coefficients on the same digit as separated numbers. 
Thus, the first step gives an initial sum with coefficients on each digit being 𝑑4/a ∈
{±2,±1, 0}, where each coefficient corresponds to the positive even-subscripted 
Fibonacci numbers 𝐹4/. 
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It’s obvious that the possible coefficient ±2 are out-of-code in the STFRe{-1,0,1} 
and we need to use some methods to eliminate them. 

Then here comes the very important relation [2]: 
 

3𝐹/ = 𝐹/14 + 𝐹/74 3.7  
 
After shifting, we can directly get the alternate relation: 
 

2𝐹/ = 𝐹/14 − 𝐹/ + 𝐹/74 3.8  
 
 

Obviously (3.7) and (3.8) are used to eliminate 3 and 2. And after each item is 
multiplied by -1 in (3.7) and (3.8), namely −3𝐹/ = −𝐹/14 − 𝐹/74 and −2𝐹/ =
−𝐹/14 + 𝐹/ − 𝐹/74, the alternate forms are used to eliminate -3 and -2. Therefore, 
theses relations are the key to calculations in STFRe{-1,0,1}. Besides, although the 
illegal coefficients ±3 will not appear in the initial addition because the given augend 
and addend are expressed correctly using the STFRe{-1,0,1}, but they may occur 
after carries to the left or the right.   

Based on the fundamental recurrent equation (1.2), below is the process to deduct 
the relations (3.7) and (3.8): 

 
𝐹/ = 𝐹/74 − 𝐹/72					①
𝐹/ = 𝐹/14 + 𝐹/12					②

 

 
①+②⇒ 2𝐹/ = 𝐹/74 − 𝐹/72 + 𝐹/14 + 𝐹/12 

  
																																																														= 𝐹/14 − 𝐹/ + 𝐹/74					[𝑓𝑟𝑜𝑚	(3.8)]  
 

2𝐹/ = 𝐹/14 − 𝐹/ + 𝐹/74 ⇔ 3𝐹/ = 𝐹/14 + 𝐹/74 
 

After the initial summation, we need to scan the whole representation from the 
least significant digit to the most significant one, namely from the right to the left, or 
from the opposite direction, using the relations (3.7) and (3.8) to eliminate the illegal 
±2 and ±3. Then we should repeat the same step until every even-subscripted ternary 
coefficient is a legal one, i.e. in the set {-1,0,1}. 

Before the exact calculation, we need to do some preliminary preparations:  
1. Given the augend 𝑁2 and the addend 𝑁4, we record their signs and obtain their 

absolute values 𝑁2  and 𝑁4 . 
2. Using the algorithm in figure 2.1, we get the unique minimal form of the UBFR, 

i.e. the Zeckendorf representation, for 𝑁2  and 𝑁4  respectively. Besides, in this 
preliminary step, we can also find the possible overflow number and terminate the 
progress early 

3. Based on the relation (2.16), we implement the UBFR(min)-to-STFRe{-1,0,1} 
conversion. 
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4. We check the recorded signs of 𝑁2 and 𝑁4, and make a complementation to the 
corresponding STFRe{-1,0,1} if finding any sign negative. 

What’s more, there are four points needed to be noticed: 
1. Although it’s possible that more than one STFRe{-1,0,1}s can represent the 

same integer N, the STFRe{-1,0,1} converted from the UBFR(min) of N is unique. 
For example, the integer 22 can be either expressed as 22 = 𝐹S + 𝐹4 or as 22 =
𝐹26 − 𝐹S − 𝐹A − 𝐹@ − 𝐹4 in the STFRe{-1,0,1}. But it only could be 22 = 𝐹S + 𝐹4 
after the UBRF(min)-to-STFRe{-1,0,1} conversion. This property sometimes makes 
arithmetic operations convenient.  

2. In terms of what we mentioned above, we can sweep over the whole 
representation of the initial addition either from the least significant digit to the most 
significant one, or from the opposite direction. However, it’s better to adopt the 
former scan direction. The reason is that sometimes we can omit carries on the most 
significant digit by the right-to-left direction, which is convenient for calculations, 
especially for multiplication (discussed later). For example, if we are required to do 
the addition and have the initial sum as [1 -1 0 0] + [1 -1 0 0] = [2 -2 0 0], where the 
four coefficients correspond to the weights 𝐹S, 𝐹A, 𝐹@ and 𝐹4, then we need to correct 
the initial expression because of the existence of non-ternary coefficients. If scanning 
from left to right, we have the corrected form as [1 -1 -1 0 0]. And if scanning from 
right to left, the corrected form is as [1 1 -1 0]. It’s apparent that, in this example, the 
former correction needs one more digit and the latter one is still using four digits.  

3. No other non-ternary coefficients will occur in the process of carries except ±2 
and ±3. The reason is that during each round of scanning, we only check and 
eliminate the rightmost illegal coefficient and this can effectively avoid a “pilling up” 
of the carries exceeding ±2 and ±3. Based on the knowledge discussed above, the 
maximal integer represented by the 8-bit UBFR(min) is 33U =
[10101010]{|}~(m/9), it corresponds to 33U = [1111]�s}~a{12,6,2} in the STFRe{-
1,0,1} after the UBFR(min)-to-STFRe{-1,0,1} conversion. Then, if we want to know 
the addition of [1 1 1 1] + [1 1 1 1], the processing steps are: [1 1 1 1] + [1 1 1 1] =[ 2 
2 2 2] ⇒ [2 2 3 -1] ⇒ [2 3 0 0] ⇒ [3 0 1 0] ⇒ [1 0 1 1 0] = 66U. Apparently, in this 
representative example, no illegal coefficients beyond ±2 and ±3 occur.    

4. Sometimes we need to eliminate the illegal coefficient ±2 on the least 
significant digit, namely 𝑡4a = 2 or 𝑡4a = −2. Then here comes a carry toward right on 
𝑡6a, which corresponds to the weight 𝐹6. Usually we don’t care about the coefficient 
𝑡6a, since the corresponding 𝐹6 is equal to 0. And we don’t show the digit 𝑡6a in the 
STFRe{-1,0,1}. Besides, the fourth point indicates why we use the STFRe{-1,0,1} 
instead of the STFRo{-1,0,1}. Using the STFRo{-1,0,1}, if we have the illegal 
coefficient ±2 on the rightmost digit, namely 𝑡2h = 2 or 𝑡2h = −2, then we will have a 
carry on 𝑡12h , which corresponds to the weight 𝐹12. Unlike 𝑡6a, we can not omit 𝑡12h , 
because 𝐹12 is non-zero. This may result in more negative-subscripted Fibonacci 
numbers included in further consecutive additions, inconvenient to be implemented 
on a computer. 

To better illustrate the whole process of addition, figure 3.1 shows two typical 
examples using the STFRe{-1,0,1}. 
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Figure 3.1 Two examples of addition using the STFRe{-1,0,1} 
These two examples show the addition of 15 + (-6) = [1 -1 1 -1] + [0 -1 1 -1] = [0 1 

0 1] = 9 and (-12) + (-10) = [0 -1 -1 -1] + [0 -1 -1 1] = [-1 0 0 -1] = -22 in detail. The 
former result is positive and the latter is negative. We find that the sign of the integer 

!" ($%&'(()*)) 0 1 0 0 0 1 0 0 = 15
!, ($%&'(()*)) 0 0 0 1 0 0 1 0 = 6
!" (-.&'/{-1,0,1}) 1 -1 1 -1 = 15
!, (-.&'/{-1,0,1}) 0 1 -1 1 = 6
!"(-.&'/{-1,0,1}) 1 -1 1 -1 = 15
!,(-.&'/{-1,0,1}) 0 -1 1 -1 = -6

)*)2)34	67( 1 -2 2 -2 = 9
8399)/6	&	9/(;</	2=/ 1 -2 1 1 = 9

8399)/6 0 1 0 1 = 9
			9/6742(-.&'/{-1,0,1}) 0 1 0 1 = 9

?)</*	37@/*A	!" = "C,3AA/*A	!, = −F	

!" ($%&'(()*)) 0 0 1 0 1 0 1 0 = 12
!, ($%&'(()*)) 0 0 1 0 0 1 0 0 = 10
!" (-.&'/{-1,0,1}) 0 1 1 1 = 12
!, (-.&'/{-1,0,1}) 0 1 1 -1 = 10
!"(-.&'/{-1,0,1}) 0 -1 -1 -1 = -12
!,(-.&'/{-1,0,1}) 0 -1 -1 1 = -10

)*)2)34	67( 0 -2 -2 0 = -22
8399)/6 0 -3 1 -1 = -22
8399)/6 -1 0 0 -1 = -22

9/6742(-.&'/{-1,0,1}) -1 0 0 -1 = -22

:);/*	37</*=	!" = −",,3==/*=	!, = −"A	
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can be determined by the most significant non-zero digit. In the examples, the 
operation’s meaning is shown to the left of each line, and the Fibonacci representation 
resulted from the corresponding operation is displayed in the middle of the line. In 
order to demonstrate that the conversions and the corrections will not change the 
value of each integer, we also show in figure 3.1 the decimal value to the right of the 
line for check. 

Then here comes the discussion about subtraction. In the STFRe{-1,0,1}, the 
difference of two given integers is calculated by a digit-wise subtraction as separate 
numbers. The first step gives an initial difference with coefficients 𝑑4/a ∈ {±2,±1, 0} 
on each digit, where 𝑑4/a  corresponds to the weight 𝐹4/. It’s obvious that the illegal 
coefficients to be corrected are still ±2 and ±3 (occurring in carries), which are the 
same as the ones in addition. Therefore, addition and subtraction are the same in the 
STFRe{-1,0,1} except that we change a plus sign to a minus sign.  

This is a great advantage compared with the operations using the UBFR(min). 
When solving arithmetic operations in the UBFR(min), only 0 and 1 are legal bits and 
we need to use different complicated methods to treat addition and subtraction 
respectively. In Zeckendorf addition, we need to care about removal of the illegal 
coefficient 2, removal of the adjacent 1s and replacement of the non-zero coefficient 
on the least significant digit. In Zeckendorf subtraction, we need to remove the 
invalid digit -1, which is more difficult to eliminate than 2 in Zeckendorf addition. 
What’s worse, both two operations can hardly process the negative integers. 
However, we can apply one simple algorithm to both addition and subtraction using 
the STFRe{-1,0,1}. The following figure 3.2 is an example to illustrate the whole 
process of subtraction using the STFRe{-1,0,1}. 

   
 

Figure 3.2 An example of subtraction using the STFRe{-1,0,1} 
 

!" ($%&'(()*)) 1 0 0 1 0 0 1 0 = 27
!, ($%&'(()*)) 1 0 1 0 1 0 1 0 = 33
!" (-.&'/{-1,0,1}) 1 1 -1 1 = 27
!, (-.&'/{-1,0,1}) 1 1 1 1 = 33
!"(-.&'/{-1,0,1}) 1 1 -1 1 = 27
!,(-.&'/{-1,0,1}) 1 1 1 1 = 33
)*)2)34	6)77/8/*9/ 0 0 -2 0 = -6

9388)/: 0 -1 1 -1 = -6
8/:;42(-.&'/{-1,0,1}) 0 -1 1 -1 = -6

=)>/*	:;?283@/*6	!" = ,B,()*;/*6	!, = DD
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It’s obvious that subtraction is actually the same as addition in the signed even-
subscripted ternary Fibonacci system. And the simple method can process the 
negative integers easily just by making complementation on each digit. Thus it’s 
more convenient using the STFRe{-1,0,1} than the UBFR(min). 

Finally, we have to admit that compared with the binary addition/subtraction (or 
other conventional polynomial number system like decimal, ternary), the Fibonacci 
addition/subtraction seem much more complicated. The reason is that in the 
conventional number system, a single carry only propagates to more significant 
digits. We can manage carries only in a single pass, if we start the 
addition/subtraction from the least significant digit to the most significant one. But 
the propagations in the Fibonacci system have both left and right directions and we 
need several passes to eventually get a correct representation. 

3.1.2 Multiplication 

Let’s first talk about multiplication using the STFRe{-1,0,1}. By resembling the 
idea of conventional arithmetic methods, multiplication using the STFR{-1,0,1} will 
be developed by the sum of suitable multiples of the multiplier, which are selected in 
terms of  the STFRe{-1,0,1} of the multiplicand. 

At the beginning of this Chapter, we have introduced the expression of an integer 
N as a scalar product N = 𝐃 ⋅ 𝐖, where 𝐃 is a digit vector and 𝐖 is a weight vector 
corresponding to 𝐃. Different base number systems have different 𝐖s and restrictions 
on the digits in 𝐃s. And we mentioned that the scalar product of the integer N in the 
STFRe{-1,0,1} can be converted from the UBFR(min), namely  

 
N = 𝑡4?a , 𝑡4?14a , … , 𝑡@a, 𝑡4a ⋅ 𝐹4?, 𝐹4?14, … , 𝐹@, 𝐹4 s 

 
this is in the form (3.6), which is very useful in the implementation of Fibonacci 
arithmetic operations using the STFRe{-1,0,1}, especially multiplication. Therefore, 
building on the representation in (3.6), we now explain in detail the whole process of 
multiplication using the STFRe{-1,0,1} by referring to the idea of conventional 
multiplication.  

Given the multiplicand X, and the multiplier Y, both of which are integers, we 
wish to calculate their product Z, i.e. Z = X × Y. According to (3.1), we first 
represent X as the scalar product, namely X = X ⋅ W. Then based on (3.6) and (2.17), 
we have X ⋅ W = 𝑡4?a , 𝑡4?14a , … , 𝑡@a, 𝑡4a ⋅ 𝐹4?, 𝐹4?14, … , 𝐹@, 𝐹4 s = 𝑡4/a 𝐹4/?

/B2  in the 
STFRe{-1,0,1}. It’s obvious that the scalar product of X is just another form of X’s 
STFRe{-1,0,1}. Now the product Z can be expressed as Z = X ⋅ W × Y = 
( 𝑡4/a 𝐹4/?

/B2 ) × Y = 𝑡4/a?
/B2  ⋅ (𝐹4/ ⋅ Y).  

The preceding step demonstrates that the product Z is the addition of multiples of 
the multiplier Y, i.e. 𝐹4/ ⋅ Y, multiplied by the multiplicand X’s ternary coefficients 
𝑡4/a . Therefore, the most important step in Fibonacci multiplication is to obtain the 
multiples 𝐹4/ ⋅ Y. Unlike multiplication in the conventional binary system, where we 
can make multiples just by “left shifting”, the scaling in Fibonacci multiplication 
should be done by analogy with the recurrence rule for generating the Fibonacci 
numbers in (1.2), 𝐹/ = 𝐹/12 + 𝐹/14;	𝐹6 = 0, 𝐹2 = 1.  
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Let’s use the symbol 𝑀/ to represent the Fibonacci multiples 𝐹/ ⋅ Y. Then based on 
the recurrence relation (1.2), we can generate the 𝑀/ as follows: 

 
𝑀2 = 𝐹2 ⋅ 𝑌�s}~a 12,6,2 = 𝑌�s}~a 12,6,2  
𝑀4 = 𝐹4 ⋅ 𝑌�s}~a 12,6,2 = 𝑌�s}~a 12,6,2  
𝑀= = 𝐹= ⋅ 𝑌�s}~a 12,6,2 = 𝐹2 + 𝐹4 ⋅ 𝑌�s}~a 12,6,2 = 𝑀2 +𝑀4 

… 
𝑀/ = 𝑀/14 + 𝑀/12 

… 
𝑀? = 𝑀?14 + 𝑀?12 

 
where k is the subscript of the most significant digit in 𝑋�s}~a{12,6,2}. What’s more, 
there are three points that should be noticed: 

1. Since we perform Fibonacci multiplication using the STFRe{-1,0,1}, we can 
directly omit the Fibonacci multiples with odd subscripts when doing the subsequent 
addition. 

2. We can use the subscript 𝑘V of the most significant non-zero digit  in 
𝑋�s}~a{12,6,2}, instead of the subscript 𝑘  of the  most significant digit in 
𝑋�s}~a{12,6,2}, to determine when we can stop the generation of 𝑀/. Namely we can 
stop generating the Fibonacci multiples 𝑀/ after we achieve 𝑀?l rather 𝑀? mentioned 
before. Since we have 𝑘V < 𝑘, this improvement will save many unnecessary 
additions. 

3. In order to conveniently test this algorithm on computers, we first calculate the 
Fibonacci multiplication of 𝑋  and 𝑌 , and then determine the sign. This will make 
additions and prevention of overflows (discussed in the next section) much easier. 

Therefore, after we calculate the Fibonacci multiples from 𝑀2 to 𝑀?l, we add the 
even-subscripted ones weighted by the corresponding ternary coefficients of 
𝑋�s}~a{12,6,2}. What’s more, we find all the arithmetic steps mentioned above are 
done by using Fibonacci addition discussed in the preceding subsection. 

To better illustrate the whole process of multiplication in the STFRe{-1,0,1}, we 
provide an example in figure 3.3. 
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Figure 3.3 An example of multiplication using the STFRe{-1,0,1} 
 

Based on the example in figure 3.3, we find the procedure of Fibonacci 
multiplication can be divided into two main parts: the first part is to make possibly 
needed Fibonacci multiples of the multiplier 𝑁4; the second part is to accumulate 
appropriate multiples weighted by the corresponding even-subscripted ternary 
coefficients 𝑡4/a  in the multiplicand 𝑁2(STFRe{-1,0,1}). It should be noted that we can 
exchange the roles of these two factors to get the same answer.  

!" ($%&'(()*)) 1 0 0 0 1 0 = 9
!, ($%&'(()*)) 1 0 0 0 1 0 = 9
!" (-.&'/{-1,0,1}) 1 0 1 = 9
!, (-.&'/{-1,0,1}) 1 0 1 = 9
!"(-.&'/{-1,0,1}) 1 0 1 = 9
!,(-.&'/{-1,0,1}) -1 0 -1 = -9

234/	&)67*388)	29:;)<:/=	7>	.?/	29:;)<:)/@	!,

&" ⋅ !, (7();) -1 0 -1 = -9
&, ⋅ !, -1 0 -1 = -9

&B ⋅ !, 	(7();) -2 0 -2 = -18
83@@)/=	&	@/(7D/	;E

/ -1 0 1 0 = -18
&F ⋅ !, -1 -1 1 -1 = -27

&G ⋅ !, 	(7();) -2 -1 2 -1 = -45
83@@)/= -1 0 1 1 -1 = -45
&H ⋅ !, -1 -1 0 2 -2 = -72

83@@)/=	&	@/(7D/	;E
/ -1 -1 0 1 1 = -72

I889(9:3;/	29:;)<:/=	J/)K?;/L	6M	;,)
/ )*!"(-.&'/{-1,0,1})

3LL " ⋅ &, ⋅ !, 0 0 -1 0 -1 = -9
3LL " ⋅ &H ⋅ !, + -1 -1 -1 1 0 = -81

		@/=9:;(-.&'/{−1,0,1}) -1 -1 -1 1 0 = -81

N)D/*	(9:;)<:)83*L	!" = P,(9:;)<:)/@	!, = −P
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Actually, the Fibonacci multiplication using STFRe{-1,0,1} is composed by 
multiple Fibonacci additions, which make it much more inconvenient than multiples 
in the conventional polynomial number systems like binary, decimal. However, 
compared to Zeckendorf multiplication, it is much easier to process (because 
Zeckendorf addition is more inconvenient than addition using STFRe{-1,0,1}) and 
can manage the negative integers conveniently. 

3.1.3 Division 

Here comes the discussion about Fibonacci division using the STFRe{-1,0,1}. 
Since we are talking about integer division, given the dividend 𝐷2 and the divisor 𝐷4, 
there are mainly three conditions: 

1. 𝐷2 < 𝐷4 . In this condition, we can directly obtain the quotient 𝑄	 = 	0 and 
the absolute value of the remainder 𝑅 = 𝐷2 . And the sign of 𝑅 is determined by 
the signs of both 𝐷2 and 𝐷4. 

2. 𝐷4 = 0. Since the divisor can’t be 0, we will receive a “wrong divisor” warning 
and the procedure is terminated. 

3. 𝐷2 ≥ 𝐷4  and 𝐷4 ≠ 0. It’s a normal case and we mainly focus on it in this 
subsection. 

The case 1 and the case 3 can be combined as 𝐷4 ≠ 0. What’s more, unlike 
Fibonacci multiplication, there is no worry about overflow in the quotient 𝑄, because 
we always have 𝑄 ≤ 𝐷2  in the integer division. 

As a reverse of Fibonacci multiplication, which is done by continuous Fibonacci 
additions, the procedure of Fibonacci Division mainly consists of a sequence of 
Fibonacci subtractions. We perform Fibonacci division by analogy with the 
conventional long division, except that we use the Fibonacci multiples mentioned in 
Fibonacci multiplication rather than the normal multiples. 

We keep making Fibonacci multiples of the absolute value of the divisor 𝐷4  just 
as what we do in Fibonacci multiplication 

 
𝑀2 = 𝐹2 ⋅ 𝐷4 �s}~a 12,6,2 = 𝐷4 �s}~a 12,6,2  
𝑀4 = 𝐹4 ⋅ 𝐷4 �s}~a 12,6,2 = 𝐷4 �s}~a 12,6,2  
𝑀= = 𝐹= ⋅ 𝐷4 �s}~a 12,6,2 = 𝑀2 +𝑀4 

… 
𝑀/ = 𝑀/14 + 𝑀/12 

… 
𝑀? = 𝑀?14 + 𝑀?12 

 
until we find the largest Fibonacci multiple 𝑀? not exceeding the dividend 𝐷2. Then 
we need to use the UBFR(min) as an intermediate step, creating an auxiliary vector B 
with size of k to store the bits of the quotient. Since the difference between 𝐷2  and 
𝑀? is proved as non-negative, we set the bit 𝐵? of B equal to 1. And because of the 
property (2.10), namely 	𝑎/72𝑎/ = 0, 𝑖 = 2, 3, … , 𝑛 − 1, of the UBFR(min), we can 
directly omit the multiple 𝑀?12 and set the corresponding bit 𝐵?12 as 0. Then we 
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start the procedure of trail subtractions with the residue 𝑟 = 𝐷2 −𝑀? and the 
presently largest multiple 𝑀?14. 

We subtract 𝑀?14 from 𝑟. If the difference is negative, we set 𝐵?14 as 0 and move 
to the next decreasing multiple 𝑀?1= for comparison. If the difference is zero, we set 
𝐵?14 as 1 and all the rest bits, namely 𝐵/�?14, as 0. If the difference is positive, we 
set 𝐵?14 as 1 & 𝐵?1= as 0, 𝑟 = 𝑟 −𝑀?14, and move to the following decreasing 
multiple 𝑀?1@. We repeat the above steps until every bit is filled in B.  

After getting the UBFR(min) of the quotient, we convert it to the corresponding 
STFRe{-1,0,1}. What’s more, we need to save the value of the last non-negative 
residue 𝑟, because it’s the absolute value of the remainder, namely 𝑟 = 𝑅 . And 𝑅’s 
sign is determined by the signs of both 𝐷2 and 𝐷4. 

During these steps, we have two points deserving of be mention: 
1. We use 𝐷2  and 𝐷4  during the whole procedure of division, and determine the 

sign at the end of the calculation. The reason is that directly using 𝐷2 and 𝐷4 will 
result in a wrong quotient. For example, given 𝐷2 < 0, 𝐷4 > 0 and 𝐷2 > 𝐷4 , if we 
don’t use the absolute values, the quotient would be 0 since every multiple is larger 
than the divisor. 

2. We can’t directly calculate the quotient in the STFRe{-1,0,1}. Since we have the 
ternary coefficient -1 in the STFRe{-1,0,1} and it may appear in the representation of 
a positive integer, we can’t directly determine whether a digit is -1 in the STFRe{-
1,0,1} of the quotient by trial subtractions. 

Finally, to better elaborate the whole procedure of Fibonacci division using the 
STFRe{-1,0,1}, we display an example in figure 3.4. 
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Figure 3.4 An example of division using the STFRe{-1,0,1} 
 

The example in figure 3.4 shows the procedure of Fibonacci division consists of 
the two main parts: the first part is to make possibly needed Fibonacci multiples of 
the divisor 𝐷4; the second part is to perform a sequence of trail subtractions. We find 

!" ($%&'(()*)) 1 0 1 0 0 0 1 0 = 30
!, ($%&'(()*)) 0 0 0 1 0 1 0 0 = 7
!" (-.&'/{-1,0,1}) 1 1 0 1 = 30
!, (-.&'/{-1,0,1}) 0 1 0 -1 = 7

234/	&)67*388)	29:;)<:/=	7>	.?/	!)@)=7A	!,

&" ⋅ !, 0 1 0 -1 = 7
&, ⋅ !, 0 1 0 -1 = 7
&C ⋅ !, 0 2 0 -2 = 14

83AA)/=	&	A/(7@/	;
E

/ 1 -1 0 1 = 14
&F ⋅ !, 1 0 0 0 = 21
&G ⋅ !, 2 -1 0 1 = 35
83AA)/= 1 -1 0 0 1 = 35

&G ⋅ !, > !" ,=;7<	(34)*J	(9:;)<:/=

-988/==)@/	-96;A38;)7*=

&F	A/=)K9/ 0 1 0 1 = 9
&,	A/=)K9/ 0 0 0 2 = 2

83AA)/=	&	A/(7@/	;
E

/ 0 0 1 -1 = 2
L ($%&'(()*)) 1 0 1 0 = 4
L (-.&'/{−1,0,1}) 0 0 1 1 = 4
' (-.&'/{−1,0,1}) 0 0 1 -1 = 2
L(-.&'/{−1,0,1}) -1 0 -1 0 = -4
'(-.&'/{−1,0,1}) 0 0 -1 1 = -2

M)@/*	K)@)K/*K	!" = −CE,K)@)=7A	!,

= P;=9<<7=/K	R97;)/*;	L,A/(3)*K/A	'
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Fibonacci division is easier to implement than Fibonacci multiplication, but we need 
to care about the signs of the quotient and the remainder. 

 3.2 Problems Handling 

When we perform the arithmetic operations in the Fibonacci system, there are two 
most important problems to be dealt with: 

1. How to manage the representations and the operations of the negative integers. 
Since we only use the Fibonacci numbers with non-negative subscripts as weights, 
whose values are always non-negative, it makes the problem of handling the negative 
integers difficult to solve. 

2. How to manage the overflow problems. We find almost no materials talking 
about solutions to overflows during the procedure of the Fibonacci arithmetic 
operations. 

In the n-bit unsigned binary Fibonacci system using the minimal form, the maximal 
integer is 𝐹9 + 𝐹914 + 𝐹91@ + ⋯ = 𝐹972 − 1, represented as [1	0	1	0… ] Therefore, 
the value range expressed by the n-bit UBFR(min) is 0, 𝐹972 − 1 . And if there is a 
carry 1 propagated to the (n+1)th bit during an arithmetic operation, then the result 
must be overflow. It seems that the overflow problem is easy to handle in the 
UBFR(min). However, since we can’t express the negative integers using the 
UBFR(min), we need to convert it to the STFRe{-1,0,1}, which is emphasized in the 
preceding Chapter. But checking whether an intermediate result or a final answer is 
overflow based on the STFRe{-1,0,1} is trickier than the UBFR(min). 

In this section, we mainly discuss the advantages of using the STFRe{-1,0,1} to 
include the negative parts as well as clever ways to check overflows in the STFR{-
1,0,1}. 

3.2.1 Complementation 

Including the negative integers in a Fibonacci system is important for further 
practical implementation in Fibonacci computers. 

In this subsection, we are going to introduce a supplementary representation called 
“M complemented representation” [7] for the binary Fibonacci Representation, 
namely BFR, as an example, which allows the negative integers to be included in the 
BFR. And we are going to compare it with the complementation used in the STFRe{-
1,0,1}. 

In the “M complemented representation”, “M” means the maximal number 
represented by the general form of the (n-1)-bit UBFR excluding 𝑎2, namely  

 

M = 𝐹/

9

/B4

= 𝐹974 − 2 → 111…1
912

 

 
starting from the 𝑎4 on the rightmost. The reason for excluding 𝑎2 is to further use 
this M complemented representation on the UBFR(min). 
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Based on the figure 2.2 showing the flowchart to obtain a general UBFR, given a 
non-negative integer N ≤ M, we find the following relationship between the 
representation of N and M-N: 

 
N → 𝑎9𝑎912 …𝑎4 3.9a  

 
M− N → 𝑎9V𝑎912V … 𝑎4V 3.9b  

 
where 

 
𝑎/⨁𝑎/V = 1,					𝑖 = 2, 3, … , 𝑛 3.9c  

namely 
 

𝑎9𝑎912 	… 𝑎4 ⨁ 𝑎9V𝑎912V 	… 𝑎4V = 111…1 → 𝑀 3.9𝑑  
 
Therefore, N-M is the M’s complement of N. The sign ⨁ is referred from [7], 

meaning Boolean operator xor. 
Based on this “M complemented” idea, we can expand the range into the negative 

integers. Therefore, given an arbitrary integer N, with 𝑁 ≤ 𝑀, we can obtain its M 
complemented (n-1)-bit BFR excluding 𝑎2 as follows [7]: 

1. Use the algorithm in figure 2.2 to get the general (n-1)-bit UBFR excluding 𝑎2 
for 𝑁  as 𝑎9𝑎912 	… 𝑎4 . 

2. Add one more bit as a sign bit 𝑎� to the leftmost, i.e. 𝑎�𝑎9𝑎912 	… 𝑎4  and 
initially set 𝑎� equal to 0, i.e. 0𝑎9𝑎912 	… 𝑎4 . 

3. If N is non-negative, 0𝑎9𝑎912 	… 𝑎4  is its M complemented (n-1)-bit BFR. 
4. If N is negative, make 1’s complementation on every bit on 0𝑎9𝑎912 	… 𝑎4  

and the corresponding 1𝑎9V𝑎912V 	… 𝑎4V  is N’s M complemented (n-1)-bit BFR. 
Based on [7], we can further improve the above methods as M complemented (n-

1)-bit BFR(min), because the minimal form of BFR can reduce possible carry-
operations and therefore speed up the procedure of Fibonacci arithmetic algorithms. 
Then we need to change the step 1 and the step 4 in the original method: 

1’. Use the algorithm in figure 2.1 to get the general (n-1)-bit UBFR(min) for 𝑁  
as 𝑎9𝑎912 	… 𝑎4 . 

4’. If N is negative, we first convert 𝑎9𝑎912 	… 𝑎4  to the maximal form by 
conversion from “100” to “011”, then add 0 to the leftmost, and finally do 1’ 
complementation. 

In M complemented (n-1)-bit BFR(min), the integer’s sign is determined by the 
sign bit 𝑎� on the most significant digit (leftmost). If 𝑎� = 1, N is negative; otherwise, 
N is non-negative. And we use the least number of 1s for faster implementation. 
Here, we set n = 8 and display two examples as below: 

1. If N = 24, then its M complemented 7-bit BFR(min) is just its UBFR(min) plus 
one more sign bit 𝑎� = 0, as 01000100 . 

2. If N = -24, then the procedure is as: (1000100){|}~(m/9) →
0101111 {|}~(m��) → 𝑎�0101111 , 𝑎� = 0 → 𝑎�1010000 , 𝑎� = 1. Therefore, 

we have N = -24 → (11010000). 
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As a comparison, M complemented (n-1)-bit BFR(min) has several disadvantages: 
1. It needs one extra bit to indicate the integer’s sign. 
2. The representation has poor readability. We can’t directly get what it expresses, 

especially for the negative integers. 
3. The method is complicated, since it involves the conversion from the minimal to 

the maximal form as well as 1’s complementation. 
However, the STFRe{-1,0,1} used in the thesis does not have these disadvantages 

mentioned above: 
1. It does not waste extra coefficients functioning as the sign indicator. We can 

determine the integer’s sign directly by checking the most significant digit of the 
representation. 

2. It has very good readability and every digit in the representation seems 
meaningful. We get the value just by adding the Fibonacci weights multiplied by the 
corresponding ternary coefficients. Sometimes, we can immediately know the value 
by applying the Fibonacci properties to the representation. For example, we know 
[1111]�s}~a{12,6,2} → 33U without actual calculation, just using the property (1.6). 

3. It makes the complementation between the positive and the negative integers 
very convenient to realize, without complicated methods. Just by multiplying every 
digit -1, we convert N to –N. For example, [1010] in the STFRe{-1,0,1} represents 24 
and [-10-10] represents -24. 

4. Depending on the above three advantages, we perform Fibonacci arithmetic 
operations, containing both positive and negative, effectively by using the STFRe{-
1,0,1}. 

In conclusion, to solve the problem about negative expressions and negative 
arithmetic operations, the STFRe{-1,0,1} has many more advantages than the BFR, 
even if the BFR uses some supplementary methods such as M complemented 
complementation to include the negative integers. 

3.2.2 Overflow 

Solving the problem of overflow is kind of tricky for the STFRe{-1,0,1}. In terms 
of (2.8), the maximal integer M that can be represented by the n-bit UBFR(min) is 
M =	𝐹972 − 1. Therefore, the range of the n-bit UBFR(min) is 0,𝑀 . After the 
conversion from the n-bit UBFR(min) to the k-bit STFRe{-1,0,1}, we double the 
range as −𝑀,𝑀 . Here, the relation between n and k is 𝑘 = 9

4
, where 9

4
 means the 

least integer greater than or equal to 9
4
. Based on the relation 𝑡4/a = 𝑎4/12 + 𝑎4/ −

𝑎4/72 in (2.13), if n is even, the most significant digit is with subscript 𝑘 = 𝑖m�� =
9
4
; 

if n is odd, the most significant digit is with subscript 𝑘 = 𝑖m�� =
972
4

. Thus, the 

converted STFRe{-1,0,1} has size of 𝑘 = 9
4

.  

However, the size of 𝑘 = 9
4

 is only enough for the integer within range. When the 
Fibonacci arithmetic operations are implemented on a computer, to check whether an 
intermediate result overflows and terminate the procedure earlier, we first need to 
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store the result’s STFRe{-1,0,1} and then examine. Therefore, the STFRe{-1,0,1} 
with size 𝑘 = 9

4
 is not enough to store the integer that is out of range.  

Here is an example: Given 𝑛	 = 	8, we have 𝑘	 = 	4 in the converted STFRe{-
1,0,1} and the corresponding range that can be expressed by the STFRe{-1,0,1} is 
[−33, 33]. Therefore, 𝑁2 = 𝑁4 = 33U = [1111]�s}~a{12,6,2} are all within range. But 
their addition is  

 
𝑁2 + 𝑁4 = [1111]�s}~a 12,6,2 + [1111]�s}~a 12,6,2  

																																			= [10110]�s}~a{12,6,2} = 66U 
 

which overflows and needs an extra digit to store. 
In another example, still given 𝑛	 = 	8, we have 𝑁2V = 𝑁4V = 13U = [1	 −

1	00]�s}~a{12,6,2} within range. And their addition is 
 

𝑁2V + 𝑁4V = [1	 − 1	00]�s}~a{12,6,2} + [1	 − 1	00]�s}~a{12,6,2} 
																												= [1 − 1 − 1	00]�s}~a{12,6,2} = 26U 

 
which is not overflowing but still needs one more digit to store. 

It should be noticed that the condition that some integer in the STFRe{-1,0,1} is 
within range but needs one more extra digit only exists during the arithmetic 
operations. It could not happen in the UBFR(min)-to-STFRe{-1,0,1} conversion 
based on the relation (2.13). Let’s take the preceding example [1 − 1 −
1	00]�s}~a{12,6,2} = 26U, which needs one extra digit but does not overflow. In the 
unique UBFR(min)-to-STFRe{-1,0,1} conversion, we have 

 11	 − 1	0�s}~a{12,6,2} = 26U. This also demonstrates that we may have several 
ways to represent the same integer but only get one in the UBFR(min)-to-STFRe{-
1,0,1} conversion. 

Then here comes a question: Given the k-bit STFRe{-1,0,1} converted from the n-
bit UBFR(min), where 𝑘 = 9

4
, how many extra digits do we need in the STFRe{-

1,0,1} to represent all the overflowing or not overflowing integer resulting from the 
valid arithmetic operations? Since the maximal integer is 

 
𝑀 = 𝐹9 + 𝐹914 + ⋯ = 𝐹972 − 1 

 
the maximal overflowing integer, resulting from two integers within range, is 

 
𝑀 +𝑀 = 2𝐹972 − 2 

 
If adding one extra digit to the STFRe{-1,0,1}, namely size of 𝑘V = 𝑘 + 1 = 9

4
+

1, the maximal integer is 
 

𝑀V = 𝐹4?74+𝐹4? + 𝐹4?14 + ⋯+ 𝐹4 = 𝐹4?7= − 1 
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1. If n is even, 𝑀V
a = 𝐹97= − 1. Then 

 
𝑀V

a − 𝑀 +𝑀 = (𝐹97= − 1)−(2𝐹972 + 2) = 𝐹974 − 𝐹972 + 1 
																																																															= 𝐹9 + 1 

2. If n is odd, 𝑀V
h = 𝐹97@ − 1. Then 

 
𝑀V

h − 𝑀 +𝑀 = (𝐹97@ − 1)−(2𝐹972 + 2) 
																														= 𝐹97= + 𝐹974 − 2𝐹972 + 1 

								= 𝐹974 + 𝐹9 + 1 
 

Since 𝑛m/9 = 2, the differences 𝑀V − 𝑀 +𝑀  in both cases are all positive, 
which indicates that, in the sense of value, we only need one extra digit in the 
STFRe{-1,0,1} to express all the overflowing or not overflowing integers generated 
in the arithmetic operations. 

What’s more, we also wonder whether there would be a carry on the (k+2)th digit, 
indicating that we need two extra digits rather than on in the STFRe{-1,0,1}. 
Actually, the answer is no, and the reason will be discussed as below.  

Given the n-bit UBFR(min), we are going to discuss in detail about the method to 
check whether an integer, expressed in the ( 9

4
+1)-bit STFRe{-1,0,1}, is out of range. 

To better illustrate, we divide the overflow problem into two conditions: 
1) If n is even:  
In this case, the STFRe{-1,0,1} is of size 𝑘a =

9
4
+ 1 and we have the maximal 

non-overflowing integer 𝑀 = 𝐹972 − 1. After the UBFR(min)-to-STFRe{-1,0,1} 
conversion, the integer’s STFRe{-1,0,1} should be in 9

4
 digits. And there may be a 

carry 1 or -1 in the (9
4
+ 1)th digit during the arithmetic operations but the expressed 

integer is still within range. Therefore, 
I. If 𝑡4⋅(��72)

a  = 0, it must be within range, since the 𝑀 = −𝑀 = 𝐹4⋅��
+

𝐹4⋅ ��12
+ ⋯+ 𝐹4⋅2 = 𝐹972 − 1, expressed as 011…1

�
�	2�

. 

II. If 𝑡4⋅(��72)
a  = 1, implying the integer must be positive, in order to satisfy the 

condition that the valid positive integer N is 𝑁 < 𝑀, we should have 𝑡4⋅��
a  = -1 and the 

most significant non-zero digit from 𝑡4⋅(��12)
a  to 𝑡4a should be -1. Thus, the valid 

STFRe{-1,0,1} with 𝑡4⋅(��72)
a  = 1 is as  1-10…0

���	6�
-1… 

III. If 𝑡4⋅(��72)
a  = -1, implying the integer must be negative, according to the opposite 

property of 1 and -1, we should have 𝑡4⋅��
a  = -1 and the most significant non-zero digit 

should be 1. Thus, the valid STFRe{-1,0,1} with 𝑡4⋅(��72)
a  = -1 is as -110…0

���	6�
1… 

Thus, it’s obvious that, during addition, if two positive integers within range but 
with 𝑡4⋅(��72)

a  = 1, then the initial sum should be 1-10…0
���	6�

-1… + 1-10…0
���	6�

-1… = 2 -2 

0/-1/-2… If we eliminate the carries from right to left, the initial sum could not have a 
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carry 1 to the position 𝑡4⋅(��74)
a , which has been emphasized in the preceding section. 

Since we have simple complementation of 1 <-> -1 and 0 <-> 0 in the STFRe{-
1,0,1}, if we use two negative integers instead of two positive integers in addition, 
there is still no carry -1 to the position 𝑡4⋅(��74)

a . Besides, we know that subtraction is 

actually the same as addition, and multiplication & division are just implementation 
of multiple additions and subtractions. Then it is apparent that if n is even, there is no 
need to append a second extra digit as 𝑡4⋅(��74)

a . 

2) If n is odd, 
In this case, the STFRe{-1,0,1} is of size 𝑘h =

972
4
+ 1 and we have the maximal 

non-overflowing integer 𝑀 = 𝐹972 − 1. After the UBFR(min)-to-STFRe{-1,0,1} 
conversion, the integer’s STFRe{-1,0,1} should be in 972

4
 digits. If 𝑡

4⋅(���� 72)
a  = 1, 

the corresponding minimal positive integer 𝑁m/91�h� is  
 

𝑁m/91�h� = 𝐹
4⋅(9724 72)

− 𝐹
4⋅ 9724

− 𝐹
4⋅ 9724 12

− ⋯− 𝐹4 

																																											= 𝐹
4⋅(9724 72)

− (𝐹
4⋅ 9724 72

− 1) 

																																											= 𝐹972 + 1 
																																											= 𝑀 + 2 
 
and we have 

 
𝑁m/91�h� > 𝑀 

 
Therefore, we have the following conclusion: 
I. If 𝑡

4⋅(���� 72)
a  = ± 1, it must be out of range. This also indicates it is unnecessary to 

append a second extra digit as 𝑡
4⋅(���� 74)
a . 

Under the premise of 𝑡
4⋅(���� 72)
a  = 0: 

II. If 𝑡
4⋅����

a  = 0, it must be within range, since we have 𝑀V = −𝑀V =

𝐹4⋅(���� 12) + 𝐹4⋅ ���� 14 + ⋯𝐹4⋅2 = 𝐹9 − 1 < 𝑀. 

III. If 𝑡
4⋅����

a  = 1, implying the integer must be positive and we have weight 𝐹972, in 

order to satisfy the condition that the valid positive integer N is 𝑁 < 𝑀, we only need 
to ensure that the most significant non-zero digit from 𝑡

4⋅(���� 12)
a  to 𝑡4a is -1. Thus, the 

valid STFRe{-1,0,1} with 𝑡
4⋅����

a  = 1 is as  10…0
���	6�

-1… 

IV. If 𝑡
4⋅����

a  = -1, implying the integer must be negative, according to the opposite 

property of 1 and -1, we should have the most significant non-zero digit from 
𝑡
4⋅(���� 12)
a  to 𝑡4a is 1. Thus, the valid STFRe{-1,0,1} with 𝑡

4⋅����

a  = -1 is as  -10…0
���	6�

1… 
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In conclusion, given two n-bit UBFR(min)s, regardless of n being even or odd, we 
only need ( 9

4
+1)-bit STFRe{-1,0,1} to implement all the arithmetic operations as 

well as check overflow. When there occurs overflow, usually we terminate the 
procedure and send a warning. But sometimes overflow is a signal of termination of a 
certain part. 

3.3 Logic System Realization  

In this section, we are going to display the realization of a Fibonacci logic system. 
We will perform and test all the practical algorithms for addition, subtraction, 
multiplication and division based on the STFRe{-1,0,1} on a computer. Although we 
have explained the principle of the four fundamental Fibonacci arithmetic operations 
in the 3.2 section, we will emphasize some key points during the concrete 
implementation in the first subsection. And we will show the executive outcomes in 
the second subsection. 

3.3.1 Some Key Points 

1) In the preliminary preparations, we need to use the algorithm in figure 2.1 to 
convert the absolute values of the two input integers from the decimal form to the 
STFRe{-1,0,1}. If we find one integer or both integers’ absolute values are out of 
range, then we should terminate the whole procedure and send a warning message 
about overflow.  

2) For convenience, we use the absolute values of the two input integers during the 
concrete procedure of multiplication and division. The reason is that we only need to 
consider the case of the positive integers when checking overflow. What’s more, in 
division, we can not directly compare multiples to the dividend with an opposite sign, 
which will result in wrong results. 

3) Since the multiplication is the most complicated one among the four arithmetic 
operations, we should develop some clever ways to avoid the unnecessary steps as 
much as possible. 

We know the biggest problem in the multiplication is overflow because of a given 
limited capacity. Discovery of overflow as soon as possible not only reduces 
unnecessary work, but also prevents the problem of insufficient capacity for storing 
an integer in the STFRe{-1,0,1}. 

During the first part of multiplication, namely making Fibonacci multiples of the 
multiplier, the most important task is to keep checking whether the multiples 
overflow. And we know the fact that the first overflowing multiple can be correctly 
represented in the STFRe{-1,0,1}, since it resulted from two non-overflowing 
multiples. 

Then the overflow problems can be mainly divided into three conditions: 
① If the first overflowing multiple is with odd-subscript, namely 𝑀4?72: Check the 

digits of the dividend’s absolute value from left to right starting with the most 
significant one. 
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I. Once we find a non-zero digit with subscript larger than 2k+2, the final product 
must overflow and we terminate the procedure. 

II. If the most significant non-zero digit is equal to 2k+2, i.e. 𝑡4?74a  = 1, then we 
check whether 𝑡4?a  = -1. If not, the final product must overflow and we terminate the 
procedure. If yes, we finish this part and go to the second part of multiplication, with 
an “overflow” label used in the second multiplication part. 

III. If no non-zero digit with even subscript larger than 2k is found, we finish this 
part and go to the second part of multiplication, with a “non-overflow” label. 
② If the first overflowing multiple is with an even subscript, namely 𝑀4?74: 

Check the digits of the dividend’s absolute value from left to right starting with the 
most significant one. 

I. Once we find a non-zero digit with subscript larger than 2k+2, the final product 
must overflow and we terminate the procedure. 

II. If no non-zero digit with subscript larger than 2k+2 is found, we finish this part 
and go to the second part of multiplication, with an “overflow” label. 
③ If every necessary multiple is within range, then we finish this part and go to the 

second part of multiplication, with a “non-overflow” label. 
Then, during the second part of multiplication, namely accumulation of multiples 

weighted by the digits of the multiplicand, we start accumulation from the currently 
largest even-subscripted multiple, add it to the accumulated sum with initial value 0, 
and repeat the following steps:  

1. If the label is “overflow”, then we check the next largest even-subscripted 
multiple whose corresponding digit in the multiplicand is non-zero: 

1.1. If the corresponding digit is 1 or we can not find any non-zero digit, then the 
final product must overflow and we terminate. If the corresponding digit is -1, then 
add that multiple to the accumulated sum and check overflow. 

1.2. If the accumulated sum is now within range, then change the label as “non-
overflow”. 

1.3. If the accumulated sum is still out of range, keep the label as “overflow”. 
1.4. Set the next largest even-subscripted multiple as the currently largest one. 
2. If the label is “non-overflow”, then we directly add the next largest even-

subscripted multiple, weighted by the corresponding digit in the dividend, to the 
accumulated sum, and check whether the accumulated sum overflows now 

2.1 If the accumulated sum is still within range, then keep the label as “non-
overflow”. 

2.2 If the accumulated sum is now out of range, then change the label as 
“overflow”. 

2.3 Set the next largest even-subscripted multiple as the currently largest one. 
After the repeating of these steps, if the label shows “overflow”, then the final 

product overflows and we terminate. If the label shows “non-overflow”, then the final 
product doesn’t overflow and we print it. 



 

 

42 
 

3.3.2 Results 

Given the n-bit UBFR(min), we first want to show the relationship between 𝑛, 
namely the number of bits allowed, and the maximal integer that can be represented 
within range.  

We have proved that if the range of the n-bit UBFR(min) is [0,𝑀], where 𝑀 is the 
valid maximal integer, then the range of the converted STFRe{-1,0,1} becomes 
[−𝑀,𝑀]. Since −𝑀 = 𝑀 , we only need to show the relationship between 𝑛 and 
the maximal integer 𝑀. What’s more, according to the property of the UBFR(min), 
we should have 𝑛 ≥ 2.  

 To illustrate the relationship, we draw a plot, which is displayed in figure 3.5. 

  
 

Figure 3.5 Relation between the # of bits 𝑛 and the maximal value 𝑀 
  

In the plot, the x axis is the # of bits, and the y axis is the maximal value 
corresponding to # of bits. Here, we choose 𝑛’s range in [2, 16] as an example. It’s 
obvious that as 𝑛 increases, the maximal value increases. And the rate of increase is 
faster and faster, since we find the line goes vertically up with 𝑛’s increment. 

And the precise relationship between 𝑛 and 𝑀 is 
 

𝑀 =	𝐹972 − 1 
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where 𝐹972 can be obtained either by the recurrence relation (1.2), or directly by the 
general term formula (1.3). 

Next, we show the flowcharts and some results of the arithmetic operations as 
examples. The arithmetic operations are written and run on CLion using C++. 

1) Addition: 
 

 
 

Figure 3.6 Flowchart for the procedure of addition 
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Figure 3.7(a) An example result of addition 
 

 
 

Figure 3.7(b) An example result of addition 
 

 
 

Figure 3.7(c) An example result of addition 
     

Flowchart 3.6 shows the whole procedure of addition. Figures 3.7(a)-3.7(c) show 
three examples of addition. Given 8-bit UBFR(min), the maximal integer is 𝐹R - 1 = 
33. Therefore, the range of the STFRe{-1,0,1} is [-33, 33]. In figure 3.7(a), the two 
inputs and the sum 𝑁 = 28 are within range; in figure 3.7(b), the first input overflows 
and we directly terminate the procedure; in figure 3.7(c), the sum is out of range since 
it’s larger than 33. 
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2) Subtraction: 

 
 

Figure 3.8 Flowchart for the procedure of subtraction 
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Figure 3.9(a) An example result of subtraction 
 

 
 

Figure 3.9(b) An example result of subtraction 
 

 
 

Figure 3.9(c) An example result of subtraction 
 

Flowchart 3.8 shows the whole procedure of subtraction. Figures 3.9(a)-3.9(c) 
show three examples of subtraction. Given 9-bit UBFR(min), the maximal integer is 
𝐹26 - 1 = 54. Therefore, the range of the STFRe{-1,0,1} is [-54, 54]. In figure 3.9(a), 
the two inputs and the difference 𝑁 = -31 are within range; in figure 3.9(b), both 
inputs overflow and we directly terminate the procedure; in figure 3.9(c), the 
difference is out of range since it’s larger than 54. 
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3) Multiplication: 

 
 

Figure 3.10(a) Flowchart for the procedure of multiplication 
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Figure 3.10(b) Flowchart for the details in the first part of multiplication 
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Figure 3.10(c) Flowchart for the details in the second part of multiplication 
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Figure 3.11(a) An example result of multiplication 
 

 
 

Figure 3.11(b) An example result of multiplication 
 

Flowchart 3.10(a) shows the whole procedure of multiplication. Flowcharts 3.10(b) 
and 3.10(c) show details in the first part, namely making Fibonacci multiples of the 
multiplier, and second part, namely accumulating weighted Fibonacci multiples, of 
multiplication respectively. Figures 3.11(a) and 3.11(b) show two examples of 
subtraction. Given 10-bit UBFR(min), the maximal integer is 𝐹22 - 1 = 88. Therefore, 
the range of the STFRe{-1,0,1} is [-88, 88]. In figure 3.11(a), the two inputs and the 
product 𝑁 = -84 are within range; in figure 3.11(b), the product is out of range since 
it’s less than -88. 
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4) Division: 

 
 

Figure 3.12(a) Flowchart for the procedure of division 
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Figure 3.12(b) Flowchart for the details in the first part of division 
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Figure 3.12(c) Flowchart for the details in the second part of division 
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Figure 3.13(a) An example result of division 
 

 
 

Figure 3.13(b) An example result of division 
 

 
 

Figure 3.13(c) An example result of division 
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Figure 3.13(d) An example result of division 
 

Flowchart 3.12(a) shows the whole procedure of division. Flowcharts 3.12(b) and 
3.12(c) show details in the first part, namely making Fibonacci multiples of the 
divisor, and second part, namely successive subtractions, of division respectively. 
Figures 3.13(a)-3.13(d) show four examples of division. Given 11-bit UBFR(min), 
the maximal integer is 𝐹24 - 1 = 143. Therefore, the range of the STFRe{-1,0,1} is [-
143, 143]. In figure 3.13(a), the quotient of 121/-11 is -11 and there is no remainder; 
in figure 3.13(b), the quotient of 137/-25 is -5 and the remainder is 12; in figure 
3.13(c), since the absolute value of dividend is less than the absolute value of divisor, 
we have quotient of -12/136 equal to 0 and remainder equal to -12; in figure 3.13(d), 
since the divisor can’t be zero, we terminate the procedure and send a warning 
message. 
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Chapter 4: Conclusions 

4.1 Conclusions of The Thesis 

In this section, we are going to recall and conclude what we did in the whole thesis. 
1. Starting with the introduction of basic properties of the Fibonacci numbers, we 

put forward the idea to build a Fibonacci logic system. 
2. By analogy with the binary system, we use unsigned binary Fibonacci 

representation, namely UBFR, to express non-negative integers. We find for the same 
non-negative integer, there may exist several UBFRs to express it. 

3. To unify the form in Fibonacci arithmetic operations as well as use as little 
number of 1s as possible, we select the minimal form of UBFR, namely the 
UBFR(min), to represent the non-negative integers, which is unique. 

4. In order to include the negative integers and double the range, we introduce the 
signed ternary Fibonacci representation using only even subscripts, namely STFRe{-
1,0,1}, converted from the corresponding UBFR(min). 

5. Compared with the binary Fibonacci representations, the STFRe{-1,0,1} can 
convert the integer N into –N just by a simple form of complementation as 1 <-> -1, 0 
<-> 0, without any extra bit. 

6. We develop Fibonacci addition, subtraction, multiplication and division based 
on the STFRe{-1,0,1}, through the combination of analogy with the conventional 
arithmetic operations’ methods as well as injection of the STFRe{-1,0,1}’s special 
properties. 

7. Illustrate some clever ways to check overflow occurring in the arithmetic 
operations based on the STFRe{-1,0,1} and to avoid as many unnecessary steps as 
possible. 

4.2 Open Problems 

In the final section, we provide some open problems, among which some are 
further improvement measures to better realize the Fibonacci computer, others are 
several innate defects of the Fibonacci system compared with the conventional binary 
system. 

4.2.1 Further Improvements  

1. Since we can use different Fibonacci coding forms to represent the same integer, 
it may be a good idea to take advantage of this redundancy property to improve the 
Fibonacci computer’s error detection ability [16-18]. 

2. We can implement mixed Fibonacci arithmetic operations among more than two 
operands. And we should have an investigation for the order of precedence in the 
mixed operations. 

3. We can simplify the steps of making Fibonacci multiples in multiplication by 
using prefix coding. 
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4. In the conventional binary system, it is natural to extend to fractional values. 
Therefore, we wonder whether we can further include fractional values in the four 
fundamental arithmetic operations. 

5. We can try to include more operators to the Fibonacci system, such as power 
operator, integral or differential. 

6.  We can try to re-implement all the representations and calculations in this thesis 
based on the Lucas number system. 

7. Finally, we desire to apply all the ideas and improvements to hardware 
implementations using three-state devices or two-bit per cell binary equivalents [19]. 

4.2.2 Disadvantages of The Fibonacci System 

1. Although we have realized the four fundamental arithmetic operations based on 
the STFRe{-1,0,1}, we have to admit that those arithmetic operations developed in 
Chapter 3 are much more complicated compared with the arithmetic operations in the 
conventional binary system. The conventional binary system only has a single carry-
propagation direction to more significant digits in any kind of arithmetic operations.  
And it can implement multiplication and division easily by “left shifting” or “right 
shifting”. 

2. In the preliminary preparations, the algorithms converting the decimal to the 
UBFR(min) and then converting the UBFR(min) to the STFRe{-1,0,1} are 
themselves bulkier than the simple conversion from the decimal to the conventional 
binary representation. 

3. The integer range is [−2912, 2912 − 1] in the conventional n-bit signed binary 
system, but is −𝐹972 + 1, 𝐹972 − 1  in the even-subscripted signed ternary 
Fibonacci system where the ternary coefficients take values from the set {-1,0,1}. It’s 
obvious that given the same n-bit size, the integer range in the conventional binary 
system is much larger than in the ternary Fibonacci system. And the gap widens more 
and more sharply as n grows larger and larger.  

Finally, we want to say that, even though the Fibonacci computer has its own 
advantages compared with the conventional binary one, while it is unlikely to remain 
more than a curiosity. At least, there is still a long way to explore. 
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Coding Part 
 
 
class Fibonacci{ 
public: 
    vector<int> num1_UBFR; 
    vector<int> num2_UBFR; 
    vector<int> num1_STFR; 
    vector<int> num2_STFR; 
    vector<int> result_STFR; 
    vector<int> base_fibonacci; 
    int digit; 
    int value1, value2; 
    int sign1, sign2; 
 
    Fibonacci(int input, int input1, int input2) { 
        value1 = abs(input1); 
        value2 = abs(input2); 
        sign1 = input1 < 0 ? -1 : 1; 
        sign2 = input2 < 0 ? -1 : 1; 
        digit = input; 
 
        int base0 = 0, base1 = 1; 
        for (int i = 0; i <= input; i++) { 
            base_fibonacci.push_back(base0 + base1); // F_2 to F_(digit+2) 
            base0 = base1; 
            base1 = base_fibonacci[i]; 
            num1_UBFR.push_back(0); // F_1 to F_(digit+1) 
            num2_UBFR.push_back(0); 
            if (i % 2 == 0) { 
                num1_STFR.push_back(0); // F_2,...,F_(digit+2), if digit is even 
                num2_STFR.push_back(0); 
                result_STFR.push_back(0); 
            } 
        } 
 
        if (digit % 2 == 1) { 
            num1_UBFR.push_back(0); // For odd digit, F_1 to F_(digit+2) 
            num2_UBFR.push_back(0); 
            num1_STFR.push_back(0); // For odd digit, F_2,F_4,...,F_(digit+3) 
            num2_STFR.push_back(0); 
            result_STFR.push_back(0); // For odd digit, F_2,F_4,...,F_(digit+3) 
        } 
    } 
 
 
    int Decimal_UBFR() { 
        int start = digit - 1; // Start from F_digit, end in F_2 
        while (start > 0 && value1 > 0) { 
            if (value1 < base_fibonacci[start - 1]) { 
                start -= 1; 
            } else { 
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                num1_UBFR[start] = 1; 
                value1 -= base_fibonacci[start - 1]; 
                start -= 2; 
            } 
        } 
 
        start = digit - 1; 
        while (start > 0 && value2 > 0) { 
            if (value2 < base_fibonacci[start - 1]) { 
                start -= 1; 
            } else { 
                num2_UBFR[start] = 1; 
                value2 -= base_fibonacci[start - 1]; 
                start -= 2; 
            } 
        } 
 
        if (value1 == 0 && value2 == 0) { 
            return 1; 
        } else { 
            if (value1 > 0 && value2 > 0) { 
                cout << "Both Inputs are overflow!" << endl; 
            } else if (value1 > 0) { 
                cout << "Input1 is overflow!" << endl; 
            } else { 
                cout << "Input2 is overflow!" << endl; 
            } 
            return -1; 
        } 
    } 
 
    void UBFR_STFR(){ 
        for(int i = 0; i < num1_STFR.size()-1; i++){ 
            num1_STFR[i] = (num1_UBFR[i * 2] + num1_UBFR[i * 2 + 1] - num1_UBFR[i * 2 + 2]) 
* sign1; 
            num2_STFR[i] = (num2_UBFR[i * 2] + num2_UBFR[i * 2 + 1] - num2_UBFR[i * 2 + 2]) 
* sign2; 
        } 
 
    } 
 
    /*int check_highest() { 
        int i = result_STFR.size()-2; 
        while(i >= 0) { 
            if(abs(result_STFR[i]) >= 2) { 
                break; 
            } else { 
                i--; 
            } 
        } 
        return i; 
    } */ 
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    int check_lowest() { 
        int i = 0; 
        while(i < result_STFR.size()) { 
            if(abs(result_STFR[i]) >= 2) { 
                break; 
            } else { 
                i++; 
            } 
        } 
        return i; 
    } 
 
    void correct(int i_l) { //correct from lowest 
        if(result_STFR[i_l] == 2 || result_STFR[i_l] == 3) { 
            result_STFR[i_l+1]++; 
            if(i_l != 0) { 
                result_STFR[i_l - 1]++; 
            } 
            if(result_STFR[i_l] == 2) { 
                result_STFR[i_l] = -1; 
            } else { 
                result_STFR[i_l] = 0; 
            } 
        } else { 
            result_STFR[i_l+1]--; 
            if(i_l != 0) { 
                result_STFR[i_l - 1]--; 
            } 
            if(result_STFR[i_l] == -2) { 
                result_STFR[i_l] = 1; 
            } else { 
                result_STFR[i_l] = 0; 
            } 
        } 
    } 
 
    int check_overflow() { 
        int len = result_STFR.size(); 
        if(digit % 2 == 0) { 
            if(result_STFR[len - 1] == 1) { 
                if(result_STFR[len - 2] == 1 || result_STFR[len - 2] == 0) { 
                    return 1; 
                } else { 
                    for(int i = len - 3; i >= 0; i--) { 
                        if(result_STFR[i] == 0) { 
                            continue; 
                        } else if(result_STFR[i] == -1) { 
                            return 0; 
                        } else { 
                            return 1; 
                        } 
                    } 
                    return 1; 
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                } 
            } else if(result_STFR[len - 1] == -1) { 
                if(result_STFR[len - 2] == -1 || result_STFR[len - 2] == 0) { 
                    return -1; 
                } else { 
                    for(int i = len - 3; i >= 0; i--) { 
                        if(result_STFR[i] == 0) { 
                            continue; 
                        } else if(result_STFR[i] == 1) { 
                            return 0; 
                        } else { 
                            return -1; 
                        } 
                    } 
                    return -1; 
                } 
            } else { 
                return 0; 
            } 
        } else { 
            if(result_STFR[len - 1] == 1) { 
                return 1; 
            } 
            if(result_STFR[len - 1] == -1) { 
                return -1; 
            } 
 
            if(result_STFR[len - 2] == 1) { 
                for(int i = len - 3; i >= 0; i--) { 
                    if(result_STFR[i] == 0) { 
                        continue; 
                    } else if(result_STFR[i] == -1) { 
                        return 0; 
                    } else { 
                        return 1; 
                    } 
                } 
                return 1; 
            } else if(result_STFR[len - 2] == -1) { 
                for(int i = len - 3; i >= 0; i--) { 
                    if(result_STFR[i] == 0) { 
                        continue; 
                    } else if(result_STFR[i] == 1) { 
                        return 0; 
                    } else { 
                        return -1; 
                    } 
                } 
                return -1; 
            } else { 
                return 0; 
            } 
        } 
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    } 
 
    int multi_addition(vector<vector<int>>& multiples, int start, bool flag_overflow) { 
        while(start > 0) { 
            if(flag_overflow == true && num1_STFR[(start - 1) / 2] == 1) { 
                return sign1 * sign2; 
            } 
 
            if(num1_STFR[(start - 1) / 2] == 1) { 
                for(int i = 0; i < result_STFR.size(); i++) { 
                    result_STFR[i] = result_STFR[i] + multiples[start][i]; 
                } 
            } else if(num1_STFR[(start - 1) / 2] == -1) { 
                for(int i = 0; i < result_STFR.size(); i++) { 
                    result_STFR[i] = result_STFR[i]- multiples[start][i]; 
                } 
            } 
 
            bool flag = true; 
            while(flag) { 
                int i_l = check_lowest(); 
                if(i_l == result_STFR.size()) { 
                    flag = false; 
                } else { 
                    correct(i_l); 
                } 
            } 
 
            int sign = check_overflow(); 
            if(sign == 1) { 
                flag_overflow = true; 
            } else { 
                flag_overflow = false; 
            } 
 
            start -= 2; 
        } 
 
        if(flag_overflow ==  true) { 
            return sign1 * sign2; 
        } else { 
            if(sign1 * sign2 == -1) { 
                for(int i = 0; i < result_STFR.size(); i++) { 
                    result_STFR[i] = result_STFR[i] * -1; 
                } 
            } 
            return 0; 
        } 
 
    } 
 
    void print_answer() { 
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        cout << "The STFRe expression from the most significant digit to the least significant digit 
is:" << endl; 
        for(int i = result_STFR.size() - 1; i >= 0; i--) { 
            cout << result_STFR[i] << " "; 
        } 
        cout << endl; 
 
        int sum = 0; 
        for(int i = 0; i < result_STFR.size() - 1; i++) { 
            sum += result_STFR[i] * base_fibonacci[2 * i]; 
        } 
        if(digit % 2 == 0) { 
            sum += result_STFR[result_STFR.size() - 1] * base_fibonacci[2 * (result_STFR.size() - 
1)]; 
        } 
        cout << "The corresponding decimal expression is:" << endl << sum << endl; 
    } 
 
 
    void Addition() { 
        if(Decimal_UBFR() == -1) { 
            return; 
        } 
        UBFR_STFR(); 
        for(int i = 0; i < result_STFR.size(); i++) { 
            result_STFR[i] = num1_STFR[i] + num2_STFR[i]; 
        } 
 
        bool flag = true; 
        while(flag) { 
            int i_l = check_lowest(); 
            if(i_l == result_STFR.size()) { 
                flag = false; 
            } else { 
                correct(i_l); 
            } 
        } 
 
        int sign = check_overflow(); 
        if(sign == 1) { 
            cout << "Overflow! The result exceeds the maximum value!" << endl; 
        } else if(sign == -1) { 
            cout << "Overflow! The result exceeds the minimum value!" << endl; 
        } else { 
            print_answer(); 
        } 
 
    } 
 
    void Subtraction() { 
        if(Decimal_UBFR() == -1) { 
            return; 
        } 
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        UBFR_STFR(); 
        for(int i = 0; i < result_STFR.size(); i++) { 
            result_STFR[i] = num1_STFR[i] - num2_STFR[i]; 
        } 
 
        bool flag = true; 
        while(flag) { 
            int i_l = check_lowest(); 
            if(i_l == result_STFR.size()) { 
                flag = false; 
            } else { 
                correct(i_l); 
            } 
        } 
 
        int sign = check_overflow(); 
        if(sign == 1) { 
            cout << "Overflow! The result exceeds the maximum value!" << endl; 
        } else if(sign == -1) { 
            cout << "Overflow! The result exceeds the minimum value!" << endl; 
        } else { 
            print_answer(); 
        } 
    } 
 
    void Multiplication() { 
        if(Decimal_UBFR() == -1) { 
            return; 
        } 
        for(int i = 0; i < num1_STFR.size() - 1; i++){ // UBFR_STFR_absolute 
            num1_STFR[i] = num1_UBFR[i * 2] + num1_UBFR[i * 2 + 1] - num1_UBFR[i * 2 + 2]; 
            num2_STFR[i] = num2_UBFR[i * 2] + num2_UBFR[i * 2 + 1] - num2_UBFR[i * 2 + 2]; 
        } 
 
        int h_index = num1_STFR.size() - 2; 
        while(h_index >= 0) { // find the highest position that equals to 1(here value1 must be 
positive) 
            if(num1_STFR[h_index] == 1) { 
                break; 
            } 
            h_index--; 
        } // no need to do the rest multiples 
 
        if(h_index < 0) { // the result is 0 
            print_answer(); 
            return; 
        } 
        if(h_index == 0) { // the result is value2 * sign 
            for(int i = 0; i < result_STFR.size(); i++) { 
                result_STFR[i] = num2_STFR[i] * sign1 * sign2; 
            } 
            print_answer(); 
            return; 



 

 

65 
 

        } 
 
 
        int result_sign = 0; // record whether the result is overflow or not 
        int sign = 0; // record whether there exists an overflow in the outside loop 
 
        vector<vector<int>> multiples((h_index + 1) * 2); //must be even elements 
        multiples[0] = num2_STFR; // F_1 * value2 
        multiples[1] = num2_STFR; // F_2 * value2 
 
        for(int i = 2; i < multiples.size(); i++) { 
            for (int j = 0; j < num2_STFR.size(); j++) { 
                result_STFR[j] = multiples[i - 1][j] + multiples[i - 2][j]; 
            } // multiple of F_(i+1) * value2 
 
            bool flag = true; // correct expression 
            while (flag) { 
                int i_l = check_lowest(); 
                if (i_l == result_STFR.size()) { 
                    flag = false; 
                } else { 
                    correct(i_l); 
                } 
            } 
 
            multiples[i] = result_STFR; 
 
            sign = check_overflow(); 
            if (sign == 1) { // if the multiple is overflow(the multiple must be positive) 
                if ((i + 1) % 2 == 1) { // if the first overflow multiple is odd 
                    if(((multiples.size() - 1 - i) == 1) && (num1_STFR[i / 2 - 1] == -1) && i > 3) { 
                        result_sign = multi_addition(multiples, i - 3, true); // case_1: first odd overflows 
                    } else { 
                        if(sign1 * sign2 == 1) { 
                            result_sign = 1; 
                        } else { 
                            result_sign = -1; 
                        } 
                    } 
                } else { // if the first overflow multiple is even 
                    if(i == multiples.size() - 1) { 
                        result_sign = multi_addition(multiples, i - 2, true); // case_2: first even overflows 
                    } else { 
                        if(sign1 * sign2 == 1) { 
                            result_sign = 1; 
                        } else { 
                            result_sign = -1; 
                        } 
                    } 
                } 
 
                break; 
            } 
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        } 
 
        if(sign == 0) { // if there is not overflow during the whole loop 
            result_sign = multi_addition(multiples, multiples.size() - 3, false); // case_3: no overflow 
        } 
 
        if(result_sign == 1) { 
            cout << "Overflow! The result exceeds the maximum value!" << endl; 
        } else if(result_sign == -1) { 
            cout << "Overflow! The result exceeds the minimum value!" << endl; 
        } else { 
            print_answer(); 
        } 
 
    } 
 
    void Division() { 
        if(Decimal_UBFR() == -1) { 
            return; 
        } 
        for(int i = 0; i < num1_STFR.size() - 1; i++){ // UBFR_STFR_absolute 
            num1_STFR[i] = num1_UBFR[i * 2] + num1_UBFR[i * 2 + 1] - num1_UBFR[i * 2 + 2]; 
            num2_STFR[i] = num2_UBFR[i * 2] + num2_UBFR[i * 2 + 1] - num2_UBFR[i * 2 + 2]; 
        } 
 
        bool non_zero = false; // check if the divisor is 0 
        for(int i = num2_STFR.size() - 1; i >= 0; i--) { // value2 must be non_negative 
            if(num2_STFR[i] == 1) { 
                non_zero = true; 
                break; 
            } 
        } 
        if(non_zero == false) { 
            cout << "The divisor can't be zero!" << endl; 
            return; 
        } 
 
        vector<vector<int>> multiples; // largest capacity is "digit" 
        multiples.push_back(num2_STFR); // M_1 = F_1 * value2 
        multiples.push_back(num2_STFR); // M_2 = F_2 * value2 
 
        int sign = 0; // record the multiple: 1. overflow or not; 2. exceed the dividend or not 
 
       for(int i = 2; i < digit; i++) { // start from M_3 
            for (int j = 0; j < result_STFR.size(); j++) { 
                result_STFR[j] = multiples[i - 1][j] + multiples[i - 2][j]; 
            } // multiple of F(i+1) * value2 
 
            bool flag = true; // correct expression 
            while (flag) { 
                int i_l = check_lowest(); 
                if (i_l == result_STFR.size()) { 
                    flag = false; 
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                } else { 
                    correct(i_l); 
                } 
            } 
 
            sign = check_overflow(); 
            if (sign == 1) { // if the multiple is overflow(the multiple must be positive) 
                break; 
            } else { // if the multiple is not overflow 
                vector<int> temple = result_STFR; 
                for (int j = result_STFR.size() - 1; j >= 0; j--) { 
                    result_STFR[j] = num1_STFR[j] - result_STFR[j]; // difference can't be overflow 
                } 
 
                flag = true; // correct expression 
                while (flag) { 
                    int i_l = check_lowest(); 
                    if (i_l == result_STFR.size()) { 
                        flag = false; 
                    } else { 
                        correct(i_l); 
                    } 
                } 
 
                for (int j = result_STFR.size() - 1; j >= 0; j--) { // check whether it is negative 
                    if (result_STFR[j] == 0) { 
                        continue; 
                    } else { 
                        sign = result_STFR[j]; 
                        break; 
                    } 
                } 
                if (sign == -1) { // the multiple exceeds the dividend 
                    break; 
                } else { 
                    multiples.push_back(temple); 
                } 
            } 
        } 
 
        vector<int> b_system(result_STFR.size() * 2 + 1, 0); 
 
        //int t_h; // the highest non-negative index in t_system 
        //if(multiples.size() % 2 == 1) { // if the highest index in b_system is odd 
            //t_h = (multiples.size() - 1) / 2; 
        //} else { // if the highest index in b_system is even 
            //t_h = multiples.size() / 2 - 1; 
        //} 
 
        vector<int> rest = num1_STFR; 
        sign = 0; // sign records whether the previous bit is 1 or not 
        for(int i = multiples.size() - 1; i > 0; i--) { 
            if(sign == 0) { // the previous bit is 0 
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                for(int j = 0; j < num1_STFR.size(); j++) { 
                    result_STFR[j] = rest[j] - multiples[i][j]; 
                } 
 
                bool flag = true; // correct expression 
                while (flag) { 
                    int i_l = check_lowest(); 
                    if (i_l == result_STFR.size()) { 
                        flag = false; 
                    } else { 
                        correct(i_l); 
                    } 
                } 
 
 
                int test = result_STFR.size() - 1; 
 
                while(test >= 0) { 
                    if(result_STFR[test] == 1) { 
                        b_system[i] = 1; 
                        rest = result_STFR; 
                        sign = 1; 
                        break; 
                    } 
                    if(result_STFR[test] == -1) { 
                        break; 
                    } 
                    test --; 
                } 
                if(test < 0) { 
                    b_system[i] = 1; 
                    rest = result_STFR; 
                    break; 
                } 
 
            } else { 
                sign = 0; 
            } 
        } 
 
        //result_STFR[t_h] = 1 * sign1 * sign2; 
        //for(int i = result_STFR.size() - 1; i > t_h; i--) { // set 0s after index t_h in result_STFR 
            //result_STFR[i] = 0; 
        //} 
 
        for(int i = 0; i < result_STFR.size(); i++) { 
            result_STFR[i] = (b_system[i * 2] + b_system[i * 2 + 1] - b_system[i * 2 + 2]) * sign1 * 
sign2; 
        } 
 
        cout << "Here is the quotient of N1/N2:" << endl; // print the quotient 
        print_answer(); 
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        result_STFR = rest; 
        if(sign1 == -1) { 
            for(int i = 0; i <= result_STFR.size(); i++) { 
                result_STFR[i] *= -1; 
            } 
        } 
        cout << "Here is the remainder of N1/N2:" << endl; // print the remainder 
        print_answer(); 
    } 
}; 
 
 
int main() { 
    int input1, input2, bits; 
    char oper; 
    cout << "Please input the # of bits logical system you want to create:" << endl; 
    cin >> bits; 
    cout << "Please input 2 values to do the operation:" << endl; 
    cin >> input1 >> input2; 
    Fibonacci Fib(bits, input1, input2); 
    cout << "Please input one operator among '+', '-', '*' and '/':" << endl; 
    cin >> oper; 
    switch(oper) { 
        case '+': { 
            Fib.Addition(); 
            break; 
        } 
        case '-': { 
            Fib.Subtraction(); 
            break; 
        } 
        case '*': { 
            Fib.Multiplication(); 
            break; 
        } 
        case '/': { 
            Fib.Division(); 
            break; 
        } 
        default: 
            cout << "Wrong operator!" << endl; 
    } 
 
    return 0; 
} 
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