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The additive model overcomes the “curse of dimensionality” in general non-

parametric regression problems, in the sense that it achieves the optimal rate of

convergence for a one-dimensional smoother. Meanwhile, compared to the classical

linear regression model, it is more flexible in defining an arbitrary smooth functional

relationship between the individual regressor and the conditional mean of the re-

sponse variable Y given X . However, if the true model is not additive, the estimates

may be seriously biased by assuming the additive structure.

In this dissertation, generalized additive models (with a known link function)

are considered when containing second order interaction terms. We present an ex-

tension of the existing marginal integration estimation approach for additive models

with the identity link. The corresponding asymptotic normality of the estimators

is derived for the univariate component functions and interaction functions. A test

statistic for testing significance of the interaction terms is developed. We obtained



the asymptotics for the test functional and local power results. Monte Carlo sim-

ulations are conducted to examine the finite sample performance of the estimation

and testing procedures. We code our own local polynomial pre-smoother with fixed

bandwidths and apply it in the integration method. The widely used LOESS

function with fixed spans is also used as a pre-smoother. Both methods provide

comparable results in estimation and are shown to work well with properly chosen

smoothing parameters. With a small and moderate sample size, the implementa-

tion of the test procedure based on the asymptotics may produce inaccurate results.

Hence a wild bootstrap procedure is provided to get empirical critical values for the

test. The test procedure performs well in fitting the correct quantiles under the null

hypothesis and shows strong power against the alternative.
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Chapter 1

Introduction

Regression analysis concerns the conditional distribution of a dependent variable Y

as a function of one or several explanatory variables X . It is of great interest to

estimate the average value of Y , when the predictors X are held fixed − that is

the conditional mean E(Y |X). In practice, we will mostly be interested in multiple

regression problems, where the regressor X is a d−dimensional vector (X1, · · · , Xd)

with d > 1. Classical regression analysis assumes a linear relationship where the

mean of Y is related to a set of independent variables X1, X2, · · · , Xd in the following

way:

E(Y |X) = β0 + β1X1 + · · ·+ βdXd,

where βj , j = 1, 2, . . . , d are unknown coefficients. In some cases, if the linearity

assumption is not tenable, the expected form of the nonlinear function is known

and can be parameterized, often in terms of basis functions. All these types of

regression models are referred to as parametric regression, where the estimation

of a finite number of parameters is required. In this case, the fitted models can

be easily interpreted and estimated accurately if the underlying assumptions are
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correct. However, if they are violated, then the estimates may be inconsistent and

give a misleading conclusion of the regression relationship.

As a result, nonparametric regression has become a rapidly developing field

since it avoids restrictive assumptions on the functional form of the regression func-

tion. It relaxes the assumption, typically by substituting the weaker assumption that

the average value of the response is a smooth function, m(X), of the predictors. The

nonparametric regression model assumes

Y = m(X) + σ(X)ε (1.1)

where the error ε is independent of X with E(ε) = 0 and V ar(ε) = 1. Straight-

forwardly, σ(X) corresponds to the conditional variance of Y given X , V ar(Y |X).

There exist various smoothing techniques to implement nonparametric regression,

such as kernel regression, local polynomial regression, smoothing splines, regression

splines, and so on. While a nonparametric regression problem involves multiple

explanatory variables, it is subject to the well-known “curse of dimensionality:”

neighborhoods with a fixed number of points become less local as the dimensions

increase. Consequently, estimators based on local averaging perform unsatisfacto-

rily in this situation. Technically, the rate of convergence of the estimator decreases

dramatically for higher dimensions d. In addition, the difficulties of interpretation

and visualization arises in the case of more than two dimensions. Nonparametric

multiple regression will be described in detail in Section 2.1.
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For this reason, many methods of dimensionality reduction have been proposed

in literature. Among those, Buja, Hastie and Tibshrani (1989) and Hastie and

Tibshirani (1990) proposed the additive model,

m(x) = c+

d
∑

j=1

fj(xj). (1.2)

Here c is a constant and {fj(·)}dj=1 is a set of unknown functions normalized by

E[fj(Xj)] = 0. This type of model structure is useful from a statistical point

of view since it achieves a good compromise among flexibility, dimensionality and

interpretability. In particular, it is well-known that additive regression models can

be estimated with the same rate of estimation error as in the univariate case (Stone,

1985). Additive models are important in both theoretical economics and econometric

data analysis. In economic theory, additivity is equivalent to the so-called property

of strong separability. These models have a desirable structure allowing empirical

data analysis for subsets of regressors. The separability of the input variables is

consistent with decentralization in decision making or optimization by stages. In

summary, additive models can be easily interpreted. For details, see Deaton and

Muellbauer (1980).

Buja, Hastie and Tibshrani (1989) proposed an estimating procedure of back-

fitting, which estimates the orthogonal projection of the regression function m(·)

onto the space of additive functions. The asymptotic theory of backfitting has been

developed by Opsomer and Ruppert (1997), Mammen, Linton and Nielsen (1999)
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and Opsomer (2000). However, many extensions of asymptotic properties of this

method remain unknown due to its iterative nature. Several authors have pro-

posed a non-iterative direct method based on marginal integration (Tjøstheim and

Auestad, 1994; Linton and Nielsen, 1995). This method generates an alternative

projection onto the subspace of additive functions which is not necessarily orthog-

onal. One advantage of this method is that an explicit asymptotic theory can be

constructed. More recently, several modifications of the marginal integration esti-

mator have been proposed (see, for example, Hengartner, 1996; Linton, 1997; Fan,

Härdle and Mammen, 1998; Severance-Lossin and Sperlich, 1999; Linton, 2000). For

a more detailed discussion on the difference between the backfitting and the marginal

integration method, we refer to the work of Nielsen and Linton (1998) and Sperlich,

Linton and Härdle (1999). Nevertheless, due to their very different interpretation

when the true model is not additive, backfitting and marginal interpretation should

not be considered as competitors. We will briefly sketch the difference between the

two most popular methods for additive model estimation in Section 2.2.1.4.

Due to the advantages additivity offers to the empirical researchers, the ad-

ditive model (1.1) should be accompanied by an adequate model check. It was not

until recently that the problem of testing additivity gained real interest (see, for

example, Hastie and Tibshirani 1990; Barry 1993; Eubank et al. 1995; Chen et al.

1995; Derbort, Dette and Munk 2002; Gozalo and Linton 2001; Dette et al. 2001).
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Additivity tests developed in these works have mostly focused on testing whether

a regression function m(x) is purely additive or not in the sense of (1.2). However,

in case that pure additivity is rejected, one would like to know exactly which in-

teraction terms are present. For this reason, Sperlich, Tjøstheim and Yang (2002)

extended model (1.2) to include pairwise interactions, resulting in

m(x) = c+
d

∑

j=1

fj(xj) +
∑

1≤j<k≤d

fjk(xj, xk). (1.3)

Sperlich, Tjøstheim and Yang (2002) showed that all components can be iden-

tified and estimated consistently by marginal integration, obtaining the optimal

convergence rate in smoothing. Another main point of their paper is to test directly

for such interactions based on the estimates of the particular interaction term.

Model (1.1) excludes a wide variety of situations, evidently. To allow for even

more flexibility than the additive model does, we extend the model to the class of

generalized additive models (GAMs) defined as

G{m(x)} = c+

d
∑

j=1

fj(xj), (1.4)

where G(·) is a fixed link function. GAMs were introduced in a series of papers by

Hastie and Tibshirani (1986, 1987a, 1987b) and Stone (1986). They are described

in detail in Hastie and Tibshirani (1990). Generalized linear models (GLMs) are

special cases of GAMs, with the functions fj(xj) taken to be linear of the form

βjxj . GAMs are appropriate for many situations like binary and survival data, etc.
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Widely used link functions include the logit and probit links for binary data, or the

logarithm transform for Poisson data. Without loss of generality, we assume that

the link function G(·) is known as a priori throughout the dissertation. Härdle et

al. (2004) discussed the problem of testing the specification of the link function,

but this is beyond the scope of the present research. The local scoring algorithm

(Buja, Hastie and Tibshrani, 1989; Hastie and Tibshirani, 1990) was an extension

of backfitting for the non-trivial link function G(·). Meanwhile, it is practically

identical with the Fisher scoring algorithm used in GLMs, except that the least-

square steps used to update the linear coefficients β̂ are replaced by the backfitting

algorithm to update the estimates for the component functions fj and constant c.

As an alternative, Linton and Härdle (1996) extended the marginal integration

idea to the estimation of GAMs and provided the asymptotics of the estimates.

Based on this initial investigation, Yang, Sperlich and Härdle (2003) developed

a direct estimation procedure for function derivatives, which is a very important

matter, especially in economic studies. The GAMs will be described in detail in

Section 2.2.2.

Analogous to the case of the identity link function, when the purely additive

model (1.2) is rejected by applying some existing tests, for example, the one proposed

by Gozalo and Linton (2001), one may want to know further which interaction terms

are relevant. For this purpose, we will consider the following model, by allowing for
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second-order interactions,

G{m(x)} = c+

d
∑

j=1

fj(xj) +
∑

1≤j<k≤d

fjk(xj , xk). (1.5)

Some possible estimations of this model have already been existing in the literature.

Hastie and Tibshirani (1990) discussed possible algorithms for backfitting with cubic

smoothing splines. More recently, Roca-Pardiñas, Cadarso-Suárez and González-

Manteiga (2005) studied the estimation and testing problem in the same model,

based on the local scoring algorithm with backfitting, where a likelihood ratio-based

test and an empirical process-based test were proposed. The resulting tests are

useful in practice, but asymptotic distributions of the testing statistics are unknown

and hard to derive. It should be mentioned that Coull, Ruppert and Wand (2001)

proposed an algorithm based on penalized spline models, which incorporates factor

by curve interactions in GAMs, and provides some tests for additivity.

The main objective of this dissertation is to consider estimation of component

functions in model (1.5) and testing of the bivariate interaction functions fjk(·) in

such models, through the use of marginal integration techniques.

In the sequel we will refer to this model as a GAM with interactions and focus

on the interactions between continuous explanatory variables.

Chapter 2 presents a detailed review of the literature on nonparametric re-

gression, particularly on topics related to GAMs.

In Chapter 3, we introduce the technical setting for the problems and describe a
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marginal integration estimating procedure for the component functions. The point-

wise asymptotic properties of the integration estimator are presented. Having these

estimates in hand we construct a test statistic with the functional form

∫

f̂ 2
jk(xj , xk)π(xj , xk)dxjdxk,

where π is a nonnegative weight function, to test whether a specific interaction

function is present or not. We also derive the asymptotic distribution of the test

statistic. All proofs are deferred to the end of the chapter.

Several simulation experiments are carried out for the estimation and testing

problems. It is well-known that the first-order asymptotics of test functionals of the

previous type do not give a very accurate approximation of the finite sample distri-

bution in practice. Hjellvik, Yao and Tjøstheim (1998) showed that several hundred

thousand sample points may be necessary to reach some reasonable accuracy. As a

consequence, a wild bootstrap (see, e.g., Liu 1988; Wu 1986) scheme is adopted to

construct the null distribution of the test statistic. A detailed introduction, discus-

sion and theory of this method in the context of testing problems combined with a

marginal integration method can be found in Gozalo and Linton (2001), Sperlich,

Tjøstheim and Yang (2002), Yang, Sperlich and Härdle (2003) and Härdle et al.

(2004). We will also sketch the method briefly in Chapter 4, where the details and

results of the simulation studies are given.

We summarize this dissertation research in Chapter 5 and describe several
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possible points of interest for future work.
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Chapter 2

Literature Review

2.1 Nonparametric Regression

2.1.1 Simple Nonparametric Regression - Smoothing Scatterplots

In this section, a brief summary is given of the key methods available for estimating

univariate nonparametric regression functions. Some of the methods, in particular

local polynomial regression, will be discussed in more detail in later subsections.

The nonparametric regression case with a single predictor is also called non-

parametric simple regression, or scatterplot smoothing. There now exist various

approaches to the problem. Binning, nearest-neighbor and running-mean (or local

averaging) are among the simplest smoothing methods. Some of the more popular

ones are those based on kernel functions, spline functions and wavelets. Each of

these options has its own strengths and weaknesses. Among them, kernel-based

regression estimators have the advantage of mathematical and intuitive simplicity.

The traditional kernel regression approaches include the famous Nadaraya-Watson

estimator (Nadaraya, 1964; Watson, 1964) and several alternative kernel estimators
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(Priestley and Chao, 1972; Gasser and Müller, 1979). We will give a brief overview

of these classical estimators in Section 2.1.1.1. Another important class of kernel-

type regression estimators is local polynomial regression estimators (Stone, 1977;

Cleveland, 1979; Müller, 1987; Fan, 1992; Ruppert and Wand, 1994; Wand and

Jones, 1995; Simonoff, 1996; Fan and Gijbels, 1996). They will be discussed in Sec-

tion 2.1.1.2. Other smoothing methods, e.g., smoothing splines, will be introduced

in Section 2.1.1.3.

2.1.1.1 Kernel Estimators

The essential idea of kernel estimation is that in estimating m(x0), the value of the

regression function at x = x0, it is desirable to give greater weight to observations

close to the focal x0 and less weight to those that are remote. It is an improved

version of local averaging, which can be thought as local weighted averaging. These

weights are defined by a kernel function K, which is usually a symmetric probability

density. Let h be a bandwidth, which is a nonnegative number controlling the size of

the local neighborhood. The Nadaraya-Watson kernel regression estimator is given

by

m̂NW (x) =

∑n
i=1Kh(Xi − x)Yi

∑n
i=1Kh(Xi − x)

where Kh(·) = K(·/h)/h.

If the design is not random, but is rather a fixed set of sorted numbers

11



X1, · · · , Xn, a different form of kernel estimator could be considered. The Gasser-

Müller estimator is intended for the fixed design case and is defined as follows:

m̂GM(x) =

n
∑

i=1

[∫ si

si−1

Kh(u− x)du

]

Yi

where Xi−1 ≤ si−1 ≤ Xi (a common choice being si−1 = (Xi−1 + Xi)/2, with s0

and sn being the upper and lower limits of the range of X , respectively). It is a

modification of an earlier version of Priestley and Chao (1972).

Basic calculus shows that m̂NW is the solution to a weighted least squares

regression problem,

β̂0 = argminβ0

n
∑

i=1

(Yi − β0)
2ωi =

n
∑

i=1

ωiYi/

n
∑

i=1

ωi,

with ωi = Kh(Xi − x). Similarly, the Gasser-Müller estimator is of the same form

with weights ωi =
∫ si
si−1

Kh(u − x)du. That is, both estimators use locally constant

approximations, giving heavier weight to values of Yi corresponding to Xis closer to

x.

This suggests fitting higher order local polynomials, for example, a local linear

fit, since a local constant usually makes sense only over a very small neighborhood.

Table 2.1, which is taken from Fan and Gijbels (1996), summarizes the first or-

der asymptotic performance of the Nadaraya-Watson estimator, the Gasser-Müller

estimator, and the local linear regression estimator at an interior point of the sup-

port of the design density. Note that in the table, bn = (1/2)h2
∫∞

−∞
u2K(u)du,
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Table 2.1: Pointwise asymptotic bias and variance of kernel regression smoothers

Method Bias Variance

Nadaraya-Watson
(

m′′(x) + 2m′(x)f ′(x)
f(x)

)

bn Vn

Gasser-Müller m′′(x)bn 1.5Vn

Local Linear m′′(x)bn Vn

Vn = (σ2(x)/(f(x)nh))
∫∞

−∞
K2(u)du and f(x) is the design density.

It is easy to see that unlike the Nadaraya-Watson estimator, the bias of the

local linear fit is independent of the design and disappears when the true regression

curve m(·) is linear. The Gasser-Müller estimator on the other hand corrects the

bias of the Nadaraya-Watson estimator but at the expense of increasing its variance.

The local linear estimator achieves further improvement in the boundary regions.

In the case of Nadaraya-Watson estimates we typically observe problems due to the

one-sided neighborhoods at the boundaries. The reason is that in local constant

modeling, more or less the same points are used to estimate the curve near the

boundary. Local linear fit (also for more general local polynomial regression) corrects

this automatically by fitting a higher degree polynomial here.

Comparisons between local linear and local constant fit were discussed in detail

by Chu and Marron (1991), Fan (1992), and Hastie and Loader (1993).
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2.1.1.2 Local Polynomial Regression

Let us sketch briefly the framework of local polynomial regression in the univariate

case. Locally, the regression function m can be approximated by a Taylor expansion

of order p,

m(z) ≈
p

∑

j=0

m(j)(x)

j!
(z − x)j ≡

p
∑

j=0

βj(z − x)j

for z in a neighborhood of x, where m(j)(x) denotes the jth derivative of m(x). Now,

consider the following locally weighted least squares problem:

Let β̂j (j = 0, . . . , p) minimize

n
∑

i=1

[

Yi −
p

∑

j=0

βj(Xi − x)j

]2

Kh(Xi − x)

where K is a kernel function and h is the bandwidth, controlling the size of the local

neighborhood. The above exposition suggests that an estimator for m(ν)(x) is

m̂ν(x) = ν!β̂ν .

The least squares theory provides the solution

β̂ = (XTWX)−1XTWY,

where X is an n× (p+1) matrix with the ith row {1, (Xi−x), . . . , (Xi−x)p}, W is

the n×n diagonal matrix of weights W = diag{Kh(Xi−x)}, andY = (Y1, . . . , Yn)
T .

Therefore, to estimate the function m(·), the whole curve

m̂(x) = β̂0 = eT1 (X
TWX)−1XTWY
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is obtained by running the local polynomial regression of order p with x varying in

an appropriate estimation domain. Here, er is (p+1)×1 vector having 1 in the rth

entry and all other entries 0.

Moreover, ν!β̂ν = ν!eTν+1(X
TWX)−1XTWY is an estimate of the νth deriva-

tive of m(x), m(ν)(x). It is obvious that when p = 0, β̂ reduces to β̂0, which means

that the local constant estimator is nothing other than the well-known Nadaraya-

Waston estimator.

As in other kernel methods, the bandwidth h determines the degree of smooth-

ness of m̂(·). As h → 0, the resulting estimate essentially interpolates the data,

namely at an observation Xi, m̂(Xi) converges to Yi, while an infinitely large h

makes all weights equal, so that we obtain a parametric pth order polynomial fit.

As h ranges from 0 to ∞, m̂ ranges from the most complex interpolation model to

the simplest parametric regression model by polynomials.

In marked contrast to the parametric polynomial regression approach, this

technique is local and hence requires a small degree of the local polynomial, typically

of order p = ν+1 or occasionally p = ν+3. For example, for estimating a regression

function itself one often uses a local linear model with p = 1.

Besides the advantages described in the last section, there is an absence of

boundary effects: the bias at the boundary stays automatically of the same order

as that in the interior, without use of specific boundary kernels. Thus no boundary

15



modifications are required with local polynomial fitting. This is an important merit

especially when dealing with multidimensional cases for which the boundary effects

can be quite substantial (Silverman, 1986; Fan and Marron, 1993).

As argued in Fan and Gijbels (1996), odd order polynomial fits are prefer-

able to even order polynomial fits. As we have seen, the local linear fit performs

asymptotically better than the Nadaraya-Watson estimator. On the other hand,

for sufficiently smooth regression functions, the asymptotic performance of the local

polynomial estimator improves for higher values of p. However, as with higher order

kernels, the variance of the estimator becomes larger for higher p and a very large

sample may be required for a substantial improvement in practical performance,

especially beyond cubic fits. Typically, the order p is taken to be one (local linear)

or sometimes three (local cubic) to estimate the regression function.

2.1.1.3 Other Smoothing Methods

The spline smoothing approach is used to estimate the unknown smooth regression

function by explicitly trading off fidelity to the data with smoothness of the estimate.

A natural measure of “fidelity to the data” for a regression curve m is the residual

sum of squares
n

∑

i=1

[Yi −m(Xi)]
2 .
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This distance measure will be reduced to zero by any m that interpolates the data.

Such a curve is not acceptable on the grounds that it is too oscillatory and it is not

unique. That means we want to produce a curve which fits the data well without

too much local variation. To quantify local variation, one could use the measure of

roughness based on derivatives, for instance, the roughness penalty
∫

[m′′(x)]2dx.

Define the penalized residual sum of squares

n
∑

i=1

[Yi −m(Xi)]
2 + λ

∫

[m′′(x)]2dx, (2.1)

with a smoothing parameter λ, which represents the rate of exchange between resid-

ual error and roughness of the curve m. If we restrict the possible minimizing func-

tions to be twice differentiable on the interval [a, b] = [X(1), X(n)], this problem has

a unique solution m̂λ(x), which is a cubic spline with knots at the unique values of

Xi. Moreover, it can be argued that m̂λ is linear in the responses:

m̂λ(x) = n−1

n
∑

i=1

Wi(x, λ;X1, · · · , Xn)Yi,

where Wis are the weights. Silverman (1984) pointed out that the smoothing spline

is basically a local kernel average with a variable bandwidth.

The larger values of the smoothing parameter λ yields a smoother estimator

by penalizing roughness more. One approach in selecting λ is via the minimization

of the cross-validation criterion

CV (λ) =
1

n

n
∑

i=1

[Yi − m̂λ,i(Xi)]
2 , (2.2)
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where m̂λ,i(Xi) is the spline estimator computed without using the ith observation

and evaluated at Xi, arising from (2.1). It can be shown that for linear smoothers,

CV (λ) can be written as a function of fitted values,

CV (λ) =
1

n

n
∑

i=1

[

Yi − m̂λ(Xi)

1− Aii(λ)

]2

, (2.3)

where Aii(λ) is the ith diagonal element of the smoother matrix. However, this

cross-validation criterion is computationally intensive. An alternative version is

generalized cross-validation (GCV), proposed by Wahba (1977) and Craven and

Wahba (1979). GCV replaces each value 1 − Aii(λ) in (2.3) with their average,

namely, 1− (1/n)trace[A(λ)]. Hence the GCV selector of λ is the minimizer of

GCV (λ) =

∑n
i=1 [Yi − m̂λ(Xi)]

2

n{1− n−1trace[A(λ)]}2 .

Both quantities CV (λ) and GCV (λ) are consistent estimates of the MISE (mean

integrated squared error) of m̂λ. See Wahba and Wang (1990) for a description of

other methods for selecting the smoothing parameter.

For comprehensive works on spline smoothing, see Eilers and Marx (1996),

Wahba (1990) and Green and Silverman (1994).

Another class of smoothing techniques is called orthogonal series regression.

This method uses the fact that under certain conditions, the regression function

can be represented by a series of orthogonal basis functions. The coefficients of the

basis functions have to be estimated. The smoothing parameter N is the number
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of terms in the series. For larger N , the estimator will be smoother. The book of

Efromovich (1999) provides a detailed discussion of this approach to smoothing.

We close the introduction of scatterplot smoothing methods here. For a com-

prehensive overview on a variety of smoothing methods, refer to the books of Eubank

(1999) and Schimek (2000).

Most of the univariate smoothing techniques discussed above can be general-

ized to higher dimensions. Since kernel-based nonparametric regression is employed

in this dissertation research, we will focus on introducing the multivariate version

of the kernel-based methods in next section.

2.1.2 Multiple Nonparametric Regression

2.1.2.1 Kernel-based Regression for Multivariate Data

In practice, researchers will mostly be interested in multiple regression problems,

where they need to specify how the response variable Y depends on a vector of

predictors X = (X1, · · · , Xd)
T . This means we need to estimate the conditional

expectation

E(Y |X) = E(Y |X1, · · · , Xd) = m(X).

The multivariate generalization of the Nadaraya-Watson estimator is

m̂NW (x) =

∑n
i=1KH(Xi − x)Yi

∑n
i=1KH(Xi − x)

,

19



where K denotes a multivariate kernel function operating on d arguments and H is a

nonsingular bandwidth matrix. An equal bandwidth h in all dimensions corresponds

to H = hId with the d × d identity matrix Id. Different bandwidths correspond

to H = diag(h1, · · · , hd). Hence, the estimator is again a weighted sum of those

observed responses Yi where Xi lies in a ball or cube around x, depending on the

choice of the kernel. Note also that the multivariate Nadaraya-Watson estimator is

a local constant fit.

Local polynomial estimation generalizes in a straightforward way to multiple

predictors. Let us illustrate this with the simplest case of local linear regression.

The minimization problem here is to minimize

n
∑

i=1

[

Yi − β0 − βT
1 (Xi − x)

]2KH(Xi − x),

and the solution to the problem can be written as

β̂ = (β̂0, β̂
T

1 )
T = (XTWX)−1XTWY

in which

X =

















1 (X1 − x)T

...
...

1 (Xn − x)T

















, Y =

















Y1

...

Yn

















,

and the weight matrix W = diag(KH(X1 − x), · · · ,KH(Xn − x)). Hence, β̂0 is the

estimate of the regression function and β̂1 estimates the partial derivatives with
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respect to the components of x. Hence the multivariate local linear estimator is

m̂(x) = β̂0 = eT1 (X
TWX)−1XTWY.

Under some regularity assumptions, the conditional asymptotic bias and variance

of m̂(x) are

Bias{m̂(x)|X1, · · · ,Xn} =
1

2
µ2(K)tr{HTHm(x)H}+ op{tr(HHT )} (2.4)

and

Var{m̂(x)|X1, · · · ,Xn} =
1

ndet(H)
‖K‖22

σ2(x)

fX(x)
{1 + op(1)} (2.5)

respectively, in the interior of the support of the density function fX, where µ2(K) =

∫

u2K(u)du, ‖K‖22 =
∫

K2(u)du, Hm(x) denotes the d × d Hessian matrix of the

regression function m(·) at x and σ2(x) = V ar(Y |X = x).

We refer to Ruppert and Wand (1994) for more details of the derivation. They

also pointed out that the local linear estimate has the same order conditional bias in

the interior as in the boundary region of the support of fx. Thus it avoids boundary

bias problems in the same way as the univariate case.

2.1.2.2 Curse of Dimensionality

Theoretically, regression smoothing for a multi-dimensional predictor can be per-

formed as in the case of a one-dimensional predictor. The local averaging procedure
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will still provide consistent estimates of the regression surface. Although general-

izations of most univariate smoothing techniques to higher dimensions appear to

be feasible, there is a serious problem arising: the so-called “curse of dimension-

ality”, as it was termed by Bellman (1961). This problem refers to the fact that

a local neighborhood in higher dimensional Euclidean space is no longer local: a

neighborhood with a fixed percentage of observations can be very big and far from

“local.” Or to understand it in another way: if 10 data points are adequate for a

one-dimensional nonparametric regression problem, 10d data points will be required

for a d-dimensional problem. As a consequence, much larger data sets are needed

even for a moderate d. Unfortunately, in practice, such large data sets are often

not available. In another words, the observations in higher dimensions are often

sparsely distributed even for large sample sizes, and hence estimators based on local

averaging perform unsatisfactory. Technically, we can explain this effect by looking

at the AMSE (asymptotic mean squared error) of the estimates. Consider a multiple

regression estimator with the identical bandwidth h for all directions, for example,

a local linear estimator with bandwidth matrix H = h ·Id. Based on (2.4) and (2.5),

the AMSE will also depend on the number of dimensions d,

AMSE =
1

nhd
C1 + h4C2,

where C1 and C2 are constants that depend on neither n nor h. If we calculate the

optimal bandwidth to minimize the AMSE, we find that hopt = cn−1/(4+d) and hence
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the fastest possible rate of convergence for AMSE is n−4/(4+d). It is apparent that

the rate of convergence drops dramatically for higher dimension d.

The curse of dimensionality has been illustrated clearly in many books, such

as Silverman (1986), Härdle (1990), Hastie and Tibshirani (1990), Scott (1992) and

Fan and Gijbels (1996).

There is another disadvantage with the multiple regression smoothing. Here

the regression function m(x) is a surface in a high dimensional space and since

its form can not be easily displayed for d > 2, it does not provide a geometric

description of the regression relationship between X and Y . The question is how

can we examine the effect of particular variables once we have fitted a complicated

surface.

Several multiple nonparametric regression approaches have been investigated,

at least partly in response to the dimensionality problem. They all involve some

dimensionality reduction process.

Tree based regression is one technique. The regression surface is approximated

by a linear combination of step functions

m(x) =

K
∑

k=1

ckI(x ∈ Rk),

where the Rk are disjoint hyperrectangles in predictor space with sides parallel to

the coordinate axes, and the ck are coefficients that are estimated by the mean value

of Y in region Rk. Recursive partitioning regression carves the predictor space up
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into disjoint blocks Rk in a binary style and hence the model can be represented by

a binary tree. Each terminal node or leaf of the tree represents a hyperrectangle.

The fitted values are constants in each leaf. The tree is built sequentially, and a

new branch replaces a leaf if a split of that region is warranted in terms of the gain

in predictive power. This repeated binary-style splitting process can be terminated

when no further splits can significantly improve the homogeneity of the subgroups.

However, this strategy can miss effective splits further down in the tree by stopping

too soon. A preferable strategy is to build a very large tree and then prune it back

to a reasonable size. The pruning can be guided by cross-validation and the final

tree selected is the subtree of the original large tree with the smallest estimated

prediction error. While this strategy may appear to be computationally formidable,

an effective algorithm has been developed in the CART program (Breiman et al.,

1993).

Another direct attack on the dimensionality issue is projection pursuit regres-

sion, introduced by Friedman and Stuetzle (1981). It models the regression surface

as

m(x) =

K
∑

k=1

gk(β
T
k x)

where βT
k x (‖βk‖ = 1, k = 1, · · · , K) is a one-dimensional projection of the vector

x, and gk is an arbitrary univariate function of this projection. This model can be

thought as an extension of the regression tree model. It builds up the regression
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surface by estimating the univariate regressions along carefully chosen projections

defined by the βk. The directions βk and number of terms K are selected to give

the best predictive power. Only one-dimensional smoothing is performed to avoid

the dimensionality difficulty. Projection pursuit regression models are parsimonious

smooth surface estimators but are hard to interpret for K greater than one.

There are some other approaches aimed at overcoming the curse of dimen-

sionality problem, but we prefer to stop here. They all suffer from the difficulty of

interpretation. This is not a problem in the linear multiple regression model since

the regression function m(·) is assumed to be linear and hence additive in the pre-

dictors. The effect of each explanatory variable can be examined separately, which

is an important feature of the linear model that has made it so popular for statistical

inference. If we drop the linearity assumption and retain the additivity feature, we

will get the additive model defined in (1.1), which will be discussed in detail in the

next section.

2.2 Additive and Generalized Additive Models

2.2.1 Additive Models

As we just discussed, direct estimation of a multivariate regression surface is limited

by difficulties such as curse of dimensionality, interpretation and visualization. A
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natural way around these problems is to generalize ordinary multiple linear regres-

sion to allow arbitrary additive component functions, as in

m(x) = c+
d

∑

j=1

fj(xj), (2.6)

where c is a constant and the fj are univariate smooth functions. This model com-

bines flexible nonparametric modeling of multidimensional inputs with a statistical

precision that is typical for a one-dimensional predictor. Consider the estimation

of the general nonparametric regression function m(X) = E(Y |X). Stone (1985)

showed that the optimal convergence rate of estimating m(·) is n−r/(2r+d) with r

an index of smoothness of m(·). Thus, a high value of d leads to a slow rate of

convergence. He also proved that for an additive regression function, the optimal

rate of convergence is identical to that of the one-dimensional smoother, which is

n−r/(2r+1). To avoid free constants in the functions and hence to ensure identifi-

ability, we usually require that E[fj(Xj)] = 0 for 1 ≤ j ≤ d. This implies that

E(Y ) = c.

Breiman and Friedman (1985) and Buja, Hastie and Tibshirani (1989) pro-

posed the iterative backfitting procedure to estimate the additive components. These

methods have been evaluated on numerous data sets and have been refined consid-

erably since their appearance. They iteratively calculate one-dimensional smoothers

until some convergence criterion is satisfied. Due to their iterative nature, the theo-

retical analysis of this approach was eluded until Opsomer and Ruppert (1997) and
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Opsomer (2000). The authors provided conditional mean squared error expressions

under rather strong conditions on the smoothing matrices and design. In addition,

Linton, Mammen and Nielsen (1998) established a central limit theorem for a modi-

fied form of backfitting which uses a bivariate integration step as well as the iterative

updating of the other methods. The classical backfitting approach is presented in

detail in Section 2.2.1.1.

More recently, a noniterative method for estimating marginal effects was in-

troduced by Tjøstheim and Auestab (1994b) and Linton and Nielsen (1995). The

idea is to estimate first a multidimensional functional of m(·) and then use marginal

integration to obtain the marginal effects. If the regression function m(·) is indeed

additive, the marginal integration estimator yields the functions fj(·) up to a con-

stant. The procedure is explicitly defined and its asymptotic distribution is easily

derived. It has been extended to a number of other contexts like estimation of

generalized additive models (Linton and Härdle, 1996; Yang, Sperlich and Härdle,

2003), derivative estimation (Severance-Lossin and Sperlich, 1997), dependent vari-

able transformation models (Linton, Chen, Wang and Härdle, 1997), econometric

time series models (Masry and Tjøstheim, 1995, 1997), and interactive additive

models (Sperlich, Tjøstheim and Yang, 2002), etc.. We will introduce this estimator

in Section 2.2.1.2.

Other approaches for fitting additive models were proposed more recently:
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the smooth backfitting estimate by Mammen, Linton and Nielsen (1999); the local

quasi-differencing approach of Christopeit and Hoderlein (2003) and the two-step

procedures of Horowitz, Klemela and Mammen (2006). We will focus on backfitting

and marginal integration and omit the details of these latter methods.

2.2.1.1 Backfitting

The backfitting procedures are widely used to estimate the additive models in (2.6).

However, the iterative nature of the algorithm leads to additional difficulties for

developing asymptotic theory. Moreover, the final estimates may depend on the

starting values or the convergence criterion. Since its first introduction, this method

has been refined considerably and extended to more complicated models. We will

focus on the classical backfitting approach proposed by Buja, Hastie and Tibshirani

(1989).

Under identifiability conditions, if the additive model is true, we have

E[Y − c−
∑

j 6=k

fj(Xj)|Xk] = fk(Xk), (2.7)

for k = 1, · · · , d. This relationship motivates an iterative algorithm for computing

all univariate functions f1, · · · , fd. For given c and given functions fj , j 6= k, the

function fk can be obtained via a univariate regression fit based on the observations

{(Xik, Yi), i = 1, · · · , n}. Denote the univariate smoother of fk by Sk. Note that

any univariate regression smoothing technique can be used. The resulting estimate
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has to be centered to meet the identifiability condition

f̂ ∗
k (·) = f̂k(·)−

1

n

n
∑

i=1

f̂k(Xik). (2.8)

An initial choice of the univariate functions, say f 0
k , is needed as well as an

iteration scheme. Then the so-called backfitting algorithm is as follows:

Table 2.2 Backfitting Algorithm

Initialization ĉ = Ȳ , f̂
(0)
k = f 0

k , for k = 1, . . . , d

Repeat for each k = 1, · · · d the cycles:

f̂k = Sk{Y − ĉ−
∑

j 6=k f̂j(Xj)|Xk}

Until convergence.

The equation (2.7) leads to the matrix representation

























I P1 . . . P1

P2 I . . . P2

...
. . .

...

Pd . . . Pd I

















































f1(X1)

f2(X2)

...

fd(Xd)

























=

























P1Y

P2Y

...

PdY

























with the conditional expectation operator Pk(·) = E(·|Xk). Analogous to above, let

Sk be a n×n smoother matrix, which yields an n×1 estimate SkY of {E(Y1|X1k), · · · ,

E(Yn|Xnk)}T when applied to the response vector Y = (Y1, · · · , Yn)
T . Replacing
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the operator Pk by the smoother Sk, we obtain a system of equations

























I S1 . . . S1

S2 I . . . S2

...
. . .

...

Sd . . . Sd I

















































f̂1

f̂2

...

f̂d

























=

























S1Y

S2Y

...

SdY

























which we can write more compactly as

Af̂ = BY (2.9)

where A and B are block matrices consisting of identity matrices I and smoothing

operators Sk. This system of equations is known as the normal equations of the

additive model. In principle, the system (2.9) could be solved exactly, but the exact

solution is hardly feasible if nd is large. Furthermore, the matrix A on the left-

hand side is often not regular and thus the system can not be solved directly. As

a consequence, the backfitting (Gauss-Seidel) procedure described above is used to

solve these equations.

Opsomer and Ruppert (1997) and Opsomer (2000) investigated the statistical

properties of backfitting. Mammen, Linton and Nielsen (1999) found a way to mod-

ify backfitting and prove consistency and calculate the asymptotics under weaker

conditions. However, we do not describe it here since we emphasize the marginal

integration method. Backfitting converges fast and is popular in fitting an additive
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model, partially due to the availability of the software, for example, function gam()

in R and S-plus.

2.2.1.2 Marginal Integration

The marginal integration estimator is based on an integration idea, based on the

following observation. Let Xj denote the vector of all independent variables but Xj ,

i.e., Xij = (Xi1, . . . , Xi(j−1), Xi(j+1), . . . , Xid) and ϕj, ϕj are the marginal densities

of Xj and Xj, respectively. When m(·) satisfies the additive structure of (2.6),

Fj(xj) =

∫

Rd−1

m(x)ϕj(xj)dxj = c+ fj(xj), (2.10)

by applying the identifiability condition. In case of additivity, the marginal effect

on the left-hand side is the additive component function fj plus a constant. This

relation suggests to estimate first the function m(·) with a multidimensional pre-

smoother m̂ and then integrate out the other variables different from Xj. The most

convenient way to estimate is to replace the integral in (2.10) by averaging over the

directions not of interest (i.e., Xj). It results in

F̂j(xj) =
1

n

n
∑

i=1

m̂(xj, Xij).

As the constant c can be estimated consistently at rate n−1/2 by the sample

mean Ȳ , a possible estimate for fj is

f̂j(xj) =
1

n

n
∑

i=1

m̂(xj , Xij)− Ȳ . (2.11)
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In principle, the pre-estimator m̂ could be any multivariate nonparametric esti-

mator. The literature on marginal integration usually employs the kernel regres-

sion estimator (Linton and Nielsen, 1995) or local polynomial regression estimator

(Severance-Lossin and Sperlich, 1999). Hence the estimator for the entire regression

function is

m̃(x) = ĉ+

d
∑

j=1

f̂j(xj).

The marginal integration estimator was first proposed by Linton and Nielsen

(1995), who derived its asymptotic properties for d = 2. The asymptotic distribution

for arbitrary but finite dimension d was analyzed by Linton and Härdle (1996), based

on the Nadaraya-Watson kernel estimation for the pre-smoother m̂. Severance-

Lossin and Sperlich (1999) proposed a methodology to estimate the derivatives for

additive functions. They suggest the application of a local polynomial pilot esti-

mator restricted to the direction of interest with the effect that more information

remains in the constant. Also, by using local polynomial regression instead of kernel

regression, the estimator is design adaptive in the sense that the bias is independent

of the design density.

Linton and Nielsen (1995), Chen et al. (1995), Fan, Härdle and Mammen

(1998), and Severance-Lossin and Sperlich (1999) have given conditions under which

a variety of estimators based on the marginal integration idea converge at rate

n−2/5 and are asymptotically normal. However, the marginal integration estimator
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suffers from a form of the curse of dimensionality in that more derivatives of the fj

are needed to achieve the one-dimensional convergence rate as the dimension of X

increases. As an example, the estimator in Fan, Härdle and Mammen (1998), which

imposes the weakest smoothness conditions of any existing marginal integration

estimator, still requires more than two derivatives when d ≥ 5.

Linton (1997) argued that the empirical marginal integration map is not an

orthogonal projection from the Hilbert space of functions of X to the subspace of

additive functions. This implies that the integration method is not very efficient in

estimating m and its components. To overcome this drawback, he suggested calcu-

lating starting values via marginal integration and then apply a one-step backfitting

iteration. The interpretation of these estimation results is not clear, especially when

the additivity assumption is violated. Another unpublished proposal to improve ef-

ficiency, also from a computational point of view, is due to Hengartner (1996). He

tackles the problem of pilot estimator choice and comes out favoring a so-called

internalized estimator.

Hengartner and Sperlich (2005) found a way to modify the marginal integration

estimator so as to overcome the curse of dimensionality. To describe the method,

let f−1(x−1) = f2(x2)+ · · ·+fd(xd) and let p1 and p−1 be sufficiently smooth density

functions on R and R
d−1, respectively. The idea is to use the identifiability conditions

∫

f1(x1)p1(x1)dx1 = 0
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and
∫

f−1(x−1)p−1(x−1)dx−1 = 0

instead of E[fj(Xj)] = 0. These conditions make it possible to use the smoothness of

p1 and p−1 to reduce the bias of the marginal integration estimator instead of using

the smoothness of the fj’s. Thus, the fj ’s do not need to be as smooth as required

in the original integration methods, thereby avoiding the curse of dimensionality.

2.2.1.3 Bandwidth Choice

The choice of an appropriate smoothing parameter is always a crucial and difficult

point in nonparametric and semiparametric settings. All the estimation methods for

additive models discussed so far work only when smoothing parameter or bandwidth

values are selected for each dimension beforehand.

In case of backfitting, the selection of d different smoothing parameters is

needed. For d ≤ 2, this is usually done by optimizing a bandwidth selection crite-

rion, for example, cross validation, by a full grid search. For higher dimensions, how-

ever, this grid search approach rapidly becomes computationally intensive. Gu and

Wahba (1991) described an efficient algorithm for minimizing GCV with smooth-

ing splines. Unfortunately, their algorithm requires O(n3) computations and does

not carry over directly to kernel-based smoothers. Hastie and Tibshirani (1990)

suggested the BRUTO algorithm, which minimizes the GCV criterion over one
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bandwidth when the others are kept fixed. This is repeated sequentially for all

bandwidths and the components are chosen as next step for the algorithm. BRUTO

requires O(n) computations but could be slow to converge in practice if the covariates

show significant concurvity. There is instead a plug-in approach for the backfitting

procedure when local linear fitting is applied (Opsomer and Ruppert, 1998). This

method is also computationally difficult, even though the computational burden

does not increase as fast as for GCV when the dimension d increases.

Using the marginal integration method instead of iterative procedures does not

circumvent the computationally expensive situation. For each dimension, the inte-

gration estimator even requires one to choose two bandwidths: h1 for the direction

of interest and h2 for the nuisance directions. Although cross validation can also be

implemented for this method, the standard choices are a simple rule of thumb as

in Linton and Nielsen (1995) and plug-in techniques suggested in Severance-Lossin

and Sperlich (1999). Both methods give the bandwidth that minimizes MASE (av-

eraged mean squared error) , the former approximating it by means of parametric

pre-estimators, the latter by using nonparametric pre-estimators. We give here the

formulas for the case of local linear pre-smoothers. The rule of thumb is

h1 =











σ̃2‖K‖22(max−min)

µ2(K)
(

∑d
j=1 β̂j

)2











1/5

n−1/5, (2.12)

where µ2(K) =
∫

u2K(u)du, ‖K‖22 =
∫

K2(u)du and max and min are the sample
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maximum and minimum in the direction of interest, β̂j is the coefficient of x2
j/2 from

a least squares regression of Y on a constant, xj , x
2
j/2 and xjxk for all j, k = 1, · · · , d,

j < k, while σ̃2 is the average of the squared residuals from the same regression.

The plug-in method uses the following formula to calculate the asymptotically

optimal bandwidth:

h1 =

{

‖K‖22
∫

σ2ϕ2
j(xj)ϕj(xj){ϕ(x)}−1dxjdxj

µ2
2(K)

∫

{f ′′
j (xj)}2ϕj(xj)dxj

}1/5

n−1/5, (2.13)

where ϕj and ϕj, ϕ are density functions for Xj , Xj and X respectively, σ2 is the

conditional variance and fj(·) is the jth true component function. Note that this

formula is not valid for h2, for which the literature recommends undersmoothing. It

turns out that this is not essential in practice. The reason is that the multiplicative

term corresponding to h2 is often already very small compared to the bias term

corresponding to h1.

2.2.1.4 Comparison of Backfitting and Marginal Integration

There are two studies comparing the two commonly used approaches. Nielson and

Linton (1998) highlighted the theoretical difference and Sperlich, Linton and Härdle

(1999) investigated the issue empirically. According to Nielson and Linton (1998),

both marginal integration and backfitting can be viewed as an optimization of an

integrated mean-squared-error criterion. The integration estimator minimizes the

criterion with weighting given by an independent product measure, while backfit-
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ting uses weighting based on a joint empirical measure (joint density). The result of

marginal integration therefore is correct independently of whether additivity holds

or not. The main point is that backfitting is orthogonal projection of the regression

into the additive space, whereas the marginal integration estimator always estimates

the marginal impact of the explanatory variables taking into account possible corre-

lation among them. The definite advantage of the integration estimator is that it is

explicitly defined so it allows extensive studies on the asymptotic properties. How-

ever, marginal integration becomes inefficient with increasing correlation among the

regressors. Linton (1997, 2000) proposed a two-step procedure that took the inte-

gration estimate as a first step and then did one backfitting iteration from that. This

procedure is argued to be oracle efficient, i.e., as efficient as the infeasible estimate

that is based on knowing all components but the one of interest.

Sperlich, Linton and Härdle (1999) have undertaken the most extensive sim-

ulation study so far, in which they tried to trace down the performance differences

between the two methods for small samples and bivariate regression functions (in

one example, for d = 4). They concluded that one cannot declare the superiority of

one procedure over the other in general. Both estimators perform poorly in designs

with increasing correlation although backfitting does perform slightly better. This

is in line with Linton’s theory (1997). Backfitting works better at boundary points

and under data sparseness. The integration method is more capable of estimating
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the components as opposed to the regression function itself. Thus they can not be

interpreted as competing estimators with the same aim.

Finally, it should be mentioned that choosing the bandwidths and smoothing

parameters remains a troublesome issue in the context of additive models, no matter

which method is used. This fact is likely to hamper the interpretation of comparative

simulation studies.

2.2.2 Generalized Additive Models (GAMs)

Analogous to the way that linear models are extended to Generalized Linear Models

(GLMs), the class of generalized additive models was introduced in a series of papers

by Hastie and Tibshirani (1986a, 1986b, 1987) and Stone (1986). They are described

in detail in Hastie and Tibshirani (1990). GAMs retain an important feature of

GLMs, namely, additivity of the predictors, but the predictor effects are modeled

by arbitrary smooth functions fjs.

We say that m(x) has a generalized additive structure if

G{m(x)} = c+
d

∑

j=1

fj(xj) (2.14)

for some known “link function” G. The assumptions concerning identifiability

E[fj(Xj)] = 0 remain same. Additive models are just a special case with the

trivial link function G = indentity. Note that (2.14) is a partial model specification

without restricting in any way the variance or other aspects of the conditional distri-
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bution L(Y |X). A full model specification is to assume that L(Y |X) belongs to an

exponential family with known link function G and mean m. This class of models

is called generalized additive by Hastie and Tibshirani (1990). In some respects, we

prefer the partial model specification as this flexibility is a relevant consideration

for many data sets when there is overdispersion or heterogeneity.

Stone (1986) showed that for GAMs, the optimal rate of estimating m(·) is

the one-dimensional rate of convergence, for example, n−2/5 for twice continuously

differentiable functions.

The backfitting procedure in conjunction with Fisher scoring is widely used

to estimate GAMs. Linton and Härdle (1996) extended the marginal integration

method to the context of GAMs. We will give a brief sketch of the two methods in

the next two subsections.

2.2.2.1 Backfitting in GAMs (Local Scoring)

In models with a nontrivial link function G, the response Y is not directly related

to the index functions. Instead an adjusted dependent variable Z is constructed,

and an iteration analogous to the Fisher scoring in the iterative re-weighted least

square (IRLS) algorithm for GLMs will be used as an “outer” iteration. The “inner”

iteration is a backfitting procedure which fits the index functions instead of linear

components in GLMs.
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The final algorithm given in Hastie and Tibshirani (1990) is presented in Table

2.3.

The theoretical properties of these iterative procedures are very complicated

and intractable. The situation is different for the marginal integration methods,

which are sketched in next subsection.

2.2.2.2 Marginal Integration in GAMs

As we have seen for the additive models, the component function fj(xj), j =

1, · · · , d, in model (2.14) is equal to the functional

Fj(xj) =

∫

G{m(xj , xj)}ϕj(xj)dxj (2.15)

up to a constant, due to the additive structure and the identifiability conditions. Lin-

ton and Härdle (1996) proposed replacing m in (2.15) by a multivariate Nadaraya-

Watson kernel estimator m̂ and estimating (2.15) by its sample version

F̂j(Xj) =
1

n

n
∑

i=1

G{m̂(xj , Xij))}.

Thus we obtain an explicit expression for the marginal integration estimator:

m̃(x) = G−1{
d

∑

j=1

f̂j(xj) + ĉ},

where

f̂j(xj) =
1

n

n
∑

i=1

G{m̂(xj , Xij)} − ĉ

and ĉ = d−1n−1
∑d

j=1

∑n
i=1 F̂j(Xij).
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Table 2.3 Local Scoring Algorithm

Initialize c0 = G(Ȳ ), f 0
k = 0, for k = 1, · · · , d

Repeat Construct an adjusted dependent variable

Zi = η0i + (Yi − µ0
i )
(

∂ηi
∂µi

)

0

with η0i = c0 +
∑d

k=1 f
0
k (Xik) and µ0

i = G−1(η0i ).

Construct weights

wi =
(

∂µi

∂ηi

)2

0
(V 0

i )
−1

where Vi = V (µi) with V (·) the variance function of Y

in a generalized model.

Fit a weighted additive model to Zi, to obtain estimated function f 1
k ,

additive predictor η1, and fitted values µ1
i .

Compute the convergence criterion

∆(η1, η0) =
∑d

k=1
‖f1

k
−f0

k
‖

∑d
k=1

‖f0

k
‖

Until ∆(η1, η0) is below some small threshhold.

In contrast to the backfitting procedure, it is easier to analyze the asymptotics

of the marginal integration method. Linton and Härdle (1996) showed that the rate

of convergence of m̂ is not influenced by the curse of dimensionality. The obtained

rate of n−2/5 is the same as that derived by Stone (1986) for one-dimensional regres-

sion function. Yang, Sperlich and Härdle (2003) extended the method and theory

for derivative estimation and variable selection problems by using a local polyno-
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mial pre-smoother. In practice, one often needs to identify relevant predictors with

respect to a response variable. This problem has been addressed by Härdle and

Korostelev (1996).

Despite its asymptotic optimality, one has to be cautious about using the al-

gorithm, especially for d > 2. In practice, covariates are more or less correlated, and

sample sizes are small. However, comprehensive and extensive simulation studies

do not yet exist for different combinations of regression and link functions and for

various sample sizes. A theoretical comparison with backfitting is not possible due

to the lack of asymptotic results for backfitting in GAMs.
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Chapter 3

Theory and Methods

A weakness of GAM given in (1.4) is that this model completely ignores the fact that

the functional form of the effect of an explanatory variable often varies according

to the values of one or more of the remaining variables, i.e., some interaction exists

between regressors. In this thesis, we allow for second-order interactions, resulting

in a model

G{m(x)} = c+
d

∑

j=1

fj(xj) +
∑

1≤j<k≤d

fjk(xj , xk).

In principle, we could also consider interaction terms of higher order, e.g.

fj,k,l(xj , xk, xl), . . . , but this would gradually bring back problems of visualization

and interpretation. Furthermore, the advantage of avoiding the curse of dimension-

ality would get lost step by step. Therefore we will restrict ourselves to the case of

only second-order interactions.
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3.1 Basic Assumptions and Notations

Let (Y,X) be a random variable with X of dimension d and Y a scalar, and let the

regression function be m(x) = E(Y |X = x). We consider the model

G{m(x)} = c+
d

∑

j=1

fj(xj) +
∑

1≤j<k≤d

fjk(xj , xk) (3.1)

for some known and monotone “link function” G, where x = (x1, x2, . . . , xd)
T are the

d-dimensional predictor vector, c is an unknown constant, {fj}dj=1 are unknown uni-

variate functions, and {fjk}1≤j<k≤d is a set of unknown bivariate functions. Clearly,

the representation given in (3.1) is not unique, and constraints must be placed on the

main effects fj and interaction terms fjk by imposing the identifiability conditions

E[fj(xj)] =

∫

fj(xj)ϕj(xj)dxj = 0, for j = 1, 2, . . . , d, (3.2)

and for all 1 ≤ j < k ≤ d,

∫

fjk(xj , xk)ϕj(xj)dxj =

∫

fjk(xj , xk)ϕk(xk)dxk = 0, (3.3)

with {ϕj(·)}dj=1 being marginal densities of the xj ’s.

Note that the conditions (3.2) and (3.3) do not represent restrictions on our

model, since if a function in (3.1) does not satisfy these conditions, one can easily

shift it in the vertical direction so that it conforms to these same constraints. More-

over, all models of the form (3.1) are equivalent to exactly one model satisfying (3.2)
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and (3.3). In the sequel we assume each fj and fjk satisfy (3.2) and (3.3), unless

otherwise stated.

Denote the variable X = (Xj , Xj) to highlight a particular direction j, where

Xj = (X1, . . . , Xj−1, Xj+1, . . . , Xd) is the (d − 1)-dimensional random variable ob-

tained by removing Xj from X . Let Xjk be defined analogously. We write X =

(Xj, Xk, Xjk) to highlight the directions represented by the j and k coordinates in

a d-dimensional space. The marginal densities of Xj , Xj, Xjk and the joint density

of X are denoted by ϕj(xj), ϕj(xj), ϕjk(xjk) and ϕ(x), respectively.

We introduce here notations for sets of indices. Denote by Dj the subset of

{1, 2, . . . , d} with j removed,

Djj = {(l, m)|1 ≤ l < m ≤ d, l ∈ Dj , m ∈ Dj} and

Djk =
{

(l, m)|1 ≤ l < m ≤ d, l ∈ Dj

⋂

Dk, m ∈ Dj

⋂

Dk

}

.

We define by marginal integration

Fj(xj) =

∫

G
{

m(xj , xj)
}

ϕj(xj)dxj, (3.4)

for 1 ≤ j ≤ d and

Fjk(xj , xk) =

∫

G
{

m(xj , xk, xjk)
}

ϕjk(xjk)dxjk, (3.5)

for every pair 1 ≤ j < k ≤ d. We also define

f ∗
jk(xj , xk) = fjk(xj, xk) + cjk, (3.6)
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where cjk =
∫

fjk(u, v)ϕjk(u, v)dudv, for every pair 1 ≤ j < k ≤ d.

Some simple calculations show that Fj(·) is equal to fj up to an additive

constant. Analogously, (Fjk −Fj −Fk)(·) is equal to fjk up to an additive constant.

Actually, following from the definitions of Djj, Djk, cjk and Fj, Fjk, the constraints

(3.2) and (3.3) entail the lemma below.

Lemma 3.1.1. For model (3.1) the following three equations for the marginals hold:

1. Fj(xj) = fj(xj) + c+
∑

(l,m)∈Djj

clm,

2. Fjk(xj , xk) = fjk(xj , xk) + fj(xj) + fk(xk) + c+
∑

(l,m)∈Djk

clm,

3. Fjk(xj , xk)− Fj(xj)− Fk(xk) +

∫

G {m(x)}ϕ(x)dx = fjk(xj , xk) + cjk.

By item 3 of Lemma 3.1.1, f ∗
jk defined in (3.6) satisfies the equation

f ∗
jk(xj, xk) = Fjk(xj, xk)− Fj(xj)− Fk(xk) +

∫

G {m(x)}ϕ(x)dx (3.7)

Rather than fj and fjk, we will work with more convenient quantities Fj and

f ∗
jk and study their limiting behavior. As shown in Lemma 3.1.1, they can be

identified with fj and fjk up to an additive constant.

3.2 Marginal Integration Estimation

Following the idea of Linton and Härdle (1996), we estimate the marginal influence

Fj and Fjk by replacing the expectations by averages and the function m by an
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appropriate pre-estimator m̂,

F̂j(xj) =
1

n

n
∑

i=1

G
{

m̂(xj , Xij)
}

, (3.8)

F̂jk(xj , xk) =
1

n

n
∑

i=1

G
{

m̂(xj , xk, Xijk)
}

, (3.9)

where Xij(Xijk) is the ith observation of X with Xj(Xj and Xk) removed.

To compute m̂, we employ a special kind of multi-dimensional local polynomial

kernel estimator. For details of the estimator, see Ruppert and Wand (1994) for the

general case and Severance-Lossin and Sperlich (1999) in the context of marginal

integration. The special pre-smoother proposed by Severance-Lossin and Sperlich

(1999) is a local polynomial regression of degree p in the direction of interest and

degree zero (local constant) in the nuisance directions.

Let K(·) and L(·) be kernel functions and denote Kh1(u) = h−1
1 K(u/h1) and

Lh2(u) = h−1
2 L(u/h2) with bandwidths h1 and h2. We use the same letters K and

L to represent kernel functions of varying dimensions for ease of notation. It will

be clear from the context what the dimensions are in every specific case. For any

kernel K(·), define µq(K) =
∫

uqK(u)du and ‖K‖22 =
∫

K2(u)du.

For ease of presentation, by setting p = 1, we consider the problem of mini-

mizing
n

∑

i=1

[Yi − β0 − β1(Xij − xj)]
2Kh1(Xij − xj)Lh2(Xij −Xlj) (3.10)
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for each fixed l. With e1 = (1, 0, · · · , 0)T , we define the pre-estimator in (3.8):

m̂(xj , Xlj) = eT1 (Z
T
j Wl,jZj)

−1ZT
j Wl,jY, (3.11)

where

Zj =

















1 X1j − xj

...
...

1 Xnj − xj

















, Wl,j =

























1
n
Kh1

(X1j − xj)Lh2
(X1j −Xlj) 0 . . . 0

0 1
n
Kh1

(X2j − xj)Lh2
(X2j −Xlj) . . . 0

...
...

. . .
...

0 0 . . . 1
n
Kh1

(Xnj − xj)Lh2
(Xnj −Xlj)

























.

Analogously, the pre-estimator m̂(xj , xk, Xljk) in (3.9) results from the problem

of minimizing

n
∑

i=1

[Yi − β0 − β1(Xij − xj)− β2(Xik − xk)]
2Kh1

(Xij−xj , Xik−xk)Lh2
(Xijk−Xljk)

(3.12)

for each fixed l.

Accordingly, we define

m̂(xj , xk, Xljk) = eT1 (Z
T
jkWl,jkZjk)

−1ZT
jkWl,jkY, (3.13)

where

Zjk =

















1 X1j − xj X1k − xk

...
...

...

1 Xnj − xj Xnk − xk
















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and

Wl,jk = diag

{

1

n
Kh1

(Xij − xj , Xik − xk)Lh2
(Xijk −Xljk)

}n

i=1

.

It should be noted that m̂(xj , Xlj) is a locally linear estimator in the direction

j and a locally constant one in the other directions. Similarly, m̂(xj , xk, Xljk) gives

a locally linear smoother for the directions j, k and a locally constant one for the

nuisance directions.

We are now have almost everything at hand to estimate the interaction term

f ∗
jk(xj , xk) in (3.7). The term

∫

G{m(x)}ϕ(x)dx can be estimated empirically by

1
n

∑n
i=1G{m̂(Xi)}, where m̂(Xi) is a multivariate regression smoother at the ith

sample point. Therefore,

f̂ ∗
jk(xj , xk) = F̂jk(xj , xk)− F̂j(xj)− F̂k(xk) +

1

n

n
∑

i=1

G {m̂(Xi)} . (3.14)

Consequently, the combined regression estimator m̃(x) of m(x) is given by

m̃(x) = G−1

{

d
∑

j=1

F̂j(xj) +
∑

1≤j<k≤d

f̂ ∗
jk(xj, xk)− (d− 1)

1

n

n
∑

i=1

G{m̂(Xi)}
}

. (3.15)

To establish the asymptotics for the estimators proposed above, we need the

following assumptions:

(A01) The kernel functions K(·) and L(·) are symmetric, compactly supported and

Lipschitz continuous; K(·) is nonnegative satisfying
∫

K(u)du = 1 while the

(d−1)-dimensional kernel L(·) is a product of univariate kernels L(u) of order

q ≥ 2.
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(A02) Bandwidths satisfy nh1h
2(d−1)
2 / ln2 n → ∞, hq

2/h
2
1 → 0, and h1 = βn−1/5,

where β is a constant.

(A3) The functions fj, fjk have bounded Lipschitz continuous derivatives of order

q.

(A4) The variance function σ2(·) is bounded and Lipschitz continuous.

(A5) The density functions ϕ, ϕj, ϕjk are uniformly bounded away from zero and

infinity and have bounded Lipschitz continuous second derivatives.

(A6) G is uniformly bounded away from zero and infinity over its compact support,

and has bounded Lipschitz continuous second derivative.

Theorem 3.2.1. Under assumptions (A01), (A02) and (A3)− (A6),

for any 1 ≤ j ≤ d,

√

nh1

{

F̂j(xj)− Fj(xj)− h2
1bj(xj)

}

D−→ N {0, vj(xj)} , (3.16)

where

bj(xj) =
µ2(K)

2

∫
{

(G′ ◦m)
∂2m

∂x2
j

}

(xj , xj)ϕj(xj)dxj, (3.17)

and

vj(xj) = ‖K‖22
∫

{

(G′ ◦m)2σ2

ϕ

}

(xj , xj)ϕ
2
j (xj)dxj. (3.18)
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Regarding the asymptotics of the estimator f̂ ∗
jk(xj, xk) given in (3.6), we have

to adjust the assumptions on kernel functions and bandwidths for the bivariate

problem.

(A1) The kernels K(·) and L(·) are symmetric, compactly supported and Lipschitz

continuous; the bivariate kernel K(·) is a product kernel such that K(u, v) =

K(u)K(v) with
∫

K(u)du = 1 and the (d− 2)-dimensional kernel L(·) is also

a product of d− 2 univariate kernels L(u) of order q ≥ 2.

(A2) Bandwidths satisfy nh2
1h

2(d−2)
2 / ln2 n → ∞, hq

2/h
2
1 → 0, and h1 = βn−1/6.

Theorem 3.2.2. Under assumptions (A1)− (A6), for any 1 ≤ j < k ≤ d,

√

nh2
1

{

f̂ ∗
jk(xj , xk)− f ∗

jk(xj , xk)− h2
1Bjk(xj , xk)

}

D−→ N{0, Vjk(xj , xk)}, (3.19)

where

Bjk(xj , xk) =
µ2(k)

2

[
∫

{

(G′ ◦m)

(

∂2m

∂x2
j

+
∂2m

∂x2
k

)}

(xj , xk, xjk)ϕjk(xjk)dxjk

−
∫

{

(G′ ◦m)
∂2m

∂x2
j

}

(xj , xj)ϕj(xj)dxj

−
∫

{

(G′ ◦m)
∂2m

∂x2
k

}

(xk, xk)ϕk(xk)dxk

]

(3.20)

and

Vjk(xj , xk) = (‖K‖22)2
∫

{

(G′ ◦m)2σ2

ϕ

}

(xj , xk, xjk)ϕ
2
jk(xjk)dxjk. (3.21)
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The next result states the limiting distribution of the combined regression es-

timator m̃(x). Its proof essentially follows the proofs of the two previous theorems,

the delta method and the fact that asymptotically the covariances between indi-

vidual estimators are of smaller order than the variances of the estimator of each

component function and thus negligible.

Theorem 3.2.3. Under assumptions (A1), (A3)− (A6) and choosing bandwidths as

in (A02) and (A2) for the one- and two-dimensional component functions,

√

nh2
1{m̃(x)−m(x)− h2

1B(x)} D−→ N{0, V (x)}, (3.22)

where h1 is as in (A2),

B(x) = (G−1)′

{

c+
d

∑

j=1

fj(xj) +
∑

1≤j<k≤d

fjk(xj , xk)

}

·
∑

1≤j<k≤d

Bjk(xj, xk),

V (x) =

[

(G−1)′

{

c+
d

∑

j=1

fj(xj) +
∑

1≤j<k≤d

fjk(xj , xk)

}]2

·
∑

1≤j<k≤d

Vjk(xj , xk),

and Bjk(·) and Vjk(·) are defined in Theorem 3.2.2.

3.3 Testing for Interaction

Another main objective of this dissertation is to propose a direct test of second-order

interaction. The null hypothesis H0
jk : fjk = 0, namely, that there is no interaction

between Xj and Xk for a given fixed pair (j, k), 1 ≤ j < k ≤ d, is considered for the

model (3.1). The interest in testing whether an interaction function is significant at
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all is obvious as it may be an important step in a model selection procedure. It can

also be regarded as a test for a pure GAM.

It has been shown that the function fjk can be related to another function

f ∗
jk up to a constant. It turns out that f ∗

jk is also a convenient substitute for fjk in

the testing problem, since f ∗
jk(xj , xk) ≡ 0 is equivalent to fjk(xj , xk) ≡ 0. This fact

suggests the use of the following functional for testing of additivity of the jth and

kth directions:

T =

∫

f̂ ∗2
jk (xj , xk)ϕjk(xj , xk)dxjdxk, (3.23)

which is an estimate of
∫

f ∗2
jk (xj , xk)ϕjk(xj, xk)dxjdxk.

The next theorem will show that T is a suitable statistic for testing H0
jk, by

establishing its limiting distribution.

Theorem 3.3.1. Under assumptions (A1)− (A6),

nh1T − nh1

∫

f ∗2
jk (xj, xk)ϕjk(xj , xk)dxjdxk

− 2{K(2)(0)}2
h1

∫
{

(G′ ◦m)2σ2

ϕ

}

(xj, xk, xjk)ϕ
2
jk(xjk)ϕjk(xj, xk)dxjdxkdxjk

− 2nh3
1

∫

f ∗
jk(xj , xk)Bjk(xj , xk)ϕjk(xj , xk)dxj , dxk

D−→ N(0, σ2
T ),

where

σ2
T = 2‖K(2)‖42

∫
[
∫

{

(G′ ◦m)2σ2

ϕ

}

(xj, xk, xjk)ϕ
2
jk(xjk)dxjk

]2

ϕ2
jk(xj , xk)dxjdxk,

K(2) is the two-fold convolution of the kernel K and Bjk is defined in Theorem 3.2.2.
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Based on Theorem 3.3.1, the asymptotics of the test statistic under the null

hypothesis is given in the following corollary.

Corollary 3.3.2. Under H0
jk,

nh1T − 2{K(2)(0)}2
h1

∫
{

(G′ ◦m)2σ2

ϕ

}

(xj, xk, xjk)ϕ
2
jk(xjk)ϕjk(xj, xk)dxjdxkdxjk

D−→ N(0, σ2
T ).

Thus the test rule with the pre-specified significance level α is to reject H0
jk if

nh1T ≥2{K(2)(0)}2
h1

∫
{

(G′ ◦m)2σ2

ϕ

}

(xj , xk, xjk)ϕ
2
jk(xjk)ϕjk(xj , xk)dxjdxkdxjk

+ z1−ασT ,

in which z1−α is the upper (1− α) percentile of the standard normal distribution.

To make the test feasible, we need to get the critical values. Two standard

ways are: (1) estimating the asymptotics of the test; (2) applying the wild bootstrap.

However, it is well known that the first-order asymptotics derived in Theorem 3.3.1

does not give a very accurate description of the finite sample properties. Hjellvik,

Yao and Tjøstheim (1998) showed that as many as several hundred thousand obser-

vations might be necessary for the asymptotic formulas to be reasonably accurate.

This even gets worse when the limiting expressions also have to be estimated. As

a consequence, wild bootstrap is employed for constructing the null distribution of

the test functional, in case of a moderate sample size.

In practice, since the density ϕjk is unknown, T is approximated by its empir-
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ical average

T̃ =
1

n

n
∑

i=1

f̂ ∗2
jk (Xij , Xik).

The following theorem ensures that replacing T by T̃ does not affect the asymp-

totics and the test rule.

Theorem 3.3.3. Under assumptions (A1)− (A6),

nh1T̃ − nh1

∫

f ∗2
jk (xj, xk)ϕjk(xj , xk)dxjdxk

− 2{K(2)(0)}2
h1

∫
{

(G′ ◦m)2σ2

ϕ

}

(xj, xk, xjk)ϕ
2
jk(xjk)ϕjk(xj, xk)dxjdxkdxjk

− 2nh3
1

∫

f ∗
jk(xj , xk)Bjk(xj , xk)ϕjk(xj , xk)dxj , dxk

D−→ N(0, σ2
T ).

We are also interested in the local power of the test against a sequence of

alternatives converging to the null as the sample size grows.

Let Sjk be the support of the density function ϕjk(·). The second order Sobolev

seminorm of a bivariate function fjk(xj , xk) is defined by

‖fjk‖H2(Sjk) =

√

√

√

√

2
∑

u=0

∫

Sjk

[

∂2fjk(xj , xk)

∂uxj∂2−uxj

]2

dxjdxk.

Denote by Bjk(M) the class of functions fjk with bounded second order Sobolev

seminorm,

‖fjk‖H2(Sjk) ≤ M,

where M is a positive constant.
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The next theorem enables one to identify a class of alternatives (indexed by

n) such that our test will have asymptotic power one.

Theorem 3.3.4. Assume G′ is bounded away from zero. Under assumptions (A1)−

(A6), consider testing the null hypothesis

Hjk
0 : fjk(xj , xk) ≡ 0

versus the local alternative

Hjk
1 (an) : fjk,n(xj , xk) ∈ Fjk(an),

where Fjk(an) is the class of alternatives

{

fjk ∈ Bjk(M) : ‖fjk‖L2(Sjk,ϕjk) =

√

∫

Sjk

f 2
jk(xj, xk)ϕjk(xj , xk)dxjdxk ≥ an

}

and {an} is a sequence of constants satisfying a−1
n = o(nh1 + h−2

1 ) = o(n5/6) as

n → ∞. Denote by pn the probability of rejecting Hjk
0 in favor of the local alternative

Hjk
1 (an). Then limn→∞ pn = 1.

The theorem guarantees that the proposed test procedure is able to detect an

interaction term of the magnitude n−5/6 with power tending to one.
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3.4 Proofs

3.4.1 Proof of Theorem 3.2.1

The following lemma was proved in Fan, Härdle and Mammen (1998). It has also

been cited in Severance-Lossin and Sperlich (1999), and Sperlich, Tjøstheim and

Yang (2002). Our proof makes use of this lemma.

Lemma 3.4.1. Let Wl,j,Wl,jk, Zj, Zjk be defined as in Section 3.2, then

(i)

(H−1ZT
j Wl,jZjH

−1)−1 =
1

ϕ(xj, Xlj)
S−1 {I +Op(c1n)} ,

and

(ii)

(H−1ZT
jkWl,jkZjkH

−1)−1 =
1

ϕ(xj , xk, Xljk)
S−1 {I +Op(c2n)} ,

where

H =









1 0

0 h1









, S−1 =









1 0

0 µ−1
2









, S−1 =

















1 0 0

0 µ−1
2 0

0 0 µ−1
2

















and c1n = h2
1 +

√

lnn/(nh1h
d−1
2 ), c2n = h2

1 +
√

lnn/(nh2
1h

d−2
2 ).

With this preliminary lemma, the proof of Theorem 3.2.1 starts below.
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Proof.

F̂j(xj)− Fj(xj)

=
1

n

n
∑

i=1

G
{

m̂(xj, Xij)
}

− 1

n

n
∑

i=1

G
{

m(xj , Xij)
}

+
1

n

n
∑

i=1

G
{

m(xj , Xij)
}

− Fj(xj)

=
1

n

n
∑

i=1

[

G
{

m̂(xj , Xij)
}

−G
{

m(xj , Xij)
}]

+Op

(

n− 1

2

)

=
1

n

n
∑

i=1

G′
{

m̂(xj , Xij)
}

·
[

m̂(xj , Xij)−m(xj , Xij)
]

+R +Op

(

n− 1

2

)

where

R =
1

2n

n
∑

i=1

G′′(m0
i ) ·

[

m̂(xj, Xij)−m(xj , Xij)
]2

with m0
i intermediate between m̂(xj , Xij) and m(xj , Xij).

We have the following by the Cauchy-Schwarz inequality:

|R| ≤ 1

2

[

1

n

n
∑

i=1

G′′(m0
i )

2

]1/2 [

sup
xj

∣

∣

∣
m̂(xj , xj)−m(xj , xj)

∣

∣

∣

]2

.

The second term on the right-hand side is of order Op(c
2
1n) with c1n the same

as the one defined in Lemma 3.4.1 since supxj

∣

∣

∣
m̂(xj , xj)−m(xj , xj)

∣

∣

∣
= Op(h

2
1 +

√

lnn/(nh1h
d−1
2 )) by the standard theory for nonparametric regression smoothers

(Härdle, 1990; Masry, 1996). Hence the reminder R is of order Op(c
2
1n).

By the conditions on the bandwidths,
√
nh1R goes to zero as n goes to infinity.

Therefore asymptotically,

√

nh1(F̂j(xj)− Fj(xj)) =
√

nh1
1

n

n
∑

i=1

G′
{

m(xj , Xij)
}[

m̂(xj, Xij)−m(xj , Xij)
]

.
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This means we only need to consider the expression on the right hand side of the

equation.

Define

Fi =









m(xj , Xij)

(∂/∂xj)m(xj , Xij)









and by the argument above,

F̂j(xj)− Fj(xj)

=
1

n

n
∑

i=1

G′
{

m(xj , Xij)
}

·
[

eT1 (Z
T
j Wi,jZj)

−1ZT
j Wi,jY −m(xj , Xij)

]

=
1

n

n
∑

i=1

G′
{

m(xj , Xij)
}

·
[

eT1 (Z
T
j Wi,jZj)

−1ZT
j Wi,j(Y − ZjFi)

]

=
1

n

n
∑

i=1

G′
{

m(xj , Xij)
}

·
[

eT1H
−1(H−1ZT

j Wi,jZjH
−1)−1H−1ZT

j Wi,j(Y − ZjFi)
]

=
1

n

n
∑

i=1

G′
{

m(xj , Xij)
} 1

ϕ(xj , Xij)
eT1 S

−1 {I +Op(c1n)} ·H−1ZT
j Wi,j(Y − ZjFi)

=
1

n

n
∑

i=1

G′
{

m(xj , Xij)
} 1

ϕ(xj , Xij)

1

n

n
∑

l=1

Kh1
(Xlj − xj)Lh2

(Xlj −Xij)

× {1 + Op(c1n)}
[

Yl −m(xj , Xij)− (Xlj − xj) ·
∂m

∂xj

(xj , Xij)

]

.

Here we use Lemma 3.4.1 (i) in the second last step. Applying Taylor expansion of
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m(Xl) around (xj , Xlj) in Yl = m(Xl) + σ(Xl)εl, we obtain

F̂j(xj)− Fj(xj)

=
1

n

n
∑

i=1

G′
{

m(xj , Xij)
} 1

ϕ(xj , Xij)

1

n

n
∑

l=1

Kh1
(Xlj − xj)Lh2

(Xlj −Xij)

× {1 +Op(c1n)}
[

m(xj , Xlj)−m(xj , Xij)

+ (Xlj − xj)

{

∂m

∂xj
(xj , Xlj)−

∂m

∂xj
(xj, Xij)

}

+
(Xlj − xj)

2

2

∂2m

∂x2
j

(xj , Xlj)

+Op((Xlj − xj)
3) + σ(Xl)εl

]

(3.24)

Note that

âi =
1

n

n
∑

l=1

Kh1
(Xlj − xj)Lh2

(Xlj −Xij)×
[

m(xj , Xlj)−m(xj , Xij)

+(Xlj − xj)

{

∂m

∂xj
(xj , Xlj)−

∂m

∂xj
(xj , Xij)

}

+
(Xlj − xj)

2

2

∂m2

∂x2
j

(xj , Xlj)

+Op

(

(Xlj − xj)
3
)

+ σ(Xl)εl

]

is of Op(c1n) uniformly (Fan, Härdle and Mammen, 1998). Therefore, (3.24) can be

written as

F̂j(xj)− Fj(xj) =
1

n

n
∑

i=1

G′
{

m(xj , Xij)
} âi
ϕ(xj , Xij)

+Op(c
2
1n)

=
1

n

n
∑

i=1

G′
{

m(xj , Xij)
} Ei(âi)

ϕ(xj , Xij)

+
1

n

n
∑

i=1

G′
{

m(xj , Xij)
} âi − Ei(âi)

ϕ(xj, Xij)
+Op(c

2
1n)

with Ei[W ] = E[W |Xi] and E∗[W ] = E[W |X1, · · · , Xn].
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It suffices to work with the first two terms on the right hand side, ignoring the

remainder term.

Let

T1n =
1

n

n
∑

i=1

G′
{

m(xj , Xij)
} Ei(âi)

ϕ(xj, Xij)
,

and T2n =
1

n

n
∑

i=1

G′
{

m(xj , Xij)
} âi − Ei(âi)

ϕ(xj, Xij)
,

where T1n is a systematic “bias” term and T2n is a stochastic “variance” term.

We next prove the theorem by showing

I. T1n = h2
1bj(xj) + op((nh1)

−1/2),

II. T2n =
∑n

i=1wijεi + op((nh1)
−1/2),

with wij = n−1Kh1
(Xij − xj)σ(Xi)G

′{m(xj , Xij)}ϕj(Xij)/ϕ(xj , Xij).

First we analyze T1n. Since E∗(εl) = 0,

Ei(âi)

ϕ(xj , Xij)
=

1

ϕ(xj , Xij)
Ei

[

1

n

n
∑

l=1

Kh1
(Xij − xj)Lh2

(Xlj −Xij)× [m(xj , Xlj)

−m(xj , Xij) + (Xlj − xj)

{

∂m

∂xj

(xj , Xlj)−
∂m

∂xj

(xj, Xij)

}

+
(Xlj − xj)

2

2

∂2m

∂x2
j

(xj , Xlj) +Op((Xlj − xj)
3)]

]

=
1

ϕ(xj , Xij)

∫

Kh1
(z − xj)Lh2

(w −Xij)ϕ(z, w)× [m(xj , w)

−m(xj , Xij) + (z − xj)

{

∂m

∂xj

(xj, w)−
∂m

∂xj

(xj , Xij)

}

+
(z − xj)

2

2

∂2m

∂x2
j

(xj , w) +Op((z − xj)
3)]dwdz.
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Changing variables to u = (z − xj)/h1 and v = (w −Xij)/h2, where v and w

are (d− 1)-dimensional vectors, we have

Ei(âi)

ϕ(xj , Xij)
=

1

ϕ(xj , Xij)

∫

K(u)L(v)ϕ(xj + h1u,Xij + h2v)×
[

m(xj , Xij + h2v)

−m(xj , Xij) + h1u

{

∂m

∂xj
(xj , Xij + h2v)−

∂m

∂xj
(xj , Xij)

}

+
(h1u)

2

2

∂2m

∂x2
j

(xj , Xij + h2v) +Op((h1u)
3)

]

dvdu

=
1

2
h2
1µ2(K)

∂2m

∂x2
j

(xj , Xij) + op(h
2
1) + op(h

q
2),

by assumptions (A1)− (A3) and (A5).

Since the random variables G′{m(xj , Xij)}ϕ(xj, Xij)
−1Ei(âi), i = 1, . . . , n, are

independent and bounded, the single sum T1n converges to its population mean by

Chebyshev’s Law of Large Numbers,

T1n =

∫

G′{m(xj , xj)}
1

2
h2
1µ2(K)

∂2m

∂x2
j

(xj , xj)ϕj(xj)dxj + op(h
2
1) +Op(n

−1/2)

= h2
1

µ2(K)

2

∫

{(G′ ◦m)
∂2m

∂x2
j

}(xj, xj)ϕj(xj)dxj + op(h
2
1) +Op(n

−1/2).

We now turn to the stochastic term

T2n =
1

n

n
∑

i=1

G′{m(xj , Xij)}
âi − Ei(âi)

ϕ(xj, Xij)

and separate further as

âi −Ei(âi) = âi −E∗(âi) + E∗(âi)− Ei(âi).

We first show that

1

n

n
∑

i=1

G′{m(xj , Xij)}
âi − E∗(âi)

ϕ(xj , Xij)
=

n
∑

i=1

wijεi + op((nh1)
−1/2).
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Note that

âi − E∗(âi) =
1

n

n
∑

l=1

Kh1
(Xlj − xj)Lh2

(Xlj −Xij)σ(Xl)εl.

Hence,

1

n

n
∑

i=1

G′{m(xj , Xij)}
âi −E∗(âi)

ϕ(xj , Xij)

=
1

n

n
∑

i=1

G′{m(xj , Xij)}
1

ϕ(xj, Xij)

1

n

n
∑

l=1

Kh1
(Xlj − xj)Lh2

(Xlj −Xij)σ(Xl)εl

=
1

n

n
∑

l=1

Kh1
(Xlj − xj)σ(Xl)εl

[

1

n

n
∑

i=1

G′{m(xj , Xij)}
1

ϕ(xj, Xij)
Lh2

(Xlj −Xij)

]

.

Let ηl = 1
n

∑n
i=1G

′{m(xj , Xij)} 1
ϕ(xj ,Xij)

Lh2
(Xlj − Xij), and separate ηl into

El(ηl) + [ηl −El(ηl)]. Then

El(ηl) =

∫

G′{m(xj , z)}
1

ϕ(xj , z)
Lh2

(Xlj − z)ϕj(z)dz

=

∫

G′{m(xj , Xlj + h2v)}
1

ϕ(xj, Xlj + h2v)
L(v)ϕj(Xlj + h2v)dv

= G′{m(xj , Xlj)}
ϕj(Xlj)

ϕ(xj, Xlj)
+Op(h

q
2).

Further, we have

El[ηl −El(ηl)]
2

=
1

n

∫

[

G′{m(xj , z)}
ϕ(xj , z)

Lh2
(Xlj − z)−G′{m(xj , Xlj)}

ϕj(Xlj)

ϕ(xj , Xlj)
+Op(h

q
2)

]2

ϕj(z)dz

=
1

n

∫

[

G′{m(xj , z)}
ϕ(xj , z)

Lh2
(Xlj − z)−G′{m(xj , Xlj)}

ϕj(Xlj)

ϕ(xj , Xlj)

]2

ϕj(z)dz +Op(
h2q
2

n
)

=
1

n

∫
[

G′{m(xj , z)}
ϕ(xj , z)

Lh2
(Xlj − z)

]2

ϕj(z)dz +Op(n
−1).
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By a change of variable, we get

El[ηl − El(ηl)]
2 =

1

nhd−1
2

∫

[

G′{m(xj , Xlj + h2v)}
ϕ(xj, Xlj + h2v)

L(v)

]2

ϕj(Xlj + h2v)dv

=
1

nhd−1
2

[

G′{m(xj , Xlj)}
]2 ϕj(Xlj)

ϕ2(xj , Xlj)
‖L‖22 +Op(n

−1)

= op(h1),

by the assumptions (A1), (A2) and (A5).

Therefore,

1

n

n
∑

i=1

G′{m(xj , Xij)}
âi −E∗(âi)

ϕ(xj, Xij)

=
1

n

n
∑

l=1

Kh1
(Xlj − xj)σ(Xl)εlηl

=

n
∑

l=1

1

n
Kh1

(Xlj − xj)σ(Xl)εl

[

G′{m(xj , Xlj)}
ϕj(Xlj)

ϕ(xj , Xlj)
+Op(h

q
2) + op(h

1/2
1 )

]

=

n
∑

l=1

wljεl [1 + op(1)] ,

where wlj is defined previously in this section.

By Linton and Härdle (1996), the term
∑n

l=1wljεl provides the asymptotic

variance of the estimator; it is Op((nh1)
−1/2), since only smoothing with respect to

Xj is present. Furthermore,
√
nh1

∑n
l=1wljεl obeys a central limit theorem with

limiting variance as stated in Theorem 3.2.1.
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Note that wljεl, l = 1, . . . , n are i.i.d. with mean zero. The variance is

V ar(wljεl) = E(w2
ljε

2
l )

= E(w2
lj)

=
1

n2

∫

K2
h1
(xj − z)σ2(z, w)G′2{m(xj , w)}

ϕ2
j(w)

ϕ2(xj , w)
ϕ(z, w)dzdw

=
1

n2

∫

1

h1

K2(u)σ2(xj + h1u, w)

×G′2{m(xj , w)}
ϕ2
j(w)

ϕ2(xj , w)
ϕ(xj + h1u, w)dudw

= n−2h−1
1 ‖K‖22

∫

G′2{m(xj , w)}σ2(xj , w)

ϕ(xj, w)
ϕ2
j(w)dw + op(n

−2h−1
1 )

= n−2h−1
1 ‖K‖22

∫
{

(G′ ◦m)2σ2

ϕ

}

(xj, w)ϕ
2
j(w)dw + op(n

−2h−1
1 ).

(3.25)

Since w2
lj, l = 1, . . . , n, are bounded under the assumptions on K(·), σ(·), G(·)

and the density functions, w2
lj/E(wljε

2
l ) is bounded and we further have

w2
ljε

2
l

E(w2
ljε

2
l )
I

{

w2
ljε

2
l

E(w2
ljε

2
l )

≥ δn

}

≤ Cε2l ,

for some constant C and any δ > 0.

Below we will show that the Lindeberg condition, required for the Central
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Limit Theorem, follows from the Lebesgue Dominated Convergence Theorem:

lim
n→∞

1

S2
n

n
∑

l=1

E
[

w2
ljε

2
l I

{

w2
ljε

2
l ≥ δS2

n

}]

= lim
n→∞

1

nE(w2
ljε

2
l )

n
∑

l=1

E

[

w2
ljε

2
l I

{

w2
ljε

2
l

E(w2
ljε

2
l )

≥ δn

}]

= lim
n→∞

1

n

n
∑

l=1

E

[

w2
ljε

2
l

E(w2
ljε

2
l )
I

{

w2
ljε

2
l

E(w2
ljε

2
l )

≥ δn

}]

= lim
n→∞

E

[

w2
ljε

2
l

E(w2
ljε

2
l )
I

{

w2
ljε

2
l

E(w2
ljε

2
l )

≥ δn

}]

= E

[

w2
ljε

2
l

E(w2
ljε

2
l )

lim
n→∞

I

{

w2
ljε

2
l

E(w2
ljε

2
l )

≥ δn

}]

= 0.

As a result of the Central Limit Theorem,

∑n
l=1wljεl

√

nE(w2
ljε

2
l )

D−→ N(0, 1).

Therefore, by (3.25),
√
nh1

∑n
l=1wljεl obeys a Central Limit Theorem with

asymptotic variance ‖K‖22
∫

{(G′ ◦m)2σ2/ϕ} (xj , w)ϕ
2
j(w)dw.

Next we show that

1

n

n
∑

i=1

G′{m(xj , Xij)}
E∗(âi)− Ei(âi)

ϕ(xj, Xij)
= op((nh1)

−1/2).

Let

Un =
1

n

n
∑

i=1

G′{m(xj , Xij)}
E∗(âi)−Ei(âi)

ϕ(xj , Xij)

=
n

∑

i=1

n
∑

k=1

ζ̃ik

=

n
∑

i=1

ζ̃ii +
∑∑

i 6=k

ζ̃ik,
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where ζ̃ik = ζik −Ei(ζik) and

ζik =
1

n2

G′{m(xj , Xij)}
ϕ(xj, Xij)

Kh1
(Xkj − xj)Lh2

(Xkj −Xij)

×
[

m(xj , Xkj)−m(xj , Xij) + (Xkj − xj)

{

∂m

∂xj
(xj , Xkj)−

∂m

∂xj
(xj , Xij)

}

+
(Xkj − xj)

2

2

∂2m

∂x2
j

(xj , Xkj) +O((Xkj − xj)
3)

]

.

(3.26)

When i = k, Ei(ζii) = ζii. Hence ζ̃ii = 0 and Un =
∑∑

i 6=kζ̃ik. The double

sum Un has mean zero. In order to calculate the variance E(
∑∑

i 6=kζ̃ik)
2, we need

the calculations for the following three terms,

(i)
∑∑

i 6=k

E(ζ̃2ik), (ii)
∑∑

i 6=k

E(ζ̃ikζ̃ki), (iii)
∑

i 6=k,

∑

i 6=l,

∑

k 6=l

E(ζ̃ikζ̃lk),

since all other terms have mean zero by a conditioning argument.

We have

Ei(ζik) =
1

n2
Ei

{

G′{m(xj , Xij)}
ϕ(xj , Xij)

Kh1
(Xkj − xj)Lh2

(Xkj −Xij)

×
[

m(xj , Xkj)−m(xj , Xij)

+ (Xkj − xj)

{

∂m

∂xj
(xj, Xkj)−

∂m

∂xj
(xj, Xij)

}

+
(Xkj − xj)

2

2

∂2m

∂x2
j

(xj , Xkj) +O((Xkj − xj)
3)

]

}

=
1

n2
O(h2

1 + hq
2).

Next we work with the three terms one by one as follows,
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(i) Each individual term

E(ζ̃2ik) = E(ζ2ik)−E[E2
i (ζik)]

= E[Ei(ζ
2
ik)]− E[E2

i (ζik)].

Note that Ei(ζ
2
ik) = (n4hd−1

2 h1)
−1O(h4

1 + h2
2). Therefore,

E(ζ̃2ik) =
1

n4hd−1
2 h1

O(h4
1 + h2

2) +
1

n4
O(h4

1 + h2q
2 )

=
1

n4hd−1
2 h1

O(h4
1 + h2

2)

and
∑∑

i 6=kE(ζ̃2ik) =
1

n2hd−1

2
h1

O(h4
1 + h2

2).

(ii) By the Cauchy-Schwartz inequality,

[E(ζ̃ikζ̃ki)]
2 ≤ E(ζ̃2ik)E(ζ̃2ki) = [E(ζ̃2ik)]

2.

From (i), E(ζ̃ikζ̃ki) = (n4hd−1
2 h1)

−1O(h4
1 + h2

2). Thus

∑∑

i 6=k

E(ζ̃ikζ̃ki) =
1

n2hd−1
2 h1

O(h4
1 + h2

2).

(iii) Consider the term with three different indices:

E(ζ̃ikζ̃lk) = E(ζikζlk)− E(ζik)E(ζlk)

= E[E2
k(ζik)]− [E(ζik)]

2.
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We have

Ek(ζik) =
1

n2
Kh1

(Xkj − xj)

∫

G′{m(xj , w)}
ϕ(xj, w)

Lh1
(Xkj − w)ϕj(w)

[

m(Xkj, Xkj)

−m(xj , w)− (Xkj − xj)
∂m

∂xj

(xj , w)

]

dw

=
1

n2
Kh1

(Xkj − xj)

∫

G′{m(xj , Xkj + h2v)}
ϕ(xj, Xkj + h2v)

L(v)ϕj(Xkj + h2v)

×
[

m(Xkj, Xkj)−m(xj , Xkj + h2v)

−(Xkj − xj)
∂m

∂xj

(xj , Xkj + h2v)

]

dv

=
1

n2
Kh1

(Xkj − xj)

{

G′{m(xj , Xkj)}
ϕ(xj, Xkj)

·
[

m(Xkj, Xkj)−m(xj , Xkj)

−(Xkj − xj)
∂m

∂xj

(xj , Xkj)

]

ϕj(Xkj) +O(hq
2)

}

,

and

E[E2
k(ζik)] ≤ 2E

{

1

n4
K2

h1
(Xkj − xj)

G′2{m(xj , Xkj)}
ϕ2(xj , Xkj)

·
[

m(Xkj, Xkj)

−m(xj , Xkj)− (Xkj − xj)
∂m

∂xj
(xj, Xkj)

]2

ϕ2
j(Xkj)

}

+O(h2q
2 )E

[

1

n4
K2

h1
(Xkj − xj)

]

= 2

∫

1

n4

1

h1
K2(u)

G′2{m(xj , w)}
ϕ2(xj , w)

[

m(xj + h1u, w)−m(xj , w)

−h1u
∂m

∂xj
(xj , w)

]2

· ϕ2
j (w)ϕ(xj + h1u, w)dudw+

1

n4h1
O(h2q

2 )

=
1

n4h1
O(h4

1 + h2q
2 )

by a change of variable and Taylor expansion.
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We also note that

E(ζik) =
1

n2
O(h2

1 + hq
2).

Therefore

E(ζ̃ikζ̃lk) =
1

n4h1
O(h4

1 + h2q
2 ) +

1

n4
O(h4

1 + h2q
2 )

=
1

n4h1
O(h4

1 + h2q
2 )

and

∑

i 6=k,

∑

i 6=l,

∑

k 6=l

E(ζ̃ikζ̃lk) =
1

nh1
O(h4

1 + h2q
2 ).

Combining the calculations of the three terms (i)-(iii),

E(
∑∑

i 6=k

ζ̃ik)
2 =

1

n2hd−1
2 h1

O(h4
1 + h2

2) +
1

nh1
O(h4

1 + h2q
2 ) = op((nh1)

−1).

So we proved that

Un =
1

n

n
∑

i=1

G′{m(xj , Xij)}
E∗(âi)− Ei(âi)

ϕ(xj , Xij)
= op((nh1)

−1/2).

This establishes II and thus completes the proof of Theorem 3.2.1.

3.4.2 Proof of Theorem 3.2.2

Proof. Analogous to our analysis of the univariate function F̂j , we proceed to the

bivariate case considering F̂jk. Recall that Xijk is the ith observation vector with
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components j and k removed. We have

F̂jk(xj , xk)− Fjk(xj , xk)

=
1

n

n
∑

i=1

G{m̂(xj , xk, Xijk)} −
1

n

n
∑

i=1

G{m(xj , xk, Xijk)}

+
1

n

n
∑

i=1

G{m(xj , xk, Xijk)} − Fjk(xj , xk)

=
1

n

n
∑

i=1

[

G{m̂(xj , xk, Xijk)} −G{m(xj , xk, Xijk)}
]

+Op(n
−1/2)

=
1

n

n
∑

i=1

G′{m(xj , xk, Xijk)} ·
[

m̂(xj , xk, Xijk)−m(xj , xk, Xijk)
]

+R +Op(n
−1/2),

where R = (2n)−1
∑n

i=1G
′′(m∗

i )
[

m̂(xj , xk, Xijk)−m(xj , xk, Xijk)
]2

and m∗
i lies be-

tween m̂(xj , xk, Xijk) and m(xj , xk, Xijk).

Similar to the univariate case, we can show that

|R| = Op(c
2
2n), with c2n = h2

1 +

√

lnn

nh2
1h

d−2
2

The constraints (A2) on the bandwidths guarantee that
√

nh2
1R → 0 as n →

∞. Therefore,
√

nh2
1

(

F̂jk(xj, xk)− Fjk(xj , xk)
)

is asymptotically equivalent to

√

nh2
1

1

n

n
∑

i=1

G′{m(xj , xk, Xijk)} ·
[

m̂(xj, xk, Xijk)−m(xj , xk, Xijk)
]

.

Define the vector

Fi =

















m(xj , xk, Xijk)

(∂/∂xj)m(xj , xk, Xijk)

(∂/∂xk)m(xj , xk, Xijk)

















.
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Going through similar steps as for the one-dimensional case and applying

Lemma 3.4.1 (ii), we have

F̂jk(xj , xk)− Fjk(xj , xk)

=
1

n

n
∑

i=1

G′{m(xj , xk, Xijk)} ·
[

eT1H
−1(H−1ZT

jkWi,jkZjkH
−1)−1H−1

·ZT
jkWi,jk(Y − ZjkFi)

]

=
1

n

n
∑

i=1

G′{m(xj , xk, Xijk)}
ϕ(xj , xk, Xijk)

eT1 S−1 {I +Op(c2n)} ·H−1ZT
jkWi,jk(Y − ZjkFi)

=
1

n

n
∑

i=1

G′{m(xj , xk, Xijk)}
ϕ(xj , xk, Xijk)

· 1
n

n
∑

l=1

Kh1
(Xlj − xj , Xlk − xk)Lh2

(Xljk −Xijk)

×
[

m(Xlj , Xlk, Xljk)−m(xj , xk, Xijk)− (Xlj − xj)
∂m

∂xj

(xj, xk, Xijk)

−(Xlk − xk)
∂m

∂xk
(xj , xk, Xijk) + σ(Xl)εl

]

· {1 +Op(c2n)}.

As in the previous proof, we separate this expression into a “bias” term and a

“variance” term:

F̂jk(xj, xk)− Fjk(xj , xk)

=
1

n

n
∑

i=1

G′{m(xj , xk, Xijk)}
Ei(âi)

ϕ(xj, xk, Xijk)

+
1

n

n
∑

i=1

G′{m(xj , xk, Xijk)}
âi −Ei(âi)

ϕ(xj , xk, Xijk)
+Op(c

2
2n)

where

âi =
1

n

n
∑

l=1

Kh1
(Xlj − xj)Kh1

(Xlk − xk)Lh2
(Xljk −Xijk)

×
[

m(Xlj , Xlk, Xljk)−m(xj , xk, Xijk)− (Xlj − xj)
∂m

∂xj

(xj , xk, Xijk)

−(Xlk − xk)
∂m

∂xk

(xj , xk, Xijk) + σ(Xl)εl

]

.
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Again, it suffices to work with the first-order approximations. Let

T1n =
1

n

n
∑

i=1

G′{m(xj , xk, Xijk)}
Ei(âi)

ϕ(xj , xk, Xijk)
,

and T2n =
1

n

n
∑

i=1

G′{m(xj , xk, Xijk)}
âi −Ei(âi)

ϕ(xj , xk, Xijk)
.

We will consider the two terms separately as follows.

I. Bias term T1n.

Denote the expression in the bracket of the above formula of âi by ail. Using

the Taylor expansion of m(Xl) around (xj , xk, Xljk), we obtain

ail = m(xj , xk, Xljk)−m(xj , xk, Xijk)

+ (Xlj − xj)

(

∂m

∂xj

(xj , xk, Xljk)−
∂m

∂xj

(xj , xk, Xijk)

)

+ (Xlk − xk)

(

∂m

∂xk

(xj , xk, Xljk)−
∂m

∂xk

(xj , xk, Xijk)

)

+
(Xlj − xj)

2

2

∂2m

∂x2
j

(xj , xk, Xljk) +
(Xlk − xk)

2

2

∂2m

∂x2
k

(xj , xk, Xljk)

+ (Xlj − xj)(Xlk − xk)
∂2m

∂xj∂xk
(xj , xk, Xljk)

+Op((Xlj − xj)
3) +Op((Xlk − xk)

3) +Op{(Xlj − xj)(Xlk − xk)}

+ σ(Xl)εl.
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Replacing the expectation with an integral, we get

Ei(âi)

ϕ(xj, xk, Xijk)

=
1

ϕ(xj , xk, Xijk)

∫

Kh1
(zj − xj)Kh1

(zk − xk)Lh2
(w −Xijk)ϕ(zj, zk, w)

×
[

m(xj , xk, w)−m(xj , xk, Xijk)

+ (zj − xj)

(

∂m

∂xj
(xj , xk, w)−

∂m

∂xj
(xj , xk, Xijk)

)

+ (zk − xk)

(

∂m

∂xk
(xj , xk, w)−

∂m

∂xk
(xj , xk, Xijk)

)

+
(zj − xj)

2

2

∂2m

∂x2
j

(xj , xk, w) +
(zk − xk)

2

2

∂2m

∂x2
k

(xj , xk, w)

+ (zj − xj)(zk − xk)
∂2m

∂xj∂xk
(xj , xk, w) +Op((zj − xj)

3)

+Op((zk − xk)
3) +Op{(zj − xj)(zk − xk)}

]

dzjdzk

=
1

ϕ(xj , xk, Xijk)

∫

K(uj)K(uk)L(v)ϕ(xj + h1uj, xk + h1uk, Xijk + h2v)

×
[

m(xj , xk, Xijk + h2v)−m(xj , xk, Xijk)

+ h1uj

(

∂m

∂xj
(xj , xk, Xijk + h2v)−

∂m

∂xj
(xj , xk, Xijk)

)

+ h1uk

(

∂m

∂xk
(xj , xk, Xijk + h2v)−

∂m

∂xk
(xj , xk, Xijk)

)

+
h2
1u

2
j

2

∂2m

∂x2
j

(xj , xk, Xijk + h2v)

+
h2
1u

2
k

2

∂2m

∂x2
k

(xj , xk, Xijk + h2v)

+h2
1ujuk

∂2m

∂xj∂xk

(xj , xk, Xijk + h2v) +Op(h
3
1)

]

dvdu

=
1

2
h2
1µ2(K)

[

∂2m

∂x2
j

(xj , xk, Xijk) +
∂2m

∂x2
k

(xj , xk, Xijk)

]

+ op(h
2
1) +Op(h

q
2)
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by the substitutions uj = (zj − xj)/h1, uk = (zk − xk)/h1, and v = (w − Xijk)/h2

where v and w are (d− 2)-dimensional vectors.

Again, as the random variables G′{m(xj , xk, Xijk)}ϕ(xj, xk, Xijk)
−1Ei(ai), i =

1, . . . , n, are independent and bounded, we have

T1n =

∫

G′{m(xj , xk, Xijk)}
1

2
h2
1µ2(K)

[

∂2m

∂x2
j

(xj , xk, xjk) +
∂2m

∂x2
k

(xj , xk, xjk)

]

× ϕjk(xjk)dxjk + op(h
2
1) +Op(n

−1/2)

= h2
1

µ2(k)

2

∫
{

(G′ ◦m)

(

∂2m

∂x2
j

+
∂2m

∂x2
k

)}

(xj, xk, xjk)ϕjk(xjk)dxjk

+ op(h
2
1) +Op(n

−1/2).

Thus, combining with the bias formula obtained for univariate functions F̂j(xj)

and F̂k(xk), the bias of F̂jk(xj , xk)− F̂j(xj)− F̂k(xk) is as claimed in Theorem 3.2.2:

h2
1Bjk(xj , xk) = h2

1

µ2(k)

2

[
∫

{

(G′ ◦m)

(

∂2m

∂x2
j

+
∂2m

∂x2
k

)}

(xj , xk, xjk)ϕjk(xjk)dxjk

−
∫

{

(G′ ◦m)
∂2m

∂x2
j

}

(xj , xj)ϕj(xj)dxj

−
∫

{

(G′ ◦m)
∂2m

∂x2
k

}

(xk, xk)ϕk(xk)dxk

]

.

II. Let us turn to the variance part T2n. We will show that

T2n =

n
∑

i=1

wijkεi + op{(nh2
1)

−1/2},

where

wijk =
1

n
Kh1

(Xij − xj)Kh1
(Xik − xk)σ(Xi)G

′{m(xj , xk, Xijk)}
ϕjk(Xijk)

ϕ(xj , xk, Xijk)
,
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and the term
∑n

i=1wijkεi is of order Op{(nh2
1)

−1/2}.

The proof of the part is very similar to that of Theorem 3.2.1, except the

dimension of the functions. So we only sketch the proof here.

As before, we have

âi −Ei(âi) = âi −E∗(âi) + E∗(âi)− Ei(âi).

First consider

1

n

n
∑

i=1

G′{m(xj , xk, Xijk)}
âi −E∗(âi)

ϕ(xj, xk, Xijk)

=
1

n

n
∑

l=1

Kh1
(Xlj − xj)Kh1

(Xlk − xk)σ(Xl)εl

×
[

1

n

n
∑

i=1

G′{m(xj , xk, Xijk)}
1

ϕ(xj, xk, Xijk)
Lh2

(Xljk −Xijk)

]

Let ηl = n−1
∑n

i=1G
′{m(xj , xk, Xijk)} 1

ϕ(xj ,xk,Xijk)
Lh2

(Xljk−Xijk) and consider

it separately as El(ηl) + [ηl − El(ηl)]. Then

El(ηl) = G′{m(xj , xk, Xljk)}
ϕjk(Xljk)

ϕ(xj , xk, Xljk)
+Op(h

q
2),

and we have

El[{ηl −El(ηl)}2] =
1

nhd−2
2

[

G′{m(xj , xk, Xljk)}
]2 ϕjk(Xljk)

ϕ2(xj , xk, Xljk)
‖L‖22 +Op(n

−1)

= op(h
2
1).
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Hence

1

n

n
∑

i=1

G′{m(xj , xk, Xijk)}
âi − E∗(âi)

ϕ(xj , xk, Xijk)

=

n
∑

l=1

1

n
Kh1

(Xlj − xj)Kh1
(Xlk − xk)σ(Xl)εl

×
[

G′{m(xj , xk, Xljk)}
ϕjk(Xljk)

ϕ(xj, xk, Xljk)
+Op(h

q
2) + op(h1)

]

=
n

∑

l=1

wljkεl{1 + op(1)}.

Again, wljkεl, l = 1, . . . , n, are of mean zero and i.i.d. with variance

Var(wljkεl) = E(w2
ljk)

= (nh1)
−2(‖K‖22)2

∫

G′2{m(xj , xk, w)}σ2(xj , xk, w)

ϕ(xj , xk, w)
ϕ2
jk(w)dw

+ op(n
−2h−2

1 )

= (nh1)
−2(‖K‖22)2

∫
{

(G′ ◦m)2σ2

ϕ

}

(xj, xk, w)ϕ
2
jk(w)dw + op(n

−2h−2
1 ).

Thus Var(
∑n

l=1wljkεl) = (nh2
1)

−1(‖K‖22)2
∫

· · · dw + op{(nh2
1)

−1}. Therefore

the term
∑n

l=1wljkεl = Op{(nh2
1)

−1/2} dominates the corresponding stochastic term

∑n
i=1wijεi = Op{(nh1)

−1/2} from the proof of normality of the univariate functions

F̂j and F̂k. Analogously, the asymptotic normality of
√

nh2
1

∑n
l=1wljkεl follows by

applying the Central Limit Theorem with variance

(

‖K‖22
)2

∫
{

(G′ ◦m)2σ2

ϕ

}

(xj, xk, w)ϕ
2
jk(w)dw.

Next we consider

Un =
1

n

n
∑

i=1

G′{m(xj , xk, Xijk)}
E∗(âi)− Ei(âi)

ϕ(xj , xk, Xijk)
.
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We will show that Un = op{(nh2
1)

−1/2} using a similar technique. Let

Un =
n

∑

i=1

ζ̃ii +
∑∑

i 6=l

ζ̃il

where ζ̃il = ζil − Ei(ζil) with

ζil =
1

n2

G′{m(xj , xk, Xijk)}
ϕ(xj , xk, Xijk)

Kh1
(Xlj − xj)Kh1

(Xlk − xk)Lh2
(Xljk −Xijk)

×
[

m(Xl)−m(xj , xk, Xijk)− (Xlj − xj)
∂m

∂xj
(xj , xk, Xijk)

−(Xlk − xk)
∂m

∂xk
(xj , xk, Xijk)

]

.

Since ζ̃ii = 0, Un =
∑∑

i 6=lζ̃il. It is obvious that E(Un) = 0. We now

calculate the variance of
∑∑

i 6=lζ̃il, which involves calculation of the following three

quantities:

∑∑

i 6=l

E(ζ̃2il),
∑∑

i 6=l

E(ζ̃ilζ̃li),
∑

i 6=l,

∑

i 6=m,

∑

m6=l

E(ζ̃ilζ̃ml).

First, Ei(ζil) = n−2O(h2
1 + hq

2).

Next, it can be shown that

∑∑

i 6=l

E(ζ̃2il) =
1

n2hd−2
2 h2

1

O(h4
1 + h2

2),

∑∑

i 6=l

E(ζ̃ilζ̃li) =
1

n2hd−2
2 h2

1

O(h4
1 + h2

2),

and

∑

i 6=l,

∑

i 6=m,

∑

m6=l

E(ζ̃ilζ̃ml) =
1

nh2
1

O(h4
1 + h2q

2 ).
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Then the total contribution to the variance of Un from these terms is

Var(
∑∑

i 6=l

ζ̃il) =
1

n2hd−2
2 h2

1

O(h4
1 + h2

2) +
1

nh2
1

O(h4
1 + h2q

2 ) = op{(nh2
1)

−1}.

Thus Un is of order op{(nh2
1)

−1/2} and is asymptotically negligible compared to

the term
∑n

i=1wijkεi. So it is sufficient to consider
∑n

i=1wijkεi. As stated previously,

this stochastic term has a slower convergence rate than that of the terms from the

univariate function estimator. Consequently, f̂ ∗
jk(xj , xk) is asymptotically normal,

as described in Theorem 3.2.2.

3.4.3 Proof of Theorem 3.2.3

Proof. : In order to prove the theorem we need to show that the asymptotic covari-

ance between the two function estimates is of smaller order than the variances of

each component function.

From the proof of Theorem 3.2.2, we know that the stochastic term
∑n

i=1wijkεi

dominates the variance. It will be sufficient to look at the covariance between

two such terms
∑n

i=1wijkεi and
∑n

i=1wilmεi, 1 ≤ j < k ≤ d, 1 ≤ l < m ≤ d,

(j, k) 6= (l, m). Thus we need to show that

E

[{

n
∑

i=1

wijkεi

}{

n
∑

i=1

wilmεi

}]

= o(n−1h−2
1 ).
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Since E(εiεp) = 0 for i 6= p and wijkwilmε
2
i are i.i.d.,

E

[{

n
∑

i=1

wijkεi

}{

n
∑

i=1

wilmεi

}]

= nE
[

w1jkw1lmε
2
1

]

and

E
[

w1jkw1lmε
2
1

]

=
1

n2
E

[

Kh1
(X1j − xj)Kh1

(X1k − xk)σ(X1)G
′{m(xj , xk, X1jk)}

ϕjk(X1jk)

ϕ(xj, xk, X1jk)

×Kh1
(X1l − xl)Kh1

(X1m − xm)σ(X1)G
′{m(xl, xm, X1lm)}

ϕlm(Xilm)

ϕ(xl, xm, X1lm)

]

=
1

n2

∫

Kh1
(zj − xj)Kh1

(zk − xk)σ
2(zj , zk, zl, zm, w)

×G′{m(xj , xk, zl, zm, w)}
ϕjk(zl, zm, w)

ϕ(xj, xk, zl, zm, w)

×Kh1
(zl − xl)Kh1

(zm − xm)G
′{m(xl, xm, zj, zk, w)}

× ϕlm(zj , zk, w)

ϕ(xl, xm, zj, zk, w)
· ϕ(zj , zk, zl, zm, w)dzjdzkdzldzmdw

=
1

n2

∫

K(uj)K(uk)σ
2(xj + h1uj, xk + h1uk, xl + h1ul, xm + h1um, w)

×G′{m(xj , xk, xl + h1ul, xm + h1um, w)}

×
ϕjk(xl + h1ul, xm + h1um, w)

ϕ(xj , xk, xl + h1ul, xm + h1um, w)

×K(ul)K(um)G
′{m(xl, xm, xj + h1uj, xk + h1uk, w)}

× ϕlm(xj + h1uj, xk + h1uk, w)

ϕ(xl, xm, xj + h1uj, xk + h1uk, w)

× ϕ(xj + h1uj, xk + h1uk, xl + h1ul, xm + h1um, w)dujdukduldumdw.

It is easy to see that the expression above is of order O(n−2h−1
1 ) if exactly one of

the indices (j, k) equals one of the indices (l, m) and is of order O(n−2) if none of
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the indices j, k, l,m are equal. This establishes the negligible asymptotic covariance

of f̂ ∗
jk and f̂ ∗

lm, thus proves the theorem.

3.4.4 Proof of Theorem 3.3.1

By Theorem 3.2.2, we can write

f̂ ∗
jk(xj , xk) = f ∗

jk(xj , xk) + h2
1Bjk(xj , xk) +

n
∑

i=1

(wijk − wij − wik)εi + op(h
2
1),

where the weights wijk, wij and wik are defined in Sections 3.4.1 and 3.4.2. Thus

∫

f̂ ∗
jk(xj , xk)ϕjk(xj, xk)dxjdxk

=

∫

[

n
∑

i=1

(wijk − wij − wik)εi

]2

ϕjk(xj , xk)dxjdxk +

∫

f ∗2
jk (xj , xk)ϕjk(xj , xk)dxjdxk

+ 2h2
1

∫

f ∗
jk(xj , xk)Bjk(xj , xk)ϕjk(xj , xk)dxjdxk + op(h

2
1).

Let Q be the quadratic term
∫

[
∑n

i=1(wijk − wij − wik)εi]
2
ϕjk(xj , xk)dxjdxk

and write it as
∑∑n

i,l=1 εiεlA(Xi, Xl), where

A(Xi, Xl) =
1

n2

∫

(wijk − wij − wik)(wljk − wlj − wlk)ϕjk(xj , xk)dxjdxk.

Separating its diagonal and cross terms, one gets Q = Q1 +Q2 with

Q1 =
n

∑

i=1

ε2iA(Xi, Xi), and Q2 =
∑∑

i 6=l

εiεlA(Xi, Xl). (3.27)

We then calculate the asymptotics of Q1 and Q2 separately and put the results

together to get the limiting distribution of the test statistic itself.
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Plugging in the formula for wijk, wij and wik, we have

A(Xi, Xl) =
1

n2

∫

[

Kh1
(Xij − xj)Kh1

(Xik − xk)G
′{m(xj , xk, Xijk)}

ϕjk(Xijk)

ϕ(xj , xk, Xijk)

−Kh1
(Xij − xj)G

′{m(xj , Xij)}
ϕj(Xij)

ϕ(xj , Xij)

−Kh1
(Xik − xk)G

′{m(xk, Xik)}
ϕk(Xik)

ϕ(xk, Xik)

]

×
[

Kh1
(Xlj − xj)Kh1

(Xlk − xk)G
′{m(xj , xk, Xljk)}

ϕjk(Xljk)

ϕ(xj, xk, Xljk)

−Kh1
(Xlj − xj)G

′{m(xj , Xlj)}
ϕj(Xlj)

ϕ(xj, Xlj)

−Kh1
(Xlk − xk)G

′{m(xk, Xlk)}
ϕk(Xlk)

ϕ(xk, Xlk)

]

× σ(Xi)σ(Xl)ϕjk(xj , xk)dxjdxk.

Make the change of variables u = (xj −Xij)/h1 and v = (xk −Xik)/h1. Then

A(Xi, Xl) =
1

n2

∫
[

K(u)K(v)G′{m(Xi)}
ϕjk(Xijk)

ϕ(Xi)h1

−K(u)G′{m(Xi)}
ϕj(Xij)

ϕ(Xi)
−K(v)G′{m(Xi)}

ϕk(Xik)

ϕ(Xi)

]

×
[

K(u+
Xij −Xlj

h1

)K(v +
Xik −Xlk

h1

)

×G′{m(Xij, Xik, Xljk)}
ϕjk(Xljk)

ϕ(Xij, Xik, Xljk)h1

−K(u+
Xij −Xlj

h1
)G′{m(Xij, Xlj)}

ϕj(Xlj)

ϕ(Xij, Xlj)

−K(v +
Xik −Xlk

h1
)G′{m(Xik, Xlk)}

ϕk(Xlk)

ϕ(Xik, Xlk)

]

× σ(Xi)σ(Xl)ϕjk(Xij , Xik)dudv[1 + op(1)].
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After some tedious algebra, one obtains

Q2 =
∑∑

i 6=l

εiεlA(Xi, Xl) =
∑ ∑

1≤i<l≤n

(A1 + A2 + A3 + A4 + A5)[1 + op(1)],

where

A1 =
εiεlσ(Xi)σ(Xl)

n2h2
1

K(2)

(

Xij −Xlj

h1

)

K(2)

(

Xik −Xlk

h1

)

ϕjk(Xijk)ϕjk(Xljk)

×
{

G′{m(Xi)}G′{m(Xij , Xik, Xljk)}
ϕjk(Xij, Xik)

ϕ(Xi)ϕ(Xij , Xik, Xljk)

+G′{m(Xl)}G′{m(Xlj , Xlk, Xijk)}
ϕjk(Xlj, Xlk)

ϕ(Xl)ϕ(Xlj, Xlk, Xijk)

}

,

A2 = −εiεlσ(Xi)σ(Xl)

n2h1

G′{m(Xi)}
ϕjk(Xijk)

ϕ(Xi)

×
{

K(2)

(

Xij −Xlj

h1

)

G′{m(Xij, Xlj)}
ϕj(Xlj)

ϕ(Xij , Xlj)

+K(2)

(

Xik −Xlk

h1

)

G′{m(Xik, Xlk)}
ϕk(Xlk)

ϕ(Xik, Xlk)

}

ϕjk(Xij, Xik)

− εiεlσ(Xi)σ(Xl)

n2h1
G′{m(Xl)}

ϕjk(Xljk)

ϕ(Xl)

×
{

K(2)

(

Xlj −Xij

h1

)

G′{m(Xlj, Xij)}
ϕj(Xij)

ϕ(Xlj, Xij)

+K(2)

(

Xlk −Xik

h1

)

G′{m(Xlk, Xik)}
ϕk(Xik)

ϕ(Xlk, Xik)

}

ϕjk(Xlj, Xlk),

A3 = −εiεlσ(Xi)σ(Xl)

n2h1

G′{m(Xi)}G′{m(Xij , Xik, Xljk)}
ϕjk(Xljk)

ϕ(Xi)ϕ(Xij, Xik, Xljk)

×
{

K(2)

(

Xij −Xlj

h1

)

ϕj(Xij) +K(2)

(

Xik −Xlk

h1

)

ϕk(Xik)

}

ϕjk(Xij, Xik)

− εiεlσ(Xi)σ(Xl)

n2h1

G′{m(Xl)}G′{m(Xlj , Xlk, Xijk)}
ϕjk(Xijk)

ϕ(Xl)ϕ(Xlj, Xlk, Xijk)

×
{

K(2)

(

Xlj −Xij

h1

)

ϕj(Xlj) +K(2)

(

Xlk −Xik

h1

)

ϕk(Xlk)

}

ϕjk(Xlj , Xlk),
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A4 =
εiεlσ(Xi)σ(Xl)

n2
G′{m(Xi)}

×
{

K(2)

(

Xij −Xlj

h1

)

G′{m(Xij, Xlj)}ϕj(Xij)ϕj(Xlj)

ϕ(Xi)ϕ(Xij , Xlj)

+K(2)

(

Xik −Xlk

h1

)

G′{m(Xik, Xlk)}ϕk(Xik)ϕk(Xlk)

ϕ(Xi)ϕ(Xik, Xlk)

}

ϕjk(Xij, Xik)

+
εiεlσ(Xi)σ(Xl)

n2
G′{m(Xl)}

×
{

K(2)

(

Xlj −Xij

h1

)

G′{m(Xlj, Xij)}ϕj(Xlj)ϕj(Xij)

ϕ(Xl)ϕ(Xlj, Xij)

+K(2)

(

Xlk −Xik

h1

)

G′{m(Xlk, Xik)}ϕk(Xlk)ϕk(Xik)

ϕ(Xl)ϕ(Xlk, Xik)

}

ϕjk(Xlj, Xlk),

and

A5 =
εiεlσ(Xi)σ(Xl)

n2
G′{m(Xi)}

×
{

G′{m(Xik, Xlk)}
ϕj(Xij)ϕk(Xlk)

ϕ(Xi)ϕ(Xik, Xlk)
+G′{m(Xij , Xlj)}

ϕj(Xlj)ϕk(Xik)

ϕ(Xi)ϕ(Xij, Xlj)

}

× ϕjk(Xij , Xik)

+
εiεlσ(Xi)σ(Xl)

n2
G′{m(Xl)}

×
{

G′{m(Xlk, Xik)}
ϕj(Xlj)ϕk(Xik)

ϕ(Xl)ϕ(Xlk, Xik)
+G′{m(Xlj , Xij)}

ϕj(Xij)ϕk(Xlk)

ϕ(Xl)ϕ(Xlj , Xij)

}

× ϕjk(Xlj , Xlk).

All the Ai, i = 1, . . . , 5, are symmetric functions. Note that the random vectors

(Xi, εi), i = 1, . . . n, are i.i.d. and

Ei [εiεlA(Xi, Xl)] = E [E [εiεlA(Xi, Xl)|εi, Xi, Xl] |εi, Xi]

= E [εiA(Xi, Xl)E(εl|Xl)|εi, Xi] = 0,
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where here Ei = E(·|εi, Xi). Therefore A1 to A5 and thus Q2 are all symmetric and

nondegenerate U -statistics. We will derive the asymptotic variance of A1. It will

be seen in the process that A2 through A5 are of higher order and hence negligible.

We will consider A1 in the following.

By Hall (1984), to apply a central limit theorem to this U -statistic, the fol-

lowing three quantities need to be calculated:

1. The variance of one term: Bn = E[A2
1(X1, ε1, X2, ε2)],

2. The fourth moment of one term: Cn = E[A4
1(X1, ε1, X2, ε2)],

3. The quantity Dn = E[J2
1 (X1, ε1, X2, ε2)], where

J1(x, ε, y, δ) = E[A1(X1, ε1, x, ε)A1(X1, ε1, y, δ)].

Here ε and δ are independent and disributed as ε1.

Then one must verify that [Dn + (1/n)Cn]/B
2
n → 0 as n → ∞. The following

lemmas will address the orders of these quantities when n goes to infinity.

Lemma 3.4.2. As n → ∞, it holds that

Bn =
4

n4h2
1

‖K(2)‖42
∫

[
∫

{

(G′ ◦m)2σ2

ϕ

}

(zj , zk, zjk)ϕ
2
jk(zjk)dzjk

]2

× ϕ2
jk(zj , zk)dzjdzk [1 + op(1)] .
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Proof.

Bn =
1

n4h4
1

∫

(K(2))2
(

z1j − z2j
h1

)

(K(2))2
(

z1k − z2k
h1

)

ϕ2
jk(z1jk)ϕ

2
jk(z2jk)

×
{

G′{m(z1)}G′{m(z1j , z1k, z2jk)}
ϕjk(z1j , z1k)

ϕ(z1)ϕ(z1j , z1k, z2jk)

+G′{m(z2)}G′{m(z2j , z2k, z1jk)}
ϕjk(z2j , z2k)

ϕ(z2)ϕ(z2j , z2k, z1jk)

}2

× σ2(z1)σ
2(z2)ϕ(z1)ϕ(z2)dz1dz2.

Using a substitution z2j = z1j − h1u and z2k = z1k − h1v, one obtains

Bn =
1

n4h2
1

∫

(K(2))2(u)(K(2))2(v)ϕ2
jk(z1jk)ϕ

2
jk(z2jk)σ

2(z1)σ
2(z1j , z1k, z2jk)

×
{

G′{m(z1)}G′{m(z1j , z1k, z2jk)}
ϕjk(z1j , z1k)

ϕ(z1)ϕ(z1j , z1k, z2jk)

+G′{m(z1j , z1k, z2jk)}G′{m(z1)}
ϕjk(z1j , z1k)

ϕ(z1j , z1k, z2jk)ϕ(z2)

}2

× ϕ(z1)ϕ(z1j , z1k, z2jk)dz1dudvdz2jk [1 + op(1)]

=
4

n4h2
1

‖K(2)‖42
∫ ϕ2

jk(z1jk)ϕ
2
jk(z2jk)ϕ

2
jk(z1j , z1k)

ϕ(z1)ϕ(z1j , z1k, z2jk)
G

′2{m(z1)}

×G
′2{m(z1j , z1k, z2jk)}σ2(z1)σ

2(z1j , z1k, z2jk)dz1dz2jk

× [1 + op(1)]

=
4

n4h2
1

‖K(2)‖42
∫

[
∫

{

(G′ ◦m)2σ2

ϕ

}

(zj , zk, zjk)ϕ
2
jk(zjk)dzjk

]2

× ϕ2
jk(zj, zk)dzjdzk [1 + op(1)] .

Note that Bn = (2σ2
T/n

4h2
1)[1 + op(1)], where σ2

T is defined in Theorem 3.3.1.
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Lemma 3.4.3. As n → ∞, n−1Cn = O(n−9h−6
1 ) = O(B2

n).

Proof. Similar to the case of the second moment, the fourth moment of

A1(X1, ε1, X2, ε2) is

Cn = E[A4
1(X1, ε1, X2, ε2)]

=
1

n8h6
1

∫

(K(2))4(u)(K(2))4(v)ϕ4
jk(z1jk)ϕ

4
jk(z2jk)σ

4(z1)σ
4(z1j , z1k, z2jk)

×
{

G′{m(z1)}G′{m(z1j , z1k, z2jk)}
ϕjk(z1j , z1k)

ϕ(z1)ϕ(z1j , z1k, z2jk)

+G′{m(z1j , z1k, z2jk)}G′{m(z1)}
ϕjk(z1j , z1k)

ϕ(z1j , z1k, z2jk)ϕ(z2)

}4

× ϕ(z1)ϕ(z1j , z1k, z2jk)dz1dudvdz2jk[1 + op(1)].

This calculation implies that

n−1Cn = O(n−9h−6
1 ) = B2

n ·O(n−1h−2
1 )

and completes the proof the lemma.
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Lemma 3.4.4. As n → ∞,

J1(x, ε, y, δ)

=
2εδϕjk(xj , xk)ϕjk(xjk)ϕjk(yjk)σ(x)σ(y)

n4h2
1ϕ(x)

K(4)

(

xj − yj
h1

)

K(4)

(

xk − yk
h1

)

×G′{m(x)}
∫

G′{m(xj , xk, zjk)}

×
{

G′{m(xj , xk, zjk)}G′{m(xj , xk, yjk)}
ϕjk(xj , xk)

ϕ(xj, xk, zjk)ϕ(xj , xk, yjk)

+ G′{m(y)}G′{m(yj, yk, zjk)}
ϕjk(yj, yk)

ϕ(y)ϕ(yj, yk, zjk)

}

× ϕ2
jk(zjk)σ

2(xj , xk, zjk)dzjk[1 + op(1)].

Proof. By definition,

J1(x, ε, y, δ) =
εδϕjk(xjk)ϕjk(yjk)σ(x)σ(y)

n4h4
1

×
∫

ϕ2
jk(zjk)σ

2(z)K(2)

(

zj − xj

h1

)

K(2)

(

zk − xk

h1

)

×
{

G′{m(z)}G′{m(zj , zk, xjk)}
ϕjk(zj , zk)

ϕ(z)ϕ(zj , zk, xjk)

+G′{m(x)}G′{m(xj , xk, zjk)}
ϕjk(xj , xk)

ϕ(x)ϕ(xj, xk, zjk)

}

×K(2)

(

zj − yj
h1

)

K(2)

(

zk − yk
h1

)

×
{

G′{m(z)}G′{m(zj , zk, yjk)}
ϕjk(zj, zk)

ϕ(z)ϕ(zj, zk, yjk)

+G′{m(y)}G′{m(yj , yk, zjk)}
ϕjk(yj, yk)

ϕ(y)ϕ(yj, yk, zjk)

}

ϕ(z)dz,

which, by the change of variables zj = xj + h1u and zk = xk + h1v, becomes
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J1(x, ε, y, δ)

=
εδϕjk(xjk)ϕjk(yjk)σ(x)σ(y)

n4h2
1

×
∫

ϕ2
jk(zjk)σ

2(xj , xk, zjk)K
(2)(u)K(2)(v)

×
{

G′{m(xj , xk, zjk)}G′{m(x)} ϕjk(xj , xk)

ϕ(xj , xk, zjk)ϕ(x)

+ G′{m(x)}G′{m(xj , xk, zjk)}
ϕjk(xj , xk)

ϕ(x)ϕ(xj , xk, zjk)

}

×K(2)

(

u+
xj − yj

h1

)

K(2)

(

v +
xk − yk

h1

)

×
{

G′{m(xj , xk, zjk)}G′{m(xj , xk, yjk)}
ϕjk(xj , xk)

ϕ(xj, xk, zjk)ϕ(xj , xk, yjk)

+ G′{m(y)}G′{m(yj, yk, zjk)}
ϕjk(yj, yk)

ϕ(y)ϕ(yj, yk, zjk)

}

× ϕ(xj , xk, zjk)dudvdzjk[1 + op(1)]

=
2εδϕjk(xj , xk)ϕjk(xjk)ϕjk(yjk)σ(x)σ(y)

n4h2
1ϕ(x)

×G′{m(x)}K(4)

(

xj − yj
h1

)

K(4)

(

xk − yk
h1

)

×
∫

G′{m(xj , xk, zjk)}

×
{

G′{m(xj , xk, zjk)}G′{m(xj , xk, yjk)}
ϕjk(xj , xk)

ϕ(xj, xk, zjk)ϕ(xj , xk, yjk)

+ G′{m(y)}G′{m(yj, yk, zjk)}
ϕjk(yj, yk)

ϕ(y)ϕ(yj, yk, zjk)

}

× ϕ2
jk(zjk)σ

2(xj , xk, zjk)dzjk[1 + op(1)].
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Lemma 3.4.5. As n → ∞, it holds that

Dn = O(n−8h−2
1 ) = o(B2

n).

Proof. By Lemma 3.4.4 and techniques used in the two previous lemmas, this can

be easily shown. The tedious calculation is omitted here.

So far, we have established that Bn ∝ 1/(n4h2
1), Cn ∝ 1/(n8h6

1) and Dn ∝

1/(n8h2
1). Hence

Dn + n−1Cn

B2
n

= O

(

h2
1 +

1

nh2
1

)

→ 0 as n → ∞.

Therefore, the central limit theorem for a nondegenerate U -statistic, stated as

in Theorem 1 of Hall (1984), implies the following proposition regarding the limiting

distribution of Q2.

Proposition 3.4.6. As n → ∞,

nh1Q2
D−→ N(0, σ2

T ).

The next proposition provides an approximation to the “diagonal” term Q1 =

∑n
i=1 ε

2
iA(Xi, Xi).

Proposition 3.4.7. As n → ∞,

Q1 =
2{K(2)(0)}2

nh2
1

∫
{

(G′ ◦m)2σ2

ϕ

}

(zj , zk, zjk)ϕ
2
jk(zjk)ϕjk(zj , zk)dzjdzkdzjk

+Op(n
−1h−1

1 ).
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Proof. We need to calculate the mean and variance of Q1. We have

EQ1 = nE[ε21A(X1, X1)]

= nE[A1(X1, ε1, X1, ε1)][1 +Op(h)]

= n
{K(2)(0)}2

n2h2
1

∫

2G
′2{m(z)}σ2(z)

ϕ2(z)
ϕ2
jk(zjk)ϕjk(zj , zk)ϕ(z)dz[1 +Op(h)]

=
2{K(2)(0)}2

nh2
1

∫
{

(G′ ◦m)2σ2

ϕ

}

(zj , zk, zjk)ϕ
2
jk(zjk)ϕjk(zj, zk)dz[1 +Op(h)]

and

V ar(Q1) = nV ar[ε21A(X1, X1)]

≤ nE[ε41A
2(X1, X1)]

= n
{K(2)(0)}4

n4h4
1

∫

4G
′4{m(z)}σ4(z)

ϕ4(z)
ϕ4
jk(zjk)ϕ

2
jk(zj , zk)ϕ(z)dz[1 +Op(h)]

= Op(
1

n3h4
1

).

Therefore,

Q1 =
2{K(2)(0)}2

nh2
1

∫
{

(G′ ◦m)2σ2

ϕ

}

(zj , zk, zjk)ϕ
2
jk(zjk)ϕjk(zj , zk)dzjdzkdzjk

+Op

(

1

nh1
+

1

n3/2h2
1

)

=
2{K(2)(0)}2

nh2
1

∫ {

(G′ ◦m)2σ2

ϕ

}

(zj , zk, zjk)ϕ
2
jk(zjk)ϕjk(zj , zk)dzjdzkdzjk

+Op(n
−1h−1

1 ).

Now putting the results on Q1 and Q2 together, based on the derivation at

the beginning of the proof, we obtain Theorem 3.3.1.
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3.4.5 Proof of Theorem 3.3.4

Proof. Analogous to f ∗
jk, the definition of f ∗

jk,n(xj , xk) is

f ∗
jk,n(xj , xk) = fjk,n(xj, xk) + cjk

with cjk =
∫

fjk,n(xj , xk)ϕjk(xj, xk)dxjdxk.

Thus

‖f ∗
jk,n‖2L2(Sjk ,ϕjk)

=

∫

f ∗2
jk,n(xj , xk)ϕjk(xj , xk)dxjdxk

=

∫

f 2
jk,n(xj , xk)ϕjk(xj , xk)dxjdxk + 3c2jk

≥
∫

f 2
jk,n(xj , xk)ϕjk(xj , xk)dxjdxk

≥ a2n.

Taking the first partial derivative with respect to xj on both sides of the

equation of model (3.1), we get

G′{m(x)}∂m
∂xj

= f
(1)
j (xj) +

∑

γ∈Dj

f
(1,0)
jγ (xj , xγ). (3.28)

With another partial differentiation on both sides of (3.28),

G′′{m(x)}
(

∂m

∂xj

)2

+G′{m(x)}∂
2m

∂x2
j

= f
(2)
j (xj) +

∑

γ∈Dj

f
(2,0)
jγ (xj , xγ).

Hence,

G′{m(x)}∂
2m

∂x2
j

= f
(2)
j (xj) +

∑

γ∈Dj

f
(2,0)
jγ (xj , xγ)−G′′{m(x)}

(

∂m

∂xj

)2

.
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Substituting the expression on the right hand side within the integral below, we

have

∫ {

(G′ ◦m)
∂2m

∂x2
j

}

(xj , xk, xjk)ϕjk(xjk)dxjk

=

∫







f
(2)
j (xj) +

∑

γ∈Dj

f
(2,0)
jγ (xj , xγ)−G′′{m(x)}

(

∂m

∂xj

)2

(xj , xk, xjk)







ϕjk(xjk)dxjk

= f
(2)
j (xj) + f

(2,0)
jk (xj , xk) +

∑

γ∈Dj

⋂
Dk

∫

f
(2,0)
jγ (xj , xγ)ϕjk(xjk)dxjk

−
∫

{

(G′′ ◦m)

(

∂m

∂xj

)2
}

(xj , xk, xjk)ϕjk(xjk)dxjk.

The property of the third term is stated in the following lemma.

Lemma 3.4.8. For any γ ∈ Dj

⋂

Dk, it holds that
∫

f
(2,0)
jγ (xj , xγ)ϕjk(xjk)dxjk = 0.

Proof.

∫

f
(2,0)
jγ (xj , xγ)ϕjk(xjk)dxjk

=
∂2

∂x2
j

∫

fjγ(xj , xγ)ϕjk(xjk)dxjk

=
∂2

∂x2
j

∫
{
∫

fjγ(xj, xγ)

[
∫

ϕ(xj , xk, xjk)dxjdxk

]

dxjkγ

}

dxγ

=
∂2

∂x2
j

∫

fjγ(xj , xγ)

[
∫∫

ϕ(xj , xk, xγ , xjkγ)dxjdxkdxjkγ

]

dxγ

=
∂2

∂x2
j

∫

fjγ(xj , xγ)ϕγ(xγ)dxγ

= 0

by the side condition (3.3).
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Therefore,

∫
{

(G′ ◦m)
∂2m

∂x2
j

}

(xj , xk, xjk)ϕjk(xjk)dxjk

= f
(2)
j (xj) + f

(2,0)
jk (xj , xk)−

∫

{

(G′′ ◦m)

(

∂m

∂xj

)2
}

(xj , xk, xjk)ϕjk(xjk)dxjk.

(3.29)

Similarly,

∫
{

(G′ ◦m)
∂2m

∂x2
k

}

(xj , xk, xjk)ϕjk(xjk)dxjk

= f
(2)
k (xk) + f

(0,2)
jk (xj , xk)−

∫

{

(G′′ ◦m)

(

∂m

∂xk

)2
}

(xj , xk, xjk)ϕjk(xjk)dxjk,

(3.30)

∫
{

(G′ ◦m)
∂2m

∂x2
j

}

(xj, xj)ϕj(xj)dxj

= f
(2)
j (xj)−

∫

{

(G′′ ◦m)

(

∂m

∂xj

)2
}

(xj , xj)ϕj(xj)dxj,

(3.31)

∫
{

(G′ ◦m)
∂2m

∂x2
k

}

(xk, xk)ϕk(xk)dxk

= f
(2)
k (xk)−

∫

{

(G′′ ◦m)

(

∂m

∂xk

)2
}

(xk, xk)ϕk(xk)dxk.

(3.32)

Combining (3.29) − (3.32), the bias term Bjk(xj , xk) defined in Theorem 3.2.2
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becomes

Bjk(xj , xk) =
µ2(K)

2

[

f
(2,0)
jk (xj , xk) + f

(0,2)
jk (xj , xk)

+

∫

{

(G′′ ◦m)

(

∂m

∂xj

)2
}

(xj , xj)ϕj(xj)dxj

+

∫

{

(G′′ ◦m)

(

∂m

∂xk

)2
}

(xk, xk)ϕk(xk)dxk

−
∫

{

(G′′ ◦m)

[

(

∂m

∂xj

)2

+

(

∂m

∂xk

)2
]}

(xj , xk, xjk)

× ϕjk(xjk)dxjk

]

.

(3.33)

Since by (3.28), we have

{

(G′′ ◦m)

(

∂m

∂xj

)2
}

(x) = (G′′ ◦m)(x)

[

f
(1)
j (xj) +

∑

γ∈Dj
f
(1,0)
jγ (xj , xγ)

(G′ ◦m)(x)

]2

=
(G′′ ◦m)(x)

(G′ ◦m)2(x)



f
(1)
j (xj) +

∑

γ∈Dj

f
(1,0)
jγ (xj , xγ)





2

,

the last three integrals in (3.33) are all bounded under the condition that G′ is

bounded away from zero, in addition to assumptions (A3) and (A6). Therefore the

sum of the three integrals are bounded.

For any fjk,n ∈ Bjk(M), with compact support Sjk (the support of ϕjk), there

exists a constant b > 0 such that

‖Bjk‖L2(Sjk ,ϕjk) =

√

∫

B2
jk(xj , xk)ϕjk(xj , xk)dxjdxk ≤ bM.

Note that although we are dealing with a sequence of functions (fjk,n)
∞
n=1, the

limiting distribution in Theorem 3.3.1 still holds because all the main effects {fj}dj=1
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and other interactions {fγδ}1≤γ<δ≤d,(γ,δ)6=(j,k) remain fixed and the second Sobolev

seminorm of fjk,n is bounded uniformly for each n. In other words, as n → ∞,

T ′
n = nh1

∫

f̂ ∗2
jk,n(xj , xk)ϕjk(xj , xk)dxjdxk − nh1

∫

f ∗2
jk,n(xj , xk)ϕjk(xj , xk)dxjdxk

− 2{K(2)(0)}2
h1

∫ {

(G′ ◦m)2σ2

ϕ

}

(z)ϕ2
jk(zjk)ϕjk(zj , zk)dz

− 2nh3
1

∫

f ∗
jk,n(xj , xk)Bjk,n(xj , xk)ϕjk(xj , xk)dxjdxk

D−→ N(0, σ2
T )

where Bjk,n is the bias function associated with fjk,n.

Note that

tn = nh1

∫

f ∗2
jk,n(xj , xk)ϕjk(xj, xk)dxjdxk

+ 2nh3
1

∫

f ∗
jk,n(xj , xk)Bjk,n(xj , xk)ϕjk(xj , xk)dxjdxk

≥ nh1‖f ∗
jk,n‖2L2(Sjk ,ϕjk)

− 2nh3
1‖f ∗

jk,n‖L2(Sjk ,ϕjk)‖Bjk,n‖L2(Sjk,ϕjk)

= nh1‖f ∗
jk,n‖L2(Sjk ,ϕjk)

[

‖f ∗
jk,n‖L2(Sjk,ϕjk) − 2h2

1‖Bjk,n‖L2(Sjk,ϕjk)

]

≥ nh1an(an − 2h2
1bM).

Thus tn → ∞ as n → ∞ if a−1
n = o(nh1 + h−2

1 ).

The rejection probability is

pn = P (T ′
n + tn ≥ z1−ασT )

It is obvious that as n → ∞, tn → ∞ makes limn→∞ pn = 1.
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Chapter 4

Simulation Studies

In this chapter, we report the results of our finite sample simulation studies. The

purpose of the numerical studies is twofold: first to investigate the computational

performance of the proposed estimating procedure with finite samples and then

to investigate the power of the test statistic for significance of the individual sec-

ond order interaction term. Although our study is limited in scope, the results do

demonstrate the computational feasibility and the power of the test proposed in this

dissertation.

4.1 Function Estimation

Sperlich, Tjøstheim and Yang (2002) examined the small sample behavior of the

estimators for the identity link function G(·). Although the introduction of a non-

trivial link function looks straightforward for the marginal integration method, in

practice it can bring on some numerical difficulties and negative effects on small

sample performance. In addition, the classical marginal integration estimator en-

tails long computing time. Thus we tried two different R functions to obtain the
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pre-smoother: one (coded by the author) strictly follows the definition of the multi-

variate local polynomial regression estimator as defined in (3.11) and (3.13): that is,

locally linear in the direction of interest and locally constant in nuisance directions,

while the other one is the well-known R function loess(), which may be the most

commonly available software for a local polynomial surface fit. The main difference

of the two implementations is that the former uses fixed bandwidths and the latter

is a nearest-neighbor smoother which requires one to select a span. An advantage of

loess is its short computing time. On the other hand, it loses the flexibility of con-

trolling bandwidth in different directions. Our Monte Carlo experiments employed

both methods to see if they will provide comparable results.

Another question is the choice of bandwidth (or span) which is very impor-

tant in kernel-based nonparametric regression problems. However, there does not

yet exist a really complete and practically useful guidance on how to choose the

smoothing parameters in our problems. Cross-Validation (CV) seems to be a com-

monly used bandwidth selector but it aims to minimize the mean squared error of

the entire estimated regression function, not of any particular component function.

As discussed in section 2.2.1.3, the plug-in methods suggested by Severance-Lossin

and Sperlich (1999) might be more appropriate in our current setting.

Let us consider the estimation of the univariate function Fj(·). Recall assump-

tion (A02) that h1 = βn−1/5. Following Theorem 3.2.1, the asymptotically optimal
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bandwidth constant β, with respect to the integrated mean squared error (MISE),

is given by

β =

[
∫

νj(xj)ϕj(xj)dxj

4
∫

b2j (xj)ϕj(xj)dxj

]1/5

=

[

‖K‖22
∫

{(G′ ◦m)2σ2/ϕ}(xj , xj)ϕ
2
j (xj)dxjdxj

µ2
2(K)

∫

(
∫

{(G′ ◦m)(∂2/∂x2
j )m}(xj , xj)ϕj(xj)dxj)2ϕj(xj)dxj

]1/5

after substituting the bias function bj(xj) and variance function νj(xj) by their

formulas defined in (3.17) and (3.18), respectively. Although the expression above

could theoretically identify the asymptotically optimal bandwidth, in practice, it

is difficult to have an accurate guess either for the parametric regression function

or for the nonparametric estimators. In addition, it is not necessarily the best for

any given set of data. Therefore, in our simulation studies, we chose smoothing

parameters based on experimentation. The final bandwidths or spans (for loess)

were selected as a fair compromise between a reasonable degree of smoothness and

numerical feasibility.

Here, we consider a logistic GAM with interactions, which takes the following

form:

log

(

m(x)

1−m(x)

)

= f1(x1) + f2(x2) + f3(x3) + f12(x1, x2). (4.1)

Note that we use the logit link function G(u) = log(u/(1− u)). Given the covariate

vector X = (X1, X2, X3)
T , the binary outcome Y was generated from the distri-

bution Y ∼ Bernoulli(m(X)), with X1, X2 and X3 drawn as independent random
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variables distributed as U [−2, 2]. We examined two sample sizes, n = 500 and

n = 1000, and considered the component functions:

f1(x1) = 2x1, f2(x2) = 1.5 sin(−1.5x2),

f3(x3) = −x2
3 +

4

3
, and f12(x1, x2) = x1x2.

This choice of component functions was made in previous simulation studies (Sper-

lich, Tjøstheim and Yang, 2002) and enables us to make comparisons with other

work.

For the kernel in all estimators, we used the quartic kernel

K(t) =
15

16
(1− t2)2I[|t| ≤ 1],

and a product of two kernels of this type as a two-dimensional kernel. When esti-

mating the component functions, we used h1 = 1.2 for n = 500 and h1 = 1.07 for

the larger sample size n = 1000. For simplification we set h2 = h1 for the directions

not of interest.

For 100 Monte Carlo replications we estimated the functions on an equally

spaced grid. Figures 4.1 – 4.4 show the performance of the proposed estimator

with two samples sizes. In Figures 4.1 and 4.3, the true univariate data generating

functions are given as dashed lines together with the 90% confidence bands (solid

lines) for the estimator resulting from the 100 simulation runs. The average results

of the estimated interaction surface f̂12 are depicted in Figures 4.2 and 4.4. The

corresponding heat map and contour map of the estimated interaction are also given
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in the same figure. To get an impression of how the loess function in R works, the

corresponding results were given along the right column. We used a span= 0.10

for n = 500 and a span= 0.05 for n = 1000. Table 4.1 summarizes averaged

squared bias, variance and MASE (averaged mean squared error). Due to the poor

performance of the estimators near the boundaries, all the graphs and numerical

results are presented over a trimmed region of data on [−1.9, 1.9].

The procedure seems to work reasonably well. Loess provided comparable

results to those obtained from the fixed bandwidth local polynomial regression es-

timator. Not surprisingly, the bias can be seen clearly when the link function is

not trivial. We can further recognize the boundary effects. As discussed before, the

chosen bandwidths are not optimal but the results are quite reasonable. One of our

findings from experimentation is that the performance of the estimators is sensitive

to the different choices of bandwidths. Again, this constitutes an open problem and

needs more intensive investigation and computation.

4.2 Interaction Testing

We present the simulation results for the testing problem in this section. As indi-

cated in Section 3.3, we have to be cautious when using the asymptotic distribution

with small or moderate sample sizes. In addition, asymptotic critical values are hard

to calculate for the complicated expressions of the bias and variance terms of the test
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Figure 4.1: Model (4.1) with sample size n=500. Dashed lines are the data gener-

ating functions, solid lines are the 90% confidence bands after 100 simulation runs.

Results with fixed bandwidth code are on the left and results with fixed span (loess)

are on the right.
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Figure 4.2: Model (4.1) with sample size n=500. Grid plot (upper row), heat map

(middle row) and contour map (lower row) for interaction function. True interaction

function is on the left, estimator with fixed bandwidth code is in the middle and

estimator with fixed span (loess) is on the right.
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Figure 4.3: Model (4.1) with sample size n=1000. Dashed lines are the data

generating functions, solid lines are the 90% confidence bands after 100 simulation

runs. Results with fixed bandwidth code are on the left and results with fixed span

(loess) are on the right.
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Figure 4.4: Model (4.1) with sample size n=1000. Grid plot (upper row), heat map

(middle row) and contour map (lower row) for interaction function. True interaction

function is on the left, estimator with fixed bandwidth code is on the middle and

estimator with fixed span (loess) is on the right.
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Table 4.1: Averaged squared bias, averaged variance and MASE, using the fixed

bandwidth code and fixed span function (loess)

n = 500 n = 1000

Function Method Bias2 Var MSE Bias2 Var MSE

f̂1

fixed bw 0.329 0.211 0.540 0.224 0.126 0.350

fixed span 0.146 0.212 0.358 0.150 0.133 0.283

f̂2

fixed bw 0.068 0.169 0.237 0.048 0.094 0.142

fixed span 0.091 0.184 0.274 0.034 0.117 0.151

f̂3

fixed bw 0.122 0.170 0.292 0.075 0.093 0.168

fixed span 0.058 0.184 0.242 0.048 0.117 0.165

f̂12

fixed bw 0.175 0.473 0.647 0.158 0.293 0.451

fixed span 0.120 0.362 0.483 0.089 0.327 0.416

Ĝ{m̃}

fixed bw 0.577 0.824 1.401 0.433 0.510 0.943

fixed span 0.305 0.771 1.076 0.300 0.642 0.942
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statistic, as seen in Theorem 3.3.1. Moreover, it is known that the distribution of a

similar test functional (Hjellvik, Yao and Tjøstheim, 1998) is poorly approximated

by its asymptotic distribution in moderate sized sample.

For these reasons most authors propose the application of the wild bootstrap

in this context (see, for example, Gozalo and Linton, 2001; Sperlich, Tjøstheim

and Yang, 2002; Yang, Sperlich and Härdle, 2003; Härdle, et al., 2004). The wild

bootstrap was first introduced by Wu (1986) and Liu (1988). Härdle and Mammen

(1993) introduced it into the context of nonparametric hypothesis testing. We will

provide the details of the wild bootstrap in next subsection.

We conducted small simulations on two models with logit and log link func-

tions, respectively. The components of the three-dimensional explanatory variable

X were again drawn independently from U [−2, 2]. The two models are:

Model 1 : log

(

m(x)

1−m(x)

)

= f1(x1) + f2(x2) + f3(x3) + f12(x1, x2),

where f1(x1) = sin(π(x1 + 2)/2), f2(x2) = x2
2 − (4/3), f3(x3) = x3, and

f12(x1, x2) = ax1x2 with a being a constant. For Model 1, the binary outcome

variable Y was generated from Bernoulli(m(X)) for a given vector X . Two hundred

and five hundred independent samples {(Xi, Yi)}ni=1 were drawn based on this model

definition. A very similar model was used in a previous simulation study by Roca-

Pardiñas, Cadarso-Suárez and González-Manteiga (2005). Model 2 is:

Model 2 : log(m(x)) = c+ f1(x1) + f2(x2) + f3(x3) + f12(x1, x2),
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where f1(x1) = x1, f2(x2) = 3 sin(−3x2/2)/4, f3(x3) = −x2
3/2 + (2/3),

f12(x1, x2) = ax1x2 with a being a constant, and c = 3/2. We work with Poisson

data generated from Y ∼ Poisson(m(X)) in Model 2, where a single sample size of

n = 200 was used to study the performance of the test. It should be noted that the

value a = 0 corresponds to the null hypothesis of no interaction (H0
12 : f12 = 0), and

that the more the constant a shifts from zero, the greater the degree of interaction.

For all computations in this section, the quartic kernel was used as before. We

used bandwidths h1 = 1.25 and h1 = 1.07 for sample sizes n = 200 and n = 500,

respectively, in Model 1, while h1 = 1.45 was applied with the Poisson data generated

from Model 2. We again let h1 = h2 in the local linear smoother for simplicity.

Let us first look at the asymptotics based on 200 Monte Carlo simulations of

Model 1. In Figure 4.5, a density estimate for the standardized test statistic T̃ was

plotted together with the curve of standard normal density. It is obviously seen from

this figure that the normal approximation is quite inaccurate for a sample size of

n = 500. The normal q-q plot given in Figure 4.6 shows consistent skewed behavior

of the distribution of the test statistic. Hence, even though we could estimate

bias and variance of the test statistics well, its asymptotic distribution is hardly

useful in testing where there is a small or moderate sample size. Our conclusion is

consistent with those of Sperlich, Tjøstheim and Yang (2002) and Hjellvik, Yao and

Tjøstheim (1998). A possible reason for the poor approximation is that unlike a
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standard parametric situation, the next order terms in the Edgeworth expansion of

our statistics are very close to the leading normal approximation terms (Hjellvik, Yao

and Tjøstheim, 1998). Thus very many observations are needed for the dominance

of the first-order term to yield normality.
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Figure 4.5: Density of the test statistic (solid) and standard normal density

(dashed).
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Figure 4.6: Q-Q plot of the test statistic (dots) and Q-Q line of the theoretical

normal distribution (solid line) with n = 500.
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4.2.1 The Wild Bootstrap

The basic idea of wild bootstrap is to draw each bootstrap residual u∗
i , i = 1, . . . , n,

from a distribution Fi
W such that

EFi
W (u∗

i ) = 0, EFi
W (u∗

i
2) = û2

i and EFi
W (u∗

i
3) = û3

i ,

where the residual ûi is estimated under the null hypothesis. Then Y ∗
i = m̃0(Xi)+u∗

i .

This approach is used when the range of Y is the real line R.

When the range of Y is restricted to a subset of R, for instance {0, 1}, a

different approach is needed. If Y is binary, then Y ∗
i is chosen from the Bernoulli

distribution with parameter pWi = m̃0(Xi). If Y is Poisson, Y ∗
i is chosen from the

Poisson distribution with parameter λW
i = m̃0(Xi).

In either case the distribution of u∗
i depends only on one value of the estimated

regression, leading to the name “wild bootstrap.” See Gozalo and Linton (2001) for

details.

For each bootstrap sample, a bootstrap test statistic T̃ ∗ is calculated. Since

the T̃ ∗ are distributed as T under H0, repeating this procedure many times one gets

a simulated critical value under the null hypothesis and a simulated p - value for T .

The bootstrap steps used in our simulations are therefore:

Step 1: Calculate the estimated regression function m̃0(Xi), i = 1, . . . , n, under the

hypothesis H0
12 : f12 = 0.
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Step 2: Generate Y ∗
i , i = 1, . . . , n as a random draw from a Bernoulli (m̃0(Xi)) for

Model 1 or a Poisson (m̃0(Xi)) for Model 2.

Step 3: Calculate the bootstrap test statistic T̃ ∗, in the identical way that T̃ was

computed from the original sample.

Step 4: Repeat steps 2 − 3 B times and use the B values of T̃ ∗ to determine the

quantiles of the test statistic under H0
12 and subsequently the critical values

or p−values.

4.2.2 Simulations

For the wild bootstrap, we drew Y ∗
i , i = 1, . . . , n, from the estimated data generat-

ing process under H0
12, given {Xi}ni=1 and calculated the corresponding test statistic

T̃ ∗ = n−1
∑n

i=1 f̂
∗2
12 (X1, X2). To get f̂ ∗

12, we used the local linear smoother with fixed

bandwidths h1 and h2. Only B = 200 bootstrap iterations were implemented to

approximate the distribution of T̃ , due to the limitation of computing power. In

practice, one should certainly draw about 1000 bootstrap samples to get a satisfac-

tory approximation. All rejection probabilities were determined by performing 500

replications.

For both models, we tested H0
12 : f12 = 0 for data generated with various values

of the constant a on the range [0, 1]. Table 4.2 shows the percentage of rejections
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of the alternative hypothesis based on the 1%, 5%, 10% and 15% empirical critical

values under the first model with sample size n = 200. Table 4.3 gives the results

for the same model but with a larger sample size of n = 500. The relative rejection

frequencies for the Poisson data generated based on Model 2 are presented in Table

4.4. The corresponding power functions are depicted in Figures 4.7 and 4.8, for

different models and sample sizes. The tables also display the average bootstrap

p-values, averaged over the 500 Monte Carlo replications.

As can be seen from the tables, the proposed test provided satisfactory results

overall, with a type I error very close to the nominal levels in evidence for a = 0

and well fitted p-values. The figures show how fast the probability of rejection rises

in response to an increase in the value of the constant a.

We found that, for n = 200, the bandwidth choice can be very crucial to

obtaining accurate control of the error of the first kind with the aid of the wild

bootstrap. Although the wild bootstrap appears to work reasonably well, we chose

bandwidths somewhat arbitrary. It is obvious that a much more intensive simulation

study would be of interest to investigate the performance of the test, particularly

concerning the interplay between model complexity and choice of bandwidth.
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Table 4.2: Percentage of rejection and p-values for testing H0
12 : f12 = 0, using local

linear smoother with h = g = 1.25, based on Model 1 (binary data and logit link):

M = 500, n = 200, B = 200

a
Significance level (%)

1 5 10 15 mean p-value

0.00 1.4 5.6 12.4 18.6 50.0

0.25 11.0 23.8 32.8 40.2 32.4

0.50 46.0 64.6 74.6 80.6 10.4

0.75 85.2 93.8 95.8 96.6 2.1

1.00 98.0 99.6 100 100 0.08
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Table 4.3: Percentage of rejection and p-values for testing H0
12 : f12 = 0, using local

linear smoother with h = g = 1.07, based on Model 1 (binary data and logit link):

M = 500, n = 500, B = 200

a
Significance level (%)

1 5 10 15 mean p-value

0.00 1.6 6.2 11.6 14.8 51.3

0.25 20.4 36.2 45.6 53.6 25.0

0.50 78.2 91.0 93.8 94.4 2.4

1.00 100 100 100 100 0
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Table 4.4: Percentage of rejection and p-values for testing H0
12 : f12 = 0, using local

linear smoother with h = g = 1.45, based on Model 2 (Poisson data and log link):

M = 500, n = 200, B = 200

a
Significance level (%)

1 5 10 15 mean p-value

0.00 3.2 6.6 12.0 16.4 55.4

0.25 7.2 15.6 21.8 26.4 50.7

0.50 77.8 84.6 89.6 91.8 4.6

0.75 99.8 100 100 100 0

1.00 100 100 100 100 0
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Figure 4.7: Power function at 5% significance level for Model 1 (binary). Sample

sizes n=200 (solid) and n=500 (dashed).
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Figure 4.8: Power function at 5% significance level for Model 2 (Poisson). Sample

sizes n=200.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

In this dissertation, we have proposed a non-iterative marginal integration approach

for estimaing generalized additive models with second order interaction terms. We

derived the asymptotic normality for the estimators of individual univariate and

bivariate component functions and also of the entire regression function. A test

procedure to check for significance of the interactions was also introduced and its

asymptotics were investigated. This test procedure was shown to be able to detect

an interaction term of the order greater than n−5/6 with limiting probability 1.

The finite sample performance of the estimation procedure was investigated

through Monte Carlo simulations. We examined a model which generates binary

responses with logit link function. We coded our own program to apply local poly-
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nomial regression with fixed bandwidth and compared the results with those by

using loess() available in R. Both provided reasonable and comparable results. For

the model, design and sample size used in our study, the estimation could be erratic

and irregular unless the bandwidth or span was selected properly. The results are

sensitive to the choice of bandwidth. However, choosing a reasonable bandwidth

is not an easy job in an applied context. Making it work needs a lot of patience,

experimentation and intensive computation. We employed wild bootstrap to inves-

tigate the performance of the proposed test statistic. The test keeps the level well

and shows reasonable power with two different data generating models: binary data

(logit link) and Poisson data (log link). Again, it is very crucial to select a proper

bandwidth to have the test work well.

5.2 Future Work

The optimal choice of bandwidth is crucial but is still a challenging open problem in

the GAM context. In the absence of an optimal procedure for choosing a bandwidth,

we chose the bandwidths somewhat arbitrarily. One future interest is to develop a

feasible procedure for bandwidth selection. Cross-validation may be a choice but

implies a high computational cost. Some acceleration techniques may be considered

to speed up the estimation procedure. Obviously a much more detailed and thorough

simulation study would be of interest, in particular concerning the interplay between
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model complexity and choice of bandwidth. Roca-Pardiñas, Cadarso-Suárez and

González-Manteiga (2005) developed a local scoring algorithm (with backfitting) to

estimate the GAM with second order interaction terms. Another possible future

work is to compare the finite sample performance of the backfitting and integration

method in the presence of interaction and non-trivial link function. This work will

be an extension of the extensive simulation study of Sperlich, Linton and Härdle

(1999).

Wild bootstrap works well in our simulation examples. Another meaningful

future research problem is to construct the consistency of the wild bootstrap for our

test procedure. Other types of test statistics are certainly a topic of interest and

we plan to explore this as future research. It would be interesting to compare the

local power of different test statistics against some sequence of local alternatives.

In particular, we might estimate the case where the interaction converges to zero

at the exact rate O(n−5/6). In this case, it is possible that the asymptotic power is

strictly between zero and one.
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[61] Sperlich, S., Linton, O. B. and Härdle, W. (1999), “Integration and backfitting

methods in additive models: finite sample properties and comparison”, Test, 8,

pp. 419-458.

130



[62] Sperlich, S., Tjøstheim, D. and Yang, L. (2002), “Nonparametric estimation

and testing of interaction in additive models,” Econometric Theory, 18, pp.

197–251.

[63] Stone, C. J. (1977), “Consistent nonparametric regression (with discussion),”

Annals of Statistics, 5, pp. 595–620.

[64] Stone, C. J. (1985), “Additive regression and other nonparametric models,”

Annals of Statistics, 13, pp. 689-705.

[65] Stone, C. J. (1986), “The dimensionality reduction principle for generalized

additive models,” Annals of Statistics, 14, pp. 592–606.

[66] Tjøstheim, D. and Auestad, B. H. (1994), “Nonparametric identification of

nonlinear time series: Projections,” Journal of the American Statistical Asso-

ciation, 89, pp. 1398-1409.

[67] Wahba, G. (1977), “A survey of some smoothing problems and the method of

generalized cross-validation for solving them,” Applications of Statistics, pp.

507–523. North-Holland: Amsterdam.

[68] Wahba, G. (1990), Spline Models for Observational Data, Society for Industrial

and Applied Mathematics (SIAM): Philadelphia, PA.

131



[69] Wahba, G. and Wang, Y. H. (1990), “When is the optimal regularization pa-

rameter insensitive to the choice of the loss function?” Communications in

Statistics - Theory and Methods, 19, pp. 1685–1700.

[70] Wand, M. P. and Jones, M. C. (1995), Kernel Smoothing, Chapman and Hall:

London.

[71] Watson, G. S. (1964), ”Smooth regression analysis,” Sankhya Series A 26, pp.

359–372.

[72] Wu, C. F. J. (1986), “Jackknife, bootstrap and other resampling methods in

regression analysis,” With discussion and a rejoinder by the author. Annnal of

Statistics, 14, pp. 1261–1350.
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