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ABSTRACT our recent DRAM study compares the performance of sev-
eral contemporary DRAM architectures, including FPM,
This paper presents initial results in a study of organization-EDO, Synchronous, Enhanced Synchronous, SLDRAM,
level parameters associated with the design of the primaryRambus, and Direct Rambus [5]; one of its primary conclu-
memory system—the DRAM system beneath the lowest lewsbns was that present bus architectures are becoming a bot-
of the cache hierarchy. These parameters are orthogonal tdleneck.
architecture-level parameters such as DRAM core speed, bus As a result, we have been studying bus and memory-con-
arbitration protocol, etc. and include bus width, bus speed roller organizations and have developed a simulation frame-
number of independent channels, degree of banking, readork for placing disparate DRAM architectures on the same
burst width, write burst width, etc; this study presents thefooting. The model defines a continuum of design choices
effective cross-product of varying each of these parameterthat includes most contemporary DRAM architectures such
independently. The simulator is based on SimpleScalar 3.0as Rambus, Direct Rambus, PC-100/133/266 SDRAM, etc.
and models a fast (simulated as 2GHz), highly aggressiv&sing this framework, we have investigated the organiza-
out-of-order uniprocessor. The interface to the primary memdtional parameters of memory systems such as bus width, bus
ory system is fully non-blocking, supporting up to 32 out-speed, number of independent channels, logical organization
standing misses at both the level-1 and level-2 caches. of channels, degree of banking, degree of interleaving, burst-
Our simulations show the following: (a) the choice of pri- mode vs. packetized access, read burst width, write burst
mary memory-system organization is critical, as it can effecwidth, split-transaction vs. pipelined buses, symmetric vs.
total execution time by a factor @ for a constant CPU  asymmetric read/write request shapes, etc. We label these as
organization and DRAM speed; (b) the most important fac-‘organizational” parameters because they are design choices
tors in the performance of the primary memory system are théhat can be made independently of the architecture of the
channel speed (bus cycle time) and the granularity of datdDRAM core.
access, the burst width—each of these can independently In this paper, we present the simulation framework and an
affect total execution time by a factor 2k; (c) for small initial study of different organization-level parameters
bursts, multiple narrow independent channels to the memorincluding bus speed, bus width, number of independent chan-
system exhibit better performance than a single wide chanrels, degree of banking, and read/write burst width; despite
nel; for large bursts, channel cycle time is the most importanthe large range covered in this study, it really only begins to
factor; (d) the degree of DRAM multi-banking plays a sec-explore the space of memory-system organizations. We
ondary role in its impact on total execution time; (e) the opti- model a high-performance uniprocessor system (2GHz out-
mal burst width tends to be high (large enough to fetch an L2f-order superscalar CPU with lockup-free L1 and L2 caches
cache block in 2 bursts) and scales with the block size of thEl1]) and use the more memory-intensive applications in the
level 2 cache; and (f) the memory queue sizes can b8PEC’95 integer suite. In this study we ask and answer the
extremely large, due to the bursty nature of references to théollowing questions (clearly, our results and conclusions are
primary memory system and the promotion of reads ahead afependent on our system configuration and choice of bench-
writes. Among other things, we conclude that the schedulingnarks):
of the memory bus is the primary bottleneck and that it should

be the focus of further study. How important are the design choices made at the

organization level of the primary memory system?

1 INTRODUCTION Holding constant the CPU architecture, the L1/L2 cache

organizations, the DRAM architecture, and the DRAM
The expanding performance gap between processor speeds speed, the choices made at the organization level can
and primary memory speeds has prompted a number of stud- affecttotal execution timby a factor of 3x. The choices
ies in DRAM systems. These studies range from memory- of memory-system organization can affect the memory
controller design [13, 12, 16, 4, 7] to integrating the DRAM  overhead by a factor of 10x, but much of this overhead is
core with the processor core for improved memory band- hidden behind program execution. Clearly, the choices of
width and power consumption [3, 14, 10, 6, 9]. Additionally, ~ organization are extremely important.



- What are the most significant organizational parameters optimal burst width scales with the level 2 cache block size,
that affect performance of the primary memory system? even the organization of the caches must play a role in the

. . : design of the primary memory system.
Holding other factors constant, the read/write burst width ; L
(the granularity of data access) can be responsible for Second, the large degrees of internal banking in many of

differences in total execution time of 3x; the cycle time of today's high-performance DRAMS (€.g. 16 banks in Direct

: Rambus DRAM), while perhaps necessary from an imple-
the memory channel can be responsible for a factor of 2x; entation standpoint, might be unnecessary from a perfor-

the number of independent channels connecting the CI:’ITmance standpoint. For the benchmarks studied, relatively low

::%;t:]egeDEﬁzhga)c%]tr?grrsgrp;mnzltzlfs fg:eargggz);gggcfeo ; degrees of internal banking—in the range of 2x to 4x—are all
. o I that is necessary to achieve good performance.
0,
difierences in total execution time of less than 15%. Last, we did not place any restrictions on the size of the
« How does the degree of banking affect performance? memory controller’s request queue. Given that the combina-
tion of an 8-byte burst and a 128-byte cache block produces

Surprisingly, the degree of banking has little impact on . .
total execution time. While the memory-system overheadé6 requests per L2 read miss, a system with 32 MSHRs can

can decrease 10-20% by increasing the number of bank i\r/emL:aF:jif rr? gznglfgsr;a;db'g?stres?;:;t?’vg] ;gsvn:;glﬁgjéﬁgﬁ'
Eg[ﬂcnhdag%e&b:g:cnu?iéhm.?ﬁg r?;:hrg éﬂﬂg\fgzm IS hlddenqueue sizes (up to tens of entries, down to 1 or O on average).
improvement in total e>.<ecution time By contrast, for small burst sizes, we frequently saw queue
P ' lengths in the tens of thousands, which is due to the fact that
«  What are the performance trade-offs between the numbewrite requests can be stalled for arbitrarily long periods of
of independent channels, the channel width, the channeltime if a string of read requests appears. Future work will
speed, and the total system bandwidth (number of look at the effects of a finite queue size.
channels< channel widthx channel speed)? As previously mentioned, one of the primary results from
. 5 . our prior work was that present bus architectures are becom-
As one might guess, the total per-channel bandwidth (busing a bottleneck. This study comes to the same conclusion.

width x bus speed) is often more important than the ; . T i
choice of either bus width or bus speed, because it takesour observations that small bursts require multiple indepen

the same amount of time to send 128 bits down a 16—bit,g$r;tn?2|?nbr:jerlsst Sfo(r)r?o: dSiﬁeILorcrEggﬁzlstjog%isteileew;séeagﬂrg
800MHz channel as a 128-bit, 100MHz channel. 9 p :

Fowever,there are counterexamples. Whereas, for agivefy Y s 0 T PRI AU SO e OO T8
burst size, performance is not particularly sensitive to 99 9

bandwidth, it is very sensitive to channel width or speed: }:ﬁfﬁgrigms’thgﬁrczgiirglaggﬂg\}v?gtthczﬁnnglsts?ﬁ;{dt\fgn dtiaf?errr;?]rte
for a given burst size, doubling the memory system’s P 99

bandwidth can occasionallycreaseexecution time, :igﬂg?rtﬁg?ntfanvéw dtiq\Lljv?tlh k;ﬁgdg’va'g;tz dde%rggto?(:;%ecsizﬁgy
while changing the number of channels, the speed of a : . :
channel, or the width of a channel (and at the same timeThese results all point to bus scheduling as the bottleneck.

holding bandwidth constant) can often reduce total Future work will be to investigate this more closely.

execution time by a significant amount. 2 SIMULATION FRAMEWORK &

We also make the following observations. First, and most EXPERIMENTAL METHODOLOGY

importantly, there is a very complex tradeoff between the

optimal burst size and the optimal system bandwidth configu2.1  High-Performance Memory Systems Primer,

ration (number of channels, channel width, channel speed). Briefly

The optimal burst size is wide enough to fetch an L2 cache

block in two requests (e.g. 64-byte burst for a 128-byte L2High-performance memory systems are not structured as if

block size). Given a fixed burst size, the optimal choice ofeach DRAM is connected directly to the CPU; there are usu-

system bandwidth configuration changes dramatically fromually several layers of memory controllers that serve to reduce

large burst sizes to small burst sizes: for example, what ishe amount of time spent on an address or data bus. Typically,

good for large bursts (few independent channels) is the worghere is a memory controller ASIC that is integrated onto the

choice for small bursts, and what is good for small burstsDIMM itself that performs theRAS andCAS commands—

(many independent channels) is the worst choice for largevhat is usually called “the memory controller” is only

bursts. Because the interactions between system configureesponsible for scheduling requests to the DIMMs over the

tion and burst size can affect system performance by up to memory channel; the controller does not usually control the

factor of three, it is critically important to design the entire DRAMs directly. This enables a memory system to have sev-

memory system to fit together—no one component of theeral independent banks that can be active at the same time,

memory system can be optimized in isolation. Given that theenabling relatively full utilization of the data bus, even though

the time it takes to get data out of the DRAM core is far

1. Note that this term does not imply that the model is a burst-mode modelIonger than the bus transmission time. If there were only one
The term refers to the granularity of data access; for example, Direct bank per memory channel, there could be no such overlap,
gg?&ussshuish eg gasclsatiAZ&do?E/;gé%&rfﬁg\;vgsegpﬁgfgnt&gﬁrstc-):pode and the fastest rate at which requests could be serviced would
access is 128 bits (16 bytes). Thus, it would be r}\odgled as hgving a 1&)_6 t_he time to pull data from the DRAM core. For more infor-
byte burst width. mation, see [1, 8, 15].
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Figure 1: Channels and banks.  This study looks at varying such 0
parameters as the number of independent channels and the number of 02 04 0.8 1.6 32
gl;jrtlelgendent DRAM banks attached to each channel. C = CPU, D = DRAM Channel Bandwidth (GB/s = Width * Speed)

Figure 2: Performance as a function of bus width and bus speed.
Though there is up to a 5% difference between different combinations of
2.2 Channels and Banks bus width and bus speed that yield the same bandwidth, we cut the number
of combinations simulated to reduce simulation time.
The fundamental idea in this work is to define a model for the
primary memory system that represents most DRAM organiure 2, there is a 5% performance range between a 1byte bus
zations in existence, including burst-mode organizations suctunning at 800 MHz vs. a 2byte bus at 400MHz vs. a 4byte
as SDRAM and packetized organizations such as Rambusus at 200MHz vs. an 8byte bus at 100MHz, with the highest
(these being the two primary competing commercial stanfrequency bus yielding the best performance. To reduce the
dards), as well as almost everything else in between. number of simulations run for this paper we simulated the
Several example memory-system organizations that cafollowing combinations:1x200, 1x400, 1x800, 2x800, 4x800,
be represented by our model are illustrated in Figure 1. A sin8x800 (bandwidths from 200MB/s to 6400MB/s).
gle DRAM device can handle one request at a time and pro-
duces a certain number of bits per request: this is the devic&.3  Burst Timing
level transfer width. DRAM devices are ganged together into
banks, each of which is independent and can service a diffeFFor the DRAM core speed, we use parameters from the latest
ent request than all other banks at any given moment. ThEDRAM, which has reasonably fast timing specifications and
bank is the smallest unit of granularity represented in thisgs common to PC-100 and Direct Rambus designs. This gives
model. Whether a “bank” is a single physical device or a subus the read and write bus and bank occupancies shown in Fig-
component within a single physical device need not be specidre 3, which are similar to those reported in the literature [1,
fied. A single bank has a transfer width at least as wide as th8, 15]. The figure presents numbers for burst widths equal to
data bus. Each channel is a split-transaction address-bus/dathe data bus width, twice the bus width, and four times the
bus pair and is connected to potentially multiple banks, eacbus width. A burst is the smallest atomic transaction size—all
of which is operated independently of the others; using multitead and writes requests are processed as an integral number
ple banks per channel supports concurrent transactions at tloé bursts, and the bursts of different requests may be multi-
channel level. The CPU connects via an on-board memorplexed in time over the same channel. We model the bus turn-
controller to potentially multiple channels, each of which isaround time as a constant number of bus cycles; for this study,
operated independently of the others; using multiple channelse used 1 cycle.
supports concurrent transactions at the DRAM subsystem Note that this interface model covers burst-mode DRAM
level. The bit mapping from address to channel/bank/rowarchitectures such as SDRAM, ESDRAM, and burst-mode
attempts to best exploit the available concurrency in the physSLDRAM, and it also covers packetized DRAM architec-
ical organization by assigning the lowest-order bits (whichtures such as Rambus, Direct Rambus, and packetized
change the most frequently) to the channel number, the ne8LDRAM. The only difference with moving to a packetized
bits to the bank number, etc. Counters in our simulatiorinterface is that the address bus packet scales with the data
results show that the requests are divided evenly across theis packet in the length of time it occupies the address bus.
channels in a system and across the banks in each channelSince the two are scheduled together, there is no additional
This is a very simple organization that accounts for mosbverhead imposed by this scheme.
existing DRAM architectures: clearly, it can emulate organi-
zations such as PC-XXX SDRAM, but it can also emulate2.4  Burst Ordering
Rambus-style organizations by increasing the degree of bank-
ing and scaling the channel width and speed, as Rambu§a burst is smaller than the level-2 cache line size, then there
devices use normal DRAM cores and are banked internally.are a number of options for the ordering of the burst-sized
For the studies presented in this paper, we did not explorblocks that make up the request. In this study, the block con-
all possible combinations of channel speed and channel widttaining the critical word is always fetched first and takes pri-
to obtain the same bandwidth. For example, as shown in Figarity over any other block in the queue, unless that block also
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READ REQUESTS: WRITE REQUESTS:
to
ADDRESS BUS | 10ns ADDRESS BUS | 10ns
DRAM BANK \ 90ns (a) DRAM BANK \ 90ns
DATA BUS 70ns 10ns DATA BUS |«—— 40ns
ADDRESS BUS | 10ns ADDRESS BUS | 10ns
DRAM BANK [ 90ns \ (b) DRAM BANK \ 90ns
DATA BUS 70ns DATA BUS |«——  40ns
ADDRESS BUS | 10ns ADDRESS BUS | 10ns
DRAM BANK \ 100ns | (c) DRAM BANK ‘ 90ns
DATA BUS 70ns 40ns DATABUS |«——  40ns
Figure 3: Bus and bank occupancies for 100MHz channel. Each DRAM request requires the address bus, the data bus, and whatever bank it is destined

for. The shape of these request blocks is dependent on the burst widths. Figures are shown for burst-widths equal to (a) 1x the bus width, (b) 2x the bus width,
and (c) 4x the bus width. One of the interesting points is that, though reads and writes are asymmetric, they become less so as the burst width increases.

the time that the data bus is held grows large. This will
(@) Legal if RIR to different banks: become important: it is more efficient to interleave symmetric

o] requests, because there is less wasted dead time on the bus.
Read: I 90ns |
7ons 2.6 CPU Model
r<— 20ns
Read: 90ns
<‘7 o0 —————[ 2005 ] ‘ To obtain accurate timing of memory requests in a dynami-
cally reordered instruction stream, we integrated our code
(b) Legal if no turnaround and R/W to different banks: into SimpleScalar 3.0a, an execution-driven simulator of an
o | aggressive out-of-order processor [2]. Our simulated proces-
Read: \ 90ns \ sor is eight-way superscalar; its simulated cycle time is 0.5ns
D 7ons (2GHz clock). Its L1 caches are split 64KB/64KB; both are
Write: ‘ e 2-way set associative; both have 64-byte linesizes. Its L2
-~ 40ns cache is unified 1MB, 4-way set associative, writeback, has a

128-byte linesize and a 10-cycle access time. The L1 and L2

(C) Legalif turnaround < 10ns and R/W to different banks: caches are both lockup-free, and both allow up to 32 out-

Readt [20ns ] standing requests at a time. For our lockup-free cache model,
. e — ‘ a load instruction that misses the L2 cache is blocked until it
<10 obtains an MSHR, and it holds the MSHiRIy until the criti-

Write: \ 90ns cal burst of data returngremember that the atomic unit of
--—— 40 —>-10 - .
" - transfer between the CPU and DRAM system is a burst). This
scheme frees up the MSHR relatively quickly, allowing sub-
Figure 4: Goncurrency within a single channel. _ If two concurrent reads sequent load instructions that miss the L2 cache to commence
require different banks, they can be pipelined across the address an ata B H H - B
bus as shown in (a). Writes can be nestled inside of reads, provided the bus .aS soon as p0$3|ble- This scheme is relatlvely expensive to
turnaround time is low (b) or the burst width is small (c). implement, as it assumes that the cache tags can be checked

for the subsequently arriving blocks without disturbing cache
contains a critical word. Write requests are always given lowdiraffic. We model this optimization to put the highest possible
est priority and tend to stack up in the queue until all the readgressure on the physical memory system—it represents the
drain from the queue. highest rate at which the processor can generate concurrent

memory accesses given the number of available MSHRs.
2.5 Handling Concurrency

2.7  Timing Calculations
With multiple channels in a system, it is easy to see how con-
currency can be exploited. However, within a single channelMuch of the DRAM access time is overlapped with instruc-
provided that there is sufficient banking to support it, theretion execution. To determine the degree of overlap, we run a
can also be support for concurrency. Figure 4 illustrates sevsecond simulation with perfect primary memory (no over-
eral of the ways back-to-back requests are overlapped in timéead). Similar to the methodology in [5], we partition the
sharing the common resources. Back-to-back reads can Betal application execution time into three components: T
pipelined, provided they require different banks. Back-to-Ty; and To which correspond to time spent processing, time
back read/write pairs can be similarly pipelined, but it is alsospent stalling for memory, and the portion of time spent in the
possible to nestle writes “inside of’ reads, as shown in Fig-memory system that is successfully overlapped with proces-
ures 4(b) and (c), provided the conditions support it. This lassor execution. In this paper, time spent “processing” includes
feature is only possible because the asymmetric nature @l activity above the primary memory system, i.e. it contains
read/write requests. Note that, though reads and writes amdl processor execution time and L1 and L2 cache activity. Let
asymmetric, they look less so as the burst width increases arkkga, be the total execution time for the realistic simulation;



width. On the x-axis is the system bandwidth, which is total
7 7 channelsx channel widthx channel speed. For each band-

TreAL Tpram = time spent
i DRAM systen width value, there are a number of configurations that repre-
Sl Due 10 r ot sent different combinations of channels/width/speed. For
MEMORY R each configuration, there are five stacked bars representing
the total execution time for burst widths of 8, 16, 32, 64, and
128 bytes.

Among other things, the graphs show that for a given
CPU-Memory o = Tomme # Tomas - Trn, bandwidth configuration, the choice of burst size can affect
OVERLAP execution time significantly—e.g., by a factor of just under 3x
- for gcc and just under 2x for perl. This clearly shows the
importance of selecting an appropriate burst size. Though the

CPUHL1+L2 Tp = TreaL — ToraM

Execution Togne = execution time optimal burst width depends on bandwidth and channel speed
- it perfect memory (optimal burst width is around 32 bytes for 200MHz chan-
Figure 5: Definitions for execution-time breakdowns. The results of nels, and around 64 byteS for 400 and 800MHz channels), It
several simulations are used to show time spent in the memory system vs. tends to be re|ative|y Iarge in genera|- for most conﬁgura—
time spent processing vs. the amount of memory latency hidden by the : . . .
CPU. tions, it is 64 bytes. Figure 7 shows that it is also dependent

on cache block size. The data are for a L2 cache block of size
64 bytes, and the graph shows the optimal burst width to be
32 bytes—i.e., the burst should be large enough to fetch a
level-2 cache block in two requests.

In Figure 6, if one can ignore the noise, there is a gradual

let Toerebe the execution time with a perfect DRAM sys-
tem; let Toranm be the total time spent in the DRAM system.
Then we have the following:

+ Tp=TreaL — TDrRAM curve that slopes down as bandwidth increases, showing the
. Tu=T T effects of increased bandwidth on execution time. The slope

M~ 'REAL — 'PERF reflects a 5-10% improvement in execution time for every
s To=Tperet Toram — TREAL doubling of memory-system bandwidth, which is far less sig-

rniﬁcant than the effect that burst width has on performance.
\Within a fixed bandwidth class, the choice of bus speed and
number of channels is significant, but not as significant as
doubling or halving the bandwidth. For example, at B00MB/s,
the effect of moving from a quad 200MHz 1-byte bus organi-
ation to a dual 400MHz 1-byte bus organization to a single
00MHz 1-byte bus organization yields a smaller perfor-
mance difference than moving to a 400MB/s or 1.6GB/s
- {1, 2, 4} independent channels organization.

In summary, burst width is an extremely significant
parameter that overshadows both raw bandwidth and the
- {8, 16, 32, 64, 128} byte burst widths details of how you choose your bandwidth (number of chan-

. {1 2, 4, 8} byte data-bus widths nels, channel width, channel speed).

« {200, 400, 800} MHz bus speeds (equivalent to 100, 200,3.2  Optimal Burst Width vs. Channel Organization
400 MHz dual data rate)

« {gcc, perl} from SPEC’95 known to have relatively large
memory footprints

The relationships between the different time parameters a
illustrated in Figure 5.

3 EXPERIMENTAL RESULTS

The simulations in this study cover most of the space deﬁneé
by the cross-product of these variables:

« {1, 2, 4} banks per channel

Next, we look more closely at optimal burst size in Figures 8
and 9. In each figure there are several graphs, each of which
represents data for a constant burst width. Each graph depicts
As described earlier, we did not simulate every combinatiorthe total execution time (and for some bars, a break-down as
of bus width and bus speed. The simulated L1/L2 cache linavell) for constant bitwidth organizations. Note that the data
sizes are 64/128 bytes, and, for a few configurations, we alspoints at each bitwidth may have different bandwidths. At
simulated L1/L2 linesizes of 32/64 bytes. each data point, there are three vertical bars, corresponding to
The following sections each present an analysis of alegrees of multibanking of 1, 2, and 4 banks per channel.

slightly different slice through the data. The unit of perfor-  The graphs illustrate that there are three distinct regions of
mance is cycles per instruction: a direct measurement of exdsehavior, corresponding to small burst sizes, medium burst
cution time, given a fixed cycle time and the length of eachsizes, and large burst sizes. At small burst sizes (8 bytes), the
program. Note that for some system configurations (but noparameter that influences performance the most is the number
all), total execution time is further broken down into the com-of independent channels: all 1-channel configurations have

ponents described in Section 2.7. roughly the same performance; all 2-channel configurations
have roughly the same performance; all 4-channel configura-
3.1 The Effects of Burst Width and Bandwidth tions have roughly the same performance—this despite the

configuration’s bandwidth. For a 32-bit datapath, the three
We begin by presenting in Figure 6 the total execution time asonfigurations that are comprised of 4 8-bit channels all out-
a function of both burst width and memory-system band-perform the 2x16-bit 800MHz configuration by 12.5% and
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Figure 6: Bandwidth and burst width.
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Figure 7: Optimal burst width for 32/64-byte L1/L2 line sizes. At each data point, there are three histograms representing the execution time as a function of
the degree of banking. From left to right, the vertical bars show performance for 1, 2, and 4 banks per channel. There is no data for 128-byte burst, because such
a burst size does not make sense for a 64-byte cache block. While the data in Figure 6 suggest the optimal burst width to be 64 bytes, this shows that the optimal
burst size is 32 bytes when the L2 cache block is 64 bytes. Our conclusion is that the optimal burst width scales with the L2 cache size: it is large enough to fetch
an L2 cache block in two requests.

the 1x32-bit 800MHz configuration by 25%. This happenstions—e.g., the 4x8-bit 200MHz system has a bandwidth of
even though the worse-performing configurations have 2800MB/s and outperforms the 1x32-bit 800MHz system
and 4x the bandwidth of the better-performing configura-(which has 3.2GB/s bandwidth) by 25%. This suggests that
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Figure 9: Burst width and channel organization tradeoffs — PERL.




further dividing the bitpath would yield further improve- work: small bursts making it more difficult to use the memory
ments—perhaps 8 4-bit channels would continue to yieldsystem, and large bursts that occupy the busses for such a
improved performance. However, simply changing the burstong duration that the average memory access is stalled wait-
width yields better results. ing for resources.

At medium burst sizes (32 bytes), there is little difference  The graphs show that the degree of banking has a notice-
to be seen across all configurations. It is clear that the configable impact on the total memory-system time, even though it
urations with slower busses and narrower busses are likely tmight not translate to much in terms of total execution time.
do slightly worse, but the difference between the best andror instance, at 16-bit busses (the top two rows of graphs),
worst configurations is roughly 25—-30%. each doubling of the number of banks decreases the overhead

At large burst sizes (128 bytes), it is no longer the casef the memory system by 10-20%. This ultimately translates
that more channels yields better performance; in fact, increage a net savings of around 5% in execution time due to the
ing the number of channels always degrades performancdegree of overlap with CPU execution time.

For example, again at the 32-bit data point, the three configu-

rations at 800MHz (all of which have identical bandwidth) 4 CONCLUSIONS

show the effect of going from 4x8-bit to 2x16-bit to 1x32-bit

configurations: in contrast to the behavior seen at small burdtVe have found that the organization of the memory system is
sizes, increasing the number of independent channels worextremely important and can affect the total execution of the
ens performance. The most significant influence on perforapplication by a factor of 3x. Unfortunately, there are no
mance for large burst sizes comes from the chaspeéd—  choices that are universally good—the interaction of the
note, for example, that the worst performance comes fronparameters is such that no component can be optimized indi-
200MHz channels, which have roughly identical perfor-vidually. The only rules of thumb are that the optimal burst
mance regardless of the bandwidth represented. The best psize scales with the L2 blocksize, and that faster channels are
formance comes from 800MHz channels, all of whichusually better.

perform within 10% of each other. At this burst width, simply ~ As previously mentioned, one of the primary results from
increasing bandwidth makes little difference in executionour prior work was that present bus architectures are becom-
time, provided the channel speed remains the same. ing a bottleneck. This study comes to the same conclusion.

In summary, there is a delicate trade-off between the optiThe fact that small bursts require multiple independent chan-
mal burst size and the channel configuration: optimal choicegsels for good performance suggests that the interleaving of
in channel configuration (the number of channels, the speesmall bursts on a single is expensive. Observations of the run-
of each channel, and the width of each channel) change dréime lengths of the memory queues, which are enormous for
matically depending on the choice of burst width. The opti-small bursts, suggest that interleaving small bursts can create
mal burst width appears to be somewhere between mediutbus traffic jams. The fact that channel speed can be more
and large (64 bytes per burst), and we showed earlier that thismportant than channel bandwidth suggests that two different
parameter seems to scale with cache block size. Thereforepnfigurations with equal bandwidth do not necessarily
there are no blanket statements that cover memory-systeaxploit that bandwidth with the same degree of efficiency.
design: each system must be optimized by taking into account These results point to bus scheduling as the primary over-
all aspects of the design—no one component can be opthead. Possible explanations include intermingling writes with

mized in isolation. reads, yielding turnaround overhead and odd-shaped inter-
leaved patterns (due to the asymmetric nature of reads &
3.3 A Closer Look at Banking and Burst Width writes). Small bursts cause major backups in the memory sys-

tem, because the time to transfer a burst is on the order of the
The graphs in Figure 10 illustrate the degree of memory overbus turnaround overhead—and because the asymmetric
lap for several configurations. Some interesting things taature of read requests vs. write requests makes it inefficient
note: first, with a single channel (top left column), gcc man-to interleave the two. For larger bursts, the turnaround time is
ages to overlap a fair amount of memory activity with CPUamortized, and interleaving reads with writes is not much dif-
execution; as the number of independent channels increasdsrent than interleaving read pairs or write pairs, because the
the system becomes much more streamlined, lowering thiéme to hold the data bus is extremely long.
memory overhead rapidly. However, it also becomes more More directions for future study include the use of sym-
difficult for the system to overlap memory activity with CPU metric read/write shapes to simplify bus scheduling, the
execution, as shown in the very small overlap componentsffects of cache organizations (since block size has such a
Second, the perl benchmark does not have this problem—itdramatic influence), the effects of turnaround time (maybe
behavior is such that it can always overlap a significant comiwo separate data busses would do better), as well as the use
ponent of its memory activity with CPU execution. Clearly, of realistic queue sizes and conventional MSHR designs.
this behavior is benchmark-dependent. Last, note the behav-
ior of the 8-bit configuration (the bottom row of graphs). As REFERENCES
we have pointed out before, as bus widths become narrow, o
large burst sizes tend to perform worse—this graph demort? 1 6cElS: Bt ior workeiniions and mrange SonBrt lomtotbackard -
strates that the problem occurs even earlier. By increasing the ~ Journal vol. 47, no. 1, February 1996. _ )
burst width from 16 bytes to 32 bytes, the memory overhead® 21595 Universt, of Wiscongin Matison Jung 1667 ¢ 1o #0- Tech- Rep.
is almost a|Way$ncreased often, this increase is hidden by [3] D.Burger, J. R. Goodman, and A. Kagi. “Memory bandwidth limitations of fu-

. A ture microprocessors.” Iaroc. 23rd Annual International Symposium on Com-
CPU execution, but it is clear that there are two factors at  puter Architecture (ISCA'96Philadelphia PA, May 1996, S’p. Erwry
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Figure 10: Banking degree and burst width.
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