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Autonomous vehicles are capable of sensing the environment and moving

around with little to no human intervention, enhancing efficiency and safety. Self-

driving cars, for instance, will affect our modes of transportation and way of life in

the years to come. With rapid advances in hardware and software design, learning-

based autonomous driving is becoming a viable and popular solution.

This thesis focuses on data from the front-end and policy from the back-end

in learning-based autonomous driving. As commonly known, data is central to all

learning-based methods. However, engineers cannot collect all the data from all

possible scenarios to train a model due to the great variety of real-world driving

scenarios, e.g., different conditions in weather, lighting, roads, traffic, etc. Conse-

quently, the issue of how to train a model with robustness, generalizability, and

transferability becomes crucial. In addition, while input data is the key component

of autonomous driving in the front-end, policy, which controls the vehicle to navigate

safely, is also an essential component in the back-end. Existing methods have made



progress on policy learning, but there is room for improvement, e.g., reinforcement

learning is not able to utilize expert demos, inverse reinforcement learning can not

directly utilize driving domain knowledge, etc. I propose to address these important

open research issues by adopting machine learning and deep learning techniques, in-

cluding adversarial data augmentation and training, auxiliary modality learning,

transfer learning, reinforcement learning, and inverse reinforcement learning.

To make autonomous driving more robust against varying weather changes,

lighting conditions, or other image corruptions, I propose a gradient-free adversar-

ial training method based on data augmentation and sensitivity analysis. To uti-

lize multi-modal information for good performance with low computational costs,

I design an auxiliary modality learning framework that can distill knowledge from

multi-modality data to single modality data, with a specific condition that allows the

teacher network to stay aware of the student’s status for better distillation. I further

propose a small-shot cross-modal distillation to solve the problem in a small-shot

setting. To overcome the difficulty of collecting data in the real world, I present a

transfer learning architecture that is able to transfer knowledge from the simulation

domain to the real-world scenarios. To utilize both expert demonstration and real-

world driving knowledge, I propose enhanced inverse reinforcement learning with

hybrid-weight trust-region optimization and curriculum learning.

In summary, my proposed learning-based frameworks enhance robustness, effi-

ciency, and generalization via adversarial data augmentation and training, auxiliary

modality learning, and transfer learning w.r.t. data processing in the front-end; and

further improve policy learning via inverse reinforcement learning in the back-end.
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Chapter 1: Introduction

1.1 Motivation and Overview

Autonomous driving, as a vital component of the transportation system, has

the potential to become one of the life-altering revolutionary technologies. With

little to no human input, autonomous vehicles is able to sense, predict, plan, and

move safely, which enhances the safety and efficiency of the transportation system.

Autonomous driving is increasingly adopted in real-world applications, e.g. au-

tonomous truck for cargo transportation, self-driving taxi in urban areas, etc. With

rapid advancements in high-performance computing hardware (e.g., GPU, TPU) and

deep learning foundation (e.g., theoretical proof, network architecture design, and

training paradigm design) and software (e.g., deep learning languages, platforms,

libraries), learning-based autonomous driving is becoming a main-stream solution

in autonomous vehicles. As commonly known, data is central to all learning-based

methods. We aim to improve performance by utilizing self-augmented data (data

augmentation and adversarial learning in Chapter 2), other modalities’ data (multi

modality learning and auxiliary modality learning in Chapter 3, 4), and other do-

mains’ data (transfer learning and domain adaptation, Chapter 5). In addition,

while input data is the key component of autonomous driving in the front-end, pol-
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Figure 1.1: Dissertation Structure Overview.

icy, which controls the vehicle to navigate safely, is also an essential component in

the back-end. We thus address the issue on policy learning with enhanced inverse

reinforcement learning (Chapter 6). An overview of my dissertation can be found

in Fig. 1.1.

Data, as the knowledge source, plays an vital role in all learning-based meth-

ods, including autonomous driving. In autonomous driving, various types of data

come from different sensors, e.g., RGB image from RGB camera, point cloud from

lidar, distance reading from radar, event image from event camera, rotation and

acceleration from IMU, etc. Different data has different properties, and is suited

to various scenarios. For example, the RGB camera is the most popular sensor

due to its low cost and rich visual information that can be used to solve common

perception tasks, but it may fail in the dark. Lidar can detect distance accurately

and output a 3D point cloud, but it is expensive and cannot detect texture infor-

mation. Therefore, I explore how to maximize the benefits of multi-modality, while
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minimizing potential drawbacks, for autonomous driving. Aside from direct sensing

data, there are techniques for generating new data, e.g., data augmentation, simu-

lator, etc. Typically, Data augmentation generates new data by applying changes

to the original data, e.g., cropping, rotating, translating, and flipping, are standard

techniques to augment image data for classic computer vision tasks like image clas-

sification. Data augmentation can also be used to improve model robustness or

accuracy. Simulators typically generate synthetic data with known physical models,

which help generate more data otherwise difficult to collect in the real world like

traffic accidents. However, there exists a domain gap between virtual and real world.

Thus, how to transfer knowledge from the simulation domain to the real world, or

from one domain to another, has become a prevalent challenge.

Policy, as the control command generator, also plays a crucial role in au-

tonomous driving. By providing sensing data, policy is able to generate the com-

mand for the autonomous vehicle to execute. The two most prevalent techniques

for learning policy are reinforcement learning and inverse reinforcement learning.

Reinforcement learning can take advantage of task domain knowledge by designing

a reasonable reward function. However, designing a perfect reward function can

be challenging when we only have demonstrations from other experts. Inverse re-

inforcement learning, on the other hand, can use expert demonstration in place of

designing a reward function. However, it is difficult to take advantage of domain

knowledge or prior information into account. Additionally, it is time-consuming,

because multiple rounds of reinforcement learning are involved. Finding solutions

to overcome those issues can further propel advances in autonomous driving.
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In this dissertation, I propose to address the key challenges by adopting ma-

chine learning for autonomous driving, specifically deep learning techniques, i.e.

adversarial data augmentation and training, auxiliary modality learning, transfer

learning, reinforcement learning and inverse reinforcement learning. These include:

• Robust autonomous driving by sensitivity analysis and adversarial training

(Chapter 2);

• Low cost autonomous driving by distilling knowledge from multi-modality data

to single modality data (Chapter 3, 4));

• Generalized autonomous driving, transfer learning from virtual to real, or from

one domain to another (Chapter 5);

• Better policy learning in autonomous driving via inverse reinforcement learn-

ing with hybrid-weight trust-region optimization and curriculum learning (Chap-

ter 6).

1.2 Data for Learning-based Autonomous Driving

Data is critical for all learning-based methods, as well as autonomous driving.

In this section, we mainly discuss self-augmented data for vision robustness, other

modalities’ data for auxiliary modality learning, and other domains’ data for transfer

learning.
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1.2.1 Self-augmented Data for Vision Robustness in Autonomous

Driving

Autonomous driving is a complex task that requires many software and hard-

ware components to operate reliably under highly disparate and often unpredictable

conditions. While on the road, vehicles will encounter day and night, clear and foggy

conditions, sunny and rainy days, as well as bright cityscapes and dark tunnels. All

these external factors in conjunction with internal factors of the camera (e.g., those

associated with hardware like camera distortion) can lead to quality variations in

input data for image-based learning algorithms. These image corruptions or pertur-

bations may lead to performance drop of the model.

To improve the robustness of learning-based methods, techniques like data

augmentation [1] and adversarial learning [2, 3, 4] have become popular. Typically,

data augmentation generates new data by applying changes with a specific pattern

to the original data, e.g., cropping, rotating, translating, and flipping, are standard

techniques for augmenting image data for classic computer vision tasks like image

classification. It can fortify machine learning systems against these degradations

by simulating them before or during training. Adversarial learning usually applies

changes to original data during training and selects the worst variant for backprop-

gation, resulting in the most remarkable improvement.

Researchers have investigated how to improve the robustness of learning algo-

rithms in the presence of varying image quality degradations [5, 6, 7, 8, 9, 10, 11, 12,

13]. However, an algorithmic tool for analyzing the sensitivity of real-world neural
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network performance on the properties of (and corruptions to) training images is

lacking. More importantly, a mechanism to leverage such a sensitivity analysis for

improving learning outcomes needs to be developed.

1.2.2 Other Modalities’ Data for Auxiliary Modality Learning in Au-

tonomous Driving

Due to many different scenarios arising from driving, auxiliary information is

often considered in addition to single sensor information to improve learning of the

autonomous vehicles. Many existing autonomous driving solutions depend on multi-

modality solutions, where input data originates from variety of sensors, e.g., RGB

camera, Lidar, radar, etc. RGB cameras have become the main sensor choice because

of its abundant availability and low cost. While other sensors like Lidar do provide

useful information, e.g. depth that can help better understand the environment,

their cost is typically quite high. Previous works [14, 15, 16] have attempted to

exploit depth information in addition to the RGB channels. The unified learning

framework that involves multiple modalities of data as input is referred as multi-

modality learning. However, it is computationally expensive. Also, the framework

that requires the auxiliary sensor/data for input at test time has been limited in its

application. For instance, it is expensive to deploy Lidar on commodity self-driving

cars, but it’s reasonable to equip a few developer’s cars with Lidar for solely training

purposes.

Since using all modalities during inference in specific applications is difficult,

6



some works consider employing multiple modalities during training but fewer modal-

ities during evaluation and inferencing. However, this form of learning tasks, i.e.,

”test with fewer modalities than during training”, is not standardized yet. For ex-

ample, there is no formal term or definition. There have been concepts, such as

”learning with side information” [17], ”learning with privileged information” [18],

”learning with auxiliary modality” [19], ”learning with partial-modalities” [20], and

”modality distillation” [21], etc. We formalize these learning tasks as Auxiliary

Modality Learning (AML). Furthermore, AML can be achieved in different variants.

For example, the amount of auxiliary information may be limited in some cases.

Or, it may require expensive expert-labeled data, or need sensing data from a low-

frequency sensor that makes the network harder to learn. A systematic analysis is

needed AML.

1.2.3 Other Domains’ Data for Transfer Learning in Autonomous

Driving

Autonomous driving (AD) has the potential to create safer and more efficient

transportation systems by reducing congestion and accidents, due to human errors.

Central to AD is a complex task of autonomous steering that requires the choreog-

raphy of many components to operate. One essential component is the perception-

control module that maps sensor data to control commands (e.g., setting steering

angles). With recent advances in machine learning, especially deep learning [22],

the perception-control module is increasingly enabled by learning-based algorithms,
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which leverage multimodal input from sensors including cameras, Lidar, and radar to

navigate autonomous vehicles (AVs). Despite each type of sensor offering its unique

strength in detecting the environment, the camera is one of the most universal and

accessible sensors due to its rich visual information and affordable cost.

As a result, many real-world images are collected for training AVs. Example

datasets include KITTI [23], NVIDIA [24], Waymo Open Dataset [25], CityScapes [26],

and BDD100K [27]. Apart from real-world images, simulators and virtual images

are also heavily used in training AVs [28]. Example simulation platforms include

CARLA [29], the Udacity Self-Driving Car Simulator [30], and NVIDIA Drive Con-

stellation [31]. Many scenarios that are crucial for testing autonomous driving, but

difficult to capture in the real world, can be modeled in the virtual world at ease,

e.g., accidents. While virtual images are believed to supplement real images, the

domain gap between the two can obstruct the conjecture. Works have attempted to

bridge this domain gap [32, 33, 34, 35, 36, 37]. Furthermore, the recent advancement

of image style transfer techniques [38] such as CycleGAN [39] and MUNIT [40] chal-

lenges the domain gap and has raised new conjectures on whether realistic-looking

images converted from virtual images can be used for learning [41]. Finally, the data

from one real scenario also offer benefits to train a model in another real scenario,

because of the common information shared between the two scenarios, e.g., drive

along the road.
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1.3 Policy for Learning-based Autonomous Driving

Policy, as the control command generator, plays a crucial role in autonomous

driving. A good policy is able to navigate the autonomous vehicle to the goal

efficiently and safely without collision. Reinforcement learning and inverse rein-

forcement learning are two of the most common techniques to learn policy.

1.3.1 Inverse Reinforcement Learning in Autonomous Driving

Reinforcement learning can take advantage of task domain knowledge by de-

signing reasonable reward functions, but it can be challenging to design a perfect

reward function when we only have demonstrations from other experts. It enables

the autonomous vehicle to learn policy by exploring the environment (typically in

a simulator) and receiving different rewards in different states, and encourages the

model to maximize the reward so that the policy will behave as desired. In con-

trast, inverse reinforcement learning is able to use expert demonstrations instead of

designing a reward function. As an effective technique for imitation learning, IRL

involves two steps: 1) learning a reward function from expert demonstrations and 2)

using the acquired reward function for RL to learn a control policy [42]. To provide

some examples, Sharifzadeh et al. [43] apply Deep Q-Networks to extract a reward

function in a large state space. You et al. [44] use deep neural networks to approx-

imate the latent reward function of the expert and then apply deep Q-learning to

obtain the control policy. However, it is challenging to take advantage of domain

knowledges or prior information into account. Also, it is time-consuming because
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multiple rounds of reinforcement learning are involved. Recently, curriculum learn-

ing for RL has also gained much attention [45, 46]. Some well-known works such

as AlphaGo [47] use curricula implicitly to guide training.

1.4 Outcome

In this section, thesis statement is firstly proposed, followed by main results

to support each component of the thesis statement.

1.4.1 Thesis Statement

Learning-based autonomous driving can be enhanced in robustness, efficiency,

and generalization through adversarial data augmentation and training, auxiliary

modality learning, and transfer learning, w.r.t. data processing in the front-end and

improved policy learning using inverse reinforcement learning in the back-end.

To support this thesis statement, I present five novel algorithms:

1. A gradient-free adversarial training scheme for enhancing the robustness of au-

tonomous driving against various combinations of image degradations (Chap-

ter 2);

2. An auxiliary modality learning algorithm to achieve cross modality distillation

(Chapter 3);

3. A framework that distills modality knowledge in a partially available auxiliary

modality setting (Chapter 4);
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4. A framework to solve domain-agnostic learning with domain augmentation,

feature decomposition, and curriculum learning (Chapter 5);

5. An efficient IRL framework consisting of hybrid-weight trust-region optimiza-

tion and curriculum learning (Chapter 6).

1.4.2 Main Results

This dissertation presents five methods to support each component of the

thesis statement. I list the main results obtained within these methods below:

1.4.2.1 Gradient-Free Adversarial Training Against Image Corrup-

tion for Learning-based Steering

In Chapter 2, I introduce a simple yet effective framework for improving the

robustness of learning algorithms against image corruptions for autonomous driving.

These corruptions can occur due to both internal (e.g., sensor noises and hardware

abnormalities) and external factors (e.g., lighting, weather, visibility, and other

environmental effects). Using sensitivity analysis with FID-based parameterization,

I propose a novel algorithm exploiting basis perturbations to improve the overall

performance of autonomous steering and other image processing tasks.

The key contributions of this work include:

• A gradient-free adversarial training scheme for enhancing the robustness of

autonomous driving against various combinations of image degradations;
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• A systematic method for measuring the severity of image degradation and

predicting the impact of such degradation on model performance with Fréchet

Inception Distance (FID).

1.4.2.2 Auxiliary Modality Learning with Generalized Curriculum

Distillation

In Chapter 3, I propose a new AML method using generalized curriculum

distillation to enable more effective curriculum learning. This method includes a new

supermodel condition that allows the teacher network to be aware of the student’s

status in a curriculum way, leading to a better distillation.

The key contributions of this work include:

• Systematically list and classify different types of auxiliary modalities and ar-

chitectures for AML, and analyze the performance behavior of different types

of auxiliary modalities and architectures for AML across different datasets,

backbones and tasks;

• Propose a novel AMLmethod, “Smart Auxiliary Modality Distillation (SAMD)”,

that automatically (1) chooses the best auxiliary modality for the main distil-

lation process, and (2) performs knowledge distillation under a special “super-

model condition” to enable the teacher network to be aware of the student’s

status;

• Analyze and explain the reasons for the effectiveness of AML from both op-

timization perspective and data perspective, providing theoretical support to
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the SAMD method.

1.4.2.3 Small-shot Multi-modal Distillation for Vision-based Autonomous

Steering

In Chapter 4, I propose a novel learning framework for autonomous systems

that uses a small amount of “auxiliary information” that complements the learn-

ing of the main modality, called “small-shot auxiliary modality distillation network

(AMD-S-Net)”. The AMD-S-Net contains a two-stream framework design that can

fully extract information from different types of data (i.e., paired/unpaired multi-

modality data) to distill knowledge more effectively.

The key contributions include:

• a novel framework that distill knowledge from multi-modality model to single-

modality model in a partially available auxiliary modality setting, which con-

tains a specific framework design to fully distill the information, i.e., consis-

tency supervision for the pairwise data and distribution divergence supervision

for unpaired data;

• a novel knowledge distillation training paradigm that enables teachers to ex-

plore and learn student’s local loss landscape information in a higher dimen-

sion, thus making it feasible to help student get out of local minimal and boost

performance, based on a special “reset operation” that allows the teacher to

be aware of the exact student states.
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1.4.2.4 Task-Driven Domain-Agnostic Learning for Autonomous Steer-

ing

In Chapter 5, I propose a novel framework to solve domain-agnostic learn-

ing with domain augmentation, feature decomposition, and curriculum learning.

Specifically, we use (1) domain-specific adapters and shared modules to disentan-

gle domain-specific information and task-specific information; (2) style-transferred

branch to help extract domain-specific information; (3) gradually increased ratio

of target domain data in each epoch for better knowledge transfer from source to

target domain.

The key contributions of this work include:

• A novel framework to solve domain-agnostic learning in the end-to-end steering

task, with specific design with domain augmentation, feature decomposition,

and curriculum learning;

• Analysis of how different factors influence the end-to-end steering task, includ-

ing training data (image style, data amount from source and target domain),

network architecture (Batch Norm layers, Adapters), and training paradigm

(finetuning, partially finetuning, reinitialization).
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1.4.2.5 Inverse Reinforcement Learning with Hybrid-weight Trust-

region Optimization and Curriculum Learning for Autonomous

Maneuvering

In Chapter 6, I propose a novel framework of inverse reinforcement learn-

ing with hybrid-weight trust-region optimization and curriculum learning for au-

tonomous maneuvering. This method can incorporate both expert demonstration

(from real driving) and domain knowledge (hard constraints such as collision avoid-

ance, goal reaching, etc. encoded in reward functions) to learn an effective control

policy. The hybrid-weight trust-region optimization is used to determine the diffi-

culty of the task curriculum for fast incremental curriculum learning and improve

the efficiency of inverse reinforcement learning by hybrid weight tuning of different

sets of hyperparameters.

The key contributions of this work include:

• Hybrid-weight trust-region optimization improves upon IRL [42] by imposing

non-uniform priors on task-critical features, e.g., collision avoidance and goal-

seeking, incorporating both expert demonstration and domain knowledge to

automate weight tuning effectively;

• Curriculum learning retains important lessons through increasingly difficult

RL to task learning, thus improving overall training efficiency and perfor-

mance;

• Curriculum learning also utilizes the hybrid-weight trust-region optimization
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to assess curriculum difficulty;

• Our framework is further compatible with domain-dependent techniques, such

as learn-from-accident [48], which generate safe trajectories, further boosting

the overall performance in autonomous driving.

1.5 Outline of Dissertation

The subsequent chapters of this dissertation are organized as follows.

Chapter 2 introduces a simple yet effective framework for improving the ro-

bustness of learning algorithms against image corruptions for autonomous driving.

Chapter 3 presents a new AML method using generalized curriculum distilla-

tion to enable more effective curriculum learning.

Chapter 4 demonstrates a novel learning framework for autonomous systems

that uses a small amount of “auxiliary information” that complements the learning of

the main modality, called “small-shot auxiliary modality distillation network (AMD-

S-Net)”.

Chapter 5 presents a novel framework to solve domain-agnostic learning with

domain augmentation, feature decomposition, and curriculum learning.

Chapter 6 describes a novel framework of inverse reinforcement learning with

hybrid-weight trust-region optimization and curriculum learning for autonomous

maneuvering.
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Chapter 2: Gradient-Free Adversarial Training Against Image Cor-

ruption for Learning-based Steering

2.1 Introduction

Autonomous driving is a complex task that requires many software and hard-

ware components to operate reliably under highly disparate and often unpredictable

conditions. In this work, we study “learning-based steering” as it contains both

perception and control, both critical components for autonomous driving. While on

the road, vehicles are going to experience day and night, clear and foggy conditions,

sunny and rainy days, as well as bright cityscapes and dark tunnels. All these exter-

nal factors in conjunction with internal factors of the camera (e.g., those associated

with hardware) can lead to quality variations in input data for image-based learning

algorithms. One can harden machine learning systems to these degradations by sim-

ulating them at training time [28]. However, an algorithmic tool for analyzing the

sensitivity of real-world neural network performance on the properties of (and cor-

ruptions to) training images is lacking. More importantly, a mechanism to leverage

such a sensitivity analysis for improving learning outcomes needs to be developed.

In this work, we quantify the influence of image quality on the task of “learning
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to steer,” study how training on degraded and low-quality images can boost ro-

bustness to image corruptions, and provide a systematic approach to improve the

performance of learning algorithms using quantitative analysis.

Image degradations can be simulated by varying attributes such as blur, noise,

distortion, color representations (such as RGB or CMY) hues, saturation, and in-

tensity values (HSV). However, identifying the correct combination of the simu-

lated corruptions to obtain optimal performance on real data is a difficult—if not

impossible—task, as it requires domain transfer and exploring a high dimensional

parameterized space.

We design a systematic method for measuring the severity of image degradation

and predicting the impact of such degradation on model performance. Inspired by the

use of image feature variance in sensitivity analysis [49], we measure the difference

between real-world image distributions and simulated/degraded image distributions

using Fréchet Inception Distance (FID). Our results confirm that FID can help

predict the performance of a model trained using simulated data and deployed in

the real world. Next, we use FID between different simulated datasets as a unified

metric to parameterize the severity of various image degradations due to different

factors.

Borrowing concepts from the adversarial attack literature [2, 3, 4], we build a

scalable training scheme for enhancing the robustness of autonomous driving against

various combinations of image degradations, while increasing the overall accuracy

of the steering task on clean data. Our proposed method constructs a dataset of

adversarially degraded images by applying optimization within the space of possible
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Figure 2.1: Pipeline of our method. Data generation. We generate perturbed datasets

of each factor at multiple levels based on the FID-parameterized sensitivity analysis results.

Training process. First stage: in each iteration, we first augment the training dataset

with “adversarial images” generated by applying an image corruption; we then combine

the base and perturbed datasets to train our model to maximize the overall performance.

A frequency-space branch is added to the backbone when frequency-related perturbations

(e.g., blur, noise) need to be handled. Second stage: in post-learning, the model is fine-

tuned solely on clean data to boost accuracy, while performing validation on both clean

and perturbed data with an early break when overall performance decreases to maintain

the performance on the perturbed data.

degradations during training. As shown in Fig. 2.1, the method begins by training

on a set of real and simulated/degraded images using arbitrary degradation param-

eters. During each training iteration, the parameters are updated to generate a

new degradation set so that the model performance is (approximately) minimized.

The network is then trained on these adversarially degraded images to promote ro-

bustness. A post-training step is applied to further improve the performance on

clean data without weakening robustness. Our proposed algorithm uses our FID-

based parameterization to discretize the search space of degradation parameters and

accelerates the process of finding optimal parameters.

Experiments show that our algorithm improves the performance of “learning
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to steer” up to 97% in mean accuracy over baselines, and especially improves the

performance on datasets contaminated with complex combinations of perturbations

(up to 87%). It additionally boosts the test performance on degradations that are

not seen during training, including simulated snow, fog, and frost (up to 77%). We

also compare our approach with other SOTA techniques (e.g., data augmentation

and adversarial training) on visual processing tasks such as detection and classi-

fication. Our method consistently achieves higher performance. In addition, our

method is easy to implement and can be readily integrated with other frameworks

such as object detection, classification, regression, etc.

Finally, we propose a comprehensive robustness evaluation standard under

four different scenarios: clean data, single-perturbation data, multi-perturbation

data, and previously unseen data. While state-of-the-art studies usually conduct

testing under one or two scenarios (e.g., ImageNet-C [50]), our work tests and verifies

results under four meaningful scenarios. We plan to release code and datasets for

benchmarking “autonomous driving under perturbations” using unseen factors such

as image corruptions in ImageNet-C [50], totaling 480 datasets and 26M images.

2.2 Related Work

The influence of noise and distortion on real images for learning tasks has been

well explored. For example, researchers have examined the impact of optical blur on

convolutional neural networks and present a fine-tuning method for recovering lost

accuracy using blurred images [51]. This fine-tuning method resolves lost accuracy
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when images are distorted instead of blurred [52]. While these fine-tuning meth-

ods are promising, Dodge and Karam [53] find that tuning to one type of image

quality reduction effect would cause poor generalization to other types of effects.

The comparison of image classification between deep neural networks and humans

shows similar performance on good-quality images [54]. However, deep neural net-

works struggle significantly more than humans on low-quality, distorted, and noisy

images. One study shows that adversarial perturbations are more prevalent in the

Y channel in the YCbCr color space of images than the other two channels, while

perturbations in RGB channels are equally distributed [55]. Wu et al. [56] stud-

ies the effect of Instagram filters on learning tasks, and introduces a lightweight

de-stylization module that predicts parameters used for scaling and shifting feature

maps to “undo” the changes incurred by filters.

Researchers have also explored how to improve the robustness of learning algo-

rithms under various image quality degradations. One recent work provides a novel

Bayesian formulation for data augmentation [5]. Cubuk et al. [6] proposes an ap-

proach to automatically search for improved data augmentation policies. Ghosh et

al. [7] analyzes the performance of convolutional neural networks on quality degrada-

tions due to compression loss, noise, blur, and contrast, and introduces a method to

improve the learning outcome. Another work [8] shows that self-supervision tech-

niques can be used to improve model robustness and exceeds the performance of

fully supervised methods. A recent method, AugMix [9] improves model robustness

using data augmentation, where transformation compositions are used to create a

new dataset that is visually and semantically similar to the original dataset. AugMix
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is compared to several other augmentation methods, which comprise Cutout [10],

MixUp [11], and CutMix [12]. Gao et al. [13] proposes a technique to re-purpose

software testing methods to augment the training data of DNNs, with the objective

to improve model robustness. A recent work improves model generalizability by first

augmenting the training dataset with random perturbations, and then minimizing

worst-case loss over the augmented data [57].

Our work differs from these studies in several regards. First, we simulate ad-

versarial conditions of image factors instead of using commonplace image conditions.

Second, we conduct a systematic sensitivity analysis for preparing datasets that are

representative of image degradations from multiple factors at various levels. Third,

our algorithm can work with the discretized parameter space while generalizing well

to the continuous parameter space. Another advantage of our approach is that we

can augment the training dataset without the derivatives of the factor parameters,

which may not exist or are difficult to compute.

2.3 Background and Setup

Task. Our target task is end-to-end steering: given a single image as input

(e.g. captured by a front-facing camera on a self-driving car), output a steering

angle that drives the car safely on the road [58]. A steering angle of 0 represents

the forward direction. We use mean accuracy (MA) to evaluate the task since it

represents overall performance under a variety of measures (See Sec. 2.5).

Datasets. We choose four real-world driving corpuses as our datasets: Audi [59],
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Honda [60], Waymo [25], and SullyChen [24]. The Audi dataset is the most recent

(2020); the Honda dataset has 100+ long-time driving videos; Waymo includes many

environmental conditions such as weather and lightening and is a large dataset (390k

frames for perception); and the SullyChen dataset focuses on the steering task and

has the longest continuous driving image sequence without road branching. The

details of these datasets are provided in Appendix 2.7.3. Other datasets, such as

CIFAR-100, for various computer vision tasks are also used to demonstrate the

generalizability of our technique.

Basis perturbation. We study nine basis perturbations: blur, noise, distor-

tion, three-color (RGB) channels, and hues, saturation, and intensity values (HSV).

Blur, noise, and distortion are among the most commonly used perturbations that

can directly affect image quality. R, G, B, H, S, V channels are chosen because they

are frequently used to represent image color spaces: RGB represent three basic color

values of an image, while HSV represent three common metrics of an image. Other

color spaces such as HSL or YUV have similar properties, hence are excluded.

We use Gaussian blur [61] (parameterized by standard deviation), additive

white Gaussian noise (AWGN) (parameterized by standard deviation), and ra-

dial distortion [62, 63] (with radial distortion parameters k1, k2). For representing

channel-level perturbations, we use a linear model: denote the value range of one

channel C as [aC , bC ], in the darker direction, we set v′C = αaC +(1−α)vC , while in

the lighter direction, we set v′C = αbC+(1−α)vC , where α is the severity parameter,

vC is the pixel value on clean image and v′C is the perturbed pixel value. The default

values are aC = 0 and bC = 255, with two exceptions. We set aV = 10 to exclude a
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Figure 2.2: Example images of quality degradation. Left: Five levels of quality reduction

using the blur, noise, and distortion effects (three levels are shown). Right: The original

images are shown in the middle row. The top row shows examples in the lighter direction

per channel for R, G, B, H, S, V, while the bottom row shows examples in the darker

direction per channel.

complete dark image on V channel, and bH = 179 according to H channel definition.

See examples in Fig. 2.2 and detailed description in Appendix 2.7.2.

Test scenarios. While other studies usually test in only one or two scenar-

ios [50], we test the performance of all methods in four scenarios with increasing

complexity. Scenario 1: Base dataset. Test on the base dataset. Scenario 2: Single

perturbation. Test on the datasets with perturbations, but each dataset only expe-

riences one level of one perturbation (within blur, noise, distortion, R, G, ,B, H, S,

V). Scenario 3: Combined perturbations. Test on the datasets with combinations of

various perturbations at different levels, and each dataset has different levels of all

perturbations. Scenario 4: Unseen perturbation. Test on the datasets with unseen

perturbations at different levels. Specifically, we use “motion blur”, “zoom blur”,

“pixelate”, “jpeg compression”, “snow”, “frost”, “fog” from ImageNet-C [50]. We

apply the same perturbations/levels to all images within one dataset. (See details

in Appendix 2.7.1).
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2.4 Improving Robustness of Learning-based Steering

In this section, we introduce our gradient-free adversarial training method to

improve the robustness of learning-based steering using Sensitivity Analysis. Our

method is among the first to treat complex unforeseen perturbations as a functional

combination of multiple simple “basis perturbations”. As a result, the robustness

of a model to several individual perturbations can lead to robustness against com-

bined or unseen perturbations. In addition, via discretized sensitivity analysis, our

approach is the first to use FID to enable cross-factor performance comparison, i.e.,

making task sensitivity w.r.t different perturbations comparable. Meanwhile, sen-

sitivity analysis helps minimize the discretization level number, thus speed up the

adversarial training process.

2.4.1 Basis Perturbations

There are various types of image corruptions due to different environmental

effects or sensor variations, and often these corruptions can be approximated using

a combination of basis perturbations, e.g., snow/frost may be simulated using water

drop corruptions, Gaussian blur, and image whitening. Inspired by the concept

of basis function, we explore the possibility of training a model on a few “basis

perturbations” and the resulting model is robust against complex perturbations.

Our basis perturbation contains “basis” representations of the color space in

RGB and of image metrics in HSV, which span color and intensity/brightness spaces,

respectively. Blur and noise are designed to produce low and high frequency corrup-
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tions, while distortion captures the 2D positional transformation that may appear

from small vibrations and motions of a camera. See comparison of different basis

perturbations in Appendix. 2.7.2. We also introduce two metrics to evaluate how

well a training method can enable a model to perform on combined perturbations

and previously unseen perturbations when learning only on single perturbations.

Using basis perturbations to represent image corruption, we then design an algo-

rithm to train neural networks to cope with quality-degraded images as input for

autonomous driving.

2.4.2 Sensitivity Analysis

We use an adversarial training process in which we optimize corruption pa-

rameters to maximally disrupt model performance. If this was done using gradient

optimization, it would require us to differentiate through the corruption operator to

update the parameters describing the corruption. Not all gradients of basis pertur-

bations can be easily derived, and corruptions such as distortions may have param-

eters with non-differentiable effects. Rather than rely on gradient optimization, we

introduce an simple, discretized gradient-free method. We use Sensitivity Analysis

(SA) to evenly discretize the space of parameters; we choose a discrete subset of

values for each parameter that are equally ”far apart” in terms of their impacts on

the classifier. This is achieved using the Fréchet Inception Distance (FID) [64] to

perform SA across a range of corruption types.
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SA is commonly used to understand how the uncertainty of the model output

(numeric or otherwise) can be apportioned to different sources of uncertainty of the

model input [49, 65]. Here, we use SA to study how distortions to model input

(blur, noise, distortion, and RGB/HSV brightness shifts) can be apportioned to

model output. We also use SA to quantify the level of degradation caused by an

corruption, and prepare datasets that are representative of image qualities at various

degradation levels.

We adopt the Fréchet Inception Distance (FID) [64] as a unified metric for our

SA (The reasons for adopting FID and a quantitative comparison between FID and

other metrics such as L2 norm can be found in Appendix 2.7.4). In addition, we

focus on the changes in model performance according to the changes in input and

define the sensitivity as the first-order derivative of MA w.r.t FID:

sensitivity =
∂MA∗(R⊕ F (p))

∂FID(R,R⊕ F (p))
,

whereMA∗(D) is the MA test result on datasetD with the model trained on the base

dataset R; FID(A,B) is the FID between dataset A and dataset B (where FID is

calculated in its standard formulation using a pretrained InceptionV3 network [64]);

F (p) is the perturbation with parameter p (e.g., the standard deviation of the

Gaussian kernel), and D⊕F denotes the dataset obtained by applying perturbation

F to D.

Starting from empirically-selected parameters of each factor, we generate per-

turbed datasets and compute their corresponding MA using the trained model on
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Figure 2.3: The relation between FID and MA differences. GD/GL denotes G channel
in darker/lighter direction, and VD/VL denotes V channel in darker/lighter direction,
respectively. Sensitivity is represented by the first-order derivative of the curve. Note
that the values in the near-zero FID range (i.e., < 50) are more commonly found in real-
world scenarios.

R (see numeric results in Appendix 2.7.9). We then map the MAs and their cor-

responding parameter values into the FID space. By leveraging this new MA-FID

space, we aim to minimize the number of sampled parameters for each perturbation

for efficient training (see Sec 2.4.3), while preserving similar parameter curves. At

a high level, we sample points more densely in the value range that has high sensi-

tivity (closer FID values between sample points), while sampling points sparsely in

the value range that has low sensitivity (See specific equation in Appendix. 2.7.4).

Examples of the resulting images are shown in Fig. 2.2 (more in Appendix 2.7.1).

Detailed descriptions of the final perturbed datasets are provided in Appendix 2.7.2.

The final MA differences in the FID space are visualized in Fig. 2.3 (for blur,

noise, distortion, and G and V channels; see the entire figure in Appendix 2.7.4).

We first observe that learning-based steering is more sensitive to the channel-level

perturbations (i.e., R, G, B, H, S, V) than the image-level perturbations (i.e., blur,

noise, distortion). Second, the task is least sensitive to blur and noise but most
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sensitive to the V channel (the intensity value). Third, for the same color channel,

darker and lighter levels appear to have different MAs at the same FID value.

Compared to other “learning to steer” studies [66, 67], our method is the first

to transfer perturbations from multiple parameter spaces into one space to enable

cross-factor comparison.

2.4.3 Gradient-Free Adversarial Training

Our training process consists of two stages. In the first stage, we use iterative

min-max training. At each iteration, we first choose one dataset from the datasets

(with different quality degradations) of each basis perturbation (i.e., R, G, B, H, S,

V, blur, noise, and distortion) to minimize validation MA, then we merge the nine

chosen datasets with the base dataset to train our model while maximizing MA.

The first stage stops when a pre-specified number of iterations is reached or the MA

loss is below a certain threshold. Our method resembles conventional adversarial

training: we improve model robustness by training the model to maximize accuracy

using the base dataset plus the perturbed datasets with the minimum accuracy. The

loss function is the following:

minimize
θ

minimize
p

MA(θ, Up),

where p represents the union of all parameter levels of all basis perturbations; θ

denotes the model parameters; and Up is the training dataset. Furthermore, we

add a branch in the frequency space to the backbone network to address frequency-
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Algorithm 1: Improve robustness of learning-based steering

Result: a trained model parameterized by θ
Pre-processing:
Conduct sensitivity analysis and discretize the parameters of n factors into their
corresponding li=1,...,n levels (Sec. 2.4.2)
Generate new datasets for each factor with the discretized values from the base
dataset R (Sec. 2.3 Basis Perturbation): {Di,j}i=1,2,..,n,j=1,2,..li

Initialization:
Initialize t = 0, the maximum number of iterations T , the number of epochs k1
and k2, and model parameters θ(0)

First stage:
while t ≤ T do
For each factor, select Di,pi that can minimize the validation MA, where pi =
argminj MA(θ(t), Di,j)
Merge all selected datasets Up = (

⋃n
i=1Di,pi)

⋃
R

Train the network for k1 epochs and update θ(t+1) = train(θ(t), Up, k1) to maxi-
mize MA(θ(t+1), Up)
Break if stop conditions are met; otherwise set t = t+ 1

Second stage:
Train the network with θ(final) = train(θ(T ), R, k2) and validate the network on
Up (for k2 epochs or early break if conditions are met)
=0

related perturbations such as blur and noise (See details in Appendix. 2.7.5). The

effectiveness is demonstrated in our ablation study (see Table 2.5).

The second stage is to boost “clean” accuracy, where the model is fine-tuned

solely on the base dataset. To maintain the performance on perturbed datasets, we

terminate this stage if the overall validation accuracy (on both clean and perturbed

datasets) start to decrease; otherwise, we continue this stage until it reaches the

maximum number of iterations or the MA loss decreases to our expected threshold.

See Algorithm 2.4.3. (Detailed explanations and the ablation study of the second

stage are provided in Appendix 2.7.6.)

Our method offers several advantages: 1) the training data is augmented with-
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out re-train the model, thus improving efficiency; 2) it provides the flexibility to

generate datasets at various discretized levels of the factor parameters; 3) it does

not require the derivatives of factor parameters; other methods that optimize fac-

tor parameters in the continuous space require computing derivatives, which can

be difficult (e.g., for distortion); 4) it generalizes to not only unseen parameters of

individual factors but also the composition of unseen parameters of multiple factors;

and 5) it is easy to implement and can be readily integrated with other frameworks

such as object detection, classification, and regression.

2.5 Experiments and Results

Setups. All experiments are conducted using one Intel(R) Xeon(TM) W-2123

CPU, two Nvidia GTX 1080 GPUs, and 32G RAM. We use the Adam optimizer [68]

with learning rate 0.0001 and batch size 128 for training. The maximum number of

epochs is 2,000. The dataset setup is explained in Sec. 2.3. We use the maximumMA

improvement (MMAI), the average MA improvement (AMAI), and mean Corruption

Errors (mCE) [50] as the evaluation metrics.

Backbone. We choose the model described in [58] as the main backbone. We

select this model as it has been used to steer an autonomous vehicle successfully

in both real world [58] and virtual world [48]. In addition, six other networks are

tested to show the generalizability of our method.

Evaluation metrics. We define the accuracy w.r.t a threshold τ as accτ =

count(|vpredicted− vactual| < τ)/n, where n denotes the number of test cases; vpredicted
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and vactual indicate the predicted and ground-truth value, respectively. We compute

mean accuracy (MA) as
∑

τ accτ∈T /|T |, where T = {1.5, 3.0, 7.5, 15, 30, 75} contains

empirically selected thresholds of steering angles. Lastly, we use the maximum

MA improvement (denoted as MMAI), the average MA improvement (denoted as

AMAI), and mean Corruption Errors (mCE) [50] as the evaluation metrics.

Scenarios

Clean Single Perturbation Combined Perturbation Unseen Perturbation

Method AMAI↑ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓

Data Augmentation -0.44 46.88 19.97 51.34 36.1 11.97 75.84 27.5 7.92 81.51
Adversarial Training -0.65 30.06 10.61 74.42 17.89 6.99 86.82 16.9 8.17 89.91

MaxUp -7.79 38.30 12.83 66.56 26.94 16.01 72.60 23.43 5.54 81.75
AugMix -5.23 40.27 15.01 67.49 26.81 15.45 68.38 28.70 8.85 87.79

Ours w/o FS 0.93 48.57 20.74 49.47 33.24 17.74 63.81 29.32 9.06 76.20
Ours 2.12 49.97 23.92 37.30 33.15 22.12 54.38 33.16 13.81 61.61

Table 2.1: Performance of different methods against the baseline [58] on SullyChen dataset
with different perturbations. We compare the basic data augmentation method (sim-
ply combine all perturbed datasets into training), an adversarial training method [69],
MaxUp [57], and AugMix [9]. Overall, our method outperforms all other methods (i.e.,
highest MA improvements and lowest error in mCEs) in practically all scenarios. Notice
ours w/o FS (without frequency space) also outperforms other techniques.

Comparison with different methods. We compare our method with four

other methods: an adversarial training method [69], a basic data augmentation

method, MaxUp [57], and AugMix [9], to see the performance improvement over

the baseline method [58]. For the basic data augmentation method, we simply

merge all perturbed datasets for model training.

From Table 2.5, we observe that our method outperforms other methods under

all metrics in all scenarios: not only on the clean dataset but also on perturbed

datasets. Notably, our algorithm improves the performance of “learning to steer”

up to 50% in MMAI, while reducing mCE by 60% over the baseline (Scenario 2). Our

method also improves the task performance using the combined datasets (Scenario
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Scenarios

Clean Single Perturbation Combined Perturbation Unseen Perturbation

Method AMAI↑ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓

AugMix+Nvidia -0.12 40.64 10.94 76.48 25.97 16.79 64.41 22.23 5.99 84.95
Ours+Nvidia 2.48 43.51 13.51 67.78 28.13 17.98 61.12 16.93 6.70 80.92

AugMix+Comma.ai -5.25 55.59 9.56 86.31 31.32 0.77 106.1 37.91 7.97 89.99
Ours+Comma.ai 0.36 62.07 15.68 70.84 38.01 0.74 108.32 42.54 12.15 77.08

AugMix+ResNet152 -4.23 20.84 1.45 96.24 12.21 6.71 80.19 15.40 2.87 97.62
Ours+ResNet152 -0.96 24.29 5.19 79.76 16.05 8.02 75.16 16.58 5.33 85.68

Table 2.2: Performance improvement of different backbones against the baseline perfor-

mance using the Honda dataset. Our method outperforms AugMix in most cases. Notice

that the methods with ResNet152 do not improve as much as the first two networks (since

the ResNet152 baseline already has high performance).

Scenarios

Clean Single Perturbation Combined Perturbation Unseen Perturbation

Method AMAI↑ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓

AugMix on SullyChen -5.23 40.27 15.01 67.49 26.81 15.45 68.38 28.70 8.85 87.79
Ours on SullyChen 1.46 49.76 22.87 40.84 33.15 22.12 54.38 33.87 13.51 62.50

AugMix on Audi -8.24 81.89 32.22 55.27 75.49 50.23 41.98 73.06 27.39 77.51
Ours on Audi 5.98 97.57 48.50 10.27 87.56 62.38 25.80 77.22 32.71 39.14

AugMix on Honda10k -0.12 40.64 10.94 76.48 25.97 16.79 64.41 22.23 5.99 84.95
Ours on Honda10k 2.48 43.51 13.51 67.78 28.13 17.98 61.12 16.93 6.70 80.92

AugMix on Honda100k -11.41 63.85 14.08 70.64 68.95 47.69 40.12 61.68 16.32 88.36
Ours on Honda100k -2.55 67.35 19.88 53.26 65.10 48.60 36.94 51.90 18.29 72.84

AugMix on Waymo 18.27 45.40 23.30 59.31 22.95 16.92 66.36 57.65 29.10 55.63
Ours on Waymo 20.34 46.85 26.76 52.84 21.34 18.24 64.58 56.98 31.12 53.18

Table 2.3: Performance improvement of different datasets with different sizes against

the baseline using the Nvidia backbone. Our method outperforms AugMix considerably

in most cases.

3) up to 33%. Lastly, when tested on unseen factors (Scenario 4), our algorithm

maintains the best performance by 34% in MMAI, while reducing mCE to 62%.

Compared to AugMix [9], our adversarial approach can select the most chal-

lenging datasets for training, thus improving model robustness. MaxUp [57] selects

only the worst case among all augmentation data, which may lead to the loss of

data diversity. In contrast, our method selects the worst cases in all perturba-

tion types (i.e., one dataset per factor), thus improving generalizability. Compared

to [69], which performs the adversarial process in feature space by perturbing fea-
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ture statistics, our method is able to utilize vast prior information generated by

sensitivity analysis to reduce the search space. Lastly, compared to the basic data

augmentation method, which uses all generated data in training, our method selects

the most useful data for training, and thus improves computational efficiency while

minimizing data generation.

Comparison with different backbones. We test three backbones: Nvidia

network [58], Comma.ai network [70], and ResNet152 [71], on the Honda dataset.

The results shown in Table 2.2 indicate that our method outperforms AugMix in

most cases. In general, our method achieves better performance on shallow networks

than deep networks. But even on very deep networks such as ResNet152, our method

achieves more than 5% improvement in all cases, except Scenario 1.

Comparison on different datasets. To demonstrate that our method does

not overfit a particular dataset, we experiment four independent datasets: Audi [59],

Honda [60], SullyChen [24], andWaymo [25]. We use the Nvidia network as the back-

bone for these experiments. Table 2.3 shows that our method achieves consistently

better performance across all four datasets. Furthermore, our method obtains up

to 97%, 87%, 77% accuracy improvement on the single, combined, unseen pertur-

bations, while achieving 90%, 74%, 61% relative error reduction in some cases,

respectively.

Comparison on efficiency. To analyze the efficiency of our method, we

visualize the relationship between training time vs. robustness in Fig. 2.4, using the

Nvidia backbone [58] and SullyChen dataset [24]. The x-axis is training time (in

seconds) and the y-axis represents the overall robustness, i.e., the average accuracy
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Standard Cutout Mixup CutMix AutoAugment* Adv Training AUGMIX Ours

AllConvNet 56.4 56.8 53.4 56.0 55.1 56.0 42.7 25.6
DenseNet 59.3 59.6 55.4 59.2 53.9 55.2 39.6 26.3

WideResNet 53.3 53.5 50.4 52.9 49.6 55.1 35.9 20.5
ResNeXt 53.4 54.6 51.4 54.1 51.3 54.4 34.9 15.4

Mean 55.6 56.1 52.6 55.5 52.5 55.2 38.3 22.0

Table 2.4: Average classification error (in %) across several architectures. Our method is

able to reduce mean corruption errors than the previous SOTA methods by 16.3%-34.1%

on CIFAR-100-C data.

of the 4 test scenarios (clean, single, combined, and unseen perturbations). Our

method outperforms other methods with higher accuracy and efficiency, e.g., after

1/10 the training time (2,500 sec), our performance is already better than others’

final performance (with 25,000 sec of training time). Our method is more efficient

than others due to discretization of the augmentation space and selection of the

most effective augmentation data during the sensitivity analysis. Furthermore, we

select the hardest data during training to enable the system to learn more efficiently.

Notice that although the frequency space increases the training time per epoch (> 2x

longer, mainly in the Fast Fourier Transform process), it can help to obtain better

performance after 7,000 sec even with the same amount of training time, compared

with our approach without the frequency-space method.

Performance on other image processing tasks. To show the general-

izability of our method, we test it on classification using CIFAR-100. For a fair

comparison, we use the same setting as of AugMix (i.e., same perturbations, train-

ing and testing data, backbone, and code). As shown in Table 2.4, our method

consistently outperforms all backbones, reducing 16.3% to 34.1% in mean errors.

The data for other methods come from the AugMix paper [9]. We also test our
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Figure 2.4: Efficiency comparison between our method and other SOTA methods
with the Nvidia Network [58] on the SullyChen dataset [24]. The x-axis is training
time (in seconds), while the y-axis displays overall robustness, i.e., the average
accuracy of the 4 test scenarios (clean, single perturbation, combined perturbation
and unseen perturbation). Our method outperforms other methods with higher
accuracy and better efficiency. For example, after 1/10 the training time (2500 sec),
our performance is already better than others’ final performance (after 25,000 sec
of training).

method on detection in driving. Specifically, we use the Audi dataset [59] and the

Yolov4 network [72] as base settings, and implement ours based on Yolov4. The re-

sult shows that our algorithm improves robustness in most scenarios (about 3%-5%

mAP on average). See Appendix 2.7.7.

Decoupling Ratio and Generalization Ratio. We propose two new met-

rics to evaluate how well a training method can allow a model to perform on com-

bined perturbations and unseen perturbations respectively, while only learning on

single perturbations one at a time. (Decoupling Ratio) Let MA(D1, D2) be the
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mean accuracy (MA) result of a model trained on dataset D1 and test on dataset

D2. Let P ∗
i (D) be the ith (i = 1, ..., n) perturbation taking dataset D as input

and producing a perturbed dataset. Let NP ∗(D) = P ∗
n(P

∗
n−1(...P

∗
1 (D))...) (datasets

with combined/nested perturbations), UP ∗(D) =
⋃n

i=1 P
∗
i (D) (the union of datasets

with single perturbations), Dtr be the training set, and Dte be the test set, then the

decoupling ratio is

rd =
MA(UP ∗(Dtr), NP ∗(Dte))

MA(UP ∗(Dtr), UP ∗(Dte))
.

rd = 1 means when the model is trained using the union of single-perturbation im-

ages, the test performance on combined-perturbation images (not training domain)

can be as good as the test performance on the union of single-perturbation images

(training domain). Note that different models and training methods may influence

the MA function, thus potentially affecting the decoupling ratio.

(Generalization Ratio) Keeping the definitions ofMA(D1, D2), P
∗
i (D), Dtr,

Dte, and UP ∗(D) as of Decoupling Ratio, let Q∗
j(D) be the jth (j = 1, ...,m)

perturbation where P ∗
i ̸= Q∗

j , and UQ∗(D) =
⋃m

j=1Q
∗
j(D) (the union of datasets

with unseen single perturbations), then the generalization ratio is

rg =
MA(UP ∗(Dtr), UQ∗(Dte))

MA(UP ∗(Dtr), UP ∗(Dte))
.

rg = 1 means when the model is trained using the union of single-perturbation

images, the test performance on unseen-perturbation images (not training domain)

can be as good as the test performance on the union of known single-perturbation
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images (training domain). Similarly, different models and training methods may

influence the MA function, thus potentially affecting the generalization ratio.

Tested on our dataset (UP ∗(Dtr) is the training set with our basis perturba-

tions, NP ∗(Dte) is the data in Scenario 3, and UQ∗(Dte) is the data in Scenario 4),

our method can achieve a high decoupling ratio rd = 0.7463
0.8836

= 0.84 and a high gen-

eralization ratio rd = 0.8291
0.8836

= 0.94. We exclude these two ratios for other methods

because they did not trained on only single perturbations.

Effectiveness visualization. Using the salience map on several combined

samples in Fig. 2.8 shown in Appendix 2.7.8, we demonstrate that our method

can help the network to focus on important areas (e.g., the road in front) instead of

random areas on perturbed images. We also show t-SNE [73] of feature embeddings

from the baseline and our method in Fig. 2.9 shown in Appendix 2.7.8. As a result,

features from our method are more uniformly distributed, indicating the reduction

of the domain gaps created by the perturbations, thus improving robustness.

Benchmarking datasets. We plan to release our perturbed datasets for

benchmarking, which will contain augmented datasets from Audi [59], Honda [60],

Waymo [25], and SullyChen dataset [24]. Each will include a base dataset and

datasets with five levels of perturbation in blur, noise, and distortion, ten levels of

variations in the channels R, G, B, H, S, V, multiple combined perturbations over

all nine factors using our implementation, and five levels of each unseen simulated

factor, including snow, fog, frost, motion blur, zoom blur, pixelate, and jpeg com-

pression using ImageNet-C. In total, there are 480 datasets and about 26M images.

The ground-truth steering angles (or angular velocity of the vehicle) for all images
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will also be provided for validation, along with the code to generate the perturbed

datasets. The parameters for data generation can be found in Appendix 2.7.2.

2.6 Conclusion and Future Work

In this chapter, we first analyze the influence of different image-quality at-

tributes on the performance of the task “learning to steer”. We study nine image

attributes and find that image degradations due to perturbation on these 9 attributes

can impact task performance at various degrees. By using Fréchet Inception Dis-

tance (FID) as a unified metric, we conduct sensitivity analysis in the MA-FID

space. Leveraging the sensitivity analysis results, we propose an effective and effi-

cient training method to improve the generalization of learning-based steering under

various image perturbations. Our model not only improves the task performance on

the base dataset, but also achieves significant performance improvement on datasets

with a mixture of perturbations (up to 87%), as well as unseen adversarial examples

including snow, fog, and frost (up to 77%).

Our method can be easily extended and applied beyond the set of factors and

the learning algorithms analyzed in this study. It can also generalize to analyzing

any arbitrarily high number of image/input factors, other learning algorithms, and

multimodal sensor data. Lastly, other autonomous systems where the perception-

to-control functionality plays a key role can possibly benefit from our technique as

well. We will release the generated datasets for benchmarking the robustness study

of learning algorithms for autonomous driving, as well as the code. Our method cur-
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rently uses discretization to achieve efficient training, but further optimization for

our implementation is possible. Our framework is generalizable to other image fac-

tors, learning algorithms, multimodal sensor data, and other perception-to-control

tasks.
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2.7 Appendix

2.7.1 Dataset Samples

We show different kinds of perturbations in our benchmarks in Fig.2.5. Specif-

ically, our benchmarks include 9 basic types of perturbations, including Gaussian

blur, Gaussian noise, radial distortion, and RGB and HSV channels. Another type

of datasets include multiple perturbations, where we create multiple random com-

binations of the basic perturbations. We also include 7 types of previously unseen

perturbations (during training) from ImageNet-C [50], which are snow, fog, frost,

motion blur, zoom blur, pixelate, and jpeg compression. For each type of perturba-

tion, we generate 5 or 10 levels of varying intensity based on sensitivity analysis in

the FID-MA space.

We show more image samples of unseen perturbations in Fig. 2.6.
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Figure 2.5: Sample images of our benchmark. We show our benchmark has 22
different types of perturbations. Also, we have 10 levels for R, G, B, H, S, V (5
levels in darker and 5 levels in lighter shades), and 5 levels for each of the other
types of perturbations.

2.7.2 Perturbed Datasets

We use Gaussian blur [61] (w.r.t standard deviation), additive white Gaussian

noise (AWGN) (w.r.t standard deviation), and radial distortion [63] (w.r.t radial

distortion parameter k1, k2), respectively. For representing channel-level perturba-

tions, we use a linear model: denote the value range of one channel as [a, b], in

the darker direction, we set vnew = αa + (1 − α)v; in the lighter direction, we set

vnew = αb + (1 − α)v. The default values are aC = 0 and bC = 255, where C

represents one channel. To exclude a complete dark image, we set aV = 10 and

bH = 179.

In our sensitivity analysis experiments, we first select 10 samples for each of

41



Figure 2.6: Unseen perturbation examples in our experiments. We use “snow”,
“frost”, “fog” (left to right; first row), and “motion blur”, “zoom blur”, “pixelate”,
“jpeg compression” (left to right; second row) from the corruptions in ImageNet-
C [50].

blur, noise, distortion, channel (R, G, B, H, S, V) darker, and channel lighter, then

reduce to n = 5. We set n = 5 since a smaller number like n = 2 will decrease the

algorithm performance greatly, while a larger number like n = 8 will decrease the

efficiency dramatically.

The final representative datasets from the sensitivity analysis and used for

improving the generalization of the learning task are introduced in the following.

• R: the base dataset, Audi [59], Honda [60], or SullyChen [24] dataset;

• B1, B2, B3, B4, B5: add Gaussian blur to R with standard deviation σ = 1.4,

σ = 2.9, σ = 5.9, σ = 10.4, σ = 16.4, which are equivalent to using the kernel

(7, 7), (17, 17), (37, 37), (67, 67), (107, 107), respectively;

• N1, N2, N3, N4, N5: add Gaussian noise to R with (µ = 0, σ = 20), (µ =

0, σ = 50), (µ = 0, σ = 100), (µ = 0, σ = 150), (µ = 0, σ = 200), respectively;

• D1, D2, D3, D4, D5: distort R with the radial distortion (k1 = 1, k2 = 1),

(k1 = 10, k2 = 10), (k1 = 50, k2 = 50), (k1 = 200, k2 = 200), (k1 = 500, k2 =
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500), respectively. k1 and k2 are radial distortion parameters, the focal length

is 1000, and the principle point is the center of the image.

• RD1/RL1, RD2/RL2, RD3/RL3, RD4/RL4, RD5/RL5: modify the red chan-

nel of R to darker (D) / lighter (L) values with α = 0.02, α = 0.2, α = 0.5,

α = 0.65, α = 1.

• GD1/GL1, GD2/GL2, GD3/GL3, GD4/GL4, GD5/GL5: modify the green

channel of R to darker (D) / lighter (L) values with α = 0.02, α = 0.2,

α = 0.5, α = 0.65, α = 1.

• For B, H, S, V channels, we use similar naming conventions for notation as for

the red and green channels.

• Comb1: Rα = −0.1180, Gα = 0.4343, Bα = 0.1445, Hα = 0.3040, Sα =

−0.2600, Vα = 0.1816, Blurσ = 3, Noiseσ = 10, Distortk = 17

• Comb2: Rα = 0.0420, Gα = −0.5085, Bα = 0.3695, Hα = −0.0570, Sα =

−0.1978, Vα = −0.4526, Blurσ = 27, Noiseσ = 7, Distortk = 68

• Comb3: Rα = 0.1774, Gα = −0.1150, Bα = 0.1299, Hα = −0.0022, Sα =

−0.2119, Vα = −0.0747, Blurσ = 1, Noiseσ = 6, Distortk = 86

• Comb4: Rα = −0.2599, Gα = −0.0166, Bα = −0.2702, Hα = −0.4273,

Sα = 0.0238, Vα = −0.2321, Blurσ = 5, Noiseσ = 8, Distortk = 8

• Comb5: Rα = −0.2047, Gα = 0.0333, Bα = 0.3342, Hα = −0.4400, Sα =

0.2513, Vα = 0.0013, Blurσ = 35, Noiseσ = 6, Distortk = 1
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• Comb6: Rα = −0.6613, Gα = −0.0191, Bα = 0.3842, Hα = 0.3568, Sα =

0.5522, Vα = 0.0998, Blurσ = 21, Noiseσ = 3, Distortk = 37

The datasets Comb1 through Comb6 are generated by randomly sampling

parameters of each type of perturbation, e.g. blur, noise, distortion, and RGB and

HSV channels, and combining these perturbations together. The parameters listed

here are the parameters for the corresponding examples used in the experiment.

We also show the comparison when choosing different basis perturbations in

Table. 2.5. The final set we used are better than other sets (e.g., V channel only,

or V channel + B channel + Blur) on clean and unseen perturbation scenarios.

Notice we don’t compare them on single perturbation and combined perturbation

scenarios, as the basis perturbations are different.

Scenarios

Clean Unseen Perturbation

Basis Perturbations AMAI↑ MMAI↑ AMAI↑ mCE↓

V channel -3.33 14.61 1.64 98.54
V channel, B channel, Blur -0.83 15.77 2.79 95.64

Ours 2.12 33.16 13.81 61.61

Table 2.5: Performance of different basis perturbations. The set used is better than
other sets on clean and unseen perturbation scenarios. We do not compare them on single
perturbation and combined perturbation scenarios, as the basis perturbations are different.

2.7.3 Dataset details

We use Audi dataset [59], Honda dataset [60], Waymo dataset [25], and Sul-

lyChen dataset [24]. Among the autonomous driving datasets, Audi dataset is one

of the latest dataset (2020), Honda dataset is one of the datasets that have a large
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amount of driving videos (over 100+ videos), Waymo dataset includes many envi-

ronmental conditions such as weather and lightening and is a large dataset (390k

frames for perception), and SullyChen dataset is collected specifically for steering

task and has a relatively long continuous driving image sequence on a road without

branches and has relatively high turning cases.

For Audi dataset [59], we use the ”Gaimersheim” package which contains about

15,000 images with about 30 FPS. For efficiency, we adopt a similar approach as in

[58] by further downsampling the dataset to 15 FPS to reduce similarities between

adjacent frames, keep about 7,500 images and align them with steering labels. For

Honda dataset [60], which contains more than 100 videos, we first select 30 videos

that are most suitable for learning to steer task, then we extract 11,000 images

for Honda10K and 110,000 images for Honda100K from them at 1 FPS, and align

them with the steering labels. For SullyChen dataset [24], images are sampled from

videos at 30 frames per second (FPS). We then downsample the dataset to 5 FPS.

The resulting dataset contains approximately 10,000 images. All of them are then

randomly split into training/validation/test data with an approximate ratio 20:1:2.

For Waymo dataset [25], we use the data from the perception part directly, which

is already split into train/validation/test folders (exclude the domain adaptation

data). The training set is about 163k frames, while the test set is about 33k frames.

The Waymo dataset doesn’t contain steering labels directly, but it contains angular

velocity data from IMU. Instead of predicting steering angle, we predict the angular

velocity w.r.t. the gravity axis. The only modification is we scale up the angular

velocity to meet the range of steering angle, to make it a similar regression problem
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as steering regression.

There are several good autonomous driving datasets, but not all of them

are suitable for the end-to-end learning to steer task. For example, KITTI [74],

Cityscapes [75], OxfordRoboCar [76], Raincouver [77], etc., do not contain steering

angle labels. Some well-known simulators like CARLA [29] can generate synthetic

datasets, but our work focuses on real-world driving using real images. There are

also several other datasets that contain steering angle labels (e.g., nuScenes [78],

Ford AV [79], Canadian Adverse Driving Conditions [80], etc), but we didn’t use

them all because the results on the three datasets we chose can already show the

effectiveness of our method.

2.7.4 FID-MA and L2D-MA

We adopt the Fréchet Inception Distance (FID) [64] as a unified metric for our

sensitivity analysis (instead of using the parameter values of each image factor) for

three reasons. First, given the autonomous driving system is nonlinear, variance-

based measures would be more effective for sensitivity analysis of the network. FID

can better capture different levels of image qualities than the parameter values of

each factor, because the correspondence between the parameter values and image

quality of each factor is not linear. Second, using FID, we can map the parame-

ter spaces of all factors into one space to facilitate the sensitivity analysis. Lastly,

FID serves as a comprehensive metric to evaluate the distance between two image

datasets: image pixels and features, and correlations among images—these mean-
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Figure 2.7: The relation between L2 norm distance and MA difference (top), and
the relation between FID and MA difference (bottom). The FID space can better
capture the difference among various factors affecting image quality better than the
L2D space, i.e., the range of the curves’ first-order derivative is larger in FID space
than in L2D space (see the angle between the two dot lines).

ingful factors to interpret the performance of a learning-based task—are all taken

into consideration.

We first empirically select m parameter values for blur, noise and distortion

perturbation severity, and 2m parameter values for R, G, B, H, S, V (m in the darker

direction and m in the lighter direction), generate perturbed datasets using these

parameter values, and compute their corresponding MA using the trained model

on R (see numeric results in Appendix 2.7.9). At this point, we can obtain the

relationship between MA and parameter values for each factor, but the parameter
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values for each factor are not directly comparable to each other. Notice

for each perturbation, one parameter value can generate one perturbed dataset.

Thus, we can calculate the FID between this new dataset and clean dataset. In this

way, we map the correspondences between the MAs and the parameter values into

the FID space, i.e., FID-MA relationship. By leveraging this new FID-MA space,

we can minimize the number of parameter samples for each perturbation, while

maintaining a similar FID-MA curve between the sampled dataset and the original

one to improve the computational efficiency of training (see Sec 2.4.3). A high-

level guideline is, in the range that has high sensitivity (See definition

in Sec. 2.4.2) there are denser sample points (closer FID values between

sample points), while in the range that has low sensitivity there are

sparser sample points. Specifically, we retain the min and max parameter values,

and pick n−2 other parameter values to maximize the minimum ’MA and normalized

FID difference’ between adjacent sample points (here we assume the FID-MA curve

is approximately monotonic):

minimize
Q={pq1 ,pq2 ,...,pqn}⊆P

q1<q2<...<qn

minimize
i

|MA(pqi+1
)−MA(pqi)|+ α|FID(pqi+1

)− FID(pqi)|

where P = {p1, p2, ..., pm} is them parameter values we chose in the beginning,

Q = {pq1 , pq2 , ..., pqn} ⊆ P is the n parameter values we want to keep, MA(pj) and

FID(pj) are the mean accuracy value and FID value related to the parameter value

pj, and α is the normalization parameter which equals to the reciprocal of the largest
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FID (within the FID values related to the chosen parameter values). Notice this is

not the only criterion to achieve the goal of ”sample denser points in high sensitivity

range and sample sparser points in low sensitivity range”. We also experimented

with other criteria, like replacing |MA(pqi+1
)−MA(pqi)|+α|FID(pqi+1

)−FID(pqi)|

with |MA(pqi+1
) − MA(pqi)| (MA difference only), which achieves slightly worse

results but still works.

We set m = 10, try n = 3, 5, 8, and find n = 5 is the best one (n = 5 can

lead to similar robustness of the model as n = 8 while taking less time, and more

robust than n = 3). Examples of the resulting images are shown in Fig. 2.2 (more in

Appendix 2.7.1). Detailed descriptions of the final perturbed datasets are provided

in Appendix 2.7.2. We also provide a detailed analysis of MA differences in FID

space in Appendix 2.7.4.

The final MA differences in the FID space are visualized in Fig. 2.7. Since

FID aligns different factors into the same space, we can compare the performance

loss of all factors at various levels. Notice that the values in the near-zero FID

range (i.e., FID< 50) are more commonly found in real-world applications. We first

observe that the learning-based steering task is more sensitive to the channel-level

perturbations (i.e., R, G, B, H, S, V) than the image-level perturbations (i.e., blur,

noise, distortion). Second, the task is least sensitive to blur and noise but most

sensitive to the V channel, the intensity value. Third, for the same color channel,

darker and lighter levels appear to have different MAs at the same FID values.

Compared with other analysis studies on the “learning to steer” task, e.g., [66]

and [67], our method is the first to transfer perturbations from multiple parameter

49



spaces into one unified space to enable the cross-factor comparison, e.g., the task is

more sensitive to the V-channel perturbation than perturbations in other attributes.

We illustrate the relationship between FID and Mean Accuracy (MA) Differ-

ence, and the relationship between L2 norm distance (L2D) and Mean Accuracy

(MA) Difference in Fig. 2.7. As shown in the figure, the FID space can better cap-

ture the difference among various factors affecting image quality better than the

L2D space, i.e., the range of the curves’ first-order derivative is larger in FID space

than in L2D space (see the angle between the two dot lines).

2.7.5 Frequency Branch of Our Method

When there are frequency-related perturbations (e.g., using Gaussian noise

is increasing high frequency component of the image, while using blur operation

will reduce high frequency component), a frequency branch can be added to our

architecture. Formally, we do a standard 2-D Fourier Transform, and using the

absolute value of each complex number and form another channel of the image, thus

the input image of the network has 4 channels. The transform equation is:

Yp,q =
m−1∑
j=0

n−1∑
k=0

ωjp
mωkq

n Xj,k

where ωm and ωn are complex roots of unity:

ωm = e−2πi/m

ωn = e−2πi/n

50



i is the imaginary unit. p and j are indices that run from 0 to m − 1, and q

and k are indices that run from 0 to n− 1.

Notice this frequency branch is optional, our method can already outperform

others without this branch. It can help improve the accuracy, but also has limitation:

about 1.5x training time. Thus this is an option depends on whether users want the

model to be more accurate or more efficient.

2.7.6 Second Stage of Our Method

As introduced in Sec. 2.4.3, the second stage is designed to boost clean accu-

racy, where the model is fine-tuned solely on clean data. To meanwhile maintain the

performance on the perturbed data, we terminate this stage if the overall validation

accuracy on clean and perturbed data decreases. Otherwise, this stage continues

until it reaches the maximum number of iteration or the MA loss decreases to our

expected threshold. In most cases, the network can already learn well the first stage

on both clean and perturbed data, thus it will converge very fast in the second stage

and do early break without influencing the performance or increasing the training

time, as shown in the first row of Table. 2.6. But we found in some cases, the first

stage can make the network learn well on perturbed data, but can not perform on

clean data as well as a network trained on only clean data. In this case, adding the

second stage can help the network perform better, while doesn’t reduce the perfor-

mance on perturbed data too much. Moreover, our method can perform better than

AugMix even without the second stage. See Table. 2.6 for details.
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Scenarios

Clean Single Perturbation Combined Perturbation Unseen Perturbation

Method AMAI↑ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓

AugMix on Audi -8.24 81.89 32.22 55.27 75.49 50.23 41.98 73.06 27.39 77.51
Ours on Audi w/o 2 5.86 94.95 47.78 11.83 88.42 60.31 27.18 75.16 32.91 39.04

Ours on Audi 5.98 97.57 48.50 10.27 87.56 62.38 25.80 77.22 32.71 39.14

AugMix on Honda100k -11.41 63.85 14.08 70.64 68.95 47.69 40.12 61.68 16.32 88.36
Ours on Honda100k w/o 2 -7.40 66.69 17.77 58.31 69.98 47.43 37.88 58.27 17.64 80.50

Ours on Honda100k -2.55 67.35 19.88 53.26 65.10 48.60 36.94 51.90 18.29 72.84

Table 2.6: Ablation study for the second stage. “w/o 2” stands for “without the
second stage training”. On Audi dataset, the network is already well trained on
both clean and perturbed data, thus the second stage won’t make great differences.
But on Honda100k dataset, the performance on the clean dataset for the first stage
is not well, and adding the second stage can improve the performance on clean data
while doesn’t influence performance on perturbed data too much. But even without
the second stage, our method can perform better than AugMix.

Scenarios

Clean Single Perturbation Combined Perturbation Unseen Perturbation

Method AmAPI↑ MmAPI↑ AmAPI↑ mCE↓ MmAPI↑ AmAPI↑ mCE↓ MmAPI↑ AmAPI↑ mCE↓

AugMix -2.23 10.63 1.54 97.35 3.84 1.12 96.18 3.06 1.95 98.74
Our method -1.12 16.21 3.40 95.72 7.53 4.94 94.92 5.88 2.93 96.86

Table 2.7: Performance comparison for detection task against the baseline perfor-
mance [72]. Our method outperforms the AugMix in all cases, with about 1%-3%
mAP improvement on average, while reducing the mCE by 1%-2%.

2.7.7 Performance on Detection

We also test our algorithm on the detection task in autonomous driving. We

use the Audi dataset [59] (3D Bounding Boxes) and the Yolov4 network [72] as base

settings, and then implement our algorithm based on Yolov4. Table 2.7 shows that

our algorithm also improves the model robustness in most scenarios (about 3%-

5% mAP improvement on average), and is consistently better than AugMix (about

1%-3% mAP improvement on average).
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2.7.8 Visualization

We show the saliency map visualization in Fig. 2.8. Our method can help the

network to focus on important areas (e.g., the road in front) instead of random areas

on perturbed images.

Figure 2.8: Saliency map samples using the baseline method and our method, where
the model is tested on different combinations of perturbations shown as columns.
We show the original image, perturbed image with a chosen effect, saliency map
of the baseline model, and saliency map of our method from top to bottom rows.
Using our method, the network focuses more on the important areas (e.g., road in
front) instead of random areas on the perturbed images.

We also show the t-SNE [73] visualization of feature embeddings for the base-

line method and our method in Fig. 2.9. The features from the baseline method are

more clustered by color (e.g., the left circle in the left image mainly contains red

dots, and the right circle in the left image mainly contains yellow dots), indicating

there are domain gaps between the perturbed data and original data; while the fea-

tures from our method are more uniformly distributed, suggesting that our method

is able to reduce the domain gaps from perturbations, i.e., improve the robustness.
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Figure 2.9: t-SNE [73] visualization for features achieved from networks trained
by baseline method (left) and our method (right). The features from the baseline
method are more clustered by color (e.g., the left circle in the left image mainly
contains red dots, and the right circle in the left image mainly contains yellow dots),
indicating there are domain gaps between the perturbed data and original data,
while the features from our method are more uniformly distributed, suggesting that
our method is able to reduce the domain gaps due to perturbations, i.e., improving
the robustness.

2.7.9 Experiment data

To quantify our results, we collected mean accuracy (MA) measurements from

each experiment, for each pairwise factor and level across methods. Table 2.8

shows the mean accuracy measurements for blur, noise, and distortion factors. The

same is of table 2.9, where mean accuracy is measured across levels of RGB or

HSV color channels, where each channel serves as a single corruption factor. Table

2.10 presents the MA measurements for scenarios with a combination of factors, and

Table 2.11 presents the MA measurements for scenes with previously unseen factors.
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Method Factor L1 L2 L3 L4 L5

blur 88.2 88.1 86.1 81.2 73.3
baseline noise 88.3 86.0 81.4 76.4 73.2

distortion 88.6 75.0 57.7 48.8 49.2

blur 90.6 90.6 90.3 90.7 88.6
ours noise 89.7 89.2 86.1 84.2 79.4

distortion 90.3 89.8 87.0 84.2 83.3

Table 2.8: Mean Accuracy of training (in %) using the baseline model and ours,
tested on datasets with different levels of blur, noise, and distortion. Levels range
from L1 to L5. We achieve up to 35.4% in performance gain (see bold number pair).

Method Factor DL5 DL4 DL3 DL2 DL1 LL1 LL2 LL3 LL4 LL5

R 53.2 55.4 57.9 65.1 87.8 87.7 61.4 52.1 47.4 45.1
G 44.2 48.2 53.5 73.0 88.5 87.9 69.6 51.2 43.7 40.0

baseline B 43.0 46.8 54.3 69.7 88.2 87.7 66.2 52.5 47.1 42.6
H 51.3 52.1 63.1 82.8 88.1 88.2 69.3 51.5 51.3 51.2
S 58.4 63.8 72.6 83.9 88.1 88.3 74.5 61.6 56.5 53.2
V 52.6 53.2 54.6 69.4 88.5 88.4 70.4 49.1 43.2 39.4

R 88.6 90.1 90.6 90.5 90.5 90.4 90.6 90.6 90.2 89.4
G 90.0 90.6 90.6 90.5 90.5 90.4 90.5 90.6 90.3 89.9

ours B 89.1 90.0 90.5 90.4 90.3 90.4 90.4 90.6 90.0 89.3
H 89.7 90.2 90.2 90.4 90.4 90.7 90.5 90.0 89.2 89.7
S 88.9 90.0 90.4 90.5 90.6 90.6 90.7 90.7 89.7 86.9
V 87.8 89.5 90.7 90.8 90.7 90.5 90.6 90.0 84.4 76.4

Table 2.9: Mean accuracy (MA) of training (in %) using the baseline model and
ours, tested on datasets with different levels of R, G, B, and H, S, V channel values.
DL denotes ”darker level”, which indicates a level in the darker direction of the
channel, while LL indicates ”lighter level”, which indicates the lighter direction, on
levels 1 to 5. We achieve up to 49.9% in performance gain (see bold number pair).

Method Comb1 Comb2 Comb3 Comb4 Comb5 Comb6

baseline 59.7 54.0 40.9 50.0 54.0 56.3
ours 73.4 68.6 70.9 83.3 86.2 65.3

Table 2.10: Mean accuracy (MA) of training (in %) using the baseline model and
ours, tested on datasets with several perturbations combined together, including
blur, noise, distortion, RGB, and HSV. We achieve up to 33.3% in performance
gain (see bold number pair).
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Method Unseen Factors L1 L2 L3 L4 L5

motion blur 76.4 69.7 62.6 61.1 60.3
zoom blur 85.6 83.7 81.8 80.0 78.2
pixelate 88.2 88.2 88.0 88.3 88.1

baseline jpeg comp 88.4 88.0 87.4 85.4 82.2
snow 62.8 50.7 54.9 55.5 55.3
frost 55.8 52.1 51.7 51.7 51.2
fog 58.7 55.0 52.4 50.8 48.1

motion blur 88.0 86.9 84.7 81.4 78.5
zoom blur 88.3 86.9 85.5 84.1 82.5
pixelate 90.3 90.3 89.9 90.5 90.6

ours jpeg comp 90.1 90.2 90.0 89.5 90.0
snow 87.1 83.8 82.0 77.4 76.7
frost 86.0 83.9 81.1 81.7 80.1
fog 77.4 71.6 65.6 61.5 56.1

Table 2.11: Mean accuracy (MA) of training (in %) using the baseline model and
ours, tested on datasets with previously unseen perturbations at 5 different levels.
These types of unseen perturbations do not appear in the training data, and include
motion blur, zoom blur, pixelate, jpeg compression loss, snow, frost, and fog, on
intensity levels L1 to L5. We achieve up to 33.1% in performance gain (see bold
number pair).
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Chapter 3: Auxiliary Modality Learning with Generalized Curricu-

lum Distillation

3.1 Introduction

Learning from images and videos is among some of the most popular research

focuses [81, 82, 83], as RGB images are informative and easy to acquire. In addition,

RGB camera is cheap and can be easily deployed. There are also works considering

multiple modalities, i.e., multi-modal learning [46, 84, 85]. Furthermore, some works

consider to use multiple modalities in training but use fewer modalities during test

since in certain applications it’s difficult to use all modalities during inference. For

example, it is expensive to deploy Lidar on commodity self-driving cars, but it’s

reasonable to equip a few developer’s cars with Lidar for training. However, this

specific type of learning task, i.e., ”test with fewer modalities than during training”,

is not standardized yet. For example, there is no formal term or definition. There

have been concepts, such as ”learning with side information” [17], ”learning with

privileged information” [18], ”learning with auxiliary modality” [19], ”learning with

partial-modalities” [20], and ”modality distillation” [21], etc. We therefore formalize

these learning tasks as Auxiliary Modality Learning (AML) in Sec. 3.3.
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To apply AML to real-world tasks, there are some key issues: “what types of

auxiliary modalities can be used, and how to add the auxiliary modalities into the

network and make them most effective?” We systematically list and classify auxiliary

modalities in visual computing and network architectures for AML, and then con-

duct experiments to address these questions. Specifically, we classify the auxiliary

modalities into 3 types: low-level sensing data (Type 1), middle-level equivalent rep-

resentation (Type 2), and high-level conceptual information (Type 3) in Sec. 3.4.1.1,

according to the types of information. We also classify the network architectures

into four types, according to the mechanism that introduces the auxiliary modality.

They are auxiliary modalities in the input (Type A), in the middle (Type B), in the

end (Type C), and in the teacher (Type D), as defined in Sec. 3.4.1.2. In addition,

we design experiments to see which architecture and which auxiliary modality per-

form best within each task and across tasks (Sec. 3.4.1.3) that provides experimental

guidelines and theoretical foundation to our method in Sec. 3.5.

Given this formal framing, we can apply AML to real-world tasks. There re-

mains the question of explainability: “Why AML can work without auxiliary modal-

ity in the test?” It’s not obvious that adding auxiliary modality only in training can

always help improve test performance with only the main modality. In Sec. 3.4.2, we

explore this line of inquiries from optimization and data perspectives. Specifically,

we introduce a new concept of “supermodel” to support our claim, which also offers

insights and inspiration to design the new AML method presented in Sec. 3.5.2.

Based on the detailed analysis in Sec. 3.4, we propose a simple yet effective

method, Smart Auxiliary Modality Distillation (SAMD), that can smartly choose
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the best auxiliary modality and perform a special auxiliary modality distillation

with generalized curriculum distillation. Firstly, in Sec. 3.4.1.3, we show that dif-

ferent auxiliary modalities can contribute to different tasks at a different level, thus

we propose a method to choose the best auxiliary modality and estimate upper-

bound performance for a given task before actually executing AML. Inspired by

Squeeze-and-Excitation Network (SENet) [86], we use channel-level attention in the

SE block to estimate the AML performance for each modality, and show the con-

sistently positive correlation between them through experiments on different tasks

and auxiliary modalities. See details in Sec. 3.5.1. Also, in Sec. 3.4.1.3, we show

the knowledge distillation based architecture (Type D) is better than other forms.

However, when analyzing the reason for the effectiveness of AML in Sec. 3.4.2, we

find the “supermodel condition”, which helps AML to perform better, is not fully

utilized in the general knowledge distillation based architecture. We thus introduce

a new method that uses supermodel in a more effective way that allows the teacher

network to be aware of the student’s status in a curriculum way, leading to a bet-

ter distillation. Our method achieves better performance compared to other SOTA

methods (Sec. 3.5.2).

Our analysis provides experimental understanding and theoretical underpin-

ning for the simple yet effective method design. To the best of our knowledge, this

is the first detailed analysis to guide the design and choices of AML methods for

visual computing based on tasks, datasets, and network architectures. In summary,

our contributions are:
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• Systematically list and classify different types of auxiliary modalities and ar-

chitectures (Sec. 3.4.1.2) for AML, and analyze the performance behavior of

different types of auxiliary modalities and architectures for AML across dif-

ferent datasets, backbones and tasks (Sec. 3.4.1.3). We find (1) architecture

effectiveness is relatively consistent across different tasks, datasets and back-

bones; (2) auxiliary modality effectiveness is consistent within one task with

different datasets and backbones, but not consistent across tasks.

• Propose a novel AMLmethod, “Smart Auxiliary Modality Distillation (SAMD)”,

that automatically (1) chooses the best auxiliary modality for the main distil-

lation process, and (2) performs knowledge distillation under a special “super-

model condition” to enable the teacher network to be aware of the student’s

status. SAMD achieves SOTA results on variant tasks, with improvement up

to 10% on end-to-end steering task, 5% on multi-view handwriting classifica-

tion task, and up to 15.6% across tasks, etc. (Sec. 3.5).

• Analyze and explain the reasons for the effectiveness of AML from both opti-

mization perspective and data perspective (Sec. 3.4.2), providing theoretical

support to the SAMD method.

3.2 Related Work

Auxiliary Modality Learning aims to use auxiliary modality in training to

boost the test performance without the auxiliary modality during inference. Cross-

modality Learning and Knowledge Distillation are comparatively promising solu-

60



tions and we discuss related works in each here. More related works are discussed

in Appendix 3.8.8.

3.2.1 Cross-modality Learning

To utilize the prior knowledge between different modalities, Gupta et al. [87]

learned the representation of one modality with a pretrained network on another

modality. Hoffman et al. [17] presented early work on modality hallucination,

which used a hallucination network with RGB image as input but tried to mimic

a depth network, by combining with RGB network to achieve multimodal learning.

Some [18, 21] train the hallucination network with a different process to achieve bet-

ter performance, while others [19, 20] use GAN or U-Net to generate another paired

modality data with one modality. MSD [88] transfers knowledge from a teacher on

multimodal tasks by learning the teacher’s behavior within each modality. A recent

work [89] trains the different modality data in different pipelines and distills the best

modality pipeline knowledge to other modality pipelines. In addition to action recog-

nition, AML has also been applied in medical image processing [90, 91]. Specifically,

Zheng et al. [92] investigated the effectiveness of shape priors learned from a different

modality (e.g., CT) to improve the segmentation accuracy on the target modality

(e.g., MRI). Valindria et al. [93] proposed dual-stream encoder-decoder framework,

which assigns each modality with a specific branch and extracts cross-modality fea-

tures with carefully designed parameter sharing strategies. Li et al. [91] exploited

the priors of assisted modality to promote the performance on another modality by
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enhancing model generalization ability, where only target-modality data is required

in the test.

3.2.2 Knowledge Distillation

Knowledge Distillation can be classified as one-way or mutual-learning knowl-

edge distillation. One-way knowledge distillation mainly distills the knowledge of

a fixed teacher model (usually large) to a student model (usually small). In the

early days, Hinton et al. [94] proposed compressing the knowledge in an ensemble

of multiple models into a single model that is much easier to deploy by mimicking

the class distribution via softened softmax from the ensemble teacher. Some stud-

ies [95, 96] went further to explore the trade-off between the supervision of soft logits

and hard task label. Furthermore, there are also methods exploiting the interme-

diate feature [97, 98, 99] as transferred knowledge, which can improve the middle

layer’s representational ability in a student network. Other than the one-way distil-

lation from teacher to student, some focus on mutual knowledge distillation among

models trained from scratch. This line of research is especially notable for scenarios

without an available pretrained teacher model. A significant work is deep mutual

learning (DML) [100]. During the training phase, DML uses a pool of randomly

initialized models as the student pool, and every student is guided by the output of

other students and the task label. [101] go a further step and introduce an anchor

model to delimit a subspace within the full solution space of the target problem,

which can help to ease the distillation difficulty.
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We share a similar philosophy with distillation, but aim to design a cross-

modality learning framework to utilize the hidden information from auxiliary modal-

ities, resulting in a different methodology.

3.3 Auxiliary Modality Learning

Auxiliary modality learning offers promising potential, but has not been fully

examined. Previous works studied auxiliary modality learning in certain applica-

tions without a formal definition or a unified terminology. [17] named this process

“learning with side information”, [18] called it “learning with privileged infor-

mation”, [19] referred to it as “learning with auxiliary modality”, [20] suggested

“learning with partial-modalities”, [21] introduced the term “modality distillation”,

etc. In this chapter, we formally define the Auxiliary Modality Learning (AML) as

follows:

Definition 3.3.1. Given data with one set of modalities IM and data with another

set of modalities IA, if a modelM can take both IM and IA as input during training,

but only use IM during test, then we call modelM an auxiliary modality model, IM

as the main modality data and IA as the auxiliary modality data. Furthermore,

we call the training process of an auxiliary modality model as auxiliary modality

learning.

Formally, the training process is minimizeθ L(Mθ, (IM , IA), GT ), where θ is

the weights of the model, L is the loss function, and GT is the ground truth, while

the test process isMθ(IM).
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The goal of AML is to achieve better performance with the help of auxiliary

modalities IA than only train on main modalities IM . AML can be found in the real

world, e.g., when you cannot solve a problem in class, the teacher gives you some

hints so the students can understand the relationship between the problem and the

answer better. Then, after class, the student can solve similar types of new problems

without hints. In this chapter, for visual computing, we fix the main modality as

RGB images, but the auxiliary modality can be others, like point cloud, depth map,

or other customized formats.

AML is useful in the following scenarios: (1) Getting the extra modality data

during test is not feasible. For example, the extra modality can be the human-

labeled attention map, which is achievable during training, but we cannot ask the

user to label the attention map in real time. (2) Getting the extra modality data

during test is feasible but expensive. For example, in autonomous driving, we need to

use Lidar to get point cloud data. Using point clouds during training only requires

several Lidar sensors on the cars for development, but using point clouds during

test means every car needs to install Lidar, which is costly. AML can reduce the

cost dramatically compared with the solutions that require the Lidar+camera, and

can perform better than the solutions that only use camera. Similarly for robot

navigation.
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3.4 Analysis

In this section, we aim to do analysis on two key problems of AML when

applying on real-world tasks: (1) What kinds of auxiliary modalities can we use,

and how can we add them into the network to make them effective? (2) Why AML

can work without auxiliary modality in test?

3.4.1 Auxiliary Modality and Architecture

In this section, we first systematically list and classify the types of auxiliary

modalities and the types of auxiliary modality learning architecture, then analyze

how different auxiliary modalities and architectures can affect auxiliary modality

learning through experiments.

3.4.1.1 Types of Auxiliary Modality

Previous auxiliary modality learning works usually only consider one or several

given types of auxiliary modality without systematic analysis [17, 18, 19, 20, 21, 87,

88]. This is usually because of the limitation of data sources, e.g., limited sensor

types. However, there is actually a wide range of auxiliary modality options that

can be used. Except for the sensing data directly from the sensors (like depth map

or infra-red image), other data generated from the original image (like segmentation

image or frequency image) or even annotated by a human expert (like attention map)

can also be used as an auxiliary modality. In our work, we classify the potentially

useful auxiliary modalities that are commonly seen in daily life and show their
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effectiveness through experiments.

Formally, we suggest the following three types of data, which can be used as

auxiliary modality in visual computing, according to the information contained in

them:

Type 1: Low-level sensing data with additional information. For

example, given the main modality is RGB image, depth map or infra-red image can

be used as an auxiliary modality, which is already commonly used [14, 20]. The

additional depth or infra-red information can be used when the RGB image is not

able to capture enough information like at night.

Type 2: Middle-level representation with equivalent information but

in different spaces. For example, RGB image can be transferred to/from frequency

space with 2D FFT (a one-to-one mapping). Although they contain the same infor-

mation, one presentation in one space may have a closer relation to the goal, helping

the network to learn better.

Type 3: High-level conceptual data with compacted information.

For example, expert annotated image with emphasized key features (like attention

image). This kind of auxiliary modality helps reduce the redundant noises and helps

the network focus on key elements quickly.

Type 1 is the most common type of auxiliary modality, but Type 2 and 3 are

also auxiliary modalities that can potentially contribute to the task. See example

tasks for different modalities in Appendix 3.8.1.

66



Figure 3.1: Architectures for auxiliary modality learning. Type A: Auxiliary modality in
the input. Type B: Auxiliary modality in the middle. Type C: Auxiliary modality in the
end. Type D: Auxiliary modality in the teacher network. The dashed area in each type is
the test pipeline that only use main modality. See Sec. 3.4.1.2.

3.4.1.2 Architectures for AML

Existing works explore variant ways to achieve the goal of auxiliary modality

learning. However, to the best of our knowledge, no one compares architectures in

a systematic way [17, 18, 19, 20, 21, 87, 88]. In this section, we list and compare

the existing architecture designs for the auxiliary modality learning systematically.

We classify the possible auxiliary modality learning architectures into four

types:

Type A: Auxiliary modality in the input, same architecture as multi-

modality learning during training, but only use the main modality branch for test,

as shown in Fig. 3.1(a). General multi-modality architecture is already been stud-

ied [14], but multi-modality based AML still needs to be explored.

Type B: Auxiliary modality in the middle as supervision. The basic

idea is to generate auxiliary modality with the main modality first, and then use the

multi-modality architecture, as shown in Fig. 3.1(b). Existing works like [20, 91, 102]
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show the effectiveness of this type of solution.

Type C: Auxiliary modality in the end as supervision, same archi-

tecture as multi-task learning [103] or indirect supervision [104], but only need to

use the original task pipeline for test, as shown in Fig. 3.1(c). The basic idea is

the original task and the auxiliary modality generation task share certain common

features, thus the auxiliary modality can help the learning of the original task.

Type D: Auxiliary modality in a teacher network and teach a student

network without auxiliary modality, refer to cross-modality knowledge distillation, as

shown in Fig. 3.1(d). Existing works like [21, 89] show the effectiveness of this type

of solution.

Notice existing works mostly focus on Type B and D, but few discuss or

conduct experiments with Type A and C, which are also potential solutions.

3.4.1.3 Experiments

We conduct experiments to see how different auxiliary modalities and archi-

tectures of AML perform within single task and across tasks.

Single Task In this experiment, we consider four factors, auxiliary modality,

architectures, backbones and datasets. Our goal is to explore whether there exist

general rules under different settings for broader applicability. Different datasets

have different properties, e.g. data distribution and data size, while different back-

bones consist of varying model types and model complexity. We design experiments

to answer: (1) Given fixed dataset and backbone, do all the architectures help aux-
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iliary modality learning? What’s the order among them w.r.t. performance im-

provement? (2) Given fixed datasets and backbones, do all the auxiliary modalities

help auxiliary modality learning? What’s the order among them w.r.t. performance

improvement? (3) Are the previous two answers consistent across different datasets

and backbones?

The experiment setting is described in Appendix 3.8.1. In Table 3.5 (Ap-

pendix 3.8.2), we show performance comparison (Mean Accuracy %) with a com-

bination of three auxiliary modalities, four architectures, two backbones, and two

datasets. Within this task, we observe:

(1) Knowledge distillation based architecture (Type D) perform best, fol-

lowed by generation based architecture (Type B). Multi-task based architecture

does slightly better than baseline (Type C), while Multi-modality based architec-

ture sometimes hurt the performance (Type A).

(2) All types of auxiliary modality used can help improve performance. At-

tention image (Type 3) achieves the highest performance improvement, followed by

depth map (Type 1). Frequency image (Type 2) only performs slightly better than

baseline (the order is proven to be not consistent across tasks in Finding (5) below).

(3) Within this task, the effectiveness order for different auxiliary modalities

or architectures are consistent across different datasets or backbones.

Multiple Tasks. However, the rules observed in a single task are not neces-

sarily TRUE across tasks. In this experiment, we consider four factors: auxiliary

modality, architectures, backbones and datasets. We design experiments to answer:

(4) Is the effectiveness of different architectures consistent across different tasks? (5)
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Is the effectiveness of different auxiliary modalities consistent across different tasks?

The experiment setting is presented in Appendix 3.8.1. In Table 3.6 (Ap-

pendix 3.8.2), we show performance comparison with a combination of two auxiliary

modalities and four architectures across three tasks. Notice when comparing across

tasks, we only focus on the relative accuracy order of one task, since the metrics of

different tasks are different. We find:

(4) The effectiveness order of different architecture types is consistent for dif-

ferent tasks.

(5) The effectiveness order of different auxiliary modalities may be different

for different tasks, but consistent within one task.

Finding (4) supports our choice to design based on architecture Type D (Sec. 3.5.2).

Finding (5) motivates the need to select the best auxiliary modality at the beginning

of a task, but no need to re-select it for using another architecture type, backbone,

or dataset (Sec. 3.5.1).

3.4.2 Why AML Works?

We provide experimental results in Sec. 3.4.1.3 to show auxiliary modality

learning can work, i.e., although only test with the main modality, using auxiliary

modality during training can do better than only using the main modality. This

is also supported by other works [17, 18, 19, 20, 21]. However, most of them use

experimental results to illustrate their effectiveness, there is no detailed analysis to

demonstrate why AML can work. In this section, we explain why AML works from

70



two perspectives.

3.4.2.1 Optimization Perspective

Here we explain why AML can work from the optimization perspective.

(1) The optimal solution of AML is no worse than learning with the main

modality. Inspired by “superset”, we first introduce a new concept “supermodel”.

Definition 3.4.1. Given a modelM(A)
θA

(IA) (weights θA and input IA), and a model

M(B)
θB

(IB) (weights θB and input IB), if for any θA, there is a θB, s.t. M(A)
θA

(IA) =

M(B)
θB

(IB) for any arbitrary valid input data IA and its superset IB. Model MB is

called a “supermodel” ofMA.

See an example of the supermodel in Fig. 4.3. We then introduce a lemma

based on the supermodel:

Lemma 3.4.1. Given a model M and its supermodel M(s), the optimal training

loss of M(s) (which is argminθ(s) L(M
(s)

θ(s)
(I(s)), GT )) is less than or equal to the

optimal training loss of M (which is argminθ L(Mθ(I), GT )). where L is the loss

function and GT is the ground truth.

See the proof in Appendix 3.8.4. Now we consider the single network archi-

tectures (Type A, B, C in Sec. 3.4.1.2) and the teacher network of Type D, all of

them are supermodels of their related main modality pipeline network. Specifically,

we can black out the auxiliary modality related branch (e.g., for Type A and C,

use the pipeline in the dashed box, for Type B, blackout the auxiliary modality
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generation branch, for teacher network in Type D, it’s the same as Type 1) by set-

ting the weights of connection layers to specific values (e.g., zeros, depends on the

specific type of layer), then the model takes both main and auxiliary modalities will

have exactly the same results of the model with only main modality, thus meeting

the supermodel definition 4.6.1. According to Lemma. 4.6.1, the AML model is no

worse than the original model with only the main modality.

(2) In the case of the same performance, AML allows the optimizer to search

in a higher dimension with a higher possibility to find a path learning with the main

modality.

Suppose an optimizer g takes modelM and its initial weights θ0, loss function

L, training data IM as input, and output a path of model weights:

g(M, θ0, L, IM) = {θ0, θ1, ..., θp1} = P1

where p1 is the step number, θp1 = θ∗ is the optimal solution, and P1 is the path.

Then the AML process on its supermodelM(s) is

g(M(s), θ0 ⊕ δ0, L, (IM , IA))

= {θ0 ⊕ δ0, θ
′

1 ⊕ δ1, ..., θ
′

p2
⊕ δp2} = P2

where ⊕ is the dimension-level connection, δ as the weights for the auxiliary

dimension, δ0 = δp2 = 0, θ
′
p2

= θ∗. This means that only the start and end positions

are on the same dimension as the main modality, while in-between it can explore
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on a higher dimension (main+auxiliary modality). For any path P ∗
1 , there is a path

P ∗
2 that represents the same path (by setting p2 = p1, δi = 0 and use θ

′
i = θi for

i = 0, 1, ..., p1). But for a P ∗
2 , there’s no P ∗

1 that can represents the same path when

there is a δi ̸= 0 in P ∗
2 . It shows even with the same start and end points, the AML

can have more path options, which may be easier to be found by a given optimizer,

e.g., the blue path in Fig. 3.2 is a gradient descent path in a higher dimension,

while the red path in low dimension needs to go uphill in the middle, which is more

difficult for the gradient-based optimizer to find solutions.

3.4.2.2 Data Perspective

Next, we explain why AML works from data perspective.

(1) The auxiliary modality can help the main modality training better when

main modality data is imbalanced or in shortage. For example, the main modality

data has few examples that are the ‘hard cases’, which lead to a wrong decision

boundary. This is common in real-world datasets, e.g., the autonomous driving

dataset usually has fewer night data, even worse, has few accident data. After

adding the auxiliary modality that provides more information on the hard cases, it

would be easier to learn a correct decision boundary, then use this information to

guide the training process with the main modality. For example, the infra-red image

or depth map contains more information than RGB image when captured at night.

This observation explains why the low-level sensing data (Type 1 in Sec. 3.4.1.1)

can help AML. See figures in Appendix 3.8.5.
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Figure 3.2: “Why AML works” from optimizer perspective. The blue path (AML)
is easier to be found by a gradient-based optimizer, since there is no uphill as with
the main modality (red).

(2) The auxiliary modality data reveal a simpler mapping function from input

to output. As we know, the network is used to learn a mapping function from input

to output, e.g., f(IM) = y. However, the function f may be complex and difficult

to learn. Then, one solution is to split the complex function f into two parts, i.e.,

f(IM) = f2(f1(IM)) = f2((IM , IA)) = y, where f1 is “data reformating function”

that contains as much as inductive bias (according to the domain expert experiences)

for the given task, thus the f2 will be simpler than the original f and easier to be

learned. This observation explains why middle-level and high-level conceptual data

(Type 2 and 3 in Sec. 3.4.1.1) can help AML.

74



3.5 Smart Auxiliary Modality Distillation (SAMD)

Based on the detailed analysis in Sec. 3.4, we propose a simple yet effective

method “Smart Auxiliary Modality Distillation” to choose the best auxiliary modal-

ity and do an auxiliary modality distillation.

3.5.1 Auxiliary Modality Choice for a Given Task

As discussed in Sec. 3.4.1.1, there are three types of auxiliary modality that

are potentially useful, and each type can have multiple kinds of modalities. Given

the conclusion in Sec. 3.4.1.3, there is no consistent best auxiliary modality that can

be used for all the tasks, we need to choose the best auxiliary modality that can

boost the performance most for a given task. Suppose there are n types of auxiliary

modalities, do we need to train n times to find out the best one? The answer is

no. In this section, we propose a method that can assist in deciding the importance

order for a set of auxiliary modalities within one training process.

Inspired by Squeeze-and-Excitation Network (SENet) [86], we use channel-level

attention to represent the importance of each modality. Suppose we already have

a network f that can take the main modality Im as input and perform prediction

for a given task. Now we have n types of auxiliary modalities that potentially can

help. We first pack the different modality data in the channel level, and feed them

into the Squeeze-and-Excitation (SE) block [86], followed by a 1x1 convolutional

layer to make the channel number to be the same as the main modality Im, so that

the original network f can take that as input and perform prediction. If different
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Figure 3.3: SAMD architecture. In each round, a new curriculum learning is started
by resetting the teacher weights. Then we train the model with our online distillation,
until the student converges. The teacher network should be a supermodel of the student
network to enable reset operation, which helps the teacher be aware of the student’s status
and perform more effectively.

modality data have different image sizes then they should be resized (or add a

shallow network to pre-process the data, if necessary) before being packed in the

channel level. In our experiments, all the image data with different modalities have

the same size, so they can be packed directly. After training the modified network,

the channel weights in the SE block can be used to determine the relative importance

for the auxiliary modalities, i.e., the modality that has the largest channel weight is

the one that can lead to the best AML performance. See Appendix. 3.8.6.

3.5.2 Auxiliary Modality Distillation

Sec. 3.4.1.3 shows the knowledge-distillation (KD) based architecture performs

best in most cases. However, when analyzing reasons for the effectiveness of AML in
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Accuracy (%) on various angle threshold τ (degree)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 mAcc

[17] 51.7 70.6 89.6 94.7 83.6
[21] 26.1 54.1 81.8 91.0 74.6
[14] 28.6 51.2 80.0 92.0 74.4
[89] 40.2 67.8 88.7 94.3 81.0

Ours (SAMD) 54.3 72.2 90.1 94.6 84.4

Table 3.1: Performance comparison on Audi dataset with Nvidia Pilot-
Net [58]. All the methods are trained on RGB+segmentation, and tested on RGB
only. Our method outperforms others by up to 10% improvement in accuracy.

Sec. 3.4.2, we find the “supermodel condition”, which helps AML to perform better,

is not fully utilized in the general KD-based architecture. We thereby introduce a

new method that uses “supermodel condition” that allows the teacher network to

be aware of the student’s status and leads to a better distillation.

We update the teacher-student in an online-like paradigm. See framework

illustration in Fig. 4.1. The training paradigm contains t rounds. In each round, we

first reset the teacher with the student, then train the teacher independently while

training the student with both the general label loss and knowledge distillation

loss for k epochs. k should not be too large to avoid the teacher being far away

from the student. The training process stops when the student converges between

different rounds or until finishing t rounds. See loss function, “reset” definition, and

algorithm in Appendix 3.8.7.

To apply our training paradigm with reset operation, the framework should

meet the supermodel condition (Sec. 3.4.2), i.e., the teacher network should be a

supermodel of the student network. This condition is what differentiates our learning

framework from other existing methods.
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Figure 3.4: Different types of auxiliary modalities used in studies.

3.5.3 Experiments

In this section, we conduct experiments for autonomous steering task (Ap-

pendix 3.8.1) and 5 other tasks (Appendix 3.8.8). See details on the experiment

settings in Appendix 3.8.8. We also use different types of data modalities in our

experiments, as shown in Fig. 3.4.

Comparison with other AML methods. We compare our SAMD with other

AML methods, Hoffman et al. [17], Garcia et al. [21], Xiao et al. [14], and DMCL [89],

using Audi dataset [59] and Nvidia PilotNet [58]. For Xiao et al. [14], we adopt the

single-sensor version and make it suitable for the Audi dataset by removing the

high-level route navigation command and measurement, and using Tao et al. [105]

as the segmentation generator. In Table 3.1, ours outperforms others by up to 10%.

Effectiveness when combining with different knowledge distillation meth-

ods. Since our training paradigm can be applied to existing knowledge distillation

methods, we do experiments by combining ours with kd [94], hint [97], similar-
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Mean Accuracy (%)

Method w/o ours with ours Improvement

kd [94] 71.5 83.4 11.9
hint [97] 67.6 83.2 15.6

similarity [106] 75.6 83.9 8.3
correlation [107] 77.0 74.3 -2.7

rkd [108] 75.6 84.4 8.8
pkt [109] 75.7 76.4 0.7
vid [110] 83.4 83.2 -0.2

abound [111] 74.3 72.0 -2.3
factor [112] 76.9 83.4 6.5
fsp [113] 72.0 70.1 -1.9

Table 3.2: Performance comparison with vs. without our training
paradigm (containing reset operation). By applying our training paradigm on
other knowledge distillation methods, we can achieve better performance in most
cases (up to +15.6%) in either fully paired or merely a small amount of additional
modality data.

ity [106], correlation [107], rkd [108], pkt [109], abound [111], factor [112], fsp [113],

using Audi dataset [59] and ResNet [71]. From Table 3.2, our method achieves up

to 15.6% improvement in both settings, showing the effectiveness of our training

paradigm (with reset operation). See Appendix 3.8.8.

Comparison on different datasets and modalities. We also perform com-

parison with other knowledge distillation methods on different datasets (Audi [59],

Honda [60], and SullyChen [24]) and different modalities (RGB, segmentation, depth

map, and edge map). Specifically, Audi dataset contains ground truth segmenta-

tion, and other segmentation is generated by Tao et al. [105], while the depth map

is generated by [114] and the edge map is generated by DexiNet [115]. In Table 3.3,

Our method outperforms others in nearly all cases by up to +11% accuracy im-

provement. See more details in Appendix 3.8.8.
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Dataset Train Mod Test Mod Method mAcc

Audi RSDE RSDE Teacher 83.7

Audi RSDE RGB Best Others 72.9
RSDE RGB Ours 74.3

SullyChen RDE RDE Teacher 81.0

SullyChen RDE RGB Best Others 88.9
RDE RGB Ours 89.7

Honda RSDE RSDE Teacher 79.8

Honda RSDE RGB Best Others 77.4
RSDE RGB Ours 78.1

Table 3.3: Comparison on different datasets and different modalities.
“RSDE” refers to RGB + segmentation + depth map + edge map, and “RDE”
for RGB + depth map + edge map. Our method outperforms others on different
datasets and different additional modalities by up to +11% accuracy improvement.
“Best others” stands for the best performance among 4 methods in Table 3.1.

Comparison on other tasks and modalities. We perform comparison on multi-

feature handwritten classification task [116]. We regard the six feature sets as six

modalities, and treat each of them as a target modality in each experiment. Our

method outperforms others with 5.1% on average. We also conducted experiments

on another end-to-end autonomous driving task, “way-point prediction” task [117].

We use RGB image as main modality, and point cloud as auxiliary modality, and

achieve 19% improvement on average route completion, compared to RGB image

baseline. In the materials classification task [118], we use RGB image as main modal-

ity, while using sound wave as auxiliary modality, achieving 6.4% performance gain.

For the bird-eye-view segmentation task [119], point-cloud from multiple vehicles

are used during training, and point cloud from only one vehicle is used during test.

We get 0.78% accuracy improvement. See Table 3.4 for a simplified comparison,
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Task Train Mod Test Mod Ours Best Others

Handwritten Clas Multi-features Single Feature 70.3 65.2
[116]

Waypoint Pred Image Image 79.5 71.4
[117] Point Cloud

Materials Clas Image Image 83.2 76.8
[118] Audio

Bird-eye-view Seg Multi-view Single-view 45.30 44.91
[119] Point Cloud Point Cloud

Table 3.4: Performance comparison on different tasks with different auxil-
iary modalities. Our method outperforms other methods on all tasks. See details
in Appendix 3.8.8.

and more details in Appendix 3.8.8.

Relation of Channel-level Importance and AML Performance. To show

the channel-level attention for different auxiliary modalities is positively correlated

to the final performance of AML with different auxiliary modalities, we conduct

experiments on three tasks with the same setting stated in Sec. 3.4.1.3, then use the

same three auxiliary modalities and an additional random noise modality (whose

importance should be the lowest). As shown in Table 3.11, in Task 1, the importance

order from the channel-level attention is attention image > depth map > frequency

image, the performance order from AML is exactly the same. The same phenomenon

can be observed in Task 2 and 3. This confirms that we only need to perform one-

time training to select the best modality for a given task. See Appendix 3.8.8.
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3.6 Conclusion

This chapter introduces ’Auxiliary Modality Learning (AML)’. We first formal-

ize the concept of AML in terms of types of auxiliary modality and architectures

for AML. We analyze how types of auxiliary modality and architectures can affect

AML performance on a single task and , across tasks: best architecture is consistent

within a task or across tasks, while best auxiliary modality is consistent within one

task but not consistent across tasks. We also analyze the effectiveness of AML in

optimization and data perspectives to provide theory support for AML. Given these

findings, we propose a novel method, SAMD, to first determine the best auxiliary

modality, and then do a special auxiliary modality distillation to enable the teacher

network to be aware of the student’s status, leading to a better distillation that

achieves the SOTA performance.

Limitations and Future Work: In modality distillation, we reasonably

assume that the teacher network is a supermodel of the student’s, as this task

focuses on the reduction of modality, instead of model size, like general knowledge

distillation. A possible future direction for AML is to further examine the impact

of auxiliary modality data size, e.g., can we use only a small amount of auxiliary

modality data to achieve better performance? What if data is not paired with

the main modality? Are there better architectures? Architectures that can take

unpaired input data instead of paired data would be a future direction.
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3.8 Appendix

3.8.1 Details on Experimental Settings

Single task. We use autonomous driving task since there are datasets for this

task that contain all types of auxiliary modality in Sec. 3.4.1.1. Specifically, the input

is one RGB image and the output is one float value which represents the steering

angle. Classical computer vision tasks, like object classification or detection, mostly

do not use datasets with low-level sensing data other than RGB image (like depth

map is not available in ImageNet or COCO). We use Audi dataset [59] and Honda

dataset [60] in this experiment. Also, we use depth map (Type 1), frequency image

(Type 2), and attention image (Type 3) as Auxiliary modalities. We generate depth

map with [114], frequency image with standard 2D fast Fourier transform [120], and

attention image with segmentation map provided by Audi dataset. We implement

all four types of auxiliary modality learning architectures introduced in Sec. 3.4.1.2,

and choose the Nvidia PilotNet [58] and ResNet [71] as the main backbones. Mean

accuracy defined in [121] is used as the evaluation metric.

Multiple tasks. We use Audi dataset [59] for end-to-end steering task,

COCO dataset [122] for real-world classification task, and a customized dataset
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for customized classification task. We use semantic segmentation label contained in

Audi and COCO to generate related attention images. We use blur-level estimation

task as the customized task, following [121] to add blur perturbation onto the Audi

dataset, and use the level ID as the ground truth, see Fig. 3.6. Also, we use attention

image and frequency image as auxiliary modalities, and implement all four types

of auxiliary modality learning architectures introduced in Sec. 3.4.1.2. We choose

Nvidia PilotNet [58] for steering task, ResNet [71] for the classification task, and

modified PilotNet for the customized classification task (change the header of the

network to general classification header). We use mean accuracy [121] for steering

task, accuracy for real-world classification and customized classification.

3.8.2 Experiment Results for Auxiliary Modality Types and Archi-

tectures

We show experimental results for auxiliary modality in Table 3.5 and archi-

tectures in Table 3.6. See analysis in Sec. 5.4.

3.8.3 Supermodel Example

We first introduce the “supermodel” definition:

Definition 3.8.1. Given a model M
(A)
θA

(IA) (weights θA and input IA), and a model

M
(B)
θB

(IB) (weights θB and input IB), if for any θA, there is a θB, such thatM
(A)
θA

(IA) =

M
(B)
θB

(IB) for any arbitrary valid input data IA and its superset IB. We call model

MB as a “supermodel” of MA.
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Audi [59] Honda [60]

Attention Frequency Depth Attention Frequency Depth

Archi Type A 66.3 64.9 65.8 74.5 72.9 73.4
PilotNet [58] Archi Type B 71.6 66.5 68.4 75.9 73.2 75.1

Archi Type C 70.1 65.7 68.8 74.3 73.7 74.2
Archi Type D 73.4 67.9 70.8 77.4 74.8 76.7

Archi Type A 78.5 77.9 78.2 82.1 81.1 81.9
ResNet [71] Archi Type B 80.5 79.1 80.1 84.7 82.4 83.9

Archi Type C 79.6 78.5 79.3 83.6 82.1 83.1
Archi Type D 82.4 79 81.8 85.2 83 84.3

Table 3.5: Performance improvement comparison (Mean Accuracy %) with different
auxiliary modalities, architectures, backbones and datasets. The relative effective-
ness for different architectures is consistent under different datasets, backbones,
and auxiliary modalities within one task. Similarly, The relative effectiveness for
different auxiliary modalities is consistent under different datasets, backbones, and
architectures within one task.

task 1 task 2 task 3

Attention Frequency Attention Frequency Attention Frequency

Archi Type A 66.3 64.9 70.1 69.3 64.3 65.2
Archi Type B 71.6 66.5 82.1 73.6 68.4 72.5
Archi Type C 70.1 65.7 80.7 71.1 65.3 70.8
Archi Type D 73.4 67.9 84.3 75.6 70.3 74.9

Table 3.6: Performance comparison (Mean Accuracy %) across tasks. The effective-
ness order of different architectures is consistent across tasks, but not for auxiliary
modalities.

We show a simple example of supermodel in Fig. 4.3. Net1 contains two blocks

f1 and f2. Net2 contains the same block f1 and f2, and another block h. If there is

a set of specific weights θ0 for h that can meet hθ0(x) = x for any valid x, then Net2

is a supermodel of Net1, according to Definition. 4.6.1. In this case, for any specific

weights of Net1, we can always construct a set of weights for Net2 that has exactly

the same performance of Net1, which means the optimal solution for training Net2

will be no worse than Net1. Furthermore, if these two models are trained in parallel,

the supermodel can be “repositioned” to the same status of the base model at any
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Figure 3.5: A simple example of supermodel. Net1 contains two blocks f1 and f2.
Net2 contains the same block f1 and f2, and another block h which is possible to
be set as an identical function.

time by the construction method above. This property can be used in knowledge

distillation to let the teacher get back to the student’s position and help find a better

way at any time the student is stuck. Another example is for the same architecture

with different numbers of layers, e.g., ResNet152 is a supermodel of ResNet50.

Figure 3.6: Tasks for our experiments. LEFT: end-to-end steering task, input image,
output steering angle. MIDDLE: classification task, input image, output object
category. RIGHT: classification task, input image, output blur level.
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3.8.4 Prove of Lemma. 4.6.1

Lemma 3.8.1. Given a model M and its supermodel M(s), the optimal training

loss of M(s) (which is argminθ(s) L(M
(s)

θ(s)
(I(s)), GT )) is less than or equal to the

optimal training loss of M (which is argminθ L(Mθ(I), GT )). where L is the loss

function and GT is the ground truth.

Prove: Let θ∗ = argminθ L(Mθ(I), GT ) represent the weights that lead to the

best training performance for modelM, then according to the definition of super-

model, there is a θ(s)∗ that meetMθ∗(I) =M(s)

θ(s)∗
(I(s)), equivalent to L(Mθ∗(I), GT ) =

L(M(s)

θ(s)∗
(I(s)), GT ). That is, there’s at least one solution for trainingM(s) can get

the same performance as trainingM. Furthermore, if θ∗ is the optimal solution that

achieves the minimal training loss ofM(s), then the equal condition in Lemma 4.6.1

holds, if not, the less condition holds.

Notice those discussions are all on the training space, and we assume that bet-

ter training performance will lead to better test performance in general. Otherwise,

given the test set is unknown during training, model A is guaranteed no worse than

B in test if and only if model A is no worse than B for every possible data points

in test domain (or there will be at least one test set that contains data points that

model A is worse than B ), upon which no existing work can provide any theoretical

guarantee.
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3.8.5 More Explanation on Why AML Can Work

In Fig. 3.7, the main modality data has few examples in the hard and chal-

lenging case area, which leads to a wrong decision boundary. This is common in

real-world datasets, e.g., autonomous driving datasets usually have fewer datasets

for night-time driving, and even fewer on accidents. After adding the auxiliary

modality that provides more information in the hard case area, it would be much

easier to learn a correct decision boundary, then use this information to guide the

training process with the main modality. For example, the infra-red image or depth

map contains more information than RGB image when captured at night. This

explains why the low-level sensing data (Type 1 in Sec. 3.4.1.1) can help AML.

Figure 3.7: Auxiliary modality helps construct the decision boundary around the
difficult cases (e.g. lack of data coverage). Circles are main modality data, and
squares are auxiliary modality data.

3.8.6 Modality Choice

We show a modified network to extract channel-level importance and estimate

modality effectiveness with SE block in Fig. 3.8. Suppose we already have a network

f that can take the main modality Im as input and perform prediction for a given
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Figure 3.8: Modified network to extract channel-level importance and estimate modality
effectiveness with SE block. [86]

task. Now we have n types of auxiliary modalities that potentially can help. We first

pack the different modality data in the channel level, and feed them into the Squeeze-

and-Excitation (SE) block [86], followed by a 1x1 convolutional layer to ensure the

channel number is the same as the main modality Im, so that the original network

f can take it as input and perform prediction.

In practice, when we start to solve an AML task, we may have multiple aux-

iliary modality available, but collecting a full dataset for all of them may be time-

consuming. We can first collect a small set of data with all modalities, and use our

method to decide which or which sets of auxiliary modality is needed. After that,

we can collect all the useful modality data on a larger scale, try different backbones,

tune hyper-parameters, etc. Finding (5) in Sec. 3.4.1.3 motivates the need to select

the best auxiliary modality at the beginning of a task, but no need to re-select even

when using another architecture type, backbone, or dataset. For estimating the

upper-bound, we need a full set of all modalities. The model used in this step is the
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“supermodel” of the teacher model in the next step, and thus it can help estimate

the upper-bound performance, given Lemma 4.6.1.

See more descriptions in Sec. 3.5.1.

3.8.7 AML in SAMD

Formally, given a task, we denote a learner composed of a feature network F

and a predictor of fully-connected layers D. We design a student that takes IM as

input, and update via iterations of mini-batches,

θstu ← θstu − η∇LM (3.1)

where θstu is the parameter of the student network, LM is the loss function, and η

is the learning rate. Meanwhile, we design a teacher that takes {IM , IA} as input,

and update via an independent feature network Ftea (F1, F2, F3 in Fig. 4.1) and

a predictor D that share weights with that of the student network. The teacher

network is updated via

θtea ← θtea − η∇LA (D(Ftea({IM , IA})), GT ) . (3.2)

The teacher and student learn different representations related to the same task

by being exposed to different modalities. The teacher has access to the auxiliary

modality IA, the knowledge of the teacher is distilled to assist the student through

a consistency loss Lcon that measures the pairwise distance between Fstu(IM) and
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Ftea(IM , IA) as part of the student’s objective LM , specifically,

LM = Lsup (D(Fstu(IM)), GT )+

βLcon (Fstu(IM), Ftea({IM , IA})) (3.3)

where Lsup is a term that supervises the learning on the main modality.

Definition 3.8.2. Given a model M
(A)
θA

(IA) (weights θA and input IA), and its

supermodel M
(B)
θB

(IB) (weights θB and input IB), we define “reset B with A” to

be the process of constructing a new θB that meet M
(A)
θA

(IA) = M
(B)
θB

(IB) for given

θA and any arbitrary valid input data IA and its superset IB.

A simple example is, suppose B is a supermodel of A (e.g., B = A + A′),

reset B with A is constructing θB = [θA, 0], where θA is the weights of A and 0 is

the weights of A′. In Fig. 4.1, the teacher network is a supermodel of the student

network, because for any weights of student network, we can construct a teacher

network that meet D(Ftea({IM , IA})) = D(Fstu({IM})) by resetting the F1 weights

with F4 weights, F2 weights with F5 weights, and set F3 weights to 0. Indeed the

reset operation in our method requires that the teacher model is a supermodel of

the student model.

As shown in Algorithm 3, the training paradigm contains t rounds. In each

round, we first reset the teacher with the student, then train the teacher inde-

pendently while training student with both the general label loss and knowledge

distillation loss for k epochs. k should not be too large to avoid the teacher being
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far away from the student. The training process stops when the student converges

between different rounds or until finishing t rounds.

Algorithm 2: SAMD Training Paradigm

Input: Training data from main modality IM , training data from auxiliary modality
IA (chosen by method in Sec. 3.5.1)

Output: student network weights θstu
Initialisation:
Training Round number t, epoch number in each round k, loss correlation β,
network weights θstu and θtea.
for r = 1 to t do
Reset teacher weights with student weights
for e = 1 to k do
Feed IM and IA into teacher, update teacher weights θtea with Eq. 4.2

end for
for e = 1 to k do
Feed IM and IA into teacher, and feed IM into student, update student
weights θstu with Eq. 4.1 and loss 4.3

end for
end for=0

3.8.8 Additional SAMD Results

Setting. All experiments are conducted using one Intel(R) Xeon(TM) W-2123

CPU, two Nvidia GTX 1080 GPUs, and 32G RAM. We use the SGD optimizer

with learning rate 0.001 and batch size 128 for training. The number of epochs

is 2,000. The loss correlation β is set with different values for different knowledge

distillation methods following [123]. We pick epoch number in each round k = 5

from ablation study of k = 1, 2, 5, 20. We set the round number n = 400 for Audi

dataset and n = 40 for Honda dataset. In the experiments, each training process is

finished within 24 hours. The main task is the steering task introduced in the single
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task setting in Appendix 3.8.1.

Comparison on other tasks. To show the generalizability of our method, we

perform comparison on multi-feature handwritten classification task [116] in Ta-

ble 4.4. The dataset [124] consists of six features of handwritten numerals (‘0’–‘9’)

with 2,000 samples in total. We regard the six feature sets as six modalities, and

treat each of them as target modality in each experiment. Our method outperforms

others by 5.1% higher accuracy on average.

Accuracy (%) on different modalities (ID:1∼6)

Method 1 2 3 4 5 6 mean

Best Others 84.92 62.98 68.75 61.10 70.35 43.17 65.2
Ours 89.40 65.20 72.80 69.50 73.15 51.75 70.3

Table 3.7: Performance comparison on handwritten classification task. Our
method outperforms other KD methods listed in Table 3.1 by 5.1% higher accuracy
on average.

We also conducted experiments on another end-to-end autonomous driving

task, “way-point prediction” task. Following the setting of [117], we consider the

task of navigation along a set of predefined routes in different areas, such as motor-

ways, urban regions, and residential districts. A sequence of sparse goal locations in

GPS coordinates, provided by a global planner and the related discrete navigational

commands (e.g. “follow lane”, “turn left/right”, and “change lane”), constitute

the routes. Only the sparse GPS locations are used in our method. Each route

consists of several scenarios, which are initialized at predefined locations and test

the agent’s ability to handle various adversarial situations, such as obstacle avoid-

ance, unprotected turns at intersections, vehicles running red lights, and pedestrians
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Model DS↑ RC↑ IP↓ CP↓ CV↓ CL↓ RLI↓ SSI↓
RGB 21.0 60.5 0.49 0.01 0.15 0.08 0.14 0.04

RGB+PC 11.2 52.9 0.37 0.02 0.22 0.01 0.38 0.02
Ours(new) 22.1 79.5 0.37 0.01 0.07 0.04 0.26 0.04

Table 3.8: Performance comparison on long-route waypoints prediction
between base (train and test on RGB), multi-modality (train and test on RGB +
point cloud), and ours (train on RBG + point cloud, test using only RGB). DS:
Avg. driving score, RC: Avg. route completion, IP: Avg. infraction penalty, CP:
Collisions with pedestrians, CV: Collisions with vehicles, CL: Collisions with layout,
RLI: Red lights infractions, SSI: Stop sign infractions.

emerging from occluded regions crossing the road at random locations. The agent

needs to complete the route within a certain amount of time, while following traf-

fic regulations and dealing with large numbers of dynamic agents. For dataset, we

use the CARLA [125] simulator for training and testing, specifically CARLA 0.9.10

which includes 8 publicly available towns. We use 7 towns for training and hold out

Town05 for evaluation, as in [117]. We use both RGB and LiDAR for training

in AML, but only RGB data for testing. The results are shown in Table 3.8. Our

method benefits from the auxillary LiDAR modality in training using AML, with

only RGB data during query. This set of experimental results demonstrates the

effectiveness of AML.

In addition, we apply our method on audio modality based on an audio-visual

depth and material estimation work [118]. We use RGB image as the main modality,

and audio wave as the auxiliary modality. The task is material and depth classifi-

cation. We use the same dataset in the original audio-visual work, which contains

about 16,000 pairs of RGB image and audio wave. Since there’s no open-source

code, we reimplement the original work, then apply our method to it. Our method
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Accuracy (%) on various angle threshold τ (degree)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 75 mAcc

Seg GT 50.6 70.9 85.4 96.1 99.2 80.44
Seg Infer 48.3 69.5 85.3 95.7 98.6 79.48

Table 3.9: Performance comparison between ground truth and generated
segmentation. The results show that the inferred segmentation can do nearly as
well as ground truth segmentation, when serving as auxiliary modality (within 1% of
difference). Therefore, we can use pre-trained models to generate auxiliary modality
conveniently.

Method Vehicle Sidewalk Terrain Road Building Pedestrian Vegetation mIoU

Lower-bound 45.93 42.39 47.03 65.76 25.38 20.59 35.83 40.42
Co-lower-bound 47.67 48.79 50.92 70 25.26 10.78 39.46 41.84

When2com [127] 48.43 33.06 36.89 57.74 29.2 20.37 39.17 37.84
Who2com [128] 48.4 32.76 36.04 57.51 29.17 20.36 39.08 37.62
DiscoNet [126] 56.66 46.98 50.22 68.62 27.36 22.02 42.5 44.91

Ours 56.52 47.43 49.72 67.72 30.59 22.23 42.86 45.30

Upper-bound 64.09 41.34 48.2 67.05 29.07 31.54 45.04 46.62

Table 3.10: Performance comparison on bird-eye-view segmentation task.
Our method achieves the best performance compared to three other methods, with
only 1.32% performance difference from the upper-bound. We follow the same set-
ting of [126] for the lower-bound, co-lower-bound and upper-bound.

outperforms other KD methods listed in Table 3.1 by 6.4%.

Finally, we apply our method on a bird-eye-view segmentation task [119].

During training, a mixed point cloud from multiple viewpoints is used as input,

while a point cloud from one viewpoint is used during test. We use the same virtual

autonomous driving dataset [119], which contains 48,000 datapoints for training,

6,000 datapoints for test, and 6,000 datapoints. We apply our method based on the

DiscoNet [126]. In Table 3.10, we show our method achieves the best performance

compared to other methods.

Comparison on different datasets and modalities. We also perform com-

parison with other knowledge distillation methods on different datasets (Audi [59],
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Channel-level Importance AML Performance

Attention Frequency Depth Noise Attention Frequency Depth Noise

Task 1 0.32 0.08 0.12 6.9e-6 73.4 67.9 70.8 65.2
Task 2 0.65 0.12 - 2.7e-6 84.3 75.6 - 70.1
Task 3 0.09 0.26 - 3.2e-6 70.3 74.9 - 60.8

Table 3.11: Relation between relative orders of channel-level importance
and AML performance for different auxiliary modalities. The relative
modality orders are consistent between channel-level importance and AML per-
formance within each task, therefore we can use channel-level importance to choose
the best auxiliary modality before AML.

Honda [60], and SullyChen [24]) and different modalities (RGB, segmentation, depth

map, and edge map). Specifically, Audi dataset contains ground truth segmenta-

tion, and other segmentation is generated by Tao et al. [105], while the depth map

is generated by [114] and the edge map is generated by DexiNet [115]. In Table 4.5,

our method outperform others in practically all cases by up to +11% accuracy

improvement.

Effectiveness when combining with different knowledge distillation meth-

ods. Since our training paradigm can be applied on existing knowledge distillation

methods, we do experiments by combining ours with kd [94], hint [97], similar-

ity [106], correlation [107], rkd [108], pkt [109], abound [111], factor [112], fsp [113].

From Table. 4.2, our method achieves up to 15.6% improvement in both settings,

showing the effectiveness of our training paradigm (containing reset operation).

Relation of Channel-level Importance and AML Performance. To show

the channel-level attention for different auxiliary modalities is positively correlated

to the final performance of AML with different auxiliary modalities, we conduct

experiments on three tasks with the same setting stated in Sec. 3.4.1.3, then use the
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same three auxiliary modalities and an additional random noise modality (whose

importance should be the lowest). We use knowledge distillation based architecture

(Type D), since it’s consistently better than other architectures (see Sec. 3.4.1.3).

As shown in Table 3.11, in Task 1, the importance order from the channel-level

attention is attention image > depth map > frequency image, and the performance

order from AML is also attention image > depth map > frequency image. The same

phenomenon can be observed in Task 2 and 3. This shows we only need to perform

one-time training to select the best modality for a given task.

Comparison of ground truth and generated auxiliary modality. We con-

duct experiment with ground truth segmentation and generated segmentation [105]

to see how much it will influence the performance. The model used to generate

segmentation for Audi dataset [59] is trained on Cityscapes dataset [129]. Table 3.9

shows that the generated segmentation can do nearly as well as ground truth seg-

mentation, when serving as auxiliary modality (i.e. within 1% of difference), thus

we can use pre-trained models to generate auxiliary modality conveniently.

3.8.9 Tasks, Datasets, Backbones

Tasks. We use autonomous driving tasks and 5 additional tasks in other do-

mains. These include: object classification in the multi-task experiment (Sec. 3.4.1.3),

handwritten classification, waypoint prediction, materials classification, and bird-

eye-view segmentation experiments (in Table 3.4 from Sec. 3.5.3, and Appendix 3.8.8).
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Accuracy (%) on different angle threshold τ (degree)

Dataset Train Mod Test Mod Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 τ = 75 mAcc

Audi RGB+seg RGB+seg Teacher 42.7 68.0 88.0 94.4 96.6 98.6 81.4

Audi RGB+seg RGB best others 30.3 51.0 78.2 88.4 94.4 98.2 73.4
RGB+seg RGB ours 52.6 72.7 91.3 95.0 97.0 98.3 84.5

Audi RSDE RSDE Teacher 49.9 72.1 89.5 94.9 97.1 98.6 83.7

Audi RSDE RGB best others 27.7 47.8 77.4 90.8 95.6 98.3 72.9
RSDE RGB ours 30.2 50.3 79.7 91.0 96.2 98.6 74.3

SullyChen RDE RDE Teacher 41.1 63.7 88.6 95.9 97.9 99.1 81.0

SullyChen RDE RGB best others 59.5 82.1 93.9 98.2 99.5 100.0 88.9
RDE RGB ours 63.4 83.0 94.3 98.2 99.5 100.0 89.7

Honda RSDE RSDE Teacher 41.3 61.1 83.9 94.0 98.3 99.9 79.8

Honda RSDE RGB best others 38.9 57.7 79.7 91.7 97.5 99.3 77.4
RSDE RGB ours 37.9 57.7 81.7 93.5 98.2 99.6 78.1

Table 3.12: Comparison on different datasets and different modalities.
“RSDE” refers to results from RGB + segmentation + depth map + edge map,
and “RDE” for RGB + depth map + edge map. Our method outperforms others
on different datasets and different additional modalities by up to +11% accuracy
improvement.

Datasets. We use 10 datasets in total. They are: Honda, Audi, COCO, a

customized dataset (Sec. 3.4.1.3), SullyChen Driving data, CityScapes, 4 datasets

for handwritten classification (described in Appendix 3.8.1), waypoint prediction,

materials classification, and bird-eye-view segmentation, used in Sec. 3.5.3 and in

Appendix 3.8.8.

Backbones. We conduct experiments and analysis on 8 backbones in

total. They are: (1) PiloNet and (2) ResNet for steering and object classifica-

tion (Sec. 3.4.1.3), (3) TMC for handwritten classification, (4) Multi-Modal Fu-

sion Transformer for waypoint prediction, (5) EchoCNN-AV for materials classifi-

cation, (6-8) When2com, Who2com, and DiscoNet for bird-eye-view segmentation

(Sec. 3.5.3).
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Accuracy on different threshold τ (%)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 τ = 75 Mean Improvement

Train Vanilla
Teacher (img+seg) 42.7 68.0 88.0 94.4 96.6 98.6 81.4

Student (img) 27.3 49.0 77.4 90.2 95.4 98.1 72.9

Existing Distillation Methods
kd [94] 28.4 47.7 73.2 87.2 94.3 98.4 71.5
hint [97] 31.7 50.2 69.5 77.0 83.7 93.8 67.6

similarity [106] 33.0 55.9 80.8 90.5 95.1 98.3 75.6
correlation [107] 36.2 59.1 81.5 91.7 95.3 98.2 77.0

rkd [108] 32.9 53.6 80.3 91.8 96.2 98.5 75.6
pkt [109] 34.2 55.4 80.8 90.4 94.9 98.5 75.7
vid [110] 49.7 71.2 89.9 94.8 96.7 98.3 83.4

abound [111] 32.8 53.9 77.8 88.9 94.6 98.0 74.3
factor [112] 36.8 59.2 82.0 90.6 94.7 97.9 76.9
fsp [113] 30.8 51.6 74.9 85.8 91.6 97.4 72.0

Existing Distillation Methods with Our Training Paradigm
kd [94] 49.7 71.2 89.9 94.8 96.7 98.3 83.4 11.9
hint [97] 48.6 71.0 90.1 94.8 96.7 98.3 83.2 15.6

similarity [106] 52.1 71.8 90.0 94.8 96.6 98.3 83.9 8.3
correlation [107] 31.8 52.7 78.1 89.7 95.2 98.3 74.3 -2.7

rkd [108] 54.3 72.2 90.1 94.7 96.6 98.3 84.4 8.8
pkt [109] 34.5 56.9 82.9 90.3 95.5 98.4 76.4 0.7
vid [110] 48.6 71.0 90.1 94.8 96.7 98.3 83.2 -0.2

abound [111] 29.6 49.5 74.4 87.3 93.5 97.8 72.0 -2.3
factor [112] 49.7 71.2 89.9 94.8 96.7 98.3 83.4 6.5
fsp [113] 28.8 48.2 71.5 83.9 91.2 97.4 70.1 -1.9

Table 3.13: Performance comparison with vs. without our training
paradigm (containing reset operation). By applying our training paradigm on
other knowledge distillation methods, we can achieve better performance in most
cases (up to +15.6%) in either fully paired or merely a small amount of additional
modality data.

3.8.10 Dataset Description

Honda dataset [60], or HRI Driving Dataset (HDD), is a challenging dataset

to enable research on learning driver behavior in real-life environments. The dataset

includes 100+ long-time driving videos with 104 hours of real human driving in

the San Francisco Bay Area collected using an instrumented vehicle equipped with

different sensors. We first select 30 videos that are most suitable for learning to

steer task, then we extract 110,000 images from them at 1 FPS, and align them
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with the steering labels.

Audi dataset [59], or Audi Autonomous Driving Dataset (A2D2), is a dataset

that features 2D semantic segmentation, 3D point clouds, 3D bounding boxes, and

vehicle bus data. It includes more than 40,000 frames with semantic segmentation

image and point cloud labels, of which more than 12,000 frames also have anno-

tations for 3D bounding boxes. In addition, the authors provide unlabelled sensor

data (approx. 390,000 frames) for sequences with several loops, recorded in three

cities. In our experiment, we use the ”Gaimersheim” package which contains about

15,000 images with about 30 FPS. For efficiency, we adopt a similar approach as in

[58] by further downsampling the dataset to 15 FPS to reduce similarities between

adjacent frames, keep about 7,500 images and align them with steering labels.

SullyChen dataset [24] is designed for the steering task with the longest

continuous driving image sequence without road branching. Images are sampled

from videos at 30 frames per second (FPS). We downsample the dataset to 5 FPS.

The resulting dataset contains ≈10,000 images.

COCO [122] is a large-scale object detection, segmentation, and captioning

dataset. COCO has several features: Object segmentation, Recognition in context,

Superpixel stuff segmentation, 330K images (¿200K labeled), 1.5 million object in-

stances, 80 object categories, 91 stuff categories, 5 captions per image, 250,000

people with keypoints.

Other datasets used in Table 3.4. Handwritten classification dataset [124]

consists of six features of handwritten numerals (‘0’–‘9’) with 2,000 samples in total.

In the end-to-end autonomous driving task, we use the CARLA [125] simulator for
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training and testing, specifically CARLA 0.9.10 which includes 8 publicly available

towns. We use 7 towns for training and hold out Town05 for evaluation, as in

[117]. In the audio-visual depth and material estimation work [118], we use the

same dataset in the original audio-visual work, which contains about 16,000 pairs

of RGB images and audio waves. In the bird-eye-view segmentation task [119], we

also use the same virtual autonomous driving dataset [119], which contains 48,000

datapoints for training, 6,000 datapoints for test, and 6,000 datapoints.

3.8.11 More Related Works

Except for the cross-modality learning and knowledge distillation works in-

troduced in Sec. 4.2.2, there are other related works from curriculum distillation,

multimodal learning and auxiliary learning.

Curriculum distillation aims to do knowledge distillation in a curriculum way.

Jin et al. [99] proposes RCO that supervises the student model with some anchor

points selected from the parameter space route that the teacher model passed by,

while ours is using *online* distillation with start points selected from the parameter

space route that the student model passed by. Xiang et al. [130] do curriculum on

*instance* level with *multiple* teachers, Li et al. [131] do curriculum on *hyper-

parameter* level (which is the temperature for knowledge distillation) with one

teacher, while ours do curriculum on *parameter* level with one teacher.

Multimodal learning works [132] use the same types of modality during training

and test, but ours focus on modality reduction. Some of them [133, 134] use matrix-

based fusion, some [135] use MLP-based fusion, and some [136, 137] use attention-
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based fusion.

AML improves the ability of a primary task to generalize to *unseen* data, by

training on additional auxiliary tasks alongside this primary task, while ours don’t

have multiple tasks. For example, Liebel et al. [138] propose a method that using

auxiliary task to boost the performance of the ultimately desired main tasks, Valada

et al. [139] propose VLocNet, a new convolutional neural network architecture for

6-DoF global pose regression and odometry estimation from consecutive monocular

images, and recently Chen et al. [140] propose to learn a joint task and data schedule

for auxiliary learning, which captures the importance of different data samples in

each auxiliary task to the target task.
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Chapter 4: Small-shot Multi-modal Distillation for Vision-based Au-

tonomous Steering

4.1 Introduction

The core component of self-navigation systems is autonomous steering that

requires both correct scene understanding and rapid adaptation to the changing cir-

cumstances. Because of the variant scenarios in autonomous driving, people explore

the possibility of seeking auxiliary information instead of single sensor information

to improve the learning of the autonomous steering task. Previous works [14, 15, 16]

have tried to exploit the depth information in addition to the RGB channels, such

as Lidar. The unified learning framework that involves multiple modalities of data

as input is referred as multi-modality learning. However, it is computationally very

expensive. Also, the framework that requires the auxiliary sensor/data for input at

test time largely restricts its application to cars with less advanced equipment. An-

other problem is, the amount of auxiliary information may be small in some cases,

e.g., expensive expert-labeled data, or sensing data from a low-frequency sensor,

which makes the network harder to learn. Therefore, our aim in this work is to

design a learning framework that utilizes a small amount of auxiliary sensor/data
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to assist the task during training, but does not require it during test/inference time.

In this chapter, we introduce a novel learning framework for autonomous steer-

ing that uses a small amount of “auxiliary modality” data to complement the learn-

ing of the main modality, i.e., distilling knowledge from a multi-modality teacher

to a single-modality student with partially available auxiliary modality. Specifi-

cally, we propose a small-shot auxiliary modality distillation network, AMD-S-

Net (Sec. 4.3.2), for the partially available setting, which is trained with our multi-

modality training paradigm and meets a special “supermodel condition”. It uses

a special “reset operation” that allows a teacher to be aware of the exact student

states (Sec. 4.3.3). In addition, another novelty of the AMD-S-Net framework design

is the classification of the input data into two types. We design a specific frame-

work for each type of data, according to their special properties: (1) “consistency

supervision” for the pairwise data and (2) “distribution divergence supervision” for

the unpaired data – to fully extract information in each data type (Sec. 4.3.2).

Furthermore, general knowledge distillation methods do not ensure that the

teacher is aware of the student’s states. This implies that the teacher itself may

learn well, but not necessarily teach well. Consider the difference between letting

a teacher teach by recording videos vs. by interacting with students. We hereby

propose a multi-round online-distillation training paradigm (Sec. 4.3.4) that utilizes

the “reset operation” which can ensure that the teacher is aware of the exact stu-

dent states (e.g., learning process, features, loss, etc). In each round, our training

paradigm will first reset the teacher’s to the student’s states, then let the teacher

learn independently in a higher dimensional space to explore the loss landscape near
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the student space, and guide the student with the local landscape information and

potential direction of a better solution, leading to better student performance. This

is an advantageous property of the teacher, when the student has converged to a

relatively small empirical loss and is unable to further optimize in a stochastic local

search.

Experiments show that our AMD-S-Net architecture outperforms other archi-

tectures by up to 12.7%, and our training paradigm outperforms other knowledge

distillation (KD) methods by up to 18.1%. We conduct comparisons on 5 architec-

tures, 10 KD methods, 5 backbones, 4 datasets, and 5 different auxiliary modalities

to show their effectiveness. We also perform experiments on other tasks, including

waypoints prediction (using RGB + point clouds) and handwritten classification

(images + non-image features) to illustrate the generalizability of our method (see

Sec. 4.4).

We summarize our key contributions as follows:

• We propose a novel framework that distill knowledge from multi-modality

model to single-modality model in a partially available auxiliary modality set-

ting, i.e., small-shot auxiliary modality distillation network, AMD-S-Net.

AMD-S-Net contains a specific framework design to fully distill the informa-

tion, i.e., consistency supervision for the pairwise data and distribution diver-

gence supervision for unpaired data (Sec. 4.3.2).

• We propose a novel knowledge distillation training paradigm (Sec. 4.3.4) that

enables teachers to explore and learn student’s local loss landscape information
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in a higher dimension, thus making it feasible to help student get out of local

minimal and boost performance, based on a special “reset operation” that

allows the teacher to be aware of the exact student states.

4.2 Related Work

In our paper, we mainly focus on the setting that there are auxiliary modal-

ities during training but only main modality during test. One kind of solution is

treating the multimodal network as the teacher and single modality network as the

student, and use the general knowledge distillation methods (Sec. 4.2.1) to transfer

the knowledge. Another kind of solution is designing architectures specifically for

the modality distillation (Sec. 4.2.2). For the task, we choose end-to-end learning

steering under multimodal settings in general (Sec. 4.2.3).

4.2.1 Knowledge Distillation

Knowledge distillation is the process to transfer knowledge between networks [94].

Many works have already been done in the general knowledge distillation area. Hin-

ton et al. [94] do early research about distilling the knowledge from an ensemble of

models to a single model. Then more and more works have explored the desired

knowledge need to be distilled, including intermediate layers’ feature [113, 141],

attention map [142], paraphrased feature [112], probability distribution in the fea-

ture space [109], activation of neurons [111] and etc. Romero et al. [97] propose a

method that can distill knowledge from a wide shallow network to a deep thin net-
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work (FitNet). VID [110] formulates knowledge transfer as maximizing the mutual

information between the teacher and the student networks. Similarity-Preserving

Knowledge Distillation [106] aims to preserve the similarity matrix of input data

within a mini-batch. CRD [123] encourages the teacher and student to map the

same input to close representations and different inputs to distant representations.

Some other works [107, 108] focuses on correlation congruence between data samples

instead of instance congruence.

Our method can be combined with these methods and achieve better perfor-

mance. Specifically, our method can reset the teacher to the student’s states and lead

the student step by step, making it possible to escape local minima and achieve bet-

ter performance. This is different from the self-distillation methods (e.g., [143, 144]),

where teacher and student share the same architecture, while in our setting teacher

and student do not need to have the same network architecture.

4.2.2 Modality Distillation

Modality distillation mainly focuses on distilling knowledge between differ-

ent modalities. Gupta et al. [87] learn the representation of one modality with

a pretrained network on another modality. Hoffman et al. [17] do an early work

about modality hallucination, which contains a hallucination network with RGB

image as input but tries to mimic a depth network, then combines with RGB net-

work to achieve multimodal learning. Following works [18, 21] train the hallucina-

tion network with a different process to achieve better performance. Some other
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Figure 4.1: AMD-S-Net Architecture. The training process consists of t rounds
and each round contains k epochs. At the beginning of each round, the student net-
work will be used to initialize the teacher. In each round of the AMD-S-Net training
process, there are 2 steps: (1) Calculate the teacher’s loss, Loss1; backpropagate
and update teacher’s networks F1, F2, F3, D for k epochs; (2) Feed the paired main
modality data to the student, calculate the student’s loss, Loss2, and feature loss,
Loss3, update student’s networks F4, F5, D, and feed unpaired main modality data
to the student, calculate student’s loss, Loss4, and divergence loss, Loss5, update
F4, F5, D, train for k epochs.

works [19, 20] use GAN or U-Net to generate another paired modality data with

one modality. MSD [88] transfers knowledge from a teacher on multimodal tasks by

learning the teacher’s behavior within each modality. A latest work [89] trains the

different modality data in different pipelines and distills the best modality pipeline

knowledge to other modality pipelines. Other than action recognition, modality

distillation has also been applied in medical image processing [90]. Existing work of

unpaired modality distillation like [145, 146] only consider unpaired data and assume

both modalities have enough samples, while ours consider both paired and unpaired

data, and also only have small number of auxiliary modality data. Compared to

these methods, our method is the first framework that uses consistency supervision

for the pairwise data and distribution divergence supervision for the unpaired data

(Sec. 4.3.2) and provide flexibility for real-world applications.
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4.2.3 Multimodal End-to-end Steering

End-to-end steering is an essential task in end-to-end autonomous driving [58].

Multimodal end-to-end steering becomes popular, because of its naturally abundant

information and the improvement of multimodal architectures.

Xiao et al. [14] analyze different architectures to fuse multiple modalities in

the simulator. Yang et al. [147] make the multimodal data to be the supervision

of their multimodal multitask network with only image input. Huang et al. [15]

propose a multimodal method with scene understanding. Recently Maanpää et

al. [16] design a specific network to fuse camera and lidar data that are suitable for

adverse road and weather conditions. Except for spatial methods, Abou-Hussein

et al. [148] propose an LSTM-based network to utilize multimodal Spatio-Temporal

information.

Compared to these works, ours considers the multimodal end-to-end steering

in a more specific setting, i.e., there is a varying amount of auxiliary modality data

during training that can reduce costs compared to general multimodal methods

while outperforming single-modality techniques.

4.3 Approach

In this section, we first introduce the task formalization in Sec. 4.3.1. Next, we

explain our method in detail in Sec. 4.3.2 (AMD-S-Net) under different settings. We

introduce a specific reset operation and supermodel condition in Sec. 4.3.3, which is

used by our training paradigm in Sec. 4.3.4.
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The novelty of AMD-S-Net is that it’s trained with our novel training paradigm

and should satisfy the supermodel condition to ensure their suitability for our train-

ing paradigm with reset operation. The framework of AMD-S-Net is also novel

because of a specific two-stream framework design. This is the first work that in-

troduces a reset operation and supermodel condition that can be utilized by the

training paradigm to boost performance.

4.3.1 Auxiliary Modalities and Task Formalization

Given an arbitrary task that can be learned by observing a series of task-

related data captured by different sensors, or processed using different techniques,

we refer to these different but related data types as modalities I = {Ik}Kk=1, where

K is the maximum number of modalities one can obtain with the existing devices,

signal prepossessing methods, or expert annotation. We assume that among the K

modalities, there is one main modality IM that contributes the most information to

the task. The modalities other than IM are referred as auxiliary modalities IA. Note

that each sample from the IM is not necessarily more informative than each sample

from an auxiliary modality. The main modality IM is considered primary usually

because it is the most available hence used-at-inference data type. One example of

the main modality is the data captured with RGB cameras for autonomous driving

tasks, which is plentiful and not expensive, but not necessarily more informative

than depth cameras [14, 149].

We first consider a model with learnable parameters θm that prioritizes the

110



data from the main modality. The training data from IM is denoted as IMtrain =

{iMn }
Ntrain
n=1 , where Ntrain is the number of training samples from IM . The parameter

that achieves the smallest inference error ϵM on IMtest is denoted as θM
∗
. With

additional data from auxiliary modalities joining the training process, a new model

is learned using Itrain = IMtrain ∪ IA. The question is, ”can we find a better

model that achieves a lower inference error on IMtest”. In other words, our goal is

to distill complementary information from the auxiliary modalities at training to

achieve higher accuracy at test time.

4.3.2 Small-shot Auxiliary Modality Distillation Network (AMD-S-

Net)

We first consider the training samples that can find paired matches from both

the auxiliary modality and main modality. Our goal is to distill the knowledge from

any arbitrary paired IA and IM that improves the model that later inference on IM .

Formally given a task, we denote a learner composed of feature network F

and a predictor of fully-connected layers D. We design a student that takes IMtrain

as input, and update via iterations of mini-batches,

θstu ← θstu − η∇LM (4.1)

where θstu is the parameter of the student network, LM is the loss function, and

η is the learning rate. Meanwhile, we design a teacher that takes {IMtrain, IA} as

111



input, and update via an independent feature network Ftea (F1, F2, F3 in Fig. 4.1)

and a predictor D that share weights with that of the student network. The teacher

network is updated via

θtea ← θtea − η∇LA
(
D(Ftea({iMn , iAn})), yMn

)
. (4.2)

The teacher and student learn different representations related to the same task

by being exposed to different modalities. The teacher has access to the auxiliary

modality IA, the knowledge of the teacher is distilled to assist the student through

a consistency loss Lcon that measures the pairwise distance between Fstu(i
M
n ) and

Ftea(i
M
n , iAn ) as part of the student’s objective LM , specifically,

LM = αLsup

(
D(Fstu(i

M
n )), yMn

)
+

βLcon

(
Fstu(i

M
n ), Ftea({iMn , iAn})

)
(4.3)

where Lsup supervises the learning on the main modality.

When auxiliary data is hard to obtain, utilizing a small amount of paired

auxiliary data based on the main data is an alternative. We refer to distillation

under such a condition as small-shot auxiliary modalities distillation. Data modal-

ities such as intermediate annotations, expert commentary for hard examples, etc.

usually come in small amounts but are exceptionally informative, e.g. the doctor’s

coarse annotation of medical images for tumor segmentation, or human-in-the-loop

interactive systems [150]. Except for the consistency supervision by the pairwise
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feature distance, we also use a divergence metric to estimate the difference of the

distributions for the unpaired data, such as Kullback–Leibler divergence [151]. Dur-

ing the training (Sec. 4.3.4), after updating the student network via loss, as defined

in Eq. 4.1, for all paired data, we update the student network again with unpaired

main modality data via the following loss:

LM
u = γLsup−u

(
D(Fstu(upi

M
m )), yMn

)
+

λLdiv

(
{Fstu(upi

M
m )}, {Ftea({piMn , iAn})}

)
(4.4)

where {piMn } and {upiMm } are paired and unpaired main modality data that meet

{piMn } ∪ {upiMm } = IMtrain, and Ldiv(, ) measures the divergence between the dis-

tributions of the feature representation sets {Fstu(upi
M
m )}, {Ftea({piMn , iAn})}. Other

training process is shared with the paired process. See this AMD-S-Net framework

illustration in Fig. 4.1 and Algorithm. 3.

One key consideration of this design is, what kind of information is important

under this problem setting (input data in Fig. 4.1). One is the relation between

paired main modality feature and the combination feature of paired main and aux-

iliary modality, which can be extracted by the paired data using consistency su-

pervision knowledge distillation. Another one is the relation between the unpaired

main modality feature and the combination feature of main and auxiliary modality.

Since the auxiliary modality data is missing for the unpaired main modality data,

the combination feature is actually unknown. Thus we use the distribution space

of combination features of paired main and auxiliary modality to be an approxi-
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Algorithm 3: AMD-S-Net Training Paradigm

Input: Training data from main modality pIMtrain (with paired auxiliary data) and

upIMtrain (no paired auxiliary data), training data from auxiliary modality IA
(paired with pIMtrain)

Output: student network weights θstu
Initialisation:
Training Round number t, epoch number in each round k, loss correlation
α, β, γ, λ, network weights θstu and θtea.
for r = 1 to t do
Reset teacher weights with student weights
for e = 1 to k do
Feed pIMtrain and IA into teacher, update teacher weights θtea with Eq. 4.2

end for
for e = 1 to k do
Feed pIMtrain and IA into teacher, and feed pIMtrain into student, update student
weights θstu with Eq. 4.1 and loss 4.3
Feed upIMtrain into student, update student weights θstu with Eq. 4.1 (replace
loss 4.3 with loss 4.4).

end for
end for=0

mation of the unknown distribution space of combination features of the unpaired

data. Also, since we don’t have one-to-one mapping for unpaired data, we use di-

vergence supervision on the distribution-level, instead of consistency supervision on

the sample-level. To the best of our knowledge, our AMD-S-Net is the first method

that uses consistency supervision for pairwise data and distribution divergence su-

pervision for unpaired data, making this method unique and different from others.

4.3.3 Reset Operation

Lemma[section] Definition[section]

The reset operation plays an important role in our method, but a condition is

needed to apply this operation. Inspired by “superset”, we introduce “supermodel”.
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Figure 4.2: Training Path Comparison on Loss Landscape. Given the teacher
network is a supermodel of the student network, the student parameter space (along
X axis with Y=0) is a subspace of the teacher parameter space (XY plane). LEFT:
Without our training paradigm, the teacher is not aware of the student states, the
training path and the final state of the teacher can be far away from the student
space, i.e. the landscape may be totally different, thus providing limited guidance
and lead to the student getting stuck in a local minimum. RIGHT: In our method,
the teacher is reset to the student states at the beginning of each round, and does
optimization with additional dimensions but within a certain range of the student
space, teaching the student with local landscape information and potential direction
to a better solution. The number 1∼10 is the step order of these processes, see details
in Sec. 4.3.3.

Definition 4.3.1. Given a model M
(A)
θA

(IA) (weights θA and input IA), and a model

M
(B)
θB

(IB) (weights θB and input IB), if for any θA, there is a θB, such thatM
(A)
θA

(IA) =

M
(B)
θB

(IB) for any arbitrary valid input data IA and its superset IB. We call model

MB as a “supermodel” of MA.

The “reset operation” is the process of constructing the weights of supermodel

θB with the given model weights θA, defined as:

Definition 4.3.2. Given a model M
(A)
θA

(IA) (weights θA and input IA), and its

supermodel M
(B)
θB

(IB) (weights θB and input IB), we define “reset B with A” to

be the process of constructing a new θB that meet M
(A)
θA

(IA) = M
(B)
θB

(IB) for given

θA and any valid input IA and its superset IB.

A simple example is, suppose B is a supermodel of A (e.g., B = A + A′),
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Accuracy (%) on different angle threshold τ (degree)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 τ = 75 Mean

Oracle (100% auxiliary modality data) 42.7 68.0 88.0 94.4 96.6 98.6 81.4

one stream (RGB only) 27.3 49.0 77.4 90.2 95.4 98.1 72.9
two streams (shared regressor) 25.9 47.2 77.7 88.4 93.6 97.8 71.8

Modified Xiao et al. [14] 40.8 64.1 84.7 92.7 95.8 98.2 79.4
Modified DMCL [89] 39.1 67.5 88.3 93.9 96.7 98.2 80.6
Ours (AMD-S-Net) 52.6 72.7 91.3 95.0 97.0 98.3 84.5

Table 4.1: Performance comparison for AMD-S-Net under the small
amount of auxiliary modality data setting (20%).
Our method outperforms other methods by up to 12.7% mean accuracy improve-
ment.

reset B with A is constructing θB = [θA, 0], where θA is the weights of A and 0 is

the weights of A′. In Fig. 4.1, the teacher network is a supermodel of the student

network, because for any weights of student network, we can construct a teacher

network that meet D(Ftea({iMn , iAn})) = D(Fstu({iMn })) by resetting the F2 weights

with F4 weights, F3 weights with F5 weights, and set F1 weights to 0. Indeed the

reset operation in our method requires that the teacher model is a supermodel of

the student model. We also introduce a lemma on the optimal training loss of the

supermodel and its base model in Appendix. 4.6.3.

To summarize: (1) The supermodel condition ensures the student parameter

space is a subspace of the teacher parameter space, thus enable the reset operation.

(2) The reset operation can reset the teacher to be in exactly the same states as

the student, which is then utilized by our training paradigm when the teacher gets

far from the student, thus allowing the teacher to explore around the student space

and teach local landscape information and potential direction of a better solution

to the student, achieving superior performance.
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4.3.4 Training Paradigm

In this section, we propose a simple yet effective training paradigm based on

the “reset operation” (Sec. 4.3.3), which can reset the teacher to exact student

states.

As shown in Algorithm. 3, the training paradigm contains t rounds. In each

round, we first reset the teacher with the student, then train the teacher indepen-

dently while training the student with both the general label loss and knowledge

distillation loss for k epochs. k should not be too large to avoid the teacher being

far away from the student. The training process stops when the student converges

between different rounds or until finishing t rounds.

Fig. 4.2 shows the training path comparison on loss landscape between general

methods and our training paradigm with reset operation. Given the teacher network

is a supermodel of the student network, the student parameter space (along X axis

with Y=0) is a subspace of the teacher parameter space (XY plane). Without

the reset operation, the teacher is not aware of the student states, the training

path and the final state of the teacher can be far away from the student space,

i.e. the landscape may be totally different, thus providing limited guidance and

lead to the student getting stuck in a local minimum (LEFT of Fig. 4.2). In our

method, the teacher is reset to the student states at the beginning of each round,

and do optimization with additional dimensions but within a certain range of the

student space, teaching the student with local landscape information and potential

direction to a better solution (right part of Fig. 4.2). Specifically, when the student
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is potentially stuck in a local minimum (step 1 in the right part of Fig. 4.2), e.g.,

already converges with a basic method, we can reset the teacher to the student’s

states (step 2) and continue to train it (step 3). Then the teacher will be exactly

no worse, hopefully better than the student (final position of step 3 is better than

the final position of step 1). Then in step 4, which is the distillation training, the

student will take both general loss (the force of going downward) and distillation

loss (the force of getting closer to the teacher). The distillation loss makes it possible

to go upward. After the student pass the loss hill on Y=0, both losses will make it

move towards the better solution on Y=0 (final position of step 10).

4.4 Experiments

We first introduce experiment setups in Sec. 4.4.1, then show the results on

the real-world dataset in Sec. 4.4.2.

4.4.1 Implementation Details

Setting. All experiments are conducted using one Intel(R) Xeon(TM) W-2123

CPU, two Nvidia GTX 1080 GPUs, and 32G RAM. We use the SGD optimizer

with learning rate 0.001 and batch size 128 for training. The number of epochs is

2,000. The loss correlations are α = 1, γ = 1, while β are set with different values

for different knowledge distillation methods following [123], and λ = β/10. We pick

epoch number in each round k = 5 from ablation study of k = 1, 2, 5, 20. We set

the round number n = 400 for Audi dataset and n = 40 for Honda dataset. In the
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experiments, each training process is finished within 24 hours.

Evaluation metric. We use the same evaluation metric as a lastest work [152],

i.e., the accuracy w.r.t a threshold τ as accτ = count(|vpredicted − vactual| < τ)/n,

where n denotes the number of test cases; vpredicted and vactual indicate the pre-

dicted and ground-truth value, respectively. We compute mean accuracy (mAcc)

as
∑

τ accτ∈T /|T |, where T = {1.5, 3.0, 7.5, 15, 30, 75} contains empirically selected

thresholds of steering angles.

4.4.2 Results on Real Dataset

We perform main comparisons for our key contributions, i.e., AMD-S-Net, and

our training paradigm. We also perform other comparisons on different datasets,

modalities, and tasks to show the generalizability of our method, as well as perform-

ing comparisons for the robustness of our method. More experiments can be found

in the Appendix PDF in our project page.

Comparison for AMD-S-Net. Since there’s no existing method specifically for

the small-shot auxiliary modality distillation, we compare our AMD-S-Net with 2

straightforward frameworks and 2 modified frameworks based on SOTA modality

distillation methods. We use Audi dataset [59] and Nvidia PilotNet [58] for this

experiment. We use 100% RGB images and 20% segmentation data in this experi-

ment. Specifically, the one stream (RGB only) method uses 100% RGB images only

with the student network; two streams (shared regressor) method contains RGB

and segmentation pipelines with a feature extractor for each pipeline and a shared
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regressor. For modified Xiao et al. [14] and modified DMCL [89], we keep the 20%

paired RGB and segmentation to go through the original pipeline, and let the rest

80% RGB data go through a single RGB pipeline. Table. 4.1 shows that our method

outperforms other methods by up to 12.7% mean accuracy improvement.

Combination for our training paradigm. Since our training paradigm can

be applied on existing knowledge distillation methods, we conduct experiments by

combining ours with kd [94], hint [97], similarity [106], correlation [107], rkd [108],

pkt [109], abound [111], factor [112], fsp [113]. One set of experiments use 100%

RGB + 100% segmentation, and another set of experiments use 100% RGB + 20%

segmentation. From Table. 4.2, our method achieves up to 18.1% improvement in

both settings, showing the effectiveness of our training paradigm (containing reset

operation).

Comparison on different datasets and modalities. We also conduct experi-

ments with different modalities and datasets to show the effectiveness of our method.

Specifically, we perform comparison on Audi [59], Honda [60], and SullyChen [24]

dataset with RGB image, segmentation, depth map, and edge map modalities. The

segmentation is generated by Tao et al. [105], the depth map is generated by [114],

and the edge map is generated by DexiNet [115]. Our method outperforms others

with up to 11% improvement.

Comparison on different backbones. Except for the Nvidia PilotNet [58], we

change the backbone to four other backbones, ResNet [71], ShuffleV2 [153], Mo-

bileNetV2 [154], and WRN [155]. Our method outperforms others in all the cases

with up to 18.1% improvement.

120



Mean Accuracy (mAcc in %)

Method 20%IA 20%IA (ours) Diff

kd [94] 67.7 73.9 6.2
hint [97] 72.7 83.1 10.4

similarity [106] 66.4 84.5 18.1
correlation [107] 68.5 68.7 0.2

rkd [108] 71.2 74.6 3.4
pkt [109] 73.4 74.4 1

abound [111] 70.6 70.6 0
factor [112] 72.2 84.4 12.2
fsp [113] 71.6 71.8 0.2

Average 70.5 76.2 5.7

Teacher (img+seg) 79.4 - -
Student (img) 72.9 - -

Table 4.2: Performance comparison with vs. without our training paradigm
(containing reset operation) under small-shot setting. By applying our
training paradigm on other knowledge distillation methods, we can achieve better
performance in most cases (up to +18.1%) in fully paired or a small amount of
additional modality data.

Comparison on other tasks. Although here we mainly focus on image format

auxiliary modalities because it’s the most available format, our method can also

perform well on other tasks with different data formats, e.g., end-to-end “waypoints

prediction task” with point cloud as an auxiliary modality (2.6% improvement),

and handwriting classification task with non-image features as auxiliary modalities

(2.9% improvement).

Robustness. We also test the robustness of our distilled model following a SOTA

work [121] on clean and perturbed Audi dataset (generated with ImageNet-C ef-

fects [156]). Our method achieves 4.8% accuracy improvement compared to the

RGB only baseline.
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4.5 Conclusion

In this chapter, we study the problem of how to introduce a variant amount

of auxiliary modality data to increase the performance of single modality learning

in an end-to-end steering task. We propose a new framework, AMD-S-Net, that

can take in the main modality and a variant amount of auxiliary modality data

to address this problem. In addition, we propose a novel training paradigm that

utilizes reset operation to help knowledge transfer. Our AMD-S-Net and training

paradigm achieve up to 12.7% and 18.1% performance improvement, respectively.

Limitations and Future Work: Our training paradigm assumes that the teacher

network is a supermodel of the student network. For general knowledge distillation,

which usually distills knowledge from a large network to a small network with dif-

ferent architectures, this requirement can possibly limit overall performance gain.

However, for modality distillation, when the goal is to reduce the modality instead

of reducing the model size, it is common to use a teacher network that has similar

architecture as a student network, except for the additional pipeline for auxiliary

modalities, as assumed.

Given that it is possible to use a small amount of expert annotation as the

auxiliary modality data to improve the performance, what form of expert annota-

tions can be used in the end-to-end steering task or other tasks would be a possible

topic for exploration. Also, under the current setting, the auxiliary modality data

is paired with the main modality data. It is unclear if the same can be applied to

unpaired auxiliary modality data to improve the performance, especially without
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ground truth.

4.6 Appendix

4.6.1 Supermodel Example

We first introduce the “supermodel” definition:

Definition 4.6.1. Given a model M
(A)
θA

(IA) (weights θA and input IA), and a model

M
(B)
θB

(IB) (weights θB and input IB), if for any θA, there is a θB, such thatM
(A)
θA

(IA) =

M
(B)
θB

(IB) for any arbitrary valid input data IA and its superset IB. We call model

MB as a “supermodel” of MA.

We show a simple example of supermodel in Fig. 4.3. Net1 contains two blocks

f1 and f2. Net2 contains the same block f1 and f2, and another block h. If there

is a set of specific weights θ0 for h that can meet hθ0(x) = x for any valid x, then

Net2 is a supermodel of Net1, according to Definition. 4.6.1. In this case, for any

specific weights of Net1, we can always construct a set of weights for Net2 that

has exactly the same performance of Net1, which means the optimal solution for

training Net2 will be no worse than Net1. Furthermore, if these two models are

training in parallel, the supermodel can be “repositioned” to the same status of the

base model at any time by the construction method above. This property can be

used in knowledge distillation to let the teacher get back to the student’s position

and help find a better way at any time the student is stuck.
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Figure 4.3: A simple example of supermodel. Net1 contains two blocks f1 and f2.
Net2 contains the same block f1 and f2, and another block h which is possible to
be set as an identical function.

4.6.2 Implementation Details

Setting. All experiments are conducted using one Intel(R) Xeon(TM) W-2123

CPU, two Nvidia GTX 1080 GPUs, and 32G RAM. We use the SGD optimizer

with learning rate 0.001 and batch size 128 for training. The number of epochs

is 2,000. The loss correlations are α = 1, γ = 1, while β are set with different

values for different knowledge distillation methods following [123] (See details in

Appendix 4.6.9), and λ = β/10. We pick epoch number in each round k = 5 from

ablation study of k = 1, 2, 5, 20. We set the round number n = 400 for Audi dataset

and n = 40 for Honda dataset. In the experiments, each training process is finished

within 24 hours.

Evaluation metric. We use the same evaluation metric as a lastest work [152],

i.e., the accuracy w.r.t a threshold τ as accτ = count(|vpredicted − vactual| < τ)/n,

where n denotes the number of test cases; vpredicted and vactual indicate the pre-
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dicted and ground-truth value, respectively. We compute mean accuracy (mAcc)

as
∑

τ accτ∈T /|T |, where T = {1.5, 3.0, 7.5, 15, 30, 75} contains empirically selected

thresholds of steering angles.

Dataset. For the end-to-end steering task, we do experiments on Audi and Honda

datasets. The Audi dataset [59] is the most recent (2020). We use the semantic

segmentation subset since it contains both steering angle from bus data and semantic

segmentation labels paired with RGB images, which can be used as an additional

modality in our method. It contains 41,277 frames in total. The Honda dataset [60]

has 100+ long-time driving videos, which is one of the largest autonomous driving

datasets. We extract 110k images with 1Hz from the original videos and split them

into 100k training images and 10k test images.

Backbone. We choose the Nvidia PilotNet described in [58] as the main backbone.

We select this model as it has been used to steer an autonomous vehicle successfully

in both the real world [58] and virtual world [48], and also work for the latest

autonomous driving datasets [121]. In addition, four other networks are tested to

show generalizability.

As shown in Algorithm. 3, the training paradigm contains t rounds. In each

round, we first reset the teacher with the student, then train the teacher inde-

pendently while training student with both the general label loss and knowledge

distillation loss for k epochs. k should not be too large to avoid the teacher being

far away from the student. The training process stops when the student converges

between different rounds or until finishing t rounds.

125



4.6.3 Lemma and Proof

We introduce a lemma on the optimal training loss of the supermodel and its

base model.

Lemma 4.6.1. Given a model M and its supermodel M (s), the optimal training loss

of M (s) (which is argminθ(s) L(M
(s)

θ(s)
(I(s)), GT )) is less than or equal to the optimal

training loss of M (which is argminθ L(Mθ(I), GT )). where L is the loss function

and GT is the ground truth.

Prove: Let θ∗ = argminθ L(Mθ(I), GT ) represent the weights that lead to the

best training performance for model M , then according to the definition of super-

model, there is a θ(s)∗ that meetMθ∗(I) = M
(s)

θ(s)∗
(I(s)), equivalent to L(Mθ∗(I), GT ) =

L(M
(s)

θ(s)∗
(I(s)), GT ). That is, there’s at least one solution for training M (s) can get

the same performance as training M . Furthermore, if θ∗ is the optimal solution that

achieves the minimal training loss of M (s), then the equal condition in Lemma. 4.6.1

holds, if not, the less condition holds.

4.6.4 Simple Experiment

We consider a simple task of counting the number of red circles in an image

of arbitrary shapes of varying colors. In this case, the main modality IM is the

image containing a random layout of arbitrary shapes. We create an auxiliary

modality IA as the images that only contain red circles, as shown in Fig. 4.4. For

the experiment, we generate 4000 image samples of the main modality with ground-
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Figure 4.4: Simple experiment explanation. TOP: task definition, counting the
number of red circles in an image of arbitrary shapes of varying colors, with the
images that only contain red circles as the auxiliary modality. BOTTOM: t-SNE
visualization for the features generated from networks trained by our methods. The
base features are mixed together thus can not be well classified, while our features
can be grouped better than the base ones (less mixing points). The oracle features
have almost no mixing up in each group because the model has sufficient training
data (10x as the base and ours).

truths {iMn , yMn } ∈ IMtrain, and test on another 2000 randomly generated layouts for

IMtest. For the auxiliary modality IA we generate 4000 samples {iAn} ∈ IA. To confirm

the hypothesis that the knowledge of IA can be distilled to improve the task on IM ,

we design an ablation study comparing the following baselines:

• Oracle IM : IMtrain is sufficient for θM
∗
;

• Underfitted IM : IMtrain is not sufficient for θM
∗
;

• Underfitted IM plus auxiliary IA: Add auxiliary samples from IA to insuffi-

cient IM .

• Underfitted IM plus insufficient auxiliary IA: Add auxiliary but a small

number of samples from IA to insufficient IM .

For the Oracle experiment, all 4,000 training samples are used, the model is nearly
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perfect at inference, achieving 99.95% accuracy on IMtest. In an Underfitted situation,

we randomly sample 10% from IMtrain and have created an insufficiently trained

classifier with 46% accuracy. After that, in addition to the Underfitted model we

add 400 auxiliary samples from IA, the accuracy improves to 75% (29 percent

improvement). Even without sufficient auxiliary samples, when we select merely

80 samples from IA and use AMD-S-Net, we still witness a plausible improvement

to 64% (18 percent improvement). We generate the t-SNE visualizations for the

representations from each baseline in Fig. 4.4, and observe clearly enhanced clusters

with the distilled knowledge from auxiliary modality achieved by our methods.

4.6.5 Modifications on SOTA Frameworks

We compare our framework with 2 straightforward frameworks and 2 modified

frameworks based on SOTA modality distillation methods. We use 100% RGB

images and 20% segmentation data in this experiment. Specifically, the one stream

(RGB only) method uses 100% RGB images only with the student network. Two

streams (shared regressor) method contains RGB and segmentation pipelines with

a feature extractor for each pipeline and a shared regressor. The total loss is the

sum of RGB loss and segmentation loss. During test, only the RGB pipeline is

used. For the modified [14] and modified DMCL [89], we keep the 20% paired RGB

and segmentation to go through the original pipeline with backpropagation, and let

the rest 80% RGB data go through a single RGB pipeline with backpropagation.

During test, only the RGB pipeline is used.
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4.6.6 Comparison with SOTA Knowledge Distillation Methods

We show the detailed comparison data our AMD-S-Net in Table 4.10. With

our method, the performance improvement can get up to 18.1%.

4.6.7 Multi-Modal End-to-End Waypoint Prediction

To show the generalizability of our method, we do experiments on another end-

to-end autonomous driving task, way points prediction task. Following the setting

of [117], we consider the task of navigation along a set of predefined routes in different

areas, such as motorways, urban regions, and residential districts. A sequence of

sparse goal locations in GPS coordinates provided by a global planner and the

related discrete navigational commands, such as “follow lane”, “turn left/right”,

and “change lane”, constitute the routes. Only the sparse GPS locations are used

in our method. Each route is constituted of several scenarios that are initialized

at predefined locations and test the agent’s ability to handle various adversarial

situations, such as obstacle avoidance, unprotected turns at intersections, vehicles

running red lights, and pedestrians emerging from occluded areas crossing the road

at random locations. The agent needs to complete the route within a certain amount

of time, while following traffic restrictions and dealing with large numbers of dynamic

agents. For dataset, we use the CARLA [125] simulator for training and testing,

specifically CARLA 0.9.10 which consists of 8 publicly available towns. We use 7

towns for training and hold out Town05 for evaluation as in [117]. See Table. 4.3.
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Model DS↑ RC↑ IP↓ CP↓ CV↓ CL↓ RLI↓ SSI↓
RGB 21.0 60.5 0.49 0.01 0.15 0.08 0.14 0.04

RGB+PC 11.2 52.9 0.37 0.02 0.22 0.01 0.38 0.02
Ours 22.0 63.1 0.45 0.02 0.05 0.00 0.20 0.03

Table 4.3: Performance comparison on long routes way points prediction between
base (100% RGB), multi-modality (28% RGB + 28% point cloud), and our method
(100% RGB + 28% point cloud). DS: Avg. driving score, RC: Avg. route comple-
tion, IP: Avg. infraction penalty, CP: Collisions with pedestrians, CV: Collisions
with vehicles, CL: Collisions with layout, RLI: Red lights infractions, SSI: Stop sign
infractions.

4.6.8 Handwriting Classification

We also perform comparison on multi-feature handwritten classification task [116]

in Table. 4.4. The dataset [124, 157, 158] consists of six features of handwritten nu-

merals (‘0’–‘9’) with 2000 samples in total. We regard the six feature sets as six

modalities, and treat each of them as target modality in each experiment. Teacher

network is able to get all 6 modalities (but only 20% amount of data). During test,

only one target modality is available. Our method outperforms others with 2.9% in

average.

Accuracy (%) on different modalities (ID:1∼6)

Method 1 2 3 4 5 6 mean

Other KD 84.92 62.98 68.75 61.10 70.35 43.17 65.2
Ours 87.42 62.29 70.86 66.34 71.97 49.49 68.1

Table 4.4: Performance comparison on handwritten classification task. Our
method outperforms other KD methods with 2.9% on average.
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Accuracy (%) on different angle threshold τ (degree)

Dataset Train Mod Test Mod Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 τ = 75 mAcc

Audi RGB+seg RGB+seg Teacher 42.7 68.0 88.0 94.4 96.6 98.6 81.4

Audi RGB+seg RGB best others 30.3 51.0 78.2 88.4 94.4 98.2 73.4
RGB+seg RGB ours 52.6 72.7 91.3 95.0 97.0 98.3 84.5

Audi RSDE RSDE Teacher 49.9 72.1 89.5 94.9 97.1 98.6 83.7

Audi RSDE RGB best others 27.7 47.8 77.4 90.8 95.6 98.3 72.9
RSDE RGB ours 30.2 50.3 79.7 91.0 96.2 98.6 74.3

SullyChen RDE RDE Teacher 41.1 63.7 88.6 95.9 97.9 99.1 81.0

SullyChen RDE RGB best others 59.5 82.1 93.9 98.2 99.5 100.0 88.9
RDE RGB ours 63.4 83.0 94.3 98.2 99.5 100.0 89.7

Honda RSDE RSDE Teacher 41.3 61.1 83.9 94.0 98.3 99.9 79.8

Honda RSDE RGB best others 38.9 57.7 79.7 91.7 97.5 99.3 77.4
RSDE RGB ours 37.9 57.7 81.7 93.5 98.2 99.6 78.1

Table 4.5: Comparison on different datasets and different modalities. RSDE is short
for RGB + segmentation + depth map + edge map, and RDE is short for RGB +
depth map + edge map. Our method outperforms others on different datasets and
different additional modalities with up to 11% accuracy improvement.

4.6.9 Knowledge Distillation Methods Settings

For different knowledge distillation methods, different values of β (weight of

the consistency loss) is used. We use the same setting as [123]. Specifically:

• kd [94]: β = 0

• hint [97]: β = 100

• similarity [106]: β = 3000

• correlation [107]: β = 0.02

• rkd [108]: β = 1

• pkt [109]: β = 30000

• abound [111]: β = 1
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Accuracy (%) on various angle threshold τ (degree)

Backbone Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 mAcc

PilotNet SIM 20.6 38.9 66.7 81.5 66.4
PilotNet SIM+ours 52.6 72.7 91.3 95.0 84.5

ResNet34 SIM 30.1 54.4 85.5 94.1 76.6
ResNet34 SIM+ours 37.2 60.2 85.7 93.3 78.6

ShuffleV2 SIM 39.9 61.3 81.4 89.8 77.7
ShuffleV2 SIM+ours 47.0 71.2 90.1 94.9 83.0

MobileNetV2 SIM 31.1 51.4 78.2 89.4 73.9
MobileNetV2 SIM+ours 52.9 71.8 89.7 94.6 84.0

WRN SIM 22.8 42.9 76.9 92.2 71.7
WRN SIM+ours 37.7 64.7 89.8 94.6 80.3

Table 4.6: Performance comparison on different backbones. Our method outper-
forms SIM [106] on PilotNet [58], ResNet34 [71], ShuffleV2 [153], MobileNetV2 [154],
and WRN [155] with up to 18.1% accuracy improvement.

• factor [112]: β = 200

• fsp [113]: β = 50

• attention [142]: β = 1000

4.6.10 Comparison on Different Datasets and Modalities

We also do comparison with other knowledge distillation methods on differ-

ent datasets (Audi [59], Honda [60], and SullyChen [24]) and different modalities

(RGB, segmentation, depth map, and edge map). Specifically, Audi dataset con-

tains ground truth segmentation, and other segmentation is generated by Tao et

al. [105], while the depth map is generated by [114] and the edge map is generated

by DexiNet [115]. In Table. 4.5, our method outperform others in all cases with up

to 11% accuracy improvement.
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Accuracy (%) on various angle threshold τ (degree)

Type of IA τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 mAcc

Base (No IA) 28.3 49.5 79.7 89.1 73.1

Depth map [114] 33.3 57.6 81.5 90.4 75.9
Edge map [115] 34.9 56.2 79.6 90.9 76.0

Segmentation [105] 35.2 58.3 83.3 91.6 77.1

Table 4.7: Comparison on different types of auxiliary modalities on Audi dataset,
with a basic L2-norm feature loss for the knowledge distillation process. We show
that all the auxiliary modalities can perform better than the base model by at least
2.8%. This shows our algorithm can utilize different types of auxiliary modalities
well, even with a basic knowledge distillation loss.

4.6.11 Comparison on different backbones.

Except for the Nvidia PilotNet [58], we change the backbone to four other

backbones, ResNet [71], ShuffleV2 [153], MobileNetV2 [154], and WRN [155], and

do comparison in Table. 4.6. Our method outperforms other methods in all the

cases with up to 18.1% accuracy improvement.

4.6.12 Comparison on different tasks.

4.6.13 Effectiveness on Different Modalities

We do comparison on different types of auxiliary modalities on Audi dataset in

Table. 4.7, with a basic L2-norm feature loss for the knowledge distillation process.

We show that all the auxiliary modalities can perform better than the base model

by at least 2.8%. This shows our algorithm can utilize different types of auxiliary

modalities well, even with a basic knowledge distillation loss.
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Clean Blur Noise

Clean Defocus Glass Motion Zoom Gauss Shot Impulse

RGB only 73.1 72.7 71.8 69.8 72.3 67.9 66.9 67.0

20%IA 74.8 74.3 73.1 73.2 74.2 69.2 68.3 68.6
100%IA 77.1 75.5 75.2 73.1 76.3 71.4 70.1 70.3

Clean Weather Digital mAcc

Clean Snow Frost Fog Bright Contrast Pixel JPEG mAcc

RGB only 73.1 62.8 56.5 54.2 64.2 39.9 73.3 70.7 65

20%IA 74.8 68.1 65.4 63.8 67.6 65.4 74.8 71.8 69.8
100%IA 77.1 63.8 58.7 56.4 65.8 62.0 77.2 75.3 69.4

Table 4.8: Average accuracy(%) of our method on clean and perturbed data (gener-
ated with ImageNet-C effects [156]). The last column “Mean” is the mean accuracy
on all perturbed data (blur, noise, weather and digital). We show that both basic
and small-shot auxiliary modality learning can get higher accuracy than the base
method (about 4.7% in average), i.e., higher robustness.

Accuracy (%) on different threshold τ (degree)

Input τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 τ = 75 Mean

RGB 32.4 53.2 78.7 87.7 94.1 97.8 74.0
RGB + 3 Rand 30.3 51.7 79.8 88.4 94.4 97.5 73.7

Table 4.9: RGB image plus 3 random channels as input can perform nearly as well
as only RGB image as input, showing adding useless channels will not influence the
performance too much.

4.6.14 Robustness

We test the robustness of our distilled model following a SOTA work [121]

on clean and perturbed Audi dataset (generated with ImageNet-C effects [156]).

Table. 4.8 shows our method can also improve the robustness while not seeing any

of the perturbed images.
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4.6.15 Random auxiliary data

When use random noisy as auxiliary modality, our method will not be affected,

see Table. 4.9.
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Accuracy on different threshold τ (%)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 τ = 75 Mean Improvement

train vanilla
Teacher (img+seg) 40.8 64.1 84.7 92.7 95.8 98.2 79.4

Student (img) 27.3 49.0 77.4 90.2 95.4 98.1 72.9

existing distillation methods
kd [94] 23.4 41.2 68.9 83.7 92.1 97.2 67.7
hint [97] 28.3 47.6 77.8 89.2 95.0 98.4 72.7

similarity [106] 20.6 38.9 66.7 81.5 92.6 98.0 66.4
correlation [107] 21.7 39.5 70.0 86.8 94.6 98.2 68.5

rkd [108] 26.2 46.5 74.8 87.9 94.1 97.8 71.2
pkt [109] 30.3 51.0 78.2 88.4 94.4 98.2 73.4

abound [111] 24.8 45.2 74.9 87.3 93.7 97.7 70.6
factor [112] 26.8 47.8 76.9 88.8 94.7 98.0 72.2
fsp [113] 27.1 47.7 74.4 87.9 94.4 97.8 71.6

attention [142] 27.1 47.0 73.1 84.9 92.8 98.3 70.5

existing distillation methods with our training paradigm
kd [94] 30.4 53.7 78.5 88.3 94.8 97.8 73.9 6.2
hint [97] 52.7 71.2 88.8 93.6 95.5 97.1 83.1 10.4

similarity [106] 52.6 72.7 91.3 95.0 97.0 98.3 84.5 18.1
correlation [107] 21.7 39.7 71.2 87.0 94.4 98.2 68.7 0.2

rkd [108] 32.4 53.8 79.5 89.3 94.7 97.9 74.6 3.4
pkt [109] 54.2 72.5 90.0 94.8 96.7 98.3 84.4 11

abound [111] 24.9 45.3 75.1 87.1 93.5 97.7 70.6 0
factor [112] 54.3 72.3 90.1 94.8 96.7 98.3 84.4 12.2
fsp [113] 27.5 48.4 75.0 87.5 94.3 97.8 71.8 0.2

attention [142] 46.2 68.1 86.8 93.4 96.6 98.2 81.5 11

Table 4.10: Comparison with knowledge distillation methods on Audi dataset
(100% RGB image + 20% segmentation) with Nvidia PilotNet [58]. First section
in the table shows the performance of teacher and student network trained directly.
Second section shows the performance of student with different knowledge distilla-
tion methods (train student from start, using the pretrained teacher model in the
previous section). Third section shows the performance of student after using our
technique based on other methods (take the teacher and student network in the
second section of this table as init model, and retrain the model with our method).
By comparing between the second and third section, we can see our method increase
the performance of most existing methods with up to 18.1%.

136



Chapter 5: Task-Driven Domain-Agnostic Learning for Autonomous

Steering

5.1 Introduction

Autonomous driving (AD) has the potential to create safer and more efficient

transportation systems by reducing congestion and accidents due to human errors.

Central to AD, autonomous steering is a complex task and requires the choreography

of many components to operate. One essential component is the perception-control

module that maps sensor data to control commands (e.g., steering angles). With

recent advances in machine learning, especially deep learning [22], the perception-

control module is increasingly enabled by learning-based algorithms, which leverage

multimodal input from sensors including cameras, Lidar, and radar to navigate

autonomous vehicles (AVs). While each type of sensor offers its unique strength in

detecting the environment, the camera is one of the most universal and accessible

sensors due to its rich visual information and affordable cost.

As a result, many real-world images are collected for training AVs. Example

datasets include KITTI [23], NVIDIA [24], Waymo Open Dataset [25], CityScapes [26],

and BDD100K [27]. In addition to real-world images, simulators and virtual images
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are also heavily used in training AVs [28]. Example simulation platforms include

CARLA [29], the Udacity Self-Driving Car Simulator [30], and NVIDIA Drive Con-

stellation [31]. Many scenarios that are crucial for testing autonomous driving but

difficult to capture in the real world can be modeled in the virtual world at ease,

e.g., accidents. While it is believed that virtual images can supplement real images,

the domain gap between the two can obstruct the conjecture. Furthermore, the

recent advancement of image style transfer techniques [38] such as CycleGAN [39]

and MUNIT [40] challenges the domain gap and has raised new conjectures on

whether we can use the realistic-looking images converted from virtual images for

learning [41]. In this work, we explore not only the domain gap between virtual

and real images but also style-transferred images, in order to understand how the

domain gap and style-transfer techniques influence the performance of “learning to

steer”. We also analyze how different training paradigms can reduce the domain

gap, e.g., finetuning, partially finetuning, and finetuning with reinitialization. In

addition, another common way to reduce the domain gap is modifying the network

architecture, especially with certain additive network components for easy modi-

fication, e.g., Batch Norm layers or Adapters. We investigate normal BN layers,

AdvProp BN, and LoRA Adapter. Finally, we show the transferability will vary

under different amounts of target data. See analysis details in Sec. 5.4.

Based on the analysis, we propose a novel framework for domain-agnostic

learning in the steering task, i.e., improve the target domain performance with

additional source domain data. We analyze the impact of three key components:

network architecture, training data, and training paradigm in autonomous steering.
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Specifically, we use (1) domain-specific adapters and shared modules to disentan-

gle domain-specific information and task-specific information; (2) style-transferred

branch to help extract domain-specific information; (3) gradually increased ratio

of target domain data in each epoch for better knowledge transfer from source to

target domain. See detail of our framework in Sec. 5.5.

Overall, the main contributions of this work include:

• Analyze how different factors influence the end-to-end steering task, includ-

ing training data (image style, data amount from source and target domain),

network architecture (Batch Norm layers, Adapters), and training paradigm

(finetuning, partially finetuning, reinitialization).

• Propose a novel framework to solve domain-agnostic learning in the end-to-

end steering task, with specific design from training data, network architecture,

and training paradigm perspectives.

5.2 Related Work

5.2.1 Transfer Learning

Transfer learning is a problem that has been studied for years. There are

different types of transfer learning according to different settings. Task adaptation

is one of them when target domain data labels are available. LWF [32] is able to

learn in the target domain while keeping the memory of the source domain without

source domain data. DELTA [33] proposes a novel regularized transfer learning
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framework, preserving the outer layer outputs of the target network. BSS [34]

presents a novel regularization approach to penalizing smaller singular values so that

untransferable spectral components are suppressed. StochNorm [35] proposes a two-

branch design with one branch normalized by mini-batch statistics and the other

branch normalized by moving statistics. Co-Tuning [36] is a two-step framework

that can learn the relationship between source categories and target categories, and

use source and target labels to collaboratively supervise the fine-tuning process. Bi-

Tuning [37] presents a general learning framework to fine-tune both supervised and

unsupervised pre-trained representations to downstream tasks.

Compare to them, our method is among the first that considers three perspec-

tives, i.e., training data, training paradigm, and network architecture, while most

previous work only considers one or two perspectives.

5.2.2 Virtual and Real Data

While collecting real-world data can be expensive and challenging, the virtual

world enables the economical production of a large amount of data. In order to

study how virtual images influence learning-based tasks, researchers have adopted

various style-transfer techniques. For example, Movshovitz-Attias et al. [159] ex-

plore the effect of state-of-the-art rendering techniques on the viewpoint estimation

task of objects. Another style-transfer technique, Generative Adversarial Networks

(GANs), has been used for domain transfer between different types of images [160].

Among many variants of GAN, CycleGAN [39] has been successfully applied to
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style-transfer unpaired images in training data. CyCADA [161], a follow-up work of

CycleGAN, improves the performance of adversarial adaptation models by preserv-

ing local structural information as well as semantic consistency. However, CyCADA

does not improve the visual realism of converted images. Supplementing virtual

images with unlabeled real images has been shown to improve the quality of GANs’

output. As an example, Shrivastava et al. [162] propose “simulated + unsupervised”

learning, which aims to improve learning performance on large datasets without ex-

tra data collection or annotation efforts. They train a GAN-similar refiner network,

called SimGAN, to create realistic photos without annotated real photos. Finally,

the blending of virtual world and real world has shown potential for learning-based

driving tasks. Li et al. [163] proposed an augmented autonomous driving simulation

(AADS), which introduces simulated traffic flows into real-world environments. The

training environment is obtained by scanning the real world with lidar and cameras,

while simulated traffic flows, including vehicles and pedestrians, are mapped onto

the scanned environment. This method captures the benefits of a fully-controlled

virtual environment, while retaining realism.

In contrast to the above-mentioned studies, we explore combining virtual,

style-transferred, and real images in various proportions and for different training

strategies. We then base our experiments in studying the influence of these settings

on the performance of the task “learning to steer” an autonomous vehicle.
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5.3 Problem Setting

Problem Description. A major challenge for autonomous driving is the

variety of driving scenarios, because it is impossible to train using data from all

possible scenarios. When we encounter a new scenario, we should train a good

model with both existing data in known scenarios (source domain) and new data

(target domain), which can perform better than the model trained by only the new

data.

Base Datasets. We use the Nvidia dataset [24] as our real dataset, which

contains approximately 63,000 images at the resolution 455 × 256. The data is

recorded on urban/suburban roads in California. We use the data from the Udacity

Self-Driving Car Simulation [30] as our virtual dataset, which includes about 10,615

images at the resolution 320 × 160 and is collected on a simulated suburban driving

track. In order to make the size of the two datasets equal, we randomly select 10,615

images from the Nvidia dataset as the final real dataset.

While both datasets are similar in visual contents, the definition of the labels

differ. In the Nvidia dataset, the label is the steering angle, while in the Udacity

dataset the label is the turning angle of the front wheels. We convert the labels in

the Udacity dataset into steering angles by scaling them up by 15.06, which is the

steering-to-turning ratio of the 2014 Honda Civic [164], the vehicle used to collect

the Nvidia dataset. The maximum steering angle is 338 degrees. Sample images of

the two datasets can be found in Fig. 5.2(a) and Fig. 5.2(b), respectively.

Evaluation Metric. We use mean accuracy (MA) to evaluate our regres-
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sion task, since it can represent the overall performance under different thresh-

olds. We first define the accuracy with respect to a particular threshold τ as

accτ = count(|vpredicted − vactual| < τ)/n, where n denotes the number of test

cases; vpredicted and vactual indicate the predicted and ground-truth value, respec-

tively. Then, MA is computed as
∑

τ accτ∈T /|T |, where T = {1.5, 3.0, 7.5, 15, 30, 75}

contains empirically selected thresholds of steering angles.

Backbone. We choose the model by Bojarski et al. [58] as the default back-

bone. The model contains five convolutional layers followed by three dense layers.

We select this model because it has been used to steer an AV successfully in both

real world [58] and virtual world [48].

Notation and Training Strategies. In this work, we explore different ways

to combine datasets for learning, in order to determine their potential to improve

learning performance. We define the following notation for any two datasets A and

B.

• train(A+B): simply combine datasets A and B and use the combined dataset

for training;

• train(A) → train(B): use A to pretrain a model, then use B to retrain the

model; and

• train(A) → ptrain(B): use A to pretrain a model, then use B to retrain the

model by only updating partial weights of the model. This training strategy is

inspired by transfer learning [165]. Since we are using the model by Bojarski

et al. [58], we only update the weights in the fully connected layers during
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the retraining of the model using dataset B, while keeping the weights in

the convolutional layers learned using dataset A. This operation is based on

the assumption that the convolutional layers can extract domain-invariant,

low-level features across different categories of images.

The output of the above-mentioned three training methods is a learned model.

We use MAA(M) to denote the MA score of testing a learned model M using the

test set extracted from dataset A. For all datasets, we split them into the training

set and test set using the ratio 10:1.

5.4 Analysis

In this section, we analyze how training data (image style, data amount),

network architecture (Batch Norm layers, Adapters), and training paradigm (fine-

tuning, partially finetuning, reinitialization) influence the transfer learning.

5.4.1 Does Image Style Transfer Reduce Domain Gap?

To reduce the gap between two domains, the first intuition is to improve the

visual similarity of the training data. In this regard, we study how image style can

influence the end-to-end steering task.

Some existing works can change the style of an image set to the style of another

image set. We use two style-transfer algorithms in this work, CycleGAN [39] and

MUNIT [40]. We show sample images of the two types of style-transferred images

in Fig. 5.2(c) and (d), respectively.
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Training Dataset R V TC TM

MAR(M) 88.36% 31.16% 26.87% 25.56%

Table 5.1: Test Mean Accuracy of models trained on real (R), virtual (V ), virtual
to real with CycleGAN (TC), virtual to real with MUNIT (TM). Transferring
the image style with the two learning-based methods could not reduce the gap
between virtual and real domain in the steering task.

• R: real dataset (the Nvidia dataset [24], target domain);

• V : virtual dataset (the Udacity dataset [30]);

• TC , TM : style-transferred datasets from virtual to real using CycleGAN [39]

and MUNIT [40], respectively.

All four datasets R, V , TC , TM contain the same number of (i.e. 10K) images.

We start by exploring the domain gap between the three types of datasets. The

results are shown in Table 5.1. Our first finding is that domain gaps exist between

the virtual and style-transferred images, as well as style-transferred and real images.

Using the pair R and TC as an example, the difference of the corresponding MA

values, MAR(train(R)) - MAR(train(TC)) = 88.36% - 26.87% = 61.49%, indicating

the existence of a domain gap between style-transferred and real images.

Our second finding is that although style-transferred images can sometimes

look more “real” than virtual images (in Fig. 5.2 (c) and (d) ), they are not nec-

essarily “closer” to real images than virtual images in a learning task. This is

reflected by the result shown in Table 5.1(a): MAR(train(TC)) ¡ MAR(train(V )) ¡

MAR(train(R)), and MAR(train(TM)) ¡ MAR(train(V )) ¡ MAR(train(R)). This in-

dicates the learning-based style transfer method may include additional domain gap

145



factors for the steering task when it tries to improve visual similarity.

We then replace the MUNIT method with a traditional color remappingmethod,

i.e., map the distribution of RGB values in the virtual domain to the real do-

main. Although the images generated by color remapping method is not as real

as the learning-based methods (See Appendix. 5.7.1), the test accuracy is better,

i.e., 30.08%.

We then do cross comparison on six domains, R, V , RVCGAN , V RCGAN , RVCR,

and V RCR, which is a combination of real/virtual content + real/virtual style (+

learning/non-learning-based method). We train models on each of them separately,

then test on them separately. Table 5.2 shows the cross comparison results. We

found:

• (a) Image content is more important than image style. When testing on

real-content datasets (R, RVCGAN , RVCR), the models trained on real-content

datasets perform better than the models trained on virtual-content datasets,

no matter they are real or virtual style (the bolden numbers are greater than

the unbolden numbers).

• (b)With the same content during training and test (the bolden numbers), using

same style is better than using different styles (the diagonal of the bolden

numbers are greater than other numbers).

• (c) With different content during training and test (the unbolden numbers),

same style is not necessary to perform better (when testing on R, the model

trained on V performs best but they are not in the same style, similar for
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Train

Test R V RVCGAN V RCGAN RVCR V RCR

R 88.36% 31.16% 48.83% 26.87% 70.17% 30.08%
RVCGAN 51.42% 34.22% 80.08% 29.34% 53.18% 38.86%
RVCR 60.89% 35.86% 48.18% 27.79% 85.50% 37.41%

Table 5.2: Mean Accuracy cross comparison. RV stands for transferring real dataset
to virtual style, V R stands for transferring virtual dataset to real style. CGAN
stands for the Cycle-GAN method, and CR stands for the color remapping method.

testing on RVCGAN and RVCR).

In addition, we try to evaluate the domain gap with Fréchet Inception Distance

(FID) [64], so that we don’t need to train models when we met new domains. How-

ever, we found that FID is not necessary an effective metric for evaluating

the domain gap in steering task. As shown in Table 5.8 (in Appendix 5.7.2),

the relative order is different from the actual test results in Table 5.2.

5.4.2 Training Paradigm

The most common technique in transfer learning to cross the domain gap is

modifying the training paradigm, i.e., changing the way of training without modi-

fying the network architecture. Popular methods [166] include,

• Finetuning. Retrain a model on the target domain which is pretrained on the

source domain.

• Partially finetuning. Finetuning a model with fixed weights of specific layers,

e.g., CNN layers.
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• Finetuning with reinitialization. Reinitialize specific layers before retraining.

In our experiments, we use header reinitialization.

Table 5.3 shows the Mean Accuracy comparison with different training paradigms

and source domains. From (a) we can verify the existence of a domain gap between

the virtual, style-transferred and real datasets. (b) is a basic paradigm that trains

a model with source and target domain data simply combined. From (b,c,d,e,f), we

find that (e)“finetuning with reinitialization” outperforms other training

paradigms in the list, no matter using real (R1, Audi dataset [59]), virtual (V ),

or style transferred (TC , TM) datasets as source domain.

5.4.3 Network Architecture

Except for the training paradigm related methods, there are methods that

achieve transfer learning by modifying the network architecture, e.g., batch norm

layers, adapters, etc. Usually they also need to have specific training paradigms, e.g.,

adding batch norm layers, retrain the model with fixed CNN layers but trainable

batch norm weights. Here we mainly investigate two additive network components,

• Batch Norm (BN) layer [167]. Batch normalization is a method used to

make training of artificial neural networks faster and more stable through

normalization of the layers’ inputs by re-centering and re-scaling. Different

domains have different feature distributions, which can be aligned by adding

batch norm layers in the network.
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• Adapter [168]. Adapters are new modules added between layers of a pre-

trained network. they add only a few trainable parameters per task, and new

tasks can be added without revisiting previous ones. The parameters of the

original network remain fixed, yielding a high degree of parameter sharing.

In Table 5.4, we compare normal BN [167], AdvProp BN [169], and LoRA [170]

under the best training paradigms in previous experiments. LoRA achieves the

best performance in the list.

5.4.4 Other Factors

In addition to the factors above, the transferability will also be influenced

by other factors, e.g., data amount, loss function, etc. We also do explorations

of the data amount and show our findings here. For data amount, a hypothesis

is that the transferability will vary under different amounts of target data during

training. When the target domain data is adequate, it’s difficult to further improve

the performance with additional source domain data. However, when the target

domain data is insufficient, then adding source domain data may help the model

learn better. Table 5.5 (e) (f) verifies this hypothesis.

5.5 Our Method

Inspired by the analysis in Sec. 5.4, we design our framework from three per-

spectives, i.e., training data, network architecture, and training paradigm.
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Figure 5.1: Our framework: In each epoch, the input data is randomly selected from
multiple domain data, which will be fed into a shared feature extractor and a domain-
specific adapter for each domain. The combined output feature will then be used to
determine the final steering angle (sufficiency loss). An additional invariance loss is used
to force the feature extractor to extract as much domain-invariant information as possible.
The final loss contains both sufficiency loss and invariance loss. The initial probability of
the target domain is small, but will gradually increase after each epoch, to better transfer
knowledge from source to target domain.

5.5.1 Framework

Overview. Our framework overview is shown in Fig. 5.1. In each epoch, the

input data is randomly selected from real, virtual, and style-transferred datasets

(according to a probability variable for each of them), which will be fed into a shared

feature extractor and a domain-dependent adapter. The combined output feature

will then be used to determine the final steering angle. The initial probability of

the target domain R is small, but will gradually increase after each epoch, to better

transfer knowledge from source (V) to target (R) domain.

Design in network architecture. As shown in Sec. 5.4.1, different image

styles between the source and target domain hurt the performance. Then we con-

sider to align, or remove the styles. Out of expectation, experiments show that
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transferring the image style from source to target domain with existing style trans-

fer methods fails to bring benefits. Thus we consider the removal of the styles. We

use a shared feature extractor to deal with image content, and domain-dependent

adapters to deal with the image styles. The intuition is, both real and virtual do-

main share common information in this steering task, e.g., front-end perception,

or back-end steering control, and the common part is supposed to be dealed with

the shared modules like feature extractor and determinator. Other than the shared

part, the adapter is supposed to extract the domain-specific information, e.g., im-

age style. A previous work AdvProp BN [169] uses independent Batch Norm layers

for different domains, but the domain-specific information is not necessary to be

held uniformly in one branch with just different BN parameters, similar problem for

StochNorm [35].

Design in training data. The style transferred branch is added to the

framework to better separate the image style and image content. Inspired by recent

works [171, 172], we can add “hint” images in the input as prior information to help

the model learn better. Originally we only have real content + real style, and virtual

content + virtual style. With style-transferred images, i.e., real content + virtual

style, or virtual content + real style, the model is able to get more hints about

the borderline of content and style information. The style transferred data can be

generated by CycleGAN [39], a generative model which can exchange the image

style of two sets of unpaired images by using a forward and backward supervision.

See examples in Fig. 5.2.

Design in training paradigm. In Sec. 5.4.2, we show that finetuning is
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Figure 5.2: Sample images of various datasets. (a) the Nvidia dataset [24] (real
dataset, denoted by R). (b) the Udacity dataset [30] (virtual dataset, denoted by
V ). (c) style-transferred images from virtual to real using CycleGAN [39] (denoted
by TC). (d) style-transferred images from virtual to real using MUNIT [40] (denoted
by TM). We plan to release all datasets for comparative experiments.

better than simply combining two datasets. An explanation for this phe-

nomenon is, learning two skills together is harder than learning one skill first and

then another. In our architecture, since we want to split the image content and style

by feeding the two domain data together, there is no training and retraining step.

Thus we use a probability variant for each domain to control the learning process,

e.g., learn the source domain first, then gradually increase the target domain data.

Experiments show this strategy is better than simply using a same number of data

from each domain in one epoch.

Loss Function. The loss function contains two parts, sufficiency loss and

invariance loss. For sufficiency loss, it’s a straightforward L2 loss between the output
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Figure 5.3: A Structural Causal Graph that shows causal relationships between
variables. We decouple the randomness in the input variable X into the task label Y
and random variable nuisance N , both are dependent on the domain D. We extract
domain-invariant latent variable Zi and domain-dependent latent variable Zd from
input X, then combine Zi and Zd to form a compressed latent variable Z∗

d .

of the network and the ground-truth steering angle. The invariance loss is used

to force the feature extractor to extract as much domain-invariant information as

possible. See more details in Sec. 5.5.2.

5.5.2 Information Theoretic View of Our Method

Learning a transferable feature from source domain that can be used to im-

prove performance on target domain has always been challenging. Finding causal

relations between variables from the information theoretic view can be a plausible

way to improve the transfer learning performance. While prior works [173] focus on

finding invariance for better generalization ability, our method utilizes both domain-

invariant features and domain-specific features to better serve our transfer learning

goal.

We show the causal relationships between variables in Fig. 5.3. Follow [174], we

decouple the randomness in the input variable X into two parts, one dependent on

the task label Y and another random variable nuisance N independent of the label,

and both label Y and nuisance N is dependent to the domain D. Inspired by [173],
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we extract domain-invariant latent variable Zi and domain-dependent latent variable

Zd from input X, then combine Zi and Zd to form a compressed latent variable Z∗
d .

According to the information bottleneck [175] and our causal graph Fig. 5.3,

our learning objective is:

minimize
θgi ,θgd ,θfd∗

I(Z∗
d , Y )− λI(Y,D|Z∗

d) (5.1)

Where gi is the feature extractor (for domain invariant features), gdj are adap-

tors for each domain, and fd∗ is the determinator. With the similar process of

IIB [173], we can reform it as:

minimize
gi,gd,fd∗

minimize
fi

Ld∗(gi, gd, fd∗) + λ(Ld∗(gi, gd, fd∗)− Li(gi, fi)) (5.2)

where

Ld∗ = Ex,y[L(y, fd∗(gi(x), gd(x)))] (5.3)

Li = Ex,y[L(y, fi(gi(x)))] (5.4)

5.5.3 Experiments

Setups. All experiments are conducted using one Intel(R) Xeon(TM) W-2123

CPU, two Nvidia GTX 1080 GPUs, and 32G RAM. We use the Adam optimizer [68]
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with learning rate 0.0001 and batch size 128 for training. The maximum number of

epochs is 1,000. Other setup is explained in Sec. 5.3.

Comparison with other task adaptation methods. In Table 5.6, we

compare our method with other SOTA task adaptation methods, i.e., DELTA [33],

BSS [34], StochNorm [35]. All of them use both source and target data and labels.

Our method outperforms others by up to 2.29%.

Comparison with other domain adaptation methods. In Table 5.6, we

compare our method with other classic domain adaptation methods, i.e., DANN [176],

ADDA [177], BSP [178]. Since those domain adaptation methods do not use target

domain labels, our method can achieve up to 15.45% improvement.

Ablation study. To show each component (LoRA is the adapter, STB stands

for style transferred branch, DP stands for dynamic probability for each domain,

and IBL stands for information bottleneck loss) takes effect, we do an ablation

study on each of them and show results in Table 5.7. Results show that removing

any component will lead to a performance drop, which means each of them does

contribute to the final performance.

5.6 Conclusion

In autonomous driving, applying learned knowledge in a known domain to an

unknown domain is still one of the key challenges due to the variety of the driv-

ing scenarios in the real world (and virtual world). Domain-agnostic learning, or

transfer learning, make it possible to achieve knowledge transfer between different
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domains. In this work, we investigate how training data (in terms of image style and

data amount), network architecture (Batch Norm layers, Adapters), and training

paradigm (finetuning, partially finetuning, reinitialization) influence the domain-

agnostic learning in the end-to-end steering task. Based on the analysis, we pro-

pose a novel domain-agnostic learning framework with (1) domain-specific adapters

and shared modules to separate domain-specific information and task-specific infor-

mation; (2) style-transferred branch to help split domain-specific information; (3)

gradually increased ratio of target domain data in each epoch for better knowledge

transfer from the source to the target domain.

Limitations and Future Works: (1) The style-transferred branch relies on the

style transfer network like CycleGAN. we plan to merge the idea of CycleGAN into

our framework in the future. (2) The distribution of the steering values are highly

unbalanced. We need to explore whether there’s a better training paradigm that

can take advantage of this specific prior.

5.7 Appendix

5.7.1 Style Transfer between Real and Virtual Domain

We show sample images from the datasets R (Real photos in Nvidia dataset),

(Real photos in virtual style generated by GAN), (Real photos in virtual style

generated by color remapping) in the first row from left to right, and V (Virtual

images in Udacity dataset), TC (Virtual images in real style generated by GAN),

(Virtual images in real style generated by color remapping) in the second row from
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left to right.

Figure 5.4: We show sample images from the datasets R (Real photos in Nvidia
dataset), (Real photos in virtual style generated by GAN), (Real photos in virtual
style generated by color remapping) in the first row from left to right, and V (Virtual
images in Udacity dataset), TC (Virtual images in real style generated by GAN),
(Virtual images in real style generated by color remapping) in the second row from
left to right.

5.7.2 Fréchet Inception Distance

We try to evaluate the domain gap with Fréchet Inception Distance (FID) [64],

so that we don’t need to train models when we met new domains. However, we found

it’s not necessary to be a proper metric when evaluating the domain gap for steering

task. As shown in Table 5.8 (in Appendix 5.7.2), the relative order is different from

the actual test results in Table 5.2.
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Model (M) MAR(M)

train(R) 88.36%
train(R1) 32.02%

(a) Single dataset train(V ) 31.16%
train(TC) 26.87%
train(TM ) 25.56%

train(R1 + R) 82.32%
train(V + R) 75.74%

(b) Simply combine train(TC + R) 75.44%
train(TM + R) 76.85%

train(R1)→ train(R) 81.93%
train(V )→ train(R) 83.54%

(c) Finetuning train(TC)→ train(R) 82.70%
train(TM )→ train(R) 79.04%

train(R1)→ ptrain(R) 70.86%
train(V )→ ptrain(R) 73.66%

(d) Partially finetuning train(TC)→ ptrain(R) 77.17%
train(TM )→ ptrain(R) 72.97%

train(R1)→ train(R) 88.71%
train(V )→ train(R) 87.50%

(e) Finetuning with reinitialization train(TC)→ train(R) 83.12%
train(TM )→ train(R) 80.26%

train(R1)→ ptrain(R) 76.94%
train(V )→ ptrain(R) 75.08%

(f) Partially finetuning with reinitialization train(TC)→ ptrain(R) 77.78%
train(TM )→ ptrain(R) 74.28%

Table 5.3: Mean Accuracy comparison with different training paradigms. From (a)
we can verify the existence of a domain gap between the virtual, style-transferred and
real datasets. From (b,c,d,e,f), we find that (e)“finetuning with reinitialization”
outperforms other training paradigms.
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M MAR(M)

(a) Finetuning + reinit header + BN train(V )→ train(R) 80.53%
train(R1)→ train(R) 80.77%

(b) AdvProp BN train(R, V ) 71.22%
train(R,R1) 75.83%

(c) Finetuning + reinit header + LoRA train(V )→ train(R) 81.32%
train(R1)→ train(R) 82.71%

Table 5.4: Mean Accuracy comparison with different network architectures. LoRA
outperform others.
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Model (M) MAR(M)

train(R) 88.36%
train(0.5R) 80.23%

(a) Original network train(0.1R) 65.68%
train(0.01R) 55.41%
train(0.001R) 46.39%

train(R1 + R) 82.32%
train(R1 + 0.5R) 74.07%

(b) Original network, simply merge train(R1 + 0.1R) 61.87%
train(R1 + 0.01R) 44.49%
train(R1 + 0.001R) 33.24%

train(R1)→ train(R) 81.93%
train(R1)→ train(0.5R) 79.94%

(c) Original network, finetuning train(R1)→ train(0.1R) 65.00%
train(R1)→ train(0.01R) 53.06%
train(R1)→ train(0.001R) 38.83%

train(R) 81.33%
train(0.5R) 73.75%

(d) network with BN layers train(0.1R) 62.64%
train(0.01R) 55.98%
train(0.001R) 47.97%

train(R1 + R) 78.45%
train(R1 + 0.5R) 70.95%

(e) network with BN layers, simply merge train(R1 + 0.1R) 62.64%
train(R1 + 0.01R) 53.51%
train(R1 + 0.001R) 48.24%

train(R1)→ train(R) 80.77%
train(R1)→ train(0.5R) 76.36%

(f) network with BN layers, finetuning train(R1)→ train(0.1R) 64.79%
train(R1)→ train(0.01R) 58.92%
train(R1)→ train(0.001R) 53.09%

train(R1, R) 75.83%
train(R1, 0.5R) 73.12%

(g) AdvProp BN train(R1, 0.1R) 55.53%
train(R1, 0.01R) 41.33%
train(R1, 0.001R) 41.13%

Table 5.5: Mean Accuracy of the experiments using different ratio of the original
dataset R, and different experiments of adding R1 to R to improve the performance.
Only the last two rows of part (f) is better than the baseline (last two rows in part
(a)).
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MAR(M) (%) on different angle threshold τ (degree)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 mAcc MSE

Baseline 59.5% 82.1% 93.9% 96.3% 98.6% 86.04% 1.96

DANN [176] 28.9% 52.5% 79.3% 92.2% 97.3% 70.04% 0.58
(a) Domain Adaptation ADDA [177] 33.6% 54.3% 84.4% 93.2% 97.5% 72.6% 0.43

BSP [178] 38.9% 60.4% 87.5% 95.1% 98.4% 76.06% 0.32

DELTA [33] 61.9% 80.9% 93.9% 97.7% 99.2% 86.72% 0.16
(b) Task Adaptation BSS [34] 67.0% 83.4% 93.8% 97.5% 98.8% 88.1% 0.21

StochNorm [35] 53.7% 78.5% 92.8% 97.3% 99.2% 84.3% 0.18

Ours 70.5% 84.3% 93.8% 97.9% 99.4% 89.2% 0.15

Table 5.6: Mean Accuracy comparison with domain adaptation and task adaptation
methods. Our method outperforms others under all metrics.

MAR(M) (%) on different angle threshold τ (degree)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 mAcc MSE

Baseline 59.5% 82.1% 93.9% 96.3% 98.6% 86.04% 1.96

Ours w/o LoRA 58.4% 80.3% 93.4% 97.7% 98.6% 85.68% 0.19
Ours w/o STB 68.0% 81.6% 94.1% 97.7% 99.0% 88.08% 0.16
Ours w/o DP 65.6% 82.2% 93.4% 97.3% 98.8% 87.46% 0.18
Ours w/o IBL 69.3% 84.0% 93.9% 97.5% 99.0% 88.74% 0.18

Ours 70.5% 84.3% 93.8% 97.9% 99.4% 89.2% 0.15

Table 5.7: Ablation study. LoRA is the adapter, STB stands for style transferred
branch, DP stands for dynamic probability for each domain, and IBL stands for
information bottleneck loss.

R V RVCGAN V RCGAN RVCR V RCR

R 0 200.62 226.50 146.03 40.00 265.36
V 200.62 0 117.25 198.12 173.29 107.64

RVCGAN 226.50 117.25 0 152.52 177.01 168.51
V RCGAN 146.03 198.12 152.52 0 119.46 222.60
RVCR 40.00 173.29 177.01 119.46 0 230.15
V RCR 265.36 107.64 168.51 222.60 230.15 0

Table 5.8: Fréchet Inception Distance between different datasets.
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Chapter 6: Inverse Reinforcement Learning with Hybrid-weight Trust-

region Optimization and Curriculum Learning for Au-

tonomous Maneuvering

6.1 Introduction

Autonomous driving generally can be realized via either an end-to-end system

or a mediated-perception approach [179]. The former takes in raw sensor data and

directly output control commands (e.g., steering angles), which usually results in

a succinct training pipeline at the cost of model interpretability. The later decou-

ples perception and navigation, thus offering better model interpretability with en-

hanced driving safety. However, a mediated-perception approach commonly adopts

a planning algorithm for navigating a self-driving car, which can be computationally

expensive, given the requirement of holistic environment information for achieving

global optimality and planning in high-dimensional state space.

We propose an efficient and novel mediated-perception framework for au-

tonomous driving that exploits context-aware multi-sensor perception for inverse

reinforcement learning with hybrid-weight trust-region optimization and curricu-

lum learning (IRL-HC). The perception module interprets unstructured information
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(i.e., images and point clouds) of an environment using multiple sensors, extracts

context-aware information, and produces structured information (e.g., the shape

and position of an object). IRL-HC then takes the structured information along

with expert trajectories as input to learn a control policy for autonomous vehicles

(AV).

Our novel IRL-HC contains two main elements: (a) hybrid-weight trust-region

optimization and (b) curriculum learning. Hybrid-weight trust-region optimization

addresses a fundamental limitation of the original IRL [42]: a uniform prior is im-

posed on all features, which can lead to subpar imitation performance of the learner

to the expert even their feature expectations converge and match [180]. In the con-

text of autonomous driving, since some hard constraints like collision avoidance for

safety and goal-oriented navigation to destination are most critical over other consid-

erations, this limitation due to uniform priors in weight tuning can lead to frequent

collisions. Our method alleviates this problem by imposing a non-uniform prior on

task features and updating the features’ weights using hybrid-weight trust-region op-

timization, which is progressively updated to automate weight-tuning optimization.

This design of hybrid-weight optimization enables the use of both expert demonstra-

tions and domain knowledge for learning an effective policy that takes into account

of both experts (e.g., driver) and desired constraints (e.g., reaching the goal without

collision). The second element of IRL-HC is curriculum learning, which has been

shown effective in improving RL agents’ performance [45]. Our key insight is that

the trust-region is naturally linked to the estimation of the task learning progress—

which can then be used to determine the difficulty of the task curriculum that is
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built on the maximum step size for the learner to progress on the expert’s trajectory.

In summary, we introduce a novel, efficient IRL framework consisting of hybrid-

weight trust-region optimization and curriculum learning (IRL-HC), supported by

a mediated-perception module that provides context-aware multi-sensor perception,

as shown in Fig. 6.1. It offers several advantages:

• Hybrid-weight trust-region optimization improves upon IRL [42] by imposing

non-uniform priors on task-critical features, e.g., collision avoidance and goal-

seeking, incorporating both expert demonstration and domain knowledge to

automate weight tuning effectively;

• Curriculum learning retains important lessons through increasingly difficult

RL to task learning, thus improving overall training efficiency and perfor-

mance;

• Curriculum learning also utilizes the hybrid-weight trust-region optimization

to assess curriculum difficulty;

• IRL-HC is further compatible with domain-dependent techniques, such as

learn-from-accident [48], which generate safe trajectories, further boosting the

overall performance in autonomous driving.

The effectiveness and efficiency of IRL-HC are demonstrated in a variety of ex-

periments. To show IRL-HC can work without perfect perception (i.e., use ground-

truth data), we run IRL-HC in the autonomous system described in Sec. 6.3.1.

Overall, our method can enable the vehicle to drive safely up to 10x further than
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Figure 6.1: System Pipeline (LEFT). At each time step, the vehicle/simulator
generates unstructured data such as images and point clouds. These data are pro-
cessed by the perception module to produce structured data, which are then used
by the IRL-HC module to learn a control policy for autonomous driving. IRL-HC
training process (RIGHT). We compute the expert trajectories offline. Next we
use hybrid-weight trust-region optimization to obtain a new reward function, which
is then used to compute the feature expectation of a learned policy online. The cur-
riculum difficulty will also be updated progressively, according to the trust-region
updating rules that assess the learned task difficulty.

existing SOTA methods, assist in reducing the number of collisions up to 48%, and

2.8x faster training. In addition to the statistical results, we show that IRL-HC can

steer the vehicle to avoid both static and dynamic obstacles, even in the presence

of a narrow passage (see project website).

6.2 Related Work

Various methods [28, 181] have been proposed to address the perception, plan-

ning, and control of an autonomous vehicle (AV). Examples of the end-to-end

approach include end-to-end reinforcement learning [182] and end-to-end imitation

learning [48, 183, 184, 185, 186]. These approaches usually require a large amount

of training data in order to be robust in rare cases, such as pre-accident scenarios.

In addition, the use of deep neural networks in these approaches to directly map
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raw sensor data to control commands can lead to low model interpretability.

Examples of the mediated-perception approach include perception plus mo-

tion planning [187] and perception plus learning-based planning [183]. Because

of the decomposition of perception and navigation, these approaches enjoy better

model interpretability, hence improved driving safety. Recently, Li et al. propose

ADAPS [48], an end-to-end imitation learning framework that enables an AV to

learn from accidents. Compared to ADAPS, our work proposes a new architecture

that can generalize better as it is based on RL rather than supervised learning for

imitating the expert.

As an effective technique for imitation learning, IRL involves two steps: 1)

learning a reward function from experts’ demonstrations and 2) using the acquired

reward function for RL to learn a control policy [42]. To provide some examples,

Sharifzadeh et al. [43] apply Deep Q-Networks to extract a reward function in large

state space. You et al. [44] use deep neural networks to approximate the latent

reward function of the expert and then apply deep Q-learning to obtain the control

policy.

Maximum entropy IRL [188] provides a probabilistic approach based on the

entropy concept. Hierarchical guidance [189] leverages the hierarchical structure of

the underlying problem to integrate different modes of expert interactions. Guided

Cost Learning [190] uses a nonlinear cost function and guided sampling strategy.

GAIL [191] draws the analogy between imitation learning and generative adversarial

networks and develops an effective model-free imitation learning for complex, high-

dimensional tasks. Maximum entropy deep IRL [192] combines neural networks and
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traditional IRL. Another work [193] proposes a scalable IRL algorithm based on

an adversarial reward learning process. Brown et al. [194] study the suboptimal

demonstrations in IRL. Some recent studies [180, 195] explore the feature design in

IRL to better meet human’s intention. Compared to other IRL-based methods, our

approach incorporates both expert demonstrations and domain knowledge to design

an effective initial reward function for obtaining an effective policy via hybrid-weight

trust-region optimization and curriculum learning. Our framework can also be used

with feature design [180, 195] at ease.

Curriculum learning for RL has gained much attention recently [45, 46]. Early

studies use curricula for tasks such as grammar learning [196] and robotics control

problems [197]. Some well-known work such as AlphaGo [47] implicitly use curricula

to guide training. Narvekar et al. [198] propose a meta-MDP to select tasks for the

learning agent. Recently Song et al. [199] propose a three-stage curriculum RL to

train an autonomous racing agent.

6.3 Approach

6.3.1 Framework Overview

Our framework combines context-aware multi-sensor perception and inverse

reinforcement learning with hybrid-weight trust-region optimization and curriculum

learning (IRL-HC). The perception module takes multiple sensors input and pro-

duces structured data, which are then used by IRL-HC to learn a control policy, see

Fig. 6.1 (LEFT).
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We assume that the AV can obtain a global map from an external service,

and compute its position and rotation with on-board GPS and Inertial Measure-

ment Unit (IMU). We further assume that the AV knows beforehand a few sparse

waypoints on its path to the goal, and the task of the AV is converted to reach the

waypoints consecutively.

Our perception module can produce semantic-rich structured data to learn

a reward function by utilizing the context-aware semantic information. Features

with clear semantic interpretations can help construct non-linear features such as

“whether there is a car in front within 3 meters”, resulting in more flexible decision-

making. This is particularly useful considering that IRL restricts the reward function

to be a linear combination of the features.

The IRL-HC training process, shown on the right of Fig. 6.1, consists of an

offline step and an online step. In the offline step, we use a planning algorithm as

the expert to generate driving trajectories. In the online step, we learn the fea-

ture weights with hybrid-weight trust-region optimization given the expert’s policy

and the learned policy at the current iteration and non-uniform prior. Then, we

construct a reward function using the learned feature weights. The difficulty of

curriculum will be updated according to the trust-region updating rule. By further

adopting the notion of learn from accidents [48], we use the resulting (additional)

training data along with the newly constructed reward function for RL to update

the learned policy. Inspired by transfer learning [200], the model parameters from

the previous iteration are used as a starting point in continue training.
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6.3.2 Context-aware Multi-sensor 3D Perception

We simulate three RGB cameras for the front-view, left-view, and right-view,

respectively, as well as a 360-degree Lidar of the AV. We combine one RGB image

and the point cloud on each side to detect nearby vehicles. Then, we merge the

results from all sides to obtain an overall view. The module works as follows.

First, it generates the front-view data, which contain segmentation and depth

maps, and bird’s-eye-view image from the point cloud. By having the calibration

data between the Lidar and camera, we can then align the front-view data with the

RGB images. Next, we combine and feed the aligned front-view data with the RGB

images into the feature extractor to obtain the front-view feature map. We apply the

same procedure for the bird’s-eye-view image to obtain the bird’s-eye-view feature

map. We use the region proposal network (RPN) [201] and detection network from

AVOD [202] to obtain the perception results for the front-view. Similarly, we obtain

the perception results for the left-view and right-view. Finally, we merge all percep-

tion results together using the extrinsic calibration data of the three cameras. The

output of the perception module contains 3D bounding boxes and types of nearby

dynamic obstacles. Our approach can also be extended to detect static obstacles

when needed. The context-aware, multi-sensor 3D perception detects different types

of information to produce features used by IRL.
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6.3.3 IRL with Hybrid-weight Trust-region Optimization

We first review original IRL, point out some issues with IRL, then present

our solution by extending the trust-region optimization to our scenario. To the best

of knowledge, our method is the first one that can take advantages of both demo

(expert data) and domain knowledge (reward function), leading to overall better

performance.

The original IRL achieves imitation learning by first computing the expert’s

feature expectation µ̂(πE) =
1
m

∑m
i=1

∑∞
t=0 γ

tϕ(s
(i)
t ), givenm trajectories {s(i)0 , s

(i)
1 , . . . }mi=1

from the expert’s policy πE, the discount factor γ, and the feature vector ϕ(·). Then,

IRL learns w (w ∈ Rk and ∥w∥1 ≤ 1) given π at the current iteration and πE, and

synthesizes a reward function R(s) = w · ϕ(s), where s is the state of the environ-

ment. Next, the policy π is re-learned using RL. This iterative process continues

until ∥µ(π) − µ̂(πE)∥2 ≤ ϵ. The final policy is selected among all learned policies

from all iterations.

The features used by IRL-HC are based on structured data from the perception

module, which include bounding boxes of nearby vehicles and static obstacles in the

scene. See detailed feature list in Sec. 6.4.

One fundamental limitation of IRL is that it imposes a uniform prior on all

features, causing small weights to be possibly assigned to some crucial features

during the learning process. For example, in the context of driving, we find that the

feature collision can receive a small weight as a result of any collision behavior of the

AV will terminate a training episode. This limitation of IRL can lead to subpar task
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performance (see Sec. 6.4.3). To give an example, the expert can drive the car safely

(without any collision), while a randomly initialized policy can hardly drive the car

far without collision. In this case, the feature expectation of the expert is calculated

using extended, “global” trajectories, while the feature expectation of the learned

policy is calculated using short, “local” trajectories. This discrepancy is likely to

cause some important features to receive small weights during the minimization

process of the feature expectations in IRL. A concrete example of this phenomenon

from our experiments is shown in Table 6.1.

feature left dist. front dist. right dist. ... collision
weight 0.113 0.184 −0.124 ... -0.00000534
µ(πE) 139.14 369.50 25.84 ... 0
µ(π0) 40.31 216.06 142.87 ... 0.005

Table 6.1: Limitations of IRL. IRL learns feature weights w by minimizing the
difference of feature expectation between the expert’s policy µ(πE) and a random
policy µ(π0). While both policies have small expectations for the feature collision,
the actual trajectory from the expert’s policy can be much longer than the trajectory
from a random policy. As a result, IRL assigns a negligible weight to collision (i.e.,
−5.34e− 06).

To alleviate the aforementioned limitation of IRL, we propose an approach

that not only incorporates a non-uniform prior on the features by allowing users

to specify the weights of certain features for ensuring essential properties of a task,

e.g., collision for driving, but also uses a hybrid weight tuning to update the pol-

icy so that the vehicle can adapt to different environments while maintaining de-

sired behaviors. Formally, the overall weights w = [wm, wl] consist of empirically-

initialized weights wm = [w1, . . . , wk] and the weights to be learned from scratch

wl = [wk+1, wk+2, . . . , wn], where n is the total number of features. To achieve an
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optimal policy in diverse environments, we use trust-region optimization [203] to

automatically tune wm by avoiding violent exploratory behaviors. Specifically, in

the ith iteration, we first try to update ϵ and w by solving the following quasi-convex

optimization program:

ϵ(i) = max
w(i+1):∥w(i+1)∥2≤1

∥w(i+1)
m −w

(i)
m ∥2≤∆

{ min
j∈{0,...,i}

(w(i+1))T (µ(πE)− µ(π(j)))}, (6.1)

where ∆ is the trust-region radius (∆ = ∆(i)). The ratio ϵ(i)/ϵ(i−1) is used to

determine the acceptance of the newly updated w. Since the predicted upper bound

of ϵ(i)/ϵ(i−1) is n√
n2+(1−γ)2ϵ2

[42], we set the acceptance condition to

ϵ(i)

ϵ(i−1)
≤ α

n√
n2 + (1− γ)2ϵ∗2

, (6.2)

where α < 1 is the threshold parameter. If the condition is failed, we drop the newly

found w, and update ϵ and w by solving Eq. 6.1 with ∆ = 0. As the last step of

one iteration, we update ∆ as follows:

∆(i+1) =


min(cu∆

(i), bu) Eq. 6.2 met

max(cl∆
(i), bl) Eq. 6.2 failed p times

∆(i) otherwise

(6.3)

where bu and bl are the upper- and lower-bound of the trust-region radius, and

cu > 1 and cl < 1 are the coefficients.

Additionally, IRL retrains π at each iteration, such a process can be inefficient.

In IRL-HC, we improve the training efficiency by using the learned model parameters
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Algorithm 4: Inverse Reinforcement Learning with Hybrid-weight Trust-region Op-
timization and Curriculum Learning (IRL-HC)

Input: expert trajectories
Output: policy π(i)

Initialisation:
Calculate µ(πE) with expert trajectories
Set i = 0, set ϵ, γ, α, bu, bl, cu, cl, p, eu, Nu

Randomly set the model parameters θ(0) for π(0)

Compute µ(π(0))

Set w
(0)
m such that ∥w(0)

m ∥2 < 1 (initial reward weights), w
(0)
l = 0

Compute ϵ(0) = (w(0))T (µ(πE)− µ(π(0))), where w(0) = [w
(0)
m w

(0)
l ]

Set ∆(0), n
(0)
s

while ϵ(i) > ϵ do
Set i = i+ 1
Compute the reward function R = ((w(i−1))Tϕ)

Using R, θ(i−1), and n
(i−1)
s in RL to compute an optimal policy π(i)

Compute µ(π(i))
Solve Optimization 6.1 with ∆ = ∆(i−1), and get solution ϵ(i) at w(i)

if Eq. 6.2 is True then
Accept ϵ(i) and w(i)

else
Reject, solve Eq. 6.1 with ∆ = 0, and update ϵ(i) and w(i)

Set ∆(i) with Eq. 6.3 (trust-region update)

Set n
(i)
s with Eq. 6.5 (curriculum difficulty update)

=0

θ(i) of π(i) at the ith iteration as the initial parameters for training π(i+1) at the

(i+ 1)th iteration. The whole learning process stops when ∥µ(π)− µ̂(πE)∥2 < ϵ.

In many cases, we can design a reward function to incorporate domain knowl-

edge. For example, in autonomous driving we want the vehicle to reach the goal

without collision; an example reward function could be r = w1g−w2c, where g is the

“goal-reaching” flag, c is the collision flag, and w1 and w2 are positive coefficients.

In complex scenarios such as our city environment, however, such a naive reward

function does not work well: sometimes learned policy will let the car stop there

forever to avoid collision, or run in a circle in a very small area (keep running with-
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out collision but cannot achieve the goal). In this case, we can learn from expert

demonstrations to complete the task.

We can represent any reward function as a sum of its linear/nonlinear compo-

nents. To set the initial reward function for IRL-HC, we add each component of the

reward function into the feature vector ϕ(·) and add the corresponding coefficient

into empirically-initialized weights wm. For these components, since they already

contain prior information, we do not want to aggressively update them (in fact in

the beginning of IRL, aggressively updating feature components can deteriorate the

learning performance because the initial policy is unstable)—this is achieved via

hybrid-weight trust-region optimization.

Key Insight: Our method is different from manually setting initial weights

for IRL. Notice the IRL update the feature weights by solving an optimization

without the previous feature weights (although the previous feature weights will

influence the feature expectation of the learned policy in the optimization implicitly,

the uncertainty of RL process will reduce such relation). This means the updated

weights can be quite different from the previous weights. Adding the trust-region

mechanism can bound the weights during the entire IRL process while allowing tuning

within a safe region. In addition, our method is different from simple re-weighting

mechanism since ours contains an optimization under different constraints for two

sets of parameters.
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6.3.4 Curriculum Learning with Trust-region

Another problem of IRL is efficiency, since IRL contains multiple RL training

process. We use Sequence Curriculum [45] in IRL-HC to help train IRL, aiming to

improve the performance as well as the efficiency. Observing that the trust-region

implicitly reflects the current learning progress, we use the trust-region updating

criteria (Eq. 6.2) to determine when to increase the curriculum difficulty. Specif-

ically, we use the maximum step number of each trajectory ns as an curriculum

difficulty variable (large ns leads to an increase of the state space, thus increasing

the learning difficulty). Meanwhile, we also monitor the safe step number of learned

policy at each iteration to show the effectiveness of the policy learned so far:

nlp ≥ β min(n(i)
s , nE) (6.4)

where β < 1 is the threshold parameter, nlp is the safe step number of the trajec-

tory generated by the learned policy, nE is the safe step number of the trajectory

generated by the expert. ns will be initialized with a small number and then in-

creased with the following formula after each round of hybrid-weight trust-region

optimization:

n(i+1)
s =


min(eun

(i)
s , Nu) Eq. 6.2 and Eq. 6.4 met

n
(i)
s otherwise

(6.5)
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where eu > 1 is the coefficient and Nu is the upper-bound of the ns. Notice the

curriculum is designed to be gradually harder, so ns will not decrease, which is

different than the trust-region radius. After the update of ns, the RL process will

use ns and the new reward function given by hybrid-weight trust-region optimization

to update the control policy. The IRL-HC algorithm is shown in Algorithm 4.

In addition, as the task difficulty gradually increases, we reuse learned parameters

in continue training. This approach enables the transfer learning between tasks in

curriculum learning and improves the performance of the learning agent.

6.3.5 Learn from Accidents

IRL-HC is also compatible with other domain-dependent techniques. Inspired

by ADAPS [48], we adopt learn from accident to improve the training efficiency.

Specifically, when the car crashes during the online training process, we will back-

track for certain frames and let the expert drive for certain frames to avoid collision.

Both the crash and collision-free data will be (re-)used to train the policy. Es-

sentially, by imposing a non-uniform prior on extracted features, we can introduce

certain expert experience to the learning process directly. Lastly, the process of

learn from accident can result in both negative examples and positive examples in

learning, leading to better performance and faster convergence.
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6.3.6 Framework Design

We have introduced the key components of our framework and here we provide

an integrated interpretation as well as module relation (see Fig. 6.2). Context-aware

multi-sensor perception converts raw sensor data to structured information, provid-

ing flexibility in choosing features to be used in the hybrid-weight trust-region op-

timization. Next, domain experience (via non-uniform prior) is incorporated by the

optimization program into IRL for improving learning performance, and provides

difficulty measurements for curriculum development. Curriculum learning then gen-

erates tasks with increasing difficulty to further accelerate the convergence rate of the

learning agent. Lastly, learn from accident provides data for corner cases, balancing

the overall training data distribution.

6.4 Experiments and Results

In this section, we detail our experiments and results. All experiments are

conducted using Intel(R) Xeon(TM) W-2123 CPU, Nvidia GTX 1080 GPU, and

32G RAM.

6.4.1 Overall Performance

We compare IRL-HC to the original IRL, Generative Adversarial Imitation

Learning (GAIL) [191], adversarial inverse reinforcement learning (AIRL) [193], and

end-to-end imitation learning (IM) [58]. We use deep Q-learning with [164,150] hid-

den units in each of the 2 dense layers and 20% dropout rate in all RL-based methods

177



Figure 6.2: Module relation of our framework. The perception module con-
verts sensor data to various features, which serve as input to the hybrid-weight
trust-region optimization. Subsequently, curriculum learning is adopted to generate
tasks with increased difficulty to train the learning agent. The learn from accident
process further provides training data of corner cases to balance the data distribu-
tion, leading to overall better performance.

except for GAIL, where we use TRPO [204] as proposed in the original paper. We

also experiment with Q-learning using more complex network architectures up to 6

hidden layers, but found [164,150] with 2 hidden layers works the best. The features

used in IRL-based methods are listed in Fig. 6.3.

The action space contains 25 discrete {rotational speed, acceleration} action

pairs using 5 levels of rotational speed (steering angle) and 5 levels of acceleration

(throttle value and break value). We set policy similarity threshold ϵ = 0.1 and

discount factor γ = 0.99 for both IRL and IRL-HC. We collect 20,000 steps of the

expert trajectory and train all methods for 24 hours (we also observe that training 12

more hours will not improve the performance). For IRL-HC, we set the trust-region
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Figure 6.3: Features used in IRL and IRL-HC (46 in total).

acceptance coefficient α = 0.9, trust-region increasing and decreasing coefficients

cu = 1.1, cl = 0.9, upper- and lower-bound bu = 0.05, bl = 0.001, and consecutive

rejection number p = 5. We empirically initialize weights for the first 4 features in

Fig. 6.3 with values [0.4, 0.01, -0.1, -0.8] (represents the initial reward function),

and let IRL-HC learn the weights of depth- and object type-related features. The

perception network is trained using 10,000 frames of simulated data.

Our evaluation criterion is the distance travelled by the AV under a fixed num-

ber of steps without any collision. The AV will stop if it finishes 1, 000 steps or is in

collision. Since the AV is assumed to know beforehand a series of waypoints on its

path to the goal, we compute the score based on the number of waypoints reached
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by the AV:

sfinal = (nreached + (1− distnext
distlast next

))× sunit, (6.6)

where sfinal is the final score, nreached is the number of waypoints reached, distnext is

the distance between the last position on the car’s trajectory and the next waypoint

on the car’s route, distlast next is the distance between the last reached waypoint to

the next waypoint, and sunit is the unit score by reaching a waypoint, which is set to

100. Note that a negative score may appear if distnext > distlast next, which happens

when the car drives away from the next waypoint. We use three scenes shown in

Fig. 6.4 for evaluation (test field about 160m x 160m):

• Scene 1: open space with random moving vehicles;

• Scene 2: city street with static obstacles;

• Scene 3: city street with random moving vehicles and static obstacles.

Figure 6.4: Screenshots of the three scenes used in our evaluation. From left to
right: Scene 1, Scene 2, Scene 3.

6.4.2 Comparison with Other SOTA Methods

We record the final scores sfinal,2 and sfinal,3 from Scene 2 and 3; and average

trajectory length lfinal,1, lfinal,2, lfinal,3 from Scene 1, 2, and 3. Because sfinal is
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computed based on the waypoint position and there is no explicit waypoint in Scene

1, we do not compute sfinal,1. All data are obtained by learning 3 times and testing

100 times with randomly initialized scene configurations such as the start position

and direction of the AV, and the start position, direction and speed of obstacle

vehicles. Our method achieves the highest scores and can enable the AV to drive

safely 10x further (and longer) than the other methods. The full results are shown

in Table 6.2.

Method sfinal,2 sfinal,3 lfinal,1 lfinal,2 lfinal,3
IM [58] 77.4 60.1 105.6 m 53.7 m 44.7 m
IRL [42] 110.7 59.7 228.8 m 69.4 m 33.2 m
GAIL [191] 103.0 52.8 49.1 m 69.9 m 35.1 m
AIRL [193] 119.9 83.6 74.1 m 73.6 m 50.7 m
Ours 203.2 179.6 279.1 m 733.5 m 335.9 m

Table 6.2: Performance of IRL-HC vs. other SOTA methods, using the
score defined in Eq. 6.6 and safe-trajectory length. Our method not only achieves
the highest scores but also enables the AV to drive safely 10x further than the other
methods.

We also compare performance between methods using reward functions vs.

expert demonstration in Table 6.3. The reward function for RL is the same as the

initial reward function for our method. IRL with only expert data cannot learn well

either, while our method with both expert data and reward functions performs the

best.

The analysis of the results shown in Table 6.2 and Table 6.3 is the following. RL

relies on a good reward function constructed using domain knowledge, which can be

difficult to obtain when addressing complex control tasks. IM does not generalize

well to new environments since it “copies” the expert trajectory. IRL, GAIL, or
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Method sfinal,2 sfinal,3 lfinal,1 lfinal,2 lfinal,3
RL (R) 99.8 59.1 72.9 m 59.7 m 39.7 m
IRL (E) 110.7 59.7 228.8 m 69.4 m 33.2 m
Ours (E+R) 203.2 179.6 279.1 m 733.5 m 335.9 m

Table 6.3: Overall performance comparison between methods using re-
ward function vs. expert data. RL with reward function (R) or IRL with only
expert data (E) does not perform well on the task, while ours with both (E+R)
performs the best.

AIRL only considers the expert trajectory while our method is able to combine ex-

pert trajectory and domain knowledge for learning. The hybrid-weight trust-region

optimization enables our method to adapt to different environments. The curricu-

lum learning further enables the learning agent to behave in gradually more difficult

tasks while the reuse of the model parameters helps improve training efficiency. In

addition, learn from accidents provides the RL agent with more training data for

corner cases. Each above-mentioned element has contributed to the performance

boost of the learning agent, thereby resulting in considerably better overall perfor-

mance than other methods shown in Table 6.2. Note that all these analyses are not

restricted to the autonomous driving task but likely to be relevant for other robot

learning tasks.

6.4.3 Ablation Study

Here, we first show the effectiveness of individual components of our frame-

work in Table 6.4. H, HC, LfA stand for “hybrid-weight trust-region optimization,”

“hybrid-weight trust-region optimization and curriculum learning,” and “learn from

accidents,” respectively. Then, we show the combination of all components leads to

182



the best performance. Note that the experiment of “IRL + curriculum learning” is

omitted since the curriculum design depends on the trust-region optimization.

Method sfinal,2 sfinal,3 lfinal,1 lfinal,2 lfinal,3
IRL [42] 110.7 59.7 228.8 m 69.4 m 33.2 m
IRL + H 130.7 103.4 235.6 m 140.4 m 133.9 m
IRL + HC 174.9 137.4 253.8 m 305.6 m 202.8 m
IRL + LfA 124.8 84.6 241.4 m 103.6 m 61.5 m
Ours (IRL+ALL) 203.2 179.6 279.1 m 733.5 m 335.9 m

Table 6.4: Ablation study of individual components. The combination of all
components leads to the best overall performance.

Next, we show the effectiveness of the main attributes, i.e., hybrid-weight

trust-region optimization and curriculum learning, using the number of collisions

encountered by the vehicle. To be specific, we count the number of collisions from

the original IRL, IRL+H, and IRL+HC by running all approaches for 10,000 steps.

As shown in Table 6.5, IRL+HC can reduce the number of collisions up to 48%.

Model Scene 1 Scene 2 Scene 3
IRL 35 58 111
IRL+H 33 41 93
IRL+HC 25 30 78

Table 6.5: The number of collisions in different scenes over 10,000 steps:
original IRL vs. IRL+H vs. IRL+HC. IRL+HC (our approach) can reduce the
number of collisions up to 48%.

Except for performance, curriculum learning in our approach also aims to

improve training efficiency. From the results shown in Fig. 6.5, we can see that by

having this attribute, we can achieve comparable model performance at 2.8x faster.
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Figure 6.5: Training efficiency comparison. Using curriculum learning, we can
achieve comparable score (model performance) 2.8x faster.

6.4.4 Demo Driving Cases

Our method can enable safe autonomous driving by avoiding both static and

dynamic obstacles. We show the results of some driving cases achieved by our

method in Fig. 6.6. The full demo video can be found on the project website.

In Fig. 6.6(a), we show that our method can steer the AV to make a left turn

around the static obstacle while maintaining safe driving; In Fig. 6.6(b), we show

that our method can lead the AV to avoid both static and dynamic obstacles. In

particular, the AV (in green) steers to the right to avoid another vehicle coming

from the opposite direction while moving away from the static obstacle; Lastly, we

show that our approach can avoid multiple dynamic obstacles in Fig. 6.6(c), where

the AV (in green) is able to make a left turn to pass a narrow space between two

other vehicles.
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6.5 Conclusion and Future Work

We propose a framework that utilizes context-aware multi-sensor perception

to enable inverse reinforcement learning with hybrid-weight trust-region optimiza-

tion and curriculum learning (IRL-HC) for autonomous driving. The hybrid-weight

trust-region optimization empowers the network to incorporate both expert demon-

strations and domain knowledge into learning. The curriculum learning enables the

vehicle to perform well gradually on a series of increasingly difficult tasks. The pro-

cess of learn from accidents further provides our learning agent with training data

on edge cases to improve its task performance. We evaluate our approach using a

variety of experiments, over the entire algorithm, and perform ablation study on

the contribution of each individual component. As shown in all comparisons, our

method outperforms the state-of-the-art methods on all measures.

Limitations and Future Work: First, we observe that the training results

are relatively sensitive to the initial conditions. Second, our approach inherits the

limitations of IRL, for example, information loss as a result of encoding expert

trajectories into a single feature expectation. In the future, we hope to alleviate

the information loss issue. Finally, we plan to test our approach in dense virtual

traffic [205] reconstructed using real-world traffic data [206, 207, 208].

185



Figure 6.6: Driving case analysis. (a) Static obstacle avoidance. Our method
can lead the AV to make a left turn to avoid a static obstacle while maintaining
safe driving. (b) Static and dynamic obstacle avoidance. The AV (in green)
can avoid another vehicle (in yellow) coming from the opposite direction by steering
away from the static obstacle. (c) Collision avoidance with multiple dynamic
obstacles. Our method can direct the AV (in green) to avoid all nearby vehicles
even when a narrow passage is presented.
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Chapter 7: Conclusion

In this dissertation, I proposed various methods for improving the robustness,

generalizability, and performance of autonomous driving from data in the front-end

and policy in the back-end. These methods enable (1) robust autonomous driving

by sensitivity analysis and adversarial training, (2) cost-effective autonomous driv-

ing by distilling knowledge from multi-modality to single-modality, (3) generalized

autonomous driving by employing transfer learning from virtual to real and from

real to real environments, and (4) better policy learning in autonomous driving

through inverse reinforcement learning with hybrid-weight trust-region optimiza-

tion and curriculum learning. The effectiveness and accuracy of these approaches

have been demonstrated through extensive experimentations. Overall, the proposed

works greatly boost the robustness and generalizability of autonomous driving.

7.1 Summary of Results

Chapter 2 first analyzes the influences of different image-quality attributes. By

using Fréchet Inception Distance (FID) as a unified metric, it conducts sensitivity

analysis using Mean Accuracy (MA) vs. FID, or in the MA-FID space. Leveraging

the insights gained from the sensitivity analysis, an effective and efficient training
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method to enhance the generalization of learning-based steering under various im-

age perturbations has been proposed. This method can be readily extended and

applied beyond the set of factors and learning algorithms investigated in this study,

as well as other multimodal sensor data and tasks. In addition to the significant

improvement in the task performance on the base datasets, performance in datasets

with a mixture of perturbations and previously unseen adversarial examples has also

been remarkably enhanced.

Chapter 3 introduces ’Auxiliary Modality Learning (AML)’. It first formal-

izes the concept of AML in terms of types of auxiliary modality and architectures

for AML, then analyzes how types of auxiliary modality and architectures can af-

fect AML performance on a single task and across tasks. Also, the effectiveness of

AML from optimization and data perspectives has been assessed to provide theo-

retical support for AML. Based on the aforementioned findings, we propose a novel

method, Smart Auxiliary Modality Distillation (SAMD), to first determine the most

suitable auxiliary modality, and then employ a special auxiliary modality distilla-

tion to enable the teacher network to be aware of the student’s status, leading to a

better distillation that achieves the SOTA performance.

Chapter 4 studies the problem of how to introduce varying amounts of auxiliary

modality data to boost the performance of single modality learning in an end-to-

end steering task. It proposes a new framework, AMD-S-Net, which can take

in the main modality and varying amounts of auxiliary modality data to address

this problem. In addition, a novel training paradigm that utilizes reset operation

to facilitate knowledge transfer has been proposed. The AMD-S-Net and training
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paradigm can offer superior performance compared to other SOTA methods in the

field.

In autonomous driving, applying learned knowledge from a known domain to

an unknown one is still one of the key challenges due to the variety of driving sce-

narios in both real and virtual environments. Domain-agnostic learning, or transfer

learning, makes it possible to achieve knowledge transfer between different domains.

Chapter 5 investigates how training data (in terms of image style and data amount),

network architecture (Batch Norm layers, Adapters), and training paradigms (fine-

tuning, partially finetuning, reinitialization) influence domain-agnostic learning in

the end-to-end steering task. Based on the analysis, we propose a novel domain-

agnostic learning framework with (1) domain-specific adapters and shared mod-

ules to separate domain-specific and task-specific information; (2) style-transferred

branches to help segregate domain-specific information; (3) a gradually increasing

ratio of target domain data in each epoch for better knowledge transfer from the

source to the target domain.

Finally, Chapter 6 proposes a framework that utilizes context-aware multi-

sensor perception to enable inverse reinforcement learning with hybrid-weight trust-

region optimization and curriculum learning for autonomous driving. The hybrid-

weight trust-region optimization empowers the network to incorporate both expert

demonstrations and domain knowledge into learning. The curriculum learning en-

ables the vehicle to perform well gradually on a series of increasingly challenging

tasks. The process of learning from accidents further provides our learning agent

with training data on edge cases, thereby enhancing its task performance. The
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proposed method has been evaluated using a variety of experiments over the en-

tire algorithm, and an ablation study has been performed on the contribution of

each individual component. As shown in all comparisons, our method consistently

outperforms the state-of-the-art methods on all measures.

7.2 Limitations

While the proposed methods have demonstrated effectiveness, they have four

key inherent limitations.

First, the driving domain prior is not fully utilized. A common limita-

tion of learning-based methods is the lack of explanation. If domain knowledge is

applied to the learning models, the system could be more explainable. Given the

specific nature of autonomous driving, each driving task has its specific priors. For

instance, in the end-to-end steering task, the label distribution from a natural driv-

ing trajectory will be extremely imbalanced (with the steering angle close to zero in

most cases). The dataset and data distribution are manually made more balanced

in our work during the pre-processing, implying that a significant amount of data

with near zero steering angle is dropped, in which valuable driving environment

information is contained. This pre-processing may potentially impede performance

improvement. Therefore, finding effective ways to utilize such priors is an area to

be investigated

Second, the network architecture could be optimized. The proposed

methods are mainly focused on the framework level. While users can take advantage
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of the flexibility of changing the backbone, better network architecture designs may

exist for a specific task in autonomous driving. In addition, in the works about

auxiliary modality learning, the teacher model should be a “supermodel” of the

student. While performance benefits from the supermodel condition can be achieved,

the flexibility of model choice would be lost.

Another limitation pertains to the desire for higher training efficiency. My

work mainly explores additional data from different perspectives to boost perfor-

mance. However, generally speaking, more data will lead to more computation,

e.g., adversarial training with data augmentation, auxiliary modality learning with

data from other modalities, and transfer learning with data from other domains,

will all lead to more training time compared to vanilla training. Furthermore, in the

case of policy learning, the training efficiency problem is naturally inherited from

the original inverse reinforcement learning, which contains multiple rounds of rein-

forcement learning. Balancing the trade-off between benefits from additional data

and the associated time costs remains an open challenge.

Finally, my work has not been implemented on a real-world autonomous

vehicle. It’s challenging to obtain an autonomous vehicle for testing, due to logisti-

cal issues like financial implications or legislative constraints. Nevertheless, in order

to build a powerful autonomous driving system, it is necessary to test algorithms

on a real automobile, as both datasets and simulators are too ideal compared to the

real-world environment, in which multiple factors like road conditions, hardware

conditions, and other drivers’ behavior are involved.
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7.3 Future Work

Based on the limitations discussed in Section 7.2, there are several possible

future directions.

Driving domain priors. Further research can be conducted to utilize the driving

domain priors to enhance the explainability and performance of the learning-based

autonomous system. These may include exploring specific training paradigms, net-

work architectures, and loss functions – all of which are tailored to address the

label distribution prior in the steering task. Additionally, the integration of driving

knowledge to improve robustness, such as distinguishing perturbations on the road

from those on roadside buildings, can be investigated. Furthermore, studying the

selective sharing and distillation of information between modalities and domains can

help establish a better autonomous system.

Network architecture. Existing common network architectures are usually de-

signed for classic computer vision tasks initially, e.g., classification and segmenta-

tion. However, end-to-end driving involves both perception and control. While

classic networks can be used in this kind of integrated tasks, it remains an open

question whether there is a more efficient network that can combine vehicle dynam-

ics and perception. Moreover, in my proposed auxiliary modality learning methods,

the teacher model should be a “supermodel” of the student so that it can be aware

of the student’s status, a condition very strict for general knowledge distillation.

Further exploration could focus on whether there are less constrained conditions
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capable of producing a similar effect or other architectural conditions capable of

achieving better performance.

Training efficiency. Multiple topics may be explored on improving training ef-

ficiency. From the perspective of input data, it can be investigated whether it is

possible to reduce the size of input data, such as lowering image resolution, while

maintaining comparable performance. From the network architecture perspective,

the search for a more compact network architecture with fewer parameters but sim-

ilar performance holds promise. From the training paradigm perspective, a more

efficient way of training the network, such as dynamically selecting a training batch

with the greatest performance improvement, can be studied. Lastly and from the

optimization perspective, a better optimizer that accelerates model convergence is

an avenue for further study.

Real-world autonomous vehicle. A direct solution for addressing this problem is

to pursue collaboration or employment opportunities in autonomous driving compa-

nies. However, this solution may not be accessible to all students. An alternative is

to conduct research on more advanced simulators with the latest AIGC technologies

and more comprehensive physical-based models, or on robots with similar dynamic

systems to cars.

Summary. To conclude, my future work will contain explorations on driving do-

main priors, network architecture, training efficiency, and real-world autonomous

vehicle, to further extend my current work and make future autonomous driving

systems more robust, efficient, safe, and affordable.
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