
ABSTRACT

Title of Dissertation: ESSAYS ON SPONSORED SEARCH AUCTIONS
AND ONLINE PLATFORMS

Panagiotis Dimitrellos
Doctor of Philosophy, 2022

Dissertation Directed by: Professor Andrew T. Sweeting
Department of Economics

This dissertation covers two topics within the context of online platform design. In chapter

1, I develop a structural model to evaluate the effect of providing user traffic information to

heterogeneous bidders in sponsored search auctions. Many internet platforms use sponsored

search auctions as their primary source of revenue. In these auctions, advertisers bid for slots

with different desirabilities. A standard assumption is that bidders know the click through rate

(CTR) for each slot. I relax this assumption in two ways. First, I allow bidders to receive private

signals about the CTR of the highest advertising slot, which they use to update their beliefs during

an auction. Second, I allow for bidders to start each auction with different priors. I estimate my

model using closed-form formulae and a new dataset from a large internet platform where the

CTR for the highest slot varies significantly across auctions and over time. My estimates imply

considerable variation in bidders’ priors, and that this affects platform revenues. Specifically, I

predict that the platform’s revenues would increase by an average of 7% if the platform was able

to credibly and accurately reveal the CTR of the highest slot. I show how this gain in revenues



relates to changes in revenue from bidders who, in the absence of knowledge of the CTR, have

either optimistic or pessimistic priors about the CTR.

In chapter 2, I show how to calculate the theoretically optimal reserve prices in auctions for

online advertisements with endogenous platform user behavior. In the case where the advertised

content is useful to the platform’s users, showing less advertisements due to increased reserve

prices could imply less clicks on each advertisement from users because of a smaller choice

set. Qualifying more bidders by lowering reserve prices creates a positive externality for all

participating bidders. I present the results of a large field experiment in a sponsored search setting.

Consistent with the theory, platform revenues increase substantially after the introduction of the

optimal reserve prices, while users engage more with the website.

In chapter 3, I discuss the economic benefits of a Central Dispatcher for the New York

City taxi industry. Drivers make dynamic spatial decisions without taking into account that

their decisions impact their fellow drivers and consumer demand, increase traffic and affect

matching efficiency. The Central Dispatcher internalizes that driver decisions affect the outcomes

of other drivers and have an effect on congestion, demand, and matching efficiency. The Central

Dispatcher makes decisions in an environment with search frictions, while taking into account

the aforementioned externalities in order to maximize the market’s social surplus. I solve for the

Central Dispatcher allocation using a value function approximation algorithm based on neural

networks. Results indicate that the competitive equilibrium leads to imperfect coordination

between the drivers, excess supply and more traffic congestion than the optimum. The Central

Dispatcher increases social surplus by 15%, or $798,000 per shift, reduces congestion by 5% on

average and increases market thickness in Lower Manhattan and the Boroughs.
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Chapter 1: Information, Bias, and Revenues in Sponsored Search Auctions

1.1 Introduction

Many internet platforms and networks generate a significant part of their revenue through

the sale of advertising space. Most online platforms organize their space for advertisements in

a list form, with different ads competing for user attention. Users engage with ads in the top

of the list more often than with ads in lower slots. Therefore, it is potentially more valuable

for an advertiser to place her ad in a high slot because it will receive more clicks from platform

users. In platforms such as Google, Tripadvisor and Yahoo the advertisement slots are allocated

with the help of an auction mechanism (the Sponsored Search Auction (SSA)), where advertisers

become bidders and submit bids that reflect their valuation of advertisement.1 A common form

of these SSAs is that bidders submit a single bid which is then used to determine which bidders

are allocated to which slots and the prices paid when an advertisement in a particular slot receives

a click.

The literature studying SSAs has assumed that the click through rate (CTR) of each slot

and the probability that a click will convert to a sale is known to all bidders.2 However, this

assumption may not be realistic. For example, on Tripadvisor, the platform that I study in

1The total valuation of an online advertisement slot is a function of the user attention it receives (clicks) and the
unit value of attention (per click value).

2The click through rate describes the number of clicks that each slot offers.
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this paper, the CTR and conversion rate for the top advertising slot on a hotel listing page

can vary quite dramatically over time as a result of how many viewers are coming to the page

by clicking on Tripadvisor’s own paid search advertising, as these viewers tend to have quite

different click and conversion patterns to Tripadvisor’s own members who arrive at the page by

performing searches on Tripadvisor. Anecdotal evidence suggests that different bidders, online

travel agencies in my setting, may differ in their ability to predict the CTR for the top slot (slot

1) and may believe, systematically, that its average value for a given hotel is higher or lower than

it really is.3

This naturally leads to the question of whether the platform could increase its revenues

by providing bidders with accurate information about the CTR, and, if so, by how much. I

investigate this question by estimating a structural model of bidding behavior in Tripadvisor

SSAs. I depart from conventional assumptions in two ways. First, I allow bidders to have

asymmetric information about the CTR of the top slot in the auction. For tractability, I assume

that they know the CTR of other slots, which is plausible as, if they click at all, paid searchers

are more likely to click on the top advertisement. The auction operates as a Generalized Second

Price Auction (GSPA), which I model as a Generalized English auction.4 Before the auction takes

place, each bidder receives a signal about the top slot’s CTR, which she updates, in Bayesian

fashion, based on what happens as the auction plays out.

Second, I allow bidders to have different prior beliefs about the CTR to capture their biases,

if any. A prior belief distribution centered close to the true number of clicks of the top slot reflects

a bidder with the ability to predict the CTR well. Respectively, a prior belief distribution centered

3Not knowing the value of the auctioned items leads to lower bids due to the Winner’s Curse. Even if bidders are
oblivious to their biases, the winner of the auction is the bidder who overestimates valuation the most.

4See Edelman, Ostrovsky, and Schwarz (2007)
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further away from the true number of clicks of the top slot shows a bidder that fails to predict the

platform’s traffic more often. I assume that bidders are oblivious about theirs and their opponent’s

biases because a rational agent would not be willingly biased.

By making appropriate distributional assumptions on prior beliefs and signals I am able to

develop closed form estimators for the structural parameters that form bidder priors. I also utilize

data on bids for hotels where there is never any paid search to control for differences in how

bidders value listing slots which may reflect bidders’ value of brand marketing in the city from

which my data comes. I use my estimates to perform a counterfactual where the platform provides

credible and accurate information about the click through rate. This counterfactual returns the

model to the conventional SSA assumptions.5 While the elimination of the winner’s curse will

tend to be good for revenues it is possible that, by eliminating the possibility that bidders have

over-optimistic priors, the counterfactual could lower expected platform revenues. However, for

the auctions that I study, I predict that the policy of revealing the CTR to bidders would raise

platform revenues by an average of 7%.

Specifically, I, first, derive the equilibrium conditions for a generalized English auction

where bidders are allowed to have asymmetric information and different priors about CTR.6 I

design a game theoretical model of the generalized English auction which allows for information

asymmetry across bidders. The asymmetry is established by making the number of clicks in the

highest slot unknown to bidders. Then, I solve for the Bayesian equilibrium of the game and

derive the equilibrium strategies. I use the equilibrium conditions and available data on bids,

click through rates, and bidder valuations to derive closed-form and consistent estimators for the

5In this context, a richer and more complicated bidding language could allow bidders to bid differently for
different click qualities. Given that there is paid and organic traffic, this should be equivalent with revealing the ratio
of paid to organic clicks.

6If a bidder’s prior differs significantly from the true ratio, I refer to this bidder as ”more biased”.
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mean and the variance of each bidder’s prior belief for the CTR of each hotel. The possibility

of constructing a reliable proxy of per click valuations using existing data allows me to identify

bidder beliefs using observed bids.

The assumption that bidders return to their previous priors once the CTR changes, allows

for some bidders to be consistently optimistic / pessimistic about the CTR, therefore bidding

non-optimally. I also distinguish for reasons that lead to overbidding other than low quality

information. I assume that there are two different reasons for advertisers to systematically bid

higher: optimism, as discussed above, and marketing. Marketing refers to increased spending by

the bidder to be more visible to consumers and reinforce their brand.

Second, I use the model’s estimates to provide empirical evidence that bidders are biased

in their beliefs about the CTR. I use the equilibrium conditions and available data on bids,

click through rates, and bidder valuations in order to estimate the parameters connected to the

information environment. The quality of a bidder’s information is defined as the distance of their

prior belief to the true ratio of clicks between slots the highest and second highest slots.7 If a

bidder’s prior is not close to this ratio, then the bidder is expected to bid suboptimally, especially

in the early stages of the game, when information depends heavily on the prior. The estimation

results show that the variance in the bidders’ quality of information is significant, suggesting that

bidders can be biased.

Finally, I show that the seller’s revenue would increase in the case where the platform

decides to reveal CTR information and, therefore, erasing bidder bias. I perform a counterfactual

where the platform reveals information about the click through rate, i.e. number of clicks in
7Assuming that clicks in the second highest slot are known to bidders, this is equivalent with a belief about the

clicks in the highest slot.
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the highest slot. This removes all information asymmetry and bias and the game transits to the

unbiased (standard) case, introduced by Edelman, Ostrovsky and Schwarz (EOS) (2007). Results

suggest that when bidders are biased, both optimistic and pessimistic bidders end up underbidding

on average, however in different volumes. This underbidding allows less biased bidders to extract

rents, facing less competition from both sides of the bias spectrum. More biased bidders generate

higher revenue for the platform in the symmetric information case compared to the asymmetric

information case with bias, while less biased bidders generate lower revenue for the platform

when information becomes symmetric since they are not able to extract rents anymore.8 The net

effect of the policy is positive for the platform.

To my knowledge, this is the first study on asymmetric information and biased beliefs about

click through rates in the SSA. It provides equilibrium conditions that can be used in a variety of

applications for different platforms. Given the relevant data, the framework allows any platform

that uses the GSPA to evaluate whether the transition to a known-CTR environment would be

profitable.

This paper has two main contributions to the literature. First, it offers a game theoretic

model that serves as a road map to estimate bidder beliefs given the adequate data. Most structural

papers that aim to solve problems related to auctions use the equilibrium conditions to identify

bidder valuations, while assuming the structure of bidder information as given and exogenous.

However, in a realistic setting, online platforms have reliable data on the value of each click

that they provide.9 By constructing an accurate proxy for per click valuations, I allow for the

identification of bidder beliefs from the equilibrium conditions and observed bids. Second, the

8Due to the environment’s volatility, bidders cannot learn anything useful about the CTR over time. However,
access to more human resources and better algorithms allow some bidders to have a better guess at any given moment.

9The value of the click is tightly related to the price of the advertised item and the probability of conversion.
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paper shows that the claim that more information leads to higher seller revenue is not universally

true. Despite that removing bidder bias is beneficial in Tripadvisor’s case, the result is highly

dependent on the bidder-bias composition. A platform where bidders have different level of

biases could be worse off from this policy.10

This research is part of a broader study on the design of SSAs accounting for realistic

features of the Tripadvisor environment. This study includes the current paper, and Dimitrellos

(2020), (2021). The main result of Dimitrellos (2020) suggests that GSPA generates greater

revenue for the platform compared to the generalized hybrid price auction, where the payment

price is determined to be the maximum of the next highest bid and a fraction of bidder’s own

bid. Dimitrellos (2021) discusses the optimal reserve price of the auction given the results of

the first two parts of the study. Adding to Edelman and Schwarz’s (2010) environment, it allows

CTR to change when the number of winning bidders changes, following the intuition that when

users see less offers tend to engage less with the platform. In particular, the paper presents

empirical evidence that platform users engage less when the ad supply is limited. This creates a

trade-off between increasing revenue by increasing the reserve price, versus higher demand by

allowing more bidders to appear in the search results. The optimal reserve prices are derived

computationally and their performance is evaluated in a field experiment as in Ostrovsky and

Schwarz (2016).

The rest of the paper is organized as follows: Section 2 discusses the existing literature

and open questions on SSAs. Section 3 displays the auction framework used by Tripadvisor. In

section 4, I describe the available data and show some aggregated statistics. Section 5 discusses

10For example, a platform with mostly less biased bidders might not want to reveal CTR because the existence of
more biased bidders leads their less biased counterparts to overbid.
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the information environment in the platform, the model, and its equilibrium. Section 6 summarizes

identification, and the estimation strategy of the model’s parameters. In section 7, I present the

results of the estimation. Finally, section 8 discusses the counterfactual policy along with its

effects, and section 9 concludes.

1.2 Literature

Sponsored Search Auctions is a subcategory of multi-unit auctions that has sparked substantial

interest. Its multi-unit nature comes with several open questions, while its structure offers increased

tractability compared to the general multi-unit auction. One aspect of the SSAs that has received

considerable attention is optimal design. Questions of this type include the optimal pricing

rule, optimal reserve prices, and the plausibility of each of the auction’s equilibria. Many of

the questions related to optimal auction design have been answered but mostly under restricting

and often unrealistic assumptions. Another set of questions about SSAs that arise are related to

the evaluation of theoretical results in a real setting. The majority of online platforms allocate

their space to advertisers using a form of a SSA. Therefore, the impact of theoretical results on

a real setting can significantly affect the platforms’ revenues. However, the auction environment

of an online platform is, at best, noisy. For this reason, it is important to model the environment

as realistically as possible. Not many results exist in this direction because the data needed

to capture additional frictions are difficult to find. This paper attempts to identify information

frictions using a rich data set originated from a large online platform.

More specifically, this paper lies in the intersection of two research fields. First, it relates

to the literature of optimal auction design. A major result in this field came in the 1980s with
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Myerson (1981). Myerson solved the problem faced by a seller who has a single object to sell

to one of several possible buyers, when the seller has imperfect information about how much the

buyers might be willing to pay for the object. Edelman and Schwarz (2010) extend the single

object results of Myerson (1981) to cover multiple items under complete information about the

click through rates (CTR). More recently, Ulku (2013) considers an optimal mechanism design

problem with several heterogeneous objects and interdependent values. The author characterizes

ex post incentives using an appropriate monotonicity condition and reformulates the problem in

such a way that the choice of an allocation rule can be separated from the choice of the payment

rule. Ulku extends Myerson’s results along two directions, the heterogeneity of the items for sale

and the interdependent values which introduce the Winner’s Curse.

Many results after Myerson refer to special cases of auctions. Iyengar and Kumar (2006)

derive the optimal design for a dynamic game of incomplete information used to sell sponsored

search advertisements. They also consider a corresponding static game of complete information.

They analyze the underlying dynamic game of incomplete information, and they establish an

upper bound on the revenue of any equilibrium of any dynamic game in this environment.

Ostrovsky and Schwarz (2016) confirm the previous results by organizing a field experiment

in a SSA platform.

Finally, optimization results have been derived while considering the dynamic nature of the

auctions run by internet platforms. The dynamic side of the SSAs is based on the conjecture that

the results that are showed to the users can affect their future behavior. Parkes and Singh (2004)

and Said (2012) focus on cases where the intertemporal trade-offs arise through the dynamics of

arrival, departure, or population. Rafieian (2020) provides structural evidence of interdependence

in the sequence of auction outcomes and user engagement in the platform. Rafieian’s approach is
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different from this paper’s since it introduces a dynamic element in user behavior. Rafieian shows

that there are significant revenue gains from using the dynamic revenue optimal auction compared

with the static optimization since improved user engagement compensates for suboptimal revenue

in the short term.

My paper adds to this literature by introducing an additional dimension to the problem,

which is the symmetry of bidder information. In a realistic setting with fluctuating user demand,

bidder knowledge of the CTR is at best limited as anecdotal evidence suggests. I provide

empirical evidence that bidders’ prior beliefs are different, and I examine whether removing

the biases is optimal for seller revenue.

Second, the paper relates to the literature of game theory and Bayesian Nash equilibria in

auctions with incomplete information. One of the early results in Bayesian equilibria for the SSA

comes with Lahaie (2006). Lahaie analyzes the incentive, efficiency, and revenue properties of

two slot auction designs: ”rank by bid” (RBB) and ”rank by revenue” (RBR). With incomplete

information, neither RBB nor RBR are truthful, i.e. not incentive compatible to report type, with

either first or second pricing. Lahaie finds that the informational requirements of RBB are much

weaker than those of RBR, but that RBR is efficient whereas RBB is not. Finally, Lahaie shows

that with complete information, no equilibrium exists with first pricing using either RBB or RBR.

Expanding the empirical literature on SSAs, Edelman and Ostrovsky (2006) provide empirical

evidence on the inefficiency of the generalized first price auction, since it leads to strategic

behavior, i.e. ”Sawtooth” pattern, where bidders with low valuations may end up winning the

highest slots. An important result comes from EOS (2007). They investigate the generalized

second price auction (GSPA) and show that unlike the VCG mechanism, GSPA generally does

not have an equilibrium in dominant strategies, and truth-telling is not an equilibrium of GSPA.
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To analyze the properties of GSPA, they describe the generalized English auction that corresponds

to GSPA and show that it has a unique equilibrium.

One of the few attempts to use a more realistic set of assumptions is Yan (2019), who

introduces interdependent values into the auction. Yan finds that both the GSPA auction and the

VCG-like auction with one-dimensional bidding language can be inefficient under interdependent

values, where each bidder’s per click value depends on its opponents’ information as well as

its own information. Furthermore, Yan shows this inefficiency problem can be fully resolved

by adopting a multi-dimensional bidding language that allows bidders to bid differently across

positions.11

My theoretical framework differs from Yan’s work because the I study bidder uncertainty

about the click through rate, not the value of each click separately. I offer a Bayesian perfect

equilibrium in the case of asymmetric information and biased beliefs about the CTR and calculate

the seller revenue increase when CTR becomes common knowledge. In the case for Tripadvisor,

the bidders have perfect visibility on the conversion rates of organic clicks, and they set their own

prices. However, bidders face difficulties in predicting the number of incoming clicks. These

observations suggest that the value of a click should be known to the bidders, since it depends

solely on the conversion rate, and the premium that the bidder receives from the hotelier when a

conversion happens. Therefore, the assumption of interdependent values would not be plausible

in this case.
11The adoption of this modification in a real setting can be problematic due to the complexity that bidders will

face.
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1.3 Auction Overview

This paper focuses on the case of Tripadvisor. Tripadvisor is the world’s largest online

travel company that operates a website and a mobile app with a comparison shopping website. It

offers online hotel reservations and other travel services. Its website reached 463 million average

monthly unique visitors in 2019. In 2019, Tripadvisor earned 33% of its revenues from Expedia

Group and Booking Holdings and their subsidiaries, primarily for pay-per-click advertising.

Online travel agents compete for advertisement slots in the platform which are allocated through

the generalized second price auction. Tripadvisor holds repeatedly simultaneous generalized

second price auctions for different user searches. A user search is defined as combination of

search variables such as hotel id (location id), length of stay, days to arrival and number of

guests. First, the user sees a list of hotels that match her search, as displayed in figure 2.1. The

order of appearance for hotels after step 1 is not related to the auction but is personalized for each

different user. OTAs only compete for user attention within hotels. When a user clicks on a hotel,

a limited number of travel agents (OTA) is displayed in a list form, as displayed in figure 2.2.

Different positions have different desirability for OTAs. When a user clicks on an OTA’s

listing, she is redirected to the OTA’s website, as displayed in figure 2.3. Then, the OTA pays the

platform for sending the user to its website - ”pay-per-click” rule. All positions are auctioned at

once. However, bidders can submit only one bid. The highest bid wins the highest slot and so on,

until the auction is repeated.

The bidders who bid more than a preset reserve price, r , are ranked in terms of decreasing

bids. Rarely, this is not the final order of appearance since further adjustments take place to the

rules. When the order is determined, a bidder pays when it receives a click, regardless of whether
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Figure 1.1: Hotel list

the click leads to a booking.

The pricing scheme used by Tripadvisor in 2021 is the second price payment (next highest

bid). Bidders are allowed to update their bids twice a day. Each bidder is notified about the

position she achieved in case of winning, their cost per click, and if she bid less than the reserve

price. Theoretically, it is possible to infer the position of other winning bidders since each

auction’s ranking is available to platform users.

I discuss a 2-bidder example with private values and perfect information about the click

through rate. Note that the rest of the paper does not assume perfect information about the click

through rate, but this example aims to display the auction rules in a simple way. Suppose that
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Figure 1.2: OTA display

hotel H has an available room for a given date D. Assume that this hotel is not a partner of

Tripadvisor, therefore its only option to advertise the room in Tripadvisor is to assign it to travel

agents affiliated with Tripadvisor. Suppose that 2 travel agents are available, B1 and B2. The

hotelier announces that she will require e.g. $100 from the agent that will sell the room. The two

travel agents compete for getting slot 1 in Tripadvisor’s page about this room. The platform runs

the auction for this room and this date and asks from B1 and B2 to submit their bids.

The click through rate is 20 clicks for slot 1 and 5 clicks slot 2. In addition, suppose that

both bidders offer the room for $150, therefore the bidder who sells the room will have a profit
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Figure 1.3: Redirection

of $50 minus the cost of advertisement, that goes to Tripadvisor.

In this example, B1 submits a bid equal to 1.9 and B2 submits a bid equal to 1.5, while the

reserve price is equal to 1. Both clicks are above the reserve price and therefore qualify for a slot.

B1 submitted the highest bid and gets slot 1. B2 gets slot 2. Users of the platform searching for

hotels for date D, happen to encounter hotel H which offers the room. When users click to hotel

H, they access a list of 2 offers, containing B1 in slot 1 and B2 in slot 2. As the click through

rate expresses, 20 users click on B1’s offer and 5 users click on B2’s offer. All realizations of

the parameters related to CTR, and conversion are not necessarily equal to their expected values

according to bidders. Bidder beliefs on CTR are irrelevant in this example. What matters is that

their bids reflect their equilibrium strategies given their beliefs and auction rules.

In this example only one user that clicked on B1’s offer decides to book the room, while

no user that clicked on B2’s offer decides convert. Therefore, the revenue of B1 is $150 and the
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revenue of B2 is zero. However, B1 must pay $100 to the hotelier. Furthermore, both bidders

must pay the advertising cost to the platform. Given that the platform runs a generalized second

price auction, each bidder pays the maximum of the next highest bid and the reserve price when

clicked. Thus, the advertising cost forB1 would be 20⋅1.5 whileB2 would pay 5⋅1. Summarizing:

πGSPA
1 = 150 − 100 − 20 ⋅ 1.5 = $20

πGSPA
2 = −5 ⋅ 1 = −$5

In addition, the CTR is not known to the bidders since the fraction of valuable to non valuable

clicks in slot 1 changes over time. This makes the number of high value clicks in slot 1 for a

given auction unknown to bidders. In the case of Tripadvisor, the reason for low value clicks

is traffic coming through ads in third party websites (paid traffic). These users are less engaged

with the platform and they are more often exploring than trying to book a specific room. The

vast majority of these users click in slot 1 for convenience reasons, thus I assume that the only

slot with variance in click value is slot 1. All these reasons make Tripadvisor an appropriate

environment for studying the effect of asymmetric information and biased beliefs about the CTR

in a generalized second price auction environment.

1.4 Data

The data sets used in this study are provided by Tripadvisor and include the entire data

collection of the platform since 2015, therefore it covers all auctions for all realized searches.

The data set covers both sides of the market; it contains all user activity, including clicks and
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conversions. Although I have visibility on user activity along with certain demographics, I do not

connect each activity with a unique user id because of confidentiality reasons and the difficulty

to track user activity on a platform that does not requires membership to use. The respective

location, bidder, auction position and conversion outcome are available for each click, therefore

I can infer the click through rates for each location across time and the conversion frequency.

The data about the supply side describes bidder activity. First, it displays in which category each

bidder belongs across locations and time.12 Furthermore, it contains the submitted bids for all

realized auctions and the auction outcomes. Finally, the data set contains partial information

about the bidder margins for each location, i.e hotel, when a conversion is realized. Given that

conversion frequencies and bidder margins are known, the data allows the calculation of the value

of a user click to a bidder. Denote the unknown per click valuation of a bidder in a specific auction

with v. I calculate a proxy for v: ṽ as follows:

ṽ =margin ⋅ p ⋅ P(conversion) ⋅ (1 − P(cancellation))

where

• margin: The percentage of the transaction value that goes to the bidder from the hotelier.

• p: The booking price that the user sees on the platform.13

• P(conversion): The probability that a user books, given that the user has clicked on the

bidder’s ad. Bidders share conversion data with the platform, hence the calculation of the

rate is feasible since it does not change significantly across time.
12There are two main categories of bidders, which differ in how much they derive their bids with the platform’s

assistance or by themselves.
13The price consists of the per night price times the number of nights.
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• P(cancellation): The probability that a user cancels her reservation, given a booking.14

The main data set includes the outcome of every user search along with the information that the

user was provided, and information provided to the platform by OTAs, e.g. their conversions.

The provided information is extensive; therefore I present the most important variables. The data

set is sizable, e.g. a subset of the data set contains more than 5 million searches in the US for

the 200 most popular hotels for April 2021. More specifically, each observation contains search

characteristics (days to arrival, length of stay, day of the week, if date is specified, hotels sorted by

number of guests, day, and hour of search), hotel characteristics (name, location, stars, reviews,

amenities, hotel parent brand, clicks in last month), user characteristics (device-browser, country,

member, targeted, booked before), offer characteristics for every bidder in this search (bidder id,

bidder category, bid, auction position, price, is refundable, pay at stay, all inclusive), and outcome

characteristics (offer clicked, offer converted).

The data set is sparse with respect to conversions, since the overall conversion rate is low.

The second data set contains cancellation data. When a user is converted the partners provide

Tripadvisor with the outcome of the booking. The two possible outcomes are that the stay

happened as planned or that it has been canceled by the user. The third data set contains the

commissions that partners receive for each conversion. The source of revenue for the partners is a

commission paid by the hoteliers when a conversion happens as a percentage of the total amount

received by the hotel, since OTAs do not ”own” rooms. More specifically, each observation

contains the bidder ID, the hotel ID, and the commission rate that the OTA extracts from the

hotel as a percentage rate.

I use auction data from the downtown area of a big US city, customers from the US and
14This means that the user (partially) receives her payment back and the bidder is not paid by the hotelier.
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desktop device. The subset of the data set of hotels in the platform that receive no paid traffic

contains auctions that took place in April 2021. This dataset serves for the identification of

spending for marketing reasons. Bidders have knowledge of the no paid traffic property for these

hotels since the origin of a click is ex post visible to the bidder. The data set of hotels in the

platform that receive no paid traffic contains 130,000 auctions in 10 popular hotels in this city.

The paper assumes that all OTAs would face the same CTR and conversion rates in counterfactual

auctions where results are different, given a search.15 The data on user clicks allow the reconstruction

of the click through rate for every auction across time. A small subset of hotels in the platform

receives no paid traffic for exogenous reasons. The paid traffic volume is not determined by

the auction designer but by other segments of the platform on which the auction designer has

no control. The existence of hotels with zero paid traffic implies that in these cases there is

no variance in the click values for slot 1, hence there is no asymmetry in information. This

subset of the data is useful for the estimation of over(under)bidding because of the information

asymmetry. There is an additional reason that can lead to over(under)bidding that the researcher

should control: Bidders can focus on specific markets for marketing reasons, e.g. increasing their

market share. If a bidder wants to build their brand name in a geographical area, then they are

expected to bid more than the optimal value and win slot 1 more often than they should in order

to be seen more by the platform’s users. When there is no paid traffic, any deviation from the

theoretical optimal bid can be attributed to marketing, which allows its identification.

The main question that the paper aims to answer in whether it is in the platform benefit to

change its information policy regarding the value of each click.16 While the clicks in slots 2 and

15For example, in a given auction slot 1 receives 20 clicks regardless of which bidder wins. In addition, a certain
bidder converts a certain percentage of clicks in an auction, e.g. 3%, regardless of her slot.

16The value of a click depends on the probability of conversion. A click from a disengaged user who is looking
around is less valuable than a click from a user that has already decide to spend her vacation in the place that the

18



lower are of the same kind, organic clicks, the clicks generated by slot 1 is a mix of organic and

paid traffic clicks. The difference between organic and paid traffic clicks lies in their probability

of conversion to a booking. Paid traffic is less interested in booking a listing, because the user is

rarely a platform member and visits the platform through an ad in a third website. A screenshot

of a google search that can lead someone to Tripadvisor’s website through an ad can be found in

figure 1.4. A user reaching Tripadvisor through a third-party ad is expected to be less engaged

with the platform than a signed up member that searches directly at Tripadvisor, despite the fact

that they see the same screen. The reason for the this is that an organic user that visits Tripadvisor

directly is more likely to be familiar with the platform and book a room than a person looking

around search engines.

Therefore, when the number of clicks that come from slot 1 in an auction is 5 times higher

than the number of clicks that come from slot 2, the total value generated for the bidder is slot 1

is less than five times higher than the total value generated for the bidder is slot 2. This would

not create a complication if the ratio of paid traffic clicks to organic clicks in an auction was

predictable for the bidders. However, the way that paid traffic clicks are generated in each auction

is not related to the auction mechanics, auction rules, and varies across time. Anecdotal evidence

from bidders suggests that their ability in predicting the ratio of paid traffic clicks to organic

clicks in an auction is limited at best.

Figure 1.5 displays the share of paid traffic clicks received by slot 1 in a hotel in a range of

30 days.

Paid traffic intensity appears to change over time in a volatile and unpredictable way. The

hotel is located. The reason for this is that the former user pays to book a room fairly rarely, while the probability of
conversion is much higher for the latter user.
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Figure 1.4: Screenshot of a Tripadvisor ad in a third party website

respective paid traffic plots for other hotel show similar levels of variance across time. Table A.1

shows an attempt to predict the share of paid traffic in slot 1 for different hotels. I use panel

data containing the paid traffic intensity for 100 hotels in the studied geographical area over 30

days. The independent variables of the dataset are previous observations for paid traffic (1,2 and

3 auctions lag), the total number of clicks in slot 1 for the auction, the ratio of clicks between slots

1 and 2 for the auction, the average submitted bid, each individual bid submitted by bidders, and

hotel and time fixed effects. The prediction power of the data seems discouraging at best, showing

an R2 = 0.03. The fact that each individual bidder has access to only a small subset of this data

supports the claim that predicting paid traffic intensity is a difficult problem for bidders.17

17A bidder has access to past values of paid traffic if and only if the won slot 1 for the corresponding auction. In
addition, the ratio of clicks between slots 1 and 2 is unobservable for all bidders, because a bidder can win mostly
one slot. Finally, a bidder cannot observe the bids of her competitors since the platform does not reveal them.
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Figure 1.5: Paid traffic intensity within hotel across time
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1.5 Model

1.5.1 Environment

The peculiarity of the platform that introduces uncertainty about the slot value is the exogenous

generation of paid traffic whose intensity changes over time. Paid traffic focuses on slot 1 and

converts rarely, reducing its per-click value. However, bidders pay full price for it. There are

two ways to model unpredictable paid traffic. First, one could represent it as uncertainty about

the per-click value in slot 1, in the sense that the mix of organic and paid traffic averages to a

per-click value in between of the organic and paid click valuations. Another way to model paid

traffic would be to represent it as uncertainty in the number of ”equivalent” clicks offered by

slot 1, assuming that all clicks have the organic per-click valuation. The two approaches are

equivalent and differ only in their calibration. Assume that in the original setting there are n

organic clicks of value v̄ each and m paid clicks of value v. The bidder pays p for each click.

Therefore, bidder return is ret = (n ⋅ v̄ +m ⋅ v)− (n+m) ⋅ p. The first approach attempts to find a

value in between that produces the same revenue for the bidder: ret1 = (n +m) ⋅ y − (n +m) ⋅ p.

Setting ret = ret1 and solving for y: y = n⋅v̄+m⋅v
n+m , which depends on the unpredictable volume

of paid traffic, m. The second approach aims to find a number of clicks, x, that return the same

revenue and are of value v̄. Hence, ret2 = x ⋅ v̄ − x ⋅ p. Setting ret = ret2, and solving for x:

x = n+mv−p
v̄−p . In addition, the ”equivalent” clicks approach can capture the effects of bidder bias

in platforms where the source of uncertainty is different. All that matters is that the click volume

cannot be predicted. For these reasons, I model the uncertainty about the slot valuation coming

from CTR.
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The fact that some bidders have access to better software infrastructure and information

than others creates the hazard of overpaying when winning the auction, since the total value

offered by slot 1 is unknown. In addition, the facts that the ratios change significantly across time

and that the bidders’ feedback mechanism is restricted, creates room for consistently optimistic

or pessimistic bidders.18 The latter implies that a bidder may be optimistic in an auction and

turn to pessimistic when the auction is repeated in the future with different ratios. However, the

problem for the bidder reduces to guessing the ratio given the available information, while past

ratios do not matter.

An optimistic bidder can be perceived as a bidder who often fails to obtain information

that suggests a lower ratio. Changes in information policy can alleviate this complication and

affect platform and bidder revenue. The first counterfactual that I evaluate is the case where the

platform reveals the ratios to the bidders. This is feasible since the platform decides the amount of

paid traffic for each auction. However, it would be impossible for the platform to exactly predict

the amount of organic traffic ex ante. Despite the uncertainty, data suggests that organic traffic

is highly seasonal and can be predicted by the platform accurately. I also consider the policy of

allowing bidders to bid differently for different kinds of clicks, i.e. different bids for organic and

paid traffic clicks.

I approach the question by developing a theoretical framework for bidder behavior in this

environment. I derive a closed form expression of the Bayes Nash Equilibrium under certain

assumptions: Bidders are modeled to have different priors on the ratio of clicks and update

their priors based on the bidding behavior of their opponents. The ability of bidders to update

18By optimistic (pessimistic) bidder, I define a bidder who consistently over(under)estimates the total value offered
by slot 1 in an auction.
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come from the modeling of the auction as a generalized English auction. This is a common

technique in the literature, e.g. EOS (2007), which captures the procedure that bidders learn

about their opponents as time progresses. Different auctions across time for the same hotel are

treated as independent and bidders maintain the same priors. Inference of opponent information

is introduced in the model by the English auction environment. In Tripadvisor’s case the auction

rankings are posted in online and are visible by everybody, while bidders can often change

their bids in order to measure any changes. Hence, the use of the generalized English auction

seems justified. I solve in an identical private value environment, which allows for a closed form

solution, and is plausible at the same time, since bidder click valuations do not vary significantly

across bidders.19

1.5.1.1 Assumptions

There are two key assumptions in this model. These assumptions form the setup of the

model and set the guideline of approaching the research question. The key assumptions embedded

in the model follow.

Assumption 1. The variation in the click through rate of different slots is only coming from

variation in paid traffic. Given an auction, the clicks for slots 2 and lower are assumed to be the

same across time, while clicks for slot 1 change according to paid traffic shock.

The ratios of organic to paid traffic are assumed to be determined exogenously. The data

provide visibility on paid traffic within hotels and confirms its volatility over time. However,

there are exceptions. Certain hotels receive no paid traffic over time, making the ratio of organic

to total clicks equal to 1. This group of hotels represents less than 5% of the population and

19I discuss the identical private value assumption later in the paper and provide evidence in favor of it.
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is assumed to be determined exogenously. I later show how this group of hotels helps with the

identification of overbidding due to marketing reasons.

Assumption 2. There is no heterogeneity in per click valuations within auctions, i.e., bidders

have identical private values.

This assumption is based on the fact that per click valuations of bidders do not differ

significantly for a certain auction. The estimation method provides evidence that variance in

information and marketing spending describes the submitted bids sufficiently well. Evidence in

favor of the identical private value assumption can be found in the Appendix, where I perform a

statistical test of identical private values using data on bidder margins, booking prices, conversion,

and cancellation rates.

Assumption 3. Bidder spending on marketing happens on the geographical level. A bidder

exhibit the same marketing spending in every hotel in the dataset since all are located in the same

geographical area.

This assumption originates from the intuitive claim that a bidder would organize a marketing

campaign on the country or the city level rather than the hotel level. The complexity of running

different marketing campaigns for every hotel is significant given the number of hotels worldwide.

In addition, the volume of click data that a bidder receives from each hotel is not enough to

evaluate the campaign’s performance.

1.5.2 Modeling framework - Examples

In this game, I examine the generalized English auction, an analogue of the standard

English auction corresponding to GSPA. The notion that described the SSA in the previous
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sections was the generalized English auction, where advertisers have converged to a long-run

steady state, have learned each other’s values, and the equilibrium is stable, as in EOS (2007).

However, in this application the bidders are assumed to be unable to recognize the biases in their

beliefs about the click through rate. At the same time, bidders know that their opponents have

private information about the click through rate and use their bids to infer this information. More

specifically, given possibly biased beliefs, bidders try to calculate the true click through rate given

information from opponent bids in a rational way.

The generalized English Auction, a mechanism introduced by EOS (2007), helps to simulate

the aforementioned environment. In the generalized English auction, there is a clock showing the

current price, which continuously increases over time. Initially, the price on the clock is zero, and

all advertisers are in the auction. An advertiser can drop out at any time, and his bid is the price

on the clock at the time when he drops out. The auction is over when the next-to-last advertiser

drops out. The ad of the last remaining advertiser is placed in the best position on the screen,

and this advertiser’s payment per click is equal to the price at which the next-to-last advertiser

dropped out. The ad of the next-to-last advertiser is placed second, and his payment per click is

equal to the third-highest advertiser’s bid, and so on. In other words, the vector of bids obtained

in the generalized English auction is used to allocate the objects and compute the prices according

to the rules of GSP. With one object, the generalized English auction becomes a simple English

auction. The strategy of an advertiser assigns the choice of dropping out or not for any history of

the game, given that the advertiser has not previously dropped out. Therefore:

• The strategy of each bidder is a single number (the drop-out price) for every history of the

game. A history of the game at time t includes the signal that the bidder gets and the prices
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that other bidders dropped out before time t.

• A bidder can win at most one slot. If this bidder is the ith bidder who dropped out, she will

get the ith lowest slot.

In reality, such a clock does not exist, and bidders submit their bids simultaneously. However,

the constant repetition of the auction across time can allow bidders to learn from their opponents’

behavior, making the environment very similar to the generalized English auction. In the following

subsections I present two simple versions of the game along with their equilibrium conditions.

These simplified versions serve as examples to display how bidders derive their bids and infer

information about the click through rate by their opponents’ bids. The game follows the assumption

of identical private per click valuation. In addition, bidders are assumed to have the same prior

for simplicity reasons. This assumption is removed in later sections.

1.5.2.1 Example - Two bidders

• 2 bidders

• Same valuation per click, v1 = v2 = v

• Two slots, with click rates c1, c2.

• c2 is known to both bidders, while c1 is not known.

• Each bidder i gets a signal si from a Weibull distribution, W [1, c1].

• The signals that bidders get are conditionally independent, given c1.

• Reserve price: r
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Both bidders’ prior distribution is an Inverse Gamma (2, α ⋅ c2), with mean α ⋅ c2. At this stage,

α is common for both bidders. However, the analysis stays the same in the case where it is not,

the algebraic part is just a bit longer. A large α, implies that the bidder is optimistic regarding

the number of valuable clicks in slot a, while when α is closer to 1, it implies a more pessimistic

bidder. Inverse Gamma is a proper prior for the Weibull distribution, given that its shape is greater

than 1. Inverse Gamma was selected because of its conjugate prior property when paired with

Weibull. The timing of the game is as follows:

1. Each bidder receives an independent private signal from W [1, c1].

2. All bidders update their beliefs on c1 based on their private signal.

3. A clock showing the current price, which continuously increases over time, starts at the

reserve price r.

4. As the current price continuously increases a bidder drops out - denote with p2. This bidder

gets the last slot (slot 2) and pays r for each click in this slot.

5. The clicks in slot 1 are realized and the remaining bidder gets slot 1 and pays p2 for each

click in slot 1.

I assume that the equilibrium strategy profile is symmetric, and the equilibrium strategy is strictly

increasing in si.

Proposition 1 The dropout price in the two bidder Generalized English Auction with asymmetric

information is:

p∗i = v −
4c2

α ⋅ c2 + 2si
⋅ (v − r)
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Proof: See Appendix.

It is visible in the result that the bidder with the highest signal wins slot 1, a property of pure

common value games. In addition, the drop out price is inversely correlated with the clicks

of slot 2 because the more clicks slot 2 offers, the more attractive it becomes. Finally, it is

straightforward that the more optimistic the bidders are, the higher the drop out price is; the latter

is reflected by α. In the appendix, I discuss an example with 3 bidders, and the implications of

bidder bias for the seller’s revenue in the case of 2 bidders.

1.5.3 Model with N bidders

I generalize the drop out conditions over n bidders and I describe the Bayesian Nash

equilibrium of the game. A clock shows a price which continuously increases over time, and

it starts at the reserve price r at the beginning of the game. As in the previous sections, each

bidder receives a private signal on the ratio of clicks in slots 1 and 2. As the price increases,

bidders drop out one by one and slots are allocated. When a bidder drops out at a certain price,

the remaining bidders infer her signal and update their beliefs about the ratio. I split the game

in n − 1 stages: 0,1, ..., n − 2, each stage representing the time between two consecutive bidder i

drop outs. At any stage of the game, t, a participating bidder has the following information set:

1. Their private signal, si.

2. The history of the game ht = {b1, b2, ..., bt}, which contains all the prices that previous

bidders dropped out.

3. The current price on the clock, p.
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Each bidder infers the signals of the bidders that have already quit and drops out when the clock

reaches pti, unless another bidder quits before pti, and the game progresses to stage t+1. Expanding

the result of the previous section:20

pti = v −
(n+2)⋅ct

α⋅c2+(n−t)si+∑
t
j=1 sj(bj)

⋅ (v − bt)

As shown before, when the game starts (t = 0), bidder i would quit if the price reaches p0i and no

other bidder has quit until then, where:

p0i = v −
(n+2)⋅c0
α⋅c2+n⋅si

⋅ (v − r)

In summary, the equilibrium strategy profile of each bidder in the game is described by the

following matrix of dimension n x (n − 2):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt1(h
t), where t ∈ {0,1, ..., n − 2}, ht ∈H t

pt2(h
t), where t ∈ {0,1, ..., n − 2}, ht ∈H t

...

ptn(h
t), where t ∈ {0,1, ..., n − 2}, ht ∈H t

(1.1)

where H t is the space of histories for the game at stage t:

20Abusing notation, I denote the clicks in slot t from the last slot as ct.
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H t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if t = 0

{x1}, where x1 > r, if t = 1

{x1, x2}, where x2 > x1 > r, if t = 2

...

{x1, x2, ..., xn−2}, where xn−2 > ... > x2 > x1 > r, if t = n − 2

(1.2)

1.5.3.1 Bidder Bias

One last step is required to allow for optimism and pessimism for bidders. The difference

between optimism and getting a high signal is its persistence across auctions because of the

distribution that generates them, given that signals across auctions are assumed to be independent.

Data suggest that some bidders consistently overbid, while others bid consistently lower than

the bids suggested by EOS (2007). This cannot be explained by signal draws since signals are

random while the deviating behavior is consistent towards one direction. An optimistic bidder

typically believes that the ratio of organic to paid traffic is higher than its real value. I model this

by allowing bidders to have different priors in the dimension of expected value. The mean of an

optimistic bidder’s prior is higher than the real ratio, while the mean of a pessimist bidder’s prior

is lower.

More specifically, the prior distribution for bidder i is an Inverse Gamma (2, αi ⋅ c2), with

mean αi ⋅ c2. I do not allow bidders to know the priors of their opponents, since rational bidders

would not have different priors. I also do not allow bidders to know that their opponents have

different priors, since the signal identification becomes impossible. This is because when a bidder
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sees an opponent dropping out of the auction, it is not possible to identify how this bid was

affected by the prior of their opponent and how it was affected by the signal of their opponent. In

the appendix, figure A.1 depicts bids over time and justifies the form of bias in the model.

The game in this case unfolds as follows:

1. Each bidder gets a ”prior parameter” ai from nature that applies to every auction in a hotel.

Their prior parameter reflects the mean of their prior for every auction in this hotel.

2. When the game starts each bidder gets a private signal from W [1, c1].

3. When a bidder quits, the bidder updates her prior, while ignoring that step 1 happens

(naivety).

I assume that the marketing effect is incorporated in the bidder’s prior. I model the marketing

effect to be a part of the prior because a bidder’s brand is reinforced when it is being seen more

by the platform’s user, i.e. being in slot 1 more often. Increasing a bidder’s prior makes slot 1

more attractive to the bidder and subsequently increases their equilibrium bid. More specifically,

consider H hotels in the same geographical area. It is plausible to assume that bidder marketing

happens at the geographical area level, not the auction level. For example, a bidder might decide

to spend additional resources for auctions of hotels in Long Beach, CA for US users for marketing

reasons. I consider implausible that bidder marketing campaigns can be more specific than the

latter example because of the large number of auctions and the increased level of complexity.

Hence, for hotel h in the geographical area l for bidder i, the prior parameter of a bidder is

formulated as follows.

αi,h = ratioh ⋅ opti,h ⋅mar
l
i (1.3)
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There is a prior parameter, αi,h for every hotel-bidder combination, the real ratio of clicks between

slot 1 and 2, ratioh, is one per hotel, same for all participating bidders. The ”optimism” effect,

opti,h, reflects each bidder’s prior belief on the real ratio of clicks between slot 1 and 2, one

for every hotel-bidder combination. Finally, the marketing effect, marli, describes the additional

effect of spending of bidder i in geographical location l for marketing reasons. Note that increased

(decreased) bidder spending on marketing is modeled to apply to an increase (decrease) of the

prior parameter, α. This implies that marketing effect can translate to a behavior where the bidder

acts as the ratio of clicks between slot 1 and slot 2 is differs from ratioh. While in practice, bidder

may multiply all their bids with a constant greater than one when they want to market themselves

in the platform, I assume that bidders choose a number marli, that is multiplied with the mean of

their prior. More specifically, I assume that when bidders change their bids for marketing reasons,

they do not multiply their bid presented in equation 1.4 by a constant, but they incorporate it into

the prior term αi. In addition, assumption 3 justifies why the marketing effect variable marli is

indexed solely by the geographical area l bidder id n.

1.5.3.2 Equilibrium

The main difference of this game with the game in the previous section is that bidders

are allowed to have different priors among themselves. However, to maintain the rationality of

bidders, bidders ignore that nature gives them different prior parameters and assume that every

bidder has the same prior parameter with them.21 This leads to wrong inference of opponents’

signals, since they assume that their beliefs are the same. In addition, a higher drop out price does

21As mentioned before, the prior incorporates both optimism and marketing effects.
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not always imply a higher signal. A bidder with a lower signal can drop out later than a bidder

with a higher signal if the prior parameter of the later is high enough. At any stage of the game,

t, a participating bidder has the following information set:

1. Their private signal, si.

2. Their prior parameter, αi.

3. The history of the game ht = {b1, b2, ..., bt}, which contains all the prices that previous

bidders dropped out.

4. The current price on the clock, p.

Each bidder infers the signals of the bidders that have already quit and drops out when the clock

reaches pti, unless another bidder quits before pti, and the game progresses to stage t+1. Expanding

the result of the previous section:

pti = v −
(n + 2) ⋅ ct

αi ⋅ c2 + (n − t)si +∑
t
j=1 s

i
j(bj)

⋅ (v − bt) (1.4)

As shown before, when the game starts (t = 0), bidder i would quit if the price reaches pti and no

other bidder has quit until then, where:

p0i = v −
(n + 2) ⋅ c0
αi ⋅ c2 + n ⋅ si

⋅ (v − r) (1.5)
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Equation (1.5) suggests that the bidder who drops out first is based solely on her prior. However,

equation (1.4) suggests that as the auction progresses and bidders drop out, the remaining bidders’

decisions are affected increasingly by their inferences of opponents’ signals. Bidder’s bias affects

inference heavily. The inferred signal is different than the original signal in case bidders have

different prior parameters. For instance, if a bidder has a high prior parameter, she infers the

signal of a bidder with low prior parameter as their prior parameters are the same. Therefore, if

a bidder drops out because of a low prior parameter, another bidder with a high parameter will

interpret it as a very low signal. Hence, as the auction progresses, even initially optimistic bidders

can bid lower than optimal given that bidders have different priors.

In summary, the equilibrium strategy profile of each bidder in the game is described by the

following matrix of dimension n x (n − 2):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt1(h
t), where t ∈ {0,1, ..., n − 2}, ht ∈H t

pt2(h
t), where t ∈ {0,1, ..., n − 2}, ht ∈H t

...

ptn(h
t), where t ∈ {0,1, ..., n − 2}, ht ∈H t

(1.6)

where H t is the space of histories for the game at stage t:
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H t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if t = 0

{x1}, where x1 > r, if t = 1

{x1, x2}, where x2 > x1 > r, if t = 2

...

{x1, x2, ..., xn−2}, where xn−2 > ... > x2 > x1 > r, if t = n − 2

(1.7)

Note that the inference of opponents’ signals is a different function for every bidder i: sij(bj).

In this game, N bidders compete for slots in M auctions in a property. Each property

(hotel) is associated with multiple auctions, since differences in variables such as number of

guests, length of stay and days to arrival create different auctions that allow for different bids

and different winners. Before the auctions begin, bidders are assigned prior parameters, α, by

nature that reflect their priors. Vector α is of dimension (N x 1). A bidder with prior parameter

αn has a prior distribution on the ratio of clicks for slots 1 and 2 equal to αn for all auctions

held in this property. When each of the M auctions start, each bidder receives a private and

conditionally independent signal snm , n ∈ {1,2, ...,N} , m ∈ {1,2, ...M}, from a Weibull

distribution, W [1, cma ].22 Each bidder updates her prior based on the history of each game m

at stage t, H t
m. At any stage, the policy of each bidder is the price that she would drop out of each

auction if no opponent bidder drops out from this auction when the clock reaches this price.

Definition Equilibrium is a sequence of bidder policy vectors {Dt} over each stage t = {1,2, ...N−

22cma denotes the real number of clicks in slot 1 in auction m.
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2}, bidder beliefs {B̃m
t } and an initial state {Dm

0 }∀m such that:

(a) Each bidder i believes that the bidder prior parameters are described by the vector αn =

[αn, ..., αn]Nx1.

(b) The initial state {Dm
0 }∀m contains the prices that each bidder i would drop out from

auction m, if no opponent bidder drops out when the clock reaches the prices in vector

{Dm
0 }∀m. The initial state depends on the bidder prior parameters α, the known click

curves {C}(N−1)xM , the private signals SNxM and the known reserve prices {r}Mx1. {Dm
0 }∀m

is described by equation 1.5.

(c) Bidder policy for stage t ∈ {1,2, ...N−2} of auctionm ∈ {1,2, ...M},Dm
t (α,H

t
m, S

t
m,Cm) ∈

[bt, v]N is derived by equation 1.4.

(d) Transition to the next stage Dm
t+1(α,H

t+1
m , St

m,Cm) from Dm
t (α,H

t
m, S

t
m,Cm) is described

by Bayesian update of bidder beliefs given the most recent part of history H t+1
m = H t

m ∪

{btm}, where btm =min(Dm
t (α,H

t
m, S

t
m,Cm)).

Proposition 3 The outcome of the equilibrium is a unique vector of bids that formed after N − 1

stages, is increasing and is equal with {bm0 = min(D
m
0 ), b

m
1 = min(D

m
1 ∖ IDm

1 (b
m
0 )), ..., b

m
N−2 =

min(Dm
N−2 ∖ IDm

N−2(b
m
0 , ..., b

m
N−3))}.

Proposition 3 ensures the existence and uniqueness of the outcome of the game. Additionally, the

history only matters through beliefs and beliefs are payoff relevant. This displays the Markovian

nature of the game, since bidder policies at stage t depend on the inference made over all previous

stages through their posterior at stage t.
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Corollary 1 Bidder inference of the signals of their competitors is incorrect in general and

correct if and only if all bidders are given the same prior parameter by nature. Hence, the naivety

of bidders about the nature’s action and their rational decisions for the rest of the game may

lead to suboptimal allocation of slots. Bidders do not reach contradictions with their mistaken

inference since the system of equations for the opponent’s signal and the opponent’s prior is

underidentified.

1.6 Estimation

This section aims to provide a method to estimate bidder prior parameters. Despite the

richness of the data, a straightforward calculation of bidder prior parameters is impossible. The

researcher can observe bids, and the click curve from the data. In addition, data provide enough

information to calculate a reliable proxy for the bidders’ per click valuations, as described in the

data section, outside the marketing component which is estimated separately.

However, there are two components in each bid which cannot be known to the researcher:

the bidder’s signal in an auction and the bidder’s prior parameter for the hotel. However, not all

is lost: A bidder is assumed to have a unique prior parameter for all the auctions for a hotel, but a

different signal in each auction.23 I observe a large set of auctions for each property, therefore one

can expect the set of bidder signals to closely be described by their distribution due to their sheer

numbers. Hence, the knowledge on bids can allow the researcher to pin down the bidder prior

parameters. The algorithm I use to perform the estimation is based on maximum likelihood and

23This comes from the nature of the problem: The platform decides the click quality in the hotel level, not the
individual auction level.
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exploits the intuition. For given bidder prior parameters, it is possible to calculate the signal that is

associated with each bid.24 Then, knowing the signal distribution for each auction, I calculate the

likelihood that the estimated signals are derived from this distribution. By expanding equations

(1.5) and (1.4), I get an expression for the signal si that corresponds to each bid bi.

Proposition 4 The signal that each bidder receives in each auction can be calculated given

the history of the game within an auction and has the following form:

si = c(c2, n, t) ⋅ αi + d(c2, ct, bi, bt, t, n, r) (1.8)

where:

c(c2, n, t) = −
c2

n−t+1 +
c2
n2 +∑

t−1
j=2

c2
(n−j)⋅(n−j+1)

d(c2, ct, bi, bt, t, n, r) =
n+2

n−t+1 ⋅
v−bt−1
v−bt
⋅ ct −

1
n ⋅

n+2
n ⋅

v−r
v−b0
⋅ c0 −∑

t−1
j=2

1
n−j ⋅

n+2
n−j+1 ⋅

v−bj−1
v−bj

⋅ cj

and:

• si ∶ The signal of bidder i in the auction.

• c2 ∶ Clicks provided by the second highest slot.

• n ∶ Number of participating bidders in the auction.

• ct ∶ Clicks provided by the tth highest slot.

24As mentioned, bids, per click valuations and click curves for each auction are known by the data.
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• bi ∶ The bid of bidder i in the auction.

• bt ∶ The bid of bidder in slot t in the auction, when lower than bidder i.

• t ∶ The position of bidder i in the auction.

• r ∶ The reserve price in the auction.

• v ∶ The per click value in the auction.

Proof: See Appendix.

The model’s assumption that bidders do not recognize that their opponents may have different

priors allows for a closed form solution of their signal by using the aforementioned variables

from the game’s history, and the separate estimation of each bidder’s prior separately. The latter

property is a result of bidders’ naivety believing that their opponents have the same prior with

them. Equation (1.8) allows for the estimation of αi for each bidder i, by using the data from all

auctions that bidder i participates. All the needed variables to calculate c and d can be found in

the data, and the distribution of the signals is assumed by the model. The first part of deriving an

estimator for αi is to solve equation (1.8) with respect to d(c2, ct, bi, bt, t, n, r) and get for every

auction m that bidder i has participated in hotel h:

dmi,h(c2, ct, bi, bt, t, n, r) = −c
m
i,h(c2, n, t) ⋅ αi,h + smi,h

Note that the random part is the received signal of the bidder which follows the Weibull distribution

W [1, c1]. Variable c is treated as non-random since it does not depend on the bidder’s signal

but on the auction rules and the equilibrium behavior. The expected value of smi,h equals c1. I
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subtract c1 from both sides since having a random part with zero mean makes the derivation of

the estimator easier. Hence:

˜dmi,h
°
dm
i,h
−c1

= −cmi,h ⋅ αi,h + ˜smi,h
°
sm
i,h
−c1

(1.9)

Proposition 5 The estimator for αi,h

α̂i,h = −
∑

n
m=1

˜dmi,h ⋅ c
m
i,h

∑
n
m=1(c

m
i,h)

2

is consistent, i.e.

lim
n→∞

α̂i,h = αi,h

with MSE for bidder i over auctions indexed by m:

ϵ̂mi =
1

M

M

∑
m=1

( ˜dmi,h + α̂i,h ⋅ c
m
i,h)

Proof: See Appendix.

Another property of the estimator is that it equals αi,h on average. This can increase the confidence

on the estimator’s value even when the sample is not large. However, the availability of data

alleviates all concerns of this kind.25

25Each bidder I examine appears around 15,000 times in auctions for each location in the data. The number of
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Proposition 6 The estimator α̂i,h is unbiased, i.e.

E[α̂i,h∣Ci,h] = αi,h

Proof: See Appendix.

Finally, the variance of the estimator has a closed form expression. In addition, it does not

include any variables unknown to the econometrician, making the standard errors’ calculation

straightforward.

Proposition 7 var(α̂i,h∣Ci,h) =
c21

∑
n
m=1(c

m
i,h
)2

Proof: See Appendix.

The answer to which bidders are optimistic and which bidders bid lower than optimal should be

reflected in their priors. If a bidder has a prior that is higher than the actual value of the ratio of

slot 1 to slot 2 total value, then this bidder submits higher bids than the optimal. I estimate bidder

priors for the subset of hotels with click through rates without paid traffic clicks. This allows for

marketing effect identification. Then I estimate bidder priors for hotels with click through rates

without paid traffic clicks and subtract the marketing effect, which should be constant in a certain

instances for each bidder is large due to the number of auctions. Note that when a variable changes value, e.g. days
to arrival, it is considered a different auction.
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geographical area, e.g. Lower Manhattan, French users, desktop.26

Following equation (1.8) for the prior parameter, for bidder i, hotel h in the geographical

area l and auction m, equation (1.3) becomes:

−

˜dmi,h
cmi,h
+

˜smi,h
cmi,h
= ratioh ⋅ opti,h ⋅mar

l
i (1.10)

Equation 1.10 has two unknowns: the marketing effect and optimism effect. Hence, the next

challenge is to estimate the marketing effect. This becomes possible by observing that the

marketing effect for a bidder is the same across all auctions, in contrast with the optimism effect.

Therefore, a subset of auctions where the optimism effect is known can allow for the calculation

of the marketing effect. I find this subset of auctions by including hotel in the geographical

area for which the ratio of clicks between slots 1 and 2 are known to all bidders. The platform

exogenously chooses not to redirect any paid traffic to certain hotels over time. This becomes

clear to the bidders, since they do not receive any paid traffic clicks from this hotel and click type

(paid/organic) is visible to the bidder. Therefore, the optimism effect for the auctions in hotels

with no paid traffic is equal to 1 for all bidders since the ratios are known for this auction. By

denoting the set of hotels with known ratios as H0, I derive the estimator for the marketing effect

for every bidder i in geographical location l.

26There is no straightforward way to see this in the data because marketing spending has an entangled relationship
with the bid. More specifically, the observed bid is shaped by per-click valuation, bias and marketing spending.
Hence, the part of marketing spending in bid calculation is not directly visible. Given this, I rely on anecdotal
evidence to assume that bidders target their marketing campaigns at the geographical area level, and not by specific
searches which would be tedious and impractical.
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Proposition 8 The estimator for marli

ˆmarli = −
∑h∈H0∑

nh
m=1 ratioh ⋅

˜dmi,h ⋅ c
m
i,h

∑h∈H0∑
nh
m=1(ratioh ⋅ c

m
i,h)

2

is consistent as the number of auctions per hotel increases to infinity for all hotels, i.e.

lim
nh→∞,
∀h∈H0

ˆmarli =mar
l
i

Proof: See Appendix.

Finally, the estimator for the marketing effect can be used to derive an estimator for the optimism/pessimism

effect for every bidder i in hotel h, where h /∈ H0.

Proposition 9 The estimator for opti,h

ˆopti,h = −
∑

n
m=1

ˆmarli ⋅ ratioh ⋅
˜dmi,h ⋅ c

m
i,h

∑
n
m=1(

ˆmarli ⋅ ratioh ⋅ c
m
i,h)

2

is consistent, i.e.

lim
n→∞

ˆopti,h = opti,h

Proof: See Appendix.
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1.6.1 Identification

While the estimation of the model is based on parametric assumptions, I provide an informal

description of the identification strategy here. There are three factors that create variance in

bids conditional on per click valuations: prior beliefs, signals and marketing spending. Bidder

valuations are identified directly by the data, which is unusual in auction papers and allows me

to quantify factors that other papers have not captured before. An important assumption is that

I can estimate a common bidder valuation for a click at a given hotel without using the bidding

data. This is possible because I observe margins for each bidder and the frequency of conversion

and the frequency of cancellation.

The identification of marketing spending is more difficult. It enters the model in a multiplicative

way with the bias parameter (see equation (1.3)). This would make their identification impossible

unless there was an idiosyncratic characteristic in the data to allow it. Indeed, the data provides

an opportunity in the hotels that receive no paid traffic. These hotels are known to bidders while

they do not display any different characteristics than other hotels; rather the platform chooses

them exogenously. In those no-paid-traffic hotels, by definition, the bias parameter is nonexistent

(equal to 1). Therefore, the marketing effect can be identified by the observed bids in the no-

paid-traffic hotels. Specifically, the only way to explain any discrepancies between the observed

bids and the theoretically optimal bids in auctions in no-paid-traffic hotels is the marketing

effect. In no-paid-traffic hotels, any variance in bids across time is attributed bidders learning

about opponent signals.27 The calculation of the theoretically optimal bids is possible because

valuations are explained by the bidder per click valuation and every other variable present in the

27This is similar with EOS (2007), where they avoid dynamics by replacing the GSPA with the Generalized
English auction. The latter, unlike GSPA, allows for bidders to learn within one auction.
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equilibrium strategy is observed in the data.

By common intuition, the marketing effect does not only refer to no-paid-traffic hotels,

but it explains marketing spending in all hotels in the same area; a basic assumption of the

model is that marketing campaigns are organized at a geographical area level and not at the hotel

level. All hotels in the dataset are located in the same geographical area thus, identifying bidder

marketing spending in no-paid-traffic hotels implies identification of bidder marketing spending

for all hotels in the geographical area.

Having identified bidder marketing spending for all hotels using only the observed bids

for auctions in no-paid-traffic hotels, the bias of each bidder-hotel pair can be identified by

the observed bids in hotels with paid traffic.28 After accounting for the marketing effect, any

distributional discrepancies between the observed bids and the theoretically optimal bids can

be attributed to bidder bias, conditional on the signal distribution. By definition, marketing

spending and bias are sufficient to identify the prior belief distribution of each bidder for each

hotel (equation (1.3)). Finally, signal values explain the individual differences between observed

bids and the theoretically optimal bids, conditional on bidder per click valuations, marketing

effects, and biases.

1.7 Results

Table 1.1 displays the estimation of the prior parameters, α for each bidder-location combination

across auctions, along with their standard errors. The large size of the sample and the estimator’s

efficiency leads to small standard errors. The latter provides confidence that bidders have statistically

different priors among themselves for the same location. The numbers presented in the table
28As mentioned, bidders cannot be biased in auction in no-paid-traffic hotels.
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represent the mean of the prior distribution of each bidder for each hotel. For example, if the

estimated value of α in a hotel-bidder pair is 10, then it means that this bidder acts as her prior

belief suggests that there are 10 times more clicks in slot 1 than in slot 2 in this given hotel

on average, conditional on their organic click value. Note that the average ratio of organic clicks

between slots 1 and 2 across the platform is 12:1. Results much higher than the average, e.g. 100,

reflect either intensive marketing spending or excessive optimism. Respectively, a low number,

e.g. 3, reflects either excessive pessimism or that the bidder bids purposely low in order to use

spending power in other markets. Hotel 0 represents the location with no paid traffic. This

location is used for the calculation of the marketing effect. For example, the fact that bidder 1

has a high number for hotel 0 means that she is marketing heavily in this geographical area.

The scale of the estimates seems to vary across bidders and hotels. However, the estimates

are constructed to contain both the optimism and marketing effects in a multiplicative way, by

definition (see equation (1.3)). This implies that if both the marketing and optimism effects for

two bidder-hotel pairs differ tenfold, then the estimates would differ by two orders of magnitude.

This explains, for example, the difference in the scale of estimates for bidder 1 and all other

bidders.

Table 1.2 displays the real ratios of clicks between slot 1 and slot 2 in April 2021 as

observed in the data, for reference and comparison with table 1.1. For example, the ratio of

clicks between slots 1 and 2 for hotel 8 is 5.06. Table 1.1 suggests that bidder 1’s prior for

the ratio of hotel 8 is 11.04, while for bidder 2 it is 2.64. This suggests that bidder 1 is either

optimistic about hotel 8 or spends heavily on marketing in the area, while the opposite holds for

bidder 2.

Table 1.3 displays the estimated marketing effect for each bidder. Estimates greater than 1
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Bidder 1 Bidder 2 Bidder 3 Bidder 4 Bidder 5 Bidder 6 Bidder 7

hotel 0 42.75
(0.14)

1.89
(0.18)

2.3
(0.06)

1.11
(0.04)

1.64
(0.03)

18.1
(0.02)

10.9
(0.3)

hotel 1 3.62
(0.28)

4.61
(0.04)

0.45
(0.09)

2.12
(0.13)

0.35
(0.02)

0.11
(0.01)

1.36
(0.03)

hotel 2 105.25
(1.63)

5.52
(0.1)

1.21
(0.1)

4.02
(0.14)

6.95
(0.25)

3.32
(0.02)

13.5
(0.29)

hotel 3 17.06
(0.88)

1.68
(0.03)

0.58
(0.03)

0.82
(0.13)

0.74
(0.04)

4.89
(0.03)

4.45
(0.03)

hotel 4 9.19
(0.43)

0.14
(0.02)

9.92
(0.03)

0.85
(0.04)

0.83
(0.03)

7.56
(0.02)

3.28
(0.03)

hotel 5 16.77
(0.19)

6.06
(0.02)

2.37
(0.03)

1.82
(0.1)

1.24
(0.04)

4.52
(0.01)

1.28
(0.02)

hotel 6 4.84
(0.13)

4.43
(0.01)

1.38
(0.01)

1.29
(0.03)

1.19
(0.01)

1.96
(0.01)

1.21
(0.02)

hotel 7 10.6
(0.27)

2.19
(0.02)

0.42
(0.01)

0.91
(0.02)

0.34
(0.01)

3.07
(0.01)

3.36
(0.03)

hotel 8 11.04
(0.02)

2.64
(0.01)

0.43
(0.01)

0.13
(0.01)

0.66
(0.01)

1.08
(0.01)

1.95
(0.01)

hotel 9 17.8
(0.16)

1.11
(0.01)

1.42
(0.01)

2.25
(0.03)

0.14
(0.01)

2.19
(0.01)

1.57
(0.02)

hotel 10 25.27
(0.03)

5.35
(0.01)

0.76
(0.02)

2.15
(0.01)

0.28
(0.01)

2.88
(0.01)

1.29
(0.01)

Table 1.1: Bidder prior parameters (standard errors in parentheses)

hotel 0 hotel 1 hotel 2 hotel 3 hotel 4 hotel 5
11.38 13.41 12.36 16.12 12.66 11.73

hotel 6 hotel 7 hotel 8 hotel 9 hotel 10
10.16 9.95 5.06 8.40 9.37

Table 1.2: Click ratios for slots 1 and 2
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suggest marketing spending. The larger the estimate is, the stronger is the marketing effect, i.e.

bidders 1 and 6 are investing more heavily in marketing than the other bidders in this geographical

area.

Bidder 1 Bidder 2 Bidder 3 Bidder 4 Bidder 5 Bidder 6 Bidder 7

market 3.75
(0.114)

0.17
(0.083)

0.2
(0.074)

0.1
(0.031)

0.14
(0.012)

1.59
(0.109)

0.96
(0.115)

Table 1.3: Marketing effect (standard errors in parentheses)

Table 1.4 displays the estimated optimism index of each hotel-bidder pair.29 These estimates

describe the disturbance in prior belief parameter originating from optimism / pessimism bias.

Given its multiplicative nature (see (1.3)) the closer to 1 the estimate is, the less biased a bidder

is. Values higher than 1 suggest optimism, while values less than 1 suggest pessimism.

Bidders tend to be consistent in their biases in the sense that bidders are often optimistic

about every hotel or pessimistic about every hotel. However, there are occasions of outlier

distortions, i.e. a bidder can appear to be more optimistic about a certain hotel, which indicates

constantly bigger than what the CTR and per click valuations would suggest. The estimation

results for the prior parameter in table 1.1 can sometimes differ by an order of magnitude. This

should not come as a surprise, since results for hotel 0 refer to auction with only organic traffic,

i.e. marketing effect. In the model, the marketing effect interacts with the optimism/pessimism

parameter in a multiplicative way. This is the reason that bidders with aggressive marketing

campaigns (e.g. bidder 1, bidder 6) can have larger prior parameters for some hotels (e.g. hotel

2). The estimators are structured such that when the priors are adjusted using the marketing

effect, they are compared with the real ratios observed for each hotel in table 1.2.30 Therefore,

29I include the bidders that appear sufficiently often in each location, i.e. more than 1,000 instances.
30An example that displays the effect of the estimates of each table follows. The real ratio of clicks in hotel 2, as

found in the data, is 12.36 (table 1.2). Bidder 7 displays a marketing effect equal to 0.96 (table 1.3) and a bias for

49



Bidder 1 Bidder 2 Bidder 3 Bidder 4 Bidder 5 Bidder 6 Bidder 7

hotel 1 0.11
(0.002)

1.31
(0.141)

0.31
(0.097)

1.4
(0.006)

0.17
(0.028)

0.02
(0.015)

0.06
(0.044)

hotel 2 2.38
(0.263)

3.45
(0.17)

0.54
(0.084)

1.33
(0.254)

2.84
(0.123)

0.16
(0.041)

1.04
(0.088)

hotel 3 0.2
(0.096)

0.56
(0.085)

0.39
(0.121)

1.03
(0.106)

0.27
(0.038)

0.18
(0.007)

0.24
(0.011)

hotel 4 0.32
(0.006)

0.85
(0.04)

3.04
(0.182)

0.52
(0.039)

0.21
(0.008)

0.4
(0.054)

0.47
(0.062)

hotel 5 0.28
(0.119)

2.1
(0.446)

0.53
(0.127)

1.28
(0.111)

0.92
(0.085)

0.21
(0.01)

0.11
(0.003)

hotel 6 0.17
(0.005)

1.56
(0.117)

0.57
(0.12)

2.13
(0.149)

0.85
(0.074)

0.12
(0.045)

0.24
(0.064)

hotel 7 0.35
(0.007)

1.68
(0.124)

0.23
(0.107)

1.61
(0.115)

0.32
(0.08)

0.16
(0.005)

0.22
(0.008)

hotel 8 0.57
(0.171)

4.66
(0.852)

0.34
(0.098)

0.9
(0.011)

0.54
(0.22)

0.3
(0.073)

0.61
(0.104)

hotel 9 0.72
(0.086)

0.72
(0.148)

0.43
(0.009)

2.1
(0.091)

0.48
(0.13)

0.15
(0.076)

0.34
(0.052)

hotel 10 0.82
(0.031)

1.69
(0.22)

0.38
(0.017)

1.07
(0.3)

0.24
(0.005)

0.14
(0.014)

0.19
(0.002)

Table 1.4: Optimism effect (standard errors in parentheses)
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the magnitude of the results in table 1.4 appears to be considerably smaller, with bidders being

usually consistent in their biases. Any discrepancies within bidders can be attributed to imperfections

of their prediction algorithms which create their biases.31

1.8 Counterfactual

In the counterfactual, I evaluate the decision of the platform to publish the ratios of organic

to paid traffic for every hotel. In this case there is no uncertainty about the click through rate,

and therefore the environment returns to EOS (2007) setup, marketing spending persists, and

information asymmetry disappears. In this context, the clicks in slot 1 are known, hence the

game is identical with the one studied by EOS. Bidders bid according to the formula derived by

EOS:

bi = vi −
ck
ck+1
(vi − bk+1) (1.11)

where i represents bidder id, and k represents slot id.

Results indicate that platform revenue increases by 7% when the ratios are revealed. As

expected, bidders increase their bids the most for the auction where they demonstrated the highest

level of pessimism, while the opposite holds for cases of optimism. Average bidder return

decreases by 11% since competition for slot 1 increases and less biased bidders are not able

hotel 2 equal to 1.04 (table 1.4). Therefore, bidder 7 believes that slot 1 exhibits 12.36 ⋅ 0.96 ⋅ 1.04 = 12.34 times
more clicks than slot 2 for hotel 2, on average. This number is in accordance with the estimate of the prior parameter
for this bidder-hotel pair found in table 1.1.

31There are instances in the data where the top 2 bidders bid up to 50 times higher than their counterparts in
specific auctions. Commissions do not vary this much across bidders; hence it is unlikely that those bids come from
an accurate information set.
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to extract rents.

Figure 1.6 presents the relationship between optimism in the bidders’ prior and the change

in seller revenue after the introduction of the policy. I calculate an optimism index for each

bidder-hotel combination using results from tables 1.2 and 1.4. If the number in table 1.4 is

bigger than the corresponding number in table 1.2 then the respective bidder is optimistic for the

CTR in the respective hotel (ratio ¿ 1). Similarly, a ratio smaller than 1 implies pessimism while

if the ratio equals 1, then the bidder’s prior is correct on average. In general, the closer is the ratio

to 1, the less is the bidder’s bias about the CTR.

Figure 1.6: Platform revenue percentage change for different levels of optimism/pessimism

The figure includes the best fitting line for all observations of the ratios. The curve is

U-shaped and can be interpreted by splitting it in 3 areas. Area (I) contains bidders who were

significantly pessimistic in the pre-policy environment. The platform profits from these bidders
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when CTR becomes known. The reason for the latter is intuitive since these bidders start the

auction with low priors on average. As the auction progresses, bidders in area (I) update their

beliefs and understand that clicks in slot 1 are more than their initial belief suggests. However,

the low priors lead bidders in area (I) to drop out early more often than they should. For this

reason, these bidders increase their bids when CTR becomes known and subsequently platform

revenue increases too.

Area (II) contains less biased bidders, with ratios close to 1. These bidders can extract rents

in the pre-policy environment and lose this benefit when CTR becomes known. When bidders

can be biased, more biased bidders can benefit from opponents that drop out early and can avoid

overpaying for clicks in slot 1. These benefits stop when CTR becomes known. The latter makes

the marginal return of increasing the bid to decrease, and therefore leads to smaller bids. The

latter is translated to the difference for platform revenue being in the negative area. The result

for area (III) is counterintuitive. Even though bidders in this area are optimistic, seller revenue

increases when CTR becomes known. The optimism effect leads those bidders to avoid dropping

out of the auction early.

However, as the auction progresses, bidders in area (III) observe other bidders dropping

out and infer their signals. A basic assumption of the model is that bidders believe that their

opponents have the same prior as they do. If a pessimistic bidder from area (I) drops out early

in the auction, a bidder from area (III) interprets the latter as a bidder with the same prior with

them dropping out. Given their belief that every bidder has the same prior with her, an early drop

out can be interpreted only as a very low signal. These signals accrue as the auction progresses,

leading bidders in area (III) to be more pessimistic than bidders in area (II), contrary to initial

conditions. The equation that describes signal inference in the proof of Proposition 4 displays
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this dynamic, i.e. the inferred signal is decreasing in the bidder’s prior parameter, α.

It is important to note that the previous analysis is platform-specific solely and applies

solely to Tripadvisor. For example, there could be another platform where there are no pessimistic

bidders. Hence, the absence of early dropouts would not allow optimistic bidders to adjust their

beliefs downwards. This would translate to a revenue reduction from optimistic bidders after

information about CTR is disclosed. Therefore, revenue analysis and bidder behavior vary with

the data. This paper does not attempt to be provide generic results about CTR information

disclosure. However, the paper attempts to be universal in the game theoretical aspect of the

problem and equilibrium conditions. The parts of counterfactual analysis and policy recommendation

are tailored to Tripadvisor and they might differ for other online platforms.

Figure 1.7 shows the change of platform revenue in percentage terms for each bidder

separately. It should be noted that this graph does not perfectly correlate with how optimistic

or pessimistic the bidder is estimated to be. Each bidder’s payments depend on the next highest

bid. Given that bidder rankings for each auction in the studied geographical area is not uniform,

the revenue that the platform generates from each bidder is affected by the prior of the bidder that

is usually one slot below.32

Figure 1.8 displays the estimated marketing effect and optimism index for every bidder-

hotel observation. In addition, it includes the quadratic curve that fits this data best. The fact that

pessimistic bidders appear to have higher marketing spending on average explains the positive

outcome of the policy. In an environment of similar per click valuations, high marketing spending

increases the likelihood of winning a high slot. As explained before, pessimistic bidders are

32The set of the top 3 bidders is the same in 46% of the auctions in the studied geographical area, e.g. bidder 3,
bidder 1, bidder 6, ... .
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Figure 1.7: Platform revenue percentage change per bidder

expected to increase their bids after the introduction of the policy. More specifically, the policy

boosts the spending of the bidders who spend the most on the auction on average, due to more

intensive marketing. Therefore, it is straightforward that the policy’s net effect should be positive

for this platform, which is consistent with the counterfactual results.

The previous paragraphs describe how more biased bidders tend to underbid when there is

asymmetric information and bidder bias in a generalized English auction environment. However,

internet platforms perform the generalized second price auction, where bids are submitted simultaneously.

Whereas the generalized English auction is a useful tool to examine the learning process of

bidders, it is natural to ask how underbidding dynamics translate in a realistic setting. Consider a

heavily biased bidder that enters an auction. More specifically, assume that the bidder has a prior

belief about the return of slot 1 which is significantly higher than its actual return. Since bids are
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Figure 1.8: Marketing spending and Optimism

submitted simultaneously, it is likely that the bidder wins a high slot. The bidder has no access

to her opponent’s bids for confidentiality reasons.

In practice, bidders slightly change their bids when the auction is repeated in order receive

information. When the bidder reduces her bid, she eventually receives a lower slot, which reveals

the bid of the bidder who previously held this slot. Since this bidder is initially optimistic, she

gradually understands that most opponents’ bids are lower than her prior would suggest. Hence,

the more optimistic a bidder initially is, the bigger this discrepancy becomes. The bidder quickly

understands that slot 1 is not as desirable as believed, which results in a bid reduction. In addition,

winning slot 1 and have perfect visibility on its return is not an option in a platform’s scale.

Bidders submit millions of bids daily, which makes the evaluation of each auction separately

practically impossible.
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In an environment that the click through rate remains the same across time, a bidder’s

knowledge would convert to the true value after a certain amount of iteration. However, in a

platform’s environment, user preferences and exogenous choices of the platform e.g. amount of

paid traffic, change frequently. The latter implies that bidders are not able to realize their bias,

making bidders susceptible to overbidding constantly.

In the appendix, figures A.2, A.3, A.4, A.5 show histograms that count the difference for

platform revenue in percentage terms for each bidder separately and a histogram that counts the

difference for platform revenue in percentage terms for every auction in the dataset in case the

platform adopts the policy. Obviously, the amount paid to the platform from a certain bidder

depends on actions of other bidders. The change in one bidder’s payments is not equivalent with

the effect of the implemented policy to this specific bidder. However, I abusively display the

revenue per bidder changes in order to provide a broader picture where effects from opponent’s

actions are averaged. In accordance with figure 1.7, bidders 1 and 7 have the volume of their

observations in the negative territory, while bidder 3 observations are more uniform but the clicks

in the auctions with positive change are less valuable. Figures A.6, A.7, A.8, A.9, A.10 show

histograms that count the difference for platform revenue in percentage terms for each hotel

separately.

1.9 Conclusion

The Sponsored Search Auction is a significant monetization mechanism for several internet

platforms. The literature contains important theoretical results on the possible equilibria of the

SSA; however the underlying assumptions are questionable in practice. In a real setting, it is
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highly unlikely that all bidders are equally biased about the number of clicks that an ad in slot

1 will receive after the auction. A bidder needs to guess the number of users that will access a

listing, the quality mix of clicks (organic/non engaged) and her opponent’s beliefs. Since bidders

are expected to have access to different amounts of resources, information asymmetry should

arise in most internet platforms that hold SSAs.

Anecdotal evidence points to the direction of limited bidder information about the click

through rates. The fact that user interaction and behavior fluctuate over time suggests that

click through rates are also volatile. In addition, the variance in bidder ability to process the

data from auction results amplifies the asymmetry. Therefore, the assumption that information

about click through rates is asymmetric across bidders and that their prior beliefs can be biased

becomes plausible. The asymmetric information environment and prior belief bias have important

implications for bidder strategy and seller revenue. Intuitively, less biased bidders can take

advantage of their more biased counterparts and extract rent using their information edge. I

design a game of the generalized English auction with bidders receiving different signals that

reflect their beliefs on the click through rate.

Furthermore, I model different bidder ability to interpret past auction data by allowing

bidders to have different prior distributions about the click through rate. The latter allows bidders

to be consistently optimistic or pessimistic about the value of slot 1 in a given geographical area

on average. Then, I derive the Bayesian Nash equilibrium of this game in an identical private

value environment. The equilibrium condition implies that bidders infer wrongly opponent

signals when their priors are optimistic or pessimistic, making them susceptible underbidding.

Then, I derive a consistent estimator for the prior distribution’s parameters for each bidder-hotel

combination based on past bids and bidder per click valuations. I use data on bids and valuations
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to estimate the prior parameters while accounting for over(under) - bidding due to marketing

reasons. Estimation results suggest that bidders have indeed significantly different beliefs about

the click through rates. Finally, I perform a counterfactual to assess whether disclosing CTR

to bidders is beneficial for the seller in Tripadvisor’s case. I find that the platform increases its

revenue by 7% when the policy is implemented in the studied markets. The revenue increase is

caused by bid adjustments from more biased bidders, which offset the bid reductions from less

biased bidders that are not able to extract rents.

Limitations of the paper’s Bayesian approach include the following. First, it cannot be

applied successfully in platforms with many small sized bidders with limited processing capability.

It is easier to justify that responding to opponents’ actions and learning from their bids is possible

with a few big players rather than many small players. Second, the equilibrium I derive applies

solely in identical private value environments, which is the case for Tripadvisor. The equilibrium

conditions differ in cases with significant differences in per click valuations, which I do not

solve. Finally, my estimators need a large amount of data to converge, due to the large number

of estimated parameters. My approach would not produce robust results in the case of a much

smaller platform.

An interesting expansion would be to establish a general rule on the conditions that deem

bidder bias favorable to the platform and develop a decision tool which allows the identification

of the optimal information policy given data on past bids.
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Chapter 2: Optimal Reserve Prices with Endogenous Demand: A Field Experiment

2.1 Introduction

Sponsored search auctions are used as a monetization mechanism by many online platforms.

In general, online platforms blend their organic content with advertisements. Different parties

are competing for the advertisement space on the platform, and therefore, user attention. The

platform allocates the space by holding an auction which determines the price for each bidder.

It is plausible to assume that the goal of the platform is to maximize its intertemporal revenue.

Hence, the most interesting question to ask, is how to design the auction in order to generate the

highest expected payoff to the seller across time.

The first theoretical results answer the question for the case of the sale of one item and

independently distributed private values. Riley and Samuelson (1981) and Myerson (1981) show

that if bidders are symmetric, the mechanism that maximizes the expected revenue of the seller

is a second price auction with an appropriately chosen reserve price. Bulow and Roberts (1989)

simplified the analysis by showing that the allocation problem is equivalent to the analysis of

standard monopoly third-degree price discrimination. The latter introduced the marginal revenue

of the bidder into discussion. Bulow and Klemperer (1996) provide a simple derivation of the

result that the expected revenue from an auction equals the expected marginal revenue of the

winning bidder(s).
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The theoretical work extends to the allocation of multiple objects. Armstrong (2000)

analyses optimal auctions of multiple objects when bidders have a binary distribution over their

valuations for each object. Ben-Porath et al. (2014) discuss optimal allocation with costly

verification from the principal’s side. Maskin and Riley (1984) derive optimal mechanisms in

settings with risk-averse bidders. Ausubel (2004) derives an efficient ascending-bid auction for

homogeneous goods. With private values, this auction yields the same outcome as the sealed-bid

Vickrey auction. Edelman and Schwarz (2010) derive the optimal auction design in Sponsored

Search Auctions. They analyze the underlying dynamic game of incomplete information, and

they establish an upper bound on the revenue of any equilibrium of any dynamic game in this

environment. They show that a platform’s optimal reserve price is independent of the number of

bidders and independent of the rate at which click-through rate declines over positions.

Several papers discuss how the aforementioned theoretical results compare with empirical

estimates of optimal reserve prices for different kinds of auctions, such as Bajari and Hortacsu

(2003); Haile and Tamer (2003) and Tang (2011). McAfee and Vincent (1992) consider a

common value auction model with bidder participation determined jointly by nature and by

bidder optimization. Then, they derive a test statistic for establishing when it is optimal to

raise the reserve price. Cramton et al. (2002) outline the differences between equation-based

Transaction Evidence Pricing System and parity pricing for timber pricing in British Columbia.

McAfee, Quan and Vincent (2002) compute the equilibrium bidding strategies and outcomes,

and derive a lower bound on the optimal reserve price in a general auction model with affiliated

signals, common components to valuations and endogenous entry.

A paper closely related to this research is Ostrovsky and Schwarz (2016). They present the

results of a large field experiment on setting reserve prices in auctions for online advertisements,
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guided by the theoretical results from Edelman and Schwarz (2010). Their experiment was

successful and consistent with the theory, revenues increased substantially after the new reserve

prices were introduced. Additional papers have experimented with reserve prices in a first-price

online auction (Reiley (2006)) or use and extend the framework proposed by Ostrovsky and

Schwarz, confirming their findings (Sun et al. (2014) and Topinsky (2014)). Another related

paper is Rafieian (2020). Rafieian examines the revenue gains from adopting a revenue-optimal

dynamic auction to sequence ads. The paper uses theoretical framework to derive the revenue-

optimal dynamic auction that captures both advertisers’ strategic bidding and users’ ad response

and app usage. Rafieian documents significant revenue gains from using the revenue-optimal

dynamic auction compared to the revenue-optimal static auction.

In the current paper, I allow the demand side to react to changes of the supply. In particular,

I present empirical evidence that platform users engage less when the ad supply is limited. The

latter happens because the ad space in the platform I study can be interpreted as organic content

by the users. This creates a trade-off between increasing revenue by increasing the reserve price,

versus higher demand by allowing more bidders to appear in the search results. Adding to

Edelman and Schwarz (2010) environment, I allow click thru rate (CTR) to change when the

number of winning bidders changes, following the intuition that when users see fewer offers they

tend to engage less with the platform. I derive the optimal reserve prices computationally and

evaluate their performance in a field experiment as in Ostrovsky and Schwarz (2016).
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2.2 Auction Overview

The paper focuses on Tripadvisor’s hotel meta-auction, which has the general characteristics

of sponsored search auctions. Tripadvisor holds repeatedly simultaneous generalized second

price auctions for different user searches. A user search is defined as combination of search

variables such as hotel id (location id), length of stay, days to arrival and number of guests.

First, the user sees a list of hotels that match her search, as displayed in figure 2.1. The order

of appearance for hotels after step 1 is not related to the auction but is personalized for each

different user. OTAs only compete for user attention within hotels. When a user clicks on a hotel,

a limited number of travel agents (OTA) is displayed in a list form, as displayed in figure 2.2.

Different positions have different desirability for OTAs. When a user clicks on an OTA’s listing,

she is redirected to the OTA’s website, as displayed in 2.3. Then, the OTA pays the platform

for sending the user to its website - ”pay-per-click” rule. All positions are auctioned at once.

However, bidders can submit only one bid. The highest bid wins the highest slot and so on, until

the auction is repeated.

Winner determination:

The bidders who bid more than a preset reserve price, r , are ranked in terms of decreasing

bids. Rarely, this is not the final order of appearance, since further adjustments take place to the

rules.

When the order is determined, a bidder pays when it receives a click, regardless of whether

the click leads to a booking. The pricing rule can vary, producing different variants of the auction
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Figure 2.1: Hotel list

with price equal to:

1. The submitted bid max(r, b); (GFPA)

2. The next highest bid max(r, b1); (GSPA)

3. A hybrid version: max(b1, γ ⋅ b, r), γ ∈ (0,1); (GHPA)

The pricing scheme used by Tripadvisor in 2021 is the second price payment, which is the

revenue maximizing scheme as suggested in Dimitrellos (2020). In addition, using the result of

Dimitrellos (2021), I assume that CTR is common knowledge, since it suggests higher platform
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Figure 2.2: OTA display

revenue compared to the asymmetric information case. Bidders are allowed to update their bids

twice a day. Each bidder is notified about the position she achieved in case of winning, their

cost per click, and if she bid less than the reserve price. Theoretically, it is possible to infer the

position of other winning bidders, since each auction’s ranking is available to platform users.

Given the platform’s nature, it is plausible to assume that users prefer more OTA listings to fewer

if they prefer more choices. This is not the case for platforms such as Google, where users do not

enjoy seeing more ads and try to avoid them when possible.
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Figure 2.3: Redirection

2.3 Optimal Reserve Price

Given the previous results, the last aspect of the auction mechanism that the platform

can modify are the reserve prices. Edelman and Schwarz (2010) consider a dynamic game

of incomplete information used to sell sponsored search advertisements. They also consider

a corresponding static game of complete information. They establish an upper bound on the

revenue of any equilibrium of any dynamic game in this environment and they prove that the

generalized English auction with a certain reserve price is an optimal mechanism. The current

paper provides evidence that the generalized English auction environment performs better than

alternative schemes and a natural question that occurs is how Edelman and Schwarz (2010) results

are translated in the current auction’s environment.
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I expand the assumptions of Edelman and Schwarz by adding a responsive demand side.

In the case of Edelman and Schwarz, the platform in discussion auctions ad slots, and display

advertisements next to organic results. Users visit the platform in order to have access to its

organic results and not advertisements. Therefore, an increase in reserve prices as suggested

by Edelman and Schwarz, not only increases the platform revenue but, to the users’ delight,

decreases the amount of displayed advertisements and provides faster access to the organic

results.

On the contrary, Tripadvisor does not auction advertisement slots, but organic content. A

reduction in the displayed travel agents by an increase in the reserve price could lead to reduced

user engagement due to less supply of organic content. I quantify the effect of reduced supply to

the click through rate and I calculate the optimal reserve prices that balance the effect of increased

per click revenue and decreased clicks caused by higher reserved prices. I provide evidence on the

validity of the theoretical result by conducting a field experiment that compares current reserve

prices with the theoretically proposed ones, in the fashion of Ostrovsky and Schwarz (2016).

2.4 Setup

First, I empirically estimate the demand’s side reaction to the size of supply. Intuitively, a

user that encounters a low amount of offers for a search has the option to look at other platforms in

order to form a more educated opinion about the market price of her booking. This is equivalent

with the assumption that users earn utility from variety. I also assume that user taste does not

change when the auction mechanism changes, which allows its separate estimation.

The user is informed about the number of offers after the search is performed. After the
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search, the user sees the list of available offers (supply) and decides to click an offer in case

the user is interested.1 I estimate how much less the users click on an offer as supply is being

reduced, i.e. the clicks to searches as the number of offers changes. It would be questionable to

measure the change in click to search ratio when supply changes in different auctions, because

auctions can display different characteristics. For example, auctions for bookings far in the future

are less likely to be clicked compared to auctions for bookings in the near future.

Instead, I use data of supply changes within auctions, i.e. exogenous supply changes for

an auction. I regress the logarithm of the click to search ratio on the logarithm of the ratio of the

number of offers for this auction to the historically maximum number of offers for this auction.

I find that when the number of offers is less than 9, the click to search ratio increases by 4.1%

on average when the ratio of the number of offers for this auction to the historically maximum

number of offers for this auction increases by 1%. I find no positive effect in the increase of

supply, when the number of offers is 9 or more. Table 2.1 displays the regression results, where

β denotes the coefficient of the ratio of the number of offers for this auction to the historically

maximum number of offers.

The drawback of this estimation approach is that it potentially suffers from endogeneity

issues. A common reason that an advertiser may not appear in the search results is that they

have sold all their available rooms for this particular search. If popular advertisers run out of

inventory first, then one part of the click reduction effect found above could be accounted to the

fact that users do not see their favorite advertisers anymore and, therefore, click less. Indeed,

specific bidders run out of inventory more often than others. However, this is not because

1Unlike Jeziorski and Segal, (2015) I assume that the number of clicks that each ad receives, conditional on its
position and total number of ads, is not influenced by the identities of other advertisers that are showed on the screen.
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Table 2.1: Supply Reduction Effect table

click/search ratio

const∗∗ -0.29
(0.011)

β∗∗ 0.041
(0.01)

Observations 2,802

95% C.I. for const [−0.311,−0.269]

95% C.I. for β [0.022,0.06]

standard errors in parentheses
∗∗: significant at 5% level

these advertisers’ brand is stronger than their opponents’; it is discussed in the first chapter of

this dissertation that no advertisers appear to have a better click to conversion ratio than their

counterparts. The reason that specific bidders run out of inventory first is that these bidders win

the highest slot more often, which leads to more clicks and conversions. When an advertiser is

out of inventory, they are removed from the auction results and all bidders below them shift one

slot higher. Hence, the first slot is always occupied and this is the reason that the method above

estimates the supply reduction effect correctly.

Following Edelman and Schwarz, I calculate the reserve prices that maximize seller revenues

in a direct revelation mechanism, using formula 5.12 from Krishna (2002). The optimal direct

revelation mechanism can be characterized using the same technique as in a single object case,

except that the probability of receiving an object is replaced with the expected number of clicks

that a bidder receives. Denote xk(r) the expected number of clicks received by bidder k when the
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realized vector of bidder values is given by r = (r1, ..., rN), and let f(r) denote the pdf of vector

r and tk(0) the expected payment of bidder k when her value is zero. Finally, I assume virtual

valuation ψ(s) = s − 1−F (s)
f(s) is non-decreasing in s, in order to satisfy the regularity condition

from Myerson (1981). Then, the seller revenue in a direct revelation mechanism is:

N

∑
k=1

tk(0) + ∫
r
(

N

∑
k=1

ψ(rk)xk(r))f(r)dr (2.1)

The main difference with Edelman and Schwarz analysis is that in this environment, the expected

number of clicks depends on the total number of offers. Edelman and Schwarz provide an

analytical solution for the maximization of seller revenue, where only bidders with positive

virtual valuations are allocated a positive expected number of clicks, and bidders with higher

virtual valuations are allocated higher positions. The aforementioned solution does not maximize

seller revenue in this environment. The (negative) marginal effect of a lower reserve price in the

average per click payment is outweighed by the (positive) marginal effect of increased clicks due

to increased supply. The latter allows, in some cases, bidders with negative virtual valuations

to be allocated a positive expected number of clicks, since their participation creates a positive

externality for all bidders from increased user engagement.

2.5 Estimating the Distributions of Bidder Values

The seller revenue expression in 2.1 and bidder strategic behavior in Edelman, Schwarz and

Ostrovsky (2007) (EOS) are a stylized representation of the platform’s environment, however it

serves as a useful approximation of reality. Iyengar and Kumar (2006) and Roughgarden and

70



Sundararajan (2007) follow a similar approach with EOS. In this section, I outline the estimation

of the optimal reserve prices that maximize 2.1. The proposed algorithm consists of two parts.

The first part estimates the distribution of bids and valuation and verifies that the regularity

condition is satisfied. The second part numerically calculates the reserve prices that correspond

to the target value of the virtual valuation for each auction. The company picked the set of

auctions that serve as the input of the algorithm, with goal to use the proposed reserve prices in

the subsequent experiment. The auctions belong to one of the top 10 user countries in terms of

platform revenue. During the month before the experiment, the hotels chosen for the treatment

group received around 32,000 clicks in this user-country, while the hotels in the control group

receive around 225,000 clicks. These observations occur from user clicks during May 2021.

For each search in the sample, the two following moments were computed: The average

bid, and the average standard deviation of the bids, where the average was taken over all searches.

The bid of the highest bidder in every auction was excluded from the statistics, because the theory

does not allow the researcher to pin it down. The number of bidders that participate in the auction

does not need to be calculated, since the data provide full visibility on all bids, including those

that win no slots because they are lower than the reserve price.

Next, as in Edelman and Schwarz, it was assumed that bidders’ values were drawn from

a lognormal distribution with a mean and a standard deviation to be estimated. Lognormal

distribution ensures that the regularity condition is satisfied for the parameters that occur from

Tripadvisor’s auctions. Next, I simulate the two moments for possible true values of the mean

and the standard deviation of the lognormal distribution of values. More specifically, for each

combination of true values of the variables to be estimated, the algorithm creates five hundred

draws of the vectors of bidder values. For each draw, equilibrium bids were computed, using
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the unique perfect Bayesian equilibrium of the Generalized English Auction in EOS (2007). The

moments of interest were then computed, and averaged over all draws of bidder values.

For each search, the parameters of the distribution of bidder values were estimated by

matching the observed moments to the simulated results. Finally, for each keyword, the theoretically

optimal reserve price was numerically computed in two steps: First, I calculate the value of ψ

that maximizes the seller’s revenue. Note that the optimal values of ψ are negative because of

the reduced supply effect, while in Edelman and Schwarz is always zero. Second, I calculate

the reserve price that makes the virtual valuation equal to its optimal value, given the estimated

distribution of values. The regularity condition ensures that the optimal value of the virtual

valuation is unique and lies on the global maximum of the seller’s revenue. The algorithm (in

pseudocode) is presented below.
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for all the auctions of interest do

Calculate the ratio of clicks for consecutive bids;

for all the parameter values that the valuation distribution can have do

for i from 1 to 500 do

Draw valuation sample, with dimension equal to the the number of bidders;

Calculate bids(ratio,valuation) based on the theoretical equation;

end

Calculate mean, std of the calculated bids;

Calculate moment distance between the calculated bids and the bids from data;

Keep the parameter values that minimize this distance;

end

for i from 1 to 500 do

Draw valuation sample, with dimension equal to the number of bidders;

For each valuation calculate its ψ;

end

Choose the cutoff point for all ψ’s a, that maximizes equation 2.1, on average;

The optimal reserve price, is the value that makes the psi function equal to the cutoff

point;

Save the optimal reserve price;

end
Algorithm 1: Optimal Reserve Price

aAll ψ’s smaller than this point are discarded
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The existing reserve prices in Tripadvisor have been set years ago and are outdated since they do

not reflect the current values of the auctions. More specifically, the correlation of current reserve

prices to current bids is 0.18, while the correlation of the theoretically optimal reserve prices is

0.88, which reflects the fact that the optimal reserve price has a strong positive correlation with

bidder valuations. Figure 2.4 displays the distribution of the current reserve prices, and Figure

2.5 displays the distributions of the theoretically optimal reserve prices.

Figure 2.4: Current reserve prices
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Figure 2.5: Theoretically optimal reserve prices

The details of the estimation process that affect the aforementioned results follow: First, I do

not consider bidders that have a quality score. As in EOS (2007), I assume that a certain slot will

receive a certain number of clicks regardless of the bidder in this slot. Second, I assume that click

through rates are the same, given hotel-user country-device. In other words, I assume that click

through rates do not change when variables like number of guests change. I use the average click

though rate for every hotel-user country-device across other variables. Third, the per click value

that bidders assign to each slot is assumed to be the same. Given a click, it is irrelevant for the

bidder that it comes from a certain slot. If a user is interested in a listing, all past information on
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the auction (slot, opponent bidders) do not matter any more.

Furthermore, I used bidding data that are more than a month old, since bidders can be

strategic if they know that their bid affect reserve prices in the short term. Finally, the platform

has chosen not to announce the experiment to the bidders following the previous rational: If the

bidders know that an auction belongs in the treatment group, then they can change their bids in

the short term in order to favor the control group which contains lower reserve prices.

2.6 Experimental Results

In this section, I discuss the results of the experiment and analyze the characteristics of

the control and treatment groups. The control group was chosen to contain more hotels than

the treatment group in order to avoid significant revenue loss in case of a negative outcome.

Following Ostrovky et al. (2016), I did not use different adjustment factors in the treatment

group.2 Furthermore, my dataset does not contain any hotels with searches of different order of

magnitude compared to the mean. Hence, as expected, removing the top 0.1% of hotels does not

create any statistically significant outcome.

2.6.1 Pre-Experiment Analysis

Before discussing experimental results, I present summary statistics on the differences

between the control and treatment groups for May 2021; which is before the start of the experiment.

The goal is to show that the two groups have no significantly structural characteristics which

2Ostrovsky et al. chose to divide the treatment group into further subgroups with various levels of reserve
prices. Different subgroups had different adjustment factors and their reserve prices were set: (optimal reserve
price)⋅ (adjustment factor) + (10 cents)⋅(1 - adjustment factor). They did not find any systematic differences between
different adjustment factors, hence I opted not using them.
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would contaminate the analysis of the treatment effect. The variables I examine are the revenue

per search, submitted bid, depth, and reserve price.3 I normalize both the revenue per search

and submitted bids to 1 over this time period.4 Table 2.2 reports the summary statistics for

both groups before the experiment. The average search happens in an auctions with 7.06 active

slots with average pre-experiment reserve price around 8.9¢. The only statistically significant

difference found between the two groups in the pre-experiment period is in the Depth variable. I

find that an auction in the treatment group has 0.78 more winning bidders than an auction in the

control group on average. This difference is small, therefore I consider the split to be plausible for

post-experiment analysis. Finally, note that the optimal reserve prices are not necessarily higher

than the existing ones on average. While there are several instances of significant increase, the

reduced supply effect drives other optimal reserve prices down.

Table 2.2: Summary statistics and test of treatment–control balance

Variable All Treatment Control Difference p-value
Revenue per search† 1 1.005 0.994 0.011 0.3368

(1.0616) (1.0820) (1.0546) (0.0064)
Submitted bid 1 1.009 0.996 0.013 0.2864

(1.0392) (1.0551) (1.0359) (0.0062)
Depth 7.061 7.277 6.497 0.78 0.0210∗∗

(4.1488) (4.4122) (3.5856) (0.0187)
Reserve price 8.898 8.785 8.957 -0.172 0.1397

(6.6578) (6.3353) (7.0899) (0.0266)
Sample size 257,249 32,138 225,111

† Revenue per search and Submitted bids are renormalized, to the average value
of one across the overall sample. ∗, ∗∗, ∗∗∗ − significant at 10%, 5%, and 1%
levels. Numbers in parentheses give the standard deviations for the statistics in
Columns 1–3 and the standard errors for the differences in Column 4.

3Depth refers to the number of bidders that win a slot, and therefore are shown to users.
4The goal of the normalization is to keep revenue per search and bids confidential. I use the same formulas for

normalization as in Ostrovsky and Schwarz (2016): Suppose that we observe n searches, each of them generating
a revenue rpsi, i = 1,2..., n. Then the normalized revenue per click is ˆrpsi = cpci n

∑n
j=1 rpsj

. Respectively, the

normalized bid is b̂i = bi n
∑n

j=1 bj
.
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2.6.2 Post-Experiment Analysis

I measure the treatment effect on the aforementioned variables (revenue per search, submitted

bids, depth) using differences-in-differences estimates as in Ostrovsky and Schwarz (2016). I

measure the post-treatment effect on the control group in order to account for external shocks,

and I compare it with the post-treatment effect on the treatment group.5

The post-experiment data include the user effect: Users encounter a different amount of

providers in the post-experiment period because of the new reserve prices. This leads to a change

in their behavior, since increased supply may create additional clicks. The main variable to be

measured, revenue per search, is affected by both the direct reserve price effect and the indirect

demand response effect. I do not measure the magnitude of each effect in this analysis, but the net

effect.6 This is not problematic, since the variable of interest for a revenue maximizing platform

is the total effect of a policy to its revenue.

The analysis’ approach is to calculate the treatment effect for the full sample at first, and

then to partition the full sample to subsamples based on variables of interest in order to identify

the cases where the treatment effect is the strongest. The first partition is about the popularity of

each hotel in terms of user searches. One would expect that bidders should react more promptly

in more popular auctions, since they affect their revenue more. Then, I partition the subsample of

popular hotels into two more parts based on the optimal reserve price. Intuitively, the depth of the

auction should increase more in a case of a lower optimal reserve price since the user effect may

5The pre-experiment period is considered to be May 2021. The experiment was deployed in mid-June 2021. Data
from June 2021 were discarded in order to allow some time for the bidders to internalize the changes and adapt their
strategies. The post-experiment period was chosen to be July and August 2021.

6However, the estimated supply reduction effect (see Table 2.1) allows for the estimation of the users’ response
magnitude.
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dominate the increased reserve price effect. Finally, I partition the subsample of popular hotels

and high optimal reserve prices into 2 more subsamples based on auction depth. Theory suggests

that an optimal reserve price generates additional seller revenue from every bidder, even those in

the higher slots (see Edelman and Schwarz (2010)). Therefore, one would expect the auctions

with higher depth to show a higher increase in revenue per search compared to the auctions of

lower depth.

2.6.3 Results

The results for the full sample are reported in Table 2.3. The only statistically significant

effect (at the 5% level) of the new reserve prices is an increase in the depth of the auction by

0.64 advertisers on average. This is expected, since the existence of additional advertisers tend to

increase user interaction with all advertisers and therefore platform revenue. The algorithm that

calculates the new reserve prices can internalize this externality, hence the increase in average

depth. Results suggest that revenue per search increases by 10.54%, however this result is

significant only at the 10% level.

The partition of the full sample in terms of hotel popularity offers a clearer picture. In

hotels with more than 200 searches per month, the increase in revenue percent becomes 19.58%

and it is significant at the 5% level. Bidders tend to be more attentive to hotels that generate the

most bookings for them. Hence, it is more likely that a bidder adjusted her bid for an auction

in this subsample in the optimal way as the theory suggests. The latter is also supported by a

significant (at the 10% level) increase in submitted bids. Finally, the increase in depth is bigger

than in the overall sample, adding 1.39 listings on average (significant at the 5% level). The
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significant increase in depth suggests that a part of the revenue per search increase comes from

increased user interaction due to additional supply, highlighting the importance of this externality.

Note that this subsample contains 36% of the searches, but generates 41.4% of revenues for the

platform.

The subsample that contains the less popular hotels shows no statistically significant differences

between the control and treatment groups. This can be attributed to the fact that these hotels

individually receive very few clicks hence they create very few booking for the advertisers. It is

plausible to conclude that an advertiser did not notice any changes in hotels that bring less than

one click per day.

Table 2.3: Results (full sample, split by search volume)

Full sample ≥ 200 searches per month < 200 searches per month
∆-in-∆ Revenue per search 10.54%∗ 19.58%∗∗ 5.82%
t-statistic [1.610] [1.673] [0.737]
p-value (0.0537) (0.0472) (0.2305)

∆-in-∆ Submitted bid 4.64% 13.73%∗ 2.57%
t-statistic [1.223] [1.541] [0.201]
p-value (0.1106) (0.0616) (0.4203)

∆-in-∆ Depth 0.64∗∗ 1.39∗∗ 0.02
t-statistic [1.855] [1.930] [-0.768]
p-value (0.0318) (0.0268) (0.7789)

N. obs. in treatment group 77,859 66,633 11,226
N. obs. in control group 127,163 7,596 119,567
Fraction of total revenue 100% 41.4% 58.6%
∗, ∗∗, ∗∗∗ − significant at 10%, 5%, and 1% levels. Changes in Revenue per search and Submitted
bid are reported relative to the average revenue per search and average Submitted bid in the
corresponding subsample before the experiment.

As Ostrovsky and Schwarz suggest, each percentage point of positive impact translates

into potential improvements to search engine profits and revenues on the order of hundreds of

millions of dollars per year. Furthermore, it is possible for the platform to notify the bidders

about the changes in reserve prices once the policy becomes permanent. This will lead bidders to
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possibly update their behavior in less popular auction and further improve the results.

The fact that the treatment and control groups are imbalanced in terms of searches per

month does not affect the validity of the aforementioned results. Table 2.4 shows a comparison

of the hotels with more than 200 searches per month for both groups. It becomes clear that

the hotels belonging in the two groups are not fundamentally different, hence the difference-in-

difference approach is valid.

Table 2.4: Summary statistics of treatment and
control groups for more that 200 searches per
month

Variable Treatment Control
Number of searches† 1.004 0.984

(1.0251) (1.0441)
Submitted bid 0.990 1.031

(1.0193) (1.0685)
Per night price 1.001 0.999

(1.0508) (1.0847)
Hotel stars (5) 3.592 3.592

(2.0731) (2.0732)
Customer reviews (10) 7.416 7.429

(6.1950) (6.4075)
Sample size 66,633 7,596

† Number of searches, Submitted bids, and
Per night prices are renormalized, to the
average value of one across the overall sample
for privacy reasons. Numbers in parentheses
give the standard deviations for the means in
Columns 1 and 2.

In the next two subsections, I further partition the subsample of popular hotels into more

subsamples: auctions with high and low theoretically optimal reserve prices, and then auctions

with high and low depth.
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2.6.4 Results by Reserve Price Level

Another partition that is potentially interesting is to separate the sample in terms of high or

low optimal reserve prices. As the optimal reserve price increases, the more possible becomes

to differ more to the old reserve price (note that the old reserve prices had almost no correlation

with submitted bids, while the new optimal reserve prices show a correlation of 0.88). Thus, one

would expected a higher increase in revenue per search when the optimal reserve price is high. In

contrast, a larger increase in depth is expected when the new reserve price is low, since the entry

cost becomes lower for bidders. Table 2.5 reports the results, and they verify both claims: The

increase in revenue per search surges to 30.06% in the subsample with higher optimal reserve

prices. However, results are not as statistically significant as in Ostrovsky and Schwarz. The

main reason for this is that in the current environment it is not always optimal to increase the

reserve price. Some of the old reserve price were in higher level than optimal, while at the same

time, increasing the reserve price decreases supply and therefore user engagement.

Consistent with theory, bids increase more in the auctions where reserve prices increase

more (25.17% increase compared to 13.76%). The main reason for this is that when reserve

prices increase some marginal bidders increase their bid to stay in the auction, applying pressure

to bidders in higher slots. However, these findings are statistically significant only at the 10%

level. Finally, there is a significant increase in depth for auctions with low optimal reserve prices;

1.61 more advertisers on average, significant at the 5% level. The corresponding increase in

the auctions with high optimal reserve prices is just 0.67 additional advertisers per auction on

average.
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Table 2.5: Results (keywords with at least 200 searches per month, split
by the level of estimated optimal reserve price

Full subsample r∗ ≥ 10¢ r∗ < 10¢
∆-in-∆ Revenue per search 19.58%∗∗ 30.06%∗ 20.06%∗

t-statistic [1.673] [1.541] [1.633]
p-value (0.0472) (0.0617) (0.0512)

∆-in-∆ Submitted bid 13.73%∗ 25.17%∗ 13.76%∗

t-statistic [1.541] [1.499] [1.488]
p-value (0.0616) (0.0669) (0.0684)

∆-in-∆ Depth 1.39∗∗ 0.67∗ 1.61∗∗

t-statistic [1.930] [1.308] [1.902]
p-value (0.0268) (0.0954) (0.0286)

N. obs. in treatment group 66,633 13,537 53,506
N. obs. in control group 7,596 2,268 5,328
Fraction of total revenue 41.4% 11.72% 29.68%
∗, ∗∗, ∗∗∗ − significant at 10%, 5%, and 1% levels. Changes
in Revenue per search and Submitted bid are reported relative to
the average revenue per search and average Submitted bid in the
corresponding subsample before the experiment.

2.6.5 Results by the Number of Advertisers

I keep the subsample of popular hotels and auction with high optimal reserve prices and

I partition it further in terms of auction depth. Theory suggests that the effect of imposing the

optimal reserve price on revenue should be higher in percentage terms for the auctions with

less participants. Ostrovsky and Schwarz partially verify this claim with their findings. My

results are shown in Table 2.6. Auctions with more participants increase their revenue by 25.78%,

while auctions with less participants increase their revenue by just 23.96%. Note that auctions

that reduce their depth are ”punished” by the users, which explains the difference of outcome

when I partition based on auction depth. This analysis does not reach the same conclusion with

Ostrovsky and Schwarz for two reasons. First, in the current case, a low depth implies lower user

interaction. The platform’s revenue is heavily affected by users who click less after their searches.
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Second, the dataset becomes significantly smaller in this partition. Treatment and control groups

represent only 8.62% and 3.1% of total revenue respectively. The small size of the dataset leads

to higher variance and larger confidence intervals for the estimates. Consequently, there is no

estimate which is statistically significant at the 5% level.

Table 2.6: Results (keywords with at least 200 searches per month and the
estimated optimal reserve price of at least 10 cents, split by the average
number of advertisers)

Full subsample depth > 7.5 depth < 7.5
∆-in-∆ Revenue per search 30.06%∗ 25.78%∗ 23.96%
t-statistic [1.541] [1.301] [1.207]
p-value (0.0617) (0.0966) (0.1137)

∆-in-∆ Submitted bid 25.17%∗ 19.70% 21.71%
t-statistic [1.499] [1.214] [1.193]
p-value (0.0669) (0.1123) (0.1164)

∆-in-∆ Depth 0.67∗ 0.38 -0.67∗

t-statistic [1.308] [1.205] [1.341]
p-value (0.0954) (0.1142) (0.0900)

N. obs. in treatment group 13,537 9,146 4,391
N. obs. in control group 2,268 1,161 1,107
Fraction of total revenue 11.72% 8.62% 3.1%
∗, ∗∗, ∗∗∗ − significant at 10%, 5%, and 1% levels. Changes in Revenue
per search and Submitted bid are reported relative to the average revenue
per search and average Submitted bid in the corresponding subsample
before the experiment.

2.7 Conclusion

The results of the experiment suggest that incorporating the effect of reduced supply when

applicable can lead to substantial increases in the platform’s revenue. The realized increase

(e.g. almost 20% for popular searches) is substantially larger than the improvements found in

existing literature, highlighting the importance of incorporating demand’s response in reserve
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price changes.7 Increased user engagement as a result of increased supply does not only benefit

the marginal bidders entering in the lower slots, but it creates a positive externality for the bidders

in higher slots, that receive the majority of clicks.

This paper describes a way to measure how user engagement changes as supply decreases.

In addition, it develops an algorithm to numerically calculate the optimal reserve prices with

endogenous user behavior. The findings of the paper can incentivize other platforms who use

sponsored search auctions to allocate organic content, to study the effect of reduced choice to

user engagement. This way, a platform can be able to balance the positive effect of increasing

a low existing reserve price (as in Ostrovsky and Schwarz) with the negative effect of providing

less options to their customers. The results of the experiment confirm the theoretical finding that

the introduction of optimal reserve prices while considering the reduced supply externality has

led to a significant increase in seller revenues.

7The comparison is merely suggestive, since different platforms have different levels of optimality in their
existing reserve prices.
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Chapter 3: The Tragedy of Commons in the Taxi Industry: A Case for a Central

Dispatcher

3.1 Introduction

How would a Social Planner affect a spatial market with search frictions? The peculiar structure

of spatial markets creates a number of externalities that have an important impact on the market’s

efficiency. The long literature on matching and network search gives insights on how agent

actions affect market supply and demand. In addition, existing results establish the concept of

dynamic spatial equilibrium in spatial markets in the presence of frictions. This paper addresses

the equilibrium effects of externalities, in order to give economic insights on market policies that

could achieve more efficient allocations. I do not aim to prove the superiority of central planning

against the competitive equilibrium, as in certain circumstances the Central Dispatcher could

produce strictly suboptimal outcomes compared to the market. However, being able to internalize

already known information gives a measurable advantage to the policymaker in mitigating external

effects. I estimate the magnitude of the aforementioned frictions by adding additional detail

to existing models, such as congestion and endogenous matching efficiency. The main forces

that reduce the social surplus are business stealing, a congestion externality and an endogenous
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demand externality. First, a central planner can internalize the effect of supplier’s decisions on

other suppliers. The literature suggests significant business stealing when suppliers are identical,

which leads to excess market entry. Second, the central planner can internalize the effect of a

supplier choices on market congestion. When congestion is high, matching efficiency can be

affected. Market participants are unable to internalize their individual impact on congestion,

while a central planner can compensate for this impact. Finally, when market participants are a

small fraction of the total supply, they take demand as given, ignoring the effect of plenteous

supply on consumer beliefs. I make these additions to the existing benchmark model and I

estimate their effects in order to calculate the optimal market allocation in terms of social surplus.

The industry used as a spatial market paradigm in this paper is the taxi industry. The

taxicab industry remains a critical component of the transportation infrastructure despite the

fierce competition that it faces from the ridesharing industry. Existing regulations in multiple

cities maintain the status of the taxicab industry as a significant factor of the market. The lack

of centralized control in urban taxi markets supports the claims of market inefficiency. Taxi

drivers make their search decisions based on the maximization of individual profit, ignoring the

aggregation of their choices, which determines the supply in any location. Buchholz (2020)

develops an empirical model of the search frictions resulting from price regulation. There is

additional literature that studies the benefits of dynamic pricing for ride-hail services: Hall et

al. (2015), Castillo et al. (2017). Price regulation fails to allow different locations to become

equally attractive to drivers and leads to lack of coordination of demand and supply. Buchholz

discusses the effect of price regulation on demand and supply surplus. Buchholz shows that when

prices are allowed to vary by time, location and distance, daily net surplus raises by $194,000

and there are 31,000 additional daily taxi-passenger matches. Finally, Buchholz solves for the
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market equilibrium in the case of a search-frictionless market.

This paper expands the model proposed by Buchholz by, first, deriving the optimal centralized

decisions in the case where search frictions are still present and second, by adding endogenous

congestion and endogenous demand to the existing model.1 Congestion is modeled as a sigmoid

function of the number of taxis present in a location. The functional form is selected in order

to represent the empirical observation of the existence of a critical point in the effect of the

number of vehicles on traffic speed. I allow congestion to affect the travel cost of vehicles,

matching efficiency and consumer demand. Travel cost has been observed to be higher in high

traffic conditions, and demand for taxis is expected to decrease when congestion is higher. I

allow demand to change with respect to the number of taxis present in a location, to capture the

change in consumer beliefs about match probabilities when plenty of taxis are searching in the

area. These extensions allow the central dispatcher to internalize a more complete set of market

frictions. I keep price regulation in both the baseline model and the counterfactual, since price

deregulation has been studied extensively by Buchholz. I perform a reduced form test of the

significance of the Tragedy of the Commons, i.e. business stealing. Results support the existence

of business stealing, and hence they indicate that there is room for policy on driver strategy.

The counterfactual studies the effect of a Central Dispatcher. The Central Dispatcher makes

decisions instead of drivers to maximize social surplus. Specifically, in the benchmark model,

when a driver is searching in a location and fails to match with a passenger, they must choose the

next search location. In this counterfactual, this decision lies with the Central Dispatcher. The

drivers have to comply with the Central Dispatcher’s instructions regardless of their idiosyncratic

1In contrast with Buchholz’s frictionless counterfactual, I derive the optimal allocation while taxis can still fail
spotting nearby passengers.
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shocks. Two different algorithms are used in order to approximate the optimal allocation due

to the high dimensionality of the state space. The first algorithm uses a greedy criterion by

optimizing only with respect to the next time period. The second algorithm uses an intertemporal

approach based on an approximation of the objective function. This approximation is obtained

by fitting the original objective function onto its estimation via a one layer neural network. The

quality of the fit obtained by the latter indicates that this algorithm’s result is not far from the

optimum. Theoretically, I prove that the estimation process is unbiased. Results suggest that the

Central Dispatcher increases social surplus by 3.13% while benefiting both drivers and passengers

by 2.06% and 3.21% respectively. In monetary terms, this translates to an increase of social

surplus of $798 thousand per shift. In addition, traffic speed increases by approximately 10%,

with the strongest effect for Mid and Upper Manhattan, and daily matches increase by 4.8% on

average. These results indicate the importance of coordination between taxis and the need for

increased planning in their actions.

The rest of the paper is organized as follows. Section 2 presents existing literature in detail.

Section 3 introduces the data, and section 4 discusses reduced form evidence that supports the

business stealing hypothesis. Section 5 presents the structural model and section 6 discusses the

estimation results. Finally, section 7 introduces the Central Dispatcher counterfactual, section 8

reports the results and section 9 concludes.

3.2 Literature

This paper is built upon the literature on network effects and search and matching. This

literature has focused on the New York City taxi industry because of the availability of rich
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data. The Taxi and Limousine Commission of New York City releases detailed taxicab records.

Researchers have modeled driver behavior at different levels of detail over the years. Over time,

models have become more detailed by endogenizing features of the industry such as its dynamic

nature, driver beliefs, the matching mechanism, and consumer demand. Brennan (2014) provides

a rich description and valuable insights on the Taxi market of New York City.

First, Cairns and Liston-Hayes (1996) present an aggregate model of the taxi industry in

order to evaluate several ways of regulating the market. Their model is not agent-based and

demand is treated as a function in equilibrium, at the aggregate level. First, the authors solve

the monopoly case and derive the monopoly number of taxis, number of hours per taxi and fare.

Next, they solve for the same variables in the social optimum. The social surplus maximizing

solution implies negative profit for taxis and therefore it cannot be achieved. The authors also

solve for the second best solution, where they add a zero profit condition for the taxis. In the

second part of the paper, Cairns and Liston-Heyes argue that an equilibrium cannot be achieved

in an unregulated market. This is because of the positive search cost of passengers, so a taxi

driver can always bargain for a slightly higher price than the supposed equilibrium price. Then,

the authors use their model to show that regulating just the fare leads to a worse equilibrium than

the second best because of excess entry. Finally, the authors suggest that the most efficient type

of regulation is to fit both the price and the number of taxis, given that regulating working hours

is not realistic.

Lagos (2003) is the benchmark model for dynamic spatial analysis of the taxicab market.

While the level of detail in this model is small, it has the basic mechanisms of demand, supply

and a spatial dimension that more complicated future papers present, e.g. Buchholz (2017). The

main assumptions of the model are:
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1. Drivers know other drivers’ chosen strategies.

2. The model achieves a steady state.

3. Demand is exogenous and does not respond to endogenous shocks, such as changes in

waiting time.

The model setup is as follows: There are distinct locations which are characterized by their

demand, which can vary among locations. The matching mechanism is frictionless, and the

number of meetings is mi = min[taxisi, passengersi]. The author assigns a value to the driver

for each location that depends on the matching probability, the expected revenue and the value

of waiting. In equilibrium, there is no arbitrage, and passenger movement is characterized by

a steady state. These conditions allow for a simple closed form solution for the value function

in equilibrium, from which the author derives the number of taxis in each location. The final

allocation depends on the aggregate market tightness (cabs/passengers) and has two main potential

outcomes, one with excess supply in most locations and one with excess demand. The main

policy result is that changes in fares and the number of taxis do not improve the total number of

matches in a significant way.

In an attempt to study further the effects of regulation in the industry, Frechette, Lizzeri and

Salz (2018) develop a dynamic general equilibrium model of the cab industry. The basic question

they study is the effects of matching frictions and regulatory limitations on efficiency. The

market characteristics that create the inefficiencies are first, taxi drivers’ lack of knowledge about

passenger location and vice versa, and second, the fixed prices per mile, imposed by regulation.
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The latter makes the market clear not through price adjustment but through waiting time for

passengers and search time for taxis. The model assumes that drivers have complete information

on their current period search time, costs and revenues per hour. Drivers choose when to start and

end their shift but not their locations. This is justified by the fact that in equilibrium the search

time in each area adjusts to make drivers indifferent. Demand is estimated in a reduced form way.

The market forces that lead to equilibrium are the following:

1. Waiting time determines demand through the demand function.

2. Supply and demand determine the waiting and search times through the matching function.

3. Drivers’ start and stop decisions determine supply, using revenues and costs as inputs.

4. Search time determines revenues to make drivers indifferent in terms of location.

As mentioned before, demand is estimated in a reduced form fashion. The first step is to estimate

the matching function, which takes demand, supply and exogenous variables as inputs and gives

the waiting and searching times as outputs. The authors estimate the matching function with

simulation, with the objective of matching the simulation result to the average observed taxi

search time. Next, they invert the estimated matching function, to get the value of the demand.

The demand function is determined by a regression of the estimated demand on time fixed effects

and waiting times. The authors use shift change shocks as an instrument in order to deal with

the endogeneity, of waiting time with respect to demand. Then, given the demand function and

using the matching functional form, one can calculate waiting and search times. Obviously, these

calculations have to take place in a simultaneous equation environment as one cannot estimate

demand without knowing the waiting time and vice versa.
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The supply side is estimated using a more structural approach. Drivers choose starting

and end times to maximize their utility. The cost is assumed to be a function of the driver’s

hours worked and exogenous characteristics. There is a random utility shock and an expected

value of future utility from continuing to drive. If the random shocks are assumed to be Type

I extreme value, then one can derive a closed form expression of the probability of a driver

stopping his/her shift at a given time. The starting decision is modeled in a similar way. Given

how many drivers start and stop their shift at a given time, the authors derive the supply of taxis.

Finally, revenues are determined by search time in order to make all locations equally attractive.

This system of four main equations comprises the dynamic equilibrium of the market. The main

findings after estimating the model are the following. First, taxis that operate within a fleet

follow the 5am to 5pm shift pattern more stringently than owner-operated taxis. Second, the

owner-operated taxis have higher costs but less convex cost functions, which leads to smoother

stopping behavior. Third, the effect on daily entry decisions is highest for earnings increases

in the first hours of the shift. This is because the probability of actually receiving these earnings

decreases as the shift becomes longer due to increasing costs and repeated exposure to the outside

option. Finally, a more effective matching mechanism increases the welfare of both drivers and

passengers, although it reduces market thickness.

I study a search and matching framework with dynamic oligopoly in the tradition of Buchholz

(2020), who analyzes a dynamic spatial equilibrium and discusses market inefficiencies in terms

of waiting times and spatial mismatch. The author focuses on driver decisions rather than demand

formulation. Buchholz develops a model which accounts for cab location in great detail. The flow

of demand, matches and vacancies in every location are described by a state transition matrix.

The basic characteristics of the model follow:
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• An urn-ball based matching function is used to determine the matches in a location at a

certain moment, given the number of passengers and taxis in this location.

• Each driver decides his/her own location based on his/her beliefs on the distribution of other

drivers, rather than each other driver separately, to minimize the computational burden. By

assuming T1EV random shocks, the probability of each driver to go to a certain location can

be expressed in closed form. This decision takes place only if the taxi is vacant. Otherwise,

the driver has to go to the passenger’s destination.

• The driver is ”inactive” when not vacant, in that there are no decisions or shocks until the

passenger drop off.

• Demand follows a Poisson distribution that depends on price and time fixed effects, but not

on changes in waiting time.

• The number of taxis in each location is determined by the multiplication of the previous

state with the transition matrix.

The solution for the equilibrium follows Buchholz (2020), building on the notions of Markov

perfect equilibrium by Ericson and Pakes (1995), and of non-stationary oblivious equilibrium as

suggested by Weintraub et al. (2008). First, each state is derived from the previous state and

the transition matrix. Second, each driver maximizes his expected payoff by choosing a location

when vacant. Finally, agents’ expectations are rational, so there is no arbitrage. Then, the number

of vacant taxis, the number of searching passengers, and the matching function are estimated. The

estimates show that the New York market achieves about $4.2 million in daily surplus, about a

third of which is realized as consumer surplus. Counterfactual analysis reveals that allowing
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prices to vary by time, location or distance can enhance allocative efficiency given the presence

of search frictions, offering daily net surplus gains at least $194 thousand and 31,000 additional

matches daily.

A challenging part of the modeling was the congestion specification. Mangrum and Molnar

(2017), exploit the introduction of a new class of restricted taxi licenses in New York City to

provide a causal estimate of the impact on congestion from the addition of taxis to the city.

They document a large spike in taxi cab activity north of the restriction boundary, driven entirely

by entry from the new restricted license taxis (green) and partially offset by retrenchment from

traditional yellow taxis, which face additional localized competition.

Finally, Wong (2018) presents a dynamic spatial matching game model to study the effects

of improved matching. He estimates the price and waiting time elasticities on the demand side

to predict the response of net demand for taxicabs under different regimes. The key points of the

model are:

• There are both street-hail and e-hail taxicabs

• E-hail cabs can pick up passengers found on the street

• Drivers act based on their beliefs about search time at different locations

• Time is discrete (20-minute intervals)

• In equilibrium, drivers maximize their expected utility and their beliefs are rational

• Demand is exogenous

Each street-hail driver has beliefs over the probability of getting matched with a passenger in

each location. A vacant driver chooses which location to drive towards, taking into account the
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chance to be matched with a passenger on the way, the expected revenue of this match and the

expected value of the trip’s destination. In addition, the driver takes into account the probability

of not matching on the way and the value of reaching his destination vacant. Based on the latter,

the driver chooses the driving destination.

Each e-hail passenger takes into account the probability of matching electronically with a

passenger, the expected revenue of this matching, the possibility of rejecting it, and the probability

of returning late to his depot after accepting, which will result in a late fee. In case the driver is

not matched electronically, then his problem reduces to the street-hail driver’s problem.

The matching function’s form is assumed to be Cobb-Douglas. The estimation method

consists of two loops. The outer loop solves for the matching function’s parameter and the inner

loop solves for driver beliefs. The algorithm stops when both loops converge. Summarizing,

this paper discusses search frictions in the taxicab market by using an agent-based model with

respect to the drivers’ decisions, as in my project. However, Wong attributes the frictions to a

failure of drivers to find passengers and he claims that a centralized matching platform will solve

the issue. My project discusses the possibility that drivers will choose the same actions even with

a better matching mechanism because they end up stealing business from their competitors. In

addition, demand is exogenous in Wong’s paper while demand reacts to supply in my project.

Finally, Wong discusses an environment that includes e-hail drivers, while my project does not

allow different ways that a driver matches with a passenger.
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3.3 Data

The main data source is the TLC’s Taxicab Passenger Enhancements Project (TPEP), which

creates an electronic record on every yellow cab trip. For each trip, it records a unique identifier

for the driver and the cab license (medallion). It also regards the mile distance and time duration

of the trip, the fare, the tip and any surcharges, and the geo-spatial start and endpoint of the

trip. I use data from 2013, when the Uber presence was insignificant. Although the industry

is different now, the analysis maintains external validity because business stealing, traffic and

demand externalities still exist in the ridesharing market. The analysis focuses on Monday

through Thursday, since activity on these days is almost identical whereas activity on weekends

is characterized by peculiar features.

The calculation of each cab’s location at any time from the data is straightforward. The

model in subsequent sections describes the market in discrete time, so I organize the data in

20 minute intervals, and state variables will be assumed to change only when the time interval

changes and not continuously. In terms of location, I partition New York City into the same 8

areas as in Frechette, Lizzeri and Salz (2018). The latter provide evidence that 8 areas describe

the heterogeneity across areas almost as well as a finer partition with 16 areas. The number of

matches between cabs and passengers can be straightforwardly computed from the data for each

time interval and area.

I examine data on yellow taxi activity in December 2013 and provide a quantitative description

of pickup and dropoff locations. More particularly, I examine matching data of the following

dates: 2-5 December 2013 and 9-12 December 2013. Next, I calculate the mean values for each

variable within these dates to smooth day-specific anomalies and create a dataset of an average
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weekday. For the purposes of this description I split New York City into 4 locations, as shown in

Figure 3.1.

• Location 1: Lower Manhattan, south of W 39th street.

• Location 2: Midtown Manhattan, between W 59th street and W 40th street.

• Location 3: Upper Manhattan, between W 124th street and W 60th street.

• Location 4: The rest of the metro area.

Figure 3.1: Locations map for NYC Metro Area

Table 3.1 summarizes pickup and dropoff intensity over the designated locations. The difference

in the percentages between pickups and dropoffs in location IV can be explained by the fact that

in the boroughs outside Manhattan green cabs compete with yellow cabs in pickups. A person

living in location IV has two ways to transport to Area I (green and yellow taxis) but only one
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option to return (yellow taxis).

Table 3.1: Spatial frequencies

Location I Location II Location III Location IV
Yellow pickups 42.4% 22.8% 26% 8.8%
Yellow dropoffs 38.5% 22.3% 25.6% 13.6%
December, 2013
Total number of pickups: 13,741,515
Total number of dropoffs: 13,733,541

3.4 Reduced Form Test

In this section, I develop a reduced-form test of the hypothesis that the taxicab market

displays a Tragedy of the Commons. The main externality studied in this paper is the business

stealing that occurs between taxi drivers. More specifically, a driver chooses actions based on

the maximization of personal utility. When a driver acts to acquire an additional passenger,

she fails to internalize that this passenger is taken from another driver. If business stealing

exists in this industry, the Central Dispatcher could increase social surplus by internalizing the

crossover effect between different drivers’ actions. I present a statistic that takes different values

depending on whether business stealing exists. I prove that under certain assumptions the market

is characterized by business stealing. The result of the reduced-form test justifies measuring the

extent of business stealing in a structural model.

In the literature, the Tragedy of the Commons is associated with excessive entry and

business stealing, see Dixit and Stiglitz (1977), Mankiw and Winston (1986) as in Berry and

Waldfogel (1999). The latter mention that the logic of free entry dictates that firms enter as long
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as the private benefit accruing to an entrant exceeds fixed costs. A Tragedy of the Commons

would significantly reduce the social surplus in the taxi industry, given that entry costs are high

while prices are fixed, so consumers do not benefit from increased entry. When the products

are substitutes, the business stolen from incumbents creates a wedge between private and social

benefits of entry. Berry and Waldfogel argue that the main determinant of whether there is

business stealing is whether demand grows at sufficient rate as new firms enter the market. Do

firms just split a fixed pie (business stealing) or do they add new customers (market expansion)?

In the current context, taxis are perfect substitutes, but on the other hand there is a market

expansion effect. When new cabs are added in a location, passenger waiting time is shorter

and this attracts new customers. A concave matching function ensures that the latter effect is

weaker than the direct new entry effect, which is linear. A simple example will demonstrate this

point.

Consider 2 locations. There is a number T of taxis to be allocated. In the first location,

the matching function is m(N) =
√
N , meaning that if there are N taxis in this area, then

√
N

taxi-passenger matches occur. It is obvious that the total matches increase as new taxis enter, but

in a concave way. In the second location, the matching function ism(N) = log(N), which is also

concave. In order to keep the example simple, one can assume that all passengers are identical,

so a driver cares only about his/her own number of matches. The results do not change in absence

of this assumption. The competitive equilibrium ensures an equal number of matches per taxi in

both areas so that drivers are indifferent between locations, i.e.:

√
N1

N1
=

log(T−N1)

T−N1
⇒
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T −N comp
1 =

√
N comp

1 ⋅ log(T −N comp
1 )

The socially optimal solution, meanwhile, maximizes the total number of matches:

maxN1(
√
N1 + log(T −N1))⇒

T −N opt
1 =

√

N opt
1 ⋅ 2

By comparing the solutions, one can see that N comp
1 < N opt

1 (and N comp
2 > N opt

2 ). The intuition is

the following: Free markets with price controls have too much crowding of sellers where demand

is highest, so the outcomes depends heavily on the curvature of demand. In the competitive

equilibrium each driver maximizes his own benefit, which increases in a concave way with respect

to N in each location, but declines with respect to 1
N . Given that the matching functions are

concave, the latter effect is stronger, and the effects cancel out each other only if the matching

functions are linear. This fact pushes for a more uniform distribution of taxis among locations

than is optimal. The social benefit declines with respect to 1
2
√
N1

in location 1 and 1
N2

in location

2, which dictates the placement of more taxis in location 1 than location 2, in contradiction with

the competitive equilibrium.

For the purposes of my test, I must establish assumptions under which a concave matching

function over the total area implies concave matching functions over all locations. Consider

I different locations and an initial total number of taxis N1, an intermediate number of taxis

N2 > N1, and a final total number of taxis N3 > N2. Define as m1 the total number of matches

when there are N1 taxis, and m2,m3 respectively.
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Assumption 4.1: A matching function’s domain is R, even though the number of cabs belongs to

N

Assumption 4.2: A matching function can be either globally concave, linear, or globally convex.

Define α1, α2 and γ1, γ2 as: N2 = α1 ⋅ N1, N3 = α2 ⋅ N2 and m2 = γ1 ⋅m1 and m3 = γ2 ⋅m2.

Note that by definition, α1, α2 > 1. Then, for each location i denote the number of taxis in this

location as N1i,N2i,N3i. Then similarly N2i = α1i ⋅N1i, N3i = α2i ⋅N2i and m2i = γ1i ⋅m1i and

m3i = γ2i ⋅m2i.

The total matching function is concave if and only if γ1
α1
>

γ2
α2

. First, I prove that in this case, there

must be at least one location with a concave matching function. Then, I show that if one location

has a concave matching function, then all locations must have concave matching functions. So:

α1 ⋅N1 = N2 = ∑iN2i = ∑iα1i ⋅N1i⇒

α1 =
∑i α1i⋅N1i

∑i N1i

Thus, α1 is a weighted average of the α1i’s. The same holds for α2, γ1, γ2. Suppose that no

location has a concave matching function, i.e. γ1i
α1i
≤

γ2i
α2i

∀i. By the weighted average property,

it follows that γ1
α1
≤

γ2
α2

, which contradicts the concavity property of the total matching function.

Therefore, there must be at least one location with a concave matching function.

Given that there is at least one location with a concave matching function, I next prove that
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under some additional assumptions, all other locations must have concave matching functions as

well.

Assumption 4.3: The expected revenue from a passenger, given that the passenger is picked

up by a driver and given the location, does not depend on the number of taxis or passengers in

the location.

Assumption 4.4: Drivers choose locations maximizing their expected benefit.

Assumption 4.5: The matching functions are continuous and differentiable on their domains.

In order to simplify notation, I work with two locations. The proof is similar for any number

of locations. If N11,N21,N31 are the number of taxis in the first location, then N1 −N11,N2 −

N21,N3 −N31 are the taxis in the second location. Suppose that the first location has a concave

matching function, f . Assume that the matching function in the second area is linear, γ ⋅ N2.

Then, by assumptions 4.3 and 4.4 we have:

f(N11)

N11
⋅ c1 =

γ⋅(N1−N11)

(N1−N11)
⋅ c2

f(N21)

N21
⋅ c1 =

γ⋅(N2−N21)

(N2−N21)
⋅ c2

f(N31)

N31
⋅ c1 =

γ⋅(N3−N31)

(N3−N31)
⋅ c2
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where c1, c2 are the expected revenues from picking up a passenger from locations 1 and 2

respectively. The latter equations are equivalent to:

f(N11)

N11
=

f(N21)

N21
=

f(N31)

N31
= γ ⋅ c2c1 ∶= k

Then, define β1, β2 as: N31 = N21 + β2, N21 = N11 + β1. Then,

f(N11+β1+β2)

N11+β1+β2
=

f(N11+β1)

N11+β1
=

f(N11)

N11
= k⇒

• f(N11) = k ⋅N11

• f(N11 + β1) = k ⋅ (N11 + β1) = k ⋅N11 + k ⋅ β1 = f(N11) + k ⋅ β1

• f(N11 + β1 + β2) = k ⋅ (N11 + β1 + β2) = f(N21) + k ⋅ β2

Thus,

f(N11+β1)−f(N11)

β1
= k

f(N11+β1+β2)−f(N11+β1)

β2
= k

By the Mean Value Theorem, ∃x1 ∈ (N11,N11 + β1) and ∃x2 ∈ (N11 + β1,N11 + β1 + β2) such

that f ′(x1) = f ′(x2) = k, which is a contradiction, as from the concavity of f it must be that

f ′ is strictly decreasing. This way, linearity of the matching function in location 2 is rejected.
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Convexity of the matching function in location 2 leads also to contradiction, as taxis are not

concentrated in one location. Therefore, given one location with a concave matching function,

all other locations must have concave matching functions under assumptions 4.3-4.5. Under

assumptions 4.1-4.5, therefore, there must be a concave matching function in all locations if the

aggregate matching function is concave. Summarizing, if a test applied to aggregate data implies

a concave total matching function, then under the aforementioned assumptions this implies that

the matching functions are concave in all areas, which implies a business stealing effect.

The variation needed for the test comes from the addition of new vehicles over time. I

include Ridehailing app vehicles in my test. The test covers the time interval from Jan. 2015 to

Jun. 2017, when Ridehailing app data is available. I choose this time period instead of the period

used for the model’s estimation because the shock of ridesharing becoming available provides the

required variance to test the hypothesis. A graphical representation of the number of matches and

vehicles can be found in Figures 3.2 and 3.3 respectively. I show data from 2010-2019, instead

of 2015-2017 to present the long trend of ridesharing entering.

At a glance, one can see that the number of vehicles increased threefold while trips increased less

than twofold. In order to construct an intuitive test for concavity, I regress the number of vehicles

and its square on the number of trips per vehicle. The choice of the independent variable is valid,

as the number of vehicles increases monotonically over time. If trips per driver decline as the

total number of vehicles rises, then this indicates a business stealing effect. Figure 3.4 reveals an

obvious downtrend in trips per vehicle with respect to the number of vehicles.

The regression is performed as follows:

105



Figure 3.2: Average trips per day

TripsPerV ehiclet = β0 + β1 ⋅ V ehiclest + ϵt

After deriving an estimator for β0, β1, I perform the following test:

H0 ∶ β1 = 0, (linearity)

Ha ∶ β1 < 0, (concavity)

The regression results are presented in Table 3.2.

The null hypothesis is rejected at a 99% confidence level, providing strong evidence in favor of

concavity. The fact that the R2 is more than 0.76 shows that only a small part of the variation is

not explained by the reduced form model, adding credibility to the test.
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Figure 3.3: Average vehicles per month

It is useful to rule out that the reduction of trips per yellow taxi is not a consequence of

their facing more efficient competitors (i.e. lower price). The data suggests that New York is the

only city where taxis are slightly cheaper, than Uber cars, even with a 20% tip for the taxi driver

included. The only case where Uber is cheaper is in zero traffic conditions where the speed of

the car is more than 30 miles/hour, an unrealistically large number for New York City. Figure 3.5

Table 3.2: Concavity Test table

TripsPerVehicle
β1(**) -13e-05

(11.3e-6)

β0(**) 34.86
(0.75)

Observations 42
R2 0.7635
standard errors in parentheses
(**): significant at 99% confidence level
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Figure 3.4: Average trips per yellow Taxi

summarizes these findings.

Taking all the aforementioned evidence into account, one can conclude that the matching

function is concave with high confidence. Under the assumptions mentioned before, we can

conclude that the matching function is concave in all locations,suggesting business stealing effect

and a Tragedy of the Commons.

3.5 Model

The structural model extends the search and matching model developed by Buchholz (2020).

Time and space are discretized. Drivers make spatial decisions among L locations over T periods

in a day shift. The city is designed as a graph, where the vertices are the locations in the city

and the edges are the routes from one location to the other. Consider L distinct locations and

TC utility maximizing agents (taxis). Time is discrete and finite, with T periods. Given the

distribution of taxis over locations, passengers make decisions on how to commute. Specifically,

given the distribution of vacant taxis in every location at time t, Nit ∀i ∈ 1, ...L, and the traffic
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Figure 3.5: Taxi-Uber price comparison, 20% tip for taxi included
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speed in every edge, trijt ∀i, j ∈ 1, ...L, passengers enter location iwaiting to commute to location

j, consijt. Taxis and passengers are matched in each location according to a matching function

f(Nit, consijt) andmijt rides occur from location i to location j. A taxi matched with a passenger

that wants to commute to location j is full for the duration of their trip τij , and receives a payment

pij . After reaching their destination, the taxi drops the passenger off and becomes vacant again.

Vacant taxis that failed to match with passengers make decisions on their location to look for

passengers in future periods. Commuting from location i to location j, incurs a cost, costijt,

for either a vacant or full taxi. After matches are determined, the traffic speed on each edge is

updated.

3.5.1 Congestion

Traffic speed is modeled to depend on the number of taxis traveling along a particular

route, as well as, time and location characteristics. The effect of non-taxi vehicles is expressed

by route and time of day fixed effects, which capture rush hour traffic and the routes that non-

taxi vehicles take to commute. The latter implies the assumption that non-commercial vehicle

drivers’ decisions are independent of taxi drivers’ decisions. More specifically, I assume that

the congestion created by non-commercial vehicles for a given location and time of weekday is

exogenous. Up to a certain number of vehicles, traffic speed is determined by exogenous factors,

e.g. traffic lights, weather, etc. After a critical point of vehicles, there is not enough time for all

of them to cross traffic lights, congestion occurs, and traffic speed reduces to the speed of the

queues at traffic lights. Wang et al. (2016), suggest that there is a peak density that a roadway

can sustain at an uncongested state, and if this density is surpassed then the roadway will fall
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into a congested traffic state. This density is known as the critical density, or KC. I use a sigmoid

function to express the traffic speed as a function of the number of vehicles in a location to capture

the critical density effect. The convexity of a sigmoid function at its lower levels provides the

required slow increase at a low number of vehicles, until a critical point where the function

becomes concave. The critical point captures the aforementioned critical density effect. I choose

the hyperbolic tangent function to express these dynamics. Traffic speed is calculated as follows:

trijt = tanh(dt + cij ⋅Nsijt) (I)

where d, c are time and location fixed effects respectively, and Nsijt is the number of taxis

traveling from location i to location j at time t, either full or vacant. I assume that congestion

on the route from location i to location j is affected only by taxis commuting from i to j. This

assumption ignores the fact that different routes may overlap. However, this assumption gives

a reasonably simple function, while the congestion model’s predictive accuracy is high (see

Estimation section).

3.5.2 Cost and Revenue

Price per mile is regulated in the New York City taxi market. Therefore, the price paid by

the consumer for commuting through an edge,Pij , depends only on the length of the edge. In the

price calculation I have included the $1 rush hour surcharge when applicable, and the New York

State Congestion Surcharge of $2.50 for all trips that begin, end or pass through Manhattan south

of 96th Street. The only part of the Metered Fare that I omit is that when the vehicle travels below

12 mph, per mile pricing stops and the charge is 50 cents/minute, as if the vehicle travels at 12

mph. Drivers pay fuel costs for each trip, regardless of being full or vacant. The cost of traveling
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through edge ij at time t is given by:

costijt =
cost coef ⋅g⋅c(trijt)⋅distance(i,j)

trijt
(II)

where:

• g: The price of gas/gallon measured in USD.

• c(trijt): The mean gas consumption of the taxi, measured in gallons/hour, as a function of

speed

• distanceij: The distance between locations i, j measured in miles

• trijt: The traffic speed on edge ij at time t, measured in miles/hour

• cost coef : a numerical coefficient used for adjustment

I calculate the function c using data from fueleconomy.gov. Data indicates that up to 30 mph,

miles per gallon are sufficiently described by the equation mpg = speed(mph) + 5, therefore

c(trijt) =
trijt

trijt+5
gallons/hour. Hence, the driver’s profit for a ride from location i to location j at

time t is:

Πijt = Pij − costijt (III)

3.5.3 Matching

At the start of each period t, Nit vacant taxis in location i search for passengers. Given the

number of vacant taxis in a location, traffic conditions, prices and time, a number of passengers

appear in location i wanting to commute to location j, consijt, ∀j ∈ 1, ..., L. The number of

passengers in location i who want to commute to location j that manage to match with a taxi at
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time t is mijt = f(Nit, consijt). Therefore, the total number of matches that occur in location i

at time t is mit = ∑jmijt. Note that when a vacant taxi meets a passenger, it is obliged by law to

serve the passenger and has no right to refuse service. I use the same matching functional form as

Buchholz, with the difference that matching efficiency depends on traffic conditions. The reason

is that when the traffic is heavy, taxis are able to search in a smaller fraction of a location’s total

area and therefore encounter fewer passengers.

Buchholz notes that simulating every intersection in New York City to obtain the number

of matches would create a computational burden. Instead, Buchholz proposes a functional form

that is derived from an urn-ball matching problem, where N balls are randomly placed in cons

urns, and a match occurs only for the first ball placed in any urn. The latter implies the following

assumptions:

• An area is represented as a collection of points (urns)

• All taxis are identical and have identical searching strategies

• Passengers are uniformly distributed over points

• Passengers do not move while looking for a taxi

Given that the number of passengers is a Poisson random variable, the expected number of

matches traveling from location i to location j, given the distribution parameters and matching

efficiency, is:

mijt = E[Nit ⋅ (1 − (1 −
1

locijt⋅Nit
)consijt)∣λijt] = Nit ⋅ (1 − exp(−

consijt
locijt⋅Nit

)) (IV )

where locijt is the inverse matching efficiency in location i for a trip to location j at time t and it

is given by:
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locijt =
√

ai
trijt

(V )

where ai is a location parameter. Given the assumption of identical taxis, the probability that a

taxi in location i matches with a passenger going to location j is:

pijt =
mijt

Nit
(V I)

and thus the probability that a taxi is matched with a passenger in location i is pit = ∑j pijt.

3.5.4 Passengers

In this model, demand for trips from location i to location j at time t is a random variable

that follows a Poisson distribution. The parameter of the distribution is determined endogenously

as follows:

λijt = αtime
t ⋅ (αlocation

i + αprice ⋅ log(Pij) + α
supply
i ⋅Nit + α

speed
i ⋅ trijt) (V II)

where Pij is the price of a trip from location i to location j, Nit is the number of vacant taxis in

location i at time t, and trijt is the traffic speed. The parameters αtime
t , αlocation

i , αprice, αsupply, αspeed

capture the effect of time, location, price, number of taxis and traffic speed. Their dimensions

are 1xT , 1xL, 1x1, 1x1 and 1x1 respectively. Therefore the number of passengers that appear in

location i at time t and want to commute to location j is:

consijt ∼ Poisson(λijt) (V III)

Equation (V II) implies that prices, taxi supply, and traffic speed are known to potential passengers.
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3.5.5 Drivers’ Decisions

A driver observes the state of the market, and if vacant makes a decision on where to

commute in order to search for passengers. A driver at time t can be in one of the following

situations:

1. Having a passenger and transiting to a location

2. Being vacant and transiting to a location

3. Being vacant and looking for passengers in the area where they are located

Drivers in situations 2 and 3 can match with passengers in the area where they are located. Drivers

in situation 2 that fail to match with a passenger continue their trip to their destination. Drivers

in situation 3 that fail to match with a passenger decide where to search for passengers in the

future. Given the state of the market, i.e. the distribution of taxis over locations at time t and their

expectations about the number of passengers λijt, drivers in situation 3 choose to commute to the

location with the maximum expected value. As in Buchholz, the expected value of location i at

time t is:

Vit = E[∑j(pijt ⋅(Πijt+δτij ⋅Vj(t+τij)))+(1−∑j(pijt))⋅Eϵj,a[maxj{Vt+τij−costijt+ϵj,a}]] (IX)

where:

• pijt: The probability that a vacant taxi at location i matches with a passenger going to

location j at time t, described in equation (V I).

• Πijt: The profit of a driver serving a passenger commuting from i to j at time t, described

in equation (III).
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• δ: Driver’s discount factor ∈ (0,1).

• τij: The number of time periods needed to commute from location i to location j.

• costijt: The gas cost of commuting from location i to location j at time t, described in

equation (II).

• ϵj,a: Driver a-specific i.i.d. shock, drawn from a Type-I extreme value distribution.

Hence, when unmatched and called to make a decision, an unmatched driver chooses to commute

to:

j⋆ = argmaxj{Vt+τij − costijt + ϵj,a} (X)

Therefore, given the distribution of the shocks, the probability of a driver choosing to commute

from location i to location j at time t is:

Pi[j∣Vt] =
exp(EVj,t+τij

[Vj,t+τij
−costijt]/σϵ)

∑k exp(EVk,t+τik
[Vk,t+τik

−costikt]/σϵ)
(XI)

The processes of matching and driver decisions determine the transition process, which functions

as follows: At time t, there are vacant taxis that reside in location i and search for passengers,

ELit; there are vacant taxis that are commuting to another location and transit through location

i, ETit; and there are full taxis that travel through or to location i, FTit. The taxis that can

match with a passenger are those belonging in the sets ELit and ETit. Those who match with a

passenger at time t will belong to the set FTi,t+1 in the next period, as they will have a passenger

and start their trip to their destination. Those taxis belonging to ELit that fail to match decide

where to look for a passenger next period. Those who choose to stay in i will belong to ELi,t+1.

Those who choose to commute to another location j will belong to ETk,t+1, where k is the next
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station of their trip. The taxis that belong to ETit will belong to ETk,t+1, where k is the next

station of their trip, or to ELi,t+1, if i was the destination of their trip. The full taxis, FTit, will

belong to FTk,t+1, if k is the next station of the passenger’s travel, or to ELi,t+1 if i was the

destination of the passenger’s trip.

The timing of events within a period, as in Bian (2019), is presented in Figure 3.6: t0 ∶ Drivers

Figure 3.6: Timing

arrive and become supply. t1 ∶ Passengers arrive given drivers’ decisions. t2 ∶ Drivers and

passengers are matched. t3 ∶ Unmatched passengers exit the market and take the subway (or

walk). t4 ∶ Employed drivers deliver passengers and unemployed drivers make search decisions

for the next period.

I assume that each driver ignores the impact of his decisions on congestion, matching efficiency

and demand, as they think themselves too small compared to the whole market.

3.6 Estimation Results

This section discusses the estimation results of the spatial model. Buchholz explains in

detail the identification of the parameters used in the original model. The data suffice for the

identification of the features I add in order to create the enriched model. In particular, I account

for endogeneity issues for the effect of congestion on demand and matching efficiency, and the
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effect of taxi supply on demand. First, meteorological conditions create the required variance in

congestion while they are assumed to have no direct effect on demand and the matching process.

For instance, a snowy day slows the traffic even if the number of cars on the road is the same, as

drivers reduce their speed in bad weather, while demand and matching efficiency are not directly

affected. Passengers are expected to commute to their workplaces early in the morning despite

the weather conditions and drivers do not face additional difficulties in seeing hailing passengers

due to the weather conditions. Another instrument I use to identify taxi supply is the variation

over time in gas prices. Increased gas prices discourage drivers from driving while they do not

directly affect demand or the matching process. The effect of taxi supply on demand can be

identified by the variance in the number of matches created by the different numbers of active

drivers across days and time of day. I calculate the number of active drivers by counting the

different Driver IDs in the matching data, given the time interval. I assume that if a driver has

not matched for two consecutive hours, then the driver is not active at this time interval. The

estimated parameters of the model are the following:

• Demand coefficients

• Matching coefficients

• Cost coefficients

• Congestion coefficients

The aforementioned parameters are sufficient to calculate all relevant market outcomes, i.e. the

number of matches, the number of taxis, demand, driving costs and congestion in each location,

according to the equations provided in Section 5. Note that the prices for each trip are determined
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Table 3.3: Estimation results: Demand parameters
Lower Manhattan Mid Manhattan Upper Manhattan Boroughs

αlocation 17.17 (0.95) 10.75 (0.05) 10.94 (0.22) 7.71 (0.32)
αsupply 4.95 (0.005) 5.04 (0.06) 4.99 (0.02) 5.05 (0.1)
αspeed 5.49 (0.45) 5.73 (0.04) 4.54 (0.12) 3.63 (0.03)
αprice 0.91 (0.02)

Morning Early Afternoon Late Afternoon
αtime 0.42 (0.0001) 1.30 (0.1) 1.63 (0.01)

by TLC and are not subject to change, and I treat them as constants in the estimation. Demand

coefficients are comprised of time effects, location fixed effects, a price parameter2, a supply

parameter and a parameter related to traffic speed. The parameters for supply and traffic speed

are allowed to have different values for each location while the price coefficient is assumed not

to vary among different locations. Data suggests that time effects can be grouped into three

categories: morning (1 ≤ t ≤ 11), early afternoon (12 ≤ t ≤ 22) and late afternoon (23 ≤ t ≤ 33).

There appears to be little variance in time effects within these groups, so for parsimony I model

time effects to be 1x3 dimensional. The demand parameters are plugged into equation (V II) to

calculate the expected number of passenger arrivals in each time interval at each location. Table

3.3 reports the estimated values of the demand parameters, with standard errors in parentheses.

The matching parameters reflect the effect of congestion on the matching efficiency of each

location. I define matching efficiency in the same way as Buchholz. The estimation results

on matching efficiency are reported in Table 3.4, and suggest that matching efficiency is affected

most by congestion in Lower Manhattan, i.e. matching efficiency decreases faster in Lower

Manhattan than in other locations as congestion increases. The cost coefficient is one-dimensional
2I identify the demand elasticity with respect to price as in Buchholz (2020) by re-estimating the model for

September, 2012, following a change in the regulated tariff by TLC.
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Table 3.4: Estimation results: Matching/Congestion efficiency parameters
Lower Manhattan Mid Manhattan Upper Manhattan Boroughs

αmatching 0.52 (0.003) 0.19 (0.002) 0.35 (0.001) 0.31 (0.01)

Table 3.5: Estimation results: Traffic speed parameters
Lower Manhattan Mid Manhattan Upper Manhattan Boroughs

c (x10−4) -8.64 (0.65) -8.1 (0.57) -11 (0.77) -0.05 (0.098)

t = 8 t = 16 t = 24 t = 32
d (x10−3) 8.4 (2.16) 7.5 (2.29) 6.8 (2.29) 6.2 (2.11)

and captures the bias of the cost formula presented in equation (II) based on the fuel cost of

driving. The aforementioned bias comes from the fact that the exact way that fuel consumption

depends on traffic speed is not known. The cost coefficient is found to be:

cost coef = 1.3286 (0.02)

Finally, the congestion coefficients describe the way that traffic speed depends on time effects,

location effects, and the number of taxis traveling between any pair of locations, as presented in

equation (I). I estimate these coefficients offline after the estimation of the rest of the parameters.

This is possible because traffic speed can be inferred directly from the data using the location

coordinates and the timestamps, and then fitted to the number of taxis estimated to travel between

any pair of locations. The association of each taxi trip with the corresponding spatial areas I

define is achieved through the point-in-polygon matching procedure outlined in Brophy (2013).

Table 3.5 reports the estimation results, presenting a subset of the time parameters because of

their large number.

Given the estimated demand parameters, I calculate the consumer and producer surplus as

in Buchholz, by integrating under the demand function. I keep Buchholz’s assumption that while

there is no perfect substitute for taxis, even the highest-value consumers have limits to their
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willingness to pay. In order to avoid extraordinarily large consumer valuations, I use a maximum

willingness to pay of $100 for a trip. I present the realized demand, supply, matches and traffic

speed in Section 8 in order to be easily comparable with the counterfactual results.

3.7 Central Dispatcher

I now address is about the benefit of a Central Dispatcher on the social surplus of the

market. In this paper’s context, a Central Dispatcher is defined as an agent who at time t has

knowledge of:

• All the model’s parameters

• The location and direction of all taxis up to time t

• The condition of each taxi (vacant or full) up to time t

The Central Dispatcher has rational expectations on:

• The number of passenger that will arrive at time t

• The number of matches that will take place at time t for each allocation of taxis

An analytical solution to the Central Dispatcher’s problem is unfeasible due to the exponential

increase of market states over time. I use two separate algorithms to obtain approximate solutions

to the first best. An approximate solution can serve as a lower bound of the Central Dispatcher’s

ability to increase the social surplus, as it considers a subset of the available policies. The first

approach is a greedy algorithm, where the Central Dispatcher optimizes only with respect to

the next period. This is clearly suboptimal, as the optimal path may require some unattractive
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short term decisions, which are disregarded in this paradigm. Figure 3.7 provides an illustrative

example. While the shortest path from node A to node F is ABDF, with a total length of 4+1+11 =

16, a greedy algorithm chooses to transit to C when on node A as 2 is smaller than 4, while

ignoring the rest of the graph. The path selected by the greedy algorithm is ACEDF, with a total

length of 2+3+4+11 = 20, which is longer than the optimal path. The second algorithm performs

an intertemporal optimization, but it uses an approximate version of the objective function in

order to reduce the dimensionality of the state space.

Figure 3.7: Optimal path

3.7.1 Algorithm 1: Greedy optimization

The Central Dispatcher makes decisions on behalf of the drivers to maximize social surplus.

Specifically, in the benchmark decentralized model, a searching driver who fails to match in a

particular location in this period then chooses the next search location. In the counterfactual,

this decision is made by the Central Dispatcher. The drivers have to comply with the Central

Dispatcher’s instructions regardless of their shocks and personal interest. The Central Dispatcher

modifies the transition dynamics as follows (XII):
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1. ELit⇒

• Matched, added to FTt+1

• Not matched, added either to ELi(t+1) or ETk(t+1) for k ≠ i, decided by the Central

Dispatcher

2. ETit⇒

• Matched, added to FTt+1

• Not matched, continues to next location k automatically, added to ETk(t+1) or to

ELk(t+1), if k is the last station of their trip

3. FTit⇒

• Continues to the next station k, added to FTk(t+1)

• Reaches destination k, drops off the passenger, added to ELk(t+1)

The Central Dispatcher chooses drivers’ search locations to maximize social surplus defined as

the sum of producer and consumer surpluses, TW = PS + CS. The social surplus from time t

onward given a taxi allocation St and a decision by the Central Dispatcher xt is:3

TWt...,St,xt = PSt...,St,xt +CSt...,St,xt =

PSt,St,xt + PSt+1...,St+1,xt+1∣St,xt +CSt,St,xt +CSt+1...,St+1,xt+1∣St,xt (XIII)

Equation (XIII) is expressed as a recursion in order to facilitate its solution through backwards

induction. In other words, given all allocations after period t: St, St+1, ..., ST , I solve for St and

3The difference between CSt,St,xt and CSt...,St,xt is that the former is the producer surplus time t only, while
the latter is the consumer surplus from time t onward until T .
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xt to maximize welfare at time t, as the allocations after t are already determined, and St is

calculated by the transition rules.

The producer surplus added at time t is:

PSt = ∑i,j(mij(t+1) ⋅ (Pij − costij(t+1)) − xijt ⋅ costijt) (XIV )

where the producer surplus is the sum of the total profit that comes from matches minus the cost

of the Central Dispatcher’s decisions, xijt, which determine the number of taxis that relocate

from location i to location j at time t. The consumer surplus added at time t is:

CSt = ∑i,j ∫
Pmax

Pij
Dij(t+1)(p)dp (XV )

whereDijt is the expected consumer demand specified by equation (V II), and Pmax is the choke

price as defined by Buchholz. The Central Dispatcher decides on xijt at time t with the constraint

that the number of decisions in a location equals the number of unmatched vacant taxis that are

not transiting through the location, i.e.:

∑j xijt = ∑j(1 − pijt) ⋅ELit (XV I)

In order to achieve an analytical solution, I approximate St using a continuous extrapolation.

Without this, the differentiation of the objective function would be impossible, as the number of

taxis in each state can only be an integer number. In other words, the objective function in the

greedy case is the sum of the current flow producer and consumer surpluses (PSt +CSt) instead

of the intertemporal flow (E[∑T
t=1 δ

t ⋅ (PSt + CSt)]), which would give the optimal solution.

Hence, the Central Dispatcher solves for every time t, given the state at t + 1:
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d(PSt(St∣St+1)+CSt(St∣St+1))

dxijt
= 0 ∀i ≠ j (XV II)

xiit = ∑j(1 − pijt) ⋅ELit −∑j≠i xijt∀i (XV III)

St+1 = transit(St, xt) (XII)

Equations (XV II), (XV III), (XII) solve for St and xijt ∀i, j. More specifically, the greedy

algorithm used by the Central Dispatcher to obtain the optimal policy is:

This scheme provides a suboptimal allocation over time because of the planner’s short sightedness.

Guess an allocation for the final time period, ST , as in Buchholz;
for t = T − 1 to 1 do

Observe demand for time t;
Solve for St, xt given St+1 using XV II,XV III,XII and I − V II,XIV,XV ;
Update t, St;

end
Algorithm 2: Greedy Algorithm

It can be used as a lower bound of the improvement caused by the addition of the Central

Dispatcher, in case it increases the social surplus compared with the competitive allocation. Note

that the Central Dispatcher is able to internalize the externalities of business stealing, as the

Central Dispatcher maximizes total surplus instead of each driver’s individual profit. Moreover,

the algorithm also accounts for the externality from congestion as in equations (II), (IV ), (V ),

and the externality from endogenous demand as in equation (V II).
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3.7.2 Algorithm 2: Value Function Approximation

The optimal intertemporal spatial allocation of taxis in terms of Social Surplus can be

obtained by solving the following problem4:

maxSt∑
T
t=1E[TW (St, xt)]

s.t. St+1 = transit(St, xt) ∀t

where:

• St ∶ The spatial allocation of taxis at time t

• xt ∶ The planner’s decision vector at time t, i.e. instructions to vacant taxis

• TW ∶ The Social Surplus function for period t given the taxi allocation at time t, St

• transit: The state transition function that gives St+1, given St and xt

Given the large number of possible allocations at a given time and the number of possible solution

paths through time, which grows exponentially with respect to time, the solution of the latter

problem is computationally impossible.

Instead, I propose an approximate solution based on Value Function Approximation. The

output of this algorithm is a function that takes as input an allocation S and a time period t,

and gives as output the estimated Social Surplus that occurs given that the optimal path will be

taken after time t, given the initial allocation St. The estimation uses a neural network in order

4The Central Dispatcher is assumed not to discount time during the day.
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to achieve a more effective fit and is generalized through time using backward induction. The

algorithm starts at the last period, T . No decisions are made at T , and the Social Surplus added at

T is given by TW (ST ) ∀ST . The function TW is known but is highly nonlinear because of the

need to calculate the number of passengers, traffic and matches for a given St. The first step of

the algorithm is to produce an estimator V̂T for the social surplus at time T as a simple expression

of ST . Then, for t = T − 1 the function to be estimated will depend on TW (ST−1) and V̂T . The

result of the latter estimator is a function that describes the sum of social surplus to be added for

every t ≥ T − 1. The Value Function Approximation Algorithm is shown below.

Randomly sample K allocations S1, S2, ..., SK from the set of all possible allocations;
Calculate TWT (Sk) ∀k = 1,2, ...,K;
Using the dataset (Sk, TW (Sk)) estimate TWT : V̂T ;
for t = T − 1 to 1 do

Randomly sample K allocations S1, S2, ..., SK ;
Randomly sample K decisions x1, x2, ..., xK ;
Calculate S′k = transit(Sk, xk), ∀k = 1,2, ...,K;
Calculate Vt(Sk, xk) = TWt(Sk, xk) + V̂t+1(S′k), ∀k = 1,2, ...,K;
Using the dataset (Sk, xk, Vt(Sk, xk)) estimate Vt: V̂t;
for k = 1 to K do

Randomly sample L decisions x1, x2, ..., xL for Sk;
Calculate V̂t(Sk) =maxxl

V̂t(Sk, xl);
Using the dataset (Sk, V̂t(Sk)) estimate V̂t(Sk, argmax(xl)): V̂t;

end
end

Algorithm 3: Value Function Approximation Algorithm

I perform the estimations in steps 3, 9, 13 using a neural network with one hidden layer.

The layers are made of nodes. A node is a place where computation happens, loosely patterned on

a neuron in the human brain, which fires when it encounters sufficient stimuli. A node combines

input from the data with a set of coefficients, or weights, that either amplify or dampen that input,

thereby assigning significance to inputs with regard to the task the algorithm is trying to learn; e.g.
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which input is most helpful is classifying data without error? These input-weight products are

summed and then the sum is passed through a node’s activation function, to determine whether

and to what extent that signal should progress further through the network to affect the ultimate

outcome. If the signal passes through, the neuron has been activated. More specifically, first each

neuron adds up the value of every other neuron from the input column (i.e. spatial allocation) it is

connected to. Before being added, each value is multiplied by another variable called ”weight”,

w, which determines the connection between the two neurons. Each connection of neurons has

its own weight, and those are the only values that will be modified during the learning process.

Moreover, a bias value may be added to the total value calculated. The bias is a value not coming

from a specific neuron and is chosen before the learning phase, but can be useful for the network.

After the summations, the neuron finally applies an ”activation function”, f , to generate the

obtained value. The activation functions that are used in literature include the identity function,

which makes the output linear with respect to inputs, and sigmoid functions, e.g. tanh(x),

1
1+exp(−x) , etc. The activation function serves to turn the total value calculated previously to a

numerical output. Figure 3.8 presents a graphical representation of the neural network.

Lemma 1: The estimator V̂t equals Vt on average ∀t.

Proof: See Appendix.

After deriving all the estimated functions V̂t(S,x) ∀t < T and V̂t(S) ∀t ≤ T , I obtain the optimal

path using the following algorithm.

The set {x1, ..., xT−1} is the set of optimal decisions and the set {S1, ..., ST} is the set of the
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Figure 3.8: One Hidden Layer Neural Network

Read S1 as the exogenous initial allocation ;
for t = 1 to (T − 1) do

Randomly draw M samples of feasible decisions given St ∶ x1, x2, ..., xM ;
Calculate xt = argmaxxmV̂t(S,xm);
Calculate St+1 = transit(St, xt);

end
Algorithm 4: Optimal Path Algorithm

corresponding allocations. In conclusion, the Value Function Approximation algorithm is feasible

and gives an approximation of the optimal solution. The latter outperforms the greedy algorithm’s

result. However, the greedy algorithm is relevant, since it provides a lower bound on the performance

of the optimal solution and it is a tool for understanding the mechanisms behind the welfare gain

(see Results section).
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3.8 Results

This section discusses the Central Dispatcher counterfactual results for both algorithms

used and compares them with the competitive allocation. I present the effects on social surplus,

profit, matches, taxis per location, traffic speed and passengers over time. Briefly, the Central

Dispatcher acts optimally in terms of social surplus by using the neural network based algorithm.

The dynamics that lead to different results among the algorithms are:

1. The longest trip in these settings is the trip from Lower Manhattan to the Boroughs.

This trip takes on average 2 time periods to be completed. The greedy algorithm, by

construction, takes into account only the current and next period returns, therefore it does

not allocate taxis from downtown to the Boroughs as it cannot internalize the benefit of this

choice. Hence, there are fewer matches and vacant taxis over time in the Boroughs in the

greedy algorithm’s results.

2. In the competitive equilibrium a relatively low amount of taxis tend to choose to relocate

to the boroughs, because of the low density of passengers in this location. The latter leads

to decreased demand due to the supply shortage. As demand decreases, supply decreases

even further. The Central Dispatcher is able to internalize this dynamic, and more taxis are

allocated to the Boroughs. Demand increases and therefore matching becomes easier than

in the competitive case. Note that matches in the Boroughs are the most profitable, as most

of the trips end in downtown, hence are longer. In the competitive equilibrium supply in

the Boroughs is low, as one driver by himself is unable to affect demand.

3. Passenger demand is structured such that relatively many passengers ask to commute between
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Upper and Mid Manhattan. In addition, demand is dense in both locations. This leads

to excess supply in this route in the competitive equilibrium. The Central Dispatcher

internalizes the business stealing effect in this route due to excess supply, and redirects

drivers to Lower Manhattan and the Boroughs. This is evident in the results, where the

Central Dispatcher achieves a lower amount of matches and dispatches fewer vacant taxis

in Upper and Mid Manhattan, while the opposite holds for Lower Manhattan and the

Boroughs.

4. The results produced by the greedy algorithm display more variance. This happens because

the greedy algorithm treats every period as the second last period. The greedy algorithm

makes extreme decisions in order to maximize the next period return, which leads to non-

efficient allocations in the future periods. The greedy algorithm alternates between more

and less profitable periods.

5. Traffic speed increases in Mid and Upper Manhattan under the Central Dispatcher. The

reason for this is that business stealing decreases in Mid and Upper Manhattan and therefore

fewer drivers remain unmatched in these locations. The latter leads to fewer vacant drivers

searching in Mid and Upper Manhattan in order to pick up passengers, leading the total

number of vehicles under the critical number discussed in the congestion section.

The metric that is the basis of comparison between the different algorithms is the Social Surplus

over time. Social Surplus is comprised of the producer surplus and the consumer surplus. Figures

B.1, B.2 and B.3 provide the social surplus, producer surplus and consumer surplus over time

respectively. The neural network algorithm achieves a 14.93% increase of social surplus compared

to the competitive allocation. The percentage of welfare improvement from internalizing matching
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frictions is in accordance with the results of Kalouptsidi et al. (2019) and Brancaccio et al.(2020).

The neural network algorithm achieve a higher social surplus outcome consistently over time.

The greedy algorithm achieves a 8.14% increase of social surplus compared to the competitive

allocation but the increase is not consistent over time.

Next, the results on matches for each location over time follow. Figures B.4, B.5, B.6 and B.7

present the matching outcomes for each allocation in absolute numbers. Note that the matching

numbers presented by the competitive algorithm are the estimation results of the competitive

equilibrium and not the matching data. However, the matching results and the data look similar.

Any discrepancies are attributed to real dynamics not captured by the spatial model. As explained

before, the Central Dispatcher achieves a small number of matches in Mid and Upper Mahnattan

while the opposite holds in Lower Manhattan and the Boroughs.

Next, the results on vacant taxis for each location over time follow. Figures B.8, B.9, B.10

and B.11 present the vacant taxis distribution for each allocation in absolute numbers. Following

the aforementioned intuition, the neural network algorithm achieves a lower average number of

vacant taxis over time compared to the competitive allocation, as its matching process is more

efficient and business stealing decreases.

Next, Figures B.12, B.13, B.14, and B.15 present the number of passengers looking for a

taxi in each location over time. The latter is not related to matched passengers in each area. It

describes only the number of consumers that attempt to get a taxi regardless of matching or not.

The differences between the outcomes among the algorithms are that increased supply in Lower

Manhattan and the Boroughs leads to increased demand in the Central Dispatcher case.

Finally, Figures B.16, B.17, B.18 and B.19 present the traffic speed for each allocation
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in absolute numbers. As expected, the Central Dispatcher is able to internalize the effects of

traffic in driving cost and demand leading to less congestion under the neural network and greedy

algorithms compared to the competitive equilibrium in the case of Upper and Mid Manhattan.

This is achieved by avoiding having large numbers of vacant taxis looking for passengers in

these locations. More specifically, the Central Dispatcher minimizes the number of taxis that

fail to match in Upper and Mid Manhattan, internalizing that congestion effects are more intense

in this area. This can be controlled by dispatching as many taxis to high congestion areas as

needed in terms of predicted demand. The latter translates to a 7.5% increase in traffic speed

in Mid Manhattan and a 10.6% increase in traffic speed in Upper Manhattan when the Central

Dispatcher is added. The traffic speed achieved by the Central Dispatcher is not substantially

different compared to the competitive equilibrium in the Boroughs because of the large surface

area. The large surface area leads to a high critical density for congestion. The latter cannot be

surpassed even when the Central Dispatches increases the number of drivers in the Boroughs.

3.9 Conclusion

Business stealing and congestion externalities decrease the efficiency of the taxi market.

Drivers and customers search decisions are found to be non optimal and find each other less often.

A Central Dispatcher can internalize the externalities and design an allocation that increases both

driver and passenger utility on average. This paper adds congestion and endogenous demand to

the standard framework created by Buchholz. I estimate the structural model using daily spatial

and time data on taxi trips provided by the TLC. I identify congestion by the time needed to

complete a trip shown by the data as a function of the the number of taxis traveling between
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locations. Matching efficiency as a function of congestion is identified by the variation created

during rush hours. I identify the demand curve by the price variation among different trips and

the welfare metrics by the demand elasticity, same way as in Buchholz.

I show that the Central Dispatcher can calculate an allocation that increases the social

surplus in a timely manner using value function approximation. I use an one layer neural network

in order to achieve a far more successful fit on the value function compared to analytical methods

,i.e. the R2 increases from 75% to more than 95% by the use of the neural network. I show that

the allocation suggested by the Central Dispatcher achieves a welfare gain of approximately $800

thousand per shift. A more sophisticated model of congestion that takes into account the number

of private vehicles and a thorough modeling of alternative ways of transportation would possibly

provide an even better allocation in terms of social surplus. A future expansion of the model

could include decisions taken by drivers working for ridesharing firms like Uber and Lyft. This

comes with a challenging part of modeling the ridesharing firms’ pricing decision and matching

mechanism. However, work done by Shapiro (2018), Bian (2019) and others provide useful

insights on these puzzles.

134



Appendix A: Information, Bias, and Revenues in Sponsored Search Auctions

A.1 Paid Traffic Unpredictability
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Dep. Variable: paid traffic perc R-squared: 0.030
Model: OLS Adj. R-squared: 0.003
Method: Least Squares F-statistic: 1.103
No. Observations: 5700 AIC: 4.880e+04
Df Residuals: 5541 BIC: 4.986e+04
Df Model: 158 Log-Likelihood: -24243.

coef std err t P>—t— [0.025 0.975]
y lag1 0.0075 0.013 0.558 0.577 -0.019 0.034
y lag2 -0.0269 0.013 -2.004 0.045 -0.053 -0.001
y lag3 -0.0207 0.013 -1.545 0.122 -0.047 0.006
slot1 0.0524 0.088 0.595 0.552 -0.120 0.225
ratio -0.0031 0.052 -0.060 0.952 -0.106 0.099
mean bid 0.0104 0.011 0.961 0.337 -0.011 0.031
b1 -0.0214 0.036 -0.591 0.554 -0.092 0.050
b2 0.0052 0.028 0.184 0.854 -0.050 0.061
b3 0.1338 0.233 0.573 0.567 -0.324 0.591
b4 0.1202 0.116 1.034 0.301 -0.108 0.348
b5 0.0546 0.081 0.673 0.501 -0.104 0.214
b6 -0.1315 0.177 -0.742 0.458 -0.479 0.216
b7 6.08e-13 1.24e-12 0.491 0.624 -1.82e-12 3.04e-12
b8 0.0246 0.042 0.579 0.563 -0.059 0.108
b9 -0.0531 0.097 -0.546 0.585 -0.244 0.138
b10 0.0065 0.010 0.661 0.509 -0.013 0.026
b11 -0.0065 0.249 -0.026 0.979 -0.496 0.483
b13 0.0111 0.191 0.058 0.953 -0.362 0.385
b14 0.0007 0.001 0.661 0.509 -0.001 0.003
b15 0.0007 0.001 0.661 0.509 -0.001 0.003
b16 0.0007 0.001 0.661 0.509 -0.001 0.003
b17 -0.0065 0.049 -0.132 0.895 -0.103 0.090
b18 0.0066 0.009 0.725 0.468 -0.011 0.024
b19 0.0096 0.023 0.409 0.683 -0.036 0.056
b20 0.0305 0.046 0.667 0.505 -0.059 0.120
hotel fe 1 -3.1795 3.233 -0.983 0.326 -9.518 3.159
hotel fe 2 -3.8674 3.234 -1.196 0.232 -10.208 2.473
hotel fe 3 -2.7876 3.233 -0.862 0.389 -9.126 3.551
hotel fe 4 -4.6878 3.234 -1.449 0.147 -11.028 1.653
hotel fe 5 -3.6254 3.234 -1.121 0.262 -9.965 2.714
hotel fe 6 -1.7097 3.233 -0.529 0.597 -8.048 4.629
hotel fe 7 -5.0246 3.235 -1.553 0.120 -11.366 1.316
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hotel fe 8 -4.5615 3.234 -1.410 0.158 -10.902 1.779
hotel fe 9 -5.9552 3.235 -1.841 0.066 -12.297 0.387
hotel fe 10 -5.2754 3.235 -1.631 0.103 -11.618 1.067
hotel fe 11 -0.0674 3.233 -0.021 0.983 -6.405 6.271
hotel fe 12 -0.2301 3.233 -0.071 0.943 -6.568 6.108
hotel fe 13 -4.4964 3.235 -1.390 0.165 -10.838 1.845
hotel fe 14 -5.0427 3.235 -1.559 0.119 -11.385 1.299
hotel fe 15 -2.4505 3.233 -0.758 0.449 -8.789 3.888
hotel fe 16 -6.3034 3.236 -1.948 0.052 -12.648 0.041
hotel fe 17 -1.2441 3.233 -0.385 0.700 -7.583 5.094
hotel fe 18 0.3088 3.233 0.096 0.924 -6.029 6.647
hotel fe 19 -3.4924 3.234 -1.080 0.280 -9.833 2.848
hotel fe 20 -4.7021 3.235 -1.454 0.146 -11.044 1.639
hotel fe 21 -2.7897 3.234 -0.863 0.388 -9.129 3.550
hotel fe 22 -5.6374 3.236 -1.742 0.082 -11.981 0.707
hotel fe 23 -2.8778 3.234 -0.890 0.374 -9.218 3.462
hotel fe 24 -5.1515 3.235 -1.593 0.111 -11.493 1.189
hotel fe 25 -8.6118 3.239 -2.658 0.008 -14.962 -2.261
hotel fe 26 -2.3567 3.234 -0.729 0.466 -8.696 3.982
hotel fe 27 -3.4834 3.234 -1.077 0.281 -9.823 2.856
hotel fe 28 -3.8055 3.234 -1.177 0.239 -10.146 2.535
hotel fe 29 -0.3244 3.233 -0.100 0.920 -6.663 6.014
hotel fe 30 -4.3203 3.235 -1.336 0.182 -10.662 2.021
hotel fe 31 -1.5820 3.233 -0.489 0.625 -7.921 4.757
hotel fe 32 0.2584 3.233 0.080 0.936 -6.080 6.597
hotel fe 33 -3.1973 3.234 -0.989 0.323 -9.537 3.142
hotel fe 34 -5.5163 3.236 -1.705 0.088 -11.859 0.827
hotel fe 35 -5.0415 3.235 -1.559 0.119 -11.383 1.300
hotel fe 36 -4.3601 3.234 -1.348 0.178 -10.701 1.980
hotel fe 37 -0.7942 3.233 -0.246 0.806 -7.132 5.544
hotel fe 38 -0.2722 3.233 -0.084 0.933 -6.610 6.066
hotel fe 39 -4.8910 3.234 -1.512 0.131 -11.232 1.450
hotel fe 40 -1.6306 3.233 -0.504 0.614 -7.969 4.708
hotel fe 41 -3.1043 3.234 -0.960 0.337 -9.444 3.235
hotel fe 42 -1.7315 3.233 -0.536 0.592 -8.070 4.607
hotel fe 43 -1.5018 3.234 -0.464 0.642 -7.841 4.837
hotel fe 44 -6.8106 3.236 -2.105 0.035 -13.154 -0.467
hotel fe 45 -2.2089 3.233 -0.683 0.495 -8.547 4.129
hotel fe 46 -5.7887 3.235 -1.789 0.074 -12.131 0.554
hotel fe 47 -3.1168 3.234 -0.964 0.335 -9.457 3.223
hotel fe 48 -1.0098 3.233 -0.312 0.755 -7.348 5.328
hotel fe 49 -8.7593 3.238 -2.705 0.007 -15.108 -2.411
hotel fe 50 -4.2028 3.234 -1.300 0.194 -10.543 2.137
hotel fe 51 -2.7407 3.234 -0.848 0.397 -9.080 3.598
hotel fe 52 -4.3130 3.235 -1.333 0.182 -10.654 2.028
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hotel fe 53 -2.5496 3.233 -0.789 0.430 -8.888 3.789
hotel fe 54 -2.5821 3.234 -0.799 0.425 -8.921 3.757
hotel fe 55 -2.6718 3.234 -0.826 0.409 -9.011 3.667
hotel fe 56 -2.8456 3.233 -0.880 0.379 -9.184 3.493
hotel fe 57 -0.2950 3.233 -0.091 0.927 -6.633 6.043
hotel fe 58 -3.1938 3.234 -0.988 0.323 -9.533 3.145
hotel fe 59 -5.2785 3.235 -1.632 0.103 -11.621 1.064
hotel fe 60 -0.5457 3.233 -0.169 0.866 -6.884 5.792
hotel fe 61 -6.9551 3.237 -2.148 0.032 -13.302 -0.608
hotel fe 62 -6.6129 3.236 -2.044 0.041 -12.956 -0.270
hotel fe 63 -2.3345 3.233 -0.722 0.470 -8.673 4.004
hotel fe 64 -1.6884 3.233 -0.522 0.602 -8.027 4.650
hotel fe 65 -4.4919 3.234 -1.389 0.165 -10.833 1.849
hotel fe 66 -7.2143 3.237 -2.229 0.026 -13.560 -0.868
hotel fe 67 -5.6724 3.235 -1.753 0.080 -12.014 0.670
hotel fe 68 -3.8609 3.234 -1.194 0.233 -10.202 2.480
hotel fe 69 -4.5035 3.234 -1.392 0.164 -10.844 1.837
hotel fe 70 -2.7309 3.234 -0.845 0.398 -9.070 3.608
hotel fe 71 -3.3697 3.235 -1.042 0.298 -9.711 2.971
hotel fe 72 -7.9938 3.238 -2.469 0.014 -14.342 -1.646
hotel fe 73 -1.6235 3.233 -0.502 0.616 -7.962 4.715
hotel fe 74 -3.2562 3.234 -1.007 0.314 -9.596 3.083
hotel fe 75 0.5139 3.233 0.159 0.874 -5.824 6.852
hotel fe 76 -7.7207 3.237 -2.385 0.017 -14.066 -1.376
hotel fe 77 -1.0610 3.233 -0.328 0.743 -7.399 5.277
hotel fe 78 -1.6944 3.233 -0.524 0.600 -8.033 4.644
hotel fe 79 -3.5138 3.234 -1.086 0.277 -9.854 2.826
hotel fe 80 -6.8369 3.236 -2.112 0.035 -13.182 -0.492
hotel fe 81 -1.5173 3.233 -0.469 0.639 -7.856 4.821
hotel fe 82 -2.1774 3.233 -0.673 0.501 -8.516 4.161
hotel fe 83 -3.8533 3.234 -1.191 0.234 -10.193 2.487
hotel fe 84 2.6396 3.234 0.816 0.414 -3.700 8.979
hotel fe 85 -4.5866 3.235 -1.418 0.156 -10.928 1.755
hotel fe 86 -4.3359 3.234 -1.341 0.180 -10.676 2.004
hotel fe 87 2.9544 3.234 0.914 0.361 -3.385 9.294
hotel fe 88 -1.1035 3.233 -0.341 0.733 -7.442 5.235
hotel fe 89 -1.7961 3.233 -0.556 0.579 -8.135 4.542
hotel fe 90 -3.2275 3.234 -0.998 0.318 -9.567 3.112
hotel fe 91 -1.2604 3.233 -0.390 0.697 -7.599 5.078
hotel fe 92 -2.4078 3.234 -0.745 0.457 -8.747 3.931
hotel fe 93 -2.7547 3.234 -0.852 0.394 -9.094 3.585
hotel fe 94 -1.8398 3.233 -0.569 0.569 -8.178 4.498
hotel fe 95 6.7491 3.238 2.085 0.037 0.402 13.096
hotel fe 96 -4.8068 3.235 -1.486 0.137 -11.148 1.534
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hotel fe 97 -2.5166 3.233 -0.778 0.436 -8.855 3.822
hotel fe 98 -4.1952 3.235 -1.297 0.195 -10.537 2.146
hotel fe 99 2.8566 3.233 0.883 0.377 -3.482 9.195
time fe 4 1.2798 1.565 0.818 0.414 -1.789 4.348
time fe 5 -1.7951 2.007 -0.894 0.371 -5.730 2.140
time fe 6 0.2074 1.661 0.125 0.901 -3.048 3.463
time fe 7 -0.3190 1.682 -0.190 0.850 -3.616 2.978
time fe 8 0.8469 2.418 0.350 0.726 -3.894 5.588
time fe 9 0.9282 1.657 0.560 0.575 -2.321 4.177
time fe 10 -1.7797 1.659 -1.073 0.283 -5.031 1.472
time fe 11 0.3955 1.669 0.237 0.813 -2.876 3.667
time fe 12 -3.8478 1.698 -2.266 0.023 -7.177 -0.519
time fe 13 -1.4952 1.938 -0.772 0.440 -5.294 2.304
time fe 14 -0.9184 1.587 -0.579 0.563 -4.029 2.193
time fe 15 -0.8625 2.277 -0.379 0.705 -5.326 3.601
time fe 16 1.1471 2.036 0.563 0.573 -2.845 5.139
time fe 17 -0.5482 2.203 -0.249 0.804 -4.867 3.771
time fe 18 -0.5981 1.648 -0.363 0.717 -3.829 2.632
time fe 19 -0.7438 1.675 -0.444 0.657 -4.027 2.540
time fe 20 -2.7364 2.149 -1.273 0.203 -6.950 1.477
time fe 21 2.6116 2.203 1.185 0.236 -1.708 6.931
time fe 22 0.1819 2.375 0.077 0.939 -4.475 4.838
time fe 23 0.0982 1.682 0.058 0.953 -3.200 3.396
time fe 24 -0.9251 1.785 -0.518 0.604 -4.425 2.575
time fe 25 3.2172 1.686 1.908 0.056 -0.089 6.523
time fe 26 1.0815 1.801 0.601 0.548 -2.449 4.612
time fe 27 -0.8333 1.493 -0.558 0.577 -3.761 2.095
time fe 28 -1.2051 1.535 -0.785 0.432 -4.214 1.804
time fe 29 1.8154 1.659 1.094 0.274 -1.437 5.067
time fe 30 -0.2202 1.615 -0.136 0.892 -3.386 2.946
time fe 31 3.0358 1.643 1.848 0.065 -0.184 6.256
time fe 32 1.2599 2.329 0.541 0.589 -3.305 5.825
time fe 33 2.1782 1.699 1.282 0.200 -1.153 5.510
time fe 34 -1.4047 2.293 -0.612 0.540 -5.901 3.091
time fe 35 -0.2190 1.552 -0.141 0.888 -3.262 2.824
time fe 36 -1.1705 1.525 -0.768 0.443 -4.160 1.819
time fe 37 -2.0910 1.702 -1.228 0.219 -5.428 1.246
time fe 38 -0.5965 1.499 -0.398 0.691 -3.536 2.343
time fe 39 1.3372 1.681 0.795 0.426 -1.959 4.633
time fe 40 -2.3244 1.993 -1.166 0.244 -6.232 1.584
time fe 41 -0.3130 1.543 -0.203 0.839 -3.337 2.711
time fe 42 0.1409 2.102 0.067 0.947 -3.979 4.261
time fe 43 -2.5176 1.698 -1.483 0.138 -5.847 0.811
time fe 44 -1.6177 1.541 -1.050 0.294 -4.638 1.403
time fe 45 1.9838 1.552 1.278 0.201 -1.060 5.027
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time fe 46 0.7624 1.652 0.462 0.644 -2.476 4.001
time fe 47 1.5294 1.646 0.929 0.353 -1.698 4.756
time fe 48 -3.6461 1.669 -2.184 0.029 -6.919 -0.374
time fe 49 -0.1445 1.719 -0.084 0.933 -3.514 3.225
time fe 50 1.9528 1.674 1.167 0.243 -1.328 5.234
time fe 51 -0.6879 1.560 -0.441 0.659 -3.745 2.369
time fe 52 3.3500 1.547 2.166 0.030 0.318 6.382
time fe 53 -2.4731 1.639 -1.508 0.131 -5.687 0.741
time fe 54 1.5950 2.008 0.794 0.427 -2.341 5.531
time fe 55 0.2765 1.576 0.175 0.861 -2.813 3.366
time fe 56 -1.9586 1.572 -1.246 0.213 -5.040 1.123
time fe 57 0.7511 1.984 0.379 0.705 -3.138 4.641
time fe 58 1.7930 1.644 1.091 0.275 -1.429 5.015
time fe 59 2.3668 1.515 1.562 0.118 -0.603 5.337
Omnibus: 2414.941 Durbin-Watson: 1.999
Prob(Omnibus): 0.000 Jarque-Bera (JB): 291.083
Skew: 0.011 Prob(JB): 6.20e-64
Kurtosis: 1.893 Cond. No. 1.73e+19

Table A.1: Panel Regression Results

A.2 Bids and Learning

Figure A.1 shows how bids evolve over a month (60 auctions) for a hotel. The bid axis

is unnumbered for confidentiality reasons. The observed behavior matches the model design:

Bidders change their bids over time to discover their opponents’ bids and therefore infer their

valuations. In the model, this is depicted as signal inference. However, it is straightforward to

see that the moving average of each bidder does not change significantly. This suggests that

bidders’ ability of predicting CTR does not improve over time. In the model, this is depicted by

keeping the prior distribution for each bidder the same across time.
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Figure A.1: Bids across time within hotel
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A.3 Model Solution

Proposition 1 The dropout price in the two bidder Generalized English Auction with

asymmetric information is:

p∗i =
(α − 4)c2 + 2si
α ⋅ c2 + 2si

⋅ v +
4c2

α ⋅ c2 + 2si
⋅ r

Proof: Denote the opponent bidder’s quitting price on this equilibrium as p∗−i. The latter is a

function of the bidder valuations, the signal of bidder −i and the known parameters. Then for

bidder i, the utility of quitting at price p is:

ui = c2 ⋅ (v − r)

The utility of staying while bidder −i quits at p, is:

ūi(p) = (v − p) ⋅E[c1∣si, p∗−i(s−i) = p]

It is not hard to see that dropping out before the price level that makes the bidder indifferent

between slot 2 and the expected value of slot 1 is a weekly dominated strategy, when the opponent

bidder drops out when they are indifferent. In addition, it is not profitable to stay for higher prices

than the indifference price since if the bidder wins it means that she has lower expected valuation

than her opponent. This is because the opponent drops out at the indifference point, and the fact
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their signal is higher means that the winner bidder is worse off getting slot 1 than slot 2 at this

price, in expectation.

In equilibrium, that is p∗i , the following holds:

(v − p∗i ) ⋅E[c1∣si, s−i = p∗−1−i (p∗i ) = si] = c2 ⋅ (v − r)

The calculation of E[c1∣si, si] occurs from the calculation of the posterior distribution. In this

case, when the signal comes from a Weibull(λ,β) and the prior is an Inverse Gamma (a, b), then

the posterior distribution after receiving n independent signals is an Inverse Gamma (a + n, b +

∑
n
i=1 x

β
i ).

To ensure the existence of a Bayesian Equilibrium, bidders treat all signals equally. The latter

ensures that if one signal increases, the utility of the bidder who owns the signal is affected the

most. Given that there are 2 bidders in this case:

E[c1∣si, si] = α⋅c2+2⋅si
4

Therefore:

(v − p∗i ) ⋅
α⋅c2+2⋅si

4 = c2 ⋅ (v − r)Ô⇒

p∗i =
(α−4)c2+2si
α⋅c2+2si

⋅ v + 4c2
α⋅c2+2si

⋅ r
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A.3.1 Example - Three bidders

I provide an additional example with 3 bidders to display the effect of signal inference and

belief update that bidders perform when an opponent bidder drops out.

• 3 bidders

• Same valuation per click, v1 = v2 = v3 = v

• Three slots, with click rates c1, c2, c3.

• c2, c3 are known to all bidders, while c1 is not known.

• Each bidder i gets a signal si from a Weibull distribution, W [1, c1].

• The signals that bidders get are conditionally independent, given c1.

• Reserve price: r

Timing of the game:

1. Each bidder receives an independent private signal from W [1, c1].

2. All bidders update their beliefs on c1 based on their private signal.

3. A clock showing the current price, which continuously increases over time, starts at the

reserve price r.

4. As the current price continuously increases a bidder drops out - denote with p3. This bidder

gets the last slot (slot 3) and pays r for each click in this slot.

144



5. The remaining bidders infer the signal of the bidder who dropped out.

6. The remaining bidders update their beliefs on c1 based on their inference of the signal of

the bidder who just dropped out and their private signal, using the Bayesian rule.

7. The clock continues from p3.

8. As the current price continuously increases a bidder drops out - denote with p2. This bidder

gets the last available slot (slot 2) and pays p3 for each click in this slot.

9. The clicks in slot 1 are realized and the remaining bidder gets slot 1 and pays p2 for each

click in slot 1.

In a symmetric equilibrium in this case, a bidding decision is not pivotal when one opponent

bidder leaves. In case the latter were true a contradiction occurs.1

Proposition 2 The symmetric, increasing equilibrium strategy profile for the bidders in the three

1In this environment, a bidder drops out when they are indifferent between getting slot 3 at the reserve price and
slot 2 at the current price in case an opponent bidder quits. The increasing equilibrium function assumption dictates
that the bidder assumes that she has the same signal with the quitting bidder at this price, as before (s−i = p∗−1−i (p∗i ) =
si). But the bidder cannot win slot 1 in case they stay at this price. This is because they were indifferent between
staying and quitting, exactly like the bidder who dropped out. The fact that the third bidder is still in the auction
means that he has the highest signal, because of the increasing equilibrium function assumption. Therefore, at the
indifference point, the bidder is indifferent between slot 3 and slot 2, and not between slot 3 and entering a game for
slot 1 or slot 2, because this game is lost already. The latter fact makes the equilibrium function to depend solely
on slot 3 and slot 2 characteristics, which are not stochastic. In other words, the equilibrium function is the same
as EOS (2007) and does not depend on the signal. This is a contradiction since the increasing equilibrium function
assumption dictates a strictly increasing bidding function in signals.

In this edge case where all the valuations are equal, a bidder has no hope of winning slot 1 when they do not have
the highest signal. If the pivotal bidding decision is about slot 2 and slot 3, the signal does not matter, hence all
bidders drop out at the same price. This price is the price where slot 2 is equally profitable with slot 3 at the reserve
price and thus, does not depend on the signal. This argument leads to the exploration of the following possibility:
the pivotal bidding strategy to be when the two opponents drop out simultaneously and the remaining bidder gets
slot 1.
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bidder Generalized English Auction with asymmetric information is:

[(p∗(si), p
#(si, s0, p0)), (p

∗(sj), p
#(sj, s0, p0)), (p

∗(si), p
#(sk, s0, p0))]

where,

p∗i =
(α − 4)c2 + 2si
α ⋅ c2 + 2si

⋅ v +
4c2

α ⋅ c2 + 2si
⋅ r

p#i =
(α − 5)c2 + 2si + s0
αc2 + 2si + s0

⋅ v +
5c2

αc2 + 2si + s0
⋅ p0

given s0 and p0 at the start of the second stage, i.e. game history.

Proof: For bidder i, the utility of quitting at price p is:

ui = c3 ⋅ (v − r)

The expected utility for bidder i when staying in the auction while the two opponent bidders

j, k quit and getting slot 1 is:

ūi(p) = (v − p) ⋅E[c1∣si, p∗j (sj) = p∗k(sk) = p]

In the symmetric, strictly increasing equilibrium strategy profile: (p∗i , p
∗
j , p

∗
k) = (p

∗, p∗, p∗).

Then, in equilibrium, the expected utility of bidder i staying in the auction when bidders j, k

drop out is equal with the utility of bidder i dropping out:
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(v − p∗) ⋅E[c1∣si, sj = p∗−1(p∗(si)) = si, sk = p∗−1(p∗(si)) = si] = c3 ⋅ (v − r)

As previously,

E[c1∣si, si, si] = α⋅c2+3⋅si
5

Therefore:

(v − p∗i ) ⋅
α⋅c2+3⋅si

5 = c3 ⋅ (v − r)Ô⇒

p∗i =
αc2−5c3+3si
α⋅c2+3si

⋅ v + 5c3
α⋅c2+3si

⋅ r

This is not the full strategy profile since the game continues when the bidder with the lowest

signal drops out. After one bidder drops out, the remaining two bidders enter to the subgame of

section 1. The ”reserve price” p0 of the subgame is the price that the lowest signal bidder dropped

out. The bidder who dropped out was indifferent between slot 1 and slot 3 at p0, therefore, the

remaining bidders have higher indifference prices than r2 between slot 1 and slot 2. The reasons

for this is that the remaining bidders have higher signals than the bidder who dropped out. Some

modifications needed before using the expression derived in section 1 are:

• Bidders evaluate the expected number of clicks in slot 1 not by only using their signal, but

the signal of the bidder who dropped out, s0.

• The reserve price is r = p0
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Entering the subgame, the utility of quitting at price p for bidder i and getting slot 2 is:

ui = c2 ⋅ (v − p0)

The utility of staying while bidder −i quits at p, is:

ūi(p) = (v − p) ⋅E[c1∣si, p#−i(s−i) = p, s0]

Because of symmetry, p#−i = p
#
i , hence E[c1∣si, p#−i(s−i) = p, s0] = E[c1∣si, si, s0], in equilibrium.

The expected value of c1 after calculating the posterior beliefs is:

E[c1∣si, si, s0] = α⋅c2+2⋅si+s0
5

Therefore:

(v − p#i ) ⋅
α⋅c2+2⋅si+s0

5 = c2 ⋅ (v − p0)Ô⇒

p#i =
(α−5)c2+2si+s0

αc2+2si+s0
⋅ v + 5c2

αc2+2si+s0
⋅ p0

In conclusion, the symmetric, increasing equilibrium strategy profile for the bidders is:

[(p∗(si), p#(si, s0, p0)), (p∗(sj), p#(sj, s0, p0)), (p∗(si), p#(sk, s0, p0))]
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given s0 and p0 at the start of the second stage, i.e. game history.2

This case with equal valuations is a special case of the more general problem, where

valuations can vary. In the general case, the bidder with the highest signal does not always win

slot 1. This major difference changes the pivotal bidding decision in the case of three bidders.

When an opponent bidder drops out when the bidder is indifferent, it does not mean that they

have the same signal.

A.3.2 Comparison with the Game with Known CTR

In this subsection, I compare the Seller’s revenue in the cases of asymmetric information

about CTR and when CTR is common knowledge. In addition, I calculate for which signal is

the Bidder’s expected return maximized. I cover the two-bidder case since the algebra in the

three-bidder is considerably tedious.

A.3.2.1 Expected Return, given the Signal

The expected return of a bidder with signal s in the aforementioned equilibrium, ex ante, is:

Re(s) = ∫
∞

0 Ret(s, x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Return, given opponent’s signal

⋅ f(x)
±

Distribution of the signal

⋅dx =

= ∫
s

0 c1 ⋅ (v − (v −
4c2(v−r)
αc2+2x

))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Return of slot 1, given opponent’s signal

⋅f(x) ⋅ dx + ∫
∞

s c2 ⋅ (v − r)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Return of slot 2, given opponent’s signal

⋅f(x) ⋅ dx =

2Stage is defined in a specific auction, between bidder dropouts. I do not assume that different auctions happen
simultaneously. In any case, the clock setting of the auction is artificial, just to transit to the generalized English
auction environment.
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= c2(v − r)(1 − F (s)) + ∫
s

0
4c1c2(v−r)
αc2+2x

f(x)dx =

= c2(v − r)e
− s

αc2 +
4c1(v−r)

α ⋅
√
e
2 ⋅ [ E1(

1
2)

²
Exponential integral

−E1(
2s+αc2
2αc2
)]

Assuming that the mean of the bidders’ prior is equal to the amount of clicks in slot 1, i.e.

αc2 = c1:

Re(s) = c2(v − r) ⋅ (e
− s

c1 + 2
√
e ⋅ [E1(

1
2) −E1(

2s+c1
2c1
)])

The signal s∗, that maximizes the expected return for the bidder is:

dRe(s)
ds (s

∗) = 0Ô⇒ s∗ = 3
2c1

It occurs that the game benefits slightly optimistic bidders. This result might seem counterintuitive.

The expected revenue of the bidder is an increasing function of the bidder’s signal until 3
2c1 and

decreasing afterwards. A reasonable expectation would be to for the expected revenue of the

bidder to maximize at the true value of clicks, c1, but this is not the case. When the opponent’s

signal is lower than the true value, c1, it does matter whether the bidder’s signal is equal to c1 or

more since the opponent drops out before this point. The same holds when the opponent’s signal
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is more than 3
2c1. The difference becomes apparent when the opponent’s signal lies between

c1 and 3
2c1. Consider the example when the opponent’s signal equals c1 + ϵ, when ϵ is positive

and very small and the bidder’s signal equals the true value, c1. Bidder rationality suggests that

the bidder with the signal equal with c1 drops out before her opponent because according to her

information she is better off getting slot 2 at the reserve price than winning slot 1 against a bidder

with signal c1 + ϵ, in expectation. In this case, although rational, the bidder is wrong. The reason

is the quality of her information. In this Bayesian setting, bidders start with their prior and update

it with theirs and their opponents’ signals.

In a 2-bidders game, the initial prior has a significant weight in the posterior because the

bidder can only process two signals. Because of the prior distribution used in this example, the

bidder with signal c1 believes she is better off dropping out before the bidder with signal c1 + ϵ.

The reason is that this bidder does not know the number of clicks in slot 1, and she uses her prior

and available signal to infer it. The prior used in this example leads the bidder to underestimate

the number of clicks in slot 1. She would be better off not to drop out before the bidder with

signal c1 + ϵ, given that the real number of clicks is c1. But this is not a profitable deviation in

the game’s setting, since the bidder does not know that the number of clicks in slot 1 equals their

signal.

A.3.2.2 Seller’s revenue

The expected revenue of the seller is the sum of revenues from the two slots:

Re
seller = c2r + ∫

∞

0 c1 ⋅ (v −
4c2(v−r)
αc2+2x

) g(x)
±

Distribution of lowest signal

dx
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The distribution of the lowest signal comes from the first order statistic of two independent draws

from a Weibull(1, c1) with pdf equal to f .

g(x) = [1 − F (x)] ⋅ f(x) = 1
c1
e
− 2x

c1

The integral has not a closed form expression and has to be calculated numerically. Assuming

that the mean of the bidders’ prior is equal to the amount of clicks in slot 1, i.e. αc2 = c1:

Re
seller = c1v(1 −

2.38
α ) + c2r ⋅ 3.38

Switching to the known CTR case, where c1 is known to the bidders, a natural equilibrium is

the one where both bidders drop out at p = v − c2
c1
(v − r). The slots are allocated randomly, and

bidders receive equal returns. Therefore, the seller’s revenue is:

Rknown
seller = c2r + c1(v −

c2
c1
(v − r)) = (c1 − c2) ⋅ v + 2c2r

Then:

Rknown
seller −R

e
seller = 1.38 ⋅ c2(v − r) > 0
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This result is expected since bidders extract rents in the asymmetric information case.

A.4 Estimation Proofs

Proposition 4 The signal that each bidder receives in each auction can be calculated given

the history of the game within an auction and has the following form:

si = c(c2, n, t) ⋅ αi + d(c2, ct, bi, bt, t, n, r)

where:

c(c2, n, t) = −
c2

n−t+1 +
c2
n2 +∑

t−1
j=2

c2
(n−j)⋅(n−j+1)

d(c2, ct, bi, bt, t, n, r) =
n+2

n−t+1 ⋅
v−bt−1
v−bt
⋅ ct −

1
n ⋅

n+2
n ⋅

v−r
v−b1
⋅ c1 −∑

t−1
j=2

1
n−j ⋅

n+2
n−j+1 ⋅

v−bj−1
v−bj

⋅ cj

Proof: Equation (1.4) states that

pti = v −
(n + 2) ⋅ ct

αi ⋅ c2 + (n − t + 1)si +∑
t−1
j=1 s

i
j(bj)

⋅ (v − bt−1)

The bidder drops out at pti which signifies bt. Solving with respect to si:

si =
n + 2

n − t + 1
⋅
v − bt−1
v − bt

⋅ ct − α ⋅
c2

n − t + 1
−
∑

t−1
j=1 s

i
j(bj)

n − t + 1
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The term sij(bj) denotes the signal that bidder i infers for any bidder j that dropped out before her.

The inference of the opponents’ signals is wrong since bidder i believes that her opponents have

the same prior with her. Using the history of the game before bidder i’s drop out {b1, ..., bt−1}, I

solve for the inferred bids for bidder i.

t−1

∑
j=1

sij(bj) = s
i
t−1(bt−1) +

t−2

∑
j=1

sij(bj)
(1.4)
=

(1.4)
=

n + 2

n − t + 2
⋅
v − bt−2
v − bt−1

⋅ ct−1 − α ⋅
c2

n − t + 2
−
∑

t−2
j=1 s

i
j(bj)

n − t + 2
+

t−2

∑
j=1

sij(bj) =

=
n + 2

n − t + 2
⋅
v − bt−2
v − bt−1

⋅ ct−1 − α ⋅
c2

n − t + 2
+
n − t + 1

n − t + 2
⋅
t−2

∑
j=1

sij(bj)
(1.4)
= ...

(1.4)
=
n + 1 − t

n
⋅ si1(b1) +

n + 1 − t

n − 1
con1 +

n + 1 − t

n − 2
con2 + ... +

n + 1 − t

n + 2 − t
cont−2 + cont−1

where

conj =
n + 2

n − j + 1
⋅
v − bj−1
v − bj

⋅ cj − α ⋅
c2

n − j + 1
, j > 1

The solution for s1 is straightforward by using equation (1.5) and solving for the signal of the

first drop out, given bidder i’s beliefs:

si1(b1) =
n + 2

n
⋅
v − r

v − b1
− α ⋅

c2
n

Hence, the signal of bidder i that drops out at bt, winning slot t, given history {b1, ..., bt−1} is:

si = cont −
t−1

∑
j=1

1

n − j
conj
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where

conj =
n + 2

n − j + 1
⋅
v − bj−1
v − bj

⋅ cj − α ⋅
c2

n − j + 1
, j > 1

con1 =
n + 2

n
⋅
v − r

v − b1
− α ⋅

c2
n

One can observe that the variable which describes the bidder’s prior, α, enters the equation

linearly. Hence, by separating the terms which contain α, it occurs:

si = (−
c2

n − t + 1
+
c2
n2
+

t−1

∑
j=2

c2
(n − j) ⋅ (n − j + 1)

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
c(c2,n,t)

⋅α+

+
n + 2

n − t + 1
⋅
v − bt−1
v − bt

⋅ ct −
1

n
⋅
n + 2

n
⋅
v − r

v − b1
⋅ c1 −

t−1

∑
j=2

1

n − j
⋅
n + 2

n − j + 1
⋅
v − bj−1
v − bj

⋅ cj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d(c2,ct,bi,bt,t,n,r)

Proposition 5 The estimator for αi,h

α̂i,h = −
∑

n
m=1

˜dmi,h ⋅ c
m
i,h

∑
n
m=1(c

m
i,h)

2

is consistent, i.e.

lim
n→∞

α̂i,h = αi,h

with residuals for bidder i over auctions indexed by m:

ϵ̂mi =
1

M

M

∑
m=1

˜dmi,h + α̂i,h ⋅ c
m
i,h
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Proof: The estimator is derived by the maximum likelihood estimation method. Given a bidder

i and a hotel h, there is a set of M auctions where bidder i participates in location l. Using the

result of Proposition 4, I write:

˜dmi,h
°
dm
i,h
−c1

= −cmi,h ⋅ αi,h + ˜smi,h
°
sm
i,h
−c1

Given that smi,h follows distribution W [1, c1,0], then ˜dmi,h follows distribution W [1, c1,−c1 − cmi,h ⋅

αi,h], where the third parameter is the location of the distribution. The goal is to find the parameter

αi,h that maximizes the likelihood that ˜dmi,h follows W [1, c1,−c1 − cmi,h ⋅ αi,h]. Note that the data

allow for the calculation of cmi,h and ˜dmi,h. The signals that a bidder receives across auctions are

independent, hence the likelihood that ˜dmi,h follows W [1, c1,−c1 − cmi,h ⋅ αi,h] is:

L =
n

∏
m=1

1

c1
e
−(

˜dm
i,h
+c1+c

m
i,h ⋅αi,h

c1
)2

Ô⇒

l =
n

∑
m=1

ln(
1

c1
e
−(

˜dm
i,h
+c1+c

m
i,h ⋅αi,h

c1
)2

)Ô⇒

l = −n ⋅ ln(c1) −
1

c21
⋅

n

∑
m=1

( ˜dmi,h + c1 + c
m
i,h ⋅ αi,h)

2

I calculate the α that maximizes the log-likelihood:

∂l

∂αi,h

∣ ˜αi,h
= 0Ô⇒

−
2

c1
⋅

n

∑
m=1

( ˜dmi,h + c1 + c
m
i,h ⋅ α̃i,h) ⋅ c

m
i,h = 0Ô⇒
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α̃i,h = −
∑

n
m=1(

˜dmi,h ⋅ c
m
i,h) + c1 ⋅∑

n
m=1 c

m
i,h

∑
n
m=1(c

m
i,h)

2

Finally, I adjust for the added term c1 and get the estimator:

α̂i,h = α̃i,h −
c1 ⋅∑

n
m=1 c

m
i,h

∑
n
m=1(c

m
i,h)

2
= −
∑

n
m=1(

˜dmi,h ⋅ c
m
i,h)

∑
n
m=1(c

m
i,h)

2

To prove that the estimator is consistent, I use the equation for ˜dmi,h:

α̂i,h = −
∑

n
m=1((−c

m
i,h ⋅ αi,h + ˜smi,h) ⋅ c

m
i,h)

∑
n
m=1(c

m
i,h)

2
= αi,h −

1
n ∑

n
m=1

˜smi,h ⋅ c
m
i,h

1
n ∑

n
m=1(c

m
i,h)

2

Then, by using WLLN:

lim
n→∞

α̂i,h = αi,h −
E[ ˜smi,h ⋅ cmi,h]
E[(cmi,h)2]

The random variable ˜smi,h = s
m
i,h − c1 is drawn from W [1, c1,−c1] independently of the auction

environment - including cmi,h - hence:

E[ ˜smi,h ⋅ c
m
i,h] = E[ ˜smi,h∣c

m
i,h] ⋅E[cmi,h] = 0

since smi,h follows W [1, c1], therefore E[smi,h] = c1

Thus,

lim
n→∞

α̂i,h = αi,h

making the estimator α̂i,h = −
∑

n
m=1

˜dm
i,h
⋅cmi,h

∑
n
m=1(c

m
i,h
)2

consistent.
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Given that ˜smi,h is the error term in the equation that is used to estimate αi,h and that E[ ˜smi,h] = 0,

the residuals of the estimator α̂i,h follow:

ϵ̂mi =
1

M

M

∑
m=1

˜dmi,h + α̂i,h ⋅ c
m
i,h

Proposition 6 The estimator α̂i,h is unbiased, i.e.

E[α̂i,h∣Ci,h] = αi,h

Proof: The calculation is straightforward:

E[α̂i,h∣Ci,h] = αi,h −
∑

n
m=1E[ ˜smi,h∣Ci,h] ⋅ cmi,h

∑
n
m=1(c

m
i,h)

2
= αi,h

since

E[ ˜smi,h∣Ci,h] = 0, ∀m ∈ {1,2, ...n}

Proposition 7 var(α̂i,h∣Ci,h) =
c21

∑
n
m=1(c

m
i,h
)2

158



Proof: Given proposition 6, it follows that:

var(α̂i,h∣Ci,h) = E[(α̂i,h − αi,h) ⋅ α̂i,h − αi,h)
′∣Ci,h] =

= E[(C ′i,hCi,h)
−1 ⋅C ′i,hS̃i,h ⋅ S̃

′
i,hCi,h ⋅ (C

′
i,hCi,h)

−1∣Ci,h] =

= (C ′i,hCi,h)
−1 ⋅C ′i,h ⋅E[S̃i,hS̃

′
i,h∣Ci,h] ⋅Ci,h ⋅ (C

′
i,hCi,h)

−1

Since ˜smi,h W [1, c1,−c1], it holds that E[S̃i,hS̃′i,h∣Ci,h] = c21 ⋅ (Γ(3) − Γ(2)
2) = c21, hence:

var(α̂i,h∣Ci,h) = c
2
1 ⋅ (C

′
i,hCi,h)

−1 ⋅C ′i,h ⋅Ci,h ⋅ (C
′
i,hCi,h)

−1 =

= c21 ⋅ (C
′
i,hCi,h)

−1 =
c21

∑
n
m=1(c

m
i,h)

2

Proposition 8 The estimator for marli

ˆmarli = −
∑h∈H0∑

nh
m=1 ratioh ⋅

˜dmi,h ⋅ c
m
i,h

∑h∈H0∑
nh
m=1(ratioh ⋅ c

m
i,h)

2

is consistent as the number of auctions per hotel increases to infinity for all hotels, i.e.

lim
nh→∞,
∀h∈H0

ˆmarli =mar
l
i

Proof: The derivation of the estimator follows the same steps with the estimator in Proposition
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5. Knowing that for the hotels used in this estimator, opti,h = 1 ∀i, we get for equation (1.3):

αi,h = ratioh ⋅mar
l
i

(1.9)
Ô⇒ ˜dmi,h = −ratioh ⋅mar

l
i ⋅ c

m
i,h +

˜smi,h

Therefore:

ˆmarli = −
∑h∈H0∑

nh
m=1 ratioh ⋅

˜dmi,h ⋅ c
m
i,h

∑h∈H0∑
nh
m=1(ratioh ⋅ c

m
i,h)

2
=

=
marli ⋅∑h∈H0∑

nh
m=1(ratioh ⋅ c

m
i,h)

2

∑h∈H0∑
nh
m=1(ratioh ⋅ c

m
i,h)

2
−
∑h∈H0∑

nh
m=1 ratioh ⋅ ˜s

m
i,h ⋅ c

m
i,h

∑h∈H0∑
nh
m=1(ratioh ⋅ c

m
i,h)

2
=

=marli −
1
n1
∑

n1
m=1 ratio1 ⋅ ˜s

m
i,1 ⋅ c

m
i,1

1
n1
(∑

n1
m=1(ratio1 ⋅ c

m
i,1)

2 + ... +∑
nH
m=1(ratioH ⋅ c

m
i,H)

2)
− ...

... −
1
nH
∑

nH
m=1 ratioH ⋅ ˜smi,H ⋅ c

m
i,H

1
nH
(∑

n1
m=1(ratio1 ⋅ c

m
i,1)

2 + ... +∑
nH
m=1(ratioH ⋅ c

m
i,H)

2)
=

=marli −
1
n1
∑

n1
m=1 ratio1 ⋅ ˜s

m
i,1 ⋅ c

m
i,1

1
n1
∑

n1
m=1(ratio1 ⋅ c

m
i,1)

2 + ... + nH

n1
⋅ 1
nH
∑

nH
m=1(ratioH ⋅ c

m
i,H)

2
− ...

... −
1
nH
∑

nH
m=1 ratioH ⋅ ˜smi,H ⋅ c

m
i,H

n1

nH
⋅ 1
n1
∑

n1
m=1(ratio1 ⋅ c

m
i,1)

2 + ... + 1
nH
∑

nH
m=1(ratioH ⋅ c

m
i,H)

2

As n1, n2, ..., nH increase to infinity at the same rate (e.g. linear), note that lim(n1,n2,...,nH)→∞
ni

nj
=

1 ∀i, j ∈ {1, ...,H}. Then by using WLLN:

lim
nh→∞,
∀h∈H0

ˆmarli =mar
l
i −

E[ ˜smi,1 ⋅ cmi,1 ⋅ ratio1]
E[(cmi,1 ⋅ ratio1)2] + ... +E[(cmi,H ⋅ ratioH)2]

− ...

... −
E[ ˜smi,H ⋅ c

m
i,H ⋅ ratioH]

E[(cmi,1 ⋅ ratio1)2] + ... +E[(cmi,H ⋅ ratioH)2]
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The random variable ˜smi,h = s
m
i,h−c1 is drawn fromW [1, c1,−c1], ∀h, independently of the auction

environment - including cmi,h - hence:

E[ ˜smi,h ⋅ c
m
i,h ⋅ ratioh] = ratioh ⋅E[ ˜smi,h∣c

m
i,h] ⋅E[cmi,h] = 0

Thus,

lim
n→∞

ˆmarli =mar
l
i

making the estimator ˆmarli = −
∑h∈H0

∑
nh
m=1 ratioh⋅

˜dm
i,h
⋅cmi,h

∑h∈H0
∑

nh
m=1(ratioh⋅c

m
i,h
)2

consistent.

Proposition 9 The estimator for opti,h

ˆopti,h = −
∑

n
m=1

ˆmarli ⋅ ratioh ⋅
˜dmi,h ⋅ c

m
i,h

∑
n
m=1(

ˆmarli ⋅ ratioh ⋅ c
m
i,h)

2

is consistent, i.e.

lim
n→∞

ˆopti,h = opti,h

Proof: We get from equation (1.3):

αi,h = ratioh ⋅ opti,h ⋅mar
l
i

(1.9)
Ô⇒ ˜dmi,h = −ratioh ⋅mar

l
i ⋅ opti,h ⋅ c

m
i,h +

˜smi,h
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Therefore: Using the expression for ˜dmi,h:

ˆopti,h = −
∑

n
m=1

˜dmi,h ⋅ c
m
i,h

ˆmarli ⋅ ratioh ⋅∑
n
m=1(⋅c

m
i,h)

2
=

=marli ⋅ ratioh ⋅
∑

n
m=1 opti,h ⋅ (c

m
i,h)

2

ˆmarli ⋅ ratioh ⋅∑
n
m=1(⋅c

m
i,h)

2
−

1

ˆmarli ⋅ ratioh
⋅
∑

n
m=1

˜smi,h ⋅ c
m
i,h

∑
n
m=1(c

m
i,h)

2
=

=
marli
ˆmarli
⋅ opti,h −

1

ˆmarli ⋅ ratioh
⋅

1
n ∑

n
m=1

˜smi,h ⋅ c
m
i,h

1
n ∑

n
m=1(c

m
i,h)

2

The term marli
ˆmarli

converges to 1 as n → ∞, because the estimator for the marketing effect is

consistent. As shown before, the second term converges to 0 as n→∞. Thus,

lim
n→∞

ˆopti,h = opti,h

making the estimator ˆopti,h = −
∑

n
m=1

ˆmarli⋅ratioh⋅
˜dm
i,h
⋅cmi,h

∑
n
m=1(

ˆmarli⋅ratioh⋅c
m
i,h
)2

consistent.

A.5 Identical Private Value Test

A crucial assumption of the model is that bidders have equal per click valuations for a given

auction. In this section, I provide evidence in favor of this assumption, or rather that there is not

sufficient evidence against it. The fact that per click valuations are impossible for the researcher

to know makes this test difficult to implement. However, the data provide enough information

to calculate a reliable proxy for the bidders’ per click valuations. Denote the unknown per click

valuation of a bidder in a specific auction with v. I calculate a proxy for v: ṽ as follows:

ṽ =margin ⋅ p ⋅ P(conversion) ⋅ (1 − P(cancellation))
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where:

• margin: The percentage of the transaction value that goes to the bidder from the hotelier.

• p: The booking price that the user sees on the platform.3

• P(conversion): The probability that a user books, given that the user has clicked on the

bidder’s ad.

• P(cancellation): The probability that a user cancels her reservation, given a booking.4

The data allow for the calculation of the all these variables. However, the real bidder valuations

can be affected by unobserved factors, not known to the researcher. I assume these unobserved

factors to be random and multiplicative. Therefore, the proxy variable I calculate is a function of

the unobserved real valuation, which is deterministic, and the unobserved factor which is random.

Thus, the proxy variable is a random variable and its calculated values follow a probability

distribution. Given the calculations, the distribution that appears to fit the best is the exponential

distribution. The test I perform is testing whether the distribution of proxy valuations for every

bidder is likely to be the same.

The steps of the test have as follows:

1. For every bidder i, calculate the set of proxy valuations Ṽi.

2. Derive the MLE estimator, λ̂i, for every set Ṽi, assuming that it follows the exponential

distribution.

3. Derive the asymptotic distribution of λi: N( 1

λ̂i
, 1

n⋅λ̂2
i

).

3The price consists of the per night price times the number of nights.
4This means that the user (partially) receives her payment back and the bidder is not paid by the hotelier.
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bidder C.I. lower bound C.I. upper bound
1 0.004303 0.005627
2 0.005026 0.00612
3 0.005406 0.007923
4 0.005186 0.006951
5 0.005502 0.007464
6 0.004861 0.006164
7 0.005262 0.007104

Table A.2: 95% confidence level for the parameter λ

4. For each estimation, λ̂i, derive the interval that corresponds to the 95% confidence level.

The results for the dataset for the 7 bidders that appear most often, and discussed in later sections,

are displayed in table A.2. It is straightforward to see that the intersection of all intervals is the set

[0.005502,0.005627] and not the empty set. Therefore, the hypothesis that λ1 = λ2 = ... = λ7 = c,

for any c ∈ [0.005502,0.005627] would not be rejected at the 95% confidence level. This result

adds a level of plausibility to the identical private value assumption.

A.6 Figures
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Figure A.2: Platform revenue percentage change for bidders 1-2

Figure A.3: Platform revenue percentage change for bidders 3-4
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Figure A.4: Platform revenue percentage change for bidders 5-6

Figure A.5: Platform revenue percentage change for bidder 7 - Aggregate for all bidders
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Figure A.6: Platform revenue percentage change for hotels 1-2

Figure A.7: Platform revenue percentage change for hotels 3-4
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Figure A.8: Platform revenue percentage change for hotels 5-6

Figure A.9: Platform revenue percentage change for hotels 7-8
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Figure A.10: Platform revenue percentage change for hotels 9-10
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Appendix B: The Tragedy of Commons in the Taxi Industry: A Case for a

Central Dispatcher

B.1 Proof of Lemma 1

First, I show that the neural network estimator is unbiased at every t. Then, I show that the

estimator remains unbiased when transiting from t + 1 to t.

The neural network solves for the coefficients w in order to solve the following problem:

minw
1
∣S∣ ∑

∣S∣
i=1[Vt(Si) − V̂t(Si,w)]2

where:

• ∣S∣ ∶ The number of all possible allocations

• V̂t ∶ The output of the neural network

• Vt ∶ The true value function

Denote the squared errors of the latter problem as g(w,Si) = [Vt(Si) − V̂t(Si,w)]2
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The neural network converges to the solution by using the gradient descent algorithm. The

linearity of the neural network output with respect to S and the fact that f is increasing ensures

the convexity of g. This method iterates until the result converges, that is:

wk = wk−1 − τk ⋅ ∇(
1
∣S∣ ∑

∣S∣
i=1 g(w

k−1, Si))

until wk ≈ wk−1⇒ ∇( 1
∣S∣ ∑

∣S∣
i=1 g(w

k−1, Si)) ≈ 0

The latter equation is not implementable in computational terms because of the large number of

total allocations, ∣S∣. Instead of considering all allocations, I randomly sampleK allocations, and

then I calculate:

wk = wk−1 − τk ⋅ ∇g(wk−1, Sk)

for k = 1,2, ...,K. Note that K is big enough to ensure convergence, i.e. I draw samples until

convergence is achieved. The samples are drawn randomly, thus:

ES[∇g(wk−1, Sk)] =
1
∣S∣ ∑

∣S∣
i=1∇g(w

k−1, Si) = ∇(
1
∣S∣ ∑

∣S∣
i=1 g(w

k−1, Si))

The latter suggests that the expression ∇g(wk−1, Sk) is equal to the gradient of the squared errors

in expectation, hence:

ES[Vt(S) − V̂t(S, ŵ)] = 0 (I)

Then, I show by induction that the estimator remains unbiased when transiting from t + 1 to t.

For t = T it holds that ES[VT (S) − V̂T (S, ŵ)] = 0 (II) as equation (I) suggests.
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For t < T , assume that ES[Vt+1(S)− V̂t+1(S)] = 0. I show that the same holds for t. The function

Vt(Sk, xk) = TWt(Sk, xk) + Vt+1(S′k) cannot be estimated using the neural network, as the

function Vt+1 is not known. Instead, I estimate the function Ṽt(Sk, xk) = TWt(Sk, xk)+ V̂t+1(S′k)

from which I can draw samples. By (I):

ES[Ṽt(S) − V̂t(S)] = 0⇒

ES[TWt(S)] +ES[V̂t+1(S′)] −ES[V̂t(S)] = 0
(II)
Ô⇒

ES[TWt(S)] +ES[Vt+1(S′)] −ES[V̂t(S)] = 0⇒

ES[TWt(S) + Vt+1(S′) − V̂t(S)] = 0⇒

ES[Vt(S) − V̂t(S)] = 0 ∎

B.2 Figures
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Figure B.1: Social Surplus

Figure B.2: Consumer Surplus
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Figure B.3: Producer Surplus

Figure B.4: Matching, Lower Manhattan
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Figure B.5: Matching, Mid Manhattan

Figure B.6: Matching, Upper Manhattan
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Figure B.7: Matching, Boroughs

Figure B.8: Vacant taxis, Lower Manhattan
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Figure B.9: Vacant taxis, Mid Manhattan

Figure B.10: Vacant taxis, Upper Manhattan
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Figure B.11: Vacant taxis, Boroughs

Figure B.12: Passengers, Lower Manhattan
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Figure B.13: Passengers, Mid Manhattan

Figure B.14: Passengers, Upper Manhattan
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Figure B.15: Passengers, Boroughs Manhattan

Figure B.16: Traffic Speed, Lower Manhattan
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Figure B.17: Traffic Speed, Mid Manhattan

Figure B.18: Traffic Speed, Upper Manhattan
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Figure B.19: Traffic Speed, Boroughs

182



Bibliography

[1] Armstrong, Mark (2000), ”Optimal Multi-Object Auctions,” Review of Economic Studies,
67(3), pp. 455–481.

[2] Asdemir, K. (2006): “Bidding Patterns in Search Engine Auctions.”, Paper presented at the
Second Workshop on Sponsored Search Auctions, Ann Arbor, MI.

[3] Athey, Susan, Peter Cramton, and Allan Ingraham (2002), ”Setting the Upset Price in British
Columbia Timber Auctions,” Working paper.

[4] Athey, Susan, and Glenn Ellison (2011), ”Position Auctions with Consumer Search,”
Quarterly Journal of Economics, 126(3), pp. 1213–1270.
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