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Mobile phones are not only a ubiquitous social accessory, but rapid technology advances 

have transformed them into feature-rich, Internet-enabled mobile PCs⎯a role once 

reserved for touchscreen-based personal digital assistants (PDAs). Although the most 

widespread phone styles in circulation feature the classic combination of numeric keypad 

and non-touchscreen display, larger touchscreen devices are gaining ground, as indicated 

by the fervor surrounding new devices such as Apple’s iPhone and LG’s Prada phone. 

Yet as devices evolve, users will remain constrained by the limits of their own visual, 

physical, and mental resources. My research has focused on the specific limitation that 

mobile users often have only one hand available to operate a device, which can be 

especially problematic for touchscreen-based devices, since they are frequently designed 

for two-handed stylus operation. Considering the growing volumes of data that small 

devices can now store and connect to, as well as the expanding cultural role of mobile 

phones, improving usability in mobile computing has potentially enormous implications 

for user productivity, satisfaction and even safety. 



  

My own exploratory surveys have suggested that one-handed use of mobile 

devices is very common but that today’s hardware and software designs do not support 

users in performing many tasks with only one hand. Motivated by these findings, the 

research goal of this dissertation is to contribute substantial knowledge in the form of 

empirically backed design guidelines and interaction techniques for improving one-

handed usability and operation of mobile devices, with particular emphasis on those with 

touch-sensitive displays. The guidelines for one-handed mobile device design are the 

product of a series of studies conducted in pursuit of foundational knowledge in user 

behavior, preference, thumb capabilities and touchscreen-thumb interaction 

characteristics for single-handed device use. I also demonstrate the application of these 

guidelines through the development and evaluation of four applications. Two involve 

designs for navigating among programs, one provides an interface for searching large 

data sets, and the last offers a generalized mechanism for controlling arbitrary 

touchscreen interfaces with a thumb. Each of these applications explores a different one-

handed interaction technique and offers perspective on its viability for one-handed device 

use. 



  

 

 
 
 
 
 
 
 

 
 

INTERFACE AND INTERACTION DESIGN FOR ONE-HANDED MOBILE
COMPUTING. 

 
 

 
By 

 
 

Amy Kathleen Karlson 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2007 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Associate Professor Benjamin B. Bederson, Chair 
Assistant Professor François Guimbretière 
Associate Professor José Contreras-Vidal 
Professor Ashok Agrawala 
Professor Adam Porter 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 

Amy Kathleen Karlson 

2007 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 
 

Dedication 

 
 
 
 
 
 
 
 
 
 
 
 
 

To My Mother and Father 



 

 iii 
 

Acknowledgements 

I would like to extend my utmost thanks to my advisor, Dr. Ben Bederson, without whose 

guidance, patience, frankness and encouragement this thesis would not have been 

possible. I am also very grateful to my committee members, Dr. François Guimbretière, 

Dr. Ashok Agrawala, Dr. Adam Porter, and Dr. José Contreras-Vidal, for donating their 

time and expertise in making this document the best possible representation of my work. 

I would also like to thank the entire staff and members of the HCIL Lab, who 

have been a joy to work with over the years. In particular, Aaron Clamage, Anne Rose, 

and Kiki Schneider were always friendly, responsive, and expert in their technical and 

administrative support. A special thanks to Ben Shneiderman and Catherine Plaisant for 

their leadership and Bongshin Lee, Adam Perer, Jerry Fails and Georg Apitz for their 

friendship.  

I would also like to thank Microsoft Research, which funded the entirety of this 

thesis research, as well as their Visualization and Interaction Research (VIBE) group, 

who hosted me for two exceptionally educational and resourceful summer internships. 

George Robertson and Mary Czerwinski provided unparalleled support and guidance, and 

together with Greg Smith, Bryan Meyers, Dan Robbins, and Desney Tan, made enormous 

intellectual, technical, and social contributions to my summer research experience. In 

association, Patrick Baudisch and Dan Vogel’s work on finger-based touchscreen 

interaction has had substantial inspirational and motivational impact on my own research. 

Finally, a host of family and friends have had unfailing faith in me over the years, 

and to whom I am deeply indebted: David Karlson, Sarah Karlson, Patience Landry, 



 

 iv 
 

Richard Landry, David Levin, Edward Manuel, James Pasmantier, Emily Porter, David 

Richards, Kathleen Richards, Lisa Robey, Karen Salvini, Megan Spitz, Pamela Spitz, 

Chris Stone, Catherine Thompson, Jacqueline Wahl, Kendra Walther, and Jordan 

Wilkerson. 



 

 v 
 

Table of Contents 

Dedication.. . ....................................................................................................................... ii 

Acknowledgements............................................................................................................ iii 

Table of Contents.................................................................................................................v 

List of Tables ..................................................................................................................... xi 

List of Figures ................................................................................................................... xii 

Chapter 1 Introduction.....................................................................................................1 

1.1 The Rise of the Mobile Phone as Personal Computer ..........................................1 

1.2 Challenges in Mobile Computing .........................................................................3 

1.3 One-Handed Use of Mobile Touchscreen Devices...............................................5 

1.4 Research Strategy..................................................................................................7 

1.5 Thesis Contributions ...........................................................................................11 

1.5.1 Foundations: Guidelines for One-Handed Mobile Device Interaction .......11 

1.5.2 Applications: Interaction Techniques for One-Handed Data Access..........13 

1.6 Thesis Organization ............................................................................................14 

Chapter 2 Foundations: Why Design for One-Handed Mobile Devices? .....................16 

2.1 Related Work ......................................................................................................16 

2.1.1 Effects of Device Size on Design................................................................16 

2.1.2 Attention and Mobility ................................................................................18 

2.1.3 Impact of Form on Physical Resource Demands ........................................20 

2.1.4 Strategies for Reducing Hand Requirements ..............................................24 

2.1.5 The Role of Audio in Mobile Interaction....................................................29 

2.2 Exploratory Study 1: Field Study .......................................................................32 

2.2.1 Method.........................................................................................................32 

2.2.2 Measures......................................................................................................33 



 

 vi 
 

2.2.3 Results .........................................................................................................33 

2.2.4 Discussion ...................................................................................................35 

2.3 Exploratory Study 2:Web Survey .......................................................................36 

2.3.1 Method.........................................................................................................36 

2.3.2 Measures......................................................................................................37 

2.3.3 Results .........................................................................................................38 

2.3.4 Discussion ...................................................................................................42 

2.4 Conclusion ..........................................................................................................43 

Chapter 3 Foundations: Human Factors in One-Handed Mobile Device Interaction ...45 

3.1 Related Work ......................................................................................................45 

3.1.1 Ergonomics..................................................................................................45 

3.1.2 Target Sizes for Touchscreens ....................................................................48 

3.1.3 Gestures for Input ........................................................................................53 

3.2 Thumb Movement Study ....................................................................................56 

3.2.1 Equipment ...................................................................................................57 

3.2.2 Participants ..................................................................................................60 

3.2.3 Tasks............................................................................................................60 

3.2.4 Design..........................................................................................................61 

3.2.5 Procedure.....................................................................................................61 

3.2.6 Measures......................................................................................................64 

3.2.7 Results .........................................................................................................66 

3.2.8 Discussion ...................................................................................................70 

3.3 Target Size Study................................................................................................72 

3.3.1 Procedure.....................................................................................................74 

3.3.2 Participants ..................................................................................................74 

3.3.3 Equipment ...................................................................................................75 

3.3.4 Discrete Target Phase..................................................................................75 

3.3.5 Serial Target Phase......................................................................................79 

3.3.6 Discrete Target Phase Results .....................................................................81 

3.3.7 Serial Target Phase Results .........................................................................86 

3.3.8 Discussion ...................................................................................................89 



 

 vii 
 

3.4 Gesture Study......................................................................................................91 

3.4.1 Gesture Language........................................................................................92 

3.4.2 Tasks............................................................................................................93 

3.4.3 Materials ......................................................................................................94 

3.4.4 Participants ..................................................................................................95 

3.4.5 Measures......................................................................................................95 

3.4.6 Procedure.....................................................................................................96 

3.4.7 Results .........................................................................................................97 

3.4.8 Discussion ...................................................................................................98 

3.5 Conclusion ........................................................................................................100 

Chapter 4 Applications: Touchscreen Design Strategies for One-Handed Mobile 
Computing ..................................................................................................102 

4.1 Overview...........................................................................................................103 

4.2 A Comparative Design Strategy .......................................................................104 

4.3 Related Work ....................................................................................................106 

4.4 AppLens............................................................................................................108 

4.4.1 AppLens Zoom Levels ..............................................................................109 

4.4.2 Gesture-Based Cursor Navigation.............................................................110 

4.4.3 Command Gestures ...................................................................................111 

4.4.4 Using Command Gestures within AppLens..............................................113 

4.5 LaunchTile ........................................................................................................113 

4.5.1 Zone View .................................................................................................115 

4.5.2 Panning Techniques ..................................................................................115 

4.5.3 Zooming Out to the World View ..............................................................116 

4.5.4 Zooming In to an Application ...................................................................117 

4.5.5 Zoom Control ............................................................................................117 

4.5.6 Application-Level Interaction ...................................................................118 

4.6 Implementation .................................................................................................119 

4.7 AppLens and LaunchTile Formative Study......................................................120 

4.7.1 Participants ................................................................................................120 



 

 viii 
 

4.7.2 Measures....................................................................................................120 

4.7.3 Materials ....................................................................................................120 

4.7.4 Tasks..........................................................................................................121 

4.7.5 Procedure...................................................................................................121 

4.7.6 Results .......................................................................................................122 

4.8 Discussion.........................................................................................................124 

4.9 Conclusion ........................................................................................................126 

Chapter 5 Applications: Search Strategies for One-Handed Mobile Computing........128 

5.1 Motivation.........................................................................................................129 

5.2 Related Work ....................................................................................................132 

5.3 Terminology......................................................................................................134 

5.3.1 Search vs. Browse .....................................................................................134 

5.3.2 Faceted Metadata.......................................................................................135 

5.4 Data Preparation................................................................................................136 

5.5 FaThumb Interface Design ...............................................................................137 

5.5.1 Interaction Framework ..............................................................................138 

5.5.2 Facet Navigation Region ...........................................................................138 

5.5.3 Navigation Region Interaction ..................................................................141 

5.5.4 Results Region Interaction ........................................................................143 

5.5.5 Filter Region..............................................................................................145 

5.5.6 FaThumb Implementation .........................................................................148 

5.5.7 FaThumb for Touchscreen Displays .........................................................149 

5.6 User Study.........................................................................................................151 

5.6.1 Participants ................................................................................................151 

5.6.2 Method.......................................................................................................152 

5.6.3 Equipment .................................................................................................152 

5.6.4 Tasks..........................................................................................................153 

5.6.5 Measures....................................................................................................154 

5.6.6 Procedure...................................................................................................154 

5.7 Study Results ....................................................................................................155 



 

 ix 
 

5.7.1 Task Times ................................................................................................155 

5.7.2 Percent Correct ..........................................................................................157 

5.7.3 Satisfaction ................................................................................................157 

5.7.4 User comments ..........................................................................................158 

5.7.5 Usability Observations ..............................................................................159 

5.8 Discussion.........................................................................................................161 

5.9 Conclusion ........................................................................................................162 

Chapter 6 Applications: A Technique for Generalized One-Handed Interaction 
with Touchscreen Interfaces .......................................................................164 

6.1 Related Work ....................................................................................................166 

6.1.1 Finger Operation of Touchscreens ............................................................166 

6.1.2 Reaching Distant Objects ..........................................................................168 

6.2 ThumbSpace Design .........................................................................................169 

6.2.1 Initial Design .............................................................................................170 

6.2.2 Evaluation of Initial ThumbSpace Design ................................................172 

6.2.3 ThumbSpace Redesign ..............................................................................173 

6.3 Direct Touch vs. Peripheral Input Hardware ....................................................175 

6.3.1 Stable One-Handed Operation...................................................................176 

6.3.2 Occlusion...................................................................................................176 

6.3.3 Reduced Visual and Mental Demand........................................................177 

6.4 Study 1: Direct Interaction vs. Peripheral Hardware ........................................178 

6.4.1 Independent Variables ...............................................................................178 

6.4.2 Tasks..........................................................................................................180 

6.4.3 Hypotheses ................................................................................................182 

6.4.4 Implementation and Apparatus .................................................................182 

6.4.5 Method.......................................................................................................184 

6.4.6 Participants ................................................................................................184 

6.4.7 Procedure...................................................................................................184 

6.5 Study 1: Results ................................................................................................185 

6.5.1 Task Times ................................................................................................185 

6.5.2 Error Rate ..................................................................................................188 



 

 x 
 

6.5.3 Satisfaction ................................................................................................189 

6.5.4 Preference..................................................................................................189 

6.5.5 Discussion .................................................................................................190 

6.6 Study 2: ThumbSpace vs. Shift for Palm-Sized Touchscreen Devices ............193 

6.6.1 Independent Variables ...............................................................................196 

6.6.2 Implementation and Apparatus .................................................................196 

6.6.3 Tasks..........................................................................................................197 

6.6.4 Method.......................................................................................................198 

6.6.5 Participants ................................................................................................199 

6.6.6 Procedure...................................................................................................200 

6.7 Study 2: Results ................................................................................................200 

6.7.1 Task Times ................................................................................................200 

6.7.2 Error Rate ..................................................................................................205 

6.7.3 Input Choice ..............................................................................................207 

6.7.4 Satisfaction ................................................................................................208 

6.7.5 Preference..................................................................................................209 

6.8 Discussion.........................................................................................................210 

Chapter 7 Conclusion ..................................................................................................214 

7.1 Contributions in Context: Implications for Next-Generation Design...............214 

7.1.1 Foundations: Guidelines for One-Handed Mobile Device Interaction .....214 

7.1.2 Applications: Interaction Techniques for One-Handed Data Access........229 

7.2 Future Work ......................................................................................................237 

7.2.1 ThumbSpace..............................................................................................237 

7.2.2 Mobility .....................................................................................................238 

7.2.3 High-Sensitivity Capacitive screens..........................................................239 

7.2.4 Understanding Software/Hardware Tradeoffs...........................................240 

Bibliography ....................................................................................................................250 
 

 



 

 xi 
 

List of Tables 

Table 1. Thumb Movement Study: Mean movement time for direction and 
distance×direction for the FLIP, LARGE, and PDA devices. ............................67 

Table 2. Thumb Movement Study: Preference and movement time maps for 
each device type studied. .....................................................................................69 

Table 3. A comparison of the design features of the AppLens and LaunchTile 
interfaces............................................................................................................105 

Table 4. FaThumb User Study: Example study tasks. .....................................................154 

 



 

 xii 
 

List of Figures 

Figure 1.  Mobile use scenarios..........................................................................................5 

Figure 2.  Examples of mobile device keyboards. ...........................................................18 

Figure 3.  Examples of phone models with Qwerty keyboards........................................22 

Figure 4.  SpiraList, a one-handed thumb-based design for viewing and navigating 
text-based lists on a touchscreen device. .........................................................26 

Figure 5.  An interface that embodies the design guidelines of Pascoe et al. for 
supporting one-handed touchscreen interaction...............................................27 

Figure 6.  Airport Field Study: The percentage of observed travelers using one vs. 
two hands, by activity. .....................................................................................34 

Figure 7.  Web Survey: The number of hands currently used and preferred to be 
used for 18 common mobile tasks, as a percentage of the observed 
population. .......................................................................................................39 

Figure 8.  Web Survey: The average frequency with which participants use one vs. 
two hands to operate their devices (a), and participants’ reasons for their 
hand choices (b). ..............................................................................................41 

Figure 9.  Thumb Movement Study: Devices used for the thumb movement study, 
chosen to represent a range of sizes and forms (top row), together with 
their study-ready models (bottom row)............................................................58 

Figure 10. Thumb Movement Study: A mockup of the study equipment and user 
setup. ................................................................................................................63 

Figure 11. Thumb Movement Study: An example plot of thumb distance from the 
surface of a device over the course of a trial. ..................................................65 

Figure 12. Target Size Study: The experimental interface for the discrete target 
phase. ...............................................................................................................77 

Figure 13. Target Size Study: The experimental interface for the serial target phase.......80 



 

 xiii 
 

Figure 14. Target Size Study: The mean task time between the release of the start 
button and release of the target ‘x’ for each target size in the discrete 
target phase (left), and the relationship between movement time and task 
index of difficulty (right). ................................................................................82 

Figure 15. Target Size Study: The mean error rate for each target size in the discrete 
study phase.......................................................................................................83 

Figure 16. Target Size Study: The actual tap locations for targets sized 3.8, 5.8, 7.7, 
and 9.6 mm.......................................................................................................84 

Figure 17. Target Size Study: Subjective ratings for interacting with discrete targets 
in 9 regions (a), and serial targets in 4 regions of the device (b). ....................85 

Figure 18. Target Size Study: The mean task time between the release of the first 
digit and the release of the ‘END’ key for each key size in the serial 
target phase (left), and the mean transition time between taps after the 
first transition for the same key sizes (right). ..................................................87 

Figure 19. Target Size Study: The mean error rate for each key size in the serial 
target phase. .....................................................................................................88 

Figure 20. Gesture Study: The indirect gesture command language for controlling 
the object selection cursor (a); and an example of issuing an ACTIVATE 
command (b). ...................................................................................................93 

Figure 21. Gesture Study: Examples of three states in the experimental software 
environment. ....................................................................................................95 

Figure 22. Gesture Study: The mean number of gestures performed for each task, as 
compared to the minimum, or optimal, number of gestures required..............97 

Figure 23. Examples of the three AppLens zoom levels. ................................................109 

Figure 24. A depiction of the screen region that is accessible to the thumb of one 
hand (a), and the AppLens command gesture set (b).....................................112 

Figure 25. Examples of the three LaunchTile zoom levels. ............................................114 

Figure 26. The three zoom levels of Zumobi, a commercialization of the 
LaunchTile design..........................................................................................114 

Figure 27. The FaThumb search interface. The default interface configuration (a), 
and the results for inexpensive cafés within five miles of the user (b)..........138 



 

 xiv 
 

Figure 28. An example of facet navigation using FaThumb. ..........................................140 

Figure 29. FaThumb results interaction sequence. ..........................................................144 

Figure 30. Example screen designs for a thumb-based touchscreen version of 
FaThumb. .......................................................................................................149 

Figure 31. The FaThumb study equipment setup. ...........................................................152 

Figure 32. FaThumb Study: Mean task times for each search condition by input 
type.................................................................................................................157 

Figure 33. FaThumb Study: Mean satisfaction ratings for text entry and attribute 
navigation.......................................................................................................158 

Figure 34. An example of how users define a ThumbSpace (a), and an example of a 
ThumbSpace depicted as a Radar View (b). ..................................................165 

Figure 35. The first-iteration ThumbSpace representation (a), and a possible 
partitioning of the ThumbSpace into proxies for a Contacts application 
(b)...................................................................................................................170 

Figure 36. An example of how a user selects an object using ThumbSpace. ..................171 

Figure 37. An example of selecting an object with the final ThumbSpace design..........174 

Figure 38. ThumbSpace Study 1: The input regions shown classified as “hard to 
reach” in dark gray and “easy to reach” in light gray (a), and an image of 
the Cingular 8525 used in the study...............................................................180 

Figure 39. ThumbSpace Study 1: Representative screen shots from the experiment......181 

Figure 40. ThumbSpace Study 1: Average task times (a) and error rates (b) by input 
type.................................................................................................................186 

Figure 41. ThumbSpace Study 1: Average task times (a) and success rates (b) by 
region for each input type. .............................................................................187 

Figure 42. ThumbSpace Study 2: Representative screen shots from the experiment......197 

Figure 43. ThumbSpace Study 2: Average task times (a) and error rates (b) by input 
type.................................................................................................................201 

Figure 44. ThumbSpace Study 2: Average task times by input region. ..........................202 



 

 xv 
 

Figure 45. ThumbSpace Study 2: Average task times by region for each input type......203 

Figure 46. ThumbSpace Study 2: Success rates by region for each input type. ..............206 

Figure 47. ThumbSpace Study 2: The relative frequencies of ThumbSpace vs. Shift 
use for the Combined input condition, for each of the 12 input regions. ......207 

Figure 48. ThumbSpace Study 2: Average satisfaction ratings for each input type........209 

Figure 49. ThumbSpace Study 2: Ranking of the input types, from least preferred 
(1) to most preferred (4).................................................................................210 

Figure 50. Examples of different hardware design choices for smartphones. .................223 

Figure 51. A depiction of how the size of a touchpad might change to accommodate 
left and right handed use for two different screen sizes.................................245 

 



 

 
 

1 
 

Chapter 1  
Introduction 

1.1 The Rise of the Mobile Phone as Personal Computer 

It may come as no surprise to hear that personal computing today is far different than it 

was just 10 years ago. We are, after all, quite accustomed to the relentless forward march 

of technology. But staring at our desktop computers, we might reflect, “Really? How 

different is this?” Sure, we are more likely to have flat-screen monitors than space-

hogging CRTs, our operating systems have gotten a bit of a makeover, and our hard-

drives are zippier, but are we more efficient? More productive? More empowered? Less 

annoyed? Given that so many people regularly complain about the distractions, 

annoyances and general information overload associated with computers, it is not clear 

how many people would feel this way. 

To better understand where the changes have occurred and how they have 

impacted users, we must reconsider the outdated association of “personal computing” 

with a “desktop PC”. In fact, the most dramatic personalization of computing has 

occurred beyond the desktop, most notably as a result of users’ widespread access to the 

Internet. Let’s take a look at a few examples. Web search engines began as powerful 

tools for finding and revisiting information among the tens of billions of web pages in the 

networked world, yet the same technology has transformed how we find and (no longer 

need to) manage our personal data sets as well. Web portals such as Facebook 

(www.facebook.com), YouTube (www.youtube.com), and Flickr (www.flickr.com), 

among many others, have flattened the entry cost for crafting a personal web presence 
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and participating in online communities, requiring only a web browser and an Internet 

connection. The web-based, community-built, editable encyclopedia Wikipedia 

(www.wikipedia.org) provides a free, convenient alternative to published encyclopedic 

works, which must be purchased as DVDs or digital subscriptions, or otherwise involves 

a trip to the local library. Web-based map utilities generate flexible, high-quality driving 

directions from a personalized start point, rather than from generic, well-known 

landmarks. The list is endless. And though most users will perform tasks like these at 

their desks, we owe the breadth of services and achievements in improved user control, 

efficiency, effectiveness, and satisfaction to the lifeline we call the Internet.   

The significance of the Internet’s ubiquity is not only about the data and services 

it offers, but also about the utility of continual connectivity⎯to work, to friends, to 

information, to entertainment, and so on. No place is the worldwide obsession with 

connectivity better illustrated than the explosion of the mobile phone market. With 

mobile phone sales growing by more than 20% per year since 2002 [99, 101, 156, 157], 

industry analysts are anticipating over 1 billion units will be sold in this year (2007) alone 

[100]. Significantly, the prediction for mobile phones sales is over four times the volume 

expected for personal computers [134]. After taking into account multiple subscriptions 

per user, 2.3 billion people, over 30% of the world’s population, has a mobile phone 

today [69], which is three times the number that use PCs worldwide [133].  

Once used solely for placing calls, today’s mobile phones are increasingly 

equipped for text messaging, emailing, browsing the Internet, playing music and videos, 

taking pictures, viewing and even editing documents. Usage statistics confirm that 

phones are being used for tasks once reserved for desktop computing: more than twice as 
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many people are active users of the short message service (SMS) to send mobile text 

messages as are active users of desktop email, and 750 million people access the internet 

via mobile phone today⎯just under the 850 million who do so via PC [1]. Furthermore, 

mobile devices are more personal than ever⎯they are small enough to be carried or 

within reach at all times, they are typically not shared among friends, family or spouses, 

they are replaced on average every 18 months which allows users to keep them in sync 

with evolving technologies, personal needs and style, and their vast software offerings 

allow users to customize ring tones, background themes, and applications. Connected, 

capable, and personalized, mobile phones are ushering in a new era of personal 

computing, and with it, enormous opportunities and challenges in human-centered 

design. 

1.2 Challenges in Mobile Computing 

The diminutive size of the mobile phone has been central to its success: being small 

enough to fit in a pocket or unobtrusively worn increases the probability that users will be 

collocated with their phones, and, in turn, perpetually connected. This benefit has driven 

the steady trend toward smaller, slimmer forms. At the same time, technology advances 

have allowed devices to offer more hardware capabilities (e.g., larger screens, music 

play, camera, Bluetooth, and WiFi) and improved (e.g., faster, graphically richer, and 

more powerful) software experiences.  

Unfortunately, the more our phones do, and the more data they store and access, 

the more we feel the pinch that their input and output constraints have on usability. 

Smaller screens mean less information can be displayed at once, so designers are faced 

with challenges in presenting and structuring information; users in turn bear the burden of 
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performing more navigation steps, which can increase overall interaction time, as well as 

mental and visual demands. Meanwhile, reducing the space designated for buttons leads 

to several possible design tradeoffs: 1) buttons are removed and the ones that remain take 

on multiple roles, which increases users’ mental or visual demands; 2) buttons are 

shrunken and/or packed tighter, making them harder to hit reliably with thumbs and 

fingers; 3) buttons are hidden under a screen or clamshell design, so extra time must be 

taken to reveal them before use; or 4) physical buttons are replaced by software-based 

touchscreen buttons, which increases visual demand due to the absence of  tactile 

feedback.  

In addition to the design issues that arise from the physical limitations of small 

screens and keyboards, external factors that can further degrade usability abound in 

mobile computing. Not only do mobile scenarios vary widely with respect to lighting, 

noise levels, stability, privacy and social context, but users “on the move’ must divvy 

their mental, visual, and physical resources between device tasks and the surrounding 

environment. The negative impact that mobility can have on attention [111, 142], task 

performance [10, 95, 141, 146], visual performance [107], mental demand [24, 146], 

motor skills [37, 105], and hand availability [79] during device use have been studied and 

verified widely. The significant implications these results have on device usability, 

enjoyment and user safety have perpetuated a de facto guideline in mobile interface 

design⎯to strive for “minimal attention” user interfaces [113]. My own research has 

focused on users’ finite physical resources and, in particular, scenarios in which users 

have only a single hand available to operate a touchscreen-based device.  
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(a)                                (b)                                     (c)                                               (d) 

Figure 1. Mobile use scenarios. Mobile scenarios can leave only a single hand available for device use 
(a,b); mobile phones can often be operated successfully with one hand (c); stylus oriented 

touchscreen devices often require two hands to operate (d). 

1.3 One-Handed Use of Mobile Touchscreen Devices 

One characteristic of mobile device use is that people on the move often need a hand to 

carry additional belongings, open doors, hold handrails, or otherwise manage a dynamic 

environment (Figure 1a,b). Interfaces that accommodate single-handed device operation 

can thus offer an important benefit to users by freeing a hand for the variety of physically 

demanding and/or high-attention tasks common to mobile scenarios [79]. Traditional-

style mobile phones that have read-only displays and numeric keypads are generally 

lightweight and easy to manage with one hand (Figure 1c) but can of course be 

unfriendly to thumbs if buttons are small or keypads are crowded. Devices with touch-

sensitive screens present more serious and consistent challenges for one-handed 

operation. First, touchscreen displays tend to be larger than read-only displays and so 

touchscreen devices themselves tend to be larger, heavier, and more difficult to manage 

with one hand than non-touchscreen devices. Furthermore, because most touchscreen 

software is designed to be used with a pen-like stylus (Figure 1d), interaction objects can 

be too small to hit reliably with a thumb, or distributed in such a way as to be too award 

to hit with a given hand grip (e.g., too far). 
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The relatively large forms and stylus-based software of today’s touchscreen 

devices make it clear that one-handed operation has not traditionally been considered a 

high-priority use scenario for this class of computer. Whether this is the result of 

oversight or deliberate design choices, my exploratory investigation into the relevance of 

one-handed mobile device use in Chapter 2 concludes that touchscreen devices, which 

typically serve to support rich, high-throughput, focused interaction, are not considered 

sufficiently enabled for one-handed mobile operation. This finding has formed the basis 

of my research position that improving support for one-handed touchscreen operation 

will extend the overall utility and usability of a significant family of mobile devices.  

But what is the practical impact of this work? The popularity of small, sleek, 

affordable devices has kept the larger, pricier touchscreen devices languishing at the back 

of the pack with respect to general consumer sales. Yet because touchscreen devices 

support PC-like applications and interactions, they have enjoyed high penetration in 

professional communities. The expectation that touchscreen-based devices will continue 

to offer advantages over non-touchscreen devices in professional markets means there is 

indeed an important user population that will be well served by improving one-handed 

operation of mobile touchscreen devices. But a recent confluence of events may prove 

this thesis research to be more broadly relevant than anticipated. The explosion of web-

accessible visual media such as photos, television, videos, and movies, has elevated the 

importance of pixels for the general consumer. At one end of the design spectrum, pixels 

can be favored over even hardware buttons, whose functions can be migrated to pixels in 

the form of touchscreen soft keys. This is the design approach that has given birth to 

Apple’s iPhone sensation⎯the most successful touchscreen device to be marketed to the 
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non-professional consumer. Based on the substantial line-up of iPhone competitors, it 

appears the tide may have indeed turned for mobile touchscreen technology, which 

analysts at IMS Research (www.imsresearch.com) predict could be included in nearly 

30% of the devices on the market by 2011. Even if these predictions are overly 

optimistic, they certainly bode of growth in the touchscreen device sector, and thus the 

potential for this research to have farther-reaching impact than would be possible today.  

1.4 Research Strategy 

To date there has been relatively little integrated study of the tasks, technologies, 

interaction techniques and interface designs that together contribute to the experience of 

mobile device mastery with one hand. Instead efforts have generally addressed only a 

single aspect of one-handed device operation. Technology-oriented research has 

investigated new input channels, such as the spatial position or orientation of the device 

[45, 64, 120], or by interpreting simple touchscreen-based finger gestures [25, 76], but 

both tend to limit users to coarse-grained navigation tasks or finite command sets. Other 

research has focused on supporting a specific task, such as media control [5, 115], text 

entry [151], or data entry for fieldwork [113]. But in the varied landscape of mobile 

devices and applications, one-handed solutions must extend to a wide variety of forms, 

features, functions, and of course, users.  

This thesis does not pursue a single innovation that achieves this broad ideal, but I 

have instead used its goals as a guide. For example, I have investigated how different 

device forms affect thumb mobility, how different hardware features compare for 

manipulating an input cursor, and how the full range of standard touchscreen software 

functions might be performed with the help of a user-customized software widget. But 
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more formally, my research has approached the problem of one-handed device use from 

two perspectives: 1) foundations - motivating the relevance of one-handed mobile device 

use and investigating the fundamental characteristics and limitations of single-thumb 

interaction with handheld devices; and 2) applications - using this knowledge toward the 

development of touchscreen-based software interfaces and interaction techniques to 

support mobile input, access and management of data with a single hand. 

To establish foundations, I have conducted a series of studies to develop an 

understanding of basic human factors involved in single-handed device operation: 1) a 

field study to understand the extent to which single-handed use is currently showing up 

“in the wild”; 2) a survey to record personal accounts of current and preferred device 

usage patterns; 3) an empirical evaluation of thumb tap speed to understand how device 

size, target location, and movement direction influence task performance; 4) a 

quantitative evaluation of the learnabilty and executability of touchscreen-based gestures; 

and 5) an empirical study to determine the required sizes for thumb-oriented touchscreen 

targets. This thesis is motivated by the results of the first two foundation studies, which 

offer evidence that one-handed use of mobile devices is common, but that one-handed 

interaction would be more prevalent if hardware and software designs better supported 

thumb interaction, especially for touchscreen-based devices. The remainder of the 

foundation studies provided the data to back design guidelines for thumb-oriented 

touchscreen interfaces.  

Together the results of these first studies offer foundational knowledge in user 

behavior, preference, thumb motor capabilities, and touchscreen-finger interaction 

characteristics for one-handed mobile device use. But with mobile devices storing and 
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connecting to increasing volumes of data, techniques for effectively managing, 

navigating and searching local and remote data sets are essential to their continued utility. 

So to understand how these foundations apply in practice to real interfaces, I developed 

and studied four applications that explore design trade-offs in supporting a range of 

typical mobile information tasks with one hand.  

The first two applications, AppLens and LaunchTile, embody competing 

approaches for using one thumb to navigate among a set of programs on a touchscreen-

based device; the AppLens design uses an indirect gesture language to allow users to 

access small or distant objects with an object cursor, whereas the LaunchTile interface 

ensures interaction targets are always large enough and close enough to be hit or moved 

directly with the thumb. A formative study of the two interfaces investigated usability 

issues with the alternative design strategies as well as captured users’ comparative 

preferences.  

For the next application, I focused on the well-known issue that text entry is slow 

on mobile devices, and explored how interfaces might be designed to increase user 

efficiency for text-oriented activities. As an intern at Microsoft Research, I designed and 

built the FaThumb interface to understand the potential advantages of navigating and 

selecting data attributes as an alternative to keyword-based text entry for searching large 

data sets from a mobile device. A formal study of FaThumb confirmed that facet-based 

attribute navigation can outperform ad-hoc keyword search for exploratory browsing 

activities, and that users strongly favored dynamic results filtering via facet navigation 

over text entry for these tasks. 
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While the first three applications address one-handed design approaches for 

supporting high-level information navigation and search tasks, a great many device 

activities are instead accomplished through a series of low-level object selections. For 

example, browsing the Internet can be considered a sequence of link selections, and 

setting an alarm involves a series of selections and edits to hour, minute, and am/pm. It is 

unsurprising then that respondents to my web survey indicated they want better single-

handed support across all touchscreen tasks, which are invariably include low-level 

object selection sub-tasks best performed with a stylus. The question then becomes 

whether we redesign all applications for thumb accessibility, or whether we somehow 

enable thumb use of stylus oriented interfaces. Both personal experience and user 

observation suggest that many factors determine the number of hands people use for 

device interaction, including hand availability, preference, and desired throughput. 

Because these factors may change dynamically in mobile environments, effective 

touchscreen interfaces will need to balance effective presentation and interaction 

efficiency independent of hand availability. Not only may some of these choices be 

unfavorable to thumb input, but there already exists a vast body of legacy touchscreen 

applications that favor stylus input. 

To address the challenge of ensuring touchscreen devices are operable with the 

thumb without requiring designers to sacrifice the expressiveness of the information 

presentation, or the efficiency of input when two hands are available, I designed and 

developed a fourth and final application called ThumbSpace, a generalized method for 

supporting one-handed use of arbitrary touchscreen interface layouts. ThumbSpace is a 

personalized interaction widget that users launch on-demand to aid in selecting a screen 
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object that is too small or too far to hit accurately or comfortably with the thumb. 

Through design refinements and formal comparative studies, I have demonstrated that 

ThumbSpace is a well-liked means for improving user accuracy in hitting small, out of 

reach targets on touchscreen devices, and that the benefit ThumbSpace provides 

outweighs the time or decision costs associated with on-demand use. 

1.5 Thesis Contributions 

1.5.1 Foundations: Guidelines for One-Handed Mobile Device Interaction  

Contribution (C1): Motivated the need for single-handed interface design based on the 

reporting of current usage patterns and preferences for one- and 

two-handed mobile device interaction. 

Results from my field observations of travelers using mobile devices indicate that one-

handed use of cell phones is common. User activity seems to correlate with the number of 

hands used for device operation, but based on observation alone, the direction of 

influence remains unknown.  

Results from my survey of device use, behavior and preference also indicate that 

single-handed phone use is common. The different usage patterns for different types of 

devices indicate that device input capabilities influence the number of hands used to 

perform an activity. Overall, the majority of users stated they would prefer to use one 

hand to perform all activities, suggesting attention should be paid to improving one-

handed device use across all activities for all devices.   
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 Contribution (C2): Provided researchers and practitioners with practical, empirically-

backed guidelines for one-handed mobile interface designs.  

Results from my study of thumb movement across different sized devices offer 

researchers and practitioners guidelines for developing mobile interfaces that support 

one-handed interaction: 1) support localized interaction (e.g., by placing targets close to 

one another) to minimize grip adjustment; 2) allow users to configure tasks for either left 

or right-handed operation especially when the tasks involve diagonal movements; 3) 

strive to place interaction targets toward the vertical center of the device to support a 

stable, balanced grip, as well as toward the middle of the device (horizontal center) to 

make targets easy to reach for both left and right handed users; and 4) favor small devices 

in order to support overall device control and satisfaction.  

Results from my study of thumb-appropriate touchscreen target sizes indicate that 

a target size of about 10 mm2 should be sufficiently large to support fast, low-error target 

selection. 

Finally, user performance with applications that integrate thumb gestures suggest 

that gestures are best used to complement rather than replace tapping interaction.  

Together with the supporting quantitative data, these guidelines can provide 

designers the resources necessary to make informed decisions about interface target 

placement and the resulting impact on one-handed performance. Interfaces created with 

these guidelines in mind have the potential to produce comfortable, usable, and 

ergonomic one-handed interaction experiences. 
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1.5.2 Applications: Interaction Techniques for One-Handed Data Access 

Contribution (C3): Inspired novel application management methods for small screens 

based on fluid context switching, rich adaptive application 

representations, one-handed access, and device independence. 

The AppLens and LaunchTile designs offer unique solutions for navigating among 

programs on a touchscreen-based device with a single hand. User feedback for both 

designs was very positive, especially the feature for displaying of high-value summary 

detail for multiple applications at once. This work also introduced a novel approach to 

small device software design⎯the ability to dynamically adapt interfaces to devices with 

varying screen sizes and aspect ratios.  

Contribution (C4): Offered a one-handed approach to searching large volumes of data 

from a mobile phone without the need for text entry. 

The FaThumb interface presents a unique solution for enabling rapid, fluid access to large 

data sets from a mobile phone, and holds great potential for adaptation to touchscreen-

based devices. Despite anticipated advances in text entry methods for small devices, 

single handed designs are not likely to rival the two-handed touch typing speeds of 

desktop computing. Thus designs for handheld devices which deemphasize text entry 

while still providing powerful, rapid access to remote and local data stores, will support 

the continued efficacy of personal mobile computers. 
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Contribution (C5): Offered a generalized one-handed approach for interacting with 

touchscreen applications designed for rich presentation and stylus-

based interaction. 

ThumbSpace is a personalized interaction technique that adapts rich, stylus-oriented 

touchscreen interfaces to the limited motion range and noisy input of the thumb. By 

offering ThumbSpace as an input option, touchscreen interface designers will be free to 

focus on layouts that provide the most effective presentation or efficient navigation of 

information irrespective of the number of hands users have available at the time of use. In 

addition, the ThumbSpace input approach has the potential to make the large body of 

stylus-based touchscreen designs in circulation today forward-compatible with one-

handed thumb use. 

1.6 Thesis Organization 

Chapter 2 of this thesis serves as the detailed motivation for my research on interface 

designs and interaction techniques to accommodate one-handed use of mobile 

touchscreen devices by reviewing relevant prior work and presenting two exploratory 

studies: 1) a field study conducted to understand the extent to which single-handed use is 

currently showing up “in the wild”; and 2) a survey that captures personal accounts of 

actual and preferred device usage patterns. Chapter 3 completes the foundations of my 

work in presenting three studies that explore various human factors of high relevance to 

one-handed use of touchscreen-based mobile devices: 1) an empirical evaluation of 

thumb movement capabilities to understand how device size, target location, and 

movement direction influence task performance; 2) an empirical study to determine the 

required size for thumb-oriented touchscreen targets; and 3) a quantitative evaluation of 
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the learnabilty and executability of touchscreen-based gestures. Chapters 4 through 6 

present applications of my foundational findings for supporting users in performing real-

world mobile data access tasks with one hand. Chapter 4 introduces AppLens and 

LaunchTile, which embody two alternative design strategies for developing one-handed 

touchscreen interfaces. In Chapter 5 I present the FaThumb interface, and explore 

whether searching and browsing large data sets using attribute navigation can be a 

competitive alternative to traditional text-based keyword entry. Chapter 6 presents 

ThumbSpace, a personalized widget for interacting with stylus-based touchscreen 

interfaces with the thumb. Finally, this dissertation concludes with lessons learned and 

future work in Chapter 7. 

Due to the characteristic that this thesis approaches the problem domain of one-

handed thumb-based touchscreen interaction from the complementary, but differing 

perspectives of foundations and applications, a broad range of prior research has proven 

relevant to my work. Thus instead of devoting a single chapter to a literature review, I 

have chosen to contextualize the prior work by including a section within each chapter to 

discuss the associated related research.   
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Chapter 2  
Foundations: Why Design for One-Handed Mobile Devices? 

Motivated by the rationale Pascoe et al. offered for developing minimal attention user 

interfaces (MAUIs) [113] for field scientists, it seemed probable that mobile device users 

in the general population would benefit from one-handed designs. Furthermore, my 

review of past and ongoing research concluded that little attention had yet been paid to 

touchscreen-based devices. In order to establish that a research agenda based on 

improving one-handed support for touchscreen-based mobile devices had high impact 

potential, I performed two exploratory studies. I first ran a field study to capture the 

extent to which single-handed device use is currently showing up “in the wild”. Second, I 

polled users directly to record personal accounts of current and preferred usage patterns 

for a variety of mobile tasks across a range of device types.  

This chapter begins by presenting the research related specifically to the 

motivations for supporting one-handed mobile device use, and the solution spaces that 

others have explored to date. Following the review, I present the details of the 

preliminary studies that serve as the groundwork for the remainder of this thesis.  

2.1 Related Work 

2.1.1 Effects of Device Size on Design 

The input and output constraints of mobile devices, discuss previously in Section 1.2, 

have necessitated innovations in information and interaction design for providing users 

effective means of viewing, navigating, and inputting data on small devices. One driver 
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has been the increasing adoption of web-enabled handheld devices; although over 40% of 

Americans who have a mobile device access the Web through their device [3], the 

majority of web content targets standard desktop-sized displays. Restructuring [32], 

reformatting [124, 148], summarizing [29] and zooming [14] web content are just some 

of the techniques that have been used to adapt web pages for small-screen browsers like 

the iPhone’s Safari (www.apple.com/safari/) and Microsoft’s DeepFish 

(www.labs.live.com/deepfish/). Many of these techniques are also appropriate for the 

broader body of data that is synchronized and accessed across stationary and mobile 

platforms. Of course, remedies such as zooming [27, 56, 81], focus+context displays [16, 

56] and visual cues [13] that have long been used for managing large data sets within the 

limits of desktop displays have proven useful for small screens as well. 

With respect to input constraints, one of the strongest motivators of change has 

been the contagious popularity of SMS text messaging. Largely lead by the teen market 

[84], 39% of Americans now use text messaging to communicate using their phones 

[104]. Yet unlike sending email from a desktop’s Qwerty keyboard, the majority of text 

messages are tapped out on the 12 keys of a traditional phone keypad (Figure 2a). Several 

approaches have been developed over the years to reduce the multiple key presses 

traditionally required to disambiguate among letters appearing on the same key, including 

word prediction [91, 144], new letter-to-key mappings [52, 109], chording techniques 

[150] and joystick gestures [153]. Despite the significant performance improvements that 

many of these techniques have achieved over multi-tap for 12-key layouts, the fact that 

their input speeds still lag far behind those achieved at the desktop has allowed device 
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designs that include a full Qwerty thumbboard (e.g., Figure 2b,c) to remain competitive 

despite being larger and heavier than the 12-key models.  

 
           (a)                                                   (b)                                           (c) 

Figure 2. Examples of mobile device keyboards. The assignment of letters to buttons for a standard 
phone keypad (a). A cell phone model with a slide-out Qwerty thumbboard (b). A phone model with 

an integrated thumbboard on the front of the device (c). 

2.1.2 Attention and Mobility 

Developing effective ways to view and interact with information given the small form 

factors of handheld devices is only one of the challenges in designing for mobile 

computing. Another challenge is that as mobile devices become increasingly integrated 

into our daily lives, they are now commonly used in highly dynamic environments, such 

as while walking in crowds, shopping, riding public transportation, driving, and so on. In 

such scenarios, users have no choice but to divide their mental, visual, and physical 

attention between the device task and the surrounding environment. Indeed, many 

researchers have studied and verified the negative impact that mobility has attention [111, 

142], mental performance [10, 95, 141, 146], mental demand [24, 146], visual 

performance [107], and motor skills [37, 105]. Perhaps the magnitude of the drain that 

mobile device use can have on users’ faculties is most succinctly captured by the study 

which demonstrated that talking on the phone, even hands free, while driving is akin to 

driving while legally intoxicated [141]. The resounding message to the public is that 

multitasking with a phone can be dangerous. The message to interaction designers is that 
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enormous benefits in usability and safety may be reaped by minimizing the mental, 

visual, and physical demands of mobile computing. 

Pascoe, Ryan and Morse capture the spirit of this approach with their Minimal 

Attention User Interface (MAUI) framework [113], developed in response to the physical 

and visual challenges field scientists face while gathering data using PDAs. Their 

framework considers both activity and interaction-mode characteristics to guide 

appropriate design choices for the visual, audio and tactile interaction channels. For 

example, a MAUI to support an animal counting activity would provide hardware buttons 

for incrementing and decrementing the tally, which allows the scientist to dedicate her 

visual attention to the subject matter. Kristoffersen and Ljungberg [79] observed that 

similar challenges are faced in other mobile professions which then cause users to carve 

out dedicated time and/or space, or “make place”, to complete work tasks with a 

handheld computer. Like Pascoe et al., they emphasize eyes free input and output (audio) 

when viable.  

A limitation shared by these early investigations, however, is that they focused on 

specialized users and tasks. Because of these assumptions, the interfaces could be highly 

scripted and simplified so that only a small number of actions were available to users at 

any time. More commonly, devices and interfaces need to support a wide variety of users, 

tasks and scenarios. So while the principles of minimal attention user interfaces provide 

useful guidance for mobile design, how they are applied in practice for consumer devices 

remains an active area of research. 
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2.1.3 Impact of Form on Physical Resource Demands 

Given the variety of tasks for which mobile computers are used and the variability of use 

environments, it is inevitable that no single MAUI design or philosophy will be a panacea 

for reducing the concurrent mental, physical, and visual demands of computing while 

mobile. In my own work, I have focused on the problem that mobile users often have 

only one hand available to use a device⎯a limitation of their physical resources. 

Furthermore, I have paid particular attention to touch-sensitive devices, since they have 

traditionally been designed for two-handed stylus interaction.  I will position my work 

within the field by reviewing other research efforts that have aimed to reduce the physical 

demands of mobile computing.   

It would be remiss to discuss solutions to the physical demands of mobile device 

interaction without a discussion of the varying affordances that different hardware 

features offer. Other than the minimum functional guarantee of placing and receiving 

calls, little else is standardized among the hardware and software features of mobile 

devices. In fact, consumer demand for new, feature-rich, technically sophisticated, and 

stylish devices is a powerful diversifying force in the mobile market, and the software-

hardware design tradeoffs represented by each device model conjure a unique point in 

usability space. However, to focus the discussion, I will simplify the design space into 

three device styles based on the main input channel (12-key numeric keypad, Qwerty 

keyboard, and touchscreen), which I will review briefly, along with the physical demands 

necessitated by their forms. 
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12-Key Numeric Keypad Devices 

The original mobile phones were rectangular “candy-bar” shaped devices, which had a 

display-only screen for output and a standard 12-key numeric keypad for input. The 

majority of cell phones today retain this 12-key design, and with good reason. The 

limited number of raised physical keys allows expert users to dial and SMS text message 

eyes-free, which is helpful for allowing users to keep their visual focus on a dynamically 

changing environment, as well as for allowing discreet (e.g., under the table or in the 

pocket) communication. Because the 12 keys are localized, they can all be reached with 

the thumb using a single grip, which typically allows users to operate the phone easily 

with one hand. However, keys that are too small or too close to one another can threaten 

user precision when using the thumb, which can then cause users to resort to two-handed 

index-finger operation. Alternately, tasks requiring high throughput, such as text entry, 

may encourage users to increase input parallelism with two-handed thumb operation.  

Qwerty Keyboard Devices 

Devices that give high priority to text entry tasks like email or SMS text messaging offer 

users a Qwerty keyboard, which is what distinguished the RIM Blackberry device (Figure 

3a, www.rim.com) from the field when it entered the market in 1999. Today a wide 

variety of other models exist, including those both with and without touchscreens, as well 

as convertible models whose keyboards flip or slide into view (e.g., Figure 3b). Mobile 

Qwerty keyboards are typically used with two hands for several reasons. First, most users 

are accustomed to using two hands to type on full-sized desktop keyboards, so it is 

natural for users to transfer this interaction style to miniature keyboards, even though the 

speed advantage of ten-finger touch typing is largely lost when users move to only two 
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thumbs. In fact, some Blackberry models angle buttons differently on the left versus right 

halves of the device to better accommodate the different access angles of the left and 

right thumbs (Figure 3a), further reinforcing the two-thumb entry style. Second, the 

device keyboard must be wide enough to fit at least 10 buttons, which can lead to devices 

that are simply too wide for users to reach all buttons with the thumb when held in one 

hand (Figure 3b). Ultimately, even those Qwerty devices that are narrow enough to hold 

in one hand (Figure 3c) may often be used with two because of the speed advantage that 

parallel thumb entry offers to users. 

Dedicated hand resources are not the only physical demand of Qwerty text entry. 

Significant visual attention is also required to ensure users hit the correct keys because 

there are simply too many buttons for most users to rely solely on tactile cues. And 

finally, message composition is mentally engaging. Thus, overall, text entry is a 

demanding mobile activity in terms of physical, visual, and mental resources, especially 

while using a mini Qwerty keyboard. 

 

         
          (a)                                                      (b)                                              (c) 

Figure 3. Examples of phone models with Qwerty keyboards. A Blackberry being used in the 
traditional manner with two hands (a). A slide-out device model shown in one hand (b). A Palm Treo 

shown in one hand (c). 

Touchscreen Devices 

It is not uncommon for various phone models to be described as “converged” devices, 

which refers to phones adopting capabilities that have traditionally been offered by a 
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dedicated device, such as a camera, a music player, a GPS, etc. Yet converged devices 

also encompass those that merge the capabilities of a personal digital assistant (PDA) and 

a phone. PDAs were the first generation of handheld, mobile computer which 

synchronized data with a desktop PC, and aimed to offer PC-like capabilities on-the-go, 

such as a calendar, calculator, address book, and notepad. Because of these design goals, 

screen space and input flexibility were a priority, and so PDAs tended to feature large, 

touch-sensitive displays, and few physical buttons. Mobile phones, on the other hand, 

have traditionally favored non-touchscreen displays and 12-button input. Interestingly, as 

the capabilities of phones and PDAs converge, the phone industry is experiencing a jump 

in the popularity of touchscreen-based devices. This trend has primarily been attributed to 

the June 2007 release of Apple’s iPhone, which features only a single physical button and 

a large, high-tech, multi-touch display.  

To optimize the use of screen space for information display, most touchscreen 

software designs feature small interaction targets. These targets are easily hit using the 

included pen-like stylus, but can be too small for reliable finger actuation; capacitive 

touchscreens, which are in broadest use today, accept only one input point generated 

from the average contact area of the finger, and this point can vary dynamically and 

unpredictably with changes in finger pressure and input angle. Because using a stylus 

requires two hands, most touchscreen designs are not well suited to one-handed 

interaction. The two-handed use model for touchscreens is reinforced by the fact that 

touchscreen displays are often larger than a user’s thumb range given a particular grip, 

resulting in targets that can be too far to hit when the device is held in only one hand. 

Interestingly, Apple’s iPhone is designed for finger-only use, but not necessarily one-
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handed use, since interaction objects can be found across all regions of its relatively large 

touchscreen display. In practice, however, the slim, lightweight form of the iPhone makes 

it quite manageable with one hand.  

2.1.4 Strategies for Reducing Hand Requirements 

Since hands are an important user resource, a task that requires the dedicated use of two 

hands typically consumes significant attention resources due to associated visual (e.g, 

looking at a thumbboard or touchscreen) or mental (e.g., text composition) demands. 

Thus, minimizing the number of hands required to do a task is consistent with MAUI 

guidelines, which aim to minimize overall user distraction [113]. Approaches for 

reducing hand requirements for tasks differ according to the device hardware. At one 

extreme, head mounted displays require no hands, but suffer potential drawbacks of 

visual [82] and social interference [94], not to mention that such equipment is not yet 

found in common use. Because of these types of competing issues that arise when 

attempting to eliminate all hand use from mobile computing, efforts have more 

commonly focused on reducing hand requirements from two hands to one. Since 12-key 

phones are already quite easy to use with one hand, touchscreen-based devices have 

received the majority of attention in adapting input for one hand. 

Specialized Hardware 

Of course, many touchscreen devices include some type of indirect input hardware such 

as a directional pad or thumbwheel that accommodates one-handed thumb use, but the 

degree to which the device is fully operable with the hardware alone depends on whether 

the operating system and applications have been designed with indirect input in mind. 

The RIM Blackberry devices (www.blackberry.com), for example, are famous first for 
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their thumb wheels, and more recently trackballs, which accommodate powerful 

navigation, selection, and smart context menu capabilities throughout the entire interface 

experience. But the Blackberry’s elegant, system-wide thumbwheel navigation capability 

came about because the models have never had touch-sensitive displays. In contrast, 

when the touchscreen-based Windows Mobile Pocket PC was retrofitted with a scroll 

wheel in the Cingular 8525 (a.k.a. HTC TyTN), the result was less successful because a 

subset of interface elements remained actionable only through direct touch, causing 

interruptions in the flow of interaction. 

Accelerometer-equipped devices and the use of tilt orientation for input has been 

well-studied as a means for accommodating one-handed use of devices, such as for text 

entry [127, 151], scrolling [11, 45, 64, 120], zooming [49], menu navigation [120] and 

photo browsing [11, 33]. Yet because tilt is achieved through gross motor movement in 

the hand and wrist, tilt may be inappropriate for fine-grained input control or parameter 

manipulation [119]. Although most mobile devices on the market do not yet incorporate 

accelerometer technology, the iPhone uses a rotation sensor to automatically adapt the 

orientation of the screen contents to the user’s view perspective. 

Others have developed specialized hardware solutions for one-handed control of 

specific mobile tasks, such as the Twiddler for one-handed chording text entry [87], the 

iPod for music play [5], and the EarPod for menu navigation [161]. My work has focused 

on standard touchscreen-based mobile devices, and resolving problems associated with 

using touchscreens directly with the thumb for performing a wide variety of mobile tasks.  
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Specialized Software 

Another strategy for enabling one-handed use of touchscreen devices is to focus on the 

software design. Beyond my own work, few others have developed touchscreen-based 

applications that specifically support one-handed thumb operation. A notable exception is 

Huot and Lecolinet’s SpiraList [67], which offers users a focus+context view of a text-

based list in a spiral layout (Figure 4); the SpiraList supports serial navigation via a 

thumb-operated widget that modulates the speed and direction of list rotation (Figure 4a), 

or users can aim for visible items using an offset-cursor [116] (Figure 4b). Unfortunately, 

the technique was not studied formally to understand whether the properties of thumb 

operability and the increased visibility of items in long lists benefits user tasks over 

standard, scrollable 1D list layouts. Although there are few other examples of research 

into specific applications, commercial trends for supporting thumb operation of 

touchscreen-based devices include several thumb-based virtual keypads available from 

third party vendors, such as the Phraze-It® keypad from Prevalent Devices 

(www.prevalentdevices.com).  

          
         (a)                                                                      (b) 

Figure 4. SpiraList, a one-handed thumb-based design for viewing and navigating text-based lists on 
a touchscreen device. Browsing via an indirect list control widget (a), and direct item selection using 

an offset cursor (b). 
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Researchers have also suggested general software design guidelines for serving 

the interests of one-handed thumb-based touchscreen interaction. For example, Pascoe et 

al. [113] and Kristoffersen and Ljungberg [79] both concluded that if software is 

structured so that only a small number of interaction objects occupy each screen, and 

each object is assigned to a conceptually distinct region of the display, such as “top, 

middle, bottom”, “top-left, top-right, bottom-left, bottom-right” [113], or “North, South, 

East and West” [79], then assuming the interaction objects are large enough, users stand a 

good chance being able to hold and operate the device with just one hand and minimal 

visual attention, especially when coupled with audio feedback. An example of an 

interface by Pascoe et al. that follows these guidelines is shown in Figure 5. 

Unfortunately such simplified software designs for touchscreens are not practical for 

most modern applications, which must balance input requirements with those for 

effective information presentation and efficient navigation. 

 
(a)                                    (b)                                     (c)                                     (d) 

Figure 5. An interface that embodies the design guidelines of Pascoe et al. for supporting one-handed 
touchscreen interaction. (a-d) The first four steps of entering a new field note. 

One of the few handheld systems dedicated to single-handed operation is the 

touchscreen-based N2 phone by Neonode (www.neonode.com), which supports 

application navigation and interaction using only thumb taps and sweeps. However, the 

N2’s primary use is as a phone, camera and media player, rather than a personal data 

manager. As such, the N2 is not designed to support rich graphical interfaces or data 
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interactions. The Apple iPhone (www.apple.com) and LG Prada phone 

(www.pradaphonebylg.com) are two touchscreen-based mobile phones dedicated to 

finger-only interaction, primarily by offering users large interaction targets. It is unclear 

whether these systems were designed specifically for one-handed thumb interaction since 

both use the entire display space for object placement, potentially placing some objects 

out of thumb reach.  Even so, a review of web-based articles and message boards about 

the two phones suggests that many users can indeed operate both the iPhone and Prada 

phone with one hand.  

Another option for reducing the number of hands needed to operate a 

touchscreen-based device is to wear the device instead of hold it, which frees both hands 

when no interaction is required, and demands the use of only a single finger otherwise. In 

[25, 115] Brewster et al. conducted a series of studies to explore interaction techniques 

for operating a hip mounted touchscreen device. Because the low position and vertical 

orientation of the device reduced the visibility of the display, their system de-emphasized 

the need to see and hit specific targets by supporting audio-enhanced command gestures. 

Although the system did support one-handed operation, the investigators only pursued a 

single media player application since the primary focus of the work was on understanding 

the benefits of audio feedback during eyes-free device operation. For example, in [115] 

Pirhonen, Brewster and Holguin demonstrated that users experienced significantly lower 

workload, faster input time, and faster walking speed when using an audio-enhanced 

gesture language to operate the hip-mounted touchscreen music player than when using 

the traditional interface only.  
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2.1.5 The Role of Audio in Mobile Interaction 

Audio input and output are generally used so that a user does not have to look at a device 

in order to interact with it, thereby freeing the user’s visual resources for monitoring the 

environment. Although audio has been applied much more widely as a means for output 

than input in mobile applications, it is the use of audio for input that has had the most 

impact on reducing the hand requirements of mobile computing, since it allows a user’s 

hands to be free for carrying items, opening doors, driving⎯whatever the physical 

requirements are for the task. 

Audio Input 

Using speech for device input has received more public attention than non-speech 

methods, perhaps because of the naturalistic quality of the interaction and its 

anthropomorphic appeal: how nice it would be if we could speak to a computer as if with 

a personal assistant and it would do as we say! Speech recognition technology can be 

very accurate for basic speech-to-text translation activities such as dictation, especially 

when trained to an individual. However, the greater challenges involve the human-

computer dialog when speech is used to actually interact with a device. Systems that 

support operating a device via voice typically support only a limited vocabulary, which 

users must either memorize, thereby increasing mental demand, or be prompted for, 

which slows down interaction [140].  

While speech input is very flexible and can be applied to a wide range of 

applications, it can be slow for rapid direct input since recognizers typically wait until the 

user has completed an utterance before classifying the input [138]. Non-speech utterances 

such as humming, on the other hand, can be processed dynamically, and so can offer the 
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possibility of faster system response [138]. In addition, non-speech may be better suited 

than speech for setting certain types of parameters and fine-grained input control, since 

continuous voice characteristics like pitch and volume can be interpreted directly, but 

performing the same tasks with speech-based commands might require tedious repetition 

[140].  

Many audio input systems have been developed to reduce the physical 

requirements of desktop computing for users with disabilities. However, because these 

systems assume a standard desktop computer setting, they do require a high degree of 

visual attention for performing tasks such as cursor manipulation [40, 59, 73, 98, 139], 

game play [138], and web-browsing [34].  

Because audio is typically used expressly to reduce visual demand in mobile 

scenarios, some speech-based systems that have targeted the mobile domain such as 

VoiceNotes [140] and NomadicRadio [126] do not even have a display; each system 

does, however, allow for button-based input when speech input would be inappropriate. 

In addition, these systems were developed for differing aspects of taking, receiving, and 

navigating messages, and so have more specialized uses than do today’s mobile phones. 

High-end mobile phones often support limited speech input for dialing (e.g., “call contact 

at [work | home]”), however, general purpose speech-based navigation and control to 

accomplish common mobile tasks (e.g., “search for pizza places close to home”) is not 

yet available.  

Audio Output 

Audio output is usually provided as non-speech feedback in response to button or 

touchscreen input to reduce or eliminate the amount of visual attention required to 
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interact with a device while mobile. The use of audio, therefore, does not inherently 

reduce the hand requirements of mobile computing, but audio feedback has indeed been 

used to support one-handed interaction in cases where a user’s capacity to visually 

monitor the interaction outcome has been reduced. Continuing to focus on hip-mounted 

touchscreen interaction, Brewster extended his research of audio-enhanced gestures for 

media play [115] by dividing the touchscreen into a 3x3 audio landscape of short 

composite audio cues, or “earcons”, and demonstrating that users were more accurate in 

drawing symbols on the screen when the gestures were accompanied by audio feedback 

than when they were not [25]. Brewster et al. [24] also demonstrated that interface 

objects could be shrunken without reducing input performance if simple audio cues were 

provided to convey hitting (success) or slipping off (error) a target when using a stylus. 

As a complement to these experiments McGookin and Brewster [96] explored the design 

space and usability limits of earcons for conveying multiple system states simultaneously.  

Despite the potential benefits of audio input and output, they face the situational 

challenges of 1) interfering with ambient noise and 2) being overheard. Noisy 

environmental conditions can make it difficult for users to hear sounds emanating from a 

device, and can also degrade the accuracy of command recognition when sound is used 

for input. In social situations, the use of audio I/O may be disruptive to others and can 

compromise the privacy of the owner’s information. For these reasons, audio is not 

typically provided as an exclusive interaction method; rather, audio is offered to enhance 

usability for highly mobile situations, while visual and physical mechanisms can be relied 

upon for operating the device silently when more attention can be devoted to the task.  
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2.2 Exploratory Study 1: Field Study 

One motivation for my research into supporting one-handed use of mobile devices was 

my assumption that people already use devices in this manner, and the implication that 

current use behavior has predictive power over future use behavior. For example, if 

mobile users operate a device with one hand because of habit, preference, or the 

constraints imposed by mobility, the same reason will likely apply to different tasks and 

devices as well. So to first establish the current extent of one-handed behavior, I 

conducted an in situ study of user interaction with mobile devices. The study targeted an 

airport environment for the high potential of finding mobile device users and its ease of 

access for unobtrusive observation. 

I was the sole investigator of this study, which was conducted in November 2003, 

and supervised by my advisor. The results of this study have been published as a 

component of a chapter in the Handbook of Research on User Interface Design and 

Evaluation for Mobile Technology [75]. 

2.2.1 Method 

I observed 50 travelers (27 male, 23 female) at Baltimore Washington International 

Airport’s main ticketing terminal during a six hour period during peak holiday travel in 

November 2003. Because the observation was limited to areas accessible to non-ticketed 

passengers, seating options were scarce. I expected to observe the use of both PDAs and 

cell phones since common traveler activities include coordinating transportation, catching 

up on work, and using mobile devices for entertainment purposes. Since most users talk 

on the phone with one hand, I recorded only the cell phone interactions that included 
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keypad interaction as well. All observations were performed anonymously without any 

interaction with the observed device users. 

Note that while any subject observation without consent presents a legitimate 

question for ethical debate, for this research we used the federal policy on the protection 

of human research subjects [42] as a guideline. The policy states that the observation of 

public behavior is not regulated if the anonymity of the subjects is maintained and that 

disclosure of the observations would not put the subjects at risk in terms of civil liability, 

financial standing, employability, or reputation. Since we were interested in capturing 

natural behavior, did not record identifying characteristics, and consider phone use while 

standing, walking and sitting to be relatively safe activities, we did not obtain subject 

consent. 

2.2.2 Measures 

For each user observed, I recorded sex, approximate age, and device type used: candy bar 

phone, flip phone, Blackberry, or PDA. A “candy bar” phone is the industry term for a 

traditional-style cellular phone with a rigid rectangular form, typically about 3 times 

longer than wide. For phone use, I recorded the hand(s) used to dial (left, right or both) 

and the hand(s) used to speak (left, right or both). I also noted whether users were 

carrying additional items, and their current activity (selected from the mutually exclusive 

categories: walking, standing, or sitting).  

2.2.3 Results 

Only two users were observed operating devices other than mobile phones⎯one used a 

PDA and the other used a Blackberry. Both were seated and using two hands. The 
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remainder of the discussion focuses on the 48 phone users, 62.5% of whom used flip 

phones, and the other 37.5% used candy bar phones. Overall, 74% used one hand for 

keypad interaction. Sixty five percent of the one-handed users had a hand occupied, and 

by activity, 54% were walking, 35% were standing, and 11% were sitting. Figure 6 

presents the distribution of subjects who used one vs. two hands for keypad interaction, 

categorized by the activity they were engaged in (walking, standing, or sitting). The 

distribution of users engaged in the three activities reflects the airport scenario where 

many more people were walking or standing than sitting.  

 
Figure 6. Airport Field Study: The percentage of observed travelers using one vs. two hands, by 

activity. 

It is clear from Figure 6 that the relative proportion of one-handed to two-handed 

phone users varied by activity; the vast majority of walkers used one hand, about two-

thirds of standers used one hand, but seated participants tended to favor two hands to 

operate their devices. However, I also recorded whether one hand was occupied during 

the activity, and found that walkers were more likely to have one hand occupied (60%), 

followed by standers (50%), and then sitters (25%), which may be the true reason walkers 

were more likely than standers to use one hand for device operation, and why standers 

were more likely than sitters to use one hand. Regardless of activity, when both hands 
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were available for use, the percentage of one vs. two-handed phone users was equal 

(26%). 

2.2.4 Discussion 

Although Figure 6 suggests that a relationship exists between user activity and keypad 

interaction behavior, it is unclear whether activity type influences the number of hands 

used, or vice versa. Furthermore, since the percentage of users with one hand occupied 

correlates with the distribution of one-handed use across activities, it is possible that hand 

availability, rather than activity, is the more influential factor in determining whether one 

or two hands are used for interacting with the keypad. While use scenario certainly 

impacts usage patterns, the fact that users were as likely to use one hand as two hands 

when both hands were available suggests that preference, habit and personal comfort also 

play a role. Given that almost three-quarters of the observed travelers operated their 

phones with one hand, we can safely conclude that one-handed phone use is quite 

common, and thus is an essential consideration in mobile phone design. More 

importantly, the data provide evidence that the more mobile a user is, the more likely she 

is to use one hand to interact with her mobile device; whatever the reason for this 

trend⎯be it increased user mobility or decreased hand availability⎯it is likely that the 

same factor will influence user choice when operating a touchscreen device as well. 

Generalizability 

Note that my choice of observation location may have biased my results from behaviors 

found in the general population since travelers may be more likely to be: 1) carrying 

additional items; 2) standing or walking; and 3) using a phone vs. a PDA. Different 
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environments, tasks, populations, and scenarios will yield unique usage patterns. My goal 

was not to catalogue each possible combination, but to learn what I could from a typical 

in-transit scenario.  

2.3 Exploratory Study 2:Web Survey 

While the airport study was sufficiently informative for a preliminary exploration, 

shortcomings of the results include 1) the lack of knowledge or understanding of users’ 

motivations for usage style; 2) the limited types of devices observed (phones); and 3) the 

limited tasks types observed (assumed dialing). To broaden my understanding of device 

use across these dimensions, I conducted a follow up survey to capture user perceptions 

of, preferences for, and motivations surrounding their own device usage patterns. 

I was the sole administrator of this survey, which was conducted in January 2004, 

and supervised by my advisor. Both the survey questions and raw results can be accessed 

on the web at http://www.cs.umd.edu/hcil/mobile/survey/. The results have also been 

published as part of a chapter in the Handbook of Research on User Interface Design and 

Evaluation for Mobile Technology [75].  

2.3.1 Method 

The survey consisted of 18 questions presented on a single web page which was accessed 

via an encrypted connection (SSL) and hosted on a server of the Department of Computer 

Science, at the University of Maryland, College Park. An introductory message informed 

potential participants of the goals of the survey and assured anonymity. Notification that 

results would be posted for public access after the survey period was over provided the 

only incentive for participation. Participants were solicited from a voluntary subscription 
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mailing list that publishes activities associated with the university’s Human-Computer 

Interaction Lab (HCIL). In addition, the solicitation was propagated to one recipient’s 

personal mailing list on the topic of medical informatics, and a link to the survey was 

posted on two undergraduate Computer Science course web pages. 

2.3.2 Measures 

For each participant, we collected age, sex and occupation demographics. Users recorded 

all styles of phones and/or PDAs owned, but were asked to complete the remainder of the 

survey with only one device in mind⎯the one used for the majority of their information 

management tasks. We collected general information about the participant’s primary 

device, including usage frequency, input hardware, and text entry method. We then asked 

a variety of questions to understand when and why participants typically use one vs. two 

hands to operate a device. We asked participants to record the number of hands they use 

(one and/or two) for eighteen typical mobile tasks, and then asked them to specify the 

number of hands (one or two) they would prefer to use for each task. For three 

applications (email, calendar, and contacts) we divided tasks in to “reading” (email 

reading, calendar lookup, and contact lookup) vs. “writing” (email writing, calendar 

entry, and contact entry) activities to help us understand how hand usage patterns change 

for different types of tasks within the same application. Participants then recorded the 

number of hands used for the majority of their device interaction and under what 

circumstances they chose one-handed use over two-handed use, and vice versa. Finally, 

participants were asked how many hands they would prefer to use for the majority of 

device interactions (including no preference). 
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2.3.3 Results 

Two hundred twenty-nine participants (135 male) responded to the survey solicitation. 

One male participant was eliminated from the remaining analysis because his handheld 

device was specialized for audio play only, leaving 228. Median participant age was 38.5 

years. Participant occupations reflected the channels for solicitation, with 25% in CS, IT 

or engineering, 23% students of unstated discipline, 20% in the medical field, 10% in 

education, and the remainder (21%) from other professional disciplines. We obtained 

institutional review board (IRB) approval to conduct this study.  

Devices Owned 

The three most common devices owned were flip phones (52%), small candy bar phones 

(23%) and Palm devices without a Qwerty keyboard (20%). Palm devices with an 

integrated Qwerty keyboard were as common as Pocket PCs without a keyboard (14%). 

Since interaction behavior is likely to depend on device input capabilities, we reclassified 

each user’s primary device into one of four general categories based on the device’s input 

channels: (i) keypad-only (51%) are devices with a 12-key numeric keypad but no 

touchscreen, (ii) TS-no-qwerty (23%) are devices with a touchscreen but no Qwerty 

keyboard, (iii) TS-with-qwerty (21%) are devices with a touchscreen as well as an 

integrated Qwerty keyboard, and finally (iv) qwerty-only (5%) are devices with an 

integrated Qwerty keyboard but no touchscreen. Note that due to the severe imbalance 

among the device types owned in the participant population, I was unable to use device 

type as a between-subjects factor in the analysis; I do, however, report the device type 

data graphically. For users with multiple devices, I derived their primary device type 

from the text entry method reported.  
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Current Usage Patterns 

A 2 (number-of-hands: one vs. two) x 18 (task-type) Repeated Measures Analysis of 

Variance (RM-ANOVA) was run on the current usage data. Significant main effects for 

both number-of-hands, F(1, 255)=14.3, p<.001, and task-type, F(8.5, 2163.3)=87.3, 

p<.001, were observed. A significant interaction between number-of-hands and task-type 

was also found, F(9.9, 2529.9)=43.5, p<.001. Post hoc analyses of main effects were 

conducted using Bonferroni correction. 

 
Figure 7. Web Survey: The number of hands currently used and preferred to be used for 18 common 
mobile tasks, as a percentage of the observed population. One-handed use is shown as solid bars, two-

handed use is shown as striped bars. The different colored backgrounds indicated tasks for which 
one-handed use was appreciably more common than two-handed use (darkest), tasks for which hand 
choice was roughly equal (medium), and finally tasks for which two-handed use was more common 
than one-handed use (lightest). Hand usage for each task is broken down by device type. Note that 

TS=touchscreen. 
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Overall, significantly more participants use one hand to perform common tasks 

than use two hands, (29% vs. 20%). The main effect of task-type can be explained by the 

fact that users did not record answers for tasks they never perform (e.g., many users 

cannot browse the web from their phones). Thus regardless of the number of hands used, 

the user participation level varied considerably for different tasks.  

Trends shown in Figure 7 help explain the interaction result between the number-

of-hands used and task-type. Of the 18 tasks included in the survey, more participants 

used one hand than used two hands for 9 of the tasks (the top 9 tasks in Figure 7a, shown 

with the dark background), more participants used two hands than one hand for 5 of the 

tasks (the bottom 5 tasks in Figure 7a, shown with the light background), and roughly 

equal numbers of participants used one hand as two hands for 4 of the tasks (shown with 

the medium gray background in Figure 7a). Upon inspection, all of the “reading” 

activities were performed more often with one hand (darkest background) and nearly all 

“writing” activities with two hands (lightest background). Considering users’ device 

types, we notice that with the exception of gaming, owners of keypad-only (e.g., 12-key) 

devices tended to use one hand rather than two hands for tasks; owners of TS-no-qwerty 

devices were more likely to use two-hands for most activities, and those owning Qwerty 

based devices tended to use two hands when performing writing tasks, but one hand for 

reading tasks.  

Overall, 45% of participants stated they use one hand for nearly all device 

interactions, as opposed to only 19% who responded similarly for two hands  (Figure 8a). 

Considering device ownership, however, users of touchscreen-based devices were more 

likely to use two hands than one hand “always”. When participants use one hand, the 
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majority (61%) report they do so whenever the interface supports it, which was the 

reason cited by only 10% of those who use two hands (Figure 8b). Device form factors 

influenced usage behavior when the device was too small for two hands, too large for one 

hand, or when large devices could be supported by a surface and used with one hand. 

Participants cited task type as a reason for hand choice, primarily as a trade off between 

interaction efficiency and hand resource usage: 14% of users selected one hand only for 

simple tasks (conserving resources), while 5% selected two hands for entering text, 

gaming, or for otherwise improving the speed of interaction (favoring efficiency). 

Finally, according to respondents, the majority of two-handed use occurs when it is the 

only way to accomplish the task given the interface (63%), shown in the last column of 

Figure 8b. 

 
          (a)                                                            (b) 

Figure 8. Web Survey: The average frequency with which participants use one vs. two hands to 
operate their devices (a), and participants’ reasons for their hand choices (b). One-handed use is 

shown as solid bars, two-handed use is shown as striped bars, segmented by device type. 

Hand Preferences 

When participants were asked how many hands they would prefer to use to perform each 

of the 18 tasks, one hand was preferred overwhelmingly to two hands for all tasks (Figure 

8b). The activities with the closest margin between the number of participants who 
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preferred one vs. two hands were playing games (13%) and composing email (16%). 

With one exception (gaming), the activities for which more than 14% of users stated a 

preference for two hands were “writing” tasks (e.g., those that required text entry): text 

entry, contact entry, calendar entry, email writing, and text messaging, in decreasing 

order. Even so, except for users of TS-with-qwerty devices, the majority of users stated a 

preference for using one hand, regardless of task or device owned. Users of TS-with-

qwerty devices preferred two hands for text messaging, email composition, and text 

entry. Based on these data, it is consistent that 66% of participants stated they would 

prefer to use one hand for the majority of device interaction, versus 9% who would prefer 

two hands for all interaction. Twenty-three percent did not have a preference and 6 users 

did not respond. 

2.3.4 Discussion 

Considering current usage patterns only, there is no obvious winner between one-handed 

and two-handed use. Excluding phone calls, the number of activities for which 

appreciably more respondents use one (7) vs. two hands (5) is nearly balanced. However, 

device type certainly seems to influence user behavior; owners of keypad-only devices 

nearly always used one hand, while owners of touchscreen devices more often favored 

two hands, especially for tasks involving text entry. But participant justifications for hand 

choice indicate that the hardware/software interface is to blame for much of the two-

handed device use reported. Most participants use one hand if at all possible and only use 

two hands when the interface makes a task impossible to perform otherwise. Other than 

gaming, tasks involving text entry are the only ones for which users may be willing to use 

two hands, especially when the device used provides an integrated Qwerty keyboard. It 
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seems, therefore, that the efficiency gained by using two hands for such tasks is often 

worth the dedication of physical resources, which is also true of the immersive gaming 

experience. It is also worth noting that while many participants who reported using two 

hands for writing tasks claimed they would prefer to use one hand, enabling single-

handed text input may not be sufficient for those users to switch to one-handed text entry 

in practice, since throughput is an important satisfaction measure that is almost certain to 

drop in the transition. Even so, participants’ responses overall send a consistent message 

that interface designers for all device types should make one-handed usability a priority, 

and strive to bridge the gap between current and desired usage patterns. 

2.4 Conclusion 

Inspired by the goals of minimal attention user interfaces (MAUIs), and evidence that 

few researchers have yet to focus their efforts on developing interfaces or interaction 

methods to support one-handed operation of stylus-oriented touchscreen devices, I 

performed two exploratory studies to assess the potential benefits of a research agenda 

aimed at improving one-handed interaction for touchscreen-based mobile devices. 

Results from my in-situ airport study and survey of actual and preferred mobile device 

use confirmed that one-handed device operation is widespread⎯not limited to a niche 

user segment. Furthermore, users reported they would prefer to use one hand more often 

than the hardware/software designs of their devices allow. The greatest disparity between 

the number of people currently using one hand to perform tasks and the number that 

would prefer to use one hand was found for owners of devices with touchscreens; nearly 

all respondents who use two hands to perform reading based tasks with touchscreen 
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devices would prefer to use one hand, as would roughly half of those currently 

performing text entry tasks with two hands.  

Together, the results from my preliminary studies justify the research in the 

remainder of this thesis, as they suggest significant benefits might be achieved in device 

usability and user satisfaction by improving mobile device support for one-handed 

touchscreen operation.   
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Chapter 3  
Foundations: Human Factors in One-Handed Mobile Device 

Interaction 

Outcomes from the exploratory studies I undertook to project the potential value of my 

research provided ample evidence that mobile users could benefit greatly from new 

interfaces and interaction techniques for one-handed device operation targeting all device 

types. Following these studies, my first goal was to understand some of the basic human 

factors involved in single-handed device operation from which I might derive generalized 

design guidelines. I pursued three studies to generate the empirical data for backing such 

guidelines, having the following goals: 1) to understand the limits of thumb mobility 

when holding a device in one hand, especially how device size, target location, and 

thumb movement direction influence task performance; 2) to determine the required sizes 

for thumb-oriented touchscreen targets, and 3) to assess the learnabilty and executability 

of touchscreen-based thumb gestures. These studies, together with those from the 

previous chapter, constitute the foundations of my research.  

3.1 Related Work 

3.1.1 Ergonomics 

Ergonomics, or human factors, is “an applied science concerned with designing and 

arranging things people use so that the people and things interact most efficiently and 

safely”, according to the Merriam-Webster Dictionary (www.m-w.com). The discipline 

of ergonomics is applied to the development of a vast range objects we all encounter in 
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everyday activities, as well as those that professionals use in specialized fields. It is no 

surprise, therefore, that ergonomics plays an important role in the design and use of 

mobile devices.  Unfortunately, little knowledge has escaped the corporate research labs 

for public consumption, or in a format that software designers might use to guide the 

development of more effective mobile interfaces. However, several high-level consumer 

reports have been issued in recent years warning of potential injury to the thumb resulting 

from overuse in text messaging [8, 38].  

Scientists in the medical community have studied the biomechanics of the thumb 

extensively for the purposes of both reconstruction and rehabilitation. The static structure 

of the thumb has been understood for the last decade [9], but only recently have scientists 

begun to reliably quantify the functional capabilities of the thumb. In the medical 

domain, strength is the primary parameter used to assess mechanical ability, and the 

influence of movement direction upon thumb strength has been established both at the 

anatomical [114] and functional [23, 85] levels. However, these strength-direction, or 

force vector measurements have only been recorded for standard anatomical planes of 

movement. This excludes the plane parallel to the palm, which is the one that is most 

relevant to operating a mobile device with the thumb when held in the same hand. 

As a complement to the data on thumb force capabilities, others have looked at 

the extent of thumb movement. Kuo [80] has developed a model for the maximal 3D 

workspace of the thumb, and in the HCI field, Hirotaka [65] has quantified an average for 

thumb rotation angle. In addition, average static hand measurements for both men and 

women are published in [145]. Unfortunately, the conditions under which these data have 

been gathered do not account for the additional external constraints that would be 
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imposed by holding objects of varying size, as would be the case when using a handheld 

device. In [65] Hirotaka also outlined how the cell phone might be redesigned for 

improved ergonomics and interaction based on the device’s center of mass and the static 

range of thumb motion. Although qualitative user feedback on Hirotaka’s design was 

positive, the design was not evaluated formally. My approach differs in that I have 

focused on understanding the dynamic capabilities of the thumb based on user 

performance data while holding various sized devices with one hand. 

The government of the United Kingdom has published extensive ergonomics 

guidelines for the design of military equipment. The two most common types of grip, the 

precision grip and the power grip, are covered in [103]. A precision grip, which is 

logically the most appropriate for manipulating a mobile device, is characterized by using 

the pad of the thumb in opposition to the pads of the other fingers. However, this does not 

describe the movements of the thumb when operating a mobile device in one hand, where 

the thumb is used in opposition to the plane of the palm. Neither could these movements 

be described as a power grip, in which the thumb is not rotated at the base to oppose the 

fingers, and the remaining fingers are flexed such as when opening the lid of a jar. Thus it 

seems that the role of the thumb in operating a mobile device one-handed defies the 

classic definitions of hand grip, suggesting that attention is warranted in understanding 

the limitations of the thumb when used in this manner.  

Considering the more aesthetic aspects of human factors in mobile device design, 

Yun et al. [159] investigated which cell phone features contribute most to user 

satisfaction by asking 76 users (38 male, 38 female) across 3 age groups (teens, twenty-

somethings, and thirty-somethings) to rate 50 cell phones along 10 dimensions: 
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luxuriousness, simplicity, attractiveness, colorfulness, texture delicacy, harmoniousness, 

salience, ruggedness, and overall satisfaction. Together with a characterization of each 

phone based on 56 design elements, the ratings were used to develop a model for the 

relationship between age, gender, and desired phone design properties. While the 

outcomes of this work lend insight into the physical characteristics valued by consumers, 

my research has the potential to offer complementary guidelines for improved input 

efficiency, such as button placement and crowdedness⎯neither of which were 

parameters featured in this work. 

3.1.2 Target Sizes for Touchscreens 

An open question in developing software interfaces for thumb-based touchscreen 

interaction is how large targets should be to minimize input error. Several past studies 

have indeed explored appropriate target sizes for touchscreen-based mobile devices [24, 

92, 105, 106, 132] and desktop-sized touch-sensitive displays [36, 130]. Unfortunately, 

due to the specific parameters of each study, the resulting recommendations are not 

strictly applicable to thumb-based interaction for mobile device touchscreens. Even 

though previous PDA studies have targeted the same platform I am interested in, they 

have focused on two-handed stylus input rather than single-handed thumb input. Studies 

that address desktop-sized displays, on the other hand, have considered finger-based 

interaction, but recommendations cannot be directly applied since 1) the tip of an index 

finger is typically smaller than that of a thumb, and 2) users of desktop displays have 

different motor constraints than users of mobile devices, who must contend with holding 

a device and interacting with its surface with the same hand. 
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Target Sizes for PDAs 

Research efforts to determine appropriate target sizes for stylus-based mobile touchscreen 

tasks have drawn different conclusions about whether target size affects performance. 

MacKenzie and Zhang [92] found no difference in text entry rates between two Qwerty-

based virtual keypads, one with 6.4 mm wide keys and the other with 10 mm wide keys. 

While these targets are fairly large for stylus entry, Sears and Zha [132] confirmed and 

extended this finding for keys from 2.6 - 4.4 mm wide. However, in studying single-

target selection tasks for targets between 2 - 5 mm, Mizobuchi et al. [106] generally 

found speed and error rate improved with increases in key size, and though Brewster [24] 

was specifically interested in the influence of audio feedback on user performance as 

target sizes changed, he too found a significant improvement in throughput when targets 

increased from 2.5 to 5 mm.  

While these results seem contradictory, they are both consistent with Fitts’ model 

for motor movement [50], which defines movement time (MT) with respect to the 

distance to (or amplitude, A) and size (W) of the target as: 

MT = a + b (log2(A/W + 1))       (1) 

The constants a and b have been described as representing the efficiency of the pointing 

device in question (here, the stylus on a touchscreen). The log term, or index of difficulty 

(ID), is defined here as in [88], and embodies the intuition that targets are harder to hit 

the farther they are, but easier to hit the larger they are. Thus the lower a target’s ID, the 

easier (e.g., faster) it will be to hit. In the text entry studies of MacKenzie and Sears, the 

keypads scaled uniformly, which maintained constant IDs across changes in key sizes; 

since IDs were equal in each condition, it makes sense that performance rates were also 
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the same. However the task designs of Mizobuchi and Brewster varied only target size, 

not distance, so IDs were not the same across conditions. Thus here, too, the results are 

consistent with Fitts’ Law, which would have predicted the smaller targets would be 

more difficult, and thus slower to hit.  

In a study by Himberg et al. [62], subjects used the thumb of their primary hand 

for interacting with a soft keypad located at the edge of a touchscreen-enabled laptop PC. 

The laptop had a flip phone cover attached to the back of the display in order to make the 

interaction more similar to one-handed use of a handheld device. However, the goal of 

the study was to explore the viability of keypad adaptation, rather than to develop size 

recommendations for thumb targets.  

Finally, Microsoft has published a recommendation that buttons should be 9 mm 

large for finger interaction on a touchscreen-based mobile device [152]. Unfortunately, 

the text is unclear about whether this recommendation assumes index fingers or thumbs. 

However, since one-handed use of touchscreen-based devices has only recently gained 

attention, it is quite likely the 2002 guideline referred to index fingers. Under this 

supposition, we would expect that the recommendations for thumb targets would need to 

be larger, and so my own research is interested in how much larger.  

Target Sizes for Desktop Sized Displays 

When desktop-sized touchscreen displays entered into public use, early studies were 

designed to better understand the new technology, such as comparing finger input to 

traditional devices [129, 131] and quantifying the impact of display parallax [58, 129]. 

Although technological advances date some of these results, others are still relevant. 

Potter at al. [116] demonstrated that users could select items with a finger more reliably if 
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selection was delayed until a user removed the finger over the desired target (lift-off) 

rather than immediately upon contact with the screen (land-on). In fact, by combining the 

lift-off strategy with an offset cursor and input stabilization, Sears and Shneiderman 

[131] showed that touchscreens could support target access speed and accuracy for the 

finger that rivaled the mouse for targets as small as 1.7x2.2mm. Even so, selection times 

were fastest and error rates lowest for the largest targets tested (13.8x17.9mm). 

In an early study of touchscreen-based keyboards, Sears and Shneiderman [130] 

investigated the interaction between key size and typing speed for novice and 

experienced users of a desktop-sized (640x480) touch screen display. Keys were sized 

between 5.7 mm and 22.7 mm, arranged in a Qwerty layout, selected using any finger(s) 

from either hand, and supported the lift-off selection strategy. They found text entry rates 

increased with key size for both novice and experienced users, and that novices made 

significantly fewer errors on the largest keyboard (3.6%) vs. the smallest (6.7%). Because 

the keyboards in the study scaled uniformly, these results contradict those of MacKenzie 

and Zhang [92] and Sears and Zha [132], who all found that keyboard size alone had no 

impact on speed and errors when studying stylus-based text entry on touchscreens. 

Reasons for this difference include the fact that two of the targets sizes in Sears and 

Shneiderman’s study (7.6 mm and 5.7mm) were smaller than that of the average index 

finger, and so occlusion and the characteristics of resistive touchscreen technology may 

have interfered with the predictions of Fitts’ Law (all the targets in the stylus-based 

studies were larger than the tip of the stylus). Also, since users were entering text with 

both index fingers in parallel in Sears and Shneiderman’s study, it is possibly that the 
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different keyboard and label sizes affected search and planning unequally, making users 

faster the larger and more visually salient the letters were. 

More recently Colle and Hiszem [36] studied the effects of manipulating the size 

and spacing of targets on a touch-sensitive kiosk display, using a similar design to [24]. 

In their experiment the participants used their right hand index finger to enter 1, 4 or 10 

digits using a virtual numeric keypad. In accordance with [131], they found that targets 

should be between 20mm and 25mm. However, these sizes, as well as the 22.7 mm key 

size of the largest keyboard in the Sears and Shneiderman [130] study, are all 

impractically large for general use on a handheld device, allowing for only 9 targets on a 

3.5” screen. 

Motivated by the requirement for efficient text and numeric entry, the majority of 

previous investigations into optimal target sizes have preferred experimental designs 

modeled after data entry tasks. However, Colle and Hiszem [36] presented interesting 

results that suggest that there is a difference between tasks that require selection of a 

single target (e.g., selecting a button, checkbox, or menu alternative), and those 

comprising a rapid sequence of selections (e.g., text or numeric entry). They found error 

rate decreased when target sizes increased from 10 mm to ≥15 mm for numeric sequences 

of 4 and 10 digits, but that error rate remained constant for single-digit entry. One 

possible explanation for the differences observed might be that for multi-digit entry, users 

could plan for the next item during the execution of the previous item, making serial 

entry more efficient. This is supported by the fact that for all target sizes, users spent 

more time per character for single-character tasks. 
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3.1.3 Gestures for Input 

Gestures have been explored in many nontraditional computing settings when standard 

input methods or interaction styles impose unique challenges or limitations for effective 

system use. For example, strokes, as opposed to taps, are a natural way to interact with 

pen based systems, and so have been used frequently as the building blocks in gesture 

languages, including those for menu item selection (e.g., [55, 63]) and text entry [22, 78, 

93, 155], and also more specialized tasks such as video editing [117], distant object 

selection [12], and setting drawing parameters [4].  The appeal of gestures is that they 

efficiently combine command and operand into a single motion, and can reduce the need 

for software buttons and menus, especially useful under the space constraints of handheld 

interface design. Furthermore, gestures are an attractive solution for one-handed mobile 

touchscreen interaction because they don’t require users to hit specific targets; designers 

then do not need to be concerned with making sure targets are large enough or close 

enough to be hit with the thumb, and so frees them to focus on the challenges associated 

with effective information presentation. 

Stylus-based gestures have been explored for a variety of mobile touchscreen 

applications. With Collapse-to-zoom [14], users issue diagonal strokes over uninteresting 

elements of a web page to remove them from view, which frees screen space to display 

the remaining elements in more detail. The Power Browser [30] supported simple left-to-

right and right-to-left pen strokes to navigate web pages and up/down strokes for 

scrolling. Nicholson and Vickers also explored more complex multi-stroke gestures for 

browsing movie listings from a mobile device [110]. Because most of these systems use 

simple gestures they may be adaptable for thumb use, but they remain two-handed 
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techniques in their original stylus-based incarnations. An exception is Apple’s iPhone, 

which is designed for finger use, and uses simple gestures in a few key places: a left-to-

right finger sweep unlocks the devices, and the same gesture is used to enter ‘delete’ 

mode for list items. 

The potential that gestures hold for supporting single-handed device interaction 

has intrigued many researchers. Media play has been a popular application for single-

handed gestures, exemplified by Apple’s thumb-controlled circular Click Wheel for 

navigating music on the iPod [5].  Pirhonen et al. [115] explored the use of a 5-gesture 

language coupled with audio feedback for supporting eyes-free, index finger control of a 

music application on a hip-mounted touchscreen PDA, and found users performed 

gestures significantly more accurately with audio feedback than without. Brewster et al. 

[25], extended this work to include spatial sounds and head-nodding for navigating and 

interacting with a broader range of applications, and enhanced the gesture feedback to 

include both pitch and tone for communicating finger position within a 3x3 gesture input 

grid. An evaluation of the enhanced feedback for an expanded set of 12 gestures again 

showed that users performed gestures more accurately with audio feedback.  

The iPod Click Wheel has inspired other variations on list navigation with circular 

thumb gestures. The earPod by Zhao et al. [161] has no visual interface, but is a small 

handheld control that supports eyes-free hierarchical menu navigation by linking thumb 

movements on a circular touchpad to highly responsive spoken audio menu items. Unlike 

the iPod’s Click Wheel, which interprets relative finger movement rather than absolute 

finger position for traversing a list, the earPod is divided into sectors that are each 

assigned to a different menu item⎯a design which limits the structure of the menu 
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system to a relatively small number of items (e.g., 8) at each level. The SpiralList [67] 

combines some of the properties of the Click Wheel and earPod for navigating lists on 

touchscreen-based mobile devices. The SpiraList displays menu items alphabetically in a 

circular coil, providing a focus+context view of a long list by showing the details of 

items on the outermost ring and index cues for items within the inner rings. As with the 

earPod, a user can select an item directly with the thumb, but the user can also browse the 

list serially by dragging her thumb along an arc-shaped widget at the right of the spiral to 

rotate it. Although the spiral rotation is controlled using relative thumb motion, the 

SpiraList differs from the Click Wheel in that the speed of the list rotation is based on the 

amount of finger displacement from the point of touchdown rather than the speed of 

finger movement.   

Although gesture-based interfaces can obviate the need for command buttons or 

widgets and thus free screen real estate for displaying informational content, the invisible 

nature of gestures can make them hard to remember. Under the assumptions that 1) 

gestures are readily learned if similar tasks are assigned to similar gestures, but that  2) 

learning is hindered if disparate tasks are assigned to similar gestures, Long et al. [86] 

developed a model for assessing the similarity of gestures with the goal of helping 

designers choose gestures that are both easy to learn and remember. Unfortunately the 

model was never verified with respect to the stated goals of learnability and 

memorability.  My own goals are to understand how well users can learn and execute a 

small thumb-based gesture language for generalized one-handed use of a touchscreen-

based mobile device. 
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3.2 Thumb Movement Study 

Although the forms and input technologies of mobile devices steadily evolve, we as users 

of these devices remain much the same. We are quite adaptable intellectually, eager to 

learn how our devices can make us more efficient, more productive, more socially 

connected, and more entertained. Yet we humans have relatively fixed physical and 

mental capabilities, which place practical limits on the extent to which we can safely 

integrate mobile device use into our lives. These human constraints are made apparent in 

such diverse situations as using the buttons of a device, which can become dangerous 

with overuse because of the risk of repetitive strain injury [6], and talking on the phone 

while driving [142], which is dangerous because too many of our mental resources are 

reallocated from the task of driving to the task of talking.  

In recognition of these types of human limitations, it seemed appropriate to try to 

understand how one-handed operation of a mobile device might be impacted by the bio-

mechanic capabilities (or otherwise constraints) of the hand and thumb. Though the 

thumb is highly versatile in its range of motion, it is most adapted for grasping tasks, 

playing opposite the other four fingers [23]. Hence thumb interaction on the surface of a 

mobile device when held in the same hand imposes non-traditional movement and 

exertion requirements for the thumb⎯repetitive pressing tasks issued on a plane parallel 

to the palm. Given the possibility that one-handed use of a device requires the thumb to 

be used in a non-optimal manner, we presumed that variations in device size, interaction 

location, or thumb movement direction might each affect ease of use unequally. Thus, by 

developing an understanding of the impact these factors have on user task performance, 
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we hoped to suggest design guidelines for the placement of software (or hardware) 

targets for one-handed mobile interfaces. 

Because no research had yet been conducted with these goals in mind, I designed 

and conducted a user study to generate the data needed to understand how device form 

and interaction characteristics influence thumb mobility. We focused on tapping tasks 

because tapping (or button pressing) is the predominant interaction method for keypad-

based devices, and tapping is used almost exclusively for target selection, albeit with a 

stylus, on touchscreen-based devices. We hypothesized that the difficulty of a tapping 

task would depend on device size, movement direction, and surface interaction location. 

We captured the impact of these factors on user performance by measuring task 

completion speed, under the assumption that harder tasks would be performed more 

slowly than easier tasks.  

I was the sole investigator on this study, which was conducted in April and May 

of 2005, and supervised by my advisor. The equipment used to gather data was 

generously provided by the Department of Kinesiology and coordinated by Dr. José 

Contreras-Vidal. The results of this work have been published as part of a chapter in the 

Handbook of Research on User Interface Design and Evaluation for Mobile Technology 

[75]. 

3.2.1 Equipment 

Device Models 

For real devices, design elements such as buttons and screens communicate to the user 

the “valid” input areas of the device. We instead wanted outcomes of task performance to 

suggest appropriate surface areas for thumb interaction. We identified four common 
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handheld devices to represent the range of sizes and shapes found in the marketplace: 1) a 

Siemens S56 candy bar phone measuring 4.0 x 1.7 x 0.6 in (10.2 x 4.3 x 1.5 cm); 2) a 

Samsung SCH-i600 flip phone measuring 3.5 x 2.1 x 0.9 in (9 x 5.4 x 2.3 cm); 3) an 

iMate Smartphone measuring 4 x 2.0 x 0.9 in (10.2 x 5.1 x 2.3 cm); and 4) an HP iPAQ 

h4155 Pocket PC measuring 4.5 x 2.8 x 0.5 in (11.4 x 7.1 x 1.3 cm). These devices are 

shown in the top row of Figure 9, which we refer to hereafter as SMALL, FLIP, LARGE, 

and PDA. To remove the potential for hardware characteristics like button and screen 

placement to bias user performance, we created a 3D “blank-slate” model of each device, 

which captured the device form, but eliminated all superficial design features.  
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Figure 9. Thumb Movement Study: Devices used for the thumb movement study, chosen to represent 
a range of sizes and forms (top row), together with their study-ready models (bottom row). 

The phone models were developed using Z Corp.’s (http://www.zcorp.com/) 

ZPrinter 310 3D rapid prototyping system. Although the device models were hollow, we 
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reintroduced weight to provide a realistic feel in the hand. Once “printed” and cured, the 

models were sanded and sealed to achieve a smooth finish (bottom row of Figure 9). 

A grid of circular targets 1.5 cm in diameter was affixed to the surface of each 

device. Circles were used for targets so that the sizes would not vary with direction of 

movement [89]. The target size was selected to be large enough for the average-sized 

thumb, while also providing adequate surface coverage for each device. The grid 

dimensions for each device were: SMALL (2x5), FLIP (3x4), LARGE (3x7) and PDA 

(4x6), as shown in the bottom row of Figure 9. 

Measurement 

A typical measurement strategy for tapping tasks would involve a surface-based sensor to 

detect finger contact. Unfortunately, due to the number and variety of device sizes 

investigated, no technical solution was found to be as versatile, accurate1 or affordable as 

required. Instead we used Northern Digital Inc.’s OPTOTRAK 3020 motion analysis 

system designed for fine-grained tracking of motor movement (shown as part of the study 

setup in Figure 10). The OPTOTRAK uses 3 cameras to determine the precise 3D 

coordinates of infrared emitting diodes (IREDs). Three planar IREDs attached to the 

surface of each device defined its local coordinate system, and a fourth IRED was 

included on each surface for redundancy (see Figure 9, bottom row). To capture thumb 

movement trajectories, two IREDs were affixed to the participant’s thumb⎯one on the 

top and one on the side facing the cameras; the data recorded were the relative movement 

                                                 
 
1 Touch sensors by Phidgets Inc. (www.phidgets.com) were initially wired to copper tabs associated with each target to 

capture surface touches. Unfortunately, we experienced an unacceptably high rate of data loss, potentially due to 
electrical interference, simultaneous touches caused by the side of the hand, and/or the low sampling rate of the 
Phidgets hardware. Thus the data generated from the touch sensors had to be disregarded in the final analysis. 
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trajectories of the thumb IREDs translated with respect to the local coordinate system of 

the device used. Diode positions were sampled at 100Hz, and the data were post-

processed to derive taps from thumb minima. 

Software 

Data collection and experiment software were run on a Gateway 2000 Pentium II with 

256 MB of RAM running Windows 98.  

3.2.2 Participants 

Twenty participants were recruited via fliers posted in the Department of Computer 

Science at the University of Maryland, College Park. The only criterion for acceptance 

into the study was that the participant be right-handed. We obtained institutional review 

board (IRB) approval to conduct the study, and all participants granted us their informed 

consent. Participants (15 male, 5 female) ranged in age from 18 to 35 years with a median 

age of 25 years. Participants received $20 for their time. 

3.2.3 Tasks 

Users performed reciprocal tapping tasks in blocks as follows. For SMALL and FLIP, 

trials were divided equally into two blocks. For the LARGE and PDA devices, trials were 

divided equally into four blocks. Trials were assigned to blocks to achieve roughly equal 

numbers of distance x direction trials, distributed evenly over the device surface. Trials 

were announced by audio recording so that participants could focus their attention fully 

on the device. Participants were presented with the name of two targets by number. For 

example, a voice recording would say “one and three”. After one second, a voice-

recorded “start” was played. Participants then tapped as quickly as possible between the 
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two targets, and after five seconds, a “stop” was played, which signaled the completion of 

the trial. After a 1.5 second delay the next trial began. Trials continued in succession to 

the end of the block, at which point the user was allowed to rest as desired, with no user 

resting more than two minutes. Device and block orders were assigned to subjects using a 

Latin Square, but the presentation of within-block trials was randomized for each user. 

3.2.4 Design 

For each target on each device (SMALL, FLIP, LARGE, and PDA), users performed 

tasks of every distance (one or two circles) and direction ( , , , ) that could be 

supported by the geometry of the device. For example, SMALL could not accommodate 

trials of distance-2 circles in the directions ( , , ). Note that the grid layout results in 

actual distances that differ between orthogonal trials ( , ) and diagonal trials ( , ), 

which I consider separately in the analysis. For LARGE and PDA, trials of distance-4 

circles were included as the device geometry permitted. Finally each device included a  

and  trial to opposite corners of the target grid. For each device, a small number of 

trials (1 for SMALL, LARGE and PDA, 3 for FLIP), selected at random, were repeated 

so as to make the total trial count divisible by four. The resulting number of trials for 

each device were: SMALL (32), FLIP (48), LARGE (108), and PDA (128). Larger 

devices required more trials because they had more surface targets to test. 

3.2.5 Procedure 

Each session began with a brief description of the tasks to be performed and the 

equipment involved. Two IRED markers were then attached to the participant’s right 

thumb with two-sided tape. One diode was placed on the leftmost edge of the thumb nail, 
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and a second on the left side of the thumb. The orthogonal placement was intended to 

maximize visibility of at least one of the diodes to the cameras at all times. The two 

marker wires were tethered loosely to the participant’s right wrist with medical tape. 

The participant was seated in an armless chair, with the device held in the right 

hand, and the OPTOTRAK cameras positioned over the left shoulder. A mockup of the 

study setup is shown in Figure 10. The participant was then given more detailed 

instruction about the tasks to be performed, and was informed of the error conditions that 

might occur during the study: if at any point fewer than three of the device-affixed IREDs 

or none of the thumb IREDs were visible to the cameras, an out-of-sight error sound 

would be emitted. The participant was instructed to continue the trial as naturally as 

possible upon hearing the error sound, but should attempt to make postural adjustments to 

improve the diode visibility to the cameras. Next, the participant performed a practice 

session of 24 trials using the first device; the trials were selected to represent a variety of 

distances, directions, and surface locations. During the practice trials, the administrator 

intentionally occluded the diodes to give the participant familiarity with the out-of-sight 

error sound and proper remedies. After completion of the practice trials and indication 

that the participant was ready, the study proper began.  
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Figure 10. Thumb Movement Study: A mockup of the study equipment and user setup. 

 
During the study, participants were allowed to hold the devices in whatever 

manner supported their best performance. Since the instructions were presented audibly 

and with a short pause before each trial began, users could prepare the position of their 

grips if desired. We chose not to control for grip in our study under the reasoning that it 

more accurately resembles real world settings, in which users have the freedom to adjust 

their grips to best suit the environment and task. 

After all trials for a device were completed, users were allowed to rest while the 

next device was readied, typically on the order of three to five minutes. We hoped that 

the combination of the rest periods and the counterbalanced device order would minimize 
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as much as possible the impact of fatigue on our results. After completing all trials for the 

last device, the participant completed a questionnaire, where she recorded demographics 

and subjective ratings. Total session time was two hours, approximately an hour of which 

was devoted to data collection. 

3.2.6 Measures 

The raw 3D thumb movement data for each five-second trial was truncated to the middle 

three seconds to eliminate artifacts resulting from initiation lag and anticipated trial 

completion, phenomena routinely observed by the administrator. In a post processing 

phase, taps were identified within the remaining three-second interval and a single 

average tap time was computed from the difference in time between the onset of the first 

tap to the onset of the last tap, divided by one fewer than the total number of taps 

detected. In the post-experiment questionnaire, participants assigned an overall rating of 

difficulty to each device (1-7, where 1 = easy, 7 = difficult), and indicated the device 

regions that were both easiest and hardest to interact with. 

Data Post Processing 

Since the 3D thumb position (x,y,z) was recorded relative to the device surface, the z-

value represented the thumb height above the device. While one might assume that taps 

were those thumb positions for which the z-distance was 0, the IREDs were mounted on 

participants’ thumbnails, and so never actually reached the surface of the device. Taps 

were instead defined as points when both the z-value and change in z-value (velocity) 

were minimal. For example, Figure 11 shows a plot of one trial’s z-values over time; the 

valleys of the resulting wave-like pattern indicate the times when the participant tapped 

the surface of the device.   
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Figure 11. Thumb Movement Study: An example plot of thumb distance from the surface of a device 
over the course of a trial. Grey and black stars depict MATLAB’s auto-detected peaks and valleys 

respectively. 

The raw data was first preprocessed to extract the middle three seconds of each 

trial as well as to select whichever of the two thumb diode streams had the most complete 

data set (e.g., the fewest number of missing frames, or if equal, the one with the smallest 

windows of missing frames). Linear interpolation was performed on missing frames if the 

gap was less than 100 ms. Missing frames included those lost due to out-of-sight errors, 

as well as occasional frames dropped by the collection hardware. 

The data were then analyzed by the PICKEXTR MATLAB function to identify 

extrema in a signal. This function is provided with the RelPhase.Box MATLAB toolbox 

for relative phase analysis of oscillatory systems [43]. The accuracy of the tap classifier 

was verified by inspecting a visual representation of each trial (Figure 11). When 

required, manual corrections were made using the following rules: 1) valid endpoints 

were always preserved; 2) if intermediate taps were missing, they were added; 3) if 

intermediate taps were incorrect, they were recoded by hand; and 4) if endpoints were 

invalid, the entire signal was coded by hand. Since average tap time was calculated as the 

number, not placement, of intervening taps, this method minimized as much as possible 

the bias of human annotation. Of the trials included for statistical analysis, 1.3% were 

discarded because they could not be encoded by machine or human, or had less than 1.5 

seconds of encodable signal. 
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3.2.7 Results 

The goal of our analysis was to understand whether user performance was influenced by 

device size, task region, and movement direction. To  enable comparison among the 

devices, we limited the analysis to trials with distances of one or two circles since the 

geometries of all but the smallest device (SMALL) supported trials of these distances in 

all four movement directions. To address the fact that actual movement distance differed 

between orthogonal and diagonal trials, we analyzed these groups separately. For all 

analyses, Huynh-Felt corrections were used when the sphericity assumption was violated, 

and Bonferroni corrections were used for post hoc comparisons. 

Movement Direction 

A 2 (distance) x 2 (direction) repeated measures analysis of variance (RM-ANOVA) was 

performed on mean task time data for both orthogonal trials (distances: 1, 2; directions: 

, ) and diagonal trials (distances: 1.4, 2.8; directions: , ) for the three largest 

devices. Since SMALL did not support distance-2 trials in all four directions, a one-way 

RM-ANOVA was performed on mean task time for trials of distance-1 and distance-1.4. 

SMALL: A main effect of direction was observed for diagonal trials (F (1,19) = 

65.1, p < .001). Post hoc analyses showed that trials in the  direction were performed 

significantly faster than those in the  direction (0.26 v. 0.28 ms, p < .001). 

FLIP, LARGE, and PDA: Results were similar across the analyses of the three 

largest devices. Unsurprisingly, a main effect of distance was observed for both 

orthogonal and diagonal trials, with shorter trials performed significantly faster than 

longer trials. There were no further effects of direction or interaction between direction 

and distance for orthogonal trials ( , ). However, for diagonal trials, a main effect of 
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direction was observed, with trials in the  direction performed significantly faster than 

those in the in  direction for all devices. In addition, a distance x direction interaction 

showed performance differences between the diagonal trials were more pronounced for 

longer trials than for shorter trials (Table 1). 

Table 1. Thumb Movement Study: Mean movement time for direction and distance×direction for the 
FLIP, LARGE, and PDA devices. 

 Direction 
(  v. ) F 1,19 p Distance x Direction 

(  v. ) F 1,19 p 

FLIP .31 v. .35 ms 50.5 <.001 (1.4) .27 v. .30 ms 
(2.8) .34 v. .41 ms 

14.6 
34.5 

< .001 
< .001 

LARGE .31 v. .36 ms 46.1 <.001 (1.4) .27 v. .28 ms 
(2.8) .35 v. .42 ms 

28.0 
44.2 

< .001 
< .001 

PDA .32 v. .36 ms 46.5 <.001 (1.4) .28 v. .30 ms 
(2.8) .36 v. .43 ms 

23.0 
38.0 

< .001 
< .001 

 

Device Size 

To determine if device size impacted comparable tasks across devices, we analyzed all 

trials performed in the lower right 3x4 region of the three largest devices using a 3 

(devices) x 43 (trials) RM-ANOVA. While a main effect of trial was observed, this was 

expected, as trials of every distance and direction were included for analysis. Yet neither 

a main effect of device nor an interaction between device and trial was found.  

Target Location 

To determine if target location affected performance, we analyzed task times for the 

shortest (distance-1) tasks for each device. We chose short tasks because they provide 

high granularity for discriminating among device locations. Since direction was shown to 

affect task time for diagonal trials, only orthogonal tasks could be considered. For each 

device, a one-way RM-ANOVA was performed on mean trial time. The number of trials 
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analyzed varied for each device because they each supported different numbers of 

distance-1 trials. 

A main effect of target location was observed for SMALL (F (8.6, 163.3) = 2.1), p 

= .032), FLIP (F (11.5, 218.4) = 3.5, p < .001) and PDA (F (9.8, 188.1) = 3.9, p < .001), 

but not for LARGE. Since it is difficult to derive helpful high-level conclusions by 

comparing large numbers of trials pair-wise, we explored two aggregation techniques. 

Subject-derived regions. Based on subjective opinion of which regions were 

easiest to interact with for each device, we divided tasks into three groups (E)asy, 

(M)edium, and (H)ard. Tasks for SMALL and FLIP were assigned to only E and M 

groups. A one-way RM-ANOVA on mean group task time was performed for each 

device. A main effect of group was found for FLIP (F (5.5, 105.1) = 11.3, p < .001), 

LARGE (F (3.1, 58.7) = 8.4, p < .001), and PDA (F (4.8, 91.0) = 22.0, p < .001). Post hoc 

analyses using Bonferroni correction revealed that all groups differed significantly from 

each other for FLIP and PDA, where group E was faster than M, which was in turn faster 

than H. For LARGE, E and M were significantly faster than H, but were 

indistinguishable otherwise, so we collapsed them to E (Table 2, third column). 

Data-derived regions. For each device we ordered tasks by mean tap time, and 

then segmented them into seven groups. If the number of trials was not divisible by 7, the 

remainder trials were included in the middle group. A one-way RM-ANOVA on mean 

group task time was performed for each device. A main effect of group was found for 

FLIP (F (5.5, 105.1) = 11.3, p < .001), LARGE (F (3.1, 58.7) = 8.4, p < .001), and PDA 

(F (4.8, 91.0) = 22.0, p < .001). From these results, groups were labeled fastest and 

slowest such that all groups in fastest were significantly faster than all groups in slowest, 
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according to post hoc analyses using Bonferroni correction. Trials in these groups are 

shown visually in the rightmost column of Table 2. Mean task time for fastest v. slowest 

trials for each device were FLIP (0.26 v. 0.28 ms), LARGE (0.25 v. 0.28 ms), and PDA 

(0.26 v. 0.29 ms).  

Table 2. Thumb Movement Study: Preference and movement time maps for each device type studied. 
Depth of color in columns 1 and 2 indicate stronger user agreement. 

 

Subjective 
Difficult 
Regions 

Subjective 
Easy 

Regions 

Preference-
Derived 
Regions 

 
Easy       
Medium  
Hard       

Data-
Derived 
Regions 

 
Fastest   

 
Slowest  

SM
A

LL
 

    

FL
IP

 

    

LA
R

G
E 

    

PD
A

 

    

Subjective Preferences 

After completing all trials, participants were presented with diagrams of each device 

similar to those shown in the first two columns of Table 2 and were asked to identify the 

targets they found most easy and most difficult to interact with. Aggregating results 
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across users yielded a preference “map” for the least and most accessible targets of each 

device (columns 1 and 2 of Table 2), with darker regions indicating more agreement 

among participants. We see that for each device (e.g., row in Table 2), the representations 

in the first two columns (difficult v. easy to reach location) are roughly inverses of one 

another.  

In addition to region marking, we asked users to rate the overall difficulty of 

managing each device with one hand on a 7 point scale (7 = most comfortable). Average 

ratings from most to least comfortable were as follows: SMALL (6.4), FLIP (5.4), 

LARGE (4.1) and PDA (3.0).  

3.2.8 Discussion 

The findings from our analysis of thumb movement suggest the following guidelines. 

First, thumb movement in the  direction is difficult for right-handed users regardless of 

device size. Presumably the difficulty arises from the considerable thumb flexion 

required to perform these types of tasks. Under this reasoning, the opposite movement  

would be difficult for left-handed users, so conservative designs should constrain 

repetitive movement to the  and  directions, especially for repetitive tasks such as 

text or data entry. 

Second, device region affects both task performance and perceived difficulty. Not 

only did the slowest trials correspond to those regions users found most difficult to 

interact with, but fastest trials also matched those regions users found most easy to 

interact with. As an example, notice how the darkest (perceived easiest) regions in the 

second column of Table 2 correspond to the easiest/fastest subjective groups in column 3, 

and fastest groups in column 4. In general, regions within reach of the thumb were fastest 
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and most comfortable, favoring those toward the middle of the device. We conjecture 

these regions lay within a “sweet spot” that is both easy to reach and easy to interact with, 

requiring movement primarily from the base of the thumb. The lower right corners of the 

devices do not fit this characterization because they are biomechanically awkward to 

reach owing to the fact that they are “too close” rather than “too far”.  

Because the absolute time differences between the fastest and slowest regions of 

the devices were quite small (at most 30 ms), we do not think performance speed is the 

main concern in forming design recommendations from these data. Rather, it is the fact 

that the speed differences between the regions were statistically significant (e.g., 7%-12% 

slowdown between the fastest and slowest regions), which suggests that  mechanical or 

physical limitations were to blame. The data, therefore, are concerning primarily from an 

ergonomics perspective. In fact, we believe that the slowdowns we found should be 

thought of as optimistic, since they capture only localized movement and required 

substantial changes in user grip between tasks; subjective opinion, user observations and 

practical experience indicate that designers should be cautioned against using the entire 

device surface for thumb interaction, especially for larger devices. We instead 

recommend placing interaction objects centrally to accommodate both left and right 

handed users, or offering configurable displays. Since hand size and thumb length will 

differ by individual, designs should strive to support a range of users. 

More generally, designs should strive to support localized interaction by placing 

targets close to one another, with the goal of minimizing grip adjustments. This 

recommendation is drawn from three informal observations: 1) that participants adjusted 

their grips between trials to accommodate tasks at different surface locations; 2) that 
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participants had difficulty maintaining control of the device when tasks involved large 

movement distances; and 3) that these behaviors were especially noteworthy when 

participants were interacting with the larger devices (LARGE and PDA). Yet the trail 

time data showed that users performed relatively consistently across devices and surface 

locations when performing short-distance tasks. For example, on average, users took 

between 242 ms and 306 ms to move between adjacent targets, across all devices and all 

locations. This narrow range of time results suggests that, in general, users are able to 

control and interact with all devices reasonably well as long as the interaction locations 

are close to one another. 

Finally, the finding that users performed trials in the lower right 3x4 sub-grid of 

the three largest devices equally well suggests that holding a large device does not 

inherently impede thumb movement. Rather, larger devices simply have more surface 

regions that are difficult to reach with the thumb, and so have more regions that are 

inappropriate for object placement in one-handed designs. Together with user opinion 

that larger devices were more difficult to manage suggests that the current trend toward 

smaller device forms benefits one-handed device operation and control. 

3.3 Target Size Study 

Current touchscreen interfaces are composed of widgets similar in size and function to 

those featured on the desktop. While this is acceptable for interaction with a stylus tip, 

which is typically smaller than 1 mm in diameter, it means that most widgets are much 

smaller than the average thumb pad in at least one dimension, making reliable finger 

access difficult or impossible. This problem is similar to the one observed by University 

of Maryland researchers when studying touchscreens designed for index-finger 
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interaction on desktop sized displays [116]. They noted that users became frustrated with 

interaction designs that executed a selection as soon as the finger landed on the screen, 

since parallax and calibration problems caused a high incidence of error. They found that 

offsetting a cursor from the finger and instituting a lift-off selection strategy allowed 

users to reliably select targets as small as a single character.  

The problem with using an offset cursor as a general strategy for finger 

interaction on a PDA, however, is that precisely positioning a cursor is prohibitively 

time-consuming for tasks like text entry that require tens to hundreds of successive 

selections. Instead, providing targets large enough to be reliably selected would be more 

useful. But because touchscreen widgets compete with other information for limited 

screen space, it is desirable to keep the dimensions of interaction targets as small as 

possible without degrading user performance or satisfaction. Unfortunately, results from 

previous studies cannot offer guidance because none have looked at the specific question 

of one-handed touchscreen interaction with the thumb. Inspired by the task-based 

performance differences found by Colle and Hiszem [36] for index finger use on desktop 

sized touchscreens, we conducted a two-part study to investigate the interaction between 

target size and performance for thumb-based mobile touchscreen use, considering first 

single-target (discrete) and then multi-target (serial) tasks. 

In the Fall semester of 2005, I managed the research of a Finnish student visitor, 

Pekka Parhi. Our goal was to develop recommendations for software target sizes on  

touchscreen-based mobile devices that supported one-handed thumb operation. I 

developed the detailed study design, and worked closely with Pekka during his 

implementation, administration, and analysis of the study. We co-authored a paper that 
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summarizes this work, and which has been published in the proceedings of the 

International Symposium on Mobile Human-Computer Interaction (Mobile HCI) 2006 

[112].  

3.3.1 Procedure 

The study was divided into two phases⎯one for single-target (discrete) tasks, and the 

other for multi-target (serial) tasks. After completing an initial questionnaire to collect 

demographics and prior device use, the participants performed the discrete target phase 

followed by the serial target phase. Each phase began with a practice session, which 

consisted of one block of trials, and which was followed by the five official test blocks. 

After each phase, participants recorded subjective ratings of the interaction experience. 

The total session time was approximately 45 minutes. 

3.3.2 Participants 

Twenty participants (17 male, 3 female) were recruited via e-mail announcement and 

fliers posted in the Department of Computer Science at the University of Maryland, 

College Park, with the only restriction that participants were right-handed. We obtained 

institutional review board (IRB) approval to conduct this study, and all participants 

granted us their informed consent. The age of the participants varied between 19 and 42 

years, with a mean of 25.7 years. Hand width and thumb length were recorded for each 

participant. Thumb length varied between 99 and 125 mm (μ=115 mm, σ = 5.75), and 

hand width varied between 75 and 97 mm (μ=88 mm, σ = 6.08). Participants received 

$10 for their time. 
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3.3.3 Equipment 

Both phases of the experiment were performed on an HP iPAQ h4155 Pocket PC 

measuring 4.5 x 2.8 x 0.5 in (11.4 x 7.1 x 1.3 cm) with a 3.5” screen, measured 

diagonally. The display resolution was 240x320 pixels with a 0.24 mm dot pitch. The 

study interface and control software was developed using the Piccolo.NET graphics 

toolkit [17]. 

3.3.4 Discrete Target Phase 

The goal of the discrete target phase was to determine size recommendations for widgets 

used for single-target tasks, such as activating buttons, radio buttons and checkboxes. 

This discrete phase used a 5 (target sizes) x 9 (locations) x 5 (repetitions) within subjects 

design. Target sizes were 3.8, 5.8, 7.7, 9.6 and 11.5 mm on each side. We performed pilot 

studies to determine the appropriate target sizes for the study. Since standard widget sizes 

range from 2.64 mm (radio buttons) to 4.8 mm (buttons), 3.8 mm represents an average 

target size for existing devices. Pilot studies indicated that performance rates leveled off 

for target sizes greater than 11.5 mm and thus represented the largest practical 

recommended size for singular targets. 

Nine target locations were defined by dividing the display into a 3x3 grid of 

equal-sized cells. For each trial the target was located in the center of one of the nine 

cells. Each target size (5) was tested 5 times in each of the 9 regions for a total of 225 

trials. Trials were distributed across 5 blocks. With the first five participants, the sizes 

and locations of the targets were accidentally randomized across all blocks, but after 

minor modifications to the software for both phases, the sizes and locations of the targets 
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were randomized within each block to ensure that each size x location combination was 

tested once per block. 

Tasks 

The participant’s task for each discrete target trial was to tap an initial start position and 

then the target to be selected. All tasks were performed standing and one-handed, using 

only the right hand thumb for interacting with the touchscreen. The participants were 

instructed to perform the tasks as naturally as they could, favoring accuracy to speed. 

For each trial, the start position was indicated by a large green button designed to 

be easy to select, but from which movement distance could be measured (Figure 12). The 

distance between the green button and the target was constant for all tasks, while the 

relative location of the green button varied depending on the region in which the target 

was positioned. To standardize movement direction across trials, the green start button 

was located either directly North or South of the target, so chosen because North-South 

( ) movement better matches the thumb’s natural axis of rotation than East-West ( ) 

movement when holding a device in one hand. If the target was located in the first row of 

the grid, the green button was located in the cell below the target. Otherwise, the green 

button was located in the cell above the target. 
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(a)                                             (b) 

Figure 12. Target Size Study: The experimental interface for the discrete target phase. The startup 
view for a trial testing a 5.8 mm target in the center zone (a). The display for a trial in the upper left 

zone as the user selects the 7.7 mm target (b). 

Two issues arose in the design of the tap target. First, our pilot studies indicated 

that lone targets were perceived to be easier to tap than those near other objects. To 

address this issue, we surrounded each intended target by ‘distractor’ targets. This meant 

participants were required not only to hit a target, but also avoid others. In addition, the 

design provided an interface closer to real world applications which often present 

multiple widgets close to each other instead of one single target on the screen. Our 

second concern was that the constant distance between each start location and the task 

target meant that users could conceivably adopt a routine or preprogrammed movement 

for task completion rather than via deliberate aiming. Here, too, the distractor targets 

were of value. Although the relative position of the target with respect to the start 

position never changed, the distractors were presented in randomized locations around 

the target, which promoted a sense that the participant was not moving the same exact 

distance and in the same direction for each trial. 

In each trial, the intended target was designated with an ‘x’, while the distractors 

were labeled with other alphabetic characters. At the start of a trial, the target and all 

distractors were displayed with a white background and light-gray lettering, so as to 
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deemphasize the target, and to discourage users from locating the target preattentively 

before the start of the trial (Figure 12a). When the start button was tapped and released, 

labels turned black and keys turned pink to draw attention to all on-screen objects (Figure 

12b). 

Target selections were recorded at the time and location that a user’s thumb was 

lifted from the screen. A successful target selection required that both the tap and release 

positions were located within the target area. Target taps could also be cancelled by 

dragging the thumb outside of the target area before the release, similar to the method 

that allows for canceling widget actions on the Pocket PC. 

To ensure visual search was not impacted by the variability of white space 

surrounding labels as targets changed size, font sizes were scaled with target sizes. 

Because of limited screen space and evidence that performance is unaffected by key 

spacing (e.g., [36]), we used 0 mm edge-to-edge spacing between targets and distractors. 

Participants were provided with both auditory and visual feedback when touching targets. 

The ‘x’ target was highlighted in red upon thumb contact (Figure 12b), and both success 

and error sounds were played upon thumb release to indicate whether the target was hit 

successfully or not. If a tap was cancelled no auditory feedback was given. 

Measures 

Application logs recorded the time between the start (first) tap and target (second) tap, 

the absolute position of the second tap, and trial success or failure. After completing all 

trials, the participants were asked to rate how comfortable they felt tapping the target ‘x’ 

in each region of the screen using a 7-point scale (1 = uncomfortable, 7 = comfortable), 

as well as which target size was the smallest they felt comfortable using in each region. 
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3.3.5 Serial Target Phase 

The goal of the serial target phase was to evaluate required key sizes for widgets used for 

text or numeric entry. Target sizes were 5.8, 7.7, 9.6, 11.5, and 13.4 mm with 0 mm edge-

to-edge spacing. Target sizes were similar to those of the discrete target phase, except due 

to previous findings that error rates tended to increase for sequential selections [36], the 

smallest target (3.8 mm) was removed and an even larger target (13.4 mm) was added.  

To study the effect of location on task performance, four regions were defined by 

dividing the screen into a 2x2 grid. 

Each of the target sizes (5) were presented 5 times in each of the 4 regions for a 

total of 100 trials. As in the discrete target phase, trials were divided into 5 blocks. 

Except for the first 5 subjects who received all trials randomized across all 5 blocks, each 

size x location combination was presented once per block, in randomized order. 

Tasks 

The serial target task design was based on tasks used for previous studies [24, 36]. 

Subjects were required to enter a series of four digit codes using a virtual numeric 

keypad. They performed the tasks with the thumb of the right hand while standing, as in 

the discrete target phase. 

For each task, a green ‘start’ button, a numeric keypad and a randomly-generated 

4-digit goal sequence were displayed. Backspace and ‘END’ keys were also presented in 

the bottom corners of the keypad (Figure 13). Since the keypad’s location varied from 

trial to trial, the remaining interface elements were repositioned as follows: the green 

‘start’ button was positioned in the cell above or below the keypad, and the 4-digit goal 

sequence appeared to the left or right of the keypad.  
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(a)                                        (b) 

Figure 13. Target Size Study: The experimental interface for the serial target phase. The startup 
view for a trial testing a keypad with 7.7 mm targets in the upper right zone (a). The display for the 

same trial as the user selects the second digit in the sequence, which is a 6 (b). 

The participant’s task was to tap the green button first, enter the target sequence 

with the keypad, and finally touch the ‘END’ key to confirm the entry and proceed to the 

next task. The input string was displayed directly below the target sequence. The 

backspace key could be used for corrections; however it was not necessary for users to 

input the correct number before moving on⎯only that they input 4 digits.  

Several interaction features were retained from the discrete target phase. After 

tapping the green ‘start’ button, the background of the keypad changed from white to 

pink and the labels from light gray to black (Figure 13). Here, too, font sizes adapted to 

changes in target size. Finally, visual and audio feedback were provided upon target 

selection. The success sound was played for all key hits, except in the event that the 

‘END’ key was selected before all numbers had been entered, or a numeric key was 

selected after all four digits had been entered; in these cases an error sound was played. 

Again a lift-off strategy was used for selection. 
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Measures 

Application logs recorded total task time from the release of the start button to the release 

of the ‘END’ button, the first transition time from the release of the start button to the 

release of the first keypad button, and the first transition distance. Errors were recorded 

similarly to Sears et al. [130], where uncorrected errors were recorded by comparing the 

target and input sequence, and corrected errors by counting the number of backspace 

presses during the trial. After completing all trials, participants were asked to rate how 

comfortable they felt using the keypad in each region of the screen using a 7-point scale 

(1 = uncomfortable, 7 = comfortable), and which keypad size was the smallest they felt 

comfortable using in each region. 

3.3.6 Discrete Target Phase Results 

Task Times 

Task time, defined from the release of the start button to the release of the target ‘x’, was 

analyzed using a 5 x 9 repeated measures analysis of variance (RM-ANOVA) with 

factors of target size (3.8, 5.8, 7.7, 9.6 and 11.5 mm) and location (9 regions derived from 

a 3x3 division of the screen). Erroneous trials were eliminated from the data set and the 

mean total time of the remaining trials was computed. A 5% level of confidence after 

Greenhouse-Geisser correction was used to determine statistical significance. A main 

effect of target size, (F(1, 25) = 70.42, p < .001) was observed. No other main effects or 

interactions were observed. 

Not surprisingly, as targets grew in size, participants were able to tap them faster 

(Figure 14a). Post hoc comparisons using Bonferroni corrections revealed that time 

differences between all target sizes were significant, even between the two largest target 
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sizes (p = .04). These results are consistent with Fitts’ Law [50]. Due to the small screen 

size and limited practical range of target sizes in this study, the values for the indices of 

difficulty (IDs) were small, and the range was narrow. While these conditions make our 

study inappropriate for offering official values for a and b in the Fitts model, Figure 14b 

shows that differences between the task indices of difficulty explain why tap times got 

faster as target sizes increased. 

 

Figure 14. Target Size Study: The mean task time between the release of the start button and release 
of the target ‘x’ for each target size in the discrete target phase (left), and the relationship between 

movement time and task index of difficulty (right). 

Error Rates 

A 5 x 9 repeated measures analysis of variance (RM-ANOVA) was carried out on the 

percentage of trials that were performed in error, with factors of target size (3.8, 5.8, 7.7, 

9.6 and 11.5 mm) and location (9 regions derived from a 3x3 division of the screen). 

Once again, a main effect of target size was observed (F(1, 27) = 49.18, p < .001), but no 

effects of target location nor interactions between target size and location were found. 

As shown in Figure 15, errors declined as target size increased. Post hoc 

comparisons using Bonferroni corrections showed that error rates for the two smallest 

targets differed significantly from one another, and were significantly higher than for all 

other targets. Also, participants made significantly more errors when aiming for the mid-
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sized target (7.8 mm) than the largest target (11.5 mm). However, there was no 

significant difference in error rate between the two largest targets (9.6 mm v. 11.5 mm). 

So while speed improves significantly as targets grow from 9.6 mm to 11.5 mm, error 

rate does not. 

 

Figure 15. Target Size Study: The mean error rate for each target size in the discrete study phase. 
 

Hit Distribution 

Several investigations into target size requirements have used actual selection location to 

derive recommendation for on-screen targets. Since error rate was not distinguishable 

between the two largest targets, Figure 16 displays the on-screen hit distribution for the 

smallest four targets in all nine screen locations. The nine solid white boxes in each 

figure indicate the valid hit zones, with the center shown as a black crosshair. Taps that 

fell within valid bounds are shown as gray dots, and erroneous hits are shown in black. 

The dark gray outline near each zone center encloses all hits that fell within 2 standard 

deviations (2-SD) of the means in both the X and Y directions. 
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Figure 16. Target Size Study: The actual tap locations for targets sized 3.8, 5.8, 7.7, and 9.6 mm. The 

white squares indicate the true targets and the black crosshairs indicate their centers. Gray dots 
indicate successful hits, black dots indicate unsuccessful hits, and gray bounding boxes indicate hits 

that fall within 2 standard deviations of the tap means in the X and Y directions. 

The maximum width and height across the 2-SD bounding boxes for each target 

was 6.5x6.5 mm, 7.0x8.6 mm, 6.7x7.9 mm, and 9.1x8.9 mm for targets sized 3.8 mm, 5.8 

mm, 7.7 mm, and 9.6 mm respectively.  These measures offer the minimum sized box 

that would be expected to enclose 95% of hits at any screen location. We see that in 

general, the total area of these boxes increases with target size, indicating users were 

indeed trading off speed for tap accuracy. If we consider the relative shape and position 

of the 2-SD bounding boxes with respect to the true target centers, we notice some trends 

along rows and columns. For example, the hits in the bottom row tend to fall above the 

target center. This trend does not seem to be due only to the direction of movement, since 

targets in the middle row were also approached from above, and yet hits for those targets 

tend to fall more centrally than for those in the bottom row. Considering trends across 
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columns, we see that hits along the rightmost column tended to fall to the right of the 

target center, even though movement direction was from either directly above or below. 

Subjective Preferences 

Participants were asked how comfortable they felt tapping targets in each of the 9 

regions, regardless of target size (7 point scale; 1 = uncomfortable, 7 = comfortable). 

Mean ratings for comfort level are shown in the upper left corner of each region of Figure 

17a, and the darker the region, the more comfortable users found it to be for target 

selection. The center region was considered the most comfortable (μ=5.7), while the NW 

and SW regions were rated as the least uncomfortable locations for discrete target 

interaction with the thumb (both with μ=3.7).  

                
(a)                                                         (b) 

Figure 17. Target Size Study: Subjective ratings for interacting with discrete targets in 9 regions (a), 
and serial targets in 4 regions of the device (b). Mean comfort rating (1-7; 7=most comfortable) is 

shown in the upper left corner of each region, and depth of background color indicates more 
comfort. White blocks in each cell indicate the mean size, in mm, of the smallest comfortable target 

in the region. 

Participants were also asked which was the smallest of the 5 target sizes they felt 

comfortable tapping in each region. Mean target sizes are shown as white blocks in each 

of the nine regions in Figure 17a. Overall, participants perceived they would be 

comfortable with smaller targets within the center column, and in the center region in 
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particular (μ=6.0 mm). Participants felt the largest targets would be required in the NW, 

SW, and SE corners of the display (μ=7.7, μ=7.6, and μ=7.5 mm respectively). 

In general, the more comfortable participants were tapping targets in a region, the 

smaller they felt targets needed to be. Indeed, the subjective ratings correlate with 

performance results in Figure 16⎯across targets of varying size, corner regions tended to 

have larger 2-SD bounding boxes than the center regions. Even though user performance 

could not be discriminated statistically based on interaction region, the subjective 

preferences and hit locations indicate that users had the most difficulty interacting with 

objects along the left side and bottom right corner of the device and were at most ease 

interacting in the center of the device. 

3.3.7 Serial Target Phase Results 

Task Times 

A 5 (target size: 5.8, 7.7, 9.6, 11.5, 13.4 mm) x 4 (locations: 4 regions derived from a 2x2 

division of the screen) repeated measures analysis of variance (RM-ANOVA) was carried 

out on the task time data, defined from the release of the first digit in the sequence to the 

release of the ‘END’ button. Trials with either corrected or uncorrected errors were 

eliminated from the data set and the mean total time after the first transition of the 

remaining trials was computed. As with the discrete target results, a main effect of key 

size was observed, F(1, 25)=60.02, p < .001. Neither a main effect of keypad location nor 

an interaction between size and location were observed. 



 

 
 

87 
 

 
Figure 18. Target Size Study: The mean task time between the release of the first digit and the 

release of the ‘END’ key for each key size in the serial target phase (left), and the mean transition 
time between taps after the first transition for the same key sizes (right). 

As shown in Figure 18, users were able to enter 4-digit sequences faster as the key 

sizes, and thus total keypad size, grew. Post hoc comparisons using Bonferroni 

corrections revealed that time differences between all key sizes were significant. 

However, in contrast to the results of the discrete phase, Fitts’ Law does not explain this 

finding. Since the keypads used for each condition scaled uniformly, IDs remained equal 

across keypads of differing sizes. Under these circumstances, Fitts’ Law would predict 

performance rates to be equal across conditions, yet we observed that performance 

improved as key sizes grew. One explanation for this finding is that finger size interacted 

with key size. Since all but the largest keys were sized smaller than the average thumb, 

users may have made intentional physical accommodations to increase accuracy such as 

reorienting the thumb, which would have slowed performance. Although our study was 

not specifically designed to understand this phenomenon, we hypothesize that the actions 

users take to accommodate touchscreen targets smaller than the thumb acts upon Fitts’ 

model as if the target size is smaller than it actually is, thereby increasing total movement 

time. 
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Error Rates 

A 5 (target size: 5.8, 7.7, 9.6, 11.5 and 13.4 mm) x 4 (locations: 4 regions derived from a 

2x2 division of the screen) repeated measures analysis of variance (RM-ANOVA) was 

carried out on the percentage of trials that were performed in error. A trial was considered 

to be successful only if no errors, corrected or uncorrected, were made. A main effect of 

target size was observed (F(2,43) = 11.83, p < .001), but no main effect of keypad 

location was present. However, an interaction between key size and keypad location was 

observed (F(12,228) = 1.87, p = .039).  

 
Figure 19. Target Size Study: The mean error rate for each key size in the serial target phase. 

 

In general, errors declined as key size increased (Figure 19). Post hoc 

comparisons using Bonferroni corrections revealed the keypad with the smallest key sizes 

(5.8 mm) caused significantly more errors to be made than those with key sizes ≥ 9.6 

mm. No differences between error rates for the other key sizes were significant.  

Interactions between key size and location were somewhat anomalous, and 

therefore are hard to interpret. The most notable findings were that error rate for keys 7.7 

mm wide were highest in the NW region, and error rates for the largest key size (13.4 

mm) were highest in the SW region. 
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Subjective Preferences 

Participants were asked to rate how comfortable they felt using the keypads in each of the 

4 regions, regardless of target size (7 point scale; 1 = uncomfortable, 7 = comfortable). 

The NE region was considered the most comfortable (μ=5.7) and SE region the least 

comfortable location (μ=5.0) for direct thumb interaction in serial tasks (Figure 17b). 

Participants were also asked which was the smallest of the 5 keypad sizes they felt 

comfortable using in each region. On average, participants thought they would be 

comfortable with smaller keys in NE region (8.3 mm) while larger keys would be 

required in NW, SW and SE regions (8.9, 8.8 and 8.8 mm respectively). 

3.3.8 Discussion 

Although speed continued to improve significantly with even the largest targets in both 

phases of our study, the error rates could not be discriminated statistically for target sizes 

≥ 9.6 mm in discrete tasks and key sizes ≥ 7.7 mm in serial tasks. However, considering 

the hit distribution for 9.6 mm targets (Figure 16), the minimum sized box that would be 

expected to enclose 95% of hits at any screen location would be 9.1 x 8.9 mm. Together 

with the fact that, on average, users claimed they would comfortable using targets as 

small as 7.7 mm in all regions, it is probable that targets 9.1 mm square would strike an 

acceptable balance between speed, error rate, and user satisfaction for discrete targeting 

tasks. But since we did not test 9.1 mm targets, a conservative recommendation would be 

for designers to use targets 9.6 mm square for discrete targets such as buttons and 

checkboxes.  

Although error rates in serial tasks did not decline significantly with key sizes ≥ 

7.7 mm, the error rates for all target sizes were higher in serial tasks than in discrete 
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tasks. Because this relationship suggests that targets for serial tasks should be at least as 

large as those for discrete tasks, as well as the fact that participants stated they would not 

be comfortable hitting targets smaller than 8.9 mm in some regions, we again conclude 

that 9.6 mm is a safe recommendation for key sizes used in serial tapping tasks, such as 

data or numeric entry. Given that thumb pads are generally larger than those of index 

fingers, it makes sense that we recommend targets slightly larger than the 9 mm targets 

Microsoft recommends [152] for PDA interfaces designed for finger use.  

Note that because our recommendation of 9.6 mm targets is an artifact of the 

exact target size presented to users in the study, a reasonable rule of thumb to carry 

forward to designers is to strive for 1 cm2 targets for interfaces designed for thumb 

interaction.   

It is notable that mean transition time between taps in the serial target phase 

differed by target size, in contrast to what Sears recently found for stylus interaction on a 

virtual PDA keyboard [132]. We hypothesize that this is because users took extra care 

when hitting targets that were smaller than the thumb, whereas in Sears’ study, the stylus 

was always smaller than the targets involved. In addition, since the results of the hit 

distribution evaluation showed a surprising right-leaning trend for targets on the 

rightmost column, we recommend that for right handed users, targets on the right side of 

the screen should extend all the way to the edge. Presumably we would observe a 

mirrored phenomenon for left handed users, thus we also recommend that targets on the 

left side of the screen should extend to the left bezel to accommodate left-handed 

operation of the device. 
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3.4 Gesture Study 

An important distinction between touchscreen-based devices and keypad-based devices is 

that touchscreens support “direct manipulation”, an interaction style coined by Ben 

Shneiderman [135] to describe the initiation of actions on interface objects using a 

pointing device, such as mouse, finger, or in the case of a touchscreen-based mobile 

device, a stylus. Unfortunately, the basic assumption that touchscreen-equipped mobile 

devices will be used with a stylus has lead to software designs that favor two-handed use 

since input targets are often too small or too distant to be actuated with the thumb. Yet, 

one-handed interfaces that support thumb operation of the touchscreen are attractive 

because they favor a balanced, stable grip⎯as opposed to the use of directional 

navigation hardware which is often relegated to the periphery of the device and can be 

too low for stable one-handed operation. 

It seems clear that one option in designing for one-handed touchscreen interaction 

is to ensure that all targets are large enough for accurate thumb selection and are 

positioned close enough for users to reach comfortably with the thumb. But another 

approach might be to place no constraints on the size or location of interaction objects, 

but instead offer indirect object pointing and selection via an “object cursor”. Users 

would be able to position the cursor over any object for selection, even objects that would 

otherwise be too far or too small to hit successfully with the thumb. It’s easy to imagine 

that users could move the cursor with the directional input hardware available on most 

devices, but we are cautioned by Hirotaka’s observation that cell phones typically require 

uses to interact with keypads using a low, unstable grip [65], which is also true of the 

directional input controls offered with touchscreen-based devices. Thus, to support a 
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more balanced, stable device grip, the cursor-based system might support a gesture 

language that could be issued anywhere on the surface of the device, and using whatever 

grip users found most stable. To explore the viability of interacting with touchscreen 

interfaces as described, we studied how well users could learn and execute a simple 8-

gesture language for indirectly controlling an input cursor. 

I was the sole investigator on this study, which was conducted in August of 2004, 

and supervised by my advisor. This work was published in the 2005 proceedings of the 

Conference on Human Factors in Computing Systems (CHI 2005) [76]. 

3.4.1 Gesture Language 

We developed a gesture-based command language with the goal of accommodating the 

limited range of motion of the thumb when holding a device in one hand, (e.g., Figure 

20b), and strived to make it simple enough that it that could be executed easily, 

recognized reliably, and learned with minimal training. After informally experimenting 

with a variety of gestures, we decided on the 8 gestures of Figure 20a. We assigned the 

directional commands UP, DOWN, LEFT and RIGHT to spatial gestures that map directly to 

their function. For example, sweeping the finger from left to right across the screen 

moved the input cursor to the right. We assigned ACTIVATE and CANCEL to the two 

gestures defined by pivoting the thumb diagonally from bottom to top and top to bottom 

respectively. This assignment was made both to reinforce their opposing relationship, as 

well as for ergonomic ease in issuing these common commands. Finally, we assigned the 

upper-left to lower-right diagonal to FORWARD due to its relative forward nature, and by 

similar reasoning, the reverse gesture to BACKWARD. These last two commands have 

similar functionality to TAB and SHIFT-TAB in a Windows operating system.  
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     (a)                                                          (b) 

Figure 20. Gesture Study: The indirect gesture command language for controlling the object 
selection cursor (a); and an example of issuing an ACTIVATE command (b). 

All gestures are performed by sweeping the thumb across the surface of the 

touchscreen. A convenient property of this particular set of gestures is that each gesture is 

uniquely defined by a slope and movement direction. Since neither the length nor 

location of the gesture conveys information, users can issue the gestures anywhere on the 

screen surface, and can draw them as short or long as they wish (beyond an activation 

threshold of 20 pixels). This flexibility lets users interact with the device using the grasp 

that provides them the most stability and comfort in a mobile scenario. 

3.4.2 Tasks 

To study both the learnability and executability of our gesture set, we had study 

participants perform two types of tasks. Gesture tasks required users to perform a gesture 

when presented with the associated command name. Navigation tasks required 

participants to navigate to a particular cell within a hierarchy, and for some tasks, set a 

property related to that cell, described in more detail below. 
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3.4.3 Materials 

We constructed a software test environment modeled after a hierarchical tabular 

information space. Each level in the hierarchy appeared as a 3x3 grid of equal-sized cells, 

numbered 1-9 in the same arrangement as a cell phone keypad (Figure 21). The 

experimental hierarchy was limited to 5 levels. Cell contents were labeled with a 

hierarchical address constructed by prepending the cell’s local logical number (1-9) with 

its parent’s label, separated by a dot (Figure 21a-c). This meant that the label of a cell 

provided a navigational reference for the user by communicating the cell’s position in the 

hierarchy. We reserved an area at the top of the screen for task instructions, and disabled 

tapping to restrict the input to gestures alone.  

The eight gestures were associated with the following actions within the software 

environment. Directional gestures LEFT, RIGHT, UP and DOWN controlled the movement of 

an orange rectangular cursor within a level of the hierarchy; ACTIVATE navigated to a 

lower level in the hierarchy and CANCEL navigated out to the previous level. Zooming 

animations were used to transition from one hierarchical level to another. Within the 

context of the test environment, FORWARD and BACKWARD were used for selection within 

a cell; users could “activate” the digits of a cell label (indicated by displaying the digit in 

bold) individually by moving a highlight (e.g., over the 5 in cell 6.5.4 of Figure 21c) to a 

specific digit and issuing the ACTIVATE command. Digits could also be un-bolded or 

“deactivated” using the CANCEL gesture. Participants were provided with a reference 

sheet that described the hierarchical information space and labeling scheme, as well as 

the eight gestures to be used for navigation and interaction. 
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The study software was run on an HP iPAQ h4155 Pocket PC measuring 4.5 x 2.8 

x 0.5 in (11.4 x 7.1 x 1.3 cm) with a 3.5” screen. 

         
(a)                                               (b)                                               (c) 

Figure 21. Gesture Study: Examples of three states in the experimental software environment. (a) 
The top level; (b) the third level after ACTIVATE was performed on 6.5; and (c) highlighting the 5 

within cell 6.5.4. 

3.4.4 Participants 

Twenty participants (12 male, 8 female) were recruited from the general population with 

the only selection criterion that participants were right-handed. We obtained institutional 

review board (IRB) approval to conduct this study, and all participants granted us their 

informed consent. The median participant age was 30, and while 12 of the participants 

considered themselves advanced computer users, only 6 regularly used a handheld 

computer. 

3.4.5 Measures 

Application logs recorded the time and gesture executed for each task, and whether the 

task was completed successfully. Participants were instructed to press a hardware button 

between tasks, which served to record task time and advance the software script to the 

next task. Due to a bug in our logging software, task time was recorded at second rather 

than millisecond resolution. However, since our goal was to identify performance trends 
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rather than comparison to another input method, second-level resolution was sufficient. 

Participants rated their experience using five nine-point Likert scales: frustrating - 

satisfying, hard to learn - easy to learn, hard to use - easy to use, slow - fast, and boring - 

fun. 

3.4.6 Procedure 

After reading a description of the test environment and gestures, participants performed 

16 practice tasks similar in nature to those in the navigation task phase. Participants 

practiced for 5-10 minutes. 

After the practice phase, participants performed gesture tasks: presented with a 

command name, participants performed the associated gesture and pressed a hardware 

button to advance to the next task. Command names were presented to participants in 

random order, four times for each of the eight commands. The gesture reference sheet 

was placed face down so that the administrator could record the number of times it was 

referred to. 

The second test phase required participants to perform goal-directed tasks within 

the information space. These included (N)avigation (“Navigate to 6.5.4”), (A)ctivation 

(“Activate the 5 in 6.5.4”), (NA)vigation+activation (“Activate the 2 in 4.3.2”), and 

(C)ancellation (“De-activate all digits in 4.3.2”) tasks. Participants then recorded their 

subjective ratings of the interaction experience. Some participants completed the study in 

as little as 15 minutes, most within 30 minutes, and none required more than 40 minutes. 
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3.4.7 Results 

In the gesture phase of the study, participants correctly performed gestures on average 

87% of the time when presented with the name of the gesture. Looking at performance by 

gesture type, participants correctly performed directional gestures 93% of the time, but 

had more difficulty with the diagonal gestures ACTIVATE and CANCEL at 88% and 85% 

accuracy respectively. BACKWARD and FORWARD gestures had the worst rates of success, 

at 70% and 64% accuracy respectively. Time to perform gestures followed a similar 

trend. On average, participants required 2.4 seconds to perform each gesture: 1.5 – 1.7 

seconds for directional gestures, 2.6 – 2.8 seconds for ACTIVATE and CANCEL gestures, 

and 3.6 – 3.7 seconds for BACKWARD and FORWARD gestures respectively. Although we 

tallied user peeks at a reference sheet, we assumed that the acts of page-flipping and 

answer-searching have been reflected in the task time, and thus we did not analyze this 

data further.  
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Figure 22. Gesture Study: The mean number of gestures performed for each task, as compared to the 

minimum, or optimal, number of gestures required.  

The second test phase evaluated accuracy and efficiency for goal-directed 

navigation and activation tasks. The average task success rate was 95%. While both 
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navigation and navigation+activation tasks were performed with 98% accuracy, 

activation-only tasks were close behind at 96%. Cancellation tasks, however, were only 

completed correctly 83% of the time. On average, participants performed 2.4 additional 

steps than the optimal number to complete a task. By clustering participants into three 

performance groups for each task, we found that the Top third of participants performed 

nearly optimally on all but a few tasks (Figure 22). The Middle third of participants 

performed comparably to the Top third, but the gaps were widest between Top and 

Middle performers for those tasks that Top performers had most trouble with (e.g., C_2, 

NA_1, NA_2). That is, the tasks for which the Middle performers deviated farthest from 

Optimal, were those for which the Top performers also deviated. Thus, the most serious 

difficulties users had in performing the navigation phase tasks were experienced by only 

the Bottom third of the participants.  

The average subjective rating for each of our 5 satisfaction measures, on a scale 

of 1-9 where 9 was positive, fell within a 1 point span of one another, between 5.9 

(satisfying) and 6.75 (fun). 

3.4.8 Discussion 

Because the gesture phase of the study did not distinguish between errors of recall 

(remembering which gesture was associated with a command name) and execution (tried 

to issue the appropriate gesture, but was unrecognized), we could not classify the reasons 

that users were unsuccessful in performing some of the gestures. Analyzing the log files, 

it is safe to say that errors of both types occurred. The low error and speed measures for 

directional navigation support our hypothesis that the directional gestures have an 

intrinsic spatial mapping. Presumably, this mapping contributes to better learnability, 
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more reliable execution, and lower cognitive demand. The positive jump in execution 

speed for the other four gestures is unsurprising when we consider that the mappings 

between gesture and command are more abstract than the directional mappings, and 

likely to require more cognitive effort to perform the mental transformation. This alone 

does not explain the associated increase in error rate, but insights from Long’s work on 

gesture similarity [86] suggest that users may perceive the diagonal gestures as similar, 

and because they have different functionality, the similarity in this case would make them 

more difficult to learn. 

The better performance that the ACTIVATE and CANCEL diagonal gestures enjoyed 

over the BACKWARD and FORWARD diagonal gestures may be attributed to the fact that 

BACKWARD and FORWARD should have been more physically challenging to perform. 

However, the difference may also be due to the disproportionate practice time the two 

sets of diagonals received, since a single navigation task provided more opportunities to 

issue ACTIVATE and CANCEL gestures than the within-cell activation tasks provided for 

FORWARD and BACKWARD. These intuitions also help explain the efficiency 

results⎯users were more successful and efficient in pure navigation tasks which 

contained a proportionally large number of directional gestures compared to within-cell 

activation/cancellation tasks. It should be noted that the relative complexity of the gesture 

navigation environment may have confounded the results by inflating the inefficiency 

measures. 

Overall, the performance and subjective rating data suggest that indirect gestures 

can be learned and performed with minimal (< 10 minutes) training, especially if there 

exists a direct spatial mapping between each gesture and its associated function. 
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3.5 Conclusion 

Motivated by the results from my early field study and web survey, which suggested 

mobile devices should be updated to better support one-handed use scenarios, I ran three 

studies to develop the background needed to offer designers and developers high-level 

guidelines for building more effective one-handed mobile interfaces. Based on the results 

of my study of thumb movement, I have developed the following rules for the placement 

of interaction objects (including physical and touchscreen buttons) on mobile devices to 

support one-handed thumb operation: 1) support localized interaction (e.g., by placing 

targets close to one another) to minimize grip adjustment; 2) avoid diagonal movements 

to accommodate both left and right handed users, especially for common, or repetitive 

tasks; 3) strive to place interaction targets toward the vertical center of the device to 

support a stable, balanced grip, as well as toward the middle of the device (horizontal 

center) to make targets easy to reach for both left and right handed users; and 4) favor 

small devices in order to support overall device control and satisfaction, but beware of 

making interaction targets too small as a result. My investigation of appropriate target 

sizes for touchscreen-based devices found that 1 cm2 strikes a conservative balance 

between hit speed and accuracy, but that targets as small as 9.1 mm2 may also satisfy 

users. Finally, data from my exploration of touchscreen gestures suggest that small 

gesture sets can be learned and performed with minimal (< 10 minutes) training, 

especially if there exists a direct spatial mapping between each gesture and its associated 

function.  
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My documentation of average consumer behavior and preferences concerning the 

one-handed use of mobile devices, together with the raw results and recommendation 

from these three studies constitute the foundations of my research. 
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Chapter 4  
Applications: Touchscreen Design Strategies for One-Handed 

Mobile Computing 

Interface design guidelines concerning the appropriate placement of interaction objects 

for supporting comfortable one-handed mobile device operation are useful to designers of 

interfaces, as well as those who use them. However, in practice, adherence to such 

guidelines provides only a low-level, mechanical benefit to users, and does not guarantee 

efficient, aesthetic, or enjoyable interfaces. Furthermore, as mobile devices store and 

connect to ever larger data sets, their small screens and constrained input channels pose 

significant challenges for providing users effective presentations of and efficient 

navigation techniques for such data. Thus beyond offering basic rules for addressing the 

pragmatic physical issues involved in using touchscreen-based devices with one hand, 

better overall interaction techniques and information structures are needed to empower 

users of these compact mobile portals so that their whole-device experiences become 

increasingly satisfying.  

In an effort to improve one-handed mobile device usability in supporting high-

level user goals, I explored four different interaction techniques and studied their benefits 

by applying each to an important information task that users face today. The work in 

these next three chapters offers insight into how my foundational design guidelines apply 

in practice to real world applications and information tasks. 



 

 
 

103 
 

4.1 Overview 

When considering possible design approaches for touchscreen interfaces that support 

one-handed operation, it seems obvious that one strategy is to ensure that all interaction 

targets are large enough to be hit reliably with the thumb. While this approach allows 

users to operate the device fully with one thumb, it also constrains how designers use the 

available screen real estate for presenting information, and may actually increase the 

number of navigation steps required to complete a task. Another approach might be to 

place no constraints on the size or placement of interaction objects, and offer some other 

solution for allowing users to hit objects that are too small to hit accurately or too far to 

hit easily with the thumb.  

In this chapter I explore the tradeoffs between these two design approaches by 

developing and studying alternative interfaces for navigating among a set of device 

programs. The designs are distinguished from one another by the level of restriction each 

places on the sizes and positions of interface objects, the interaction philosophy 

supported, the number of applications managed, and the zooming metaphor used for 

overview and navigation. 

This work was performed in collaboration with John SanGiovanni, formerly of 

Microsoft Research. I, with the oversight of my advisor, take full ownership of the 

AppLens design, including its associated gesture language. John SanGiovanni was the 

inspiration behind the LaunchTile design and interaction style. I executed all technical 

aspects of the work, including the implementations of AppLens and LaunchTile, as well 

as the design and administration of their comparative user study. I was the first author on 
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the paper we wrote describing this work, which was published in the 2005 Proceedings of 

the Conference on Human Factors in Computing Systems (CHI 2005) [76].  

4.2 A Comparative Design Strategy 

The approach taken in this investigation was to design and build the best interfaces we 

could for accomplishing the same functional goal, but by instituting two different design 

strategies. By evaluating the designs with real users and comparing and contrasting the 

results, we hoped to understand which design directions make the most sense for the 

domain of program navigation and management, as well as to learn something generally 

about the trade-offs between the two approaches in the process. Here I describe some of 

the features that the two systems shared, as well as where their designs diverged. In brief, 

both systems were designed to support the task of navigating among a set of user 

programs (e.g., email, calendar, etc.), but they differed in the one-handed interaction 

strategy used, the number of programs managed and the zooming metaphor used for 

providing content overviews and navigating among the programs. Table 3 captures the 

differences between the two designs in a format that facilitates comparison. Both 

prototypes were architected to scale to devices with varying screen resolutions, aspect 

ratios, and input methods, and were demonstrated successfully on both an HP iPAQ 

Pocket PC running Windows Mobile 2003 and an iMate Smartphone II running Windows 

Mobile Smartphone 2003. 

As previously described, the motivation for this work was to explore two different 

design approaches for supporting thumb use of touchscreen software. The AppLens 

prototype placed no restrictions on the sizes or placements of objects, but supported a 

gesture command language for indirect selection of and interaction with objects that were 
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too small or too far for reliable thumb access. The LaunchTile prototype instead ensured 

that all interface objects were large enough for direct thumb interaction, and supported 

direct-manipulation gestures for dragging out-of-reach elements closer to the thumb. 

Table 3. A comparison of the design features of the AppLens and LaunchTile interfaces. 
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One shared design goal of AppLens and LaunchTile was to provide access to rich 

notification information for multiple programs at once. Most current PDA interfaces are 

designed for focused interaction with a single task or program, with limited consideration 

or display real estate allocated for notifications (e.g., email, appointment reminders) or 

monitoring of ambient information streams (e.g., stocks, sport scores). In the proposed 

designs, each of the device-resident programs was associated with a dynamic notification 
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tile instead of the traditional static icon used to launch the program. In both designs the 

notification tiles were arranged within a 2D landscape that offered at-a-glace information 

for several applications at once, as well as on-demand application launch when users 

desired more detailed information and program access. However, the two designs 

differed in the number of notification tiles, and thus programs, managed within the 

landscape. AppLens provided access to nine programs, whose notification tiles were 

arranged in a 3x3 grid, whereas LaunchTile supported thirty-six programs in a 6x6 grid. 

The two systems also employed different zooming interface techniques for 

displaying the high-level summary information for several notification tiles at once 

(zoomed out) versus displaying the details of a single interactive program (zoomed in). 

Zooming has been used extensively in desktop environments as a method for linking data 

details to the overviews that can show global relationships among the elements of a large 

data set. AppLens used a tabular fisheye approach [118] to smoothly transition between 

notification representations of all nine applications and the details of a fully functioning 

program, while LaunchTile used pure semantic zooming [18] to offer the same 

functionality for its thirty-six programs. Fisheye and pure zooming techniques both have 

shown promise in other data domains and tasks, but in the absence of clear guidelines 

about when each approach should be used [35], we hoped that by exploring each 

zooming approach we might gain insight into whether one has advantages over the other 

for the task of program monitoring and navigation. 

4.3 Related Work 

Past research that is relevant to this exploration include those efforts that have focused on 

reducing the number of hands required for device use (Chapter 2), determining 
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appropriate target sizes for touchscreen interaction (Chapter 3) and gesture-based systems 

(Chapter 3). A discussion of research concerned with hitting small targets with fingers on 

touchscreens is covered in Chapter 6. 

A distinguishing characteristic of the AppLens interface is its application of 

tabular fisheye distortion to achieve a focus+context approach to program navigation and 

management. Spence and Apperley [137] introduced the “bifocal display” as one of the 

first examples of fisheye distortion applied to computer interfaces. Furnas extended the 

bifocal display to include cognitive perceptual strategies and introduced a set of 

analytical functions to automatically compute generalized fisheye effects [51]. Since 

then, fisheye distortion has been applied with mixed success across a variety of domains, 

including graphs [125], networks [128], spreadsheets [118], and documents [66, 122].  

Bederson et al. [16] drew upon that early work in developing DateLens, a space-

conserving calendar for PDAs. One of the strengths of DateLens was the pairing of 

distortion and scalability, which allowed the details of a single day to be viewed in the 

context of up to several months of appointment data. Also important was the design and 

use of effective representations for the variety of cell sizes and aspect ratios that resulted 

from tabular distortion. One drawback of DateLens, however, was that it required two-

handed stylus interaction to actuate the small interface widgets. The AppLens design 

extends the principles of DateLens to include one-handed thumb access and generalizes 

the approach for use across a variety of domains. 

Although the LaunchTile interface preceded the Apple iPhone 

(www.apple.com/iphone/), the iPhone represents one of the first commercial touchscreen-

based mobile devices that has been specifically designed for finger interaction. Like 
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LaunchTile, the iPhone design takes the approach of making all targets large enough to 

be hit easily with the finger. For the few iPhone tasks that do not feature finger-sized 

targets, additional accommodations are made to improve the accuracy of finger selection. 

For example, the on-screen Qwerty keyboard features smaller targets than would 

guarantee accurate selection, so word prediction algorithms are employed to enlarge the 

hit regions of more likely targets, as well as auto-correct unlikely character sequences. 

iPhone users are also offered a magnifying lens for precisely placing the input cursor for 

text editing tasks. While it does not seem that Apple made specific design choices to 

ensure users can reach all targets for one-handed operation (e.g., the entire screen is used 

for object layout), the phone’s lightweight, slim form generally allows users to hit all 

areas of the screen with a single grip. Both the iPhone and LaunchTile designs support 

finger gestures to scroll through 1D lists, although with LaunchTile users literally drag 

the list, while with the iPhone users start the scroll action with a single “flick”, and a 

model of inertia then slows the list naturally to a stop. Most significantly, the iPhone 

debuts capacitive touchscreen technology in a mobile phone, and so supports higher 

precision finger detection than standard mobile touchscreens, as well as multi-touch 

interaction. 

4.4 AppLens 

AppLens provides one-handed access to nine applications, and as suggested above, is 

strongly motivated by the DateLens tabular fisheye calendar [16]. The AppLens software 

design includes a scalable architecture that includes a grid, tabular layout algorithm, and 

default views for cell contents at a variety of sizes and aspect ratios. I also developed a 

general API to make it simple for applications to be built within this framework; to use 



 

 
 

109 
 

the API developers would need only to replace a small number of cell views with 

representations that are meaningful within the target domain.  

       
` (a)                                             (b) 

 
    ` (c)                                         (d) 

Figure 23. Examples of the three AppLens zoom levels. Notification (a), Full (b), and Context (c, d). 

4.4.1 AppLens Zoom Levels 

AppLens (Figure 23) was implemented within the generalized tabular fisheye framework, 

using a 3x3 grid, and assigning one of nine applications to each cell. The support for 

tabular layout includes representations at three zoom levels: Notification, Context and 

Full. 
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Notification zoom distributes the available screen real estate equally among the 

nine application tiles (Figure 23a). One tile (shown centered) is reserved for settings, 

which can be used to configure the selection of applications which occupy the other eight 

notification tiles. Generally, tiles at Notification size display high level static and/or 

dynamic application-specific notification information.  

Context zoom (Figure 23c) allocates roughly half the available display area to a 

single focus tile, compressing the remaining tiles according to a tabular fisheye distortion 

technique [16, 118]. A tile at Context size typically appears much like a fully functional 

application, but selectively shows or hides features to accommodate the size constraints 

of the smaller display, and is not interactive. Tiles on the periphery of a Context zoom, 

called peripheral tiles, may be rendered quite differently depending on their positions 

relative to the focus tile, which dictates the aspect ratio of the peripheral tile (i.e., whether 

it is a square, a wide-flat rectangle, or a narrow-tall rectangle). To reduce visual overload, 

peripheral tiles are displayed at 40% transparency. The contents of distorted peripheral 

tiles are not themselves distorted, but rather change representation to provide the most 

meaning in the space available.  

The third and final Full zoom level expands a tile to a fully interactive application 

that occupies 100% of the display (Figure 23b). 

4.4.2 Gesture-Based Cursor Navigation 

Existing application designs for PDAs are often inappropriate for one-handed use due to 

their reliance on screen regions that users may not be able to reach while maintaining 

control of the device (e.g., accessing the Start menu in the upper left-hand corner of a 

display while holding the device in the right hand), and the use of standard widgets that 
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are too small for reliable thumb use (e.g., radio buttons, checkboxes, and on-screen 

keyboards). In support of traditional designs, AppLens uses an object cursor to identify 

the on-screen object that is the current interaction target.  The cursor is depicted as a 

dynamically-sized rectangular orange border that users move from one on-screen object 

to another via command gestures, which are described in more detail below. Cursors are 

not new to PDA interface design: the WebThumb [154] web browser includes a similar 

notion of cursor, but which is controlled via directional hardware, and others [149] have 

explored device tilting to manipulate PDA cursors. 

Neither the cursor nor gestures interfere with the most common stylus interactions 

of tap and tap+hold. Although gesture movements do resemble stylus drag commands, 

dragging is rarely used in handheld applications and could be distinguished from gestures 

by explicitly setting a gesture input mode. 

We established a core set of commands that would allow users to navigate 

applications using only the input cursor. The command language supported directional 

navigation (UP, DOWN, LEFT, RIGHT) as well as two widget interaction commands: one 

equivalent to a stylus tap (ACTIVATE), and the other which negates widget activation 

(CANCEL), equivalent to tapping the stylus outside an activated widget. We also included 

the commands FORWARD and BACKWARD, which equate to TAB and SHIFT-TAB on 

Windows PCs, for convenience. 

4.4.3 Command Gestures 

Our use of gestures is motivated by Hirotaka’s observation that the button positions on 

many cell phones require interaction using a low, unstable grip [65]. Most PDA joysticks 

face a similar drawback in that they are often located along the lower perimeter of the 
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device. AppLens avoids this problem since its gestures can be issued anywhere on the 

screen. Each AppLens gesture is uniquely defined by a slope and direction, or vector, 

which allows gestures to be robust and highly personalizable; users can issue gestures of 

any length (beyond an activation threshold of 20 pixels) anywhere on the touch-sensitive 

surface. This flexibility lets users interact with AppLens using the grasp that offers them 

the most stability in a mobile scenario. 

 

                
(a)                                                       (b)    

Figure 24. A depiction of the screen region that is accessible to the thumb of one hand (a), and the 
AppLens command gesture set (b). 

We based the gesture set on the limited motion range of thumbs (Figure 24a), 

with the goal of creating a gesture language that could be learned with minimal training. 

The gesture set (Figure 24b) and a user study designed to evaluate its learnability were 

presented in detail in Chapter 3, Section 3.4. When using a device that has no touchscreen 

and only a numeric keypad, each gesture command maps to the key that corresponds 

logically to the gesture endpoint: 1-BACKWARD, 3-ACTIVATE, 7-CANCEL, and 9-FORWARD. 

Since nearly all phones have a joystick that can be used for directional navigation, the 

keypad-to-command mapping is not strictly necessary for moving the input cursor, but 

for completeness we made the following assignments: 2-UP, 4-LEFT, 6-RIGHT and 8-

DOWN. 
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4.4.4 Using Command Gestures within AppLens 

Users navigate between AppLens zoom levels using ACTIVATE and CANCEL gestures. As 

a rule, the ACTIVATE gesture behaves as a stylus tap on the current cursor target, thus its 

effects are target-specific. Since application tiles are non-interactive at Notification and 

Context zoom levels, the ACTIVATE gesture simply zooms in, animating the layout first 

from Notification to Context zoom, and then to Full zoom. Once at Full zoom, the input 

cursor transitions to the objects within the application, at which point the command 

gestures affect the current target widget. The CANCEL command negates the effects of the 

ACTIVATE command. At Full zoom, the effects of the CANCEL command depend on the 

location of the cursor and the state of its target. The CANCEL command will first 

deactivate an active target. If the current target is not in an active state, CANCEL will cause 

the application tile to animate from Full zoom to Context zoom, and if issued again, to 

Notification zoom. 

4.5 LaunchTile 

The second design, LaunchTile uses another way to interact with a grid of notification 

tiles. LaunchTile is an interactive zoomscape consisting of thirty-six application tiles, 

divided into nine zones of four tiles each (Figure 25c). The 36-tile configuration was an 

exploration of the maximum number of applications that can reasonably fit within the 

display space. Since the design is fundamentally scalable, however, it can display any 

number of tiles up to thirty-six, and fewer may even be preferable. For example, Zumobi 

(www.zumobi.com), a direct commercialization of the LaunchTile design that is VC-

backed and invested in by Microsoft, chose to use sixteen tiles, arranged in four zones of 

four tiles (e.g., a 4x4 layout), shown in Figure 26.  



 

 
 

114 
 

 
       (a)                                          (b) 

           
       (c)                                                (d) 

Figure 25. Examples of the three LaunchTile zoom levels.  Zone (a,b), World (c), and Application (d). 

 
Figure 26. The three zoom levels of Zumobi, a commercialization of the LaunchTile design. 
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As a central design element, LaunchTile uses a large blue onscreen button, 

hereafter referred to as Blue (Figure 25a), to unify the zoomscape with a consistent visual 

metaphor. One goal of Blue is to provide a consistent visual point of reference⎯onscreen 

tiles and menus maintain the same relative position to Blue during all zooming and 

panning operations. The LaunchTile zoomscape consists of three zoom levels: World 

(thirty-six tiles, Figure 25c), Zone (four tiles, Figure 25a,b) and Application (one tile, 

Figure 25d) zoom. 

4.5.1 Zone View 

The Zone view of LaunchTile divides the screen area into four equally-sized application 

tiles (Figure 25a). To view other tiles, the user pans the zoomscape to neighboring four-

tile clusters, called zones. The zones are arranged as a 3x3 grid, each associated with a 

numerical designator from 1-9 as on a conventional telephone keypad. Zone 5 is the 

center zone, which defines the Home screen, and shows the four highest priority 

notification tiles, as configured by the user.  

4.5.2 Panning Techniques 

To support various input hardware and styles of interaction, there are several ways to pan 

the zoomscape within Zone view. If the device has a multidirectional control joystick, the 

user can push it in the direction of the targeted zone. From the Home screen (Figure 25a), 

the sixteen tiles in zones 2, 4, 6, and 8 are only a single tap away. Since most directional 

navigation hardware on mobile devices does not support diagonal actions, the sixteen 

additional tiles in the corner zones 1, 3, 7, and 9 are two taps away. Alternatively, if the 

device has a touch-sensitive display, the user can use her thumb directly to drag the 



 

 
 

116 
 

zoomscape. Dragging is performed “on rails”, so to speak, permitting the user to drag 

vertically and horizontally, but not diagonally. Although the zoomscape moves with the 

thumb during dragging, Blue remains centered and stationary. Because only one instance 

of Blue exists within Zone view, each zone is depicted with an empty center hub during 

dragging. Upon thumb release, the zoomscape animates to align Blue with the closest 

zone’s empty hub. This automated guidance ensures the user is never caught between 

zones. 

Within each four-tile zone, additional visual cues communicate the user’s relative 

location within the zoomscape. First, directional arrows, centered along each edge 

(Figure 25a), designate where the other zones are. If a user only sees arrows pointing up 

and right from within a Zone, she knows she is currently in Zone 7. Small blue dots 

featured alongside the arrows represent the locations of the eight remaining zones in the 

zoomscape. The small blue dots might also be used to indicate an alert or status change in 

a neighboring zone, although this feature was not implemented in the prototype. One 

final way to pan the zoomscape is to tap a directional arrow directly. An oversized hit 

target ensures that the user can easily hit the arrow without using a stylus. 

4.5.3 Zooming Out to the World View 

From any one of the nine four-tile Zone views, the user may tap Blue (or press the 5 key) 

to zoom out to display the entire 36-tile zoomscape (Figure 25c). Since all thirty-six tiles 

are visible at once, this view reduces each tile to a small icon. From this World view, the 

user can easily see the absolute location of each tile, as well as monitor the status of all 

applications at once. In the World view, the display is divided into a grid of nine hit 

targets, each of which map to a four-tile zone. Tapping a zone (or pressing its 
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corresponding keypad button, 1-9) animates to Zone view, displaying the zone’s four 

notification tiles. 

4.5.4 Zooming In to an Application 

To launch an application, a user taps any of the four notification tiles within Zone view, 

at which point an animated zoom sequence pans the zoomscape into the application until 

it fills the entire display (Figure 25d). If the device has a numeric keypad but no 

touchscreen, the user presses the numeric key that corresponds to the zone: pressing 1 

launches the upper left tile, 3 launches the upper right tile, 7 launches the lower left tile, 

and 9 launches the lower right tile. This technique provides quick, single-tap access to 

each visible tile, and was inspired by ZoneZoom of Robbins et al. [121]. 

As the system zooms, Blue stays within view, maintaining its role as a central 

point of reference (Figure 25d). Application menu commands are represented as on-

screen buttons clustered around Blue, which has migrated to the bottom of the display. 

Each menu button displays a numeric label, so that users of non-touchscreen devices may 

activate each menu by pressing the corresponding number on the keypad. A visual 

indicator on the left-hand side of the screen animates during zooming and reflects the 

user’s current absolute zoom level within the LaunchTile zoomscape. 

4.5.5 Zoom Control 

Pressing Blue typically moves the user deeper into the zoom hierarchy, while a dedicated 

Back button moves the user up the hierarchy. In the Zone view however, Blue toggles 

between Zone view (four tiles) and World view (thirty-six tiles). Once an application is 

launched, three dedicated software buttons along the top edge of the screen support inter- 
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and intra-application navigation (Figure 25d). A green Home button immediately zooms 

the view out to the Home screen, and the Back button to its left returns the display to the 

previous screen in the user’s navigation sequence. The other global command key was 

not used in the prototype, but might be used, for example, to input voice commands. On a 

non-touchscreen device, Back and Home commands are executed with dedicated physical 

buttons, such as those provided on a smartphone. 

4.5.6 Application-Level Interaction 

The original focus of the AppLens and LaunchTile designs was to support the task of 

navigating among a set of programs. However, to further explore how touchscreen-based 

applications themselves might be designed to support direct thumb interaction, we 

extended the LaunchTile design to the application level. Within an application, we took 

advantage of gesture-based techniques to support selection of items that might have been 

too small to hit reliably with the thumb. Others have previously demonstrated high-

precision selection capabilities for fingers on touchscreens  using a combination of an 

offset cursor (to avoid finger occlusion), and lift-off selection (to allow for visual 

confirmation) [116]. When possible, we made all LaunchTile targets large enough for 

thumb activation, but in cases when limited display real estate necessitated smaller 

targets, a toolglass was provided which could be positioned over target objects (e.g., 

contacts, email headers, message text). Blue served as the handle to the toolglass, large 

enough to hit easily with the thumb, but offset below it so as not to occlude the desired 

objects. Alternatively, the user could drag the application contents, such as to pan a map, 

scroll a list of email, or navigate to text outside the view area. Together, these two 

interaction techniques permitted the user to access a large application content space 
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directly with the thumb, while also allowing selection of objects smaller than a finger, 

such as would be required for editing text. Alternatively, users with non-touchscreen 

devices could use the multidirectional joystick to position the toolgalss precisely. 

Numeric keys 2 and 8 could be assigned for page up and page down control, while keys 4 

and 6 could trigger menu items or horizontal page control, as appropriate. 

Once the targeted item was in the toolglass selection area, a tap on Blue (or 

pressing the 5 key) activated the item, which either drew the user further into the 

application (e.g., open an email), or if users were at the lowest level of the zoomscape 

hierarchy, the tap on Blue would trigger a context-sensitive menu, whose items were 

positioned radially around Blue. At this point users could tap on menu items directly, or 

use the keys of the numeric keypad, to perform functions on the selected item. 

4.6 Implementation 

The AppLens and LaunchTile prototypes were built using the University of Maryland’s 

PocketPiccolo.NET development toolkit for Zoomable User Interfaces (ZUIs) [17] and 

were designed to accommodate screens from 2” to 5”, measured diagonally, with 

resolutions ranging from 176x220 to 800x600. Although the primary development and 

test platform was a the HP iPAQ 4155 PocketPC running Microsoft Windows Mobile 

2003, both system ran unmodified on an iMate Smartphone II running Windows Mobile 

Smartphone 2003 (Figure 23c,d and Figure 25a,b). 

Although the core architecture and gesture recognition for each system was 

implemented fully, the programs running within AppLens and LaunchTile were 

simulated with images. This allowed us to present the AppLens and LaunchTile designs 

to users in a way that preserved the look and feel of the real systems for generating early 
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feedback, but of course fell short of full interactivity. However, because the LaunchTile 

design principles extended to the applications themselves, we also prototyped email as an 

interactive example within LaunchTile. 

4.7 AppLens and LaunchTile Formative Study 

We conducted a formative study of the AppLens and LaunchTile systems to capture 

usability issues that their designs presented for new users, and to elicit general user 

reactions and comparative preferences 

4.7.1 Participants 

We recruited ten participants (8 male, 2 female) from a local private scientific research 

center. We obtained institutional review board (IRB) approval to conduct this study, and 

all participants granted us their informed consent. Three participants were in their 20s, 

five in their 30s, and two were 40 or older. While all participants considered themselves 

advanced computer users, four used PDAs regularly, and four had never used a PDA. 

4.7.2 Measures 

Participants provided subjective design-specific and comparative reactions to AppLens 

and LaunchTile through think aloud and verbal questionnaires. 

4.7.3 Materials 

The system prototypes ran on an HP iPAQ h4155 Pocket PC measuring 4.5 x 2.8 x 0.5 in 

(11.4 x 7.1 x 1.3 cm) with a 3.5” screen. A one-page document described the AppLens 

design and gestures set, followed by a list of eight associated tasks. A two-page document 
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described the LaunchTile design and methods for navigation and interaction, followed by 

a list of 11 tasks. 

4.7.4 Tasks 

For each interface, participants performed tasks which were designed to exercise the full 

range of navigation and interaction features. For example, LaunchTile tasks included 

navigating to specific zones, finding specific applications, and opening and editing an 

email message. AppLens tasks included navigating to specific application tiles, and 

answering questions about application content. 

4.7.5 Procedure 

Study participants were introduced to each design by reading its design document and 

performing each of the related tasks. During the tasks, the test administrator recorded 

think-aloud reactions and usability observations. After users completed all tasks, the 

administrator recorded answers to open-ended questions related to the interaction 

methods, such as likes and dislikes, features that were easy or hard to use or learn, and 

comfort level using one hand. The same procedure was repeated for the second interface. 

The administrator balanced the order of the interfaces among participants. After 

completing the tasks and questions for both interfaces, participants were asked questions 

designed to elicit comparative preference between the two systems. We limited each user 

session to 45 minutes, allotting roughly fifteen minutes to each interface, and the final 

fifteen minutes for comparative feedback. 

It should be noted that users were not given any dedicated training for learning the 

AppLens gestures set, but could refer to the document describing the gesture language at 
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any time. Furthermore, the study tasks only required users to perform six of the eight 

gesture language commands: UP, DOWN, LEFT, RIGHT, ACTIVATE, and CANCEL. 

4.7.6 Results 

Reactions to AppLens were quite consistent across participants. Because only one 

question in the study focused on a specific interface design feature (Context view), we 

regarded commonality among participant responses as indicative of the interface 

characteristics that impacted users the most. I report here on only the strongest trends in 

user opinion. Half (five) of the participants commented that they liked the Notification 

view and the ability to access all nine application tiles within both Notification and 

Context views. Even though two participants found nothing redeeming about the fisheye 

Context view, all others found it useful at least some of the time. Seven out of ten 

participants found application navigation easy and enjoyable, but performed the majority 

of navigation by tapping tiles rather than using command gestures. Even so, participants 

were required to use gestures to zoom out from Full zoom, and two participants 

particularly enjoyed performing the gestures. Five participants agreed that the gestures 

were the most difficult aspect of the interface, but disagreed on why, citing confusion 

over the gestures for zoom-in vs. zoom-out, difficulty performing the ACTIVATE gesture, 

difficulty with directional navigation, and frustration due to the system misinterpreting 

the intended gesture. All participants found AppLens both easy to learn and effective for 

navigating among applications, all but one found one-handed use comfortable, and six 

out of seven participants stated they would prefer AppLens over their most familiar PDA 

operating system. 
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Perhaps due to the richness of the LaunchTile environment, reactions to 

LaunchTile were more mixed than they were for AppLens. Nearly half the participants 

reacted positively to the aesthetics of LaunchTile, and specifically to Blue. Seven 

participants appreciated the volume of information available through the two zoom 

perspectives World and Zone, while six thought that zooming between those perspectives 

was among the easiest aspects of the interface. The majority (seven) of participants felt 

comfortable using one hand to perform the tasks, and eight felt they were able to 

effectively navigate among applications, which they accomplished primarily by zooming 

out to World view, and then zooming into the desired application. 

Surprisingly, the majority (seven) of participants had difficulty panning by 

dragging within LaunchTile, commenting most often that it was unintuitive, but also that 

it was slow. This subset of participants was slightly skewed toward participants who used 

the LaunchTile interface first, and so their bias against dragging as a style of navigation 

would not have been caused by prior experience with the AppLens directional gestures. 

Six participants struggled with the multi-modal nature of Blue, stating they were unsure 

about its role in different contexts, and especially within applications. A related problem 

was that users had trouble differentiating between the roles of the Home, Back, and Blue 

buttons from within an application. Most of the participants were tentative and had 

difficulty performing tasks within the email application. Ultimately, participants were 

evenly divided (three vs. three) about whether they would choose to use LaunchTile to 

manage applications on their own device. This was a weaker reaction than that seen for 

AppLens, as six out of seven participants stated they would choose to use AppLens to 

manage applications on their device.  
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In comparing AppLens and LaunchTile to one another, most participants 

recognized that the more applications they could view at once, the less information each 

application could convey. Given this, seven out of nine participants thought AppLens 

provided better at-a-glance value. Nearly half of the participants were reluctant to 

compare the speed of information access between the two interfaces because of the 

fundamental mismatch between the number of applications each interface managed, and 

thus a mismatch between the amounts of information that could be accessed from each. 

However, seven out of nine participants thought AppLens supported faster data access, 

presumably because they thought AppLens struck a better balance between the number of 

applications managed and the quality of the information content that could be displayed 

simultaneously. Additionally, AppLens was considered easier to use (seven out of nine), 

and eight out of nine stated they would prefer AppLens to LaunchTile for use on their 

own device. In response to our general question about the utility of one-handed use, 

seven participants thought one-handed interaction would be useful at least some of the 

time, with three of those stating an a priori preference for one-handed use in all 

situations. However two participants expressed that they would never want to use a PDA 

with one hand, regardless of the interface design. 

4.8 Discussion 

Two notable themes emerged from the comparative study between AppLens and 

LaunchTile. The first was that participants were generally reluctant to use gestures. 

Results from my gesture study presented in Chapter 3, Section 3.4, suggested that 

directional gestures can be learned quickly, yet for both of the systems studied here, users 

favored tapping targets directly over issuing command or dragging gestures. While this 
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trend may simply be a training issue, it may also be a warning for the adoptability of 

gesture schemes. A second theme was that a large number of users commented on the 

perceived utility of the display of high-value content from multiple applications at once, 

bolstering our intuition that flexible notification-based designs may provide an effective 

balance between functionality and data presentation within the real estate constraints of 

handheld computing. 

While AppLens appeared to be the preferred design, we must take care in 

assigning reasons for the preference. First, AppLens was both a simpler design and a 

shallower prototype than LaunchTile. Its appeal may have been that users felt proficient 

and better able to manage nine applications (versus thirty-six) with minimal training. Its 

simplicity also made AppLens less prone to the performance limitations of the hardware, 

which negatively impacted zooming quality in LaunchTile. However, more experience 

with the two designs might have tipped the scales the other way, as Bederson has pointed 

out in [15] that even complex interfaces have the potential to be highly satisfying after 

users have expended the effort to become experts. In fact, a vocal minority of participants 

who happened to also be expert PDA users, stated a strong preference for LaunchTile 

because of the large number of applications it was able to manage. While we do not 

believe LaunchTile deserves the designation of “expert interface”, fifteen minutes is 

clearly not sufficient time for users to become proficient with the variety of interaction 

techniques it supports.  

In [15] Bederson hypothesizes that user satisfaction is related to how well an 

interface supports “flow”, which correlates inversely to the degree to which an interface 

gets in the way of, or interrupts, user tasks. Blue is an example of a LaunchTile feature 
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that interrupts flow: it performs different functions in different contexts, requiring users 

to keep track of the system state to predict the outcome of tapping Blue. This type of 

functional overloading is a well-known problem for usability, but is commonly used 

nonetheless. For example, both the Microsoft and Apple desktop media players use a 

single button for both Play and Pause. Just as with LaunchTile, these designs compromise 

straightforward functional mappings in favor of a visually simpler design. The difference, 

however, is that both media players change the button icon to reflect the current state 

(i.e., the function the button will perform when pressed) so that users don’t have to 

remember the state or deduce the state from less obvious cues. A similar adaptation for 

Blue may reduce or even eliminate user confusion in the LaunchTile design. 

4.9 Conclusion 

Based on the participants’ strong interest in one-handed PDA use, and generally positive 

reactions to their interaction experiences, this work offers further evidence of the value of 

research in one-handed designs. In addition, favorable feedback about the notification 

tiles in both designs suggests that notification may play an important role in the effective 

utilization of the limited display resources available in mobile computing. However, 

participant feedback favoring AppLens suggests that designs should strive for a balance 

between the number of simultaneous notification channels offered to users and the quality 

of the information provided therein. Unfortunately, since users were otherwise very 

receptive to the two designs, we learned little about the relative values of the competing 

design choices embodied by the two systems, such as whether using large, nearby targets 

that can be hit directly is better than using small or far targets and an indirect gesture 
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language, or whether pure zoom is better than fisheye zoom for showing contextual 

information. 
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Chapter 5  
Applications: Search Strategies for One-Handed Mobile 

Computing 

The goal of my work in the previous chapter was to investigate general design strategies 

for building touchscreen interfaces for thumb interaction, which I explored by applying 

competing solutions to the common user task of navigating and selecting among a set of 

familiar software programs. In choosing to study a real-world application domain, the 

study outcomes not only lent insight into the absolute and relative values of designing for 

thumb-sized targets versus offering an indirect gesture command language for navigating 

interfaces with arbitrary object layouts, but also gauged user interest in notification-based 

information browsing. 

In this chapter I take a similar approach in that I explore the potential of a 

generalizable one-handed interaction strategy through its application to a specific mobile 

problem domain. This work was performed in collaboration with the members of the 

Visualization and Interaction (VIBE) Group during my internship at Microsoft Research 

in the summer of 2005. I was the principal designer and developer of the interface 

investigated, as well as the principal designer and administrator of its associated user 

study. I was the first author on the paper we wrote describing this work, which was 

published in the 2006 Proceedings of the Conference on Human Factors in Computing 

Systems (CHI 2006) [77]. 
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5.1 Motivation 

In both desktop and mobile computing, it is quite natural that the programs we launch 

(e.g., email, word processor) and the data objects we access (e.g., documents, web pages) 

on a regular basis constitute a relatively small and stable set. This is why most operating 

systems allow users to configure their own application and document shortcuts (e.g, on 

the Windows and Macintosh desktops and the Windows Start Menu) and may also 

provide dynamically generated shortcut lists based on application and/or document access 

frequency (e.g., on the Windows Start Menu and Window Mobile Today screen). The 

notification-based designs introduced by AppLens and LaunchTile offered a new 

perspective on the common task of revisiting and monitoring a finite collection of 

favorite information sources on a mobile device, which may be extended to include 

applications, documents, web pages, and so on. But not only are mobile devices 

accumulating more device-resident data such as email, appointments, photos and music, 

they are also increasingly used as front-end interfaces to external data sets, including web 

sites, traffic information, and Yellow Pages data. As the volume of data that users can 

access on and from their mobile devices explodes, a relatively new and pressing issue in 

mobile computing is how to support users in locating and discovering data of interest 

from large, potentially unstructured and unfamiliar data sets, given the input and output 

constraints of mobile devices. Since AppLens and LaunchTile were never designed to 

scale beyond about thirty-six objects, new methods must be sought. 

The traditional desktop approach for managing and navigating personal data sets 

has been the folder hierarchy. But as data volumes continue to grow, users must either 

spend increasing time organizing their data into folders and enforcing naming schemes, 
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or give up entirely. Both methods lead to different challenges when a user revisits her 

data⎯either she takes more navigational steps to descend through the folder hierarchy 

(assuming she remembers where she filed the data in the first place), or she must visually 

scan through long lists of items. The problems are the same on mobile devices, only that 

the practical limits of folder hierarchies (and user patience limits) may be reached sooner 

since small screens can only display a few items at a time.  

The answer for the desktop has been to adopt keyword search from the Web 

domain, which allows users to quickly find highly relevant data from among a vast, 

unstructured and chaotic information space⎯not so dissimilar to the environments of 

many users’ personal computers. In the mobile arena, keyword-based search has yet to 

appear for accessing device-resident data. However, for data residing off the device, 

many SMS query-answering and browser-based solutions have emerged within the last 

couple of years [162, 167, 168], including offerings from every major search engine [163, 

165, 166, 170].  

While the existing mobile search solutions do cater to small screens and low 

bandwidth, the fact that they are modeled after desktop-based web search poses three 

main usability issues for the mobile setting. First, they rely on text entry as the method of 

input, even though the persistent trend toward smaller devices has consistently 

compromised the efficiency of entering text on devices. Second, the focus has been on 

searching off the device, which ignores the problem of finding data on devices’ 

expanding storage cards, and under-utilizes their increasing processing power which 

might otherwise be leveraged to offer a more effective search experience. Finally, both 

the SMS and web search models support directed search tasks, but are less appropriate 
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for browsing and exploratory search scenarios (“sense-making”) that are quite 

complementary to the mobile setting (e.g., “What is both fun to do and inexpensive 

around here?”).  

As an alternative to the existing keyword-based search solutions, we developed 

FaThumb (pronounced “fathom”), a hybrid browsing and searching interface that de-

emphasizes tedious keyword entry in favor of fluid, iterative data filtering through the 

navigation and selection of hierarchical faceted metadata. Additionally, the low priority 

that FaThumb places on text entry favors one-handed use scenarios for both keypad and 

touchscreen-based devices. Although keypad-base phones are already quite easily used 

with one hand, text entry is notoriously slow because multi-tap requires users to tap keys 

multiple times to enter the majority of characters, and predictive entry schemes require 

careful monitoring and occasional correction. Most touchscreen devices, on the other 

hand, are not designed to accommodate one-handed text entry at all. This fact is apparent 

from the results of my exploratory web survey, presented in Chapter 2, Section 2.3.3, 

which found that on average over four times as many respondents who have touchscreen 

devices use two hands for text entry tasks than use one hand (27% vs. 6%, as a 

percentage of total respondent population), but that almost twice as many of the 

touchscreen respondents would prefer to use one hand to two hands (19% vs 11%) for 

text entry (Figure 7). For either type of device, entering text with one thumb is slow 

because each letter is entered in pure succession, as opposed to the parallelism offered by 

using two thumbs on a mobile device, or ten fingers on a full Qwerty keyboard.  

The goal of FaThumb, therefore, was to offer a competitive alternative to text-

based keyword search that could be performed using localized tapping actions, which 
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according to my study of thumb movement in Chapter 3, Section 3.2, should be easy to 

perform with one hand. Our prototype design targeted a keypad-based mobile phone 

because it is the platform that is most widely used, and yet has the most severe 

restrictions for text entry. However, I describe how the principles of FaThumb are readily 

applied to a touchscreen-based interface for one-handed search in Section 5.5.7. After 

introducing FaThumb below, I describe the user study we conducted to understand the 

conditions under which a facet-based approach outperforms a keyword-based approach 

for searching large data sets on a mobile device. 

5.2 Related Work 

Many information access interfaces present data attributes (metadata) that users can 

include in queries to large data sets, rather than expecting users to remember them. 

Dynamic query interfaces [136] encourage iterative composition and refinement of 

complex queries by providing continuous visual updates of the query results as users 

restrict the data attributes included in the query. When network latency prohibits dynamic 

queries, query previews [44] provide an overview of the data to lend insight into 

distribution characteristics and help avoid queries that return either massive or empty 

result sets. Many desktop systems (e.g., [47, 160]) have successfully integrated these 

concepts to improve exploration and understanding of large data sets. FaThumb retains 

the spirit of these approaches, and maps hierarchically-organized attributes to the phone 

keypad (or virtual buttons on a touchscreen) in an attempt to offer the greatest access 

efficiency in the smallest display footprint.  

Hierarchical classifications have been used previously in search interfaces. Search 

results that include hierarchical labels can help users identify relevant items or further 
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refine (or broaden) searches. Search engines such as Yahoo (search.yahoo.com/dir) and 

Open Directory (www.dmoz.org) order results by relevance, but display each with a 

human-assigned hierarchical category; following the category hyperlink allows users to 

browse via the hierarchical category directory. Other systems help users quickly identify 

appropriate subsets from voluminous results by organizing results into hierarchical 

categories [41, 48, 169]. Interestingly, the research of Hutchinson et al. [68] on facet-

based browsing techniques to support search in children’s interfaces shares a key 

similarity with mobile device search, which is that text-based keyword entry is difficult 

for that user population. Their interface is another successful example facet-based search, 

although their facets were not structured hierarchically because of the problems it 

presented for children. FaThumb is most directly influenced by Flamenco [61] which 

couples faceted hierarchical attributes with query previews for use across all stages of 

search: query formulation, refinement and results browsing. 

A large number of research solutions have been proposed to facilitate web search 

from a handheld device, primarily by improving results understanding and navigation for 

small screens [28, 70, 71, 102], with only [158] designed specifically for keypads. 

FaThumb instead emphasizes efficient query formulation from a 3x3 grid of buttons, for 

either keypad-based or touchscreen interaction. Standard bookmarks and saved queries 

[41] help speed page revisitation, but most systems rely on device-specific text entry 

methods for ad hoc keyword search. Word prediction and completion algorithms such as 

Tegic’s T9 have the potential to reduce the number of entered characters, but also have 

the drawback that most fail for non-dictionary words, and may still require users to select 

from several alternatives. While FaThumb supports keyword search, it favors dynamic 
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result refinement through navigation and selection of hierarchically organized attribute 

values. 

Unique navigation and presentation techniques are required to accommodate the 

constrained input and output capabilities of small devices. Robbins et al. [121] classified 

these strategies into three categories in their ZoneZoom design: 1) reformat contents for 

vertical scrolling; 2) organize content into screen-sized chunks with associated navigation 

techniques; and 3) use zoomable user interface techniques to navigate data at multiple 

scales. FaThumb’s approach most closely resembles category (2) above, but uses a 

zooming technique inspired by ZoneZoom for hierarchical navigation: ZoneZoom 

provides image zooming capabilities by spatially mapping areas of the display to 

hardware keys; pressing a key causes the display to zoom into the corresponding area of 

the user interface. Of course for touchscreen-based devices, uses can simply tap the zones 

directly with a finger or stylus. 

5.3 Terminology 

5.3.1 Search vs. Browse 

Information seeking strategies take many forms depending on the task at hand, user 

knowledge, and target data set. For example, a user may have in mind a specific 

document she wishes to find on her desktop. Though the task may be considered one of 

directed search, her approach will be influenced by whether she remembers the name of 

the file (in which case she would look for the file by name) or only the period of time in 

which it was last modified (causing her to look at modified documents within a 

constrained time span). If the task involves finding a research paper on the web, she 
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might instead search by some combination of topic, author, or related papers. This 

approach may appear superficially similar to one she would use if instead she were 

generating a list of references, although in that case it might be considered a browsing 

activity given its open-ended nature. I will use the following definitions for the purposes 

of this chapter: a directed search is one in which the user knows the precise target in 

advance, while a browsing task is one characterized by specifying criteria that describe a 

data need, and which may evolve during the search activity. These concepts map closely 

to what others term navigational and informational queries for web search [26, 123]. 

5.3.2 Faceted Metadata 

Leveraging data attributes for search has received much attention in recent years. Hearst 

et al. [61] demonstrated the use of data attributes (metadata) organized into orthogonal 

dimensions (facets) as a means not only to structure search results, but as a tool to guide 

users in formulating powerful Boolean queries. This approach not only reduces cognitive 

load through recognition, but allows users to reliably restrict results by attribute values 

rather than by keyword alone. Hearst’s evaluations over both text and image-based data 

sets have established the efficacy of faceted metadata within integrated search and 

browse environments.   

Although the metadata values within a facet can be organized hierarchically, 

attribute values need not have a unique classification. This means that the faceted 

hierarchy is in fact a directed acyclic graph, and that an attribute value may be reached 

via multiple paths in the hierarchy. The same holds true for each data record, which may 

be found via any of its attributes. For example, the “Terrier” record may appear in a pet 
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database under the “Small” value in the “Size” facet, the “Brown” value of the “Color” 

facet, and the “Dog” value of the “Type” facet.  

The FaThumb prototype was developed to explore whether a facet-based search 

approach could scale down to the small screen and input constraints of a mobile platform, 

while still providing users the ability to find data within a large data set. In our evaluation 

of FaThumb, we use a Yellow Pages data set for the Seattle metropolitan area (about 

39,000 listings), but the FaThumb design is intended to generalize to a variety of data 

sets, including personal (contacts, email, etc.) and public (web pages, movie listings, etc.) 

repositories. 

5.4 Data Preparation 

Before describing the FaThumb interface in detail, I will describe the data set used in the 

prototype so that the examples in the following section may be better understood. We 

obtained a Yellow Pages data table for Washington state with attributes of business name, 

address, phone number, latitude, longitude and associated Standard Industrial 

Classification (SIC) code number (http://www.osha.gov/pls/imis/sic_manual.html). For 

the purposes of investigating a realistically rich data set, we augmented the metadata to 

include neighborhood, relative distance from four pre-set static locations (a fictional 

user’s “current” location, school, home and place of work), price ($ to $$$$), rating (one 

to four stars), hours, and days of operation. Location-based values were computed from 

the latitude and longitude for each item, while values for the remaining attributes were 

assigned randomly, with only restaurants receiving price and rating classifications. 

Although several classification hierarchies for Yellow Pages data exist [164, 170, 

171], they are characterized by large numbers of items at each level, and are thus best 
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suited for desktop presentation and navigation [83]. So, drawing on existing on-line 

Yellow Pages resources and intuition, we developed our own attribute classification 

hierarchy for small screens with the following properties: eight top-level facets, a 

maximum of eight metadata attributes at each lower level, a maximum depth of five, and 

just over 200 terminal attributes (to access approximately 39,000 data items). Some 

attributes were naturally hierarchical (e.g., location, which can be organized by 

increasing granularity: address, neighborhood/town and region), while for others, a 

hierarchical structure was imposed as strategy for organizing the data (e.g., relative 

distance was broken down by type: from me, from work, from school, from home). To 

ensure Yellow Pages entries could be navigated by business type, we developed a 

mapping between SIC codes and more user-friendly business types, which were 

organized hierarchically into a top-level Category facet.  

5.5 FaThumb Interface Design  

The follow sections describe the interface design for the FaThumb interface. Since the 

FaThumb prototype was built to target a mobile phone, the user interactions are described 

in terms of the actions that would be performed on a numeric keypad-based device. Bear 

in mind, however, that FaThumb’s fundamental contribution of searching data sets via 

facet-based attribute navigation has broad relevance to the constraints of a wide variety of 

mobile devices. As an example, in Section 5.5.7 I describe how nearly the same interface 

and interaction approach might be adapted for touchscreen-based devices. 
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5.5.1 Interaction Framework 

The FaThumb interface is composed of four distinct structural regions (Figure 27). 

Among the top three regions (Filter, Results and Facet Navigation) an orange activation 

border serves to identify the active region, which designates the one receiving input from 

the keypad. In Figure 27a, the Facet Navigation region is the one that is active. Users 

change the active region by pressing the up or down directional keypad arrows, causing 

the border to animate to the adjacent region. The bottom region (Menu) is reserved for 

two menus accessed via associated hardware buttons. The menus’ availability and 

functionality are dependent upon the state of the active region.  

 
Figure 27. The FaThumb search interface. The default interface configuration (a), and the results for 

inexpensive cafés within five miles of the user (b). 

5.5.2 Facet Navigation Region 

The Facet Navigation region represents a navigable tree of hierarchically organized 

facets, which contains the metadata attributes of the Yellow Pages data set. Each non-leaf 

node in the tree is depicted as a 3x3 grid of nine zones (Figure 27). Each zone displays a 

facet or attribute label and a number indicating how many data records in the set can be 

characterized by the label. Figure 27a displays the root of the facet tree, from which we 
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see that Yellow Pages listings can be described according to business Category, relative 

Distance from both predefined and real-time locations, absolute Location, Hours of 

operation, Price classification, and consumer Rating. 

Three zones at the root level have specialized functionality. The Favorites and 

Shortcuts facets are reserved for future use. Favorites will store entire queries 

(combinations of selected attributes and/or free-text search terms) the user has chosen to 

save, and Shortcuts will populate dynamically with attribute labels from arbitrary 

locations in the facet hierarchy based on usage patterns, such as most recently or most 

frequently used values. The middle zone, on the other hand, is not a facet at all, but an 

Overview zone which serves as a spatial overview during navigation. 

Structural Philosophy of the Facet Navigation Region 

For mobile devices that lack touchscreens, FaThumb is optimized for keypad interaction. 

The Facet Navigation region is intentionally designed to map spatially to numbers 1 

though 9 on the numeric keypad (e.g., Figure 28a). Conveniently, the 3x3 grid design 

also provides a compact interaction region of large targets for navigating the facet 

hierarchy with the thumb when implemented on a touchscreen-based device. While this 

design restricts the branching factor of the hierarchy (with a maximum 8 at each level), 

its depth and balance are dictated only by the target data set. For any domain, we believe 

consistency of facet location is crucial to promoting user mastery of the hierarchy. Thus 

we opted for a terminating tree, meaning users must return to the top of the tree to 

explore paths that lead from other top-level facets. On the other hand, as data sets grow, it 

may be appropriate to dynamically generate nodes within the facet tree to provide more 

efficient distribution of data among the available zones (e.g., consider date facets labeled 
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by day for high frequency data, but by year for low frequency data). Dynamic strategies 

may be most effective at lower levels of the tree, since users may be more willing to 

browse a less familiar but more useful set of choices once they have already narrowed the 

data set using a few familiar initial selections. 

 
                 (a)                                               (b) 

                 
                 (c)                                               (d) 

Figure 28. An example of facet navigation using FaThumb. From the root of the facet hierarchy, 
pressing 3 navigates to Location (a). At the next level, pressing 1 navigates to Seattle (b). Pressing 4 

then navigates to Downtown (c), and finally pressing the left menu button adds Downtown to the 
query (d). 
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5.5.3 Navigation Region Interaction 

Users perform facet-based queries by interacting in the Facet Navigation region. A user 

navigates the facet space by selecting the zone she wishes to explore within the 3x3 grid. 

Pressing a number on the keypad (or tapping the zone on a touchscreen) zooms the 

display into the associated zone: internal tree nodes zoom to the next hierarchical level, 

while leaf nodes expand to occupy the entire navigation region (Figure 28d). Each 

traversal propagates navigation state information to the Results region, which serves as a 

query preview by showing the data set filtered by the selected facet value. A zooming 

animation accompanies each navigation step. 

At each traversal, the left menu changes to display the selected attribute label, 

both to remind the user of the filter that has been temporarily applied to the data set, as 

well as to allow the user to add the attribute permanently to the current query; pressing 

the left menu button adds the attribute label to the top Filter region as a search term 

(Figure 28d). Pressing the left menu button a second time removes the attribute term from 

the Filter region. When displaying nodes other than the root, the right menu button serves 

as a shortcut to the top of the facet hierarchy. Alternatively, pressing the hardware back 

button that is standard on most devices returns the user to the previous level and updates 

menus and results accordingly. As an example of query formulation via facet selection, a 

user interested in inexpensive restaurants in downtown Seattle, might (a) navigate to and 

select Location→ Seattle→Downtown, (b) return to the root, navigate to and select 

Category→Restaurants, (c) return to the root, navigate to and select Price→$. Elements 

of (a) are shown in Figure 28. Since the Restaurant facet is subdivided further, for 



 

 
 

142 
 

example, by Cuisine, Style, Ethnicity and so on, the selection in step (b) illustrates that 

attributes can be saved to the query at any level of the hierarchy, not just the leaves. 

Overview 

Although navigational context might take many forms (global vs. local, descriptive vs. 

iconic, etc.) our goal for the initial prototype was to explore designs for reinforcing 

spatial and motor memory to support users in learning key sequences to specific locations 

in the face tree. 

The Overview representation, displayed in the middle zone of the Facet 

Navigation region, can be thought of as a stepped-pyramid viewed from above; each 

hierarchical level corresponds to a layer of the pyramid, with the root as the pyramid’s 

foundation. In the root view (Figure 28a) the Overview serves as a key for FaThumb’s 

color cues, which assign each level of the facet hierarchy to a unique color. When a user 

presses a number on the keypad to navigate into a facet, the Overview captures the 

selection by displaying a block whose color corresponds to the current depth, and whose 

position within the Overview corresponds to the spatial position of the selection on the 

keypad. For example, pressing 3 at the root to navigate to Location adds a purple block to 

the Overview in the upper right corner since 3 is in the upper right position of the numeric 

keypad (Figure 28b). As the user navigates deeper into the hierarchy, smaller levels are 

added to the pyramid to preserve the user’s previous selections (Figure 28c), and so 

convey the entire spatial selection sequence from the root. This design is able to give both 

a sense of where the user is in the hierarchy and what command sequence lead to that 

location. 



 

 
 

143 
 

Visual Encodings 

Visual cues help convey fruitful navigation paths to users: leaf nodes are shown in flat 

purple (e.g., all nodes in Figure 28c), while zones corresponding to internal tree nodes are 

decorated with a faint grid to indicate the presence of deeper facet levels (e.g., Location 

in Figure 29e). The distribution of data across the zones (depicted as numbers) serves as a 

preview to encourage or discourage exploration of a path, depending on the task. Zones 

corresponding to facet tree nodes with no associated data records are de-emphasized 

using gray text (e.g., Favorites in Figure 29c), and cannot be selected. Each facet-based 

search term added to the Filter region is visually tagged with a colored border in the Facet 

Navigation region. The visual tags propagate to higher levels when the selected facet is 

buried within a zone’s sub-tree as a way of providing information scent for the query 

terms (again, see Location in Figure 29e).  

5.5.4 Results Region Interaction 

Once a user is satisfied with the search terms that have been added to the query (any set 

of facet filters and/or free-text terms), she can explore the remaining records by using the 

Results region. When the Results region becomes the active region, it expands from the 

original five records to accommodate the first nine records (Figure 29a). The visible 

items are then numbered from 1 to 9 to support single-key access to listing details. (The 

current prototype stops short of showing the listing details but users in our study were 

able to easily extrapolate the behavior.) 

The left menu indicates the number of results which follow those displayed, if any 

(Figure 29a). Pressing the left soft-key displays the next page (up to 9) of results. Once 

the end of the result list is reached, the left menu allows users to continue from the 
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beginning of the list. In anticipation of limited bandwidth and user patience, the current 

prototype only displays the top 200 records. It seems reasonable that users will not want 

to browse through more than 200 records on a small screen, and so will learn that they 

can continue to add facet criteria, filter terms, and sorting operations until the desired data 

are within the top 200. Users can page backward through results using the hardware back 

button. We chose to not use the up and down directional keys for scrolling of the results 

because these buttons are dedicated to moving the activation cursor between regions of 

the interface. 

 
Figure 29. FaThumb results interaction sequence.  When active, the results region expands to display 

up to 9 items (a). The right menu button opens the Order By menu (b); pressing 9 sorts results by 
Rating.  The up arrow moves the activation region to the filter bar (c). Typing in a search term 

updates the results (d). A facet node in detail (e)s. 
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A result record consists of two pieces of data: an identifier (which for the Yellow 

Pages records is the business name) and an attribute (which by default is the phone 

number). Since data records have not one, but many attributes, users can cycle through 

the alternative attributes by pressing the left and right navigational arrows.  

By default, results are ordered alphabetically by identifier, but they can instead be 

ordered by other data attributes. Pressing the right soft-key triggers a menu of available 

order options, which for the Yellow Pages data include: by alphabetical order (A-to-Z or 

Z-to-A), by relative distance (from user, home, school, and work), by neighborhood, by 

price and by rating (Figure 29b). A checkbox is displayed in the menu next to the current 

ordering. Each option is numbered 1 to 9 and selecting the associated number on the 

keypad reorders the result list and displays the selected sort attribute in each record’s 

attribute column. For example, in Figure 29c, the results have been ordered by consumer 

rating.  

5.5.5 Filter Region 

The Filter region holds both the facet-based attributes and free-form text terms, generally 

referred to as filters, which define the current search query. Filters are displayed in the 

Filter region as colored, labeled blocks that each occupy one third of the screen width. 

However, the Filter region can hold an arbitrary number of filters. While a maximum of 

only three filters are visible at any time, white arrows are displayed along the left and 

right sides of the Filter region to indicate the presence of off-screen filters. 

Facet versus Text Filters 

Facet-based filters partition the data into two sets: items with metadata that match the 

given attribute, and items without. Free-form text filters also partition the data, but 
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instead by performing a string match over all meaningful record text. Although an data 

attribute may have a hierarchical “address” describing its position within the facet 

hierarchy, only the text of the leaf node in the hierarchical path is displayed in the filter 

bar. However, the entire address from node to root is used as the filter criterion. In 

contrast, no assumptions are made about the context of a free-form text term, which is 

matched against a predefined subset of the data and metadata. This approach introduces a 

fundamental asymmetry between facet selection and text entry in query formulation: 

selecting “Italian” as a facet filter differs from entering “Italian” as a text filter. In the 

former case, only Italian restaurants will appear in the result set. The latter query term 

will include all of the listings of the former, as well as those that have “Italian” in any 

indexed attribute, such as a business named “Italian Auto Specialists”. 

Filter Region Interaction 

When the Filter region becomes active, the leftmost filter is automatically selected and 

shown with an orange selection border (Figure 29c). The left and right directional 

navigation buttons move the selection border to adjacent filters within the Filter Region, 

scrolling to off-screen filters as necessary. Moving the activation border beyond the 

rightmost filter adds a new (empty) text filter to the query. 

As long as the Filter region has focus, users can enter free-form search text using 

the numeric keypad. If the active filter is a text filter, text will be appended to the existing 

filter text. If instead the activation border is over a facet-based filter, the existing filters 

will slide to the right to make room for a new text filter (Figure 29d). Multi-word text in 

the same filter is treated as a phrase, while multiple separate text filters are treated as 

separate search terms. 
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Text Entry 

The FaThumb prototype supports multi-tap text entry, whereby each keypad number 2-9 

is assigned 3 or 4 alphabetic characters. Pressing a key once enters the first character, 

pressing twice enters the second character, and so on. A 600ms timeout determines 

whether a consecutive tap on the same key overwrites the last character or appends a new 

character. After each timeout, the entire query is reissued and results are updated, 

effectively providing incremental text search. Substrings in the Results region that match 

any of the free-form text filters are displayed highlighted in light blue (Figure 29d). 

Multi-tap is the original method for text entry using a numeric keypad. While T9 

single-tap word prediction has gained popularity, without modification it is unlikely to be 

effective for search over domains that use proper names (e.g., Yellow Pages) or user 

defined names (e.g., local data). However, FaThumb can easily be adapted to incorporate 

the most appropriate text input technique for the data set in question. 

Filter Region Menu Options 

When the selection border is over a filter, menu options only affect the active filter. The 

left softkey allows users to preview the removal of a filter. When pressed, the selected 

filter is disabled and removed from the query: the filter text becomes gray and the Results 

and Facet Navigation regions repopulate to reflect the new query. Pressing the left 

softkey again re-enables the filter, again propagating to the Result and Facet Navigation 

regions. This toggling behavior lets users easily see how the filter narrows the results set. 

This behavior is especially important when the user is inspecting data with which they are 

unfamiliar. If the activation border is moved to the Results region while some filters are 

inactive (grayed), those filters are removed permanently from the filter region and the 
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current query. Remaining filters then slide left to remove gaps and visually reinforce the 

current query. Zero-length text filters are also removed. 

For facet-based filters, the right menu serves as a shortcut to its position within 

the Facet Navigation hierarchy. Pressing the right softkey animates the activation border 

to the Facet Navigation region, at the same time animating a traversal through the 

hierarchy from the current location to the target filter. The shortcut may be convenient in 

the case that a user wants to expand a query to explore options at the same level in the 

facet hierarchy as a previously selected facet. We believe such convenient exploration 

interaction eliminates the need for an explicit OR query operator. 

5.5.6 FaThumb Implementation 

FaThumb was implemented on top of Piccolo.NET 

(http://www.cs.umd.edu/hcil/piccolo/), chosen because it runs on both desktop PC’s 

running Windows and on the Microsoft Windows powered Smartphones and Pocket PCs. 

Piccolo.NET supports zooming and animated transitions, which are both key design 

elements of FaThumb. The initial FaThumb prototype ran in a simulated phone 

environment on a desktop PC, configured with the same display and input limitations as a 

Smartphone. For the user study, we used an external keypad programmed to have the 

same key layout as the Smartphone. The multi-clause faceted queries defined by the 

FaThumb users’ interactions were implemented by building and executing dynamically-

generated Structured Query Language (SQL) statements for portability across a wide 

variety of database systems. The initial prototype connected to a desktop-based Microsoft 

SQL Server database, because support for full SQL (SQL Mobile) was not available on 

the Windows Mobile Smartphone platform at the time of our investigation. We decided 
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to use a simulated phone environment on a PC so that we could explore the value of 

facet-based search even before the availability of hardware to support such sophisticated 

data processing. 

5.5.7 FaThumb for Touchscreen Displays 

Although the FaThumb interface was designed with particular care toward supporting 

indirect interaction through numeric-keypad mapped actions, its principles are quite 

adaptable to one-handed touchscreen interaction.  

 
(a)                                                    (b)                                                 (c) 

Figure 30. Example screen designs for a thumb-based touchscreen version of FaThumb. The default 
layout, with the input focus on the Facet Navigation region (a) and the display of results when the 

input focus is on the Results region (b). When the input focus is on the Filter region, the Facet 
Navigation region updates to support text entry (c). 

One design option, which I present here, is to retain the notions of the activation 

border and active regions. Users might move the activation border between regions either 

by using the directional pad, which is standard on most touchscreen devices and shown at 
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the bottom of the device in Figure 30, or alternatively by using on-screen gestures: ↑ to 

move the border up a region, ↓ to move the border down a region. In fact, gestures might 

be used for any action that users would typically perform using the direction navigation 

pad on the phone, such as using left-to-right → or right-to-left ← finger sweeps to scroll 

through the data attributes (right column) in the Results region, or move between filters 

in the Filter region. 

When the Facet Navigation region is active (Figure 30a), users can simply tap any 

of the 8 zones (excluding the Overview) to navigate the Facet Navigation hierarchy. 

Because the 3x3 Facet Navigation grid occupies a relatively compact area of the device, 

assuming an appropriate hand grip, all zones should be within comfortable reach of the 

thumb. In addition, the 42 pixel high zones would be both fast and accurate to hit 

according to the results of my target size study (Chapter 3, Section 3.3) because on 3.5” 

screens, each zone would be over 1cm high. When the Results region is active (Figure 

30b), the 5 results expand in size to make each one easier to hit with the thumb. The 

additional space created for each item might be used to display additional details 

associated with the item. Since the user’s grip would need to be somewhat centralized on 

the device for the thumb to reach all 5 items, the soft menu items could be enlarged so 

that users would only have to reach as far as the bottom of the screen to navigate forward 

through the results list, as opposed to having to reach all the way to the associated 

hardware buttons. Finally, when the Filter region is active (Figure 30c), the Facet 

Navigation region could be repurposed as a standard numeric keypad for entering filter 

text.  



 

 
 

151 
 

5.6 User Study  

We conducted a user study designed to help us understand the value of facet-based 

navigation compared to text-based search using a 3x3 interaction space. It seemed clear 

to us that text-based search should be better for certain types of tasks, like looking for a 

particular business when the name is known. It also seemed clear that facet-based 

navigation should be better for less well-defined or more complex searches. For example, 

finding the closest, expensive, Chinese restaurant would be quite hard (or impossible) 

using standard web-based keyword search because it might only allow users to search on 

business name and location. Of course, specialized Yellow Pages interfaces do allow 

users to search on facets like location and neighborhood, but may still not index attributes 

like rating and price. To make our comparison as competitive as possible, we supported 

text search over all facet names and attributes except for those relating to distance and 

hours of operation. That is, users could type “Chinese” and “$$$$” and get a list of 

expensive Chinese restaurants. The study was designed to test the above hypotheses as 

well as assess subjective preferences for the two techniques, in addition to collecting first 

iteration feedback about the FaThumb user interface. 

5.6.1 Participants 

Participants were recruited with the following characteristics: each must have owned a 

mobile phone with numeric keypad entry for 3 months and have sent at least 2 text 

messages a week. Seventeen participants (10 female) ranged in age from 20 to 53 with an 

average of 29.2 years of age and sent an average of 17 text messages per week. 

Participants received 2 software gratuities for their time. This study was conducted at 

Microsoft Research, and all participants granted us their informed consent. 
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5.6.2 Method 

The study design was a 2 (input type: text entry v. facet navigation) x 3 (search type: 

directed v. simple browse v. complex browse) x 4 trials within subjects design. Input type 

was counterbalanced across participants, as were the task sets (2 isomorphic task sets 

were rotated through the conditions such that each task was performed by half the users 

via text entry, and half via facet navigation). However, search type was presented to 

subjects in order of increasing complexity, moving from directed to simple to complex 

browse.  

5.6.3 Equipment 

The study was run using a desktop simulation of the Smartphone user interface. A 2.8 

GHz Pentium 4 Compaq PC with 2G of RAM was used to drive two side-by-side NEC 

MultiSync LCD 1880SX monitors set at 1280x1024 resolution. Users interacted with the 

FaThumb interface using an Ergodex DX1 Input System configurable keypad arranged to 

mimic the Smartphone keypad. A Compaq keyboard and Microsoft Intellisense mouse 

were used as input for question answering at the completion of each task. The hardware 

setup for the study is shown in Figure 31. 

 
Figure 31. The FaThumb study equipment setup. The study control software is displayed on the left 
screen, which was controlled by the Qwerty keypad, and the FaThumb interface is displayed on the 

right screen, and controlled by the Ergodex keypad. 
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5.6.4 Tasks 

To investigate whether facet navigation could outperform keyword search, even with an 

unfamiliar hierarchy, task were carefully balanced for query complexity. Under these 

constraints, we did not expect to faithfully preserve ecologically valid tasks. Tasks were 

therefore chosen to be representative of those we imagined real users would perform on 

their phone under various conditions: at work, at home, and while in mobile situations.  

Twelve pairs of isomorphic tasks were developed. To be representative, four task 

pairs were assigned to each of three search types, which increased in complexity based on 

the number of facet selections or free-text terms required (directed search, simple browse, 

and complex browse). For example, directed search tasks involved searching for a 

specific business, while browse tasks presented varying numbers of target attributes. We 

also classified tasks as “shallow” or “deep” according to the minimum number of 

hierarchical levels users would be required to visit to complete the task, although we 

restricted our final analysis to only the search type. Tasks were ordered by complexity 

(first by search type, then depth) to provide users familiarity with the hierarchy before 

proceeding to more complex tasks, which might be unfairly penalized otherwise. 

Example tasks are presented in Table 1. Although task descriptions contained the 

required search terms, the terms were not emphasized visually in any way and so had to 

be derived as part of the task. For illustrative purposes here, however, the search terms 

have been underlined in the table below.  
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Table 4. FaThumb User Study: Example study tasks. 

Search Type Depth 
(Levels) 

Task Text 
(query terms underlined here only) 

Shallow 
(3) 

What is the address of the BlueBottle Art 
Gallery? Directed 

Search Deep 
(4) 

What is the address of the Safeway Grocery 
closest to me? 

Shallow 
(2+2) 

What 4-star (****) restaurant is closest to 
home? Simple 

Browse Deep 
(4+3) 

What seafood places are there in Issaquah? 

Shallow 
(2+3+3) 

What inexpensive ($) repair store in  Queen 
Anne is closest to me? Complex 

Browse Deep 
(3+3+4) 

What’s the name of the 24-hour pharmacy 
in Fremont? 

5.6.5 Measures 

Dependent variables collected during the study included task time, error rate, logs of 

interactions per task, user satisfaction ratings and overall preference. We also collected 

observed usability issues and comments from our participants. All measures other than 

satisfaction ratings and preferences were automatically collected via the logging tool 

installed on the participant’s machine. 

5.6.6 Procedure 

Participants were run in pairs with the experimenter present. After greeting the 

participants, the experimenter presented the study procedure and walked the participants 

through an interactive tutorial, highlighting all key interaction features of the interface 

design. Upon completing the tutorial, eight practice tasks representing each condition of 

the study were carried out with the experimenter watching. Once the practice phase was 

completed (approximately 1 hour), the study proper was begun. Participants performed 

all tasks relating to either text entry or faceted navigation in a single block of trials before 

moving on to the other input type.  
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Study control software was run on the left monitor and the FaThumb interface 

was presented on the right. A trial consisted of the following steps. After reading the task, 

users hit a start button to begin task timing. Upon finding the search target, users hit a 

stop button and entered the answer in a text field. While correctness was not required to 

move onto the next trial, we did analyze for percent correct after the session. Participants 

hit a ‘next task’ button to proceed. Upon completion of all 12 search trials (3 search type 

x 4 trials) for a given input type, users completed a satisfaction questionnaire and 

proceeded to the next block of trials. At the end of the entire session, users provided 

overall preference ratings and general comments. The experimenter debriefed the 

participants as to the purpose of the study, provided the software gratuity and escorted 

them out of the building. Total session time was approximately 2 hours.  

5.7 Study Results 

5.7.1 Task Times 

A 2 (input type: text entry v. facet navigation) x 3 (search type: directed search v. simple 

browse v. complex browse) x 4 trials repeated measures Analysis of Variance (RM-

ANOVA) was carried out on the task time data. In order to run the analysis, averages 

were used to fill cells of missing data. Missing data was a problem because incorrect 

answers were sometimes provided and could not be included in the task time analysis 

(~22% of the data). In addition, 4 trials were lost due to system failure and 3 trials were 

thrown away due to misleading task phrasing. Main effects of search type, F(2,32)=13.9, 

p<.001, and trial, F(3,48)=3.9, p=.015, were observed. Interactions of input x search, 

F(2,32)=12.7, p<.001, search x trial, F(6,96)=4.36, p<.001, and a 3-way interaction of 

input x search x trial, F(6,96)=3.7, p=.002, were also observed. 
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On average, facet navigation was slightly faster than text entry, (62.9s v. 63.9s), 

but the difference was not significant. As for search type, post hoc analyses with 

Bonferroni corrections showed that the simple browse condition was significantly faster 

than either directed search or complex browse at the p=.05 level. The trials did show an 

increase in complexity as per design, since the fourth trial was significantly slower than 

the others (no other significant differences between trials were observed).  

For an explanation of the search x input interaction, I will refer to Figure 32. 

Starting with text entry, it is clear that going from directed search to simple and then 

complex browse tasks slows the user down. This is not surprising since knowing the 

name of a search target (directed search condition) is advantageous to the text entry task. 

However, this was not the case for facet-based search task times. The faceted simple 

browse condition was significantly faster than the others. However, it is also clear that 

when the task provided a specific target name as in the directed search condition, facet 

navigation was much slower. In other words, if one knows the search target by name, 

searching via text entry will be significantly faster than finding the same target using 

facet navigation. If instead a user is browsing for targets unknown in advance, facet 

navigation will outperform text entry, with time increasing with task complexity. All 

other interactions can be explained by the designed increasing complexity of the trials 

within a block. 
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Figure 32. FaThumb Study: Mean task times for each search condition by input type. 

5.7.2 Percent Correct 

A 2 (input type: text entry v. facet navigation) x 3 (search type: directed search v. simple 

browse v. complex browse) x 4 trials repeated measures Analysis of Variance (RM-

ANOVA) was carried out on the percent correct data from the search trials. No 

significant main effects were observed at the p=.05 level. However, input x trial, 

F(3,48)=4.6, p=.007, and search x trial, F(6,96)=2.8, p=.01, interactions were observed. 

The input x trial interaction can be explained by the fact that as trials got increasingly 

more complex, text entry became more difficult, while faceted navigation did not suffer 

as much. The search x trial interaction suggests that the simple browse search tasks 

suffered more from the increasing complexity (depth) of trials than did the other two 

search task types.  

5.7.3 Satisfaction 

A 2 (input type: text entry v. facet navigation) x 13 (satisfaction questions) RM-ANOVA 

was carried out on the satisfaction questionnaire ratings. Significant main effects of input 

type F(1,16)=10.2, p=.005, and questionnaire item F(12,192)=7.02, p<.001 were 

observed. In addition, a significant interaction between input type and questionnaire item 

was observed, F(12,192)=2.4, p=.006. Text entry was rated significantly lower in terms 
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of satisfaction than was facet navigation overall (average text entry rating = 4.4, average 

faceted navigation rating = 5.6, with 7 being high). Scales for mental demand, physical 

demand, and frustration were reversed so that high ratings always indicated positive 

opinion. Average ratings for each input type are indicated in Figure 33. User ratings were 

high overall for both input types given this was a first iteration study of FaThumb. 

 
Figure 33. FaThumb Study: Mean satisfaction ratings for text entry and attribute navigation. 

5.7.4 User comments 

User comments were optional, and those that were made reflected overall positive 

reactions to the integrated FaThumb system (which included both facet navigation and 

text entry). We report only on the strongest trends, starting first with those for text entry, 

then those for facet navigation.  

Although two users’ comments were strongly supportive of text entry, the 

remainder (12 users) tended toward neutral or negative. Participants most consistently (5) 

expressed frustration with text entry when tasks included constraints that were not 

searchable, such as days or hours of operation. Some (four) offered (correctly!) that text 
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entry would likely be most effective when a specific business name was known in 

advance, but would prefer facet navigation otherwise. 

By contrast, participant comments suggested general enthusiasm for facet 

navigation, including that it was easy to learn and use (four participants), fun (four), fast 

(three) and effective in increasing response confidence (two). The most common negative 

comment was frustration with identifying the appropriate business classification for task 

targets. Because the four facet navigation practice tasks provided users only minimal 

exposure to the hierarchy prior to the timed phase of the study, users were forced to rely 

on exploration and intuition to locate facets, which at times resulted in lengthy navigation 

times.  

5.7.5 Usability Observations 

Participants primarily requested minor feature additions rather than offered fundamental 

usability suggestions. Thus we draw on our analysis of user error types and experimental 

observations to better understand usability issues in the FaThumb design. To investigate 

reasons for error, we reconstructed navigation paths for tasks answered incorrectly, and 

then classified error types into 5 categories: 

Incomplete search criteria (~36%): The majority of errors occurred when users 

failed to use all search criteria provided, or used incorrect criteria. Since these errors 

manifested only for tasks that required multiple search terms, the most likely explanation 

is that complex tasks taxed user memory. Had tasks originated from personal needs, such 

errors may have been greatly reduced. 
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Failure to sort (20%): Users sometimes forgot to (or chose not to) sort the data 

set, which resulted in task error. This suggests that some users do not map tasks involving 

comparison terms (closest, cheapest, best, etc.) to sorting operations. 

Incorrect sort criteria (~13%): While some portion of the sorting errors can be 

attributed to memory errors, the sort interaction clearly posed a usability problem. To 

order results, users were required to map a linear list of menu items to the 3x3 layout of 

numbers on the keypad. Despite visual feedback provided during a key press, users were 

observed returning to the menu to verify selection. Serial item selection of menu items 

using the up and down arrows may have improved confidence and reduced errors, but 

would have been slower. For touchscreen designs, we may see this behavior less 

frequenty, as tapping items directly with the thumb may instill more confidence in users 

than the indirect selection required by the phone keypad. Otherwise, a 3x3 grid may be a 

viable option for the menu design, with the caveat that 2D layout disrupts visual scan, 

and would thus be more suited to menus with familiar content. 

Results scan errors (~16%): When sorting could not be used to place the target 

item at the top of the results list, participants made identification and copy errors when 

scanning results. These problems were likely due to the fact that the prototype did not 

allow users to highlight or select items, which otherwise would have allowed users to 

visually anchor or verify choices. Item selection within the result list presents similar 

problems to those for menu item selection. In this case, however, a 3x3 layout is 

inappropriate since the dynamics of the list make fast linear scan a priority. Using 

up/down arrows to highlight items is also problematic, since it interferes with their 

dedicated use in activating interface regions. Fortunately, highlighting an item by 
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pressing numbers 1-9 has a lower commitment cost than for menus, which close 

immediately upon item selection. Here, users can verify a selection before pressing 

“enter” for further details. Again, for touchscreen designs, users could simply tap the 

desired item directly to see more details. 

Business classification errors (10%): The small size of the facet navigation zones 

limited the length of facet and attribute labels, while the narrow, relatively shallow 

navigation tree lead to business categories that were quite general. Both issues resulted in 

classification ambiguity. At the same time, some facets were arguably misclassified 

(Salons were located under Category→ Shopping→ Personal→ Hair, rather than 

Category→ Services→ Businesses). Iterative refinement of the hierarchy and user 

familiarity would certainly reduce these errors, but they are likely to be typical of errors 

encountered for any new classification hierarchy. This makes it all the more encouraging 

that users provided such strong preference for facet navigation. 

5.8 Discussion  

Based on user feedback and our own observations, we found users adapted quickly to the 

facet navigation and selection, suggesting the spatial arrangement and hierarchical 

structure of facets holds great potential for search. However, users were at times 

frustrated when items were not classified as expected, and some either did not understand 

the role of sorting for search tasks or did not understand how sorting was supported in 

FaThumb.  

FaThumb’s primary challenge may be its generalization to alternate data sets. 

Given the positive response to facet navigation, successes must have either been more 

common than failures, or otherwise were more gratifying than user mistakes were 
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frustrating. Even so, first-time users struggled with the classification scheme for some 

tasks. We would like to extend the FaThumb paradigm to a wider variety datasets such as 

email, contacts, appointments, photos, cached web pages, traffic information, stocks, 

music collections, or movies listings, in order to understand the elements of classification 

structures that promote satisfying user experiences. 

Another potential concern is that some users did not sort the result list when 

necessary. One user gave insight into the problem when he commented he would have 

liked “closest to me” as an attribute in the facet tree. This suggests some users may not 

view attribute selection and sorting as fundamentally distinct operation types. We would 

therefore like to investigate whether integrating a subset of sort operations into the facet 

space improves performance for appropriate classes of tasks.  

We designed FaThumb as a search solution for devices with limited input and 

display capabilities⎯in particular keypad-based mobile devices. While we have 

demonstrated the viability facet-based search, technical limitations prevented us from 

validating the design under mobile scenarios. It would be important to port the prototype 

to a mobile phone and study FaThumb in the field with up-to-date databases either stored 

locally or accessed remotely via GPRS. Another goal is to implement FaThumb for 

touchscreen interfaces and study whether the same benefits seen for keypad based 

interaction apply for one-handed thumb-based search on a touchscreen. 

5.9 Conclusion 

The FaThumb interface was developed to explore an efficient solution to searching large 

data sets from mobile devices because the most common approach of keyword-based text 

entry tends to be quite tedious. By emphasizing search through the navigation and 
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selection of data attributes within a compact 3x3 interaction region, the FaThumb design 

adheres to my own design principles for supporting one-handed device operation, and 

represents a strategy that can be applied to both keypad-based and touchscreen-based 

devices. Results from the user study indicate that there are indeed tasks for which the 

facet navigation approach we developed can out-perform keyword entry for the important 

task of searching the ever expanding data sets available from mobile devices. In 

particular, the user study confirmed our basic hypotheses⎯if a user knows something 

specific about a data item, like its name, text entry (even using multi-tap) is faster. 

However, if the user knows only data characteristics, facet navigation is faster. 

Ultimately, both techniques are needed because real world tasks require both. Comments 

made by study participants suggest that when users become familiar with the taxonomy, 

the FaThumb facet navigation technique is highly desirable. These results have 

successfully demonstrated the potential the FaThumb approach holds for increasing user 

productivity and satisfaction when using mobile devices to locate and discover data in 

large, possibly unfamiliar, repositories. The benefit that FaThumb’s design only requires 

one hand for both keypad and touchscreen devices further encourages its utility and 

viability because it supports search in mobile settings, where text entry can be a detriment 

to users due to its high physical and mental demands. 



 

 
 

164 
 

Chapter 6  
Applications: A Technique for Generalized One-Handed 

Interaction with Touchscreen Interfaces 

The research of Chapter 4 investigated general design strategies for supporting thumb use 

of touchscreen interfaces. The LaunchTile system presented in that chapter, as well as the 

new iPhone interface, both take the approach of ensuring interface targets are large 

enough to be hit directly with a finger or thumb. However, there are practical reasons 

why this type of “lowest common denominator” approach to mobile touchscreen design 

is unlikely to be the dominating strategy for future interfaces. First, screen real estate is a 

precious resource for small devices, and placing limits on visual expressivity can hurt the 

design in other ways. As an example, increasing object sizes to accommodate thumbs 

means fewer objects are displayed per screen, so more screens are required to present a 

given amount of data. This may not be just an annoyance when using a thumb, but can 

unnecessarily slow information access when two hands are available. Second, today’s 

mobile UI toolkits tend to support only small, stylus-oriented widget palettes, and so 

touchscreen software developers are likely to be offering stylus-oriented interfaces 

unwittingly for years to come, or otherwise take it upon themselves to develop or seek 

out thumb-oriented toolkits. Finally, the vast majority of existing touchscreen software is 

designed for stylus use, and so users of these interfaces might benefit greatly if the 

interfaces could be enabled for one-handed use. Our goal with this work, therefore, was 

to consider an alternative to the strategy of building interfaces with large finger-sized 

targets, and instead allow designers to focus on the most effective ways to present and 
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navigate information regardless of users’ hand availability, and in so doing, extend 

thumb-based support even to rich, stylus-oriented touchscreen designs.  

In this chapter I present ThumbSpace, an interaction widget which aims to 

address both the reach and accuracy problems that users experience when operating 

touchscreens with thumbs. Its design is inspired by the substantial body of research that 

has focused on the challenge that distance plays in large display interaction. The 

ThumbSpace design reflects our interpretation of how solutions for accessing objects out 

of arm’s reach on large displays can be adapted to the problem of accessing objects out of 

thumb reach on handheld devices.  

   
Figure 34. An example of how users define a ThumbSpace (a), and an example of a ThumbSpace 

depicted as a Radar View (b). 

Conceptually, ThumbSpace serves as an absolute touchpad superimposed on the 

display, and to which all screen objects are mapped (Figure 34b). Reach limitations are 

addressed by allowing users to personalize the size and placement of ThumbSpace 

(Figure 34a), thereby accommodating individual differences in hand preference, 

geometry, motion range, grip, and use scenario. Not only does ThumbSpace support 

access to all display objects within an accessible portion of the screen, but we apply 
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dynamic visual feedback and selection tuning to alleviate high error rates that are typical 

in hitting small targets with big thumbs. Finally, ThumbSpace is only available upon user 

activation, and so is unobtrusive when not wanted. 

At the core of our design is an assumption that users of touchscreen devices will 

be compelled to touch the interface, even when not using a stylus. But problems of high 

visual demand, targeting accuracy and finger occlusion suggest peripheral hardware 

solutions might be more appropriate. For example, Blackberry devices have shown how 

thumb wheels and trackballs can be used quite effectively for controlling a non-

touchscreen device. After presenting the ThumbSpace design, I present a study which 

compares the efficacy of ThumbSpace to alternative touchscreen techniques and to 

peripheral hardware input methods to better understand the tradeoffs of these approaches. 

I then present a follow-up study that investigates the relative benefits of using 

ThumbSpace for a device with a larger screen than the one featured in the first study 

(2.8” vs. 3.5”). 

I was the sole investigator of this work, which was conducted between September 

2006 and August 2007, and supervised by my advisor. The design and evaluation of the 

earliest prototype of ThumbSpace is published in the Proceedings of the International 

Conference on Human-computer Interaction (INTERACT 2007) [74].  

6.1 Related Work 

6.1.1 Finger Operation of Touchscreens 

Many current touchscreen interfaces consist of widgets similar in size and function to 

those featured on a desktop PC. While acceptable for interaction with a 1mm stylus tip, 

my own research suggests touchscreen targets smaller than 9.6 mm [112] can result in 
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unacceptably high error rates when accessed one-handed with the thumb (see Target Size 

Study, Chapter 3, Section  3.3). Recently, Vogel and Baudisch [147] developed the Shift 

technique as an improvement over Sears and Shneiderman’s offset cursor [131], a highly 

regarded approach to precision touchscreen targeting for over 15 years. The offset cursor 

couples a selection cursor positioned off the tip of a user’s finger with a stabilization 

algorithm to achieve character-level selection accuracy. The downside to the offset cursor 

is that users have to aim below the intended target. Shift instead allows users to aim 

directly for the target, and after a variable delay, displays a portal view (callout) of the 

screen area covered by the user’s finger. The callout includes a crosshair cursor to show 

the position of finger contact, which users can adjust before lifting their finger to perform 

selection. The delay function that determines when to show the callout is proportional to 

the size of the target under the finger⎯short for small targets, and longer for large 

targets. The result is that Shift is only shown when users are likely to need it, and does 

not interfere with selection otherwise. 

While Shift holds great potential for one-handed selection of targets within reach 

of the thumb, further investigation is necessary to understand whether pixel-level 

selection is appropriate under mobile conditions, and whether Shift works equally well 

for objects along the perimeter of the screen, which occur frequently in today’s designs. 

ThumbSpace, on the other hand, is expected to support targets at edges just as well as 

those away from the edges. More importantly, Shift was designed for two-handed index 

finger operation of mobile devices, and so does not address the limitations of thumb 

reach that ThumbSpace does. 
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6.1.2 Reaching Distant Objects 

ThumbSpace draws its inspiration from table-top and wall-sized displays, which both 

confront problems with out-of-reach interface objects. A general problem in large display 

interaction is that the increase in real estate also increases the average distance between 

on-screen objects. Unfortunately, Fitts’ Law [50] dictates that increasing travel distance 

without a commensurate increase in target size will increase access time. Solutions have 

thus typically focused on 1) decreasing movement distance to targets and/or 2) increasing 

target sizes. 

Improving target acquisition for mouse-based interaction has often involved 

clever manipulation of the control-display (CD) ratio. Slowing mouse movement over 

interaction targets (Semantic Pointing [21]), jumping the cursor to the nearest target 

(Object Pointing [54]), and predicting the user’s intended target (the Delphian desktop 

[7]) are three such examples. The drawback of these techniques is that their effectiveness 

decreases as the number of nearby objects increases. Other approaches in smart cursor 

control make targets easier to hit by increasing the cursor size, such as the area cursor 

[72] and Bubble Cursor [53]. Unfortunately, these techniques are not directly applicable 

to touchscreen interaction; touching the screen directly means a 1:1 correspondence 

between motor and display movement, so there is no CD ratio or cursor to manipulate. 

Direct screen interaction with fingers or pens is common in tablet, mobile, and 

wall computing. Techniques to improve object access speed in these arenas have focused 

on minimizing the movement distance to targets. However, most research that focuses on 

icon placement or selection [12, 20, 60] is inappropriate for PDA interfaces because drag 

and drop and object placement are used much less frequently than interactions such as 
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tapping buttons, links, and check boxes. Another approach has been to provide a nearby 

miniaturized version of the display, or Radar View [108], that can be manipulated 

directly. However, both the Radar View and the pen-based extension to the Bubble 

Cursor, the Bubble Radar [2], again focus on object placement tasks, rather than general 

application interaction.  

6.2 ThumbSpace Design 

Our goal with ThumbSpace has been to develop an interaction strategy whereby rich 

touchscreen interfaces can be effectively controlled with a thumb, without sacrificing the 

expressiveness of information presentation or the efficiency of navigation when two 

hands are available. 

Given individual variations in thumb agility, hand size, strength, and usage 

scenario, the first principle of ThumbSpace is to support each user’s most comfortable 

and stable grip. Each user therefore defines her own ThumbSpace⎯a region of the 

touchscreen surface that she considers easy to reach and interact within. The user may 

redefine the position and size of ThumbSpace anytime after an initial configuration step 

in which she drags her thumb along a diagonal to define the upper left and lower right 

corners of a rectangular region (Figure 34a). All thumb interaction then occurs within this 

personalized ThumbSpace, which remains fixed across all applications. 

To support access to all interaction targets within the confines of the 

ThumbSpace, the region behaves as Radar View. Consider, for example, a Radar View 

applied to the Windows Mobile Contacts application in Figure 34b. We see that a simple 

version of this approach would have several problems: 1) the Radar View representation 

occludes a large number of DisplaySpace objects; 2) the Radar View features are 
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unreadable; 3) the detailed Radar View representation contributes to visual clutter; and 4) 

the Radar View objects are far too small to hit reliably with the thumb.  

6.2.1 Initial Design 

Our first ThumbSpace design addressed problems (1-3) by avoiding the use of a 

miniature representation entirely. Instead, we offered only a whitewashed region to 

visually suggest where the user should focus her attention (Figure 35a). In this design, 

ThumbSpace was visible at all times. Although no miniature representation was shown, 

ThumbSpace behaved as a Radar View by honoring an input mapping between the 

ThumbSpace and the original display. ThumbSpace was partitioned so that each object in 

the original display was associated with a sub-region (proxy) in the ThumbSpace; tapping 

a proxy in ThumbSpace selected the associated object in the original display. Assuming 

the ThumbSpace represents a linear scaling of the original display (e.g., Figure 34b), the 

partition of ThumbSpace into proxies would be that of  Figure 35b.  

           
Figure 35. The first-iteration ThumbSpace representation (a), and a possible partitioning of the 

ThumbSpace into proxies for a Contacts application (b). 
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The final challenge (re: (4) above) in using a miniature representation as an 

interaction widget is that the proxies will likely be too small to hit reliably with a thumb. 

This is true even when the users can see the representation (as in Figure 34b), but our 

initial ThumbSpace design introduced further uncertainty because it failed to provide 

visual cues for how its sub-regions mapped to display objects. ThumbSpace managed 

these uncertainties by providing a visual feedback loop during object selection. 

           
Figure 36. An example of how a user selects an object using ThumbSpace. Assuming the user wants 
to select the first name in the Contacts list, she first aims at the ThumbSpace proxy for ‘Alonso’ (a). 

Since the user’s initial ThumbSpace contact point maps to ‘ijk’, she adjusts the selection by dragging 
her thumb toward the bottom of the screen (b). The user confirms the selection by lifting her thumb. 

Object selection with ThumbSpace is performed in three phases: aim, adjust, and 

lift. The aim phase relies on users forming a mental model of the mapping between the 

ThumbSpace proxies and display objects, with the natural assumption being that the 

ThumbSpace represents a linearly scaled version of the original display. Based on this 

model, the user touches the sub-region of the ThumbSpace she believes best corresponds 

to the intended target (Figure 36a). In the aim phase, ThumbSpace can be likened to an 

absolute touchpad⎯if the user guesses correctly, ThumbSpace provides direct access to 
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objects that would otherwise be difficult (e.g., too small) or impossible (e.g., out of reach) 

to hit directly with her thumb. 

Once the thumb touches a ThumbSpace proxy, the associated display object is 

visually identified with an object cursor, depicted by a thick orange border. The user then 

enters the adjust phase of selection. During the adjust phase, ThumbSpace acts like a 

relative touchpad for controlling the object cursor. If the user rolls or drags her thumb 

more than a fixed number of pixels up, down, left, or right, the object cursor animates to 

the closest display object in the direction of movement (Figure 36b). In the adjust phase, 

ThumbSpace interaction is similar to Object Pointing [54] in desktop environments, 

which ignores the white space between interface objects, and instead jumps the mouse 

pointer to the nearest object in the direction of movement once the pointer leaves an 

object’s border. Our adjust strategy differs slightly from Object Pointing because the 

adjust threshold is independent of the display object sizes. 

Finally, the user confirms the selection by lifting her thumb. This manner of 

object selection is inspired by the lift-off strategy for touchscreen object selection 

developed by Potter [116], which allows users to visually confirm and adjust a selection 

before committing to the action. Our initial ThumbSpace design allowed users to cancel a 

selection by dragging her thumb over a red X, which would appear throughout the adjust 

phase in the corner furthest from the point of initial thumb contact.  

6.2.2 Evaluation of Initial ThumbSpace Design 

To understand the efficacy and usability characteristics of our initial design, we 

conducted a quantitative study to compare ThumbSpace to direct thumb interaction for 

accessing targets. Sixteen participants (8 male, 8 female) used both techniques (direct 
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touch and ThumbSpace) to select objects at two sizes (small: 20 px vs. large: 40 px), 

density (sparse vs. dense), and position (near vs. far). 

As we report in [74], results showed that overall error rates were comparable 

between the two techniques, but that participants were consistently slower using 

ThumbSpace. Even so, ThumbSpace made clear progress toward two of our design goals: 

1) "decouple target size from thumb size"⎯users were as effective at selecting small 

targets as large targets, evident from the fact that neither speed nor error data were 

affected by target size; (2) "improve selection for targets that are out of thumb 

reach"⎯users accessed far targets more accurately using ThumbSpace than direct 

interaction. Finally, users felt ThumbSpace held promise, giving it relatively high ratings 

on a 7-point scale for task execution satisfaction (5.1), fun (5.4) and learnability (5.4), 

and the majority of users indicated that ThumbSpace would be preferable to direct 

interaction after sufficient practice. These results encouraged us that a strategic redesign 

could have a strong impact on closing the performance gap between ThumbSpace and 

direct thumb input. 

6.2.3 ThumbSpace Redesign 

Because ThumbSpace was inspired by the challenge of accessing all areas of a 

touchscreen while using a device with one hand, our initial design inadvertently favored 

targets that were out of thumb reach. This is because the ThumbSpace itself interfered 

with near targets, making them more difficult to hit. But our ideal solution should make 

hard tasks easy, without negatively impacting tasks that are already easy. Our response 

was to allow users to trigger ThumbSpace on-demand. In this way touchscreen operation 

will be no worse than direct thumb interaction when users choose not to trigger 
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ThumbSpace, but for targets that are hard to access with the thumb (e.g., small or far), 

user have the option of using ThumbSpace. We chose to use a hardware trigger because it 

is reliable and unambiguous. Users might choose any of the re-mappable hardware 

buttons on their own device, but for our test platform, the Cingular 8525, we used the 

center of the directional navigation pad (e.g., “enter”) for its positional convenience.  

   
(a)                                                 (b) 

   
(c)                                                 (d) 

Figure 37. An example of selecting an object with the final ThumbSpace design. A calendar 
application (a). Pressing the middle button of the directional navigation pad launches a mini 

representation of the calendar within the user’s predefined ThumbSpace (b). If the user wants to hit 
June 26th, she aims for the 26th in the mini representation (c). Upon touching the screen, the display 
object associated with the proxy user hits is highlighted and ThumbSpace disappears (d). The user 

may drag her thumb to adjust the input cursor, or lift her finger to perform the selection. 

The second goal of our redesign was to reduce object selection time. Observations 

and interaction logs both suggested that our study participants did not make “good” 
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guesses in the aim stage of object selection (Figure 36a), and so spent considerable time 

making adjustments (Figure 36b). To reduce time spent in the adjust phase, we needed to 

support users in making better guesses in the first place, which for us meant providing 

better visual cues. We reasoned that the most common use of ThumbSpace would be to 

access targets that are out of thumb reach. Since ThumbSpace is by definition within 

thumb reach, it would not interfere with such targets, and so could be used to provide the 

necessary visual cues.  

Our new design used a faithful miniature of the display as the ThumbSpace 

(Figure 37b). However after the aim phase, the ThumbSpace disappears to avoid 

interfering during selection adjustment. In the prototype of the new design, we did not 

implement a cancel feature, although cancel could be provided in the future, for example, 

by moving the selection cursor off the screen in any direction.  

Our final design adjustment was to constrain each user’s ThumbSpace rectangle 

to the same aspect ratio as the display itself. In our initial design, users were allowed to 

define a ThumbSpace with arbitrary dimensions, which we believed made the mental 

transformation between ThumbSpace and the display more challenging than necessary. 

Matching aspect ratios can help users locate ThumbSpace proxies quickly, because visual 

cues are reinforced by spatial memory, rather than requiring mental gymnastics.  

6.3 Direct Touch vs. Peripheral Input Hardware 

Our fundamental assumption in developing ThumbSpace was that for interfaces designed 

for stylus input, tapping targets directly with the thumb would be faster and more natural 

than using peripheral input hardware, such as scroll wheels, trackballs or directional 

navigation pads. But the popularity of RIM’s Blackberry, which uses a thumbwheel or 
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trackball almost exclusively for object selection, suggests either that this assumption is 

incorrect, or that the Blackberry software and interaction experience have been optimized 

for the indirect navigation devices. While it is certainly true that thoughtful 

hardware/software coupling can offer powerful advantages in task efficiency and user 

satisfaction (which then would not be true of the arbitrary touchscreen interfaces we 

wanted to support), there are several key reasons peripheral hardware input might be 

more appropriate than touchscreen interaction for one-handed mobile computing.  

6.3.1 Stable One-Handed Operation 

Limiting information navigation and selection activities to a single hardware component 

that can be comfortably accessed with a one-handed grip (as the scroll wheel does) not 

only frees the other hand for additional activities that arise in a mobile setting (such as 

carrying bags), but also means users can operate the device without changing their grip, 

even when accessing information across a variety of applications. If the hardware is 

strategically located so that the grip is stable, users can perform information tasks while 

mobile without risk of dropping the device, which otherwise diverts physical and 

attention resources that are more appropriately directed toward navigating the 

environment.  

6.3.2 Occlusion 

In addition, using hardware on the periphery of the device keeps the screen free from 

visual interference. This is in contrast to interaction methods that involve touching the 

screen directly, which must contend with finger and hand occlusion. Since today’s 

devices are equipped with standard resistive touchscreens, they can accept only one input 
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point at a time; if the screen is touched in more than one place, only the average point is 

registered as the input point. When using a stylus, this characteristic is not typically a 

problem since a stylus has a small tip for precise targeting, and offers a thin, low profile 

extension to the hand that keeps bulky fingers away from the screen. Since fingers have 

much larger contact areas than styli, users must aim at targets with the center of their 

finger pad, which can then completely cover small targets. In this case, the average input 

point may fall outside the target bounds and generate a selection error. 

6.3.3 Reduced Visual and Mental Demand  

Object selection with direct touch involves a unified process of continual visual 

monitoring and physical adjustment. This can be a detriment for mobile settings as users 

may need to divide their visual attention between the device and the environment. Input 

via peripheral hardware, on the other hand, has two separable components: aim and 

selection; aim positions a cursor, and selection activates the object under the cursor. 

While the aim phase may require continual visual monitoring, as when using a mouse, it 

does not have to. Scroll wheels, trackballs and directional pads convey abstract 

commands, rather than position information, to move the cursor from one selectable 

object to the next. With these methods, the cursor position depends only on the number 

and type of commands issued, so constant visual monitoring is unnecessary if the user 

preplans the command sequence to translate the cursor to the desired target. 

Another advantage of peripheral hardware is that the state of the cursor is 

maintained between commands. This allows the aim phase to be interleaved with myriad 

stimuli that compete for the user’s visual and mental attention in mobile computing. 

Furthermore, cursor stability supports high precision selection. Finally, by lowering the 
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visual, mental, and physical demands of device interaction, peripheral hardware solutions 

effectively push device activities to the background, which is a positive influence on the 

safety of mobile users and others surrounding them. 

6.4 Study 1: Direct Interaction vs. Peripheral Hardware 

Countering the numerous advantages that peripheral hardware input enjoys over 

touchscreen interaction for one-handed mobile device operation, there are challenges as 

well. Cursors must move serially from object to object. Each of these movements takes 

time away from the ultimate goal of selecting a target. This characteristic gives direct 

touch a potential advantage in average interaction speed. Of course both speed and 

accuracy influence user satisfaction, so our goal is to understand the relative advantages 

of peripheral hardware vs. touchscreen input methods for task speed, accuracy, and 

satisfaction for one-handed device use.  

6.4.1 Independent Variables 

Input Methods 

In selecting input methods to include in our investigation, we wanted to compare 

ThumbSpace to the common alternatives used with today’s devices. For peripheral 

hardware we chose the scroll wheel (ScrollWheel) and the directional navigation pad 

(DPad)⎯ScrollWheel for being the original distinguishing feature of the non-

touchscreen Blackberry devices and DPad because nearly every cell phone has one. It 

was clear that for touchscreen interaction, we would compare ThumbSpace to direct 

touch (DirectTouch), since that is how users operate touchscreens one-handed today. We 

assumed ThumbSpace would offer users more accurate targeting at the expense of speed, 
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so also chose a technique that specifically addresses targeting accuracy for fingers on 

touchscreen. Recently, Vogel and Baudisch [147] showed users made fewer errors using 

their Shift technique over direct touch for hitting targets ≤ 2.9 mm, but not ≥ 4.3 mm. 

Given the possibility that Shift would help users in hitting the small targets (3.6 mm) 

used in our study, we included it as a more competitive variant of DirectTouch. 

Mobility 

Many previous studies have established the negative impact movement has on mental 

demand and task performance (e.g., [111]). If our assumption that the hardware input 

methods are more stable and require less mental, visual, and physical demand than the 

touchscreen methods, then increased activity would be expected to degrade performance 

more when using touchscreen methods than hardware methods. To understand this 

relationship, we studied users performing tasks while both standing and walking. During 

the walking condition, users chose a comfortable walking pace along a 19’ x 7.5’ tape 

figure eight. 

Target Sizes 

Our initial study of ThumbSpace [74] confirmed that user performance was independent 

of target size, so here we chose only a single target size of 20x20 pixels (3.6 mm2), 

representative of standard Windows Mobile widgets (e.g., checkboxes: 15 px, buttons: 21 

px, text boxes: 19 px).  
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(a)                                                (b) 

Figure 38. ThumbSpace Study 1: The input regions shown classified as “hard to reach” in dark gray 
and “easy to reach” in light gray (a), and an image of the Cingular 8525 used in the study. 

6.4.2 Tasks 

Tasks were based on selection activities that would typically be performed with two 

hands using a stylus. Since our goal was to understand appropriate one-handed 

interaction techniques for rich interfaces we selected a two-dimensional input space of 

arbitrarily placed objects. Potential targets were placed within a 6x8 grid of 40x40 px2 

cells. We chose this number of targets because it is comparable to the number of targets 

offered in some standard applications that have 2D layouts, such as the month view of 

Windows Mobile Calendar (52 objects). For analysis purposes, we partitioned the targets 

into a 3x4 grid of regions, 4 targets per region (Figure 38a). Regions were labeled “easy 

to reach” (light gray) or “hard to reach” (dark gray) based on the majority opinion of 

study participants. 

Because the targets were smaller than their assigned cells (20 vs. 40 px), the target 

for each trial was placed in the center the designated cell. All other distracter targets were 

randomly assigned one of two sizes (20 px and 13 px, with probabilities 0.2 and 0.8 

respectively), and were positioned at random locations within their cells. The randomized 
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locations were used to create the illusion of a non-uniform layout space, while the 

variable sized objects increased the percentage of the background displayed. The targets 

were placed on a map background because we expected context to be useful during use of 

the Shift technique. 

Tasks were presented as a dialog that indicated the trial target and the action to 

take to begin the task (Figure 39a). To help users distinguish the goal target from among 

others, its center was colored yellow. The message was always placed at the center of the 

user’s personal ThumbSpace, unless it overlapped the target, and then was placed either 

above or below the target. For ScrollWheel, users pressed the scroll wheel to begin; for 

DPad and ThumbSpace, users pressed the center of the directional pad to begin; for 

DirectTouch and Shift, users tapped the dialog to begin. 

         
(a)                                              (b)                                              (c) 

Figure 39. ThumbSpace Study 1: Representative screen shots from the experiment.   An example of a 
task instruction (a). Performing a task using ThumbSpace (b). Performing a task using Shift (c). 

A rectangular orange cursor was used as the input focus. For ScrollWheel and 

DPad, the cursor started at the upper left target, since this is a typical home position for 

cursors in today’s interfaces. For DirectTouch, Shift and ThumbSpace, the cursor only 

appeared once the user had touched the screen to perform a selection. When a target was 
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selected, the input cursor would animate toward the midpoint of the target and vanish to 

provide visual feedback, while an audio sound also indicated trial success or failure.  

6.4.3 Hypotheses 

Based on intuition and our own previous research suggesting users are faster and more 

satisfied when interacting with a compact region of the device (see the Thumb Movement 

Study of Chapter 3, Section 3.2) [75] , we had the following hypotheses regarding the 

touchscreen interaction methods. 

(H1) DirectTouch would be faster than either Shift or ThumbSpace; (H2) 

ThumbSpace and Shift would be more accurate than DirectTouch; (H3) ThumbSpace 

would be faster than Shift in the “hard to reach” regions (Figure 38a); and (H4) Shift 

would be faster than ThumbSpace in “easy to reach” regions. 

In comparing peripheral hardware input methods to the touchscreen methods, we 

hypothesized: (H5) DPad and ScrollWheel would be more accurate than DirectTouch, 

Shift, and ThumbSpace; (H6) Shift and ThumbSpace would be faster on average than 

both DPad and ScrollWheel; (H7) DPad and ScrollWheel would be less impacted by 

walking than the touchscreen methods. 

6.4.4 Implementation and Apparatus 

As a real-world input system, ThumbSpace will need to cooperate with a PDA’s 

operating system in order to capture and reinterpret thumb events. However, to first 

establish its viability, we implemented ThumbSpace as an input handler to custom 

applications written in C# (.NET Compact Framework 2.0) for Windows Mobile Pocket 

PCs using the PocketPiccolo.NET graphics toolkit [18]. The software ran on a 400 MHz 
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Cingular 8525 PocketPC phone (Figure 38b) with a 43.2 mm x 57.6 mm display area of 

240 x 320 pixels. The device was chosen because it was the only device available that 

had all the hardware components we studied (a touchscreen, directional navigation pad, 

and scroll wheel), thus avoiding a potential confound. 

Since touchscreens recognize only a single average point from a finger touch, that 

point is not only hard to predict, but also unstable, due to continual updates as the soft 

finger tip deforms on the flat screen surface. This problem is well known to make pixel-

level targeting difficult, so various approaches have been used to stabilize finger input 

[131, 147]. In our work we take the approach used in Shift [147], transforming each input 

point by applying a recursive dynamic filter to stabilize pointer movement during slow 

corrective movements [147]. We found cutoff frequencies of 5 and 20 Hz interpolated 

between 54 and 144 mm/s worked well for both ThumbSpace and Shift. Given the small 

size of our targets, Shift was configured to escalate (display the callout) as soon as the 

finger touched the screen, but we did not correct for users’ perceived contact points as in 

[147].  

Several techniques for touchscreen object selection have been reported and 

studied in the literature. Two of the most common approaches are land-on and take-off, 

for which the first or last input points, respectively, are taken as the point of selection. 

We tested both techniques in pilots with mixed results. Since targets are completely 

hidden once the user’s finger has landed, users cannot adjust the selection in an informed 

way. We reasoned that land-on reflected the user’s best guess at the target, and chose that 

approach for the DirectTouch condition. For consistency with the other touchscreen-

based input techniques, we filtered the input points using the same parameters as 



 

 
 

184 
 

ThumbSpace, and registered a change in selection only if the user moved her thumb at 

least 20 pixels away from the point of contact, in effect stabilizing the selection.  

6.4.5 Method 

The study was a 5 (Input: DPad, ScrollWheel, DirectTouch, Shift, ThumbSpace) x 2 

(Mobility: standing, walking) x 12 (Region) x 4 (Position) repeated measures within-

subjects factorial design. Presentation of Input and Mobility were counterbalanced across 

participants, and the 48 region x position trials were randomized within blocks. 

Dependent variables collected included task time, error rate, satisfaction ratings, 

and interface preference rankings.  

6.4.6 Participants 

Twelve right handed volunteers (8 male, 4 female) ranging in age from 21 to 31 (μ = 26) 

were recruited via fliers posted in the Department of Computer Science. We obtained 

institutional review board (IRB) approval to conduct this study, and all participants 

granted us their informed consent. Participants received $15 for 1.5 hours of their time. 

6.4.7 Procedure 

Before each block of trials, the study administrator explained and demonstrated the input 

method that would be used. Participants were instructed to select each target as quickly as 

possible without sacrificing accuracy. For walking conditions, participants were asked to 

walk at a comfortable pace along the figure-8 during all trials.  

Participants then assumed a standing position or began walking, and began the 

practice trials. For DirectTouch, DPad and ScrollWheel, users performed 20 random 

practice trials the first time they saw the input method, and 10 the second time. Since 
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Shift and ThumbSpace were new to users, they performed 40 random practice trials the 

first time they encountered the input method, and 20 the second time. After the practice 

trials, users performed the 48 timed tasks. After each block, participants filled out a short 

subjective questionnaire about the Input x Mobility condition. Users proceeded in this 

manner for all 10 Input x Mobility blocks. A final block of trials offered users the option 

of using DirectTouch or ThumbSpace, to gather information about when, if ever, users 

would choose to launch ThumbSpace based on the position of the target. 

Participants then completed a “usability” phase, which provided the opportunity 

to use all input methods with a realistic interface. For this phase users remained standing 

as the study software presented 10 tasks for each of the 5 Input conditions (DPad, 

ScrollWheel, DirectTouch, Shift, and ThumbSpace) in that order (roughly familiar to 

unfamiliar) for a Windows Mobile Calendar interface (Figure 37). Following the usability 

phase, users ranked the input methods from 1= “favorite” to 5= “least favorite” by target 

type (2: easy-to-reach and hard-to-reach), mobility condition (2: standing and walking), 

and expected overall preference once sufficient practice and expertise had been achieved. 

This last question included an option for using ThumbSpace when desired, and Shift 

otherwise. 

6.5 Study 1 Results 

6.5.1 Task Times 

Task time was measured from the onset of the trial (when the scroll wheel or center of the 

directional pad was released, or the user’s finger was lifted from the task dialog) to the 

completion of the trial (when the scroll wheel or center of the directional pad was 

pressed, or the user’s finger was lifted from the screen). Task times for each region were 
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determined by averaging the region’s four position trials. Trials with selection errors and 

outliers more than three standard deviations from the mean within each input type were 

excluded from the aggregation. Huynh-Feldt corrections are used where sphericity did 

not hold. 

A 5 (Input: DPad v. ScrollWheel v. DirectTouch v. Shift v. ThumbSpace) x 2 

(Mobility: standing v. walking) x 12 (Region: 1-12) repeated measures Analysis of 

Variance (RM-ANOVA) was carried out on the average task time data. Main effects of 

input F(4, 24)=67.7, p< .001, and region F(11, 66)=68.5.4, p<.001, were observed. In 

addition, an interaction of input x region F(44,264)=50.0, p<.001, was also observed. 

On average, DirectTouch was significantly faster (865 ms) than all other 

interaction methods; ScrollWheel was significantly slower (3311 ms) than the others, 

while Shift, ThumbSpace, and DPad did not differ significantly from one another (Figure 

40a). These results support H1, but not H6, since DPad was as fast as Shift and 

ThumbSpace. 

 
(a)                                                      (b) 

Figure 40. ThumbSpace Study 1: Average task times (a) and error rates (b) by input type. 
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Average task times increased consistently with region number, where region 1 

was the fastest and region 12 was the slowest. While this seems at first unintuitive, the 

result can be understood by considering the input x region effect, whereby DPad and 

ScrollWheel task times generally increased by region, while DirectTouch, Shift and 

ThumbSpace times remained constant across regions (Figure 41a), resulting in an average 

overall increase in task time by region. The pattern observed between Shift and 

ThumbSpace in Figure 41a indicates that the two techniques were most similar in the 

“hard to reach” regions (1,2,3), but that Shift generally offered a speed advantage over 

ThumbSpace in regions (4-12), the majority of which were considered “easy to reach”. 

While this trend supports H4, H3 failed to be supported since ThumbSpace was never 

faster than Shift. 

 
          (a)                                                                                     (b) 

Figure 41. ThumbSpace Study 1: Average task times (a) and success rates (b) by region for each 
input type. 

Note that task time patterns for DPad and ScrollWheel clearly illustrate the 2D 

and linear target access approaches of each. For DPad and ScrollWheel, region 1 is 

fastest because the cursor starts there. For DPad, the time taken to access targets in the 

other regions is linear in the number of 2D steps required, creating equivalence groups: 

(2,4), (3,5,7), (6,8,10) and (9,11). With ScrollWheel, accessing a target in a region 
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requires traveling through all lower numbered regions, hence the increasing time by 

region. It is important, therefore, to be clear that average task times for DPad and 

ScrollWheel will depend on the total number of interface objects and the relative access 

frequencies of each.  

6.5.2 Error Rate 

A 5 (Input) x 2 (Mobility) x 12 (Region) RM-ANOVA was performed the average 

percent error data. Main effects of input F(1.4,14.9)=21.2, p<.001, mobility F(1,11)=5.2, 

p=.04, and an interaction of input x region F(44,484)=2.6, p<.001, were found. 

On average, users were slightly more accurate while standing than walking (10% 

v. 12% error). With 32% error, DirectTouch was significantly less accurate than any of 

the other input methods (Figure 40b), supporting H2. DPad (1% error), on the other hand, 

was significantly more accurate than ScrollWheel (5% error), Shift (8% error) and 

ThumbSpace (10% error), which as a group were statistically indistinguishable from one 

another. These error results fail to confirm H5, since we expected ScrollWheel to be as 

accurate as DPad. User comments indicated that ScrollWheel’s error rate was likely due 

to accidental movement when the scroll wheel was pressed to perform selection. 

Different scroll wheels may vary in their susceptibility to this type of error. 

Examining the input x region data, accuracies of DPad, ScrollWheel, Shift, and 

ThumbSpace were generally stable and comparable across regions (Figure 41b). A few 

notable exceptions were Shift’s reduced performance in region 1, and ThumbSpace’s 

lower accuracy in regions 11 and 12. User accuracy with DirectTouch was the most 

variable across regions, and was dramatically less accurate than the other methods for a 

great majority of regions. 
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6.5.3 Satisfaction 

We performed a 5 (Input) x 2 (Mobility) x 13 (Question) RM-ANOVA on participant 

satisfaction ratings, selected from a 7 point scale, (1=low, 7=high satisfaction). A main 

effect of question F(12,120)=7.9, p<.001 and an interaction between input and question 

F(48,480)=4.3, p<.001 were found. 

Examining the input x question data, DPad, Shift, and ThumbSpace scores were 

on average fairly high (e.g. majority ≥ 5), and were generally comparable across 

questions. Where they differed most, DPad was considered more accurate than Shift and 

ThumbSpace (6.5 vs. 5.4 and 5.1, respectively), and ThumbSpace was considered less 

preferred for “easy to reach” targets than were Shift and DPad (4.3 vs 5.5 and 5.1, 

respectively). DirectTouch ratings were similar to DPad, Shift, and ThumbSpace, except 

that it was considered less accurate, more frustrating, less satisfying, and less useful for 

“hard to reach” regions than were the other three. Finally, ScrollWheel stood out for 

being less fun, less satisfying, slower, and more physically demanding than the majority 

of other inputs. 

6.5.4 Preference 

Based on experience during the study, we asked participants to provide an absolute 

ranking of the 5 input methods, plus a sixth option of using a Shift+ThumbSpace 

combination, from 1=Best to 6=Worst for the majority of device interaction. The 

Shift+ThumbSpace was most popular on average (2.1), followed by Shift (2.6), 

ThumbSpace tied with DPad (3.3), then DirectTouch (3.8), and ScrollWheel (5.4). 

Although Shift received the most top rankings (4 users), it was closely followed by DPad 

and Shift+ThumbSpace (3 users). In fact, 75% of participants ranked Shift+ThumbSpace 
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as their first or second choice, as opposed to only 42% for Shift, 33% for DPad, and 25% 

for ThumbSpace.  

6.5.5 Discussion 

With respect to our broad questions about the relative value of peripheral 

hardware vs. touchscreen interaction for mobile, one-handed computing, we found little 

evidence that one approach should be recommended over the others. While DPad enjoyed 

surprisingly high satisfaction ratings, was relatively fast, and was the most accurate 

selection method, it ranked below two of the touchscreen methods with respect to 

absolute preference, and was the only method that generated unsolicited comments about 

hand fatigue. The fact that ScrollWheel was the least preferred input method is almost 

certainly related to the large number of targets presented in the study, which made 

average selection time slow, and except for the top row of targets, the 2D left-to-right, 

top-to-bottom cursor movement was never the most direct path to a target. However, we 

should only conclude that ScrollWheel input may not be suitable for dense 2D interfaces, 

and not that ScrollWheel is an ineffective input method in general. On the contrary, 

Blackberry devices are a great example of how thoughtful, complementary software 

designs can render scroll wheels both effective and enjoyable. Moreover, Blackberry’s 

recent move to trackballs, which support 2D cursor movement, will likely eliminate this 

problem entirely. 

Of the touchscreen methods studied, it is clear that using the thumb directly (e.g., 

DirectTouch) to hit small targets (e.g., ≤ 9mm) is unacceptably error-prone, at least when 

considering use with standard resistive touchscreen technology. While a corrective 

algorithm such as a nearest-target selection strategy could be used to improve direct 
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thumb interaction for sparsely populated displays, users will still require more precise 

selection capabilities when aiming at small objects in close proximity to one another. For 

such scenarios, the study data suggest that Shift and ThumbSpace are two software 

solutions that can greatly improve user accuracy in hitting small (3.6 mm) targets with 

the thumb. This finding has important implications for thumb use of touchscreen 

interfaces, since small targets that are common in today’s designs (e.g., PocketPC) are 

generally easy to hit with two-handed stylus interaction, yet rather inaccessible to 

thumbs.  

In terms of overall speed, accuracy, and satisfaction ratings, the Shift and 

ThumbSpace techniques were statistically indistinguishable from one another, although 

trends in the data suggest Shift holds some practical advantage over ThumbSpace. In 

particular, user speed, accuracy, and satisfaction ratings were equivalent or higher for 

Shift than for ThumbSpace in “easy to reach” regions. This result is not surprising since 

“easy to reach” regions are precisely those for which we assumed ThumbSpace would 

not be required. Instead, the primary concerns in “easy-to-reach” areas are the 

imprecision of selection due to the thumb’s large contact area with the touchscreens, and 

the related problem of target occlusion⎯issues that Shift was specifically designed to 

address. Since ThumbSpace offered little noticeable advantage in the remaining “hard to 

reach” regions, it is understandable that users chose Shift over ThumbSpace as the 

method they would prefer for device interaction in the general case. 

Despite the general favor that Shift enjoyed over ThumbSpace in this study, the 

data also offer evidence that the outcome might have differed if another device model had 

been chosen for study. For example, on average, participants ranked Shift with 
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ThumbSpace (Shift+ThumbSpace) as the most preferred usage option, even though they 

had not encountered this specific combination during the study. Since target size 

remained constant, a reasonable interpretation of this finding is that users perceived the 

two techniques to have different advantages based on the location of the desired target. 

This is supported by performance trends, which revealed that Shift and ThumbSpace had 

the most similar target access times in the “hard to reach” regions along the top of the 

device, which were also those for which ThumbSpace averaged higher accuracy scores. 

A likely explanation for this finding is that the top regions represent those that users 

found more difficult to reach. Although the device used in the study satisfied our 

requirements for input capabilities (scroll wheel, directional pad, and touchscreen), in fact 

its 2.8” screen is 20% smaller than many common devices that have 3.5” displays, 

including several models of the HP iPAQ PDA (whose screens are 1.0 cm wider and 

1.5cm taller) and the iPhone (whose screen is 0.8 cm wider and 1.8 cm taller). Due to the 

relatively small size of the Cingular 8525, it is possible that the upper regions were only 

relatively “hard to reach”, not actually “hard to reach”. Thus the performance data for the 

top regions may represent only the borderline cases between those regions which 

ThumbSpace and Shift are comparable, and those for which ThumbSpace offers an 

advantage over Shift.  

Finally, the fact that Shift+ThumbSpace ranked at the top of the preference 

ratings despite neither having an advantage in speed or accuracy over DPad bolsters our 

intuition that users prefer pointing at targets directly for selecting on-screen objects rather 

than using indirect hardware methods. A comment by one user, “I’m not sure I am 

actually faster using Shift (vs. DPad), but I feel that I am” offers some insight into why 
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this could be the case. But without software techniques like Shift and ThumbSpace, direct 

thumb interaction is unacceptably error-prone for small targets. Since most touchscreen 

devices already feature a directional navigation pad as a standard hardware feature, the 

addition of software techniques like Shift and ThumbSpace provides users even greater 

flexibility in adapting their interaction choices according to use scenario, attention 

demands, personal preference, and the inevitable speed/accuracy/stability tradeoffs 

among techniques. 

6.6 Study 2: ThumbSpace vs. Shift for Palm-Sized Touchscreen Devices 

In my exploration of the impact device size has on one-handed thumb movement (see my 

Thumb Movement Study in Chapter 3, Section 3.2) [75],  I found that users generally 

have difficulty reaching all areas of the screen when using a large device, exemplified in 

that work by a model of the HP iPAQ 4150 (2.78" x 4.47" x 0.53"). Contrasting this with 

data from the study above, there is no strong evidence that users had problems reaching 

all areas of the Cingular 8525 screen. But not only is the screen of the iPAQ 20% larger, 

but its physical form is 1.2 cm wider than the Cingular 8525. This is important because 

touchscreen devices are not experiencing the same dramatic trend toward miniaturization 

as non-touchscreen devices, in part due to the current focus on media play (photos, album 

art, video and TV) for these devices, where the more pixels a device has, the bigger (or 

better) the image (and presumably user experience). Indeed, the strong sales of the 

iPhone⎯a touchscreen-based device which encapsulates a phone, music/video player, 

and web browser⎯prove that users are willing to forego small size for desirable features. 

To the extent that some proportion of this device class continues to have touchscreens, 

users will face issues of whether and how to operate the device in one hand, and based on 
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the results from the previous study, it remains an open question whether ThumbSpace can 

offer advantages over Shift for devices at the larger end of the device size spectrum. 

In addition to developing a better understanding of whether reach is indeed a 

problem in using “large” touchscreen devices with one hand, and if so, whether 

ThumbSpace is effective in alleviating the associated penalties, there are two other 

reasons to motivate further investigation of ThumbSpace. The second reason to study 

ThumbSpace is that, on average, users from the previous study stated they would prefer 

to use Shift with ThumbSpace (Shift+ThumbSpace) over using either of the techniques 

exclusively. Yet because the study participants were never exposed to this combination 

formally, it is unknown whether that opinion would hold up in practice. To be sure, there 

are reasons to expect this would not be the case. Giving users a choice between 

ThumbSpace and Shift adds a mental calculation to every action, which not only 

increases the attention demands of the task, but also increases the total selection time 

[31]. Due to the penalties of making a decision, users may default to making no decision 

at all, and instead use the technique that is less demanding on average for all targets. But 

then which technique are users likely to favor? Even assuming that the adjustment phases 

for Shift (e.g., the crosshair cursor) and ThumbSpace (e.g., the object cursor) consume 

equal attention and time resources, ThumbSpace incurs an additional time penalty when 

it is triggered. On the other hand, if reach is a significant issue for one-handed use of 

common touchscreen devices, the comfort and stability offered by a personalized 

ThumbSpace may be a valued tradeoff for a slightly longer selection time. Since we do 

not expect ThumbSpace to be chosen all the time, understanding whether users are 
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willing to trigger ThumbSpace at all is as important to its viability as its relative 

performance to Shift. 

Finally, the third reason for comparing ThumbSpace and Shift on another device 

is that after years of using the HP iPAQ as a study platform, it was immediately evident 

that the Cingular 8525 was less responsive to finger input than the HP device. From a 

layperson’s perspective, the difference between the displays might be described as though 

the Cingular 8525 had a “stiffer” screen. Although imperceptible when using the focused 

point of a stylus, the Cingular 8525 required more finger pressure to detect and maintain 

thumb contact than did the HP iPAQ. Hardware nuances across devices are of course to 

be expected, and there is no reason to assume the differences between the HP iPAQ and 

the Cingular 8525 would have impacted Shift and ThumbSpace unequally. Yet because 

both techniques require users to fine-tune selections by rolling or dragging the thumb, it 

is reasonable to assume that screen sensitivity will play a role in user experience. The 

advents of the iPhone and LG Prada phones, and the anticipation of several other 

capacitive touchscreen devices (e.g., Nokia Aeon, Synaptics Onyx) promise that finger-

sensitive touchscreens will be commonplace in the future. The proliferation of devices 

with capacitive touchscreens is certain to change attitudes about finger use of 

touchscreens, as the user experience with this technology is qualitatively different;  not 

only is targeting precision higher on capacitive screens, but dragging requires only a very 

light touch, both of which make interaction significantly easier in our estimation. In light 

of the trend toward more sensitive screens, it makes sense to revisit Shift and 

ThumbSpace on more sensitive equipment that was used in the first study. However, 
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since resistive touchscreens are vastly more common than capacitive screens at this time, 

we will focus on resistive technology first. 

To answer questions left open from the previous study, I conducted a final study 

with the goals of 1) evaluating Shift and ThumbSpace on a “large” touchscreen device 

with increased (but standard) sensitivity; and 2) understanding usage patterns when 

participants are given their choice of input methods. 

6.6.1 Independent Variables 

Four input methods (Input) were studied: Shift, ThumbSpace, Shift with ThumbSpace 

(referred to as Combined), and the baseline of using the thumb to hit targets directly 

without software enhancement (DirectTouch). For consistency with the previous study, 

only one target size (3.6 mm) was considered, and targets were again assigned to one of 

12 device regions (Region). Finally, to take into account the possibility of learning effects 

within an Input, tasks were repeated across two blocks (Block). 

6.6.2 Implementation and Apparatus 

The study was performed on an HP iPAQ 4155. The codes for the Shift and ThumbSpace 

techniques were the same as those used in Study 1. Because the pixel sizes differ between 

the 8525 (0.18 mm/px) and the iPAQ (0.24 mm/px), pixel values were updated for the 

Shift camera offset, the Shift camera diameter, and the target sizes to maintain the 

absolute measurements (in mm) from the previous study. Otherwise, the only software 

modifications between Study 1 and Study 2 were to the study control software to reflect 

changes in the study design, described below. 
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(a)                                             (b)                                             (c) 

Figure 42. ThumbSpace Study 2: Representative screen shots from the experiment. An example of 
the task prompt (a). Performing a task using Shift (b). Performing a task using ThumbSpace (c). 

6.6.3 Tasks 

For comparability across studies, the selection tasks were those from Study 1. Targets 

were 15 pixel (3.6 mm2) squares, arranged in a 6 x 8 grid, and grouped into 12 4x4 

Regions for analysis. Each trial began with a message identifying the target to hit (Figure 

42a). Because of concerns in Study 1 that the yellow target was too similar to the yellow 

roads of the map, the trial target was shown in red. Breaking from the approach in Study 

1, users started the trial timer by pressing the center of the directional navigation pad, 

regardless of input method. For Shift, users then aimed for the desired target; for 

ThumbSpace, users pressed the center button a second time to launch ThumbSpace, and 

then aimed for the target within ThumbSpace. For the Combined input condition, users 

started trials in the same manner as they did the other Input conditions, but chose on-the-

fly whether to then aim directly at the target using Shift or whether to press the center of 

the directional pad a second time to launch ThumbSpace.  
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One argument for using a single start method in Study 2 is to standardize users’ 

grips across input methods. Because the directional input hardware is generally useful in 

one-handed operation, it seems reasonable that a “home” grip would accommodate thumb 

reach to that location. The drawback, of course, is that Shift then incurs the time penalty 

associated with moving the thumb from the center button to the target, just as 

ThumbSpace does. While this may seem unfair at first, it is important to consider that it is 

only the act of triggering ThumbSpace that is unavoidable⎯the manner in which it is 

accomplished is not an inherent property of ThumbSpace. One can imagine several 

trigger designs that require shorter travel distances for the thumb, such as a conveniently 

positioned bezel-mounted button, a gesture, a squeeze, using another finger, setting a 

sticky-mode, etc. Because each of these options would have a subtly different impact on 

ThumbSpace usability, it might be more accurate to say that comparing ThumbSpace to 

another technique without fully exploring the optimal trigger method unfairly biases the 

results against ThumbSpace. Since my goal at this phase was to understand the viability 

of ThumbSpace as a proxy for interacting with a surface area that is larger than a user’s 

reach, and not to design of the most effective trigger mechanism, I chose to abstract away 

the variable cost of triggering ThumbSpace by equalizing the movement burden across 

the input techniques. Results of the study should therefore be interpreted as having used 

the most optimistic trigger penalty of “a button press”.  

6.6.4 Method 

The study was a 4 (Input: DirectTouch, Shift, ThumbSpace, Combined) x 12 (Region)  x 

4 (Position) x 2 (Block) repeated measures within-subjects factorial design. Presentation 

of three inputs (DirectTouch, Shift, ThumbSpace) were counterbalanced across 
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participants, but the Combined input was always presented last to ensure participants had 

encountered both Shift and ThumbSpace prior to their combined use. For each Input, 

users performed 24 practice trials, 2 per regions, followed by two blocks of randomized 

Region x Position test trials. Prior to the Combined trials, users performed a “usability” 

phase in which they were given 2 minutes of self-directed exploration using Combined 

input for both a Calendar (Figure 37) and Start Menu interface. 

Dependent variables collected included task time, error rate, satisfaction ratings, 

and interface preference rankings. For the Combined input condition, the user input 

choice for each trial was also recorded.  

6.6.5 Participants 

Twelve right handed participants (5 male, 7 female), ages 18-29 (μ = 21) were recruited 

from the general campus population at the University of Maryland, College Park. One of 

the participants studied information management, while the remainder had humanities or 

social sciences backgrounds. Because of the potential for hand size to bias users toward 

one input technique or another (e.g., users with small hands might benefit most from 

ThumbSpace), we aimed for an even distribution of hand size in our participant 

population. Participants’ hands were classified into three broad categories S (n=3), M 

(n=5), and L (n=4), based on comparison to my own hand, which fits an M/L women’s 

glove. Participants with finger lengths that measured within ±1 cm of a paper-based 

outline of my own hand were classified as M; and those falling below and above that 

range were classified as S and L respectively. We obtained institutional review board 

(IRB) approval to conduct this study, and all participants granted us their informed 

consent. 
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6.6.6 Procedure 

The procedure for Study 2 was modeled after that of Study 1. The session began with 

participants reading an overview of the study. Prior to performing the practice trials for 

an Input, users read a brief introduction to the technique, which also reminded them to 

strive for speed and accuracy. Participants were allowed to rest between blocks, but none 

took the opportunity to do so. For the Combined input condition, participants were urged 

to use whichever technique (Shift or ThumbSpace) they felt offered them the highest 

speed and accuracy for each trial. The administrator explicitly stated that participants 

were free to use a single technique for all trials, or mix and match the techniques across 

trials. After completing all trials for an Input condition, participants filled out a 

satisfaction questionnaire for the technique. After all trials had been completed, users 

recorded which regions of the device they found “easy to reach” and “hard to reach”, and 

ranked the four Inputs from most preferred (4) to least preferred (1). Total session time 

lasted between 45 and 75 minutes for which participants were paid $15. 

6.7 Study 2 Results 

6.7.1 Task Times 

Task time was measured from the onset of the trial (when the center of the directional pad 

was released) to the completion of the trial (when a user lifted her finger from the 

screen). Task times for each region were determined by averaging the region’s four 

position trials. Trials with selection errors and outliers more than three standard 

deviations from the mean within each input type were excluded from the aggregation. 
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Huynh-Feldt corrections are reported where sphericity did not hold and post hoc analyses 

of main effects were conducted using Bonferroni correction. 

A 4 (Input: DirectTouch, Shift, ThumbSpace, Combined) x 12 (Region) x 2 

(Block) repeated measures Analysis of Variance (RM-ANOVA) was carried out on the 

average task time data. Since there was no main effect of Block, it was removed from 

further analysis. Main effects of Input F(3, 33)=38.0, p<.001, and Region F(6, 65.9)=4.7, 

p<.001, were observed. In addition, an interaction between Input x Region F(33, 

363)=1.8, p=.006, was also found. 

 
             (a)                                                     (b) 

Figure 43. ThumbSpace Study 2: Average task times (a) and error rates (b) by input type. 

DirectTouch was significantly faster (1017 ms) on average than the other input 

methods. Although ThumbSpace was the slowest input method on average (1993 ms), it 

was not found to differ significantly from Shift (1753 ms) or Combined (1724 ms), 

shown in Figure 43a. As can be seen from Figure 44a, average task times were highest in 

the top regions (1,2,3,4) and lowest in the central regions (5,7,8,9,11). The 3x4 grid that 

accompanies the graph in Figure 44 depicts the screen locations associated with each 

region, and conveys the majority user opinion about which areas were “hard to reach” 

(dark gray) and “easy to reach” (light gray); region 10 did not have majority support for 

either classification. The data trends in Figure 44a correspond well to user opinion; the 
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slowest regions were all considered “hard to reach”, while the fastest regions were all 

considered “easy to reach”. However, post hoc comparisons only revealed region 1 to be 

significantly slower than any others (5,6,7,8,9).  

 
Figure 44. ThumbSpace Study 2: Average task times by input region. Average task times by region 

(a). User-defined “hard to reach” (dark) and “easy to reach” (light) regions (b). Average task time by 
distances “far” and “near” (c). Regions (1-3) were considered “far” because the majority of users 
thought those regions were hard to reach, and distance is the most reasonable explanation for why 

they thought this. All other regions, by contrast, were considered “near”.  

Examining the Input x Region task time data (Figure 45a), we can make out a few 

trends. First, Shift generally took less time the closer a target was to the bottom of the 

screen. This finding is consistent with the fact that users would have had to move their 

thumbs shorter distances for lower targets. DirectTouch, which required the same amount 

of thumb travel as Shift, displays a similar trend. Interestingly, users were slower using 

Shift in regions along the left-hand side of the device (1,4,7,10) compared to regions 

within the same row⎯possible evidence that users were experiencing problems with 

reach in those areas. ThumbSpace, on the other hand, supported fairly consistent access 

times across Regions (4-11). The relatively long access time for ThumbSpace in Region 

12 reflects the fact that when aiming at the lower right corner of a ThumbSpace, the 

purpose is to hit a target in the lower right corner of the screen. However, one the user 

hits the screen, her thumb will be blocking the lower right corner, and so must then make 
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special efforts to visually confirm the selection. The Combined input method, which 

ideally reflects each user’s personal, optimized choice between Shift and ThumbSpace 

for each target, supported more stable access times across regions than did the use of 

either Shift or ThumbSpace alone. Furthermore, the access times of Combined input were 

faster than or statistically indistinguishable from both Shift and ThumbSpace within each 

region.  

 
                (a)                                                                                              (b) 

Figure 45. ThumbSpace Study 2: Average task times by region for each input type. Average task 
times for all 12 regions (a). Average task times for the aggregate distances “far” and “near” (b). 

Since the goal of ThumbSpace is to help users hit targets that are out of thumb 

reach during one-handed touchscreen interaction, we also wanted to analyze the data with 

respect to “near” and “far” targets. Referring to the region grid of Figure 45, we see a 

clear delineation between the top row of regions and the remainder. It is highly likely that 

regions (1-3) were considered “hard to reach” were because they were “far”, and that the 

“easy to reach” regions were so classified because they were “near”. Furthermore, based 

on the “easy to reach” classification of surrounding regions as well as results from my 

Thumb Movement Study in Chapter 3, Section 3.2 [75], region 12 is “hard to reach” not 

because it is distant, but because it is actually too near, which can make thumb access 

awkward. It is possible that region 10 was also considered awkward to access, but based 
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on the property of distance alone, we are comfortable classifying region 10 as “near” 

since regions 4 and 7 were rated as “easy to reach” and are certainly no “nearer” than 

region 10. Thus regions 10 and 12 were assigned “near” status. 

To make sense of some of the trends seen in Figure 45a, we ran a 4 (Input: 

DirectTouch, Shift, ThumbSpace, Combined) x 2 (Distance: Near, Far) RM-ANOVA on 

the aggregated region data. In addition to the main effect of Input reported above, the 

analysis revealed a main effect of Distance F(1, 11)=12.5, p=.005 and an interaction of 

Input x Distance F(3,33)=3.4, p=.03. Post hoc comparison of task times by Distance 

confirmed that users took significantly longer performing tasks in Far regions (1774 ms) 

than they did in Near regions (1570 ms), shown in Figure 44c. Considering the Input x 

Distance interaction data, Figure 45b suggests that Shift was more sensitive to 

differences in task distance than the other three input methods. Planned comparisons of 

the Input x Distance data using Shift as the reference input revealed that Shift/Far was 

slower than Combined/Far (2037 ms vs. 1816 ms, p=.018) but that Shift/Near was faster 

than ThumbSpace/Near (1659 ms vs. 1958 ms, p=.013).  

Given that four contrasts were performed, we would have preferred α=.0125 to 

protect against Type 1 Errors, and so will consider the Input x Distance contrast results as 

only borderline significant. The fact that Shift was faster than ThumbSpace in Near 

regions may be in part due to the occlusion problems that can occur when using 

ThumbSpace for targets that overlap the user-defined ThumbSpace. Another explanation 

may be that users are less accurate in their initial aim using ThumbSpace than using Shift, 

and so must perform more thumb dragging to position the object cursor over the desired 

target. However, the fact Shift/Near did not differ significantly from Combined/Near 
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indicates users made appropriate decisions when choosing between Shift and 

ThumbSpace for Near targets. Although Shift did not differ significantly from 

ThumbSpace in Far regions, users were significantly faster using Combined input in Far 

regions. This result is somewhat surprising since users were restricted to using Shift or 

ThumbSpace to hit far targets in the Combined condition. One explanation is that users 

may have become more efficient with the techniques over the course of the study, and 

that this learning effect benefited Combined disproportionately because it was always 

presented last. This could be true even though our block design did not reveal learning 

effects in time or error rate within input types.  

6.7.2 Error Rate 

A 4 (Input) x 2 (Region) RM-ANOVA was performed for average input error data. A 

main effect of Input F(1.4, 15.2)=40.5, p<.001 and an interaction between Input x Region 

F(33,363)=2.3, p<.001 were observed.  

Despite the speed advantage offered by DirectTouch, users were significantly less 

accurate using DirectTouch (39% error) than the other three input methods, which were 

all equally accurate (7.4-8.4% error). Users were generally at least as accurate in regions 

(1-10) using ThumbSpace as Shift, but Shift supported more accurate selection in the 

lower left-hand regions (11, 12). Once again, Combined input was at least as successful 

as the other input methods across the regions, except in region 12 where Shift dominated.  
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                                (a)                                                                                             (b) 

Figure 46. ThumbSpace Study 2: Success rates by region for each input type. Success rates for all 12 
regions (a). Success rates for the aggregate distances “far” and “near” (b). 

We again ran a 4 (Input: DirectTouch, Shift, ThumbSpace, Combined) x 2 

(Distance: Near, Far) RM-ANOVA on the aggregated region data to better understand 

error trends by “near” and “far” regions. Other than the effect of Input reported above, 

only an interaction of Input x Distance F(3,33)=4.5, p=.009 was found.  

Considering the Input x Distance interaction data in Figure 46b, users tended to 

be more accurate in Near regions than Far regions using Shift and DirectTouch, but users 

tended to be more accurate in Far regions than Near regions using ThumbSpace and 

Combined. Planned comparisons of the Input x Distance data using Shift as the reference 

input revealed a borderline significant (α=.0125) result that Shift was less accurate than 

ThumbSpace for Far targets (p=.013), but was indistinguishable from Combined 

(p=.027). For Near targets, Shift was as accurate as both ThumbSpace and Combined. 

Thus for both distances, Combined supported equivalent or better performance results as 

Shift and ThumbSpace individually. 
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6.7.3 Input Choice 

While it is certainly possible that each participant chose only a single input method to use 

for all regions in the Combined condition, the data tell a different story. Looking at the 

frequencies with which participants chose Shift vs. ThumbSpace by Region for 

Combined Input (Figure 47), we see that ThumbSpace was chosen more often than Shift 

for targets in the top half of the device (1-6), and that Shift was used increasingly toward 

the bottom of the device, especially in regions (11,12).  

 
Figure 47. ThumbSpace Study 2: The relative frequencies of ThumbSpace vs. Shift use for the 

Combined input condition, for each of the 12 input regions. 

The fact that participants primarily used ThumbSpace for Combined input in the 

top half of the device (1-6), explains why the error rates of ThumbSpace and Combined 

matched one another closely in these regions (Figure 46a). The relatively fast access 

times Combined enjoyed in these regions is especially interesting considering users chose 

ThumbSpace a majority of the time. It seems clear that learning was involved in users 

improving their access times from ThumbSpace to Combined. Generally, Combined 

allowed users to perform tasks at least as fast and accurately as did the other two 

methods, except in region 12, where Figure 47 reveals participants used ThumbSpace 
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nearly as often as Shift. Since we suspect ThumbSpace will always be a poor choice for 

use in region 12, it seems users would simply need more time to develop the reflex to use 

Shift over ThumbSpace in region 12.  

The usage patterns of Shift and ThumbSpace for the Combined condition 

intriguing for three reasons. First, Figure 47 demonstrates that users modified their input 

strategies based on the device region. Second, the performance data of Figure 45 and 

Figure 46 indicate that the choices users made were “good” with respect to both time and 

errors. Finally, the benefit of allowing users to make a real-time choice for Input type 

according to the Region of access outweighed any time cost associated with making the 

decision. 

6.7.4 Satisfaction 

A 4 (Input) x 13 (Question) RM-ANOVA was performed on participant satisfaction 

ratings, selected from a 7 point scale, (1=low, 7=high satisfaction). Main effects of Input 

F(3, 33)=11.9, p<.001 and Question F(12,132)=3.9, p<.0001 were found, as well as an 

interaction between Input and Question F(36,396)=3.9, p<.001. 

While it is unsurprising that there would be a difference in average scores among 

the satisfaction measures, in fact all measures were rated relatively high on average (≥ 

5.1), especially learnability of the techniques (6.5), which rated significantly higher on 

average than nearly all the other measures. DirectTouch received significantly lower 

satisfaction scores on average than ThumbSpace and Combined (4.6 vs. 5.9 and 6.2), 

while at 5.5, Shift was not considered statistically more or less satisfying than the others. 

Overall, Shift, ThumbSpace and Combined were rated very similarly to one another 
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(Figure 48), except for the measures of Comfort and Stability, where Shift rated 

appreciably lower then the other two and quite similarly to DirectTouch. 

 
Figure 48. ThumbSpace Study 2: Average satisfaction ratings for each input type. 

6.7.5 Preference 

Based on experience during the study, we asked participants to provide an absolute 

ranking of the four input methods from 1=Worst to 4=Best. An single factor (Input) RM-

ANOVA on the ranking results revealed a significant effect Input F(3,33)=19.9, p<.001. 

Post hoc tests revealed that DirectTouch (μ=1.3) was significantly less preferred than the 

ThumbSpace (μ=3) and Combined (μ=3.6) but not Shift (μ=2), and that Shift was 

significantly less preferred than Combined.  These numbers more specifically show that 

nearly every participant ranked the methods from least to most preferred in the order 

Direct, Shift, ThumbSpace, Combined. 
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Figure 49. ThumbSpace Study 2: Ranking of the input types, from least preferred (1) to most 

preferred (4). 

6.8 Discussion 

ThumbSpace was conceived to address the basic issue that most touchscreen software 

designs require two-handed stylus interaction because targets can be too small to hit 

reliably with a finger (see my Target Size Study in Chapter 3, Section 3.3) [112], or too 

far to hit comfortably with the thumb while holding the device in one hand (see my 

Thumb Movement Study in Chapter 33.2) [75]. The reality of mobile device use, 

however, is that use scenarios vary widely and hand availability may be in continual flux. 

The richness of most touchscreen interface designs places high priority on information 

presentation, but at the cost of interaction inflexibility; users themselves then bear the 

burden of freeing both hands to operate the device [79], delaying device use until their 

physical resources are available, or instead assuming the consequences of reduced 

interaction stability, comfort, and/or accuracy.  

One option is to redesign the software interfaces for touchscreens so that they 

accommodate one-handed thumb interaction, such as by including only large, centrally 

located targets. However, such solutions typically constrain the amount of information 

that can be displayed at a time, and so may serve only to shift the problem from selection 

(in)accuracy to navigation (in)efficiency. Another solution is to provide peripheral 
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navigation hardware, but as Study 1 showed, the challenge then lies in supporting timely 

average access rates, especially for 2 dimensional layouts.  

ThumbSpace represents a third option, which aims to increase the types of use 

scenarios that traditional touchscreen designs can accommodate, without limiting the 

presentation design. Instead of reprioritizing the design from two-handed, high-attention 

interaction to one-handed, high-navigation interaction, ThumbSpace offers users the 

ability to operate the same interface under different mobility conditions and constraints. 

ThumbSpace also benefits designers, who can focus on general requirements for effective 

presentation and efficient navigation without the need to consider additional limitations 

of object sizes and placements.  

Through the iterative design and evaluation of ThumbSpace we have experienced 

first hand the power of design nuance; while the theory of the ThumbSpace approach has 

changed little since its prototype, we have witnessed the strong impact that subtle 

modifications have had on ThumbSpace’s usability and user acceptance. The results of 

the pilot study and Study 1 confirmed that users require ThumbSpace to be a true 

miniature representation of the display to help speed understanding of the mapping 

between ThumbSpace objects and display objects, as well as to improve target aim. In 

switching from a smaller to a larger device between Study 1 and Study 2, we observed 

that device size affects both the utility and perception of ThumbSpace. With smaller 

devices, such as those with 2.8 inch screens, the main problem users face is not that of 

thumb reach, but hitting small targets (3.6 mm) accurately with a finger, for which the 

Shift technique was on average very well suited. Even so, trends in the data together with 

user feedback suggested that a combined approach of using Shift for near targets and 
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ThumbSpace for far targets could offer better one-handed support than limiting users to 

just one technique. By moving to a larger device with a 3.5” screen in Study 2 and 

explicitly testing the use of ThumbSpace and Shift both individually and together, we 

confirmed overall advantages in speed, error and preference for the combined 

Shift+ThumbSpace approach.   

Looking at the results of Study 2 in more depth, users were fastest hitting targets 

unaided with their thumbs, but the high average error rates (around 40%) made it the least 

preferred interaction approach. Shift and ThumbSpace, on the other hand, traded virtues 

according the position of the targets. For “near” targets, Shift and ThumbSpace had 

comparable error rates, but Shift supported faster selection times. For “far” targets, Shift 

and ThumbSpace had comparable access times, but ThumbSpace offered users higher 

accuracy. When users were allowed to choose Shift or ThumbSpace on a target-by-target 

basis, users were at least as fast and as accurate in “near” and “far” regions as using each 

technique exclusively. Examining the usage distributions of Shift and ThumbSpace by 

region for the combined input approach, it seems that users had developed an intuition for 

the relative benefits of each, favoring Shift for its speed in near regions and ThumbSpace 

for its accuracy in “far” regions. Although choosing between Shift and ThumbSpace 

added a mental step to each selection, it had no noticeable impact on selection speed, and 

in fact was overwhelmingly preferred by users (75%) than were either ThumbSpace 

(25%) or Shift (0%) alone.  

To understand the practical implications of Study 2, it is necessary to examine the 

parameters under which the results were obtained. First, we studied thumb access to 

small (3.6 mm) touchscreen targets only, since they are common to traditional interfaces 
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and present significant challenges for finger interaction. For interfaces with larger targets, 

Shift automatically delays the onset of its callout proportionally with targets size so that 

users do not experience a visual disruption if objects are large enough to hit easily with a 

finger (e.g., ≥ 10 mm). But because the time cost of triggering ThumbSpace is constant, 

users may become less willing to use ThumbSpace if their success rate increases when 

“stabbing for” large but distant targets directly⎯even if the action requires a grip 

adjustment or momentary device instability. It is also important to reiterate that the 

effective physical cost of triggering ThumbSpace in Study 2 was a button press, and so 

the results reflect an idealized design that may be difficult to replicate in practice.  

Even with these considerations, the Study 2 results make a compelling case for 

touchscreen devices to include Shift as a default interaction technique to support finger 

use in general, together with ThumbSpace for accommodating one-handed thumb 

operation. The finding that choice itself does not degrade performance suggests there is 

little downside to offering ThumbSpace as an interaction option, and its personalization 

in terms of size, position, and use occasion, mean it can flexibly and unobtrusively 

accommodate variations in hand size, interface design, and device dimension. That both 

Shift and ThumbSpace were considered Fast, Accurate, Easy to Learn, Easy to Use make 

them a very promising combination for generalized one-handed touchscreen operation. 

To be clear, Shift and ThumbSpace would be offered at the operating system level across 

all applications, and so would not be the concern of interface designers, who would be 

free to focus on information presentation and navigation independent of the vast and 

variable usage constraints of mobile computing. 
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Chapter 7  
Conclusion 

7.1 Contributions in Context: Implications for Next-Generation Design 

In Chapter 1, pp 11-14, I outlined the contributions of this dissertation with respect to the 

specific results I obtained while investigating both foundational human factors in mobile 

computing with one hand, and applications of this knowledge for supporting real-world 

data access tasks with one hand. Here I revisit my experimental findings to offer insight 

into their broader implications for next-generation mobile design. 

7.1.1 Foundations: Guidelines for One-Handed Mobile Device Interaction 

Contribution (C1): Motivated the need for single-handed interface design based on the 

reporting of current usage patterns and preferences for one- and 

two-handed mobile device interaction. 

When I began my research in 2003, the term “smart phone” was only just gaining 

prevalence in the vernacular, at least in part due to Microsoft’s early 2002 announcement 

that their mobile operating system would be called Windows Mobile Powered 

SmartPhone 2002 [97]. Even so, smart phones accounted for only a very small 

percentage of the mobile market, where there was still a very clear division between cell 

phones (for making phone calls) and PDAs (for personal information management tasks). 

Furthermore, touchscreens were featured primarily on PDAs, which had a rather elite, 

professional user base.  
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Given the climate of the time, it’s not surprising that some eyebrows were raised 

over the utility of focusing my research on one-handed use of touchscreen-based devices, 

and it was this skepticism that drove my initial exploratory studies. Yet results from my 

field study (Chapter 2, Section 2.2.3) and Web survey (Chapter 2, Section 2.3.3) 

confirmed that one-handed mobile device use was already widespread, and that a 

majority of mobile device owners, including owners of both keypad-based and 

touchscreen-based devices, desired better one-handed control of their devices. These 

early studies provided strong evidence that research in one-handed mobile device design 

would have important applications to the population in general, and that the benefits 

would not be limited to a niche user segment. 

Today, mobile phones are integral to the daily lives of about a third of the world’s 

population. And with increasing numbers of web services targeting mobile platforms, we 

can predict that users will become even more attached to their mobile devices, using them 

in a wide range of environments for an ever widening variety of tasks. With new 

platforms such as the Apple iPhone and the LG Prada phone pushing touchscreen-based 

phones into the mainstream, we can expect more people than ever will be making the 

switch from traditional keypad phones to touchscreen phones; further evidence of this 

possibility is the prediction by industry analysts at IMS research (www.imsresearch.com) 

that touchscreens could be featured in up to 30% of the devices on the market by 2011. 

However, it is unlikely that users will give up the habit and convenience of one-handed 

device operation in the transition. These trends suggest that the one-handed touchscreen 

operation is becoming an increasingly relevant and important method of device 

interaction.  
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Unfortunately, the software interfaces of most touchscreen-based mobile devices 

available today are designed primarily for stylus, and thus two-handed, interaction. The 

iPhone is one of the few examples of a touchscreen-based phone that supports single-

handed operation reasonably well; however, its grid-like layout and finger-sized targets 

represent only one of many possible design approaches for supporting thumb operation of 

a touchscreen, and it is a choice that necessarily sacrifices some flexibility in information 

presentation. Thus, broadly speaking, the problem domain of one-handed touchscreen 

interaction remains relatively unexplored, and so suggests ample opportunities exist for 

innovation in improving users’ one-handed touchscreen experiences.  

Bottom Line. Devices should support one-handed use by some means for all 

device features. Many common mobile scenarios require users to devote one of their 

hands to carrying objects or interacting with the environment, which then leaves users 

only one hand for operating a mobile device. Furthermore, the incidence of such 

circumstances is often independent of the user’s task at hand, so it would be impractical 

to assume we can identify a strict subset of tasks that should be adapted to one-handed 

operation. Furthermore, the usability cost for any task being inoperable with one hand is 

enormous⎯not only is it the difference between the task being possible vs. impossible, 

but it disrupts task flow and frustrates the user. While one approach to avoiding such 

negative use experiences would be to optimize all device features for one-handed use, 

users will also benefit from a more generalized interaction strategy, even one that is 

relatively inefficient by comparison to two-handed operation, assuming it supports a task 

that would otherwise be impossible to perform with one hand. 
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Contribution (C2): Provided researchers and practitioners with practical, empirically-

backed guidelines for one-handed mobile interface designs.  

(C2.1) Support localized interaction to minimize grip adjustment.  

This design recommendation is backed by the target location results from my 

thumb movement study, reported in Chapter 3, Section 3.2.7, and summarized with 

observational findings in paragraph 4 of Section 3.2.8. In general, the data suggest that 

users are able to control devices of all sizes reasonably well as long as repeated 

interactions occur within close proximity to one another.  

Although this guideline allows for considerable flexibility in interface design, I 

should clarify that it is more important for the rule be applied within the set of operations 

that define a logical task, than across the entire user experience with a device. That is, 

while it might be ideal if a user could access every feature a device has to offer without 

needing to adjust her hand grip, there are several pragmatic hurdles to offering users such 

a system, especially if it has a touchscreen. First, for this goal to be achievable for a 

touchscreen, a portion of the screen would need to be designated as the “interaction 

region” across all applications. But since one of the advantages of touchscreen systems is 

that their software interfaces are more flexible in terms of interaction object design and 

layout than non-touchscreen systems, it is unlikely that the designation of a single 

interaction region would serve all applications and tasks equally well. Second, by limiting 

all interaction to a particular region of the screen, that area may become overcrowded; 

this may lead to smaller targets that are harder to hit, or targets that are no longer visually 

or spatially distinct, thus requiring users to pay more visual attention during interaction. 

Both of these problems would reduce overall system usability. A final issue is that third-
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party software providers would need to follow these global design restrictions on target 

placement, which is both impractical and unenforceable. Given these challenges, it is 

more reasonable to assume application independence, and to suggest only that within an 

application, interface objects are positioned to allow users to complete a logical task or 

subtask while maintaining a single grip.  

Because the thumb movement study design focused on movement time, rather 

than interaction with specific hardware, such as buttons or touchscreens, this 

recommendation applies equally well to hardware and software layouts. 

Bottom Line. Grip adjustment has a high usability cost because it increases the 

risk of dropping a device, and requires a user to devote both physical and attention 

resources to an activity that is not directly related to the task at hand. The placement of 

input hardware on non-touchscreen devices in many cases already supports a single grip 

for full device interaction. Since touchscreen devices are less consistent in their support 

of a single one-handed grip, device designers should consider offering a generalized input 

strategy that can be used across all applications, independent of their design. While 

ThumbSpace is an example of a software-based solution, another option is to support 

access to all interaction objects via indirect input hardware such as a scrollwheel or 

directional pad. 

(C2.2) Allow users to configure tasks for either left or right-handed operation 

especially when they involve diagonal movements. 

This design recommendation is derived from the movement direction results from 

my thumb movement study, reported in Chapter 3, Section 3.2.7, and summarized in 

paragraph 1 of Section 3.2.8. The data show that for all devices, movement in the  
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direction was significantly faster than movement in the  direction. Since all participants 

were right handed, there is reason to believe that this systematic result is due to the fact 

that  movements were biomechanically easier to perform than  movements.  

The natural arc movement that results from rotating the thumb around the base 

joint is tempting to take advantage of in interface design. As an example, Windows 

Mobile 5 Pocket PC Phone Edition, whether intentionally or not, leverages this 

movement for unlocking the device by requiring users to hit the left menu button, and 

then a software button positioned halfway up the right side of the screen. Based on 

personal experience, this design can inspire warm feelings that the designers “got it 

right”. But what about the user who has her right-hand occupied? Or the left-handed user 

that feels more in control when using a device in her left hand? This same design would 

require the left-handed user to perform the unlock action using a movement style that, for 

mechanical reasons, is likely to be slower and more awkward than most other options. 

Unlocking a device may at first appear to be an isolated and relatively infrequent action, 

but many users do this task, literally, dozens of times a day.  

One possible remedy to avoid mismatches between an interface design and the 

particular hand used to perform the task is to design towards the  or  movement 

directions, which are more mechanically agnostic to the hand that is used than are 

diagonal movements. For example, a device unlocking scheme that required users to 

press a soft key at the bottom center of the screen, followed by one at the middle center 

of the screen (e.g., the ↑ direction), should be equally usable for both right and left 

handed users. An alternative approach might have users designate their hand preference 

as a global setting, and then allow interfaces to adapt dynamically to accommodate the 
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hand preference of the user. An example of this approach would be to remap the 

ACTIVATE and CANCEL operations of the gesture language introduced in Chapter 3, 

Section 3.4.1, from the  directions to the  directions, to make these frequent 

commands easier to perform for left-handed users. As devices become more 

sophisticated, one can imagine that devices will be able to sense which hand is holding 

the device, and automatically adapt interfaces accordingly. Of course, it may be 

impossible for a system to know for certain whether the user intends to operate the device 

with the thumb of the hand in which it is held, in which case the interface should adapt, 

or whether the user intends to use the opposite hand (e.g., with an index finger or stylus), 

in which case adaptation would be unnecessary. Furthermore, Shneiderman [135] and 

others have advocated that stable interfaces promote positive feelings of being in control, 

and so are generally considered more usable designs.  

Bottom Line: Interfaces that use diagonal thumb movement can feel very 

comfortable and natural, but only when used with a specific hand. Interfaces that cause 

users to move their thumbs along a diagonal run the risk of annoying users who use the 

“wrong” hand out of preference or necessity. A safe recommendation is for designers to 

strive for hand-neutral designs that focus on the  or  movement directions. 

Otherwise, designers should allow users to specify hand preference as a setting, and adapt 

interfaces consistently to accommodate the users’ stated hand preference.  
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(C2.3) Strive to place interaction targets toward the vertical center of the device to 

support a stable, balanced grip, as well as toward the middle (horizontal center) of 

the device to make them easy to reach for both left and right handed users. 

This design recommendation is supported by both subjective preference and target 

location data from my thumb movement study, reported in Chapter 3, Section 3.2.7, and 

summarized in paragraphs 2 ,3 and 4 of Section 3.2.8. Not only were users more 

comfortable interacting with the center regions of each device (both vertically and 

horizontally), but they were also able to move their thumbs more quickly in those 

regions, suggesting users were more physically capable of interacting with central regions 

than peripheral regions. 

While the recommendation to place targets toward the center of a device follows 

quite naturally from the empirical data, the guideline may seem impractical for 

touchscreen-based devices whose screens often take up the majority of the surface real 

estate (see, for example, the Cingular 8525 in Figure 50a); for these designs, placing 

interaction targets toward the center of the device (e.g., vertically and horizontally) would 

mean placing them in the middle of the display, but of course, this is where content is 

typically displayed! Thus for touchscreen devices, it is helpful to interpret this design 

guideline in terms of interaction, rather than target placement. For example, gesture-

based interaction, such as dragging a list of items with the thumb in LaunchTile (Chapter 

4, Section 4.5.6), or the highly touted finger flick for scrolling lists on the iPhone, can 

allow users to hold a device with a stable grip and to interact with the area of the screen 

that is most comfortable for them to reach. Furthermore, in both cases, users have control 
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over the final position of the scrolled content, and so can ensure a specific list item is 

within thumb reach for direct selection.  

The gesture-based command language for controlling the AppLens cursor in 

Chapter 4, Section 4.4.4 is an example of how interfaces that were not designed with 

single-handed thumb use in mind might be adapted so that users can access all interface 

objects, regardless of their sizes or positions, by interacting only with the region of the 

screen that is comfortable and easy to reach. Of course, ThumbSpace (Chapter 6) offers 

users the same convenience by allowing each to define the area of the screen they are 

comfortable using, and then mapping all interaction targets into that space. Based on the 

successes of the above examples I can offer two design strategies for tailoring my 

recommendation for centralized interaction to touchscreen devices: 1) offer flexible 

interfaces that allow users to move content (e.g., by dragging) quickly and fluidly so that 

it may be reached easily for direct interaction, or 2) offer indirect interaction methods 

(e.g., gestures) that allow users to access and action upon objects that are not within 

immediate reach of the thumb, and which still allow users to hold the device with a 

stable, centralized grip. 

For non-touchscreen devices, the recommendation to centralize interaction targets 

is more reasonable, as many of these devices devote at least half of the display to 

hardware buttons. For example, Figure 50c,d shows two popular non-touchscreen phones, 

which both place the most frequently used interaction feature⎯the directional navigation 

hardware⎯at the center of the device (both vertically and horizontally), together with the 

hardware to support other common actions, including the menu, back, home and call 

buttons. Contrasting these designs to the touchscreen-based Cingular 8525 (Figure 50a), 
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whose directional hardware is placed at the bottom of the device, it is clear that the first 

two support a more centralized, stable one-handed grip. It is worth noting, however, that 

not all touchscreen-based devices position their navigation hardware on the periphery. 

The iPAQ hw6500 shown in Figure 50b is an example of a device that balances the 

benefits of a relatively large touchscreen, with the stability offered by centralizing 

frequently used hardware buttons.  

          
 (a)                                       (b)                                      (c)                                   (d) 

Figure 50. Examples of different hardware design choices for smartphones. The Cingular 8525 (a), 
the iPAQ hw6500 (b), the BlackBerry Pearl (c), and the Samsung Blackjack (d). 

Bottom Line: It is generally unnecessary to restrict the placement of interaction 

objects on devices that are small enough that most surface regions can be accessed using 

a single grip. For larger devices, two design goals should be considered: 1) to support 

users in operating the device with a stable grip; and 2) to accommodate left and right-

handed users equally. One way to address these goals is to position interaction objects on 

the surface of the device centrally, in both the vertical and horizontal directions. For 

touch-sensitive screens, indirect gesture commands can allow users to issue navigation 

and control commands wherever their grip is the most stable and comfortable. 

Alternatively designers might consider allowing users to drag interaction objects to 
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within direct reach of users’ most stable grip, or use software techniques like 

ThumbSpace to limit the total interaction area required. Many of today’s non-touchscreen 

devices devote the only half the surface area to the screen so that indirect interaction 

hardware can be offered in the lower half. However, the general trend toward larger 

screens will likely squeeze such hardware out of the central regions; while keypads are 

likely to be hidden beneath the screen and pulled out only when necessary, directional 

navigation hardware might be relocated to the sides of the device to support stable one-

handed interaction in the general case (e.g, the Blackberry scrollwheel). This strategy can 

also be beneficial for increasing the one-handed use options on touchscreen devices, with 

the added benefit that fingers then do not interfere with the screen contents during 

interaction.  

(C2.4) Favor small devices in order to support overall device control and 

satisfaction.   

This design recommendation is backed by both the subjective preference and 

target location results from my thumb movement study, reported in Chapter 3, Section 

3.2.7, and which are summarized in paragraph 5 of Section 3.2.8. Overall, users preferred 

smaller devices to larger devices when interacting with only the thumb of one hand. 

Furthermore, the quality of user interaction, as measured by task speed, was more 

consistent across the surface of the smaller devices than it was for the larger devices.  

This recommendation has some interesting implications for both touchscreen and 

non-touchscreen devices. The trend over last several years has been that of devices 

getting smaller and slimmer, no doubt to make them more portable and more likely to be 

carried at all times. Touchscreen-based devices have remained somewhat larger than their 
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non-touchscreen counterparts, perhaps because most have software interfaces that are 

designed to resemble those of the desktop, and this added complexity simply demands 

more pixels. Yet if we focus only on one-handed control, perhaps it is the non-

touchscreen devices that should be made larger, and the touchscreen devices that should 

be made smaller. The key is that for any type of device, users have a finite range of 

thumb motion, which limits how large the interaction area of a device can be while still 

being manageable with one hand. For touchscreen devices, the entire touchscreen area 

should fall within this range to support full control of the interface.  Otherwise, users 

should use solutions like ThumbSpace, gesture-controlled cursors that allow them to 

confine interaction to a reachable sub-portion of the screen, or even fall back to using 

indirect input hardware. 

However, for non-touchscreen devices, only the buttons and navigation hardware 

are required to be within easy thumb range for users to control the device with one hand; 

since users don’t interact with the screen, its size is irrelevant and so could be quite large 

in theory. In practice, non-touchscreen devices are small because they are designed to be 

as portable as possible. A nice solution that allows phones to have larger screens while 

maintaining a small overall package for portability is the clamshell or “flip” design. 

Looking forward, convertible devices⎯those whose keyboards or keypads slide 

out from under the screen⎯have perhaps the greatest potential for dominating in the 

mobile device design space. By hiding keyboards, the screen can occupy the majority of 

the device surface; the overall device size is then constrained only by user requirements 

for device portability. When users then need to perform tasks for which physical keys are 

the most effective means, such text entry, they can slide out a Qwerty keypad. This 
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combination offers users the best of both worlds: a large screen that places high value on 

pixels for the display of information, and a full Qwerty keypad for efficient text entry. 

Bottom Line: When a device’s interaction model requires users to interact with 

the surface of the screen, ideally the size of the device would be limited to one users can 

manage comfortably with one hand. Otherwise designers should follow the guidelines 

suggested for C2.1 and C2.3 above. 

(C2.5) Make touchscreen targets 1cm2 to support fast, accurate one-handed 

selection. 

This design recommendation is derived directly from the task time and error 

results of my target size study, reported in Chapter 3, Sections 3.3.6 and 3.3.7. The raw 

data indicate that of the targets tested (3.8, 5.8, 7.1, 9.5, 11.5, and 13.4 mm), targets 9.6 

mm2 strike an effective balance between speed, error rate, and user preference for both 

single (discrete) and multiple (serial) target selection. Data collected on the precise 

locations of thumb contact when users aimed for a target, together with user satisfaction 

feedback, indicate that targets as small as 9.1 mm2 may be equally effective. Yet because 

9.1 mm2 targets were not specifically featured in the study design, a safe and realistic 

guideline for practitioners is to strive for 1cm2 targets. For interfaces that do not adhere to 

this recommendation but which still want to support one-handed thumb interaction, 

additional tools are advised. For example, Shift [147] supports high-accuracy, direct 

selection of small targets. For targets that are out of thumb reach, indirect methods are 

more appropriate, such as controlling a cursor using on-screen gestures or directional 

navigation hardware, or using ThumbSpace.  
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It is worth noting that my recommendation for 1cm2 thumb targets applies strictly 

to interaction with resistive touchscreens⎯the technology used for the vast majority of 

today’s touchscreen-based devices. The iPhone and Prada LG phones, on the other hand, 

are the first mainstream devices to have highly sensitive capacitive touchscreens, which 

register more information about the nature of the finger touch than do resistive 

touchscreens. While resistive touchscreens report only a single pixel that represents the 

average of the finger contact area, capacitive touchscreens can report the entire contact 

area of the finger. The gentle finger flicks that allow lists to be scrolled on the iPhone, as 

well as research on interaction techniques for multi-touch displays (e.g., [19]) promise 

that mobile devices will become more sophisticated in their ability to interpret user 

intention from thumb “signatures”, or rather, the characteristics of their contact areas. 

The additional data captured by capacitive screens together with new algorithms should 

allow users to select small targets more accurately than they can with today’s resistive 

touchscreens, and this fact may lead to new recommendations for target sizes that are 

specific to capacitive screens. A problem that capacitive screens will still share with 

resistive touchscreens, however, is that users cannot visually verify selections when 

targets are smaller than the finger. Thus even if capacitive screens can better predict user 

intentions during selection, the problem of finger occlusion is likely to place practical 

limits on how small targets can be made for capacitive screens while still satisfying users.  

Other potential benefits of capacitive screens could be in predicting right vs. left-

handed use based on the shape of the thumb’s contact area, interpreting a user’s target 

intentions by inferring the user’s angle of approach, and even distinguishing between 

one-handed thumb use and two-handed index finger use. The advanced capabilities 
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offered by capacitive touchscreens will give users much more power in controlling 

touchscreen devices with one hand, but will require the development of a new set of 

technology-specific design recommendations for one-handed thumb interaction. 

Bottom Line: If fast, accurate one-handed operation is the design goal for a 

resistive touchscreen device, software interfaces should be composed of 1cm2 targets.  If 

one-handed operation is not the primary design goal, software techniques like Shift and 

ThumbSpace allow designers more flexibility in screen design, while still supporting 

relatively fast and accurate one-handed interaction. If stable device grip and selection 

accuracy are valued above average interaction time, indirect input hardware options such 

as direction pads offers a third option for supporting one-handed use.   

(C2.6) Gestures should be offered to complement, rather than replace, direct 

interaction. 

This design recommendation is derived from observational data gathered during 

the comparative study of LaunchTile and AppLens, reported in Chapter 4 Section 4.7. 

While we know from the results of the gesture study of Chapter 3, Section 3.4.7 that 

simple sets of command-mapped gestures can be learned and executed with relatively 

little training, observations of users interacting with LaunchTile and AppLens indicated 

that users were much more likely to try to hit small or far targets directly than use the 

gesture options at their disposal. In both cases, increased interaction time may have been 

the common reason why users avoided gestures. In AppLens, incremental movement of 

the selection cursor was certainly slower than hitting targets directly, and sluggish 

animation times may have made object dragging unattractive for user of the LaunchTile 

interface.  
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Yet cursor control and object dragging aren’t the only possible uses for gestures. 

Symbolic gestures have the possibility of actually reducing the number of steps required 

for users to accomplish their goals. For example, making on-screen gestures such as  or 

 might be faster than using a menu system for accepting or rejecting movie 

recommendations [110]. Another example is the ability for users to delete contacts on the 

iPhone with either a three-tap sequence, or a natural (and discoverable) cross-thru gesture 

(→) plus a tap. I believe these two examples represent an ideal for gesture-based 

interaction: 1) users are initially provided with a straightforward method to perform a 

task, which is visually obvious as well as easy to learn and use; and 2) as users become 

more experienced, they can learn, be shown, or discover a gesture sequence that allows 

them to do the task even faster than before. This role for gestures can be likened to 

keyboard shortcuts on the desktop, which may take some time and expertise to learn, but 

ultimately allows users to be more effective in performing frequent tasks.  

Bottom Line: Avoid using gestures as the primary interaction model for 

touchscreen devices. However, discoverable and intuitive gestures that improve the speed 

of a task can increase the enjoyment and effectiveness of an interface.  

7.1.2 Applications: Interaction Techniques for One-Handed Data Access 

Contribution (C3): Inspired novel application management methods for small screens 

based on fluid context switching, rich adaptive application 

representations, one-handed access, and device independence. 

This contribution is based on novel design goals of the AppLens and LaunchTile 

interfaces, described in Chapter 4, Sections 4.3 and 4.5, and the positive feedback they 

received during their evaluation, which is described in Section 4.7.6. 
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The most valuable aspects of the AppLens and LaunchTile designs may have had 

little to do with their support for one-handed interaction, since study participants seemed 

to be quite amenable to both styles of design and interaction. More innovative, perhaps, 

were their shared design strategy of displaying dynamic notification information for 

multiple programs at once, and the ability to rapidly navigate among items to investigate 

more detailed information. Although at the time AppLens and LaunchTile were 

developed, few phones or PDAs were Internet enabled, today a significant percentage of 

users browse the Web from their mobile devices. Most devices offer browser experiences 

similar to those of the desktop, but unfortunately the browser model is ill-suited to the 

input and output constraints of mobile devices; slow mobile text entry makes URL input 

tedious, and web pages adapted from desktop formats to mobile platforms do not always 

lead to the most usable results, either because they require substantial scrolling, or the 

expected content is hard to find due to page restructuring. So even though more phones 

are equipped to access the Internet than ever before, the mismatch between the traditional 

browser-based approach and the limited capabilities of mobile devices prevents users 

from taking full advantage of the phone’s Web connectivity for effective content 

browsing.  

If we instead consider the approaches of AppLens or LaunchTile, which both 

offer a landscape of application tiles that display content at varying levels of granularity, 

and which update automatically, the result is a framework that brings content to the user, 

rather than requiring the user to hunt it down. This framework removes the effort and 

tedium that makes phone-based web-browsing so unattractive today, and instead allows 

users to focus their interactions on the browsing experience and the information content. 
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This design is consistent with the goals of minimal attention user interfaces (MAUIs) 

[113] because content is updated without the need for any user intervention; user 

interaction is distilled to high-level browsing, and making navigation choices about the 

subset of information that is of interest, rather that wasting effort reiterating what content 

is interesting (e.g., selecting from a favorites list) or being involved with the low-level 

mechanics of telling the system where to find content (e.g., entering URLs). As the 

increasing numbers of web services and content are made available to small devices, the 

approach of low-effort, parallel delivery, assistive browsing has the potential to greatly 

decease the amount of energy users are required to expend to access web content, and in 

so doing, greatly improve the utility of devices, as well as user satisfaction and enjoyment 

in accessing networked content. We will see how well these predictions hold up once 

systems like Zumobi (www.zumobi.com, a commercialization of LaunchTile) are made 

available for public use.  

Bottom Line: Minimize the amount of required interaction for users to operate a 

device. Benefits include increased task flow and user enjoyment, and reduced mental 

demand, attention demand, and user frustration. One strategy is to minimize the number 

of steps required to perform common tasks, such as placing a call on a phone. Another 

might be to preemptively fetch content that is known to be of interest to the user, which 

insulates the user from the slow connection speeds of most devices. 
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Contribution (C4): Offered a one-handed approach to searching the large volumes of 

data from a mobile phone without the need for text entry. 

This contribution is based on the speed advantage that attribute navigation offers over 

mulit-tap text entry for performing browsing tasks using the FaThumb interface, 

described in Chapter 5, Section 5.5, and evaluated in Section 5.6. 

Phones equipped with full Qwerty keyboards allow users to enter text 

substantially faster than when using the standard methods of multi-tap or predictive text 

entry on a numeric keypad. The drawback for mobility, however, is that Qwerty text 

entry requires substantial physical, visual and mental resources: 1) users generally use 

two thumbs to improve the parallelism, and hence speed, of entry; 2) the large number of 

keys requires users to visually verify key presses; and 3) the act of composing characters 

into words, and words into sentences demands mental attention. Attribute navigation, on 

the other hand, may be less physically, visually, and mentally demanding for the 

following greason: 1) since attribute navigation only ever requires one hand, it demands 

fewer physical resources, 2) the smaller number of potential targets (nine) may allow 

users to devote less visual attention to the task, especially if parts of the attribute 

hierarchy have been memorized; and 3) since users navigate data attributes via 

recognition (rather than recall), the process may be less mentally demanding than 

generating one’s own keywords. Of course, the two search methods are complementary 

in practice; for example, convertible device designs that feature a touchscreen interface 

and a hidden slide-out keyboard can offer one-handed attribute navigation when the 

device is closed (e.g., while walking), and then offer the advantages of fast text entry 

when users are able to open the device and devote more resources to the task. 
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Although attribute navigation is a promising method for increasing mobile 

accessibility for tasks that have traditionally required text entry, practical technical 

challenges may stand in the way of its success. The value of attribute navigation is in no 

small part due to the rapid updates to the result set that occur as users navigate through 

the attribute hierarchy, or enter alphabetic characters for incremental text-based filtering. 

If the data set does not reside on the device, each of these user actions will require a 

round-trip query to a remote server, which will no doubt slow down response time 

substantially, and so jeopardize any advantages that attribute navigation may have over 

keyword text entry for searching data sets off the device. Luckily, there may be valuable 

uses for facet navigation that don’t suffer this drawback. New devices already support 

several gigabytes of local data, and even that is likely to increase. Because small screens 

can only display a handful of items at a time, the traditional method of navigating local 

data sets via folder hierarchies will become increasingly time consuming and tedious. 

Much as the facet-based Phlat [39] search interface offers users benefits in finding local 

data on the desktop, a FaThumb approach that uses data attributes such as data type, date 

of creation, file size, and so on, may offer a much needed improvement over folder 

hierarchy navigation for finding data stored on a device. And because the target data set 

resides locally, users will not need to contend with the latencies inherent in performing 

multiple round-trip sub-queries to the server to satisfy a single data search need.  

Bottom Line: Search is an increasingly indispensable tool across all computing 

systems. Optimizing search interaction and result sets are especially important for mobile 

devices because the impoverished input and output channels can quickly frustrate users 

when trying to perform complex tasks such as data search. A wide range of solutions 
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might ease user burden in specifying data needs, including faceted attribute navigation, 

cached queries, location-based context, recommended or collective queries, and camera-

based search term input. The value of search output might also be improved, for example, 

by taking into account location-based search context, previously seen items, and even 

activities that users have performed at their desktop PCs (e.g., “work context”).  

Contribution (C5): Offered a generalized one-handed approach for interacting with 

touchscreen applications designed for rich presentation and stylus-

based interaction. 

This contribution is based on the experimental results supporting the benefit that the 

ThumbSpace interaction widget can offer users in accessing objects that are too small or 

too far away to be hit reliably with the thumb on touchscreen interfaces. The 

ThumbSpace interface is describe in Chapter 6, Section 6.2, the experimental results are 

in Section 6.7 and the discussion of results is in Section 6.8.   

Through the iterative design and evaluation of ThumbSpace, I was able to identify 

both the design characteristics and use scenarios for which ThumbSpace can provide real 

benefits to users for one-handed operation of stylus-oriented designs. Yet based on the 

fact that I only began to observe benefits in using ThumbSpace over  Shift [147] when 

the touchscreen size increased from 2.8” to 3.5”, it may be that techniques like Shift, 

which focus on the problem of thumb occlusion, actually go a long way to solving the 

most immediate problems of thumb interaction on touchscreens. 

 It is also appropriate to reconsider the role that peripheral hardware interaction 

serves in controlling a touchscreen device with one hand. In my study of ThumbSpace, I 

only investigated the relative value of touchscreen-based interaction (e.g., DirectTouch, 
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Shift, and ThumbSpace) when compared to today’s most popular hardware navigation 

features (e.g., ScrollWheel and D-Pad). It is important to reiterate that the D-Pad had a 

better success rate than either Shift or ThumbSpace, and supported comparable target 

access times to Shift and ThumbSpace for about half of the targets. The D-Pad was more 

competitive than the ScollWheel in both speed and subjective preference presumably 

because it allowed users to move the input cursor in 2D rather than just 1D. Perhaps this 

advantage is what has lead RIM to phase out the side-mounted thumb wheel on 

Blackberry devices, in favor of front-mounted trackball (Figure 50c). The increased 

speed that trackballs and isometric joysticks can offer over traditional D-Pads means they 

have the potential to beat ThumbSpace and Shift in both accuracy and speed, while at the 

same time supporting localized interaction for increased stability during mobile use. 

These factors may signify the very real possibility that indirect hardware interaction can 

pull out ahead of touchscreen-based interaction for one-handed touchscreen device 

operation. Nevertheless, large touchscreen devices such as the iPhone give up on 

directional hardware entirely in favor of touch only, in which case the need for 

touchscreen-based solutions like ThumbSpace may also increase. 

Bottom Line: Through the development of ThumbSpace, I have confirmed that 

users are willing and able to learn novel interaction techniques. Furthermore, they are 

able to intuit the relative values of different techniques in terms of access times and errors 

and make optimal decisions about the input method to use for performing abstract 

selection tasks. In practice, however, ThumbSpace showed only modest performance 

benefits for a minority of interface items. Furthermore, the interface I studied can be 

considered pessimistic in the sense that interface objects were very small, and distributed 
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uniformly over the surface. In practice, the majority of interfaces feature a range of target 

sizes, and the small, inconveniently placed objects are not typically the ones users access 

most often. Finally, invoking ThumbSpace requires more mental demand than aiming at 

items directly with the thumb, given that forethought is required to launch ThumbSpace 

and then users must perform several mental steps to translate and track the goal target 

from the original display, to ThumbSpace, and then back to the original display. 

Although users were willing to make these extra calculations when the activity was 

abstract and unrelated to a real-world user task, it is less likely users will be able or 

willing to interrupt goal-oriented activities with on-the-fly cost/benefit assessments of 

launching ThumbSpace. When these issues are considered along with the extra time 

required to launch ThumbSpace, it is difficult to imagine a practical scenario in which 

ThumbSpace should be recommended over Shift. The momentary device instability users 

may experience when accessing far targets, and the physical awkwardness of accessing 

near targets, seem to be relatively minor costs by comparison to launching and using 

ThumbSpace, especially because those tasks may constitute only a small percentage of 

total interaction time, and even so, may pertain to only a subset of the population.  That 

said, since users choose for themselves whether to use ThumbSpace, there is little 

downside to making ThumbSpace available on devices, especially since it may offer a 

disproportionately large value to users with small hands, and those who enjoy it for the 

sake of novelty.  
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7.2 Future Work 

Given the anticipated growth potential for touchscreen-based phones, and advances in 

touchscreen technology, there exist significant opportunities for innovation as it pertains 

to the one-handed usability of touchscreens. 

7.2.1 ThumbSpace 

Following directly from my own research of ThumbSpace, several outstanding questions 

remain to be answered. The first is whether ThumbSpace can be extended to support the 

full range of interactions that today’s touchscreens interpret regularly, including tap+hold 

(e.g., pop-up menus) and object dragging (e.g., scroll bars); as it stands, ThumbSpace 

only supports the equivalent of stylus-tap functionality. Without mechanisms for users to 

drag objects or open context-sensitive menus, ThumbSpace falls short of its goal to 

provide generalized one-handed access to arbitrary touchscreen interface designs. 

 A second research direction for ThumbSpace is to investigate an appropriate and 

low-cost method for triggering ThumbSpace. My final evaluation of ThumbSpace aimed 

to eliminate the details of triggering ThumbSpace so that we could understand the value 

of the interaction method independent of the unique costs associated with a particular 

trigger mechanism. Because of this, the final evaluation of ThumbSpace should be 

considered a best-case comparison of ThumbSpace and Shift. Further research is required 

to determine whether trigger methods can be found which reduce as much as possible the 

physical cost of triggering ThumbSpace, and to understand whether users still chose to 

use ThumbSpace when using a realistic trigger method.  
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Finally, ThumbSpace was only evaluated for artificial target-selection tasks that 

featured very small targets. In reality, interfaces can and do feature larger targets, 

complex widgets (e.g., multi-selection combo boxes), and non-uniform object 

layouts⎯any of which have the potential to reduce the perceived utility of ThumbSpace. 

Thus the true viability of ThumbSpace remains in question until: 1) tap+hold and object 

dragging are supported via ThumbSpace interaction; 2) ThumbSpace is implemented for 

use with real-world interfaces⎯that is, integrated at the operating system level; 3) 

ThumbSpace is coupled with a realistic mechanism for on-demand launching; 4) 

ThumbSpace is evaluated for performing real-world tasks with common touchscreen 

interfaces, including email, contacts, appointments, and web browsing; and finally 5) 

ThumbSpace is again compared to the most competitive hardware alternatives available 

(e.g., trackballs, isometric joysticks, and touch pads). 

7.2.2 Mobility 

One limitation of my thesis work is the lack of situational realism in my evaluations of 

interfaces and interaction techniques. While controlled experimentation is important for 

understanding comparative benefits of competing interface designs and techniques, it 

offers little proof that these benefits will hold up during actual use scenarios. In 

particular, except for the field study and web survey, all of my evaluations were 

conducted indoors, and with users typically either standing or seated. In only one 

experiment did I ask users to walk while performing tasks.  Even then, users had little 

need to pay attention to their surroundings since they were following a figure 8 outline on 

the floor. In practice, environmental factors such as lighting, noise, physical obstructions, 
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holding other objects, among many others, can negatively impact the usability of a 

system. As an example, users must visually monitor the display for feedback during 

touchscreen interaction because the uniformly flat surface doesn’t offer tactile feedback. 

Unfortunately, high light levels can wash out screen details when touchscreens are used 

outside, making tasks difficult or impossible to perform. Furthermore, true mobile 

scenarios may pose more challenges for device stability than the laboratory setting.  

Many researchers have strongly advocated the evaluation of mobile systems under 

ecologically valid conditions [10, 24, 46, 115]. Given the somewhat sterile laboratory 

conditions of my past studies, it is clear that an important next step in my research is to 

evaluate some of these applications, such as FaThumb and ThumbSpace, in more 

naturalistic settings and as part of longitudinal studies. 

7.2.3 High-Sensitivity Capacitive screens 

A final area for further exploration is to understand how the lessons learned over the 

course of this dissertation research relate to new touchscreen technologies. Until a few 

months ago, resistive touchscreens were the de facto hardware used in touchscreen-based 

devices. Yet the fervor surrounding the iPhone’s capacitive multi-touch screen as well as 

various anticipated releases by other companies indicates that we will see a dramatic shift 

toward mobile devices equipped with more sensitive, responsive, capable touchscreens. 

Not only might these new devices foster innovations in interaction that were simply not 

possible before, but it will also be valuable to try to quantify whether the findings from 

studies of resistive screens are upheld when transferred to capacitive screens. For 

example, it is likely that my recommendation for 1cm2 targets for thumb-oriented 

resistive touchscreen interface designs will be invalid for capacitive touchscreens. But 
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other relationships are harder to predict. For example, will the advantages and 

disadvantages of ThumbSpace vs. Shift hold even for capacitive touchscreens? One 

option is to revisit each of my studies using more sensitive screens and see if the results 

are the same. But another approach is to study the fundamental characteristics of the two 

technologies and strive to develop basic rules to predict the comparative outcomes 

without needing to rerun past studies. But if one thing is certain, it is that the additional 

data provided by capacitive touchscreens hold great potential for highly responsive, 

effective, finger-oriented mobile interfaces.   

7.2.4 Understanding Software/Hardware Tradeoffs 

In Chapter 6, Section 6.3 I discussed the potential advantages that indirect input 

hardware, for example an indirect navigation pad, has over direct interaction with a 

touchscreen: 1) indirect input can lead to more stable device use assuming it allows for a 

constant, comfortable grip; 2) indirect input avoids the problem of fingers occluding the 

display; and 3) indirect input allows for an interaction model that separates selection into 

two phases, aim/focus and selection, which lowers the visual and possibly mental 

demands of tasks so that user may pay more attention to the mobile environment. Yet 

when I compared two indirect input methods (a directional navigation pad and a 

scrollwheel) to the touchscreen input methods ThumbSpace and Shift (Chapter 6, Section 

6.5) the indirect methods were less preferred than was Shift, despite having comparable 

or higher accuracy. Thus the additional benefits (1-3 above) that the indirect methods 

should have offered users over the touchscreen methods either went unnoticed were not 

appreciated enough to have offset the negative influence of the significantly higher 

average task times when using the indirect methods. One possible reason that the indirect 
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methods were undervalued by users is that the walking mobility condition studied had 

surprisingly little influence on user performance. This may have been because a) the 

device was easy to control in one hand; b) the target selection task was not mentally 

challenging; or c) walking was self-paced and did not demand much visual attention. A 

more difficult task or mobility scenario may have increased the perceived utility of the 

indirect input methods. Furthermore, the fact that users were able to access a subset of the 

interface items as fast or faster with the indirect methods as with the touchscreen methods 

suggests that the large number (48) and layout (2D) of the interface objects may have 

biased users toward the touchscreen methods which, in contrast to the indirect hardware 

methods, did not require users to traverse any intermediate objects when selecting a 

target. A different interface design, such as one featuring only a small number of distant 

objects, or a 1D text list, may have yielded considerably different performance and 

preference results. 

In considering the results of the ThumbSpace studies more broadly, it is clear I 

have learned only that touchscreen methods can benefit users, especially when accessing 

small items arranged in a dense 2D layout, and not that touchscreen methods outperform 

indirect methods in general. In fact, there is little doubt that the efficacy of an input 

technique is strongly influenced by the characteristics of the interface design and user 

tasks. For example, while my own study found the scrollwheel to be the least preferred 

and slowest input method on average, RIM’s Blackberry has been a leader in the 

corporate mobile device market for years, even though, until recently, Blackberries have 

supported object navigation and selection exclusively via a scrollwheel (more recent 

models have replaced the scrollwheel with a trackball). The success of the Blackberry’s 
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scrollwheel-based interaction can be attributed in part to the design of the associated 

interface software, which has been optimized for scrollwheel interaction⎯often favoring 

visually simple, linear layouts, and intuitive contextual menus. In addition, physical 

properties of the scrollwheel support stable one-handed use and eyes-free interaction. 

Unfortunately few public guidelines exist that might help industry players (e.g., 

hardware manufacturers, interface designers, software architects) to make informed 

decisions about how hardware and software choices influence mobile device usability. 

Extensive further research is required to understand the complex interactions among the 

myriad characteristics of the interface design (e.g., size, layout, and placement of 

interaction objects), task (e.g., level of mental and interaction demands), input technique 

(e.g., direct vs. indirect input, pixel vs. object pointing, amount of physical exertion 

required), information structure (e.g., broad and shallow vs. narrow and deep), mobile 

scenario (e.g., lighting, attention requirements, stability), and how the costs and benefits 

change as users move between one and two-handed use scenarios. Only through the 

careful study of these factors can we begin to understand the design tradeoffs that 

contribute to safer, more efficient mobile system designs. 

Due to the cost constraints of offering mobile devices on a massive distribution 

scale at affordable prices, most devices to date have included relatively inexpensive, 

unsophisticated input hardware options by comparison to desktop and laptop computers. 

But as technology advances increase the feasibility of bringing more capable hardware to 

users at lower cost, it will be useful to revisit the role hardware can play in addressing the 

persistent issues of interaction efficiency, user comfort and safety during one-handed 

mobile computing. One question of particular relevance to my thesis is whether an 
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indirect, non-touchscreen, hardware input solution will emerge that successfully delivers 

on the theoretical benefits I have suggested such input might offer over touchscreen-

based interaction. If so, the rising trend in touchscreen popularity may slow dramatically 

as manufacturers instead turn their favor toward richly designed, non-touchscreen 

displays with interaction models reminiscent of desktop and laptop interfaces. To 

illustrate both the potential and uncertainty of hardware-only solutions, I’ll briefly discuss 

some of the usability tradeoffs that the touchpad and isometric joystick (two highly 

successful input technologies used in laptop computing) might pose for users in the 

mobile domain.  

Touchpads 

As one of the most common methods for entering 2D positional input on laptop 

computers today, the touchpad offers users the capabilities of a mouse within a finite and 

fixed surface area. Because a touchpad can be used in either absolute or relative input 

mode, it could be used quite similarly to ThumbSpace, but with the added benefits of 

being more sensitive and specialized to finger interaction (presumably leading to higher 

selection precision), and avoiding the problem of fingers occluding display content. 

Additionally, a touchpad version of ThumbSpace could be modified so that object 

selection is divided into two distinct steps: 1) positioning the object cursor with the 

touchpad, and 2) pressing a button to activate the object under the cursor. The benefit of a 

two-step selection approach is that cursor state is maintained between touchpad 

interactions, which gives the user more freedom to interleave the visual requirements of 

positioning the cursor and those of monitoring the dynamic mobile environment. Of 

course the touchpad could also be used in standard relative input mode to position a 
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mouse pointer on the device screen, whereby a separate button press would perform a 

mouse “click” and activate the object under the pointer. 

One drawback of the touchpad is that it occupies surface real estate that cannot 

then be used for displaying information content. It has been suggested that a touchpad 

could overlay a numeric keypad on handheld devices such as mobile phones and thus 

double the utility of the non-display surface area [143]. Others have proposed the back of 

the device as a viable surface for a touchpad [153], so that the front of the device might 

be reserved for display space. This design also allows pointing tasks to be performed with 

the index finger, freeing the thumb for other tasks.  

Whether the touchpad is placed on the front or the back of the mobile device, its 

size and placement must be considered carefully. Since mobile devices are used in both 

the left and right hands, the touchpad should be equally accessible in both use cases, and 

so centered horizontally on the device. One possible complication, however, is that as the 

size of a device grows, the touchpad will need to shrink in order to accommodate the 

reach limitations of users. For example, consider Figure 51 which shows that a touchpad 

would need to shrink when moving from a smaller device to a larger device to 

accommodate a user’s maximum horizontal reach of length x.  
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Figure 51. A depiction of how the size of a touchpad might change to accommodate left and right 

handed use for two different screen sizes. Assuming a user’s maximum horizontal reach is of length 
x, touchpads will need to shrink as devices grow larger in order to accommodate one-handed 

operation. 

Accessing a larger screen with a smaller input region will tend to decrease user 

precision during object selection for input techniques like ThumbSpace. Otherwise, when 

a small touchpad is used in relative mode to position a mouse pointer, “clutching” may be 

necessary to access all screen positions⎯similar to running out of desk space (or arm 

reach) when using a desktop mouse with a large-screen display. However, these potential 

limitations of the touchpad need to be evaluated within the context of practical device 

dimensions to understand whether they pose practical challenges for mobile 

Alternatively, ergonomic shaping or weighting of the device might allow users to hold 

the device safely from the bottom center, and thus offer designers more flexibility in 

setting the size and shape of the touchpad. 

Joysticks 

An alternative 2D input option that avoids the physical dimension issues associated with 

the touchpad is any hardware that allows users to issue (up, down, left, right) directional 

commands to the operating system. The most common such option found on devices 

today is the four-way directional navigation pad, and less common are joysticks that issue 
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the same four commands. Since each user action (button press, joystick movement) is 

interpreted as a single direction command, users can preplan a cursor movement path and 

then focus their visual attention on the environment while tapping out the associated 

command sequence. However, both directional navigation pads and their joystick 

equivalents also support “press and hold”, which issues a command repeatedly at a 

constant rate when a button or joystick direction is held beyond a time threshold, such as 

one second. In contrast to the multiple-press approach, “press and hold” requires some 

visual monitoring because people are generally not very good at estimating the number of 

items that will be traversed from the length of time a button is held.  

While directional pads and joysticks are acceptable means for interacting with 

simple interfaces that have a relatively small number of accessible objects, they become 

increasingly tedious to use as the number of selectable objects grows. The problem is 

exacerbated by the fact that directional pads and joysticks can move a cursor in only four 

distinct directions, so additional steps are required to move a cursor along a diagonal. 

Such limitations have inspired selection strategies that, for example, allow users to jump 

a cursor to a specific region of the display using a numeric keypad before fine-tuning the 

selection [57]. Of course, it cannot be assumed in general that alternative hardware will 

be available for increasing the input efficiency of directional pads and joysticks, and so 

they will ultimately fail to provide the power necessary to interact with and control rich 

mobile interfaces.  

The isometric joystick is a sophisticated alternative to the directional navigation 

pad which has no moving parts but instead interprets directional force for controlling the 

direction and speed of cursor movement. The fact that users can modulate cursor speed 
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by adjusting the force applied allows users to move the cursor faster for accessing distant 

objects, which largely solves the problem of slow cursor movement users can experience 

with directional pads. Another advantage the isometric joystick enjoys over the 

directional navigation pad is 360° directional input, which allows users to move the 

cursor along efficient diagonal trajectories. The commercial success of the isometric 

joystick as the red TrackPoint “eraser” on IBM’s line of ThinkPad laptops has proven it 

to be an efficient alternative to a mouse for 2D pointing tasks on laptop-sized screens, 

and it’s reasonable to assume the benefits would also transfer to the smaller screens 

handheld devices.  

Lab studies have already shown that users can effectively control an isometric 

joystick with one hand while standing [90], but there are reasons to question whether 

isometric joysticks are suitable for mobile scenarios. First, isometric joysticks offers 

users a great degree of power in a tiny footprint, but using one comfortably and 

effectively requires both practice and finesse; the sensitivity that makes isometric 

joysticks so useful in stationary conditions may make them difficult to control with 

unstable hands and devices while users are mobile, resulting in higher errors or longer 

performance times. A second reason that isometric joysticks may be inappropriate for 

mobile use is that they do not support eyes-free use well. This is due to the fact that 

isometric joystick interaction involves a complex process of composing two continuous 

parameters (direction and force); since the joystick is not displaced physically during use, 

it offers no haptic feedback with which users predict the associated movement effect on 

the cursor. The requirement that users visually monitor the cursor movement during the 
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majority of the joystick use can impair both the mobile activity (e.g., pausing while 

walking) and the device task (e.g., increased task errors and time).  

How competitive indirect input hardware will be in supporting mobile one-handed 

interaction in future devices will depend on careful attention to ergonomic, software, and 

information design. Given the potential challenges that the frontrunners from laptop 

computing may face when adapted to the mobile domain, it remains an open question 

whether touchpads, isometric joysticks, or a yet-to-be-developed indirect method will be 

determined to definitively outperform touchscreen-based interaction. One issue that will 

be import to understand further in the pursuit of “best mobile design practices” is whether 

the traditional style of pixel-level pointing from PC and laptop computing is an 

appropriate interaction model for mobile computing. In particular, the characteristics of 

device instability, high visual demand, and mental distraction inherent to mobile 

computing may make pixel level positioning impractically difficult, time-consuming, or 

error prone in practice. In this case, object-pointing [54] might prove to be a more 

effective interaction model, since it supports pointing at a coarser granularity, and may be 

less sensitive to the various sources of noise present in mobile computing. Even so, object 

pointing has its own unique drawbacks, such as the fact that the speed of object selection 

depends on the number and layout of objects displayed, and its efficiency will vary from 

one interface to the next. Additionally, both pixel- and object-level pointing share the 

characteristic that object selection time depends on the (potentially non-deterministic) 

starting position of the cursor, so that even within the same interface, performance may 

vary from one task to the next. Touchscreen interaction methods like Shift and 

ThumbSpace, by comparison, have no concept of a persistent cursor, and so may offer 
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users more consistent and predictable performance. In addition, both touchscreen 

methods support a primary ballistic thumb movement, which may prove faster on average 

than indirect methods. It is apparent, through these reflections, that this thesis constitutes 

just one component of the body of knowledge that can help guide software and hardware 

developers toward more effective, more enjoyable, and safer mobile interfaces. In 

particular, it will only be through further innovation and rigorous comparative study that 

the relative competencies of indirect hardware and touchscreen interaction methods will 

be understood well enough to suggest one be used to the exclusion of the other.  
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