
Abstract

Title of thesis: GENOME ASSEMBLY TECHNIQUES

Guillaume Marçais, Doctor of Philosophy, 2011

Thesis directed by: James Yorke and Carl Kingsford

Since the publication of the human genome in 2001, the price and the time

of DNA sequencing have dropped dramatically. The genome of many more species

have since been sequenced, and genome sequencing is an ever more important tool for

biologists. This trend will likely revolutionize biology and medicine in the near future

where the genome sequence of each individual person, instead of a model genome for

the human, becomes readily accessible.

Nevertheless, genome assembly remains a challenging computational problem,

even more so with second generation sequencing technologies which generate a greater

amount of data and make the assembly process more complex. Research to quickly,

cheaply and accurately assemble the increasing amount of DNA sequenced is of great

practical importance.

In the first part of this thesis, we present two software developed to improve

genome assemblies. First, Jellyfish is a fast k-mer counter, capable of handling large

data sets. k-mer frequencies are central to many tasks in genome assembly (e.g. for

error correction, finding read overlaps) and other study of the genome (e.g. finding

highly repeated sequences such as transposons). Second, Chromosome Builder is a

scaffolder and contig placement software. It aims at improving the accuracy of genome

assembly.

In the second part of this thesis we explore several problems dealing with graphs.

The theory of graphs can be used to solve many computational problems. For exam-

ple, the genome assembly problem can be represented as finding an Eulerian path in

a de Bruijn graph. The physical interactions between proteins (PPI network), or be-

tween transcription factors and genes (regulatory networks), are naturally expressed

as graphs.

First, we introduce the concept of “exactly 3-edge-connected” graphs. These

graphs have only a remote biological motivation but are interesting in their own right.

Second, we study the reconstruction of ancestral network which aims at inferring the

state of ancestral species’ biological networks based on the networks of current species.

GENOME ASSEMBLY TECHNIQUES

by

Guillaume Marçais

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor Jim Yorke, Chair
Professor Carl Kingsford, Co-Chair
Professor Uzi Vishkin
Professor Hector Bravo
Aleksey Zimin

Contents

I Genome Assembly 1

1 Bos taurus assembly 5
1.1 Introduction . 5
1.2 Methods . 6

1.2.1 Assembly strategy overview 6
1.2.2 Non-random BAC read data 7
1.2.3 Mapping sequence to the chromosomes 9

1.3 Results . 10
1.3.1 Comparing the assemblies . 10
1.3.2 Comparing to finished sequence 10
1.3.3 Single Nucleotide Differences (SNDs) 11
1.3.4 Large scale disagreements . 12

1.4 Conclusion . 13

2 A fast, lock-free approach for efficient parallel counting of occur-
rences of k-mers 14
2.1 Introduction . 14
2.2 Methods . 18

2.2.1 Execution Profiling . 18
2.2.2 Sequence Data Sets . 19
2.2.3 Comparing with Existing k-mer Counters 19

2.3 Algorithm . 20
2.3.1 A Fast k-mer Hash Table . 20
2.3.2 Updating the Lock-free Hash Table 21
2.3.3 Reduced Memory Usage for a Hash Entry 23
2.3.4 Space-Efficient Encoding of Keys 24
2.3.5 Fast Merging of Intermediate Hash Tables 28
2.3.6 Distributed Locks to Reduce Contention When Writing Table

to Disk . 29
2.3.7 Analysis of Running Time . 31

2.4 Results . 31
2.4.1 Speed and Memory Usage on Turkey Sequencing Reads 31
2.4.2 Jellyfish’s Architecture Allows for a High Degree of Parallelism 35
2.4.3 Timing Results for Other Genomes 36

2.5 Conclusion . 36

ii

3 Chromosome Builder 38
3.1 Introduction . 38

3.1.1 The goals of scaffolding . 38
3.1.2 Solving the ideal case . 40

3.2 Methods . 42
3.2.1 Problem statement . 42
3.2.2 Pre-processing: data cleanup 43
3.2.3 Iterative solver . 46
3.2.4 Post-processing: error detection 47

3.3 Results . 48

II Graph problems 50

4 A Synthesis for Exactly 3-edge-connected Graphs 56
4.1 Introduction . 56
4.2 A Synthesis for Exactly 3-edge-connected Graphs 59

4.2.1 Gluing Operations. 59
4.2.2 Cycle Contraction and Expansion. 63
4.2.3 Synthesis. 66

4.3 Existence of Non-articulation Cycles. 67
4.4 Other Properties of Exactly k-edge-connected Graphs. 77

4.4.1 Number of Operations. 77
4.4.2 Minimum Exactly Connected Graphs. 77
4.4.3 Planar Graphs. 78
4.4.4 Exactly k-edge-connected and k-regular Graphs. 80
4.4.5 Vertices of min-degree in edge minimal k-edge-connected graphs. 81

5 Parsimonious Reconstruction of Network Evolution 83
5.1 Introduction . 83
5.2 A framework for representing network histories 85
5.3 Parsimonious reconstruction of a network history 90

5.3.1 A fast heuristic algorithm . 90
5.3.2 Removing blocking loops . 92
5.3.3 Reconstruction of a common ancestor of two graphs 92
5.3.4 Modifications for self-loops . 93
5.3.5 Modifications for directed graphs 93

5.4 Results . 95
5.4.1 Generating plausible simulated histories 95
5.4.2 Reconstructing histories . 96

5.5 Conclusion . 99

6 Conclusion 100

iii

List of Tables

1.1 Assembly statistics . 8
1.2 Comparison of UMD and BCM assemblies 10
1.3 Comparison to finished BACs . 11

2.1 Performance of Jellyfish on the chromosomes of the human genome
and the reads from several sequencing projects. 37

iv

List of Figures

1.1 BAC map consistency . 9
1.2 Large scale inversion . 12

2.1 (key, value) pair encoding . 24
2.2 Memory usage on Turkey data set. 32
2.3 Timing result on Turkey data set. 32
2.4 Running time vs. k-mer length . 33
2.5 Trace of CPU and IO usage. 34
2.6 Speedup versus number of threads. 35

3.1 Mate pair data information and clean up 39
3.2 Cleaning input data . 44
3.3 A folded scaffold . 48
3.4 BAC pattern of a contig inversion . 49
3.5 Biconnected components and minimum Steiner tree 53

4.1 Several operations that preserve exact 3-edge-connectivity. 62
4.2 Non-separting induced cycle which are not collapsible 68
4.3 Example of a contraction-expansion of a cycle 69
4.4 Existence of a collapsible cycle in 3-regular graphs 72
4.5 A H-expansion. 79

5.1 A network history reconstructing two graphs 87
5.2 Blocking loops . 88
5.3 Accuracy of network reconstruction 97

v

Part I

Genome Assembly

1

Almost every cell in a living organism contains a set of DNA (DeoxyriboNucleic

Acid) molecules. DNA is a double-stranded polymer made up of four different nu-

cleotides (bases): adenine (A), guanine (G), thymine (T) and cytosine (C). The two

strands of a DNA molecule are complementary, that is, if there is a T on one strand,

there will be an A on the other. Similarly, C is a complement of G.

The goal of genome sequencing and assembly is to determine the sequence of the

bases in the DNA of an organism. DNA molecules vary in length from a few thousand

to hundreds of millions of bases. Current sequencing machines can read at most 2 000

contiguous bases from the ends of a DNA molecule. To determine the sequences,

multiple copies of an organism’s DNA are broken up into millions of fragments, called

inserts, each 200 to 200 000 bases long. No information about the inserts’ locations in

the original DNA can be retained. Sequencing machines then read 50 to 1 000 bases

of the ends of each insert. The sequence of bases on the end of an insert is called a

read ; if both ends of an insert are sequenced, then the pair of reads form a mate pair.

A library is a set of inserts that have been selected to have approximately the same

length. Sequencing centers report an estimated mean and standard deviation of the

distribution of the insert lengths for each library.

Since each read represents a small fraction of an organism’s DNA, the reads must

be assembled. There are two main assembly approaches: overlap-layout-consensus and

Eulerian path.

In the overlap-layout-consensus assembly paradigm, assembly software first looks

for reads that have common sequence on their ends; such a pair of reads is said to

overlap. The assembler then uses this overlap information and along with mate pair

information provided by the sequencing center, to create contiguous overlaping collec-

tions of reads called contigs. Finally the consensus stage determines the most likely

sequence by examining the multi-alignment of reads.

2

A contig is the largest piece of contiguous sequence that the assembler is able to

reconstruct from the read data. Contigs could end for multiple reasons: ambiguities

in the overlaps; missing overlaps due to poor quality or missing data; errors in data

pre-processing.

Next, the assembler relies on the mate-pair information, to create larger data

structures, called scaffolds or supercontigs, which are ordered collections of oriented

contigs. Scaffolds contain estimates of the lengths of the gaps between contigs. This

paradigm is used, for example, by the Celera Assembler [64, 69] and Arachne [38].

In the Eulerian paradigm, the sequencing reads are further broken down into

k-mers (all the sub-sequences of length k in the reads). The assembler constructs

a De Bruijn graph. Each vertex in the graph represents a k-mer. Vertices v1 and

v2 are connected by a directed edge if the (k − 1)-suffix of v1 is a (k − 1)-prefix of

v2. Any Eulerian path, i.e. a path containing every edge of the graph, is a potential

assembly. Read and mate-pair information impose constraints on a valid Eulerian

path. The final assembly is the Eulerian path most likely to represent the genome

based on theses contraints. Examples of assemblers that apply this paradigm include

Euler [76], AllPaths [7, 28], Soap de novo [52].

Using various laboratory techniques and targeted supplemental sequencing, it

is possible to improve the quality of an assembly or selected parts of an assembly,

a process called finishing or gap closure. High quality sequence generated by this

finishing step is called finished sequence. Finished sequences are invaluable to estimate

the accuracy of genome assembly procedures [9].

Different sequencing protocols influence the way the assembly is performed.

A Bacterial Artificial Chromosome is a fragment of DNA sequence approximately

150 − 350 kb long [89]. The BAC-by-BAC sequencing technique breaks down the

assembly problem into smaller problems of a BAC size. First, the sequencing center

determines experimentally a set of BACs which covers the entire genome, and, ideally,

3

which is as small as possible (e.g. [92]). Then, each BAC is individually sequenced

and assembled. Finally, based on the overlaping sequence of the BACs, the complete

sequence of the genome is recovered.

The idea behind this approach is to reduce the number of large scale misassem-

blies by localizing the assembly problem. The drawbacks of this approach include a

significant cost in building the tiling of BACs and difficulties in patching together the

assembled BACs. Moreover extracting the tiling of BAC is error prone and the BACs

may not cover the entire genome. Any sequence not covered by a BAC in the tiling

path will not be present in the assembly.

The whole genome shotgun sequence (WGS) sequences the entire genome at

once. While assembling such dataset is more computationally expensive, it is overall

simpler and cheaper.

The assembly of the Bos taurus genome, in Chapter 1, is the first large scale

assembly project in which I was involved. My experience on this project motivated the

development of the other two projects presented in this part of this thesis: Jellyfish

(Chapter 2) and the Chromosome Builder (Chapter 3). Jellyfish, is a fast k-mer

counter. Counting k-mers, i.e. counting the number of occurrences of every substring

of length k, has many application in bioinformatics. In genome assembly, k-mer counts

are used, for example, for error correcting the input reads, finding overlaps between

reads and building uniquely assemblable sequences. The Chromosome Builder is a

scaffolder, i.e. it builds scaffolds from contigs and mate pairs between these contigs.

Unlike traditional scaffolders, the Chromosome Builder is also able to use information

from a “marker map” to improve the quality of the scaffolds, and place the scaffolds at

their correct position on their respective chromosome. A marker map is a set of short

sequences, usually around 100 bp, whose position in the genome is known through

some biological experiment.

4

Chapter 1

Bos taurus assembly

This chapter is based on work published in “Aleksey V Zimin, Arthur L

Delcher, Liliana Florea, David R Kelley, Michael C Schatz, Daniela Puiu,

Finnian Hanrahan, Geo Pertea, Curtis P Van Tassell, Tad S Sonstegard,

Guillaume Marçais, Michael Roberts, Poorani Subramanian, James A

Yorke, and Steven L Salzberg. A whole-genome assembly of the domestic

cow, bos taurus. Genome Biol, 10(4):R42, 2009.”

1.1 Introduction

The human genome project [101] established the feasibility of determining the genome

sequences of mammalian species from shotgun sequencing data. Since its completion,

other mammalian genome assemblies, including those of cow [105, 54], mouse [68],

and chimp [11], have become available. Each such published assembly consists of

thousands of contiguous fragments of DNA separated by gaps, where the genome

sequence could not be determined. It is likely that some fragments in the final se-

quence have been misassembled or mistakenly repeated. Genome assemblies vary in

their quality and completeness [85].

In an effort to further improve the draft genome of the cow (Bos taurus) spon-

sored by the U.S. Department of Agriculture (USDA), our group at the University of

Maryland (UMD) reassembled this genome using a different assembler software. The

5

first assemblies of the cow genome were created by a team lead by the Baylor College

of Medicine (BCM), using their assembly program ATLAS [33].

To produce their Btau4.0 assembly of the Bos taurus genome, Baylor used a

hybrid assembly strategy, combining WGS with the BAC-by-BAC technique. This

procedure follows the BAC-by-BAC approach except that the BACs are assembled

independently using an extended set of reads: the BAC reads and any WGS reads

that has an overlap with a BAC read.

Baylor’s hybrid strategy has some advantages over a purely BAC-by-BAC as-

sembly. Because WGS reads are cheaper to produce, this type of assembly is more

cost-effective. On the other hand, such an assembly is more complex. Furthermore, it

still suffers from two major problems of a BAC-based assembly: individual assembled

BACs are difficult to merge and the assembly misses parts of the genome that are

not covered by a BAC.

Although the Bos taurus read data was designed to be assembled using Baylor’s

hybrid strategy, we believed we could avoid many of Baylor’s problems by using a

WGS assembly software, the Celera Assembler (CA) [69].

1.2 Methods

In this section, I first overview the assembly strategy. I then describe the specific

problems in the assembly process for which I developed and implemented solutions.

1.2.1 Assembly strategy overview

We performed the following steps to create the cow assembly. First, we cleaned up the

data, in particular, by detecting and trimming the vector sequence from the reads.

Then, we computed overlaps using the UMD overlapper [83] and assembled the reads

into contigs and scaffolds using a modified version of the Celera assembler (version

6

4.0). Finally, we ordered and oriented the scaffolds along the chromosomes using a

combination of two genetic maps. More details are available in the publication [105].

1.2.2 Non-random BAC read data

We say reads are uniformly distributed on the genome if their positions are distributed

as if they were chosen at random from a uniform distribution. Two-thirds of our

data consisted of WGS reads produced with Sanger sequencing technology, which

are approximately uniformly distributed on the genome. BAC reads made up the

remainder of our sequencing data. Although the positions of the shotgun reads from

each BAC have an approximately uniform distribution within that BAC, BAC reads

as a set are not uniformly distributed on the whole genome. This occurs because

(i) BACs may overlap; (ii) the depth of coverage of BACs varies from 1x to 50x; and

(iii) a portion of the genome is not covered by any BACs. The CA uses a statistical

test based on the Poisson distribution that assumes that the reads cover the genome

uniformly. However BAC reads do not satisfy this assumption. Our goal was to

incorporate the BAC reads so as not to waste data, but to do so in a way compatible

with our software. In this section, we describe this statistical test, explain how we

modified CA to work with non-random data, and show the impact our modifications

had on the quality of our assembly.

The CA first uses overlap and mate-pair information to construct unitigs from

the reads that can be assembled unambiguously. By design, unique and repeated

sequence should not appear in the same unitig. A repeat unitig contains a single copy

of the sequence of a repeated region and it contains all reads covering every instance

of the repeated region. The repeat instances could be far apart in the genome and

thus the mate-pair information of the reads in repeat unitigs should not be used for

scaffolding. To distinguish between unique and repeat unitigs, the CA computes the

arrival rate statistic (A-stat) [69] for each unitig. The A-stat compares the probability

7

Table 1.1: The original assembly used all reads to compute the A-stat, while the
modified assembly used only the WGS reads. The N50 scaffold (resp. contig) size
is defined as the size k such that 50% of the genome is contained in scaffolds (resp.
contigs) larger than k.

CA Assembly Original Modified Difference

Scaffold Bases 2.84 Gb 2.86 Gb +1%
N50 Contigs 67.3 Kb 74.6 Kb +11%
N50 Scaffolds 1.71 Mb 2.06 Mb +20%
Percent of reads used 75% 84% +12%

that there is one copy of a particular unitig in the genome to the probability that

multiple copies are present. Given that the reads are uniformly distributed on the

genome, the expected number of reads starting at each base (the arrival rate) follows

a Poisson distribution. The CA defines the global arrival rate (GAR) as µ = N/G,

where N is the number of reads and G is the genome length.

For a repeat unitig, the expected arrival rate is kµ where k is the number of

instances of the repeat in the genome. Given an arrival rate of kµ, the probability

that a unitig of length U contains n reads is

P (k, n) =
(Ukµ)ne−Ukµ

n!
.

A unitig is more likely to be unique if P (1, n) ≥ P (k, n),∀k > 1, or equivalently

if

A(k, n) ,
U

n
− log k

(k − 1)µ
≥ 0 .

Myers et al. [69] call A(2, n) the A-stat. If the A-stat is positive, then one can show

that A(k, n) ≥ 0,∀k ≥ 2. Hence a positive A-stat indicates a greater likelihood that

the unitig is unique in the genome.

We modified the A-stat computation in the CA to ignore the non-random BAC

reads. The assembly using the modified A-stat computation resulted in 11% longer

8

Figure 1.1: Contig C2 has conflicting mate-pair information, m1 andm2. The position
implied by m1 is consistent with the BAC in red and contig C2 will be placed at this
position in the assembly.

N50 contig size and the assembly used 12% more reads (see Table 1.1 on the preceding

page).

1.2.3 Mapping sequence to the chromosomes

We used two marker maps to place our scaffolds onto chromosomes: the fingerprint

map (FPMap) from the Michael Smith Genome Sciences Center, containing 124 831

markers, and the composite map (CMap) [92] containing 17 254 markers. We com-

bined the maps into the Combined FPMap (CFPMap), and were able to align 92%

(131 579) of the 142 085 CFPMap markers, to the UMD assembly. We split 19 scaf-

folds because inconsistencies with marker positions. Finally, we used the CFPMap to

place 19 765 scaffolds onto chromosomes.

An additional 13 116 scaffolds have mate-pair links to the already placed scaf-

folds. However, these mate-pair links are conflicting and indicate multiple possible

placements.

If for all reads in a given BAC, we obtain only one group of the correct length

(< 400 kb), then this group’s position is designated as the location of the BAC in the

BAC map. For each of the 13 116 scaffolds with ambiguous placement, by examining

the BAC reads they contained, we chose the placement that agrees the most with the

BAC map.

Figure 1.1 shows such a case. Contig C1 has been placed and every reads from

the BAC shown in red (including the ones in contig C1) are within 400 kb. Contig

9

Table 1.2: Comparison of UMD and BCM assemblies based on overall size and on
placement of composite map (Cmap) markers.

BCM UMD Difference

Sequence in chromosomes 2.47 Gb 2.61 Gb +5.7%
N50 contig size (at 1.235 Gb) 82 Kb 93 Kb +13%
CMap markers aligned to assembly 13 699 14 620 +6.7%

C2 has not yet been placed, it contains reads from the red BAC, and, according to

its mate-pair links, it could be placed in multiple places. We choose the placement

for C2, if one exists, such that the group of reads from the red BAC are all within

400 kb, including the reads in C2.

Using this technique, we placed an additional 3 199 scaffolds, out of 13 116,

representing 80 Mb (+3%) of sequence.

1.3 Results

1.3.1 Comparing the assemblies

Table 1.2 compares the quantitative statistics of the BCM and UMD assemblies. Our

assembly has 5.7% more sequence placed onto chromosomes. This is caused in part

by BCM’s failure to incorporate the entire WGS data set into their assembly. The

ATLAS assembly software is only able to utilize WGS reads should they fall within

a BAC. Based on our assembly, an estimated 2% of the genome is not covered by

BACs.

1.3.2 Comparing to finished sequence

BCM finished six BACs and deposited them in the public repository GenBank at

the National Center for Biotechnology Information (NCBI). These six finished BACs

10

Table 1.3: Comparison of the percentage of the sequence of the BACs covered by the
assemblies and the number of errors.

BCM UMD

Sequence coverage 90.7% 95.4%
error / 10 Kb 95.82 58.69

are not part of either assembly, and can thus be used to compare the completeness

and accuracy of the assemblies. We aligned the contigs from each assembly to the

finished BACs, and measured the length and quality of the alignment. The amount

of finished sequence that does not align to the BCM assembly is twice as long as that

of the UMD assembly (Table 1.3). In the sequence that does align, the error rate of

the BCM assembly is 66% higher.

1.3.3 Single Nucleotide Differences (SNDs)

In a base-by-base comparison, the UMD and BCM assemblies have over 2.0 million

single-nucleotide differences (SNDs). Some of these might be valid haplotype differ-

ences, in which the two assemblies are both correct, while others might be errors. We

focused our analysis on a subset of positions where the underlying read data indicated

that the position was highly likely to be homozygous, because a large majority (or all)

reads agreed with one another. We also required that each SND was flanked by 50 bp

exact matches in both assemblies, which reduced the set of SNDs to 389 015. We then

looked for cases where no more than one read confirmed one assembly, and all other

reads (at least three) confirmed the other assembly. The UMD assembly contains

10 636 instances of these apparent errors versus 30 750 in the BCM assembly. Thus,

there were approximately three times more apparently erroneous SNDs in the BCM

assembly.

11

30 35 40 45 50
30

32

34

36

38

40

42

44

46

48

50

UMD coordinate (Mbp)

B
C

M
 c

oo
rd

in
at

e
(M

bp
)

(a)

http://genomebiology.com/2009/10/4/R42 Genome Biology 2009, Volume 10, Issue 4, Article R42 Zimin et al. R42.4

Genome Biology 2009, 10:R42

!"#$!%&'(!"#))*&+,-.&/#0&#&12"!&3214)!5!&"!4"!0!65#5726&28

5/!&$!6!0&9/7)!&3265#7676$&6!#"):&!(!":&$!6!&76&;<,=*>

5/!"!82"!&4"2(7>!0&#&12"!&3214"!/!607(!&"!02?"3!&82"&$!6!

#6625#5726%

Single nucleotide differences
@6&#&A#0!BA:BA#0!&3214#"7026*&5/!&+,-.>&;<,=�!1B

A)7!0&/#(!&C.%D&17))726&076$)!B6?3)!257>!&>788!"!63!0&EFG-0H%

F21!&28&5/!0!&17$/5&A!&(#)7>&/#4)25:4!&>788!"!63!0*&76&9/73/

5/!& 592�!1A)7!0& #"!& A25/& 32""!35*&9/7)!& 25/!"0&17$/5&A!

!""2"0%&I!&823?0!>&2?"#):070&26&#&0?A0!5&28&420757260&9/!"!

5/!& ?6>!"):76$& "!#>& >#5#& 76>73#5!>& 5/#5& 5/!& 42075726& 9#0

/7$/):&)7J!):&52&A!&/212K:$2?0*&A!3#?0!&#&)#"$!&1#L2"75:&E2"

#))H&"!#>0&#$"!!>&975/&26!ɱ/!"%&I!&#)02&"!M?7"!>&5/#5&!#3/

FG-&9#0&8)#6J!>&A:&NDBA4&!O#35&1#53/!0&76&A25/�!1A)7!0

E0!!&,#5!"7#)0>&1!5/2>0H*&9/73/&"!>?3!>&5/!&0!5&28&FG-0

52&PQR*DSN%&I!&5/!6&)22J!>&82"&3#0!0&9/!"!&62&12"!&5/#6&26!

"!#>& 32687"1!>& 26!& #00!1A):*& #6>& #))& 25/!"& "!#>0& E#5&)!#05

5/"!!H& 32687"1!>& 5/!& 25/!"& #00!1A):%& T/!&+,-.& #00!1A):

3265#760& SD*UPU& 7605#63!0& 28& 5/!0!& #44#"!65& !""2"0& (!"0?0

PD*VND& 76& 5/!& ;<,=& #00!1A):%& T/?0*& 5/!"!& 9!"!& #44"2O7B

1#5!):&5/"!!&571!0&12"!,#"!65):&!""26!2?0&FG-0& 76& 5/!

;<,=�!1A):%

W625/!"&9#:&52&)22J&876!B$"#76!?"#3:&70&52&3214#"!&5/!

#00!1A):& 52& 76>!4!6>!65):& $!6!"#5!>& 0!M?!63!0%& I!& 321B

4#"!>&A25/�!1A)7!0&52&07O&87670/!>&;W<F*&8"21&#&>788!"!65

329&5/#6&5/!&02?"3!&28&5/!&9/2)!B$!621!&4"2L!35%&T/!0!&;W<

3)26!0&9!"!&625&?0!>& 76&!75/!"& 5/!&+,-.&2"&;<,=�!1B

A)7!0%&G76!5:B07O&4!"3!65&28&5/!&;W<&0!M?!63!&70&3265#76!>&76

Examples of large-scale disagreements between UMD2 and BCM4Figure 3
Examples of large-scale disagreements between UMD2 and BCM4. (a) Dot-plot alignment of the region between 15 Mbp and 25 Mbp of chromosome 26
showing a large inversion in BCM4 compared to UMD2; (b) positions of Cmap markers for the same region of chromosome 26, plotted against their
positions in UMD2 (blue) and BCM4 (red), showing that Cmap supports the UMD2 assembly. (c) Alignment of 7 Mbp of chromosome 27, showing a large
inversion in BCM4 compared to UMD2; (d) positions of Cmap markers for the same region of chromosome 27, showing as in (b) that Cmap is in much
closer agreement with the UMD2 assembly.

15 20 25
15

16

17

18

19

20

21

22

23

24

25

UMD coordinate (Mbp)

B
C

M
 c

oo
rd

in
at

e
(M

bp
)

12 14 16 18 20 22 24 26 28
15

16

17

18

19

20

21

22

23

24

25

B
lu

e:
U

M
D

, r
ed

: B
C

M
 (

M
bp

)

Cmap coordinate (Mbp)

30 35 40 45 50
30

32

34

36

38

40

42

44

46

48

50

UMD coordinate (Mbp)

B
C

M
 c

oo
rd

in
at

e
(M

bp
)

45 50 55 60 65 70
30

32

34

36

38

40

42

44

46

48

50

B
lu

e:
U

M
D

, r
ed

: B
C

M
 (

M
bp

)

Cmap coordinate (Mbp)

(a) (b)

(c) (d)

(b)

Figure 1.2

1.3.4 Large scale disagreements

There is an alternative set of markers developed for studying biologically significant

Single Nucleotide Polymorphisms (SNPs) in the Bos taurus genome. This set of

markers is called SNP50 and is currently used for genotyping cattle [59]. It contains

approximately 50 thousand 51-base marker sequences that are unique in the genome.

Over 48 thousand markers aligned to the UMD assembly. This set of markers was

constructed from the BCM assembly and thus the positions of all markers are known

exactly in the BCM assembly. We then compared the positions of markers in the two

assemblies and look for blocks of consistently disagreeing markers that may indicate

large scale differences between the two assemblies. Ten of the 30 chromosomes contain

one or more large (> 500 kb) discrepancies, 19 in all, primarily inversions but also

deletions and translocations. Figure 1.2a illustrates an inversion spanning 2.5 Mb on

chromosomes 27. In this case, as in all other large discrepancies, the Cmap data

support the UMD assembly, as shown in Figure 1.2b.

12

1.4 Conclusion

The Bos taurus assembly project motivated the development of genome assembly

software in two directions: faster and memory efficient mer counting, and whole

chromosome scaffolding. The need for faster mer counting was reinforced by later

work on assemblies of second generation sequencing data such as the domestic turkey

M. gallopavo [13].

The current trend in sequencing technology, referred to as Second Genera-

tion Sequencing (SGS), is to produce higher coverage (e.g. 30x to 50x) by short

reads [80, 65, 86]. In comparison, Sanger sequencing required 6x to 10x coverage. SGS

technologies greatly reduce the cost of sequencing data and effectively trade longer

reads for deeper coverage. Seemingly simple but important tasks, such as counting

the frequency of sub-strings of a given length k (called a k-mer) in the reads, become

challenging on the data sets generated by SGS. In Chapter 2 we describe a fast and

memory efficient software, called Jellyfish, that computes the k-mer frequencies on

large data sets.

Assembly programs typically produce scaffolds; contigs are ordered and oriented

relative to each other within a scaffold. The more useful output for biological studies is

chromosome sequences where the contigs are ordered and oriented on the chromosome.

This is usually achieved by post-processing the scaffolds using a marker map, which

is a laborious process. This prompted the development of the Chromosome Builder

software described in Chapter 3 that automates this procedure by using mate-pair

and marker information concurrently.

13

Chapter 2

A fast, lock-free approach for efficient parallel counting of occurrences of

k-mers

A version of this chapter first appeared in “Guillaume Marçais and Carl

Kingsford. A fast, lock-free approach for efficient parallel counting of

occurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.”

2.1 Introduction

Given a string S, we are often interested in counting the number of occurrences in S

of every substring of length k. These length-k substrings are called k-mers and the

problem of determining the number of their occurrences is called k-mer counting.

Counting the k-mers in a DNA sequence is an important step in many applica-

tions. For example, genome assemblers using the overlap-layout-consensus paradigm,

such as the Celera [69, 64] and Arachne [38] assemblers, use k-mers shared by reads

as seeds to find overlaps. Statistics on the number of occurrences of each k-mer are

first computed and used to filter out which k-mers are used as seeds. Such k-mer

count statistics are also used to estimate the genome size: if a large fraction of k-mers

occur c times, we can estimate the sequencing coverage to be approximately c and

derive an estimate of the genome size from c and the total length of the reads. In

addition, in most short-read assembly projects, errors are corrected in the sequencing

reads to improve the quality of the final assembly. For example, Kelley et al. [42]

use k-mer frequencies to assess the likelihood that a misalignment between reads is a

14

sequencing error or a genuine difference in sequence. A third application is the detec-

tion of repeated sequences, such as transposons, which play an important biological

role. De novo repeat annotation techniques find candidate regions based on k-mer

frequencies [45, 8, 34, 48]. The counts of k-mers are also used to seed fast multiple

sequence alignment [21]. Finally, k-mer distributions can produce new biological in-

sights directly. Sindi et al. [90] used k-mers frequencies with large k (20 ≤ k ≤ 100)

to study the mechanisms of sequence duplication in genomes.

We consider the k-mer counting problem in the context where the input string

S is either one DNA sequence or a concatenation of many DNA sequences, and the

alphabet is Σ = {A,C,G, T}. The main application to which we apply our new

k-mer counting algorithms here is counting k-mers in sequencing reads from large

genome sequencing projects where the length n of the sequence to process is equal to

the length g of the genome sequenced times the coverage c of the sequencing project

(n = g · c). Recent sequencing techniques, using shorter reads with a much deeper

coverage [86], generate large amounts of sequence and provide a major challenge

for genome assembly and for k-mer counting. For example, the giant Panda [51]

sequencing project generated 73x coverage yielding 176 Gb of sequence, much larger

than the 5x–10x coverage a sequencing project using traditional Sanger methodology

would generate.

Of course, k-mer counting can be naively implemented using a simple hash

table, where keys are the k-mers and the stored values are the counts. However,

this strategy is extremely slow and implementing multi-threaded access to the hash

table via standard locking mechanisms results in slower performance than a single-

threaded implementation [81, 61]. Typically, more advanced k-mer counters such as

Tallymer [45] have been based on the suffix array data structure. Despite the recent

algorithmic progress to compute the suffix array of a string, it remains a relatively

expensive computational operation. Moreover, in sequencing applications, memory

15

requirements for a suffix array grow linearly with the product of the coverage and

genome size. Meryl, the k-mer counter built into the Celera assembler, uses a sorting-

based approach that sorts the k-mers in lexicographical order, however sorting billions

of records quickly with limited memory is a challenging problem.

In order to process this huge increase in amount of sequence, the increasing

availability of parallelism must be exploited. While the raw power of each processing

core has leveled off, the number of cores per CPU is rising. Shared memory machines

with 16 or more cores and 4 GB or more memory per core are commonly available

in research facilities. Creation of parallel algorithms taking advantage of such a

large number of cores in a shared memory environment is both a challenge and an

opportunity: on the one hand, current programming paradigms either do not take

advantage of the parallelism available or are difficult to implement; on the other hand,

very fast programs using fine grain parallelism can be implemented.

In recent years, the MapReduce programing paradigm [15] has been used to har-

ness the computational power of large clusters of machines. The problem of counting

k-mers is easy to implement on top of a MapReduce cluster, but the straightforward

implementation, where the map operation emits all k-mers associated with a 1, incurs

a large overhead. To reduce this overhead, one needs to increase the amount of work

done on each node at the map stage by, for example, using a fast single-machine k-mer

counter like Jellyfish on each node. The map operation then emits pairs of k-mers

and their counts on a subset of the data. In that sense, the use of the MapReduce

paradigm and optimized k-mer counters like Jellyfish are orthogonal.

Other processing architectures such as GPU computing have also been recently

exploited for achieving faster parallel execution. However, the widespread availability

of multi-core CPUs make them the first and easiest choice to program, and this

is likely to remain true for some time to come. CPU development is not staying

idle, and facilities, such as the CAS operation (Section 2.3.2) and the SSE extension

16

(Section 2.3.4), are available in all modern CPUs to help achieve greater parallel

execution.

Our k-mer counting algorithm is designed for shared memory parallel comput-

ers with more than one core. It uses several lock-free data structures that exploit a

widely available hardware operation called “compare-and-swap” (CAS) to implement

efficient shared access to the data structures. In particular, Jellyfish uses lock-free

queues [61, 46] for communication between worker threads and a lock-free hash ta-

ble [62, 81] to store the k-mer occurrences counts (see Section 2.3.2). Unlike a tradi-

tional data structure where access by multiple threads must be serialized by the use

of a lock, lock-free data structures can be used concurrently by many threads while

still preserving a coherent internal state. The lock-free data structure also provides

better performance by increasing the amount of time spent in parallel execution ver-

sus serial execution. The efficient parallel data structures allow Jellyfish to count

k-mers much faster than existing k-mer counting software. In our testing on a large

assembly project (Section 2.4.1), Jellyfish takes minutes instead of hours.

Jellyfish is also very memory efficient. It implements a key compression scheme

that allows it to use a constant amount of memory per key in the hash table for most

applications, regardless of the length k of the k-mers counted (see Section 2.3.4).

It also uses a bit-packed data structure to reduce wasted memory due to memory

alignment requirements (see Section 2.3.3). In addition, unlike with suffix arrays,

the expected storage requirement for the hash table does not grow linearly as the

coverage increases. This property makes hash tables extremely attractive for use in

the context of short-read sequencing projects. Jellyfish can be more than twice as

memory efficient as other programs (Section 2.4.1).

Our results show that Jellyfish can count k-mers an order of magnitude or

more faster than existing programs (Section 2.4.1). This suggests that lock-free hash

tables are valuable for k-mer counting and possibly also in other problems where

17

large strings must be processed. In addition, Jellyfish’s novel memory-efficient key

compression approach (Section 2.3.4) allows the hash table to use a similar amount

of storage as suffix arrays in most common uses. Finally, our implementation of the

lock-free hash table is general and may be of use in other applications.

2.2 Methods

2.2.1 Execution Profiling

All testing and timing was performed on a 64-bit x86 AMD Opteron machine with

32 cores at 2.5 GHz and 256 GB of RAM running Linux kernel version 2.6.31. The

disks are RAID-10 with sustained write throughput of 260 MB/s. The time is the wall

clock time measured with the GNU time utility averaged over 5 runs (except runs

that exceed one hour which are run only once).

To measure the memory usage, the programs were run under strace which logs

every system call made by a process and its threads. The logs of the strace were

parsed to compute the amount of memory used by the process by looking for the

following system calls, which are the only calls available to request memory from the

kernel on a Linux system: brk, mmap, munmap, and mremap. In addition, the script

counts only the memory areas which are writable for the process. Read-only pages

are not counted as most of them correspond to shared libraries. In some cases, this

undercounts the true memory usage. For example, Tallymer maps the entire input

sequence into read-only memory and accesses it in a random fashion, so all these

read-only pages need to be present in memory. Jellyfish also maps the entire input

sequence into read-only memory, but the sequence is accessed in a sequential fashion

and only the current page needs to be present in memory. Memory usage and running

time are measured in different runs as the strace mechanism can affect the running

18

time of IO heavy programs. The overall CPU and IO load are measured with the

Linux vmstat utility.

2.2.2 Sequence Data Sets

The M. gallopavo reads were taken from the Turkey genome assembly project [13].

These short reads, from Roche 454 and Illumina GAII technology, total approximately

24 Gb of sequence for a genome of 1 Gb.

The sequence of H. sapiens (3 Gb), D. ananassae (3.5 Gb of reads, genome of

189 Mb), and C. burnetii (35.6 Gb of reads, genome of 1.99 Mb) were downloaded

from the NCBI. The human sequence is the reference genome hs_ref_GRCh37 and,

unlike all other data sets, consists of assembled chromosomes instead of sequencing

reads.

2.2.3 Comparing with Existing k-mer Counters

We used two versions of Meryl (5.4 and 6.1) from the kmer package of the Celera

assembler [64], with all default options and 32 threads. To work around an issue

with Meryl version 5.4 when dealing with a multi-fasta file, all the reads where con-

catenated with a single N as a separator. The original multi-fasta file was used with

Meryl version 6.1.

Tallymer comes from version 1.3.4 of the genometools package [45]. It was run

as shown in the example of Tallymer’s documentation given in the distribution. The

Tallymer subroutine suffixerator used options -dna -pl -tis -suf -lcp, and

the subroutine tallymer mkindex used options -minocc 1 -maxocc 10000000000

so that all k-mer counts would be written to disk.

19

2.3 Algorithm

2.3.1 A Fast k-mer Hash Table

We design a light-weight, memory efficient, multi-threaded hash table for the k-mer

counting problem. A hash table [95] is an array of (key, value) pairs, and, when

applied to k-mer counting, key is conceptually the sequence of the k-mer, and value

is the number of times that k-mer occurs. The position in the hash table of a given

key is determined by a hashing function hash and a re-probing strategy to handle the

case when two distinct keys map to the same position. In Jellyfish, if M is the length

of the hash table, the ith possible location for a given mer m is:

pos(m, i) = hash(m) + reprobe(i) mod M. (2.1)

In our implementation, we maintain the length n of the hash table to be a

power of two, M = 2` for some `, and the key representing the k-mer is encoded as

an integer in the set Uk = [0, 4k − 1]. The function hash is a function mapping Uk

into [0,M − 1]. The design of a function hash is described in Section 2.3.4.

When a new mer is added to the hash table, we attempt to store it in pos(m, 0),

and if that position is already filled with a different key, we try pos(m, 1) and so on up

to some limit. Here, we use a quadratic reprobing function: reprobe(i) = i(i + 1)/2.

This reprobing function has a good behavior with respect to the usage of the hash

table [95] while not growing too fast, which is important for quickly sorting the hash

table elements when writing the results to disk (see Section 2.3.5).

This straightforward standard scheme is both extremely slow when parallelized

in the typical way using locks, and memory inefficient. In order to make it practical,

we implement a lock-free strategy for allowing parallel insertions of keys and updates

20

to values. We also design an encoding scheme to limit the storage used for both key

and its associated counts. These are described in the following sections.

2.3.2 Updating the Lock-free Hash Table

A lock, such as POSIX’s pthread_mutex, can serialize access to the hash table and

permits its use in a multi-threaded environment. However, if such a lock is used no

concurrency is achieved, and therefore there is no gain in speed in the updates of the

hash table. In addition, the overhead of maintaining the lock is incurred.

To allow concurrent update operations on the hash, we implement a lock-free

hash table with open addressing [81]. Such lock-free hash tables exploit the “compare

and swap” (CAS) assembly instruction that is present in all modern multi-core CPUs.

The CAS instruction updates the value at a memory location provided that the mem-

ory location has not been modified by another thread. Technically (see Algorithm 1),

a CAS operation does the following three operations in an atomic fashion with re-

spect to all of the threads: reads a memory location, compare the read value to the

second parameter of the CAS instruction and if the two are equal, write the memory

location with the third parameter of the CAS instruction. If two threads attempt to

modify the same memory location at the same time, the CAS operation can fail. The

CAS operation returns the value previously held at the memory location. Hence, one

can determine if the CAS operation succeeded by checking that the returned value

is equal to the old value. Unlike a lock which serializes the access to some shared

resource, the CAS operation only detects simultaneous access to a shared memory

location. It is then the responsibility of the calling thread to take appropriate action

in the event that a conflict has been detected.

The main operation (Algorithm 2) supported by the hash is to increment the

value associated with a key without using any locks. The value increment algorithm

21

Algorithm 1 Compare-And-Swap operation
procedure CAS(location, oldvalue, newvalue)

2: currentvalue← value at location
if currentvalue = oldvalue then

4: value at location← newvalue
end if

6: return currentvalue
end procedure

works in two steps. First it finds the location in the hash table that already holds the

key or it claims an empty slot to store the key if the key is not present in the hash

table. Second, it increments the value associated with the key.

Lines 1–7 in Algorithm 2 accomplish the first step. It finds an appropriate slot

using the hash function and then does a CAS operation assuming that the entry in

the hash is empty. If the returned value of the CAS operation is either EMPTY or

equal to key, then that position is used for storing the key. Otherwise, there is a

key collision: the reprobe value is incremented and we start over. The procedure

fails if the maximum number of reprobes has been reached. Lines 8–12 accomplish

the second step: they increment the value in an atomic way again using the CAS

operation.

Two assumptions particular to k-mer counting simplify the design of the hash

table. First, no entry is ever deleted and there is no need to maintain special infor-

mation about deleted keys, such as tombstones [81]. Second, for k-mer counting the

required size of the hash table should be easy to estimate, or potentially the entire

available memory is used. Hence, in the event that the hash table is full, it will be

written to disk instead of doubling its size in memory [88, 26]. See Section 2.3.5 for

more details about this second assumption.

22

Algorithm 2 Atomic hash increment
procedure increment(key, value)

2: K: array of keys
V : array of values

4: i← 0 . Claim key
repeat

6: if i ≥ max_reprobe then
return false

8: end if
x← pos(key, i)

10: i← i+ 1
current_key← CAS(K[x],EMPTY, key)

12: until current_key = EMPTY or current_key = key
cval← V [x] . Increment value

14: repeat
oval← cval

16: cval← CAS(V [x], oval, oval + value)
until cval = oval

18: end procedure

2.3.3 Reduced Memory Usage for a Hash Entry

Our implementation uses a bit-packed data structure, i.e. entries in the hash table are

packed tightly instead of being aligned with computer words. Albeit more complex to

implement, especially in concert with the word-aligned CAS operation, and incurring

a small computational cost, such bit-packed design is much more memory efficient

and makes further memory saving schemes (variable length field and key encoding)

worthwhile.

In addition, using a value field large enough to encode the number of occurrences

of the most highly repeated k-mer is a waste of memory. Typically, with a deep

coverage sequencing of a genome and a sufficiently large k, the majority of k-mers

appear only once, as they are unique due to sequencing errors and because most

genomic sequences are not composed of repeats. Most of the remaining k-mers occur

approximately c times, where c is the sequencing coverage. A small number of k-mers,

depending on the repetitiveness of the genome, occur a large number of times. To

23

Figure 2.1: The two possible (key, value) pair entries with key encoding (top) and
extended value field (bottom).

account for this, Jellyfish uses a small value field and allows a key to have more than

one entry in the hash table: key, v1 and key, v2. The value associated with this key is

then the number obtained by the concatenation of the bits v1v2. Moreover, to avoid

the repetition of the key in the second entry, we only store a pointer (encoded as a

number of reprobes) back to the previous entry. The now unused bits in the key field

are used by the value field as shown in Figure 2.1.

2.3.4 Space-Efficient Encoding of Keys

The fact that an entry occurs at a known position in the hash table can be exploited

to compactly store keys in the hash table in order to save a significant amount of

additional memory. We choose a function f : Uk → Uk that is a bijection for which

we can easily compute both f and its inverse, and set hash(m) = f(m) mod M . The

length M = 2` of the hash table is a power of 2, and the modulo M operation in

the definition of the hash and pos functions (Equation 2.1) merely selects the ` lower

bits of the sum f(m) + reprobe(i). Hence, provided the value of reprobe(i) is known,

the position of a (key, value) pair in the hash table already encodes for the lower `

bits of f(m). Therefore, we store the 2k − ` higher bits of f(m) concatenated with

bits representing the reprobe count i + 1 in the key field of the hash. We use i + 1

rather than i since 0 is reserved to indicate the entries that are still empty (EMPTY

in Algorithm 2).

24

Conversely, given this content of the key field at position x, it is easy to find

the sequence of the corresponding k-mer that is stored at this position. The key field

contains the 2k − ` high bits of f(m) and the number of reprobes i. The lower `

bits of the f(m) can be therefore be retrieved by computing x− reprobe(i) mod M .

Finally, the k-mer m can be recovered by computing the inverse of f .

This scheme requires little modification to Algorithm 2. In particular, the keys

do not need to be computed using the procedure described in the previous paragraph

in order to be tested for equality (line 7). This is because if the content to be stored

in the key field at a given position x for two k-mers m1 and m2 are equal, then by

definition the reprobe value for both k-mers, the 2k− ` higher bits of f(mi) and their

position in the hash are equal, thus f(m1) = f(m2) and m1 = m2 by the assumption

that f is a bijection.

For the bijective f function, we use f(m) = A · m, where A is a 2k × 2k

invertible matrix on Z/2Z. Here, m and A ·m are interpreted either as integers or

as 2k binary vectors. Let H = {x 7→ A · x mod 2` | A is invertible} be the set

of all hash functions. We will show that this set is almost an universal set of hash

functions [95] in the following sense: the size of H and the number N of matrices

A for which A · x ≡ A · y (mod 2`) satisfy N ≈ |H|/2`, provided that 22k � 1 and

22k−` � 1. In other words, the definition of the universal set of hash functions is

satisfied within a small error, and the property of having few expected collisions is

preserved by this approximation. The cases where this approximation breaks are the

“easy” cases corresponding to a small number of possible k-mers (22k close to 1) or a

hash table big enough to contain almost all the k-mers (22k−` close to 1).

An invertible matrix A is a sequence of vectors v1, . . . , v2k such that the ith

vector is not in the space spanned by the vectors v1, . . . , vi−1. This vector space has

25

size 2i−1 and the number of choices for vi is 22k − 2i−1. Hence

|H| =
2k−1∏
i=0

(22k − 2i) = (22k − 1)
2k−1∏
i=1

(22k − 2i). (2.2)

For a given pair (x, y), let N be the number of invertible matrices for which

Ax ≡ Ay (mod 2`), or equivalently Az ≡ 0 (mod 2`) by setting z = x− y.

Let B be an invertible matrix such that z = Be1, where e1 = (1, 0, . . . , 0), and

let C = AB. B can be constructed by setting the first column to z and choosing the

remaining columns as above to make B invertible. Then the matrix C is invertible

if and only if A is invertible and Az = ABe1 = Ce1. Hence, N is the number of

invertible matrices C for which Ce1 ≡ 0 (mod 2`).

Therefore there is only 22k−` − 1 choice for v1, the first column of C, and the

number of choices for vi, i > 1, is unchanged. Hence

N = (22k−` − 1)
2k−1∏
i=1

(22k − 2i). (2.3)

Provided that 22k � 1 and 22k−` � 1, the relation N ≈ |H|/2` holds.

The matrix A is chosen by iteratively drawing uniformly a random matrix out of

the 24k2 possible binary matrices of this size, until it is not singular. The proportion

of invertible matrices is

Pk =
|H|
24k2

=
2k∏
i=1

(
1− 1

2i

)
. (2.4)

Pk is a decreasing sequence. Moreover, lnPk is a series which sumhand is ln(1−2−i) ∼

2−i, hence lnPk is converging to a finite limit and Pk is converging to a positive limit.

Numerically, the limit of Pk is> 0.28. Hence, by random drawing, an invertible matrix

will be found in an expected 4 steps regardless of the size k. Faster algorithms to

find an invertible matrix exist [82], but would have no impact on the execution speed

26

of Jellyfish. Thus an invertible, bijective hash function that is efficiently computable

and that reduces the storage per key significantly is achieved.

To compute the binary matrix product A · m, we use the Streaming SIMD

Extensions (SSE) instruction set of modern processors, if available. SSE instructions

work on large registers (128 bits), treating them as vectors (e.g., of four 32-bit integers

or two 64-bit integers). An SSE instruction performs the same operation on each

element of the vector (or on each pair of elements of a pair of vectors) in parallel.

For a 44 × 44 binary matrix A required to hash 22-mers, the SSE implementations

computes 34.5 million multiplications per second on our test system versus 19.4 million

multiplications per second for the C++ implementation that does not use SSE.

Surprisingly, in many applications, the above scheme uses an amount of space

per key that is independent of the length of the k-mer and the length of the input

string. Often k is chosen so that the event that a given k-mer appears more than once

in the input sequence is significant. So k is chosen large enough for the probability of

a k-mer to appear twice in a random string of length n to be less than some constant

threshold p (e.g. p < 1%). We will show that in this case the length k and the size

of the hash table M = 2` are such that the size of the key field |key|, which contains

the 2k − ` high bits of f(key) and the reprobe count, is independent of k and n.

Suppose there are n k-mers in the input chosen at random, then each has an

expected number of occurrences of µk = 4−kn. The number of occurrences of a k-mer

follows a Poisson distribution with mean µk and k is chosen so that

Pr(k-mer is repeated) = 1− (1 + µk)e
−µk ≤ p. (2.5)

27

Because 1− (1 +µk)e
−µk ≤ 1− (1 +µk)(1−µk) = µ2

k, the condition µk ≤
√
p implies

the condition in (2.5). Solving for k gives

k ≥ dlog4 n− log4(
√
p)e =

⌈
log2 n

2
− log4(p)

2

⌉
. (2.6)

On the other hand, to accommodate all the k-mers in the input, the size of the hash

table M = 2` satisfies ` ≥ dlog2 ne + 1. Hence, for the smallest choice of k that

satisfies (2.6) we have near equality in (2.6), and the number of bits to store for each

key is

|key| = 2k − `+ dlog2(max_reprobe + 1)e (2.7)

≤ dlog4(p)e+ dlog2(max_reprobe + 1)e+ 3 , (2.8)

which is independent of k and n.

2.3.5 Fast Merging of Intermediate Hash Tables

Once computed, the hash table is written to disk as a list of (key, value) records.

The list is sorted according to the lower l bits of the hash value of the mers, which is

pos(m, 0), and ties are broken lexicographically. Sorting the output has the advantage

that the results can be queried quickly using a binary search. More interestingly, it

has the advantage that it allows two or more hash tables to be merged into one

easily. This situation occurs when there is not enough memory to carry out the entire

computation and intermediary results are saved to disk. Jellyfish will detect when

the hash table needs to expand beyond the available memory and will instead write

the current k-mer counts to disk, clear the hash table, and begin counting afresh.

The intermediate results can be merged in limited memory as described below.

28

In memory, the entries in the hash table are loosely sorted in the following

sense that can be exploited to sort the output in linear time. Let pos(m) be the

final position of a mer m in the hash table. Then pos(m) = pos(m, i) for some

i ∈ [0,max_reprobe − 1]. If pos(m1, 0) + reprobe(max_reprobe) < pos(m2, 0), then

pos(m1) < pos(m2). Hence, in order to sort the output, we only need to resolve

the proper ordering of the entries within a window of length reprobe(max_reprobe),

which is a constant with respect to the size of the hash table, the input size, and

k. To do so, we create a min-heap of size reprobe(max_reprobe) using the ordering

pos(m1, 0) < pos(m2, 0) and lexicographic order to break ties. The elements to write

out to disk are read from the head of the heap, and as elements are removed from

the heap, new elements are read from the hash table and inserted in the heap.

This sorting of the output is run in parallel to the writing to disk. The hash

table is divided into m slices and thread i (0 ≤ i < num_threads) will process the

slices numbered i+ j · num_threads. The sorted result is buffered in each thread. To

guarantee that the final output is in correct global order, the threads are organized

in a token ring: only the thread which owns the token is allowed to write its own

buffer to disk, thread 0 begins with the token and thread i will pass the token to

thread (i + 1) mod num_threads. Because writing to a single disk is inherently a

serial process, no efficiency is lost by having only 1 thread write to disk at a time.

2.3.6 Distributed Locks to Reduce Contention When Writing Table to

Disk

When a thread fails to add a key into the hash table because the table is full, the

hash table is written to disk and reinitialized. For data consistency, all threads must

be prevented from making any updates to the hash table while it is written to disk.

A reader-writer lock (e.g. POSIX’s pthread_rwlock) would suffice. However, when

the number of contentions is high, this performs very poorly.

29

Instead, we implement a distributed reader-writer lock where the frequent case

(acquiring a read lock) is optimized as much as possible at the expense of the infre-

quent case (acquiring a write lock). Functionally, the distributed lock behaves to each

thread i as a distinct reader-writer lock rwlocki. For a thread to make an update to

the hash table, it only needs to acquire a read lock of its own lock, rwlocki. On the

other hand, to write the hash table to disk, a thread i is required to acquire a write

lock on all of the locks, rwlockj ∀j. In this scheme, the frequent case involves only

acquiring a lock with no contention, which is fairly fast.

The implementation again uses the CAS operation instead of POSIX pthread_rwlock

reader-writer locks. Each thread maintains a status variable which can have three

states: FREE, INUSE, BLOCKED. The frequent non-contentious case is as follows:

before an update, a CAS operation is made to change the status from FREE to

INUSE. In case of success, the read lock is considered acquired and the thread can

proceed with the update. After the update, a compare-and-swap operation is made

to change the status from INUSE to FREE. In case of success, the read lock is con-

sidered released and the thread is done. In this frequent non-contentious case our

implementation incurs only the cost of two compare-and-swap operations.

A thread that discovers a full hash table when it tries to add a key will set the

status variable of every other thread to BLOCKED. Using a condition variable, it

will then wait for every thread that was in the INUSE state to finish their update,

and then proceed to write the hash table to disk.

While the writing is occurring, every thread’s status variable will be BLOCKED

and any thread will fail in an attempt to to change its status from FREE to INUSE

using the CAS operation. If this occurs, the thread waits for the writing of the hash

to disk to be finished (its status changed from BLOCKED to FREE). If a thread fails

to change its status from INUSE to FREE it notifies, using the condition variable,

the thread that wants to write the hash to disk, that it is done with its update.

30

2.3.7 Analysis of Running Time

The time to compute one hash value via matrix multiplication is O(k) assuming the

k-mer fits in one machine word, and the time to insert one k-mer in the hash table

is O(k + max_reprobe). To tally n k-mers in the hash takes O(n(k + max_reprobe))

time. With the choice of quadratic reprobing, the size of the min-heap used to sort

the hash table while writing to disk is O(max_reprobe2). Writing n elements to

disk involves n insert and deleteMin operations on the min-heap, hence a cost of

O(n log(max_reprobe)). Hence creating the hash tables takes time linear in n.

In the case where t intermediary hash tables of size si, 1 ≤ i ≤ t with
∑t

i=1 si = n

were written to disk, the time to create all t hash tables is O(n(k + max_reprobe +

log(max_reprobe))). The time to merge the t hash tables is O(n log t). If a large

amount of memory is available and the number of hash tables created is constant

(t = O(1)), then the total runtime is linear in n. In this case, our algorithm is similar

to counting sort [87, 95] where the array counting the number of occurrences of each

element to sort is replaced by a hash table.

At the other extreme, if a small amount of memory is available and the number

of hash tables created is proportional to n, then the total runtime is O(n log n). In this

later case, the theoretical worst-case performance of the algorithm has degenerated

to that of a heap sort (since the time to merge now dominates), although in practice

the memory usage and running time will be significantly faster.

2.4 Results

2.4.1 Speed and Memory Usage on Turkey Sequencing Reads

The memory usage and timing for counting k-mers on sequencing reads of the 1 GB

Turkey genome for various levels of coverage are shown in Figures 2.2 and 2.3.

31

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 5 10 15 20

M
em

or
y

(G
B

)

Coverage

tallymer (serial)

meryl 5.4

jellyfish

meryl 6.1

Figure 2.2: Memory usage for various levels of sequencing coverage on reads generated
during the Turkey genome project when counting 22-mers. Except for Tallymer
(which is inherently single-threaded) all programs were run using 32 threads. The
memory usage for the serial and 32-thread versions of Jellyfish is almost identical
(results are shown using 32 threads).

1:00

2:00

3:00

4:00

1 5 10 15 20

R
un

 ti
m

e
(h

ou
r:

m
in

ut
e)

Coverage

tallymer (serial)

meryl 5.4

meryl 6.1
jellyfish

jellyfish (serial)

Figure 2.3: Computation time versus sequencing coverage on reads generated during
the Turkey genome project. Except as noted all programs were run using 32 threads.

32

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30

T
im

e
(s

)

mer length "k"

Counting

IO

Figure 2.4: Detailed running time of Jellyfish counting k-mers for different values of
k on coverage 5x of the Turkey reads.

Jellyfish requires far less memory than the current versions of either Meryl or

Tallymer (Figure 2.2). The memory usage of Jellyfish is approximately the same

for coverage 5x and 10x (or for 15x and 20x) because the size of the hash table is

constrained to be a power of two and the same table size of 232 (or 233) entries is used.

Tallymer does not support multi-threaded operation. When run in serial mode, the

memory usage for Jellyfish is almost identical with the usage in multi-threaded mode.

Meryl version 5.4 contained a software error that prevented it from correctly parsing

large input files and was run only up to 5x coverage. At coverage 5x, Jellyfish used

only slightly less memory than Meryl 5.4. Meryl version 6.1 ran out of memory for

coverage 15x and 20x, and it appears that trade-offs between speed and memory usage

were changed between versions 5.4 and 6.1.

Jellyfish is also much faster than Meryl and Tallymer (Figure 2.3). At coverage

5x, representing approximately 5 Gb of sequence, Jellyfish counts 22-mers in under 4

minutes, while the other approaches take between 30 minutes and 4.9 hours. Jellyfish

33

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

100

200

300

400

P
er

ce
nt

 a
ct

iv
ity

 (
%

)

IO
 (

M
B

/s
)

Time (s)

counting writing

user

in

out

system

Figure 2.5: A trace of Jellyfish’s CPU usage and IO throughput on counting 22-mers
on coverage 5x of the Turkey reads with 32 threads. CPU usage is split into “system”
(corresponding to all system calls for memory allocation, read/write from disk, etc.)
and “user” (the program). The “percent activity” is a global activity measure over all
32 cores. The IO throughput is split into “in” for input and “out” for output.

is also able to count 22-mers at coverages > 10x where the other programs fail or take

over 5 hours.

Figure 2.4 shows the impact of varying the mer length k on computation time,

showing the contribution of both IO and the actual counting. As k increases from

5 to 30, the counting time stays approximately the same, while the IO time grows

significantly because of the larger number of distinct k-mers that must be output. For

small values of k (here < 15) Jellyfish uses direct indexing (where there is one entry

in the table for each of the 4k possible k-mers). For very low k (here k = 5), the effect

of multiple threads trying to increment the same memory location is compounded

and explains the longer counting time for k = 5 than for k = 10.

34

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32
S

pe
ed

up

of threads

with IO

no IO

Figure 2.6: Speedup versus number of threads on coverage 5x of the Turkey reads.
On this log-log scale plot, a perfectly linear speedup would correspond to a diagonal
line. The “no IO” curves includes only the initialization and counting phase times.
The curve marked “with IO” counts the total runtime.

2.4.2 Jellyfish’s Architecture Allows for a High Degree of Parallelism

The CPU and IO usage of Jellyfish on 32 threads while counting 22-mers on coverage

5x of the turkey reads is shown in Figure 2.5. There are three distinct phases in the

trace. First, initialization, when memory is zeroed out and the input file is aggressively

pre-loaded in cache by the operating system. This lasts 14 seconds. The second

phase is active counting which uses 100% of the 32 CPUs available on the machine.

Thanks to the lock-free design, the threads almost never wait on each other. The

CAS operation is a CPU operation, not a system call that would require an expensive

context switch. Therefore, the counting phase is fast and the operating system uses

no computational resources during this phase. The final phase is writing, where the

results are sorted and written to disk. In this phase, the operations are bounded by

IO bandwidth. The default output format, used when creating this trace, is designed

to be easy to parse rather than compact. A more compact file format would lead to

faster execution time in the third phase.

35

Figure 2.6 shows the speedup obtained when increasing the number of threads

used. Again, the k-mers are counted on coverage 5x of the Turkey reads. On the

upper curve (labeled “no IO”) takes into account only the initialization and counting

phases, i.e. only the hash table operations. The lower curve (labeled “with IO”) also

includes the writing phase where the result is sorted and written to disk. The hash

operations have an almost linear speed-up up to 32 threads (the number of cores

on the test machine). When including the writing to disk, the speed-up is linear

up to 4 threads and nearly linear up through 8 threads. Then, the sorting is done

fast enough that the IO bandwidth is the bottleneck (as seen in Figure 2.5) and the

speed-up levels off.

2.4.3 Timing Results for Other Genomes

Jellyfish is able to process genomes or the reads from recent sequencing projects in

only a few minutes. Table 2.1 contains the timing and memory usage of Jellyfish on

several data sets, computed with 32 threads. The number of different k-mers in each

data set is reported as “distinct”, and the total number of k-mers is also shown.

The timing information for Turkey coverage 20x is included for comparison.

Even on the reads of a very repetitive genome, such as Z. mays, Jellyfish takes less

than 20 minutes, while computing the suffix array with Tallymer would take about

24 hours.

2.5 Conclusion

Increasingly, practical computation on large collections of genomic sequences requires

software which can use parallel computer architectures that are commonly available

today. The lock-free operations used in Jellyfish permit the design of truly concurrent

36

Table 2.1: Performance of Jellyfish on the chromosomes of the human genome and
the reads from several sequencing projects.

Organism Time RAM # of 22-mers (×106)

m:s Gb distinct total

H. sapiens 3:33 11.8 2 351 2 861
Z. mays 18:14 55.9 7 161 26 653
M. gallopavo 9:01 24.7 5 503 19 446
D. ananassae 2:19 7.35 1 197 2 936
C. burnetii 0:02 1.25 10.2 34.2

data structures that are fast in serial mode and scale almost linearly with the number

of processors used.

Jellyfish can tackle k-mer counting on the large data sets available today. As

short-read sequencing projects become more common and achieve larger and larger

coverage, efficient k-mer counting will become increasingly important. The hash

table at the heart of Jellyfish is a versatile and widely used data structure. Proper

optimizations make Jellyfish’s hash table competitive in both time and space even

compared with other data structures specifically design for string processing, such as

suffix arrays, as implemented in competing k-mer counting packages.

37

Chapter 3

Chromosome Builder

3.1 Introduction

3.1.1 The goals of scaffolding

The scaffolding stage of a genome assembly solves two problems: finding relative

orientations of the contigs and finding relative positions of the contigs. In addition, if a

marker map is present, the chromosome builder considers also the absolute orientation

and absolute position of contigs on the chromosomes. We shall describe these four

problems in more detail.

Orientation of contigs. The sequence of each contig represents either strand of the

DNA molecule. Two contigs may represent different strands. To create larger struc-

tures made of contigs, i.e. scaffolds (a.k.a. supercontigs), it is necessary to orient the

contigs with respect to each other, so that they all represent the same strand. It is a

relative orientation as it is not known which strand the contig represents, only that

they all represent the same one. Because of the presence of erroneous mate pairs in

the data, solving the orientation problem is an NP hard problem [41]. In practice,

assembler programs use various heuristics to obtain a reasonable solution [79]. The

Chromosome Builder assumes that the relative orientation problem has been solved.

This means that the software silently ignores mate pairs which are not consistent with

the given orientation. A mate pair (r1, r2) between contigs C1 and C2 is consistent

38

(a) Consistent orientation (b) Inconsistent orientation (c) Directed edge

Figure 3.1: In 3.1a, the mate pair (r1, r2) is consistent with the orientation of the
contigs C1 and C2, as r1 and C1 have the same orientation while r2 and C2 have
opposite orientation. In 3.1b is shown the case where the mate pair (r1, r2) does not
have a consistent orientation with C1 and C2. The mate pair in 3.1a contributes the
oriented edge from C1 to C2 as shown in 3.1c to the mate pair graph while the mate
pair in 3.1b is silently ignored.

with the orientation of C1 and C2 if one read has the same orientation as its contigs

and the other has the opposite orientation, as shown in Figure 3.1.

Scaffolding. Once the contigs are oriented with respect to each other, scaffolding

consists in finding the order in which the contigs appear in the DNA and an estimation

of the distances, commonly referred as “gaps”, between the contigs in this ordering.

If two contigs overlap each other, the gap is negative. This ordering problem is easily

expressed as a graph problem. Consider a directed graph where each contig is a vertex

and for each mate pair (r1, r2) between two contigs, there is a directed link from the

contig in the same orientation with its reads to the contig in opposite orientation with

its read, as in Figure 3.1. In the presence of errors, finding the most parsimonious

ordering is equivalent to solving the minimum feedback arc set, which is NP hard.

Positioning contigs on chromosomes. The markers are short fragments of DNA (∼

100 bp) whose sequence and position in the genome are known, albeit often with a

large standard deviation (∼ 100 kbp). If a marker map is available, it is possible to

determine the absolute orientation and absolute position of the contigs, i.e. not only

determining the orientation and position of the contigs relative to each other, but

also the actual position on the chromosome [50]. The orientation of these markers on

39

the chromosome is usually not known. Hence, to orient a scaffold, it must have at

least two markers separated by several standard deviations.

The traditional approach is to create scaffolds ignoring markers, and then use

marker information to place scaffolds on chromosomes. Some breakage of scaffolds

may be required when there is no way to place a scaffold that is consistent with the

markers. Our view is that markers provide information useful not only to positioning,

but also to scaffolding (see section 1.4). Moreover, by merging the scaffolding and

placement operations, all data available is used for both operations.

3.1.2 Solving the ideal case

Chromosome Builder is a computer program designed to determine the most likely

placement of contigs on chromosomes. The input to the program is a collection of

contigs, mate pairs and markers. The contigs are oriented relative to each other, the

mate pairs each connect two contigs, and the markers are sequences in contigs such

that the approximate location of the sequence in a chromosome is known. In reality,

a significant portion of this data is simply wrong. For example, what is listed as a

contig may be a chimeric merger of two unrelated contigs. The primary task is to

ferret out this erroneous data. However, we begin by describing how we would solve

the problem in the ideal case where none of the data is seriously wrong, that is none

of the data needs to be excluded to obtain a reasonable solution. The general case

requires a careful selection of the data to be used (see Section 3.2.1). More specifically

the ideal case is specified as follows.

1. Let C be a collection of n contigs that all are subsequences from the same

chromosome. The orientations of each contig on the chromosome is known. Let

x1, . . . , xn denote the unknown positions of the first base of each contig.

40

2. Let P0 be a collection of mate pairs that connect contigs. Each mate pair p

connects contig l(p) to contig r(p). The expected length δ?p of the mate pair

and its standard deviation σp are known. The length δ?p and the positions of

the reads of the mate pair in the contigs corresponds to a distance δp between

the beginnings of the contigs, that is, xr(p) − xl(p) (see Figure 3.2c).

3. Let M0 be a collection of markers. For m ∈ M, write c(m) for the contig

to which the sequence of m aligns. Write ρ?m for the expected position of the

marker and σm for its standard deviation. The position of the marker in the

contig and ρ?m corresponds to a position ρm of the beginning of the contig, that

is xc(m) (see Figure 3.2d).

4. The estimates of the positions ρm and of the distances between the contigs δp

are independent random variables.

We estimate the positions of contigs by minimizing the following function of the

positions.

f(x1, . . . , xn;P0,M0) =
∑
p∈P0

(
xr(p) − xl(p) − δp

)2

σp
+
∑
m∈M0

(
xc(m) − ρm

)2

σm
.

That is, the gradient of f with respect to x = (x1, . . . , xn) is set equal to 0 and the

resulting linear system is solved.

We justify the weightings (the 1/σ factors) as follows. The linear system ob-

tained by setting the gradient of f equal to 0 has an intuitive meaning that can be

explained most easily by assuming there are no markers. The discussion with the

markers is analogous. The ith equation, ∂f/∂xi = 0, is the sum of ki terms where ki

is the number of mate pairs with one read in contig i. The term for mate pair p is

either
δp − (xr(p) − xi)

σp
or

(xi − xl(p))− δp
σp

(3.1)

41

and represents the deviation (xr(p) − xi) (in the first case) from the expected value

δp — measured as a multiple of the standard deviation. We can also refer to these

quantities as the strain sp imposed on a mate pair due to the values of the positions

of the two contigs the mate pair connects. The ith equation says that the sum of

the strains on the mate pairs connecting contig i is 0. The strain of mate pair p is

inversely proportional to the standard deviation of its library. Suppose for example

one of the mate pairs, p0, would have strain 0 if xi = a while the remaining ki − 1

mate pairs would have strain 0 if xi = b. Then, the solution would place a strain on

mate pair p0 equal to the sum of the strain on the other mate pairs. (The strain on

p0 would have the opposite sign of the strain on all other mate pairs.)

We also experimented with the weighting being 1/σ2
p. The result was that

many inserts with large standard deviation had larger strains than short inserts. The

signature of an “extremely” stretched mate pair is to have a large strain, e.g. |sp| > 3,

that is, the mate pair is stretched by more than 3 standard deviation. Using the 1/σ2
p

weighting results in many extremely stretched inserts with large σp.

3.2 Methods

3.2.1 Problem statement

The Chromosome Builder computes the position of the first base of each contig. Recall

the data available is the list and length of contigs; mate-pair library information

(mean length and standard deviation); the position and orientation of the reads into

the contigs; optionally, the position of markers in the chromosome and in the contigs.

The data for the mate-pairs and markers is not known precisely. We try to

identify and eliminate erroneous information, such as:

• bad mate-pairs result from either having two unrelated reads reported as mated,

or a read can be positioned in the wrong instance of a repeat region;

42

• bad contigs result from misassemblies, where two unrelated fragment of sequence

are glued together in a contiguous piece;

• bad markers where the reported marker positions is simply wrong;

• haplotype variants of contigs present in the data.

The Chromosome Builder is centered around iteratively selecting data to be used

by our iterated least squares solver that will be described below (section 3.2.3). We

describe here the pre-processing and post-processing operations designed to make

the procedure robust to the errors above. The pre-processing operations attempt to

cleanup the input data and remove the data which is most likely erroneous. The post-

processing operations checks for errors in the layout generated by the least squares

solver and further removes the contigs or mate-pairs which are the likely cause of the

errors. The entire procedure (pre-processing, least squares solver, post-processing)

is then repeated until the contig layout converges. This usually occurs at the first

iteration. Every piece of information which was removed during one iteration is not

used in the subsequent iterations.

3.2.2 Pre-processing: data cleanup

The following cleanup operations are performed: removal of mate-pair haplotypes, of

contained mate-pairs, and of duplicated mate-pairs; verification of mate-pair consis-

tency.

Mate-pair haplotypes. A contig C1 is a mate-pair haplotype of a contig C2 if |C1| <

|C2| and there exists anti-parallel edges between C1 and C2 in the mate-pair graph,

as seen in Figure 3.2a. In this case, the contig C1 and all its mate-pairs are removed

from the data set.

43

(a) Mate-pair haplotype (b) Included mate-pair

(c) Implied distance (d) Implied position

Figure 3.2: In 3.2a, contig C1 has mate pairs linking to contig C2 on the 3′ and
5′ ends. In the mate-pair graph, there are two anti-parallel edges between C1 and
C2. This would typically occur when C1 is a haplotype variant of C2. In 3.2b, the
mate pair between C1 and C2 is included because even if stretched by more than
5 standard deviations, the contigs it links overlap. 3.2c shows the implied distance
between the first bases of contigs C1 and C2 implied by a mate pair with mean δ∗m is
δm = x1−x2 = o1 +δ∗m−o2. 3.2d shows the starting position of a contig ρm = ρ∗m−om
implied by a marker reported at position ρ∗m and aligning with offset om.

Validating mate pairs. A chimeric mate pair consists of two independent reads that

are accidentally declared mates. Inclusion of such a mate pair is in effect a statement

that the two contigs that contain the reads and are far apart in the genome should

placed next to each other. If the two contigs are in different regions that have no

legitimate mate pairs connecting them, then the chimeric mate pair’s incorrect infor-

mation is not disputed. There is no contradictory information. As a result the two

regions can be drawn together in the contig’s layout, intermingling contigs that should

be far apart. Our approach to deal with this problem is to remove from consideration

every mate pair which is not validated by other mate-pair data as described below.

A mate-pair is validated if there exists another mate pair, between the same

pair of contigs C1 and C2, which imply the same distance between C1 and C2 within

3σ. As shown in Figure 3.2c, the distance between C1 and C2 by a mate-pair is

δm = o1 + δ∗m − o2. Two mate-pairs between contigs C1 and C2 are consistent if

44

their implied distance δm and δm′ satisfy |δm − δm′ | ≤ 3σ. A mate-pair which is not

consistent is removed from the data set.

Replicated mate pair removal. Both 454 [57] and Illumina [3] sequencing are prone

to chemically generate multiple copies of a mate pair when there should be only one.

If multiple copies of a mate pair are kept in the data set, they will appear to validate

each other.

We say two reads in the same contig are coincident if their starting positions

are the same, within a few bases. We say two mate pairs m1 and m2 are replicates

of each other if each of their reads is coincident with one from the other mate pair.

Only one instance of the replicated mate pairs is kept in the data set.

Reads in a repeat region. Some assemblers flag the reads which are placed in a repeat

region. Because of the possibility for such a read to be placed in the wrong instance

of the repeat, Chromosome Builder ignores any mate pair containing at least one read

placed in a repeat.

Contained mate pairs. Certain situations involving validated mate pairs suggest that

the contigs may be misassembled or may be from different haplotypes representing the

same region. Such possibilities may require further investigations which are outside

the scope of this work. For preprocessing, we assume the contigs are valid and different

contigs represent non-overlapping regions of the genome. From the position of a read

in a contig and the size of the contig, we can tell whether its mate should lie in the

same contig, judging from the mean and standard deviation of the mate-pair library.

A mate-pair with mean δ∗m and standard deviation σm between two contigs

C1 and C2 is contained if the mate-pair fits entirely in contig C1 or C2. Using the

notation of Figure 3.2b, the mate-pair is contained in contig C1 if the following holds:

45

o1 + δ∗m + 5σm ≤ |C1|. If validated mate pairs are also contained, the software flags

the contigs as being potentially misassembled.

3.2.3 Iterative solver

Even after the data cleaning described above, the layout created by solving this least

squares problem is likely to be incorrect. The iterative solver repeatedly solves a least

square optimization, removing at each iteration the most “unhappy” elements (mate

pair or marker), until all the remaining elements are “happy”.

More precisely, the sets P0 andM0 are the sets of mate pairs and markers after

the cleaning operations. Then, each iteration consists in setting

(x
(i)
1 , . . . , x

(i)
n) = arg min

(x1,...,xn)

f(x1, . . . , xn;Pi,Mi).

Then, the sets Pi+1 andMi+1 are obtained respectively from Pi andMi by removing

0.5% of the most strained elements, where the strain is defined in eq 3.1 computed

for the current solution (x
(i)
1 , . . . , x

(i)
n).

Also, we ensure that for any contig C, at most one mate pair or marker involving

C is removed. This last condition allows for the detection of misassembled contigs in

the post-processing stage, as explained in Section 3.2.4. A mate pair or marker which

was removed from Pi or Mi at a previous iteration reintegrates its set if its strain

becomes less than 3 in absolute value.

The iteration stops when there is no more mate pair or marker with a strain

greater than 3 in absolute value.

46

3.2.4 Post-processing: error detection

Three tests are performed on the layout created by the iterative solver: tests for

misoriented contigs or collection of contigs, misassembled contigs, and what we call

“folded scaffolds”.

Misoriented contigs. While each contig is provided with an orientation, that orienta-

tion can be wrong. It is easier to detect misorientation for large collection of contigs.

This test checks that the orientation of the connected components is in agreement

with the marker map. The contig layout generated by the least squares solver gives

positions for the markers. The slope of the linear regression between the marker po-

sitions in the map and in the computed layout should be close to 1. A negative slope

indicates that the contigs in a connected component have an incorrect orientation.

Misassembled contigs. A contig is misassembled if its sequence does not exist in the

genome. This test intends to detect contigs made up of two piece of sequence which

do not come from the same region of the genome. The mate-pairs of these two pieces

cannot be satisfy simultaneously. Hence, the misassembled contig test detects contigs

with a cluster of satisfied mate-pairs and a cluster of unsatisfied mate-pairs. These

contigs and incident mate pairs are removed from the data set.

Folded scaffolds. An erroneous mate-pair can force two distant contigs to be placed

close to one another. This has the effect of “folding” the scaffold onto itself, as

shown on Figure 3.3. The connected component is then made of two parts which are

individually correctly scaffolded, but the two parts are placed on top of each other

instead of being placed one after the other.

This test detects this situation by looking for discrepancies in the distances

between every pair of contigs in the mate-pair graph and in the layout. The distance

47

(a) Correct layout (b) Folded layout

Figure 3.3: In 3.3a the correct layout of 7 contigs. The mate-pairs are represented
by doted lines. One erroneous mate-pair, shown in red, links two distant contigs.
In 3.3b, the folded layout when the red mate-pair is erroneously trusted by the least
squares procedure.

in the mate-pair graph is the length of the shortest path between two contigs. The

distance in the layout is the distance of the first bases of the two contigs. In a correct

layout, the two distances have roughly a linear relationship.

In the folded layout, every path between contigs in different parts must pass

through one of the erroneous mate-pairs. Hence, this test first computes the number of

times a mate-pair is traversed by the all the shortest paths between contigs adjacent

in the layout. Then it finds the mate-pairs which are overly represented. These

offending mate-pairs are removed from the data set.

3.3 Results

We applied an early version of the Chromosome Builder to position the contigs on

the chromosomes in the UMD Bos taurus assembly version 3.1 (see Chapter 1). This

assembly has recently been annotated by NCBI and is currently the official reference

genome. In this section we analyze the positions of the BAC reads on the chromosomes

in the 3.1 assembly and show that they are more consistent than in Btau 4.1 by Baylor.

By construction, all the reads from the same BAC come from the same neigh-

borhood of length less than 400 kb. In our assembly of the Bos taurus genome, we

used this BAC read co-locality only to place additional sequence (see Section 1.2.3),

representing 3% of the total sequence. Although ATLAS assembles each BAC sepa-

rately and thus implicitly uses this information, it can make mistakes when stitching

48

(a) Correct contig ordering. (b) Inversion of C3 and C2.

Figure 3.4: In 3.4a, contigs C2 and C3 are in a correct order and the BAC name
tags follow a logical succession. In 3.4b, contigs C2 and C3 are in reversed order and
display the interleaving pattern of BAC name tags.

the BAC assemblies together. Here, we compare the consistency of the BAC read

co-locality information in the two assemblies to evaluate their quality.

We assign “tags” to each contig. A tag corresponds to a BAC, and a contig

containing three or more reads from a BAC is tagged by that BAC name. A contig

may have zero, one, or more tags. The positions of the tagged contigs on the chromo-

some should be consistent: two contigs sharing a tag should be placed no more than

a BAC length apart, and, by the same token, the contigs sharing tags should cluster

together.

In this study, we consider only contigs that are longer than 5 kb. Given the

coverage by BAC reads, the expected number of BAC reads in such contigs is over

15. Hence, in a correct ordering, a contig C flanked by two contigs tagged by BAC

B should also be tagged with B with high probability. See Figure 3.4a.

We search for tag sequences which are unlikely. More specifically, since the

number of possible erroneous patterns is large, we chose the sequence of tags B1 −

B2 − B1 − B2 to compare the two assemblies. This pattern is indicative of an error

with high probability. We find 478 such patterns in the BCM assembly, versus 160

in the UMD assembly, a 66% improvement.

49

Part II

Graph problems

50

In this part, we explore some problems in graph theory. We first describe the

seeded complex detection problem which lead to the study of exactly k-edge connected

graphs in Chapter 4. Although biological problems motivated the study of these

graphs, the results obtained are of theoretical nature and only remotely connected to

the initial inquiry, but interesting in their own right.

In Chapter 5, we consider the problem of reconstructing, under the assumption

of parsimony, the biological network of some ancient species which is a common

ancestor to two or more extant species. We present a framework to encode the

evolution of the biological network and an algorithm which finds efficiently, in practice,

the optimal ancestral network.

The seeded complex problem. A biological complex is a group of proteins that bind

together to perform some biological function. Finding which proteins form complexes

is of great biological interest. Experiments to discover the structure of such com-

plexes, like crystallography, are time consuming and expensive. This motivates the

development of computational methods to detect complexes from the results of high-

throughput experiments, such as Protein-Protein-Interaction (PPI) networks gener-

ated by Yeast Two Hybrid (Y2H) experiments [100, 37]. A PPI network is repre-

sented by a weighted graph G = (V,E,w), where V is the set of all proteins, E is

the set of physical binary interactions which have been experimentally observed and

w : E → [0, 1] is the probability for this edge to be a true one.

Databases, such as MIPS [73], which catalog known complexes, are incom-

plete. Only a small subset of all complexes existing in an organism are present in the

database and the complexes cataloged are not complete, i.e. some proteins could be

missing. In the seeded complex problem, one is interested in augmenting the descrip-

tion of existing complexes. Formally, given a PPI networks represented as a weighted

graph G = (V,E,w) and a set of proteins C ⊂ V which are believed to be part of

51

one complex, find a superset set of proteins C ′ ⊃ C which are likely also part of the

same complex.

We considered trying to answer the following question as an approach to solving

the problem above. Given the set of proteins C in our graph G, what is the most

parsimonious way to connect all these vertices in G? Computationally, this is equiva-

lent to the minimum Steiner tree problem [19, 84]. More precisely, we considered the

following metric. If C ⊂ V is a set of vertices, then the Steiner weight sw(C) is the

weight of a minimum Steiner spanning C. Then, for any vertex p ∈ V , the Steiner

distance of p to C is

sd(p, C) =
sw (C ∪ {p})

sw(C)
− 1 .

If, and only if, p is on one minimum Steiner tree of C, then sd(p, C) = 0. Otherwise,

this measures how much a Steiner tree of C has to be modified to incorporate the

protein p.

The algorithm to solve the seeded complex problem consists by computing the

Steiner distance sd(p, C) for every protein in the graph and returning the set of

proteins with a Steiner distance to C less than a threshold.

Computing minimum Steiner trees. The minimum Steiner tree problem is NP-

hard [40]. Hence, solving the minimum Steiner tree problem is computationally ex-

pensive. The Steiner distance described above requires solving many instances of the

minimum Steiner tree problem. As a way to decrease the size of the minimum Steiner

tree problem, we considered the following strategy. Let C be the set of required ver-

tices. Find the biconnected component of the graph G. We now consider two sets of

minimum Steiner tree problems.

52

Figure 3.5: The black edges are the bridges, separating the biconnected component.
Each biconnected component has a different color for its edges (purple, green, orange,
blue and red). The required vertices are colored dark blue and the light blue vertices
are the articulation vertices added as required in each biconnected component. The
solution is shown with bold edges.

First, collapse every biconnected component into a super-vertex. The resulting

graph is a tree. Mark every super-vertex which contains a required vertex as required.

Solving the minimum Steiner tree problem in a tree is a trivial problem.

Second, in each biconnected component Vi, consider a minimum Steiner tree

problem where the required vertices are C ∩ Vi and every articulation point vertex of

Vi which is on the path to another biconnected component which contains required

vertices. Each minimum Steiner tree problem instance is smaller than the original

problem (graph is smaller and fewer required vertices).

It is then trivial to patch together a solution to the minimum Steiner tree

problem in G from the solutions in the tree and in each biconnected component Vi,

as shown in Figure 3.5.

Exactly connected graphs. A natural question is whether this scheme can be extended

further. That is, take a biconnected component and collapse into a super-vertex every

vertex which are connected by at least 3 edge-disjoint paths. Can the solutions to the

minimum Steiner problems in the graph of super-vertices and in each super-vertex

53

be patched together in a solution to the problem in G? Although we do not have an

answer to this question, we studied the following relevant class of graph.

A graph G′ obtained from k-edge-connected graph G by collapsing into super-

vertices the vertices which are connected by at least k+ 1 edge-disjoint paths has the

following property: between every two vertices of G′ there are exactly k edge-disjoint

paths. Chapter 4 characterizes the exactly k-edge-connected graphs for k = 1, 2, 3,

and some variants: exactly connected and planar, and minimally connected graphs.

Parsimonious ancestral network reconstruction. Biological networks, such as PPI or

regulatory networks, of modern species can be observed. Phylogenetic trees relate

extant and extinct species based on common traits, genetic information and fossil

records. On the other hand, the actual biological network of an extinct species, or

the evolution of the biological network of an ancient species to a modern one, is

inaccessible by experimental means. Nevertheless, one would like to understand how

modern features in extant species arose.

We consider the problem of reconstructing, in the most parsimonious way, the

history of the creation and deletion of edges in a biological network as it evolves from

an ancient species to a modern one. We assume that we have complete homology

information between the proteins in the extant network, i.e. we have a binary tree

completely describing how every vertex in the extant network appeared from earlier

vertices and gene duplication. Moreover, we assume that right after duplication, the

two genes are identical and have the same set of edges in the network as their ancestor.

After duplication, the genes diverge by creation of new edges or deletion of existing

edges. In this context, a most parsimonious history is one with the fewest number of

creation and deletion events.

In Chapter 5, we show a method to reconstruct such a parsimonious histories.

Although not theoretically guaranteed, this method returns in practice the optimal

54

or near optimal solution in polynomial time. Finally, we present variations on the

method for different type of graphs — directed, with self-loops — and a way to

reconstruct the biological network of a common ancestor to two related species.

55

Chapter 4

A Synthesis for Exactly 3-edge-connected Graphs

4.1 Introduction

A graph that is k-edge-connected and k-regular has the property that, between any

pair of distinct vertices u and v, there are k and only k edge disjoint u−v paths. The

class of k-edge-connected, k-regular graphs has been heavily studied, in particular the

case k = 3. On the other hand, the class of graphs for which there are exactly k edge-

disjoint paths between every pair of vertices is much larger than the k-edge-connected,

k-regular graphs. For example, such a graph can have arbitrarily many vertices of

arbitrarily large degree. We call a graph with exactly k edge-disjoint paths between

every pair of vertices exactly k-edge-connected. In this chapter, we will completely

characterize the exactly k-edge-connected graphs for k = 1, 2, 3 and study some of

their properties.

If C is an induced cycle in a graph G, then the graph G′ obtained from G by

collapsing C into a single vertex has a lower or equal vertex connectivity and greater

or equal edge connectivity than G. Various conditions to guarantee the existence of

an induced cycle C in a biconnected graph G such that G′ is also biconnected have

been given in [98, 97, 22, 29]. Such cycles are called non-separating induced cycles.

To prove the correctness of our characterization of exactly 3-edge-connected graphs,

we will prove (Theorem 4.3) the existence of induced cycles which, when collapsed,

simultaneously preserve 2-vertex-connectivity and 3-edge-connectivity.

56

Exactly connected graphs arise in several contexts. For example, they are ob-

tained if all pairs of vertices of higher local edge-connectivity are merged. Suppose G

is a k-edge-connected graph, but not necessarily exactly k-edge-connected. If the sets

of vertices that are mutually connected by > k edge-disjoint paths are collapsed into

supernodes, then the resulting multigraph G′ is either a graph of a single vertex or is

exactly k-edge-connected. This follows because G′ is at least k-edge-connected as G

was, and no two supernodes can be connected by > k edge-disjoint paths, otherwise

they would have been merged. That such supernodes are partition the nodes of G [60]

follows directly from Menger’s theorem [17].

All exactly k-edge-connected graphs are both edge-minimal and edge-maximal

in the sense that removing or adding an edge will destroy exact k-edge connectivity. k-

connected edge-minimal graphs, also called minimally connected graphs, have received

a lot of attention [4, 32, 78, 31, 55]. On the other hand, not all edge-minimal k-edge-

connected graphs are exactly k-edge-connected. Hence, the class of exactly k-edge-

connected graphs is a strict subset of the edge-minimal k-edge-connected graphs. The

Harary graphs [30] (graphs satisfying a connectivity requirement k with a minimum

number of edges) are exactly k-edge-connected, but there is only one Harary graph

for each pair (n, k), where n is the order (number of vertices) of the graph and k the

connectivity requirement. We shall generalize this concept in Section 4.4.2.

A synthesis of a class of graphs is a set of elementary operations by which all

graph of the class can be generated. A synthesis provides a complete characterization

of its elements and provides a natural way to reason by induction about the class of

graphs. Syntheses for many classes of graphs already exist [2, 10, 35, 14, 44, 39, 99,

93, 30, 18]. Development of syntheses for additional classes of graphs is an active area

of current interest.

The exactly 1-edge-connected graphs are simply the trees. The exactly 2-edge-

connected graphs are “trees of cycles.” More formally, ifG is exactly 2-edge-connected,

57

it is the union of simple cycles such that the block-cutvertex graph H = (V,E) is a

tree, where V contains a vertex uc for each cycle c and a vertex uv for each vertex

v ∈ G shared by more that one cycle, and where E = {{uc, uv} : v ∈ c}. Every 2-

edge-connected graph can be generated from a Whitney-Robbins synthesis [30]. The

exactly 2-edge-connected graphs can be generated via a “Robbins synthesis”:

Proposition 4.1. An exactly 2-edge-connected graph G is obtained from a Robbins

synthesis. In other words, there exists a sequence of graph Gi, 0 ≤ i ≤ l such that G0

is a simple cycle, Gl = G and Gi+1 is obtained from Gi by a cycle addition.

Proof. G is 2-edge-connected, so it is the result of a Whitney-Robbins synthesis. Let

Gi (0 ≤ i ≤ l) such that G0 is a simple cycle and Gi+1 is obtained from Gi by a path

or a cycle addition. Note that G0 is exactly 2-edge-connected. Suppose that Gi is

exactly 2-edge-connected and that Gi+1 is obtained by a path addition, between u

and v. There are 2 edge-disjoint paths between u and v in Gi. The newly added path

is obviously edge-disjoint from the paths in Gi. So there are 3 edge-disjoint paths in

Gi+1 between u and v. Given that no edge or vertex is ever removed, there are also

3 edge-disjoint paths in G between u and v, which is a contradiction. On the other

hand, cycle addition does not create any new edge-disjoint paths between existing

vertices. So G is obtained from G0 by a sequence of cycle additions.

The situation is more complicated for k = 3. Existing syntheses cannot be

easily modified to generate exactly 3-edge-connected graphs. The synthesis of exactly

3-edge-connected graphs is presented in Section 4.2. The existence of certain type of

non-separating cycles in quasi 3-regular graphs, on which the synthesis depends, is

presented in Section 4.3. Finally, in Section 4.4, we describe some of the properties

of exactly edge-connected graphs.

58

4.2 A Synthesis for Exactly 3-edge-connected Graphs

We begin by describing several operations that preserve exact 3-edge-connectedness

when applied to any exactly 3-edge-connected graph. Eventually, the synthesis will

exploit only two of these operations: block gluing and cycle expansion. The other

operations will play a role in the proof of the synthesis and are also interesting in

their own right. In the following, biconnected graphs are graphs which are 2-vertex-

connected. A vertex whose removal would disconnect a connected but not biconnected

graph is called an articulation point. A block is a maximal connected subgraph that is

biconnected. Throughout, all sets should be considered multisets and all graphs are

multigraphs and loopless. The notation (u, v)r denotes an undirected edge between

u and v of multiplicity r (when r = 1, it is omitted).

4.2.1 Gluing Operations.

In this section, G1 = (V1, E1) and G2 = (V2, E2) are two exactly k-edge-connected

graphs with V1 ∩ V2 = ∅. We will define operations to glue these graphs together

into G = (V,E) that is also exactly k-edge-connected. See Figure 4.1 for illustrations

of several of the operations. The first collection of these operations exploits the

relationship between exact connectivity and the blocks, or biconnected components,

of a graph.

Definition 4.1 (Block gluing). G = (V,E) is the graph obtained by identifying one

vertex from G1 = (V1, E1) and one vertex from G2 = (V2, E2). Formally, let u1 ∈ V1

and u2 ∈ V2, let N(u1) and N(u2) be their respective neighboring vertices and let

X = {(u1, v) : v ∈ N(u1)} ∪ {(u2, v) : v ∈ N(u2)} be the adjacent edges of u1 and u2.

59

Then construct G = (V,E) by setting

V = V1 ∪ V2 ∪ {u} \ {u1, u2}

E = E1 ∪ E2 ∪ {(u, v) : v ∈ N(u1) ∪N(u2)} \X.

This is called block gluing because the vertex u becomes an articulation point in G.

Proposition 4.2. If G1 = (V1, E1) and G2 = (V2, E2) are exactly k-edge-connected,

then any block gluing G of G1 and G2 is exactly k-edge-connected.

Proof. Any pair of vertices that are in the same block of G are connected by exactly

k edge-disjoint paths because they were before the gluing and no additional edge-

disjoint path can be created by leaving the block and re-entering it. Let u be the

articulation point created by the block gluing, and let w ∈ V1, v ∈ V2 be a pair of

vertices in different blocks of G. Vertices w, u are connected by k edge-disjoint paths

and u, v are also connected by k edge-disjoint paths. Hence, there are ≥ k edge-

disjoint paths between w, v. Any such path must pass through u, so there cannot be

more than k without creating > k edge-disjoint paths between w and u1 in G1, which

cannot happen.

Corollary 4.1. The subgraph induced by a block of an exactly k-edge-connected graph

is exactly k-edge-connected.

Definition 4.2 (k-bridge addition). G = (V,E) is obtained from G1 by adding a

vertex and k parallel edges from the vertex to an existing vertex in G1. Formally,

V = V1 ∪ {u} and E = E1 ∪ {(v, u)k}.

Corollary 4.2. If G is exactly k-edge-connected, then any k-bridge addition preserves

exact k-edge-connectivity.

We also have a vertex gluing that allows two blocks to be merged into one, and

the converse operation, vertex splitting, which breaks a graph at a minimum cut.

60

Definition 4.3 (Vertex gluing). Let u1 and u2 be degree-k vertices of G1 and G2

respectively. Construct G by removing u1 and u2 and pairing together the 2k edges

from G1 and G2. Formally, let vi1 and vi2, 1 ≤ i ≤ k, be respectively the neighbors

(not necessarily distinct) of u1 in G1 and u2 in G2. We then construct G by setting

V = V1 ∪ V2 \ {u1, u2}

E = E1 ∪ E2 ∪
{(
vi1, v

i
2

)
: 1 ≤ i ≤ k

}
\
{(
u1, v

i
1

)
,
(
u2, v

i
2

)
: 1 ≤ i ≤ k

}
.

The graph G is a vertex gluing of G1 and G2.

Proposition 4.3. If G1 = (V1, E1) and G2 = (V2, E2) are exactly k-edge-connected,

then the vertex gluing G = (V,E) of G1 and G2 is exactly k-edge-connected.

Proof. Let u1 ∈ V1 and u2 ∈ V2 be the vertices used in the vertex gluing. Consider any

pair v, w of vertices in G. If v ∈ V1 and w ∈ V2, then there are no more than k edge-

disjoint paths between them because the cut (V1 \ {u1} , V2\ {u2}) has cardinality k.

On the other hand, k edge-disjoint paths exist between them because there were k

edge-disjoint paths from v to u1 and from u2 to w which can be combined to create

k edge-disjoint paths between v and w.

Suppose, instead, v, w are both in V1 (the case for V2 is symmetric). Then there

are k edge-disjoint v − w paths, say Pi, 1 ≤ i ≤ k, in G1. At most j ≤ bk/2c of

these paths passe through vertex u1, say Pi, 1 ≤ i ≤ j. Let v1
i and w1

i , 1 ≤ i ≤ j

be the vertices that respectively precede and follow u1 on path Pi. Let v2
i and w2

i be

respectively the neighbors of v1
i and w1

i in V2 after vertex gluing. Let x be a vertex of

G2 distinct from u2. Given that G2 is k-edge-connected, there exists k edge disjoint

x− u2 paths, say Qi, 1 ≤ i ≤ k, in G2. Because u2 is adjacent to every v2
i ans w2

i , the

Qi paths create edge disjoint x−vi and x−wi paths, which avoid u2, for 1 ≤ i ≤ j. In

turn, let combine paths x−vi and x−wi to get j edge disjoint vi−wi paths, 1 ≤ i ≤ j,

61

(a) Cycle expansion. (b) 3-bridge addition.

+
a

bc
c b

ax

y
z

x

y
z

(c) Vertex gluing (→) and splitting (←).

Figure 4.1: Several operations that preserve exact 3-edge-connectivity.

which avoid u2 (named Ri). By combining the Pi and Ri paths, for 1 ≤ i ≤ j, we

constructed v − w paths in G.

Conversely, there cannot be more than bk/2c edge disjoint v − w paths in G

detouring into G2 because of the cut (V1 \ {u1} , V2 \ {u2}). If there were > k edge

disjoint v −w paths in G, there would be > k edge disjoint v −w paths in G1. So G

is exactly k-edge-connected.

Definition 4.4. An edge cut S of a graph G is called trivial if one of the components

of G \ S is the trivial graph (graph with one vertex and no edges).

Definition 4.5 (Vertex splitting). Let G = (V,E) be an exactly k-edge-connected

graph and S = 〈V1, V2〉 be a non-trivial minimum cut. Construct G1 = (V1∪{x1} , E1)

and G2 = (V2∪{x2} , E2) by adding two new vertices x1 and x2 attached respectively

to G1 and G2 by k new edges to the vertices adjacent to S. Formally, let S =

62

{(ui, vi) ∈ V1 × V2 : 1 ≤ i ≤ k} and

E1 = (V1 × V1 ∩ E) ∪ {(x1, ui) : 1 ≤ i ≤ k}

E2 = (V2 × V2 ∩ E) ∪ {(x2, vi) : 1 ≤ i ≤ k} .

The pair G1, G2 is called a vertex splitting of G with respect to S.

Corollary 4.3. Let G be an exactly k-edge-connected graph, S be a non-trivial min-

imum cut. G1 and G2 obtained by vertex splitting of G with respect to S are exactly

k-edge-connected.

4.2.2 Cycle Contraction and Expansion.

We describe now two additional operations that create and remove cycles within

exactly k-edge-connected graphs. The first, cycle expansion, is the main non-trivial

operation of the synthesis. A set of vertices C of a graph G is an induced cycle if

the subgraph induced by C in G is a cycle graph. By convention, in a multigraph

G, we view a double edge (u, v)2 as a induced cycle of length 2. On the other hand,

if C = (u1, . . . , un, u1) is an induced cycle of length n ≥ 3, every edge in the cycle

graph must be a simple edge.

Definition 4.6. A k-regular graph is a graph where all vertices have the same degree

k. A quasi k-regular graph is a graph where at most one vertex has a degree different

than k. An induced cycle C is said to be quasi k-regular if the degree in G of every

vertex of C is k, except for at most one vertex.

Proposition 4.4 (Cycle expansion). Let G = (V,E) be an exactly 3-edge-connected

and biconnected graph, and let u be any vertex of G. Suppose that u has degree d. Let

G′ be created from G by replacing vertex u with a cycle C of no more than d vertices

where all the vertices of C are connected to at least one neighbor of u, and all but

63

one vertex of C is connected to exactly one neighbor of u. Formally, let 2 ≤ d′ ≤ d,

v1, . . . , vd be the neighbors of u (not necessarily all distinct), u1, . . . , ud′ new vertices

distinct form the vertices of G, and G′ = (V ′, E ′) with

V ′ = V ∪ {u1 . . . , ud′} \ {u}

E ′ = E ∪ {(ui,vi) : 1 ≤ i ≤ d′ − 1} ∪ {(ud′ , vi) : d′ ≤ i ≤ d} \ {(u, vi) : 1 ≤ i ≤ d}.

Then G′ is exactly 3-edge connected.

Proof. We shall prove, in order, that there are exactly 3 edge-disjoint paths in G′

between these pairs of vertices:

1. (x, y) in V \ {u}

2. (x, ui) for x ∈ V \ {u} and 1 ≤ i ≤ d′

3. (ui, uj) for 1 ≤ i < j ≤ d′

For the first case, replacing vertex u by a subgraph, does not create new paths between

x and y, so there are at most 3 edge-disjoint paths. Because u is not an articulation

point, there exists triplets of edge-disjoint x− y paths where at most 2 go through u.

These 2 edge-disjoint x−y paths in G can be changed into 2 edge-disjoint x−y paths

in G′ by using some of the edges in the expanded cycle. So there are 3 edge-disjoint

x− y paths in G′.

For the second case, fix i ∈ [1, d] and let P1, P2 and P3 be 3 edge-disjoint

x − u paths in G. These paths can be changed to three paths P ′1, P ′2, P ′3 from x

to vertices on the expanded cycle, say uj1 , uj2 and uj3 . If i is equal to j1, then we

have 3 edge-disjoint x − ui paths: P ′1, P ′2 plus uj2 − uj1 on the expanded cycle and

P ′3 plus uj3 − uj1on the expanded cycle. If i is not equal to j1, j2 or j3, let consider a

x− vj1 − uj1 path P (which can be constructed from an x− vj1 − uj1 cycle in G, and

G is 3 edge connected). This path P is distinct from P ′1, P ′2 and P ′3 as it contains the

64

edge (vj1 , uj1). If P is edge-disjoint with at least two of P ′1, P ′2 and P ′3, then we are

done. Otherwise, let e be the edge closest to uj1 which is common between P and,

say, P ′1. Create the new path P ′ equal to P ′1 from x to e, and equal to P from e to

uj1 . By construction, this is a x− uj1 path which is edge-disjoint with P ′2 and P ′3.

Finally, for the last case. For any pair (i, j), there is a cycle Cij in G containing

the vertices u, vi and vj. A piece of this cycle can be changed into a vi − vj path P

which is edge-disjoint with the expanded cycle. So there are 3 edge-disjoint vi − vj

paths in G′: two paths in the expanded cycle and the path P . There cannot be more

than 3 edge-disjoint paths as, by construction, at least one of ui or uj has degree 3.

See Figure 4.1 for an example of cycle expansion. The following proposition,

where a cycle is contracted into a new vertex, is the inverse of the previous one.

Because not all cycles can be so contracted, stronger hypotheses must be made on

the graph G and on the cycles considered. To state those conditions, we first need

some facts and definitions.

Lemma 4.1. An exactly k-edge connected graph G which has only trivial cuts is quasi

k-regular.

Proof. Suppose there exists two vertices u and v of degree greater than k. There

exists a cut separating u and v and this cut cannot be trivial.

Proposition 4.5 (Cycle contraction). Let G = (V,E) be a quasi 3-regular, exactly 3-

edge-connected and biconnected graph. Let C be an induced cycle of any length which

contains the vertex of higher degree. The graph G′ is constructed from G by collapsing

the cycle C into one vertex. Formally, if 2 ≤ d′ ≤ d, u1, . . . , ud′ are the vertices of C,

and v1, . . . , vd are the vertices adjacent to C in G, we construct G′ = (V ′, E ′) with

V ′ = V \ {u1, . . . , ud′} ∪ {u}

E ′ = E ∪ {(u, vi) : 1 ≤ i ≤ d} \ ({(ui,vi) : 1 ≤ i ≤ d′ − 1} ∪ {(ud′ , vi) : d′ ≤ i ≤ d}) .

65

Then G′ is exactly 3-edge connected and quasi 3-regular.

Proof. In G′, the degree of every vertex in V \ {u1, . . . , ud′} is the same as its degree

in G. Given that only ud′ in G may have a degree different than 3, G′ is also quasi

3-regular. In particular, there cannot be more than 3 edge-disjoint paths between

any pair of vertices in G′. For any pair of vertices x, y not on C, any x− y path in G

can be changed into a path in G′ where the eventual edges on the cycle are removed.

Furthermore, edge-disjoint paths in G are still edge-disjoint in G′. So there are 3

edge-disjoint x − y paths in G′. For any x not on C, any x − u1 path in G can be

changed into a x−u path in G′. So there are 3 edge-disjoint paths in G′ between any

pair of vertices.

Note that Proposition 4.5 only guarantees that cycle contraction preserves 3-

edge-connectivity, but the resulting graph may not be biconnected. Preserving this

second property is the subject of Section 4.3.

4.2.3 Synthesis.

We now proceed to the synthesis of exactly 3-edge-connected graphs. The proof will

rely on results from Section 4.3 Theorem 4.3, where the main technical arguments

are given.

Definition 4.7. The dumbbell graph consists of 2 vertices and 3 parallel edges between

them. It is exactly 3-edge-connected.

Theorem 4.1 (Exactly 3-edge-connected synthesis). Any exactly 3-edge-connected

graph G is obtained from dumbbell graphs and the following operations: cycle expan-

sion and block gluing.

Proof. We proceed by induction on the order r of G. The only exactly 3-edge-

connected graph of order 2 is the dumbbell and the induction hypothesis holds for

66

r = 2. Suppose the theorem holds for any graph of order j ≤ r. Let G be an exactly

3-edge connected graph of order r + 1. We apply the following tests:

1. If G has an articulation point, by Corollary 4.1, each block is exactly 3-edge-

connected and of order less than r+ 1. Apply the induction to each block; G is

obtained by block gluing of its blocks.

2. G is biconnected and of order at least 3, so by Theorem 4.3 (below) it contains

a quasi 3-regular induced cycle C which, when collapsed, does not create an

articulation point and preserves exact 3-edge-connectivity. Let G′ be obtained

from G by collapsing C. The order of G′ is less than r+ 1. Apply the induction

to G′; G is obtained by cycle expansion of G′.

The main difficulty in the proof of Theorem 4.1 is that collapsing an arbitrary

cycle could create an articulation point, but cycle expansion (Proposition 4.4) and

cycle contraction (Proposition 4.5) are inverse operations of each other only as long

as the contraction does not create an articulation point. This difficulty will be dealt

with in the next section.

4.3 Existence of Non-articulation Cycles.

In this section, we shall prove the existence in an exactly 3-edge-connected graph of a

quasi 3-regular induced cycle which, when collapsed, does not create an articulation

point and preserves exact 3-edge-connectivity. This will culminate in Theorem 4.3,

which was used to prove that all exactly 3-edge-connected graphs can be constructed

from block-gluing and cycle expansion (Theorem 4.1).

Definition 4.8. Let H be a subgraph of a connected graph G = (V,E) and let

B1, . . . , Bk be the sets of vertices of the connected components of G\H. The partition

V = H ∪B1 ∪ . . . ∪Bk induced by H is the H-partition and its size is k (k ≥ 0).

67

(a) (b) (c)

Figure 4.2: The graph in (a) is 2-vertex-connected, 3-edge-connected, quasi 3-regular
with minimum degree 3. The induced cycle C with the black vertices is non-separating
but not collapsible. Collapsing C into a vertex v would create 4 paths between v and
h, the high degree vertex at the center of the graph. The graph in (b) has two high
degree vertices separated by a 3-edge-cut and the blackened induced cycle contains
one high degree and goes accross the edge cut. Collapsing the cycle (figure (c)) creates
4 edge disjoint paths between the grey and black vertices.

Definition 4.9. An articulation cycle in G = (V,E) is an induced cycle C with a

C-partition of size greater than 1.

If C is an articulation cycle, then in the graph G′ obtained from G by collapsing

C into a vertex v, the sets Bi∪{x}, 1 ≤ i ≤ k are the blocks (biconnected components)

of G′. By extension, we will call the sets Bi the blocks of the C-partition.

Definition 4.10. A collapsible cycle is a quasi 3-regular, non-articulation, induced

cycle which preserves exact 3 edge-connectivity when collapsed.

An induced articulation cycle is an identical notion to an induced separating

cycle. Several previous works [98, 97, 22, 29] deal with the problem of finding non-

separating induced cycles in a graph, i.e. a induced cycle C in G such that G \ C

is connected. Thomassen’s results [98] for 2-connected graphs of minimum degree 3

would guarantee the existence of such a non-separating induced cycle. But collapsing

such cycle does not necessarily preserve exact 3-edge-connectivity as required for the

synthesis (see Figure 4.2). A graph G′ obtained from G by collapsing an induced non-

separating cycle can have higher edge connectivity than G in two cases: collapsing C

68

(a) (b) (c)

Figure 4.3: An example contraction-expansion of a cycle. (a) A quasi-3-regular ex-
actly 3-edge-connected graph. (b) A block created by the collapse of the dashed cycle.
(c) The re-expansion of the dashed cycle within the block of (b).

created a high-degree vertex which has more than 3 paths to an existing high-degree

vertex of G, or cycle C contained edges of a non-trivial 3-edge-cut and collapsing C

“destroyed” the cut. To prevent the former, we will impose that the cycle C contains

one and only one high-degree vertex ofG (hence, no new high degree vertex is created).

To prevent the later, we will require that the cycle C avoids any arbitrarily chosen

vertex u of G (which is sufficient, as we shall see in Theorem 4.3).

We introduce some definitions and operations relating to articulation points in

exactly 3-edge-connected graphs.

Definition 4.11. Let G be a graph, C be an induced cycle in G and B be a block

of the C-partition. The contraction-expansion of C with respect to B is a graph G′

obtained from G by the following operations, applied sequentially:

• let G′ be the graph induced by B ∪ C

• smooth out the vertices of degree two in G′

The vertices of degree two that are smoothed out (replaced by edges) are

the attachment vertices of the blocks other than B in the C-partition. The name

contraction-expansion is justified by the proof of Lemma 4.2. See Figure 4.3 for an

example of such a contraction-expansion.

Lemma 4.2. Let G be an exactly 3-edge-connected graph, C be an induced cycle in

G and B be a block of the C-partition. Then G′, the contraction-expansion of C with

69

respect to B, is exactly 3-edge-connected. Furthermore, if G is 3-regular then so is

G′. If G is quasi 3-regular and C contains the high-degree vertex, then G′ is quasi

3-regular and C ′ contains the high-degree vertex of G′.

Proof. G′ can also be constructed by the following operations: contract the cycle C,

let G′ be the block which contains B and expand in G′ the contracted cycle into a

cycle C ′. The first part of the theorem statement follows from the properties of the

cycle contraction (Proposition 4.5), block gluing (Corollary 4.1) and cycle expansion

(Proposition 4.4) operations. After a cycle expansion, all the vertices but one in the

newly created cycle have degree 3. By construction, a vertex in C ′ has a degree less or

equal to the corresponding vertex in C. Hence, the 3-regularity and quasi 3-regularity

properties are preserved

Lemma 4.3. Let G be a 3-edge-connected graph. If G is 3-regular, then it is a simple

graph. If G is quasi 3-regular, the high degree vertex h is an end point of any double

edge.

Proof. If G is 3-regular and has a double edge (u, v)2 then u (resp. v) has only one

other neighbor beside v (resp. u), say u′ (resp. v′). The set S = {(u, u′) , (v, v′)} is

exactly the edge cut 〈{u, v} , G \ {u, v}〉 and has size 2, which is a contradiction. So

G must be a simple graph. If G is quasi 3-regular and (u, v)2 is a double edge not

incident to h, then the same contradiction as above arises. So any double edge must

be incident to h.

Lemma 4.4. Let G be a 3-regular, 3-edge-connected graph, (v, w) be an edge in G

and u be a vertex in G distinct from v and w. Then G contains an induced cycle that

contains edge (v, w) and does not contain u.

Proof. Because there are 3 edge-disjoint paths between v and w, edge (v, w) is on at

least 2 cycles C1 and C2. The cycles are vertex disjoint except for v and w because

G is 3-regular. Hence, one of C1 and C2 does not contain u. If it contains chords, it

70

can be short-circuited to change it to an induced cycle, which still does not contain

u.

Lemma 4.5. Let G be a quasi 3-regular, 3-edge-connected graph, (v, w) be an edge

in G where v or w is the high-degree vertex and u be a vertex in G distinct from v

and w. Suppose also that G has at most one double edge and u is an end point of the

double edge if any. Then G contains an induced cycle that contains edge (v, w) and

does not contain u.

Proof. By an identical proof as in Lemma 4.4, there is a cycle C which contains (v, w)

and not u. This cycle cannot have any double edge, and if it contains any chords it

can be short-circuited.

Lemma 4.6. Let G be a 3-regular, 3-edge-connected graph, and let C be an induced

articulation cycle with a partition of size k > 1. Each vertex of C connects to exactly

one block. Color those vertices that connect to a given block B black and color the

others white. Then there are at least 4 edges on C that connect a black vertex to a

white vertex.

Proof. Because C is a cycle, there must be an even number of black-white edges. If

there were no such edges, then k would be 1. If there were only 2 such edges, they

would form a 2-edge-cut. Hence k ≥ 4.

The following lemmas and subsequent theorem contain the main technical ar-

guments required to ensure that a reversible cycle contraction can be performed on

any biconnected, quasi 3-regular, exactly 3-connected graph. Theorem 4.2, which uses

Lemma 4.7, will handle one of the cases of the induction proof of Theorem 4.1. In these

proofs, we often use the the following technique: given an exactly 3-edge-connected

graphG, we create a new exactly 3-edge-connected graphG′ via contraction-expansion

of some cycle C in G. We say a cycle Z 6= C in G is the corresponding cycle to a

cycle Z ′ in G′ if Z uses every edge of Z ′ that is present in G, and if Z ′ uses an edge

71

Bū = Bx
By cycle C

Z

u

P
w

v

x y
e

(a) Graph G

Bū = Bx

C'
x

Z' P'

(b) Graph G′

Figure 4.4: Existence of a collapsible cycle in 3-regular graphs. G′ is obtained from G
by a contraction-expansion of cycle C with respect to Bx. Paths P and P ′ on cycles
C and C ′ are given by thick dashed edges. Edge e is a bicolor edge that is not on
path P . Cycles Z and Z ′ are marked with thin dashed edges.

(u, v) that is not in G then u, v are on cycle C and Z uses a path on C between u

and v.

Lemma 4.7 (Collapsible cycles in 3-regular graphs). Let G = (V,E) be a biconnected,

exactly 3-edge connected 3-regular graph, let (v, w) ∈ E be an edge and u ∈ V be a

vertex distinct from v and w. Then G contains a collapsible cycle which contains edge

(v, w) and does not contain vertex u.

Proof. By Lemma 4.3, G is a simple graph. We proceed by induction on n, the order

of G. The lemma is true when n = 4 (K4, the complete graph on 4 vertices, is the

only such graph).

Let C be an induced cycle in G that contains (v, w) and doesn’t contain u and

that, among those, minimizes k, the size of the partition. The existence of such a

cycle is guaranteed by Lemma 4.4. If k = 1, then C is the desired cycle.

For purpose of contradiction, suppose that k > 1, as in Figure 4.4. Vertex u is in

only one block. Let Bū a block in the C-partition which does not contain u and color

in C the Bū-adjacent vertices black and the remaining vertices white. Because G is

72

3-regular and 3-edge-connected, C must contain at least 3 black vertices and at least

3 white vertices. By Lemma 4.6, there are at least 4 black-white edges. Therefore,

there is a path P in C that starts and ends at black vertices, has all white internal

vertices and uses edge (v, w). Then P does not use some black-white edge e. Let x

and y be respectively the black vertex and white vertex of edge e, with associated

blocks Bx (which is equal to Bū) and By.

Let G′ be the contraction-expansion of C with respect to Bx. Because vertex

x was colored black it is still present in C ′ and to the path P in C corresponds an

edge P ′ of C ′ (every white vertex was smoothed out). By Lemma 4.2, G′ is 3-regular

and exactly 3-edge-connected. G′ has fewer vertices than G and by induction there

exists a collapsible cycle Z ′ which contains the edge P ′ and does not contain vertex

x. Because x ∈ C ′, the cycles Z ′ and C ′ are distinct. Because P ′ ⊂ Z ′ ∩ C ′, Z ′ and

C ′ are not disjoint.

Let Z be the cycle in G corresponding to Z ′ and let k′ be the size of the Z-

partition. Because Z is contained in C ∪ Bx, if a and b are two vertices in a block

B (distinct from Bx) of the C-partition, a and b must belong to the same block B′

in the Z-partition. Moreover, Z ′ was not an articulation cycle in G′, hence if a, b are

two vertices in Bx \Z, they must belong to the same block of the Z-partition. Hence,

there is a surjective function from the C-partition to the Z-partition and k′ ≤ k.

If B is a block in the C-partition, let note B′ the unique block in the Z-partition

containing B.

By construction, vertex x is not contained in the cycle Z, so the black-white

edge e is also not contained in the cycle Z. Also, in G \Z there is a path between B′x

(the block containing x) and B′y (the block containing y). In other words, B′x = B′y,

the function from the C-partition to the Z-partition is not injective and k′ < k. This

contradicts the minimality of k and concludes the induction step.

73

Theorem 4.2 (Collapsible cycles in quasi 3-regular graphs). Let G = (V,E) be a

biconnected, exactly 3-edge-connected, quasi 3-regular graph with high-degree vertex h

and let u be a vertex of G distinct from h. Then G contains a collapsible cycle which

contains h and does not contain u.

Proof. If G is 3-regular, then this is Lemma 4.7. So we assume that G has a vertex

h of degree > 3. If G has a double edge which is not incident to u (in particular

if there are two or more double edges), then this double edge is a collapsible cycle,

which contains h by Lemma 4.3, and avoids u. So we assume that G has at most

one double edge, and if it does, u is an end point of the double edge. We proceed

similarly to Lemma 4.7 and prove the statement by induction on n, the order of G.

The theorem is true when n = 4 (again, K4 is the only such graph).

Let C be an induced cycle in G that contains h and does not contain u and

that, among those, minimizes the size k of the partition. The existence of such a

cycle is guaranteed by Lemma 4.5. If k = 1, then C is the desired cycle. For purpose

of contradiction, suppose that k > 1. Let Bū be a block in the C-partition which

does not contain u. Color in C the Bū-adjacent vertices black and the other vertices

white. The two cases, where h is adjacent to Bū or not, are now discussed.

If h is adjacent to Bū, then h is colored black. Because C is a cycle, there are at

least 2 black-white edges. Let e be any black-white edge which does not have h as one

of its end point. Edge e must exists otherwise h would be an articulation point. Let

x and y be respectively the black vertex and white vertex of edge e, with associated

blocks Bx = Bū and By. Consider G′ the contraction-expansion of C with respect

to Bx. G′ contains h as h is black and, by Lemma 4.2, G′ is quasi 3-regular and

exactly 3-edge-connected. G′ has fewer vertices than G and by induction there exists

a collapsible cycle Z ′ which contains h and does not contain x. The corresponding

cycle Z in G contains h and does not contain edge e.

74

If h is not adjacent to Bū then h is colored white. Let P be a v − w path in C

between two black vertices such that h is an internal vertex of P and all the internal

vertices of P are white. Let e be any black-white edge which does not have v or w

as an end point and let x and y be respectively the black vertex and white vertex of

edge e, with associated blocks Bx = Bū and By. Let G′ be the contraction-expansion

of C with respect to V . To the path P now corresponds the edge (v, w) in C ′ and

x is in G′ because it is black. The high degree vertex h of G is not in G′ because

it is white, hence, by Lemma 4.2, G′ is 3-regular and exactly 3-edge-connected. By

Lemma 4.7, there exists a cycle Z ′ in G′ which contains the edge (v, w) and does not

contain vertex x. The corresponding cycle Z in G contains P and does not contain

x. Hence cycle Z contains h and does not contain edge e.

In both cases, a cycle Z containing h and not containing a black-white edge e

exists. An identical argument as in Lemma 4.7 shows that the Z-partition has size

k′ < k, which contradicts the minimality of k.

We now prove the existence of a collapsible cycle in the general case, where

the only conditions on G are that it is biconnected and exactly 3-edge-connected.

We start with a lemma that guarentees that such a graph has vertices of degree 3.

The trees, which are the exactly 1-edge-connected graph, have two leaves (vertices of

degree 1), and the exactly 2-edge-connected graphs also have two vertices of degree

2. Similarly, we have the following property for an k ≥ 3.

Lemma 4.8. Let G be a biconnected, exactly k-edge-connected graph of order ≥ k.

Then G has at least 2 vertices of degree k.

Proof. We proceed by induction on the number of non-trivial minimum cuts in G. If

G has no non-trivial minimum cuts, then it is quasi k-regular. If G is k-regular, it

has at least 2 vertices of degree k. If G is quasi k-regular with a high degree vertex,

it has at least 3 vertices and therefore has at least 2 vertices of degree k.

75

Let S = 〈V1, V2〉 be a non-trivial minimum cut and let G1 and G2 be the vertex

splitting graphs induced by S. Call x1 and x2 the new vertices (V (Gi) = Vi ∪ {xi}).

Suppose T were a non-trivial minimum cut in G1. Construct a corresponding non-

trivial minimum cut T ′ in G by changing any edge used by T that is adjacent to

x1 to the corresponding edge in S. So to any non-trivial minimum cut of G1 or G2

corresponds a distinct non-trivial minimum cut in G. But no non-trivial cut in G1 or

G2 corresponds to the cut S (it would be a trivial cut in G1 and G2). So both G1

and G2 have fewer non-trivial minimum cuts than G. By induction G1 and G2 have

2 vertices of degree k, including x1 and x2. So G is obtained as a vertex gluing of G1

and G2 and has 2 vertices of degree k.

Theorem 4.3 (Collapsible cycles). Let G be a biconnected, exactly 3-edge-connected

graph of order at least 3 and u a vertex of degree 3. Then G contains a collapsible

cycle which does not contain u.

Proof. By induction on the number of non-trivial minimum cuts in G. If G has no

non-trivial minimum cuts, then it is quasi 3-regular. By Theorem 4.2 it contains a

collapsible cycle which avoids u.

Assume G has non-trivial minimum cuts. Let S = 〈V1, V2〉 be a non-trivial

minimum cut, |S| = 3, and let G1 and G2 be the vertex splitting graphs induced

by S. Assume without loss of generality that G1 does not contain u. By the same

argument as in Lemma 4.8, G1 has less non-trivial minimum cuts than G and by

induction, G1 has a collapsible cycle C1 which avoids x1.

C1 inG is not an articulation cycle. Moreover, contracting C1 inG also preserves

exact 3-edge connectivity: collapsing a cycle does not destroy any path between the

remaining vertices, it does not create 4 paths in V1 by construction, and it does not

create 4 paths between V1 and V2 because of the minimum cut S. Therefore, C1 is a

collapsible cycle of G which does not contain u.

76

4.4 Other Properties of Exactly k-edge-connected Graphs.

4.4.1 Number of Operations.

Let G = (V,E) be an exactly 3-edge-connected graph with nG = |V | and mG = |E|,

and let BG be the number of blocks in G. The number NG of synthesis operations

needed to generate G is determined by mG, nG and BG.

Proposition 4.6. If G = (V,E) is an exactly 3-edge-connected graph, then

mG = nG + 2BG + EG − 1, (4.1)

NG = mG − nG −BG (4.2)

where EG is the number of cycle expansions in a synthesis of G.

Proof. A dumbbell graph has 3 edges, 2 vertices and one block. It satisfies m =

n + 2B − 1 (B = 1). By induction, suppose G satisfies Equation 4.1. A cycle

expansion adds d − 1 new vertices and d new edges for some d. Hence, G′ obtained

from G by a cycle expansion satisfies mG′ = mG + d, nG′ = nG + d − 1, BG′ = BG

and EG′ = EG + 1, hence it satisfies Equation 4.1. Similarly, if G is the block gluing

of G1 and G2 which both satisfy Equation 4.1, then G satisfies mG = mG1 + mG2 ,

nG = nG1 + nG2 − 1, BG = BG1 + BG2 and EG = EG1 + EG2 , hence G satisfies

Equation 4.1.

To create BG blocks, BG − 1 block gluing operations are needed. So the the

number of operations in a synthesis of G is NG = BG− 1 +EG = mG−nG−BG.

4.4.2 Minimum Exactly Connected Graphs.

A natural requirement for network design is to use the fewest edges possible. A k-

vertex-connected or k-edge-connected graph with n vertices has at least
⌈
kn
2

⌉
edges.

We say a graph is minimum if it has exactly that many edges. The Harary [30]

77

graph Hk,n is a special graph which has n vertices, is k-vertex-connected and k-edge-

connected, and is minimum. They are, in addition, quasi k-regular, which implies

that they are also exactly k-edge-connected. In fact, we have following relationships

between minimum, almost k-regular, and exactly k-edge-connected graphs:

Definition 4.12. A graph G is almost k-regular if it is quasi k-regular and has

maximum degree ≤ k + 1.

Proposition 4.7. Let G be a graph. The following assertions are equivalent:

1. G is k-edge-connected and minimum.

2. G is k-edge-connected and almost k-regular.

3. G is exactly k-edge-connected and almost k-regular.

We therefore have that, among the k-edge-connected graphs, the minimum

graphs are a strict subset of the exactly connected graphs, which in turn are a strict

subset of the edge-minimal graphs. The minimum, exactly 3-edge-connnected graphs

can be generated by disallowing a cycle expansion if it would lead to
∑

v deg(v) >

3n+ 1.

4.4.3 Planar Graphs.

Planar, exactly 3-edge-connected graphs can be generated with a slightly modified

synthesis. If G is a planar, exactly 3-edge-connected graph and u is a vertex, a

drawing of G on the plane defines a natural order on the neighbors of u (for example,

clockwise traversal of the edges incident to u). An order-preserving cycle expansion

is a cycle expansion of u where the vertices in the cycle are attached to the neighbors

of u in the natural order. G′ obtained from G by an order-preserving cycle expansion

is also a planar graph. Conversely, if G is planar and C is a collapsible cycle, then C

must be a face and G′ obtained by collapsing C is also planar.

78

u1
0 u1

1

u2
0 u2

1

u1
0 u1

2 u1
1

u2
0 u2

2 u2
1

Figure 4.5: A H-expansion.

Theorem 4.4 (Planar exactly 3-edge-connected synthesis). A graph is planar and

exactly 3-edge-connected if and only if it can be obtained from dumbbell graphs and

the following operations: order-preserving cycle expansion and block gluing.

The class of planar 3-regular 3-connected graphs has been heavily studied in the

context of the 4-color theorem [71]. In particular, the fact that every planar 3-regular

3-connected graph has a proper edge 3-coloring is equivalent to the 4-color theorem.

E. L. Johnson [39] gave a synthesis for this class of graphs. Theorem 4.3 leads to an

alternative proof.

A H-expansion, as shown in Figure 4.5, is adding a new edge between two edges

of the same face.

Theorem 4.5 (E. L. Johnson). Every planar cubic 3-connected graphs G on |V | ≥ 6

vertices is obtained from a planar cubic 3-connected graph on |V | − 2 vertices by a

H-expansion.

Proof. Let G be a planar cubic 3-connected graph. By Theorem 4.3, there exists a

collapsible cycle and let G′ be obtained from G by an order-preserving collapsing of

this cycle into vertex h′. If G′ is the dumbbell, then G would have only 4 vertices.

Hence G′ contains a collapsible cycle containing h′ (h′ is the only vertex of degree

higher than 3 in G′, if any). Let G′′ be obtained from G′ by an order-preserving

collapsing of this cycle into vertex h′′. Finally, let G′′′ be the graph obtained from

G′′ by an order-preserving expansion of h′′ into a cycle of size equal to the degree of

79

h′′. Then G′′ is planar 3-regular and 3-connected. G′′ has one less edge and two less

vertices than G. G is obtained from G′′ by adding this edge, which correspond to a

H-expansion.

4.4.4 Exactly k-edge-connected and k-regular Graphs.

Although exactly k-edge-connected graph can have vertices of arbitrarily large degree,

they share some properties with k-regular graphs. Ding and Chen [18] gave a general

synthesis for k-regular graphs, for all k. Nevertheless, their synthesis does not lead

directly to a synthesis of exactly k-edge-connected graphs.

Let G be an exactly k-edge-connected graph and let h1, . . . , hl be the vertices

of G of degree greater than k. Let H1, . . . , Hl be (k − 1)-regular (k − 1)-connected

graphs such that the number of vertices in Hi is equal to the degree of hi. Create

G′ by replacing, for all i ∈ [1, l], in G vertex hi by the graph Hi and connecting

the neighbors of hi to the vertices Hi in a one-to-one fashion. Then G′ is k-regular,

k-connected.

Conversely, if G′ is a k-regular k-connected graph and H1, . . . , Hl are (k − 1)-

regular induced subgraph of G′. Assume furthermore that for every pairs i, j ∈ [1, l]

there exists an edge cut of size k which separates Hi and Hj. Create G by collapsing

in G′ all subgraphs Hi to a single vertex hi. Then G is exactly k-edge-connected.

Hence, we have the following characterization of exactly k-edge-connected graphs:

they are obtained by a Ding-Chen [18] synthesis for k-regular graphs followed by col-

lapsing some (k− 1)-regular induced subgraphs. This is not a complete synthesis for

two reasons. First, the Ding-Chen synthesis does not guarantee the graph is k-edge

connected. Second, the collapsing operation is not a simple operation because finding

a (k − 1)-regular induced subgraph is an NP-complete problem.

80

4.4.5 Vertices of min-degree in edge minimal k-edge-connected graphs.

Halin [32] showed that every edge-minimal k-vertex-connected graph has at least

one vertex of degree k. A similar assertation that edge-minimal k-edge-connected

graphs have a vertex of degree k was proved by Lick [53]. This property of having a

vertex of degree k is true for exactly k-edge-connected as shown in Lemma 4.8. The

following proposition extends this property from exactly k-edge-connected graphs to

edge-minimal k-edge-connected graphs and gives an alternate proof.

Proposition 4.8. Let G = (V,E) be a λ-edge-connected graph. G is edge minimal

if and only if for any adjacent vertices (u, v) ∈ E, there are at most λ edge-disjoint

u− v paths.

Proof. Let e = (u, v) ∈ E such that there are > λ edge-disjoint u−v paths. In G− e,

there are at least λ edge-disjoint u−v paths. Let x and y be any two vertices, distinct

from u and v. There are λ edge-disjoint x− u paths in G. So, depending on whether

or not edge e is on one of these x− u paths, in G− e there are either λ edge-disjoint

x−u paths, or there are λ−1 edge-disjoint x−u paths and a x−v path edge-disjoint

from the λ− 1 x− u paths. There is a similar situation in G− e between y, v and u.

Let S be a set of λ− 1 distinct edges of G− e. In G− e−S, there is a x− u or x− v

path, a y − u or y − v path and a u − v path. Hence there is a x − y path and S is

not a separating set. By Menger’s theorem, G− e is λ-edge-connected, and G is not

edge minimal. If x or y is equal to u or v, a similar argument can be made.

Conversely, suppose that for any edge e = (u, v) ∈ E there are at most λ edge-

disjoint u− v paths. Then in G− e there are at most λ− 1 edge-disjoint u− v paths.

So G is edge minimal.

Theorem 4.6. Every edge-minimal k-edge-connected graph has 2 vertices of degree

k.

81

Proof. As mention in the introduction, if G is a k-edge-connected graph and the sets

of vertices that are mutually connected by > k edge-disjoint paths are collapsed into

supernodes, then the resulting multigraph G′ is either a graph of a single vertex or

is exactly k-edge-connected. If G is also edge-minimal, then G′ cannot be a single

vertex and by the previous proposition, any two vertices of G in the same supernode

of G′ are not adjacent. Hence the degree of a vertex (supernode) in G′ is greater or

equal to the degree in G of any vertex in that supernode. By Lemma 4.8, G′ has 2

vertices of degree k which correspond to 2 vertices of degree k in G.

82

Chapter 5

Parsimonious Reconstruction of Network Evolution

To appear in WABI 2011.

This project is a group effort with Rob Patro, Emre Sefer, Justin Malin, Saket

Navlakha and Carl Kingsford. I was mostly involved with the development of the

framework and algorithm used to solve the reconstruction problem. The growth

model was developed by Justin Malin while the implementation and testing was per-

formed by Emre Sefer and Rob Patro. We all took part in the writing of this paper.

5.1 Introduction

High-throughput experiments have revealed thousands of regulatory and protein pro-

tein interactions that occur in the cells of present-day species. To understand why

these interactions take place, it is necessary to view them from an evolutionary per-

spective. In analogy with ancestral genome reconstruction [72], we consider the prob-

lem of predicting the topology of the common ancestor of pathways, complexes, or

regulatory programs present in multiple extant species.

Generating plausible ancestral networks can help answer many natural questions

that arise about how present-day networks have evolved. For example, joint histories

can be used to compare the conservation and the route to divergence of corresponding

processes in two species. This allows us to more finely quantify how modularity has

changed over time [43] and how interactions within a protein complex may have

reconfigured across species starting from a single shared state [75]. Such analysis can

83

also be integrated to develop better network alignment algorithms [23, 91, 20] and to

study robustness and evolvability [1]. Further, inferred changes in metabolic networks

can be linked to changes in the biochemical environment in which each species has

evolved, and this can reveal novel mechanisms of ecological adaptation [6, 5]. Finally,

comparing network histories inferred using different model parameters can be used to

estimate the likelihoods of various evolutionary events [63, 70].

There has been some recent work on reconstructing ancestral interactions. Gib-

son and Goldberg [27] presented a framework for estimating ancestral protein inter-

action networks that handles gene duplication and interaction loss using gene trees

reconciled against a species phylogeny. However, their approach assumes that inter-

action losses occur immediately after duplication and does not support interaction

gain outside of gene duplication. These assumptions are limiting because interaction

loses may occur well after duplication, and independent gains are believed to occur at

non-trivial rates [49]. Dutkowski and Tiuryn [20] provided a probabilistic method for

inferring ancestral interactions with the goal of improved network alignment. Their

approach is based on constructing a Bayesian network with a tree topology where bi-

nary random variables represent existence or non-existence of potential interactions.

A similar graphical model was proposed by Pinney et al. [77], who applied it to

inferring ancestral interactions between bZIP proteins. In the former method, edge

addition and deletion is assumed to occur only immediately following a duplication or

speciation event. Further, both methods assume the relative ordering of duplication

events is known even between events in unrelated homology groups. Pinney et al. [77]

also explore a parsimony-based approach [66] and find it to work well; however, it too

assumes a known ordering of unrelated duplication events. The main drawback of

these approaches is that the assumed ordering comes from sequence-derived branch

lengths, which do not necessarily agree with rates that would be estimated based on

84

network evolution [104]. This motivates an approach such as we describe below that

does not use branch lengths as input.

Zhang and Moret [104, 103] use a maximal likelihood method to reconstruct

ancestral regulatory networks as a means to improve estimation of regulatory networks

in extant species. Mithani et al. [67] study the evolution of metabolic networks, but

they only model the gain and loss of interactions amongst a fixed set of metabolites,

whereas we also consider node duplication and loss encoded by a tree. Navlakha and

Kingsford [70] present greedy algorithms for finding high-likelihood ancestral networks

under several assumed models of network growth. They applied these methods to a

yeast protein interaction network and a social network to estimate relative arrival

times of nodes and interactions and found that the inferred histories matched many

independently studied properties of network growth. This attests to the feasibility

of using networks to study evolution. The authors, however, only consider a single

network at a time, and there is no guarantee that independent reconstruction of two

networks converge to a common ancestor.

Here, we introduce a combinatorial framework for representing histories of net-

work evolution that can encode gene duplication, gene loss, interaction gain and

interaction loss at arbitrary times and does not assume a known total ordering of du-

plication events. We show that nearly-minimal parsimonious histories of interaction

gain and loss can be computed in practice quickly given a duplication history. In

simulated settings, we show that these parsimonious histories can be used to accu-

rately reconstruct a common ancestral regulatory network of two extant regulatory

networks.

5.2 A framework for representing network histories

Any natural model of network evolution will include events for gene duplication,

gene loss, edge gain, and edge loss. Many such growth models have been studied

85

(e.g. [12, 96, 74, 36, 1, 103, 102]). We now describe how these events can be encoded

in a history graph.

Consider a set V of proteins descendent from a common ancestor by duplication

events. Those duplication events can be encoded in a binary duplication tree T with

the items of V as the leaves. An internal vertex u in T represents a duplication

event of u into its left and right children, uL and uR. In this representation, after a

duplication event, the protein represented by u conceptually does not exist anymore

and has been replaced by its two children. A collection of such trees is a duplication

forest F . The leaves of a duplication tree are labeled Present or Absent. Absent

leaves represent products of duplication events that were subsequently lost.

The gain and loss of interactions can be represented with additional non-tree

edges placed on a duplication forest. A non-tree edge {u, v} represents an edge flip

event, where the present / absent state of the edge between u and v is changed to

Present if the edge is currently Absent or to Absent if the edge is currently Present.

Let Pu and Pv be the paths from nodes u and v to the root. An edge exists between u

and v if there are an odd number of such flip non-tree edges between nodes in Pu and

Pv. Every non-tree edge between Pu and Pv, therefore, represents alternatively an

edge creation or deletion between proteins u and v in the evolution of the biological

network.

A graph H consisting of the union of a duplication forest and flip non-tree edges

is a network history. A history H constructs a graph G when the Present leaves of

the duplication forest in H correspond to the nodes of G and the flip edges of H

imply an edge between u and v if and only if {u, v} is an edge in G. See Figure 5.1

for an example history.

Not all placements of non-tree edges lead to a valid network history. The edge

histories have to be consistent with some temporal embedding of the tree. Let tcu and

tdu be respectively the time of creation and duplication of vertex u. Naturally, tcu < tdu,

86

19

18

26

27

21

24

25

16

12

11

22
10

13

23

1 2 3

4 5 6 7 8 9

G1 15 17 G2 20

10 11 12 13 14 22 23 16 24 25 18 19 26 27 21

1

Figure 5.1: A duplication forest (solid edges at top) with the non-tree edges (dashed)
necessary to construct G1 and G2 (shown at bottom). Nodes 1, 2, and 3 represent
the 3 homology groups present in the ancestral graph.

tdu =∞ if u is a Present leaf, and if v is the child of u, then by definition we have

tcu < tdu = tcv < tdv. (5.1)

If {u, v} is a flip edge, then the time t{u,v} of appearance of this edge must satisfy

tcu ≤ t{u,v} < tdu and tcv ≤ t{u,v} < tdv, (5.2)

because an event between u and v can only occur when both u and v exist. A

history graph H is said to be valid if there exist tcu, tdu for every node u such that

conditions (5.1) and (5.2) are satisfied for every non-tree edge.

Whether a particular history is valid can be checked combinatorially using the

following alternative characterization of validity. A k-blocking loop is a set of flip edges

87

(a) 1 (b) 2 (c) 3

Figure 5.2: Blocking loops of size 1, 2 and 3. The solid lines represent a subset of the
tree T . The dashed lines are non-tree edges representing edge flip events.

{{ui, vi}}0≤i<k such that ui+1 is an ancestor of vi in the tree for 0 ≤ i < k (where

the index i + 1 is taken modulo k). See Figure 5.2 for examples. Blocking loops are

not permitted in valid histories and, conversely, the non-existence of blocking loops

implies that a history is valid, as shown in Prop. 5.1.

Proposition 5.1. A history graph H is valid if and only if it does not have any

blocking loop of any length.

Proof. Suppose there is a k-blocking loop. Using the same notation as above, we have

the inequalities

tdu0 > t{u0,v0} ≥ tcv0 ≥ tdu1 > t{u1,v1} ≥ . . . ≥ tcvk−1
≥ tdu0 ,

which is a contradiction. Hence, to not have any blocking loops is necessary.

Conversely, suppose that H does not have any blocking loops. We assign times

to the vertices and non-tree edges using a modified depth first search (DFS) algorithm

following the tree edges only (see Algorithm 3). First, the root of the tree is given a

creation time of 0. During DFS, just before calling DFS recursively on the left and

right children of a node u, we set the duplication time tdu = max{max t{u,v}+1, tcu+1},

where the second max is taken over all non-tree edges adjacent to u. Also, we set the

creation time of the children tcuL = tcuR = tdu.

When DFS visits a vertex u with some edge {u, v} where v has not been assigned

a creation time, u is added to a set Q and DFS is not called recursively on the children

88

of u. The main loop consist in calling DFS again on all the vertices in Q until this

set is empty. By construction, the algorithm assigns times which satisfy conditions

(5.1) and (5.2). Therefore, if the algorithm terminates, H is a valid history.

Algorithm 3 Modified DFS.
procedure Times(Q set of roots of history forest)

2: for all u ∈ Q do
tcu ← 0

4: end for
while Q 6= ∅ do

6: Q′ ← ∅
for all u ∈ Q do

8: Q′ ← Q′ ∪DFS(u, ∅)
end for

10: Q← Q′

end while
12: end procedure

procedure DFS(u root vertex, Q vertex set)
14: for all flip edge {u,v} s.t. tcv is set and t{u,v} is not set do

t{u,v} ← max {tcu, tcv}
16: end for

if ∃ flip edge {u, v} and tcv is not set then
18: return Q ∪ {u}

else if u is a leaf then
20: return Q

else
22: tdu, t

c
uL
, tcuR ← max

{
{t{u,v}}flip edge {u,v}, t

c
u + 1

}
return Q ∪DFS(uL, ∅) ∪DFS(uR, ∅)

24: end if
end procedure

At each main iteration, the vertices in the set Q are all the vertices u for which

tcu is set but tdu is not set. It suffices to show that at each such iteration, at least

one of the vertices in the set Q will not be added again to Q by a call to DFS. In

other words, for at least one vertex u ∈ Q, every non-tree edge {u, v} has tcv set. For

a contradiction, suppose not. Take u1 ∈ Q and {u1, v1} with tcv1 not set. There is

necessarily an ancestor of v1, call it u2, which is in Q. Similarly, take {u2, v2} with

89

tcv2 not set and its ancestor u3 ∈ Q, and so on. Because Q is finite, uj = ui for some

j > i, and we constructed a blocking loop. Hence, the algorithm must terminate.

5.3 Parsimonious reconstruction of a network history

Traditional phylogenetic inference algorithms and reconciliation between gene species

trees can be used to obtain duplication and speciation histories. What remains is the

reconstruction of edge gain and loss events. This leads to the following problem:

Problem 5.1. Given a duplication forest F and an extant network G, find H, a valid

history constructing G, with a minimum number of flip edges.

We will show that nearly optimal solutions to this problem for a large range

of instances can be solved in polynomial time in practice. Whether Problem 5.1 is

NP-hard or admits a polynomial-time algorithm for all instances remains open.

5.3.1 A fast heuristic algorithm

The challenge of Problem 5.1 comes from avoiding the creation of blocking loops.

However, a polynomial-time algorithm can find a minimum set of flip edges that

reconstructs a graph G and does not contain 1- and 2-blocking loops but allows

longer blocking loops. We define an edge encoding of G = (V,E) as a function

fG : V ×V → {0, 1} such that: fG(u, v) = 1 if {u, v} is an edge in G and fG(u, v) = 0

otherwise. We omit the subscript on fG if G is clear from the context.

The following intertwined dynamic programming recurrences find the minimum

number of flip edges required for H to construct a given graph G if blocking loops of

length ≥ 3 are allowed. First, S(u, f) finds the minimum number of flip edges for the

subtree rooted at u and edge encoding f :

S(u, f) = S(uL, f) + S(uR, f) + A(uL, uR, f). (5.3)

90

The expression A(u, v, f) gives the minimum number of flip edges that should be

placed between the subtree rooted at u and the subtree rooted at v. This can be

computed using the recurrence:

A(u, v, f) = min



A(uL, v, f) + A(uR, v, f)

A(u, vL, f) + A(u, vR, f)

1 + A(uL, v, f̄) + A(uR, v, f̄)

1 + A(u, vL, f̄) + A(u, vR, f̄).

(5.4)

In the above, if one of u or v is a leaf but the other is not, the options that look at

non-existent children are disallowed.

The function f̄ in Eqn. (5.4) is defined as 1− f and thus represents a function

such that f̄(x) has opposite parity from f(x) for all x. The A recurrence considers

two possible options: (1) We connect u and v with a non-tree edge, this costs us 1

and flips the parity of all edges going between the subtree rooted at u and the subtree

rooted at v; or (2) We do not connect u and v with a flip edge. This costs 0 and

keeps the parity requirement the same. Regardless of the choice to create an edge,

since we are not allowed to have a 2-blocking loop, either (a) we possibly connect u to

some descendant of v (and do not connect v to a descendant of u) or (b) we possibly

connect v to some descendant of u (and do not connect u to a descendant of v).

The base case for the S recurrence when u is a leaf and the base case for the A

recurrence when u and v are leaves are:

S(u, f) = 0 and A(u, v, f) = f(u, v).

The minimum number of flip edges needed to make F a history constructing

G (allowing blocking loops of ≥ 3) is then given by
∑

r S(r, dG) +
∑

r,q A(r, q, dG),

91

where dG is the edge encoding of G, and the sums are over roots r, q of the trees in

the forest F . Standard backtracking can be used to recover the actual minimum edge

set. The dynamic program runs in O(n2) time and space because only two functions

f are ever considered: dG, and d̄G. This yields ≈ n × n × 2 subproblems, each of

which can be solved in constant time.

5.3.2 Removing blocking loops

If solution contains blocking loops of length ≥ 3, we can relax the solution by progres-

sively excluding the non-tree edge that participates in the largest number of loops and

rerunning the dynamic program. We repeat this until a valid solution is obtained.

In the worst case, one may obtain a solution where all non-tree edges are placed

at leaves, but in practice long blocking loops do not often arise, and the obtained

solutions are close to optimal (see Sec. 5.4.2).

5.3.3 Reconstruction of a common ancestor of two graphs

Given extant networks of several species, in addition to the reconstructed history, we

seek a parsimonious estimate for their common ancestor network. Specifically, given

extant networks G1 and G2, with edge encodings d1 and d2, and their duplication

forests F1 and F2, we want to find an ancestral network X = (VX , EX) such that the

cost of X evolving into G1 and G2 after speciation is minimized. VX is the set of

roots of the homology forest. We assume that the networks of the two species evolved

independently after speciation. Therefore, we can use the recurrence above applied

to F1 and F2 to compute AF1(r, q, d1) and AF2(r, q, d2) independently for r, q ∈ VX ,

and then select edges in X as follows. EX of X is given by the pairs r, q ∈ VX × VX

for which creating an edge leads to a lower total cost than not creating an edge.

92

Formally, we place an edge {r, q} in EX if

1 + AF1(r, q, d̄1) + AF2(r, q, d̄2) < AF1(r, q, d1) + AF2(r, q, d2). (5.5)

Rule (5.5) creates an edge in X if doing so causes the cost of parsimonious histories

inferred for G1 and G2 between the homology groups associated with r and q to be

smaller than if no edge was created.

5.3.4 Modifications for self-loops

Self-loops (homodimers) can be accommodated by modifying recurrence (5.3):

S ′(u, f) =


S ′(uL, f) + S ′(uR, f) + A(uL, uR, f)

1 + S ′(uL, f̄) + S ′(uR, f̄) + A(uL, uR, f̄).

(5.6)

The intuition here is that paying cost 1 to create a self-loop on node u creates (or

removes) interactions, including self-loops, among all the descendants of u.

5.3.5 Modifications for directed graphs

Finally, the algorithm can be modified to handle evolutionary histories of directed

graphs. For this, only the recurrenceA need be modified. When computingA′(u, v, f),

a non-tree edge can be included from u to v, from v to u, both, or neither. Each of

93

these cases modifies the function f in a different way. Specifically:

A′(u, v, f) =



0 + A′(uL, v, f) + A′(uR, v, f)

1 + A′(uL, v,
←
f) + A′(uR, v,

←
f)

1 + A′(uL, v,
→
f) + A′(uR, v,

→
f)

2 + A′(uL, v,
↔
f) + A′(uR, v,

↔
f)

...

,

where the vertical ellipsis indicates the symmetric cases involving vL and vR, and

where
→
f ,
←
f ,
↔
f are defined, depending on u and v, as follows:

→
f (x, y) =


1− f(x, y) if x ∈ ST(u)and y ∈ ST(v)

f(x, y) otherwise,
(5.7)

↔
f (x, y) =


1− f(x, y) if x ∈ ST(u)and y ∈ ST(v)or vice versa

f(x, y) otherwise,
(5.8)

with
←
f defined analogously to

→
f . Here, ST(u) indicates the set of nodes in the subtree

rooted at u.

The heuristic can be extended to handle different costs for edge addition and

edge deletion by changing the constants in the recurrences to be functions dependent

on f .

94

5.4 Results

5.4.1 Generating plausible simulated histories

We use a degree-dependent model (DDM) to simulate an evolutionary path from a

putative ancestral network to its extant state. The model simulates node duplication,

node deletion, independent edge gain, and independent edge loss with given proba-

bilities Pndup, Pnloss, Pegain and Peloss, respectively. The nodes or edges involved in a

modification are chosen probabilistically based on their degrees (as in [94]) according

to the following expressions:

P(u | node duplication) ∝ 1/ku P(u | node loss) ∝ 1/ku (5.9)

P((u, v) | edge gain) ∝ kou P((u, v) | edge loss) ∝ 1/kou, (5.10)

where kou is the out-degree of a node u, and ku is the total degree. At each time step,

the distribution of possible modifications to the graph is calculated as P(modification) =

PoperationP(object | operation). Nodes with out-degree of 0 are removed. We also con-

sider a degree-independent model (DIM) in which the four conditional probabilities in

Eqns. (5.9) and (5.10) are all equal.

This model is theoretically capable of producing evolutionary trajectories be-

tween any two networks while incorporating preferential attachment to the source

node and random uniform choice of the target node. Furthermore, a node is chosen

for duplication or loss in inverse proportion to its degree — a proxy for a selection

effect based on relative impact of the event on the network.

Varying parameters Pndup, Pnloss, Pegain and Peloss can produce a wide variety

of densities and sizes. For biologically plausible settings — those with high Pndup,

low Pnloss, and moderate to high Pegain and Peloss — we observe that the constructed

networks have an exponential in-degree distribution and scale-free out-degree distri-

95

bution (exponent on average 1.79) [58]. This is in agreement with scale-free exponents

of various real networks such as S. cerevisiae [47], E. coli [25] and C. elegans [16],

which are between 1.73 and 1.99.

We also consider a regulatory evolution model by Foster et al. [24], which is

based on gene duplication, with incoming and outgoing edges kept after duplication

(Pinkeep and Poutkeep probabilities respectively). New edges are added with probability

Pinnovation.

In all of the network evolution models, we started with a random connected

seed graph that has 10 nodes and 25 edges. We evolved it to X by 200 operations

where speciation happens and then both G1 and G2 evolve from X by additional 200

operations each. To ensure the ancestral graph was biologically reasonable, instances

were kept only if the ancestral graph X had an in-degree that fit an exponential

distribution with parameter between 1.0 and 1.2 or an out-degree that was scale-free

with parameter between 1.8 and 2.2.

5.4.2 Reconstructing histories

Optimality of loop breaking. The greedy procedure to break blocking loops produces

histories that are very close to optimal. We generated 1400 networks using the DDM

model using the range of parameters on the x-axis of Fig. 5.3a. In the vast majority of

cases (1325 out of 1400), either no loop breaking is required, or the solution discovered

after greedily breaking all loops has the same cost as the original solution. In these

cases, therefore, the method returned a provably maximally parsimonious set of edge

modification events. In the remaining 75 cases (5.4%), greedily removing blocking

loops increased the number of edge modifications by between 1 and 10 (< 2% of the

initial number of edge modification events). Since the initial solution provides a lower

bound on the optimal, we can verify that the greedy procedure always found a solution

96

.1

.1

.4

.4

.2

.0

.4

.4

.2

.2

.3

.3

.3

.1

.3

.3

.3

.3

.2

.2

.4

.0

.3

.3

.4

.2

.2

.2

.4

.4

.1

.1

.5

.1

.2

.2

.5

.3

.1

.1

.6

.0

.2

.2

.6

.2

.1

.1

.7

.1

.1

.1

.8

.0

.1

.1

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

ndup
nloss
egain
eloss

(a) Degree-dependent model (Sec. 5.4.1)

.1

.1

.4

.4

.2

.0

.4

.4

.2

.2

.3

.3

.3

.1

.3

.3

.3

.3

.2

.2

.4

.0

.3

.3

.4

.2

.2

.2

.4

.4

.1

.1

.5

.1

.2

.2

.5

.3

.1

.1

.6

.0

.2

.2

.6

.2

.1

.1

.7

.1

.1

.1

.8

.0

.1

.1

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

ndup
nloss
egain
eloss

(b) Degree-independent model

.0

.1

.2

.0

.2

.4

.0

.3

.6

.0

.4

.8

.2

.1

.0

.2

.2

.2

.2

.3

.4

.2

.4

.6

.2

.5

.8

.4

.2

.0

.4

.3

.2

.4

.4

.4

.4

.5

.6

.4

.6

.8

.6

.3

.0

.6

.4

.2

.6

.5

.4

.6

.6

.6

.6

.7

.8

.8

.4

.0

.8

.5

.2

.8

.6

.4

.8

.7

.6

.8

.8

.8

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

ein
prob
eout

(c) Foster et al. [24] model

30 60 90 120 150 180 210 240 270 300
Evolutionary Distance

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

(d) Divergence of G1, G2 from ancestor

Figure 5.3: (a-c) Effect of model parameters on reconstruction accuracy under three
different models. “Prob” in (c) is the probability of edge gain. (d) Effect of evolu-
tionary distance (number of network modification operations) on the quality of the
ancestral network reconstruction. In both plots, boxes show 1st and 3rd quartile over
100 networks with median indicated by a line. Pentagons show the median if edges
incident to nodes lost in both lineages are not considered.

within 2% of the optimal (and perhaps even better). Thus, it seems that in practice,

while blocking loops occur, the greedy procedure does a good job of eliminating them

without increasing the number of events significantly.

Effect of growth model and its parameters. Modeling the evolutionary dynamics of a

regulatory network is still an active topic of research. We therefore experiment with

97

three different network models (Sec. 5.4.1). Despite their differences, high precision

and recall (measured as the F1 score) can be obtained for all of them for many choices

of their parameters (Fig. 5.3a-c). Very good performance can be achieved under the

general model presented above whether degree distributions are taken into account

(Fig. 5.3a) or not (Fig. 5.3b) when selecting nodes and edges to modify. In these cases,

for most parameter choices, precision is close to 1.0, meaning every edge predicted to

be in the ancestor, in fact, was. Recall is often lower. The Foster et al. [24] model,

with its heavy reliance on duplication events and lack of node loss events, tends to

be the simplest under which to reconstruct the ancestral graph (Fig. 5.3c).

The largest factor leading to poorer performance is lower recall caused by gene

losses. If all descendants of a gene are lost in both extant networks, it is not possible

to reconstruct edges incident to it. If these edges are excluded from the computation

of recall, the F1 score often improves dramatically. Median F1 scores are shown as

pentagons in Fig. 5.3.

Robustness to evolutionary divergence. Naturally, the ability to recover the ancestral

network degrades as time passes and the extant networks diverge. However, the

degradation is slow (Fig. 5.3d, using the degree-dependent model with parameters

fixed at Pndup = 0.35, Pnloss = 0.05, Pegain = 0.3, and Peloss = 0.3). When the

distance is small, we are almost always able to recover the ancestral network well, as

illustrated by the high F1-scores and small interquartile ranges in Figure 5.3d. Even

when the distance between the ancestral and extant networks is large (300) compared

to the average ancestral network size (55), we obtain an F1-score of 0.72 (0.77 when

homology groups lost in both lineages are not considered).

98

5.5 Conclusion

We have presented a novel framework for representing network histories involving

gene duplications, gene loss, and edge gain and loss for both directed and undirected

graphs. A combinatorial characterization for valid histories was given. We have shown

that a fast heuristic can recover optimal histories in a large majority of instances. We

further provide evidence that, even with a probabilistic, weighted, generative model

of network growth, a parsimony approach can recover accurate histories.

99

Chapter 6

Conclusion

Assembling genomes is more and more common, thanks to the reduction in sequenc-

ing cost and high-throughput technologies. The need for reliable and fast genome

assembly software is ever more pressing, especially for large input size, such as mam-

malian genome size or larger. In the first part, we presented two projects in genome

assembly which were motivated by my experience assembling two large genomes, the

cow Bos taurus and the domestic turkey Meleagris gallopavo.

First, Jellyfish increases the speed and memory efficiency of counting k-mers,

in particular in sequencing reads. This allows larger datasets to be handled in a

reasonable time by properly using the multi-core architecture of current computers.

Moreover, k-mer frequencies have many applications in biology beyond genome as-

sembly.

Jellyfish suffers from a few limitations. Most importantly, the length k of the

mers is currently limited to 31. Some assemblers are now using larger values for k (e.g.

ALLPATHS-LG recommends using 96-mers with reads of length 150 bases). This is

an implementation detail — nothing in Jellyfish’s design prevents the use of longer

keys. Future development of Jellyfish will lift that restriction.

In the second project, the Chromosome Builder explores ways to combine marker

maps and mate pairs information to improve the accuracy of scaffolding. Accurate

scaffolds and proper placement on the chromosome is important for the analysis of

100

genomes. For example, to find genes which are not contained in one contig, or to

compare the evolution of the genomes of related species.

In the second part of this thesis, we considered different problems in bioinfor-

matics. Namely the seeded complex detection problem and the ancestral network

reconstruction problem. Both of these problems, and many others in genome as-

sembly, are conveniently expressed in the language of graph theory. Understanding

how the structure of natural networks appear and what this structure means for the

organism could potentially answer many questions about evolution.

Algorithmic questions lead to the study of exactly k-edge-connected graphs.

Although some subsets of this class of graphs (e.g. Harary graphs or k-connected k-

regular graphs) have been studied before, we described exactly connected for the first

time and gave a complete characterization for k = 1, 2, 3. Unsurprisingly, the charac-

terization for k = 3 is much more complex than for k = 1, 2, and the characterization

for larger values of k has so far remained elusive. Finding a general synthesis for all

k, as it was done for k-regular graphs, is a possible extension of this work.

If the biological networks of extant species are not easily studied, the networks of

ancestral species are, literally, not accessible. Nevertheless, knowing such an ancestral

network and its precise evolution could be invaluable. On the other hand, it is possible

to infer a “most likely” biological network of the ancestor of one, or many related,

species. Our work on the reconstruction of network evolution finds the “most likely”

ancestral network under the assumption of parsimony, that is the fewest number of

events are preferred.

In practice, our algorithm found optimal or near optimal solutions in polynomial

time, but the exact complexity class of this problem remains unknown. I postulate

the problem of determining an optimal proper history (i.e. without any blocking loop)

is NP-hard.

101

Bibliography
[1] M. Aldana, E. Balleza, S. Kauffman, and O. Resendiz. Robustness and evolv-

ability in genetic regulatory networks. J. Theor. Biol., 245(3):433–448, 2007.

[2] D. Barnette. A construction of 3-connected-graphs. Israel Journal of Mathe-
matics, 86:397–407, 1994.

[3] David R Bentley. Whole-genome re-sequencing. Current Opinion in Genetics
& Development, 16(6):545 – 552, 2006. Genomes and evolution.

[4] B. Bollobás. Extremal Graph Theory. Dover Publications, June 2004.

[5] E. Borenstein and M.W. Feldman. Topological signatures of species interactions
in metabolic networks. J. Comput. Biol., 16(2):191–200, 2009.

[6] E. Borenstein, M. Kupiec, M. W. Feldman, and E. Ruppin. Large-scale re-
construction and phylogenetic analysis of metabolic environments. Proc. Natl.
Acad. Sci. USA, 105(38):14482–14487, 2008.

[7] Jonathan Butler, Iain MacCallum, Michael Kleber, Ilya A Shlyakhter,
Matthew K Belmonte, Eric S Lander, Chad Nusbaum, and David B Jaffe. All-
paths: de novo assembly of whole-genome shotgun microreads. Genome Res,
18(5):810–20, May 2008.

[8] Davide Campagna, Chiara Romualdi, et al. RAP: a new computer program for
de novo identification of repeated sequences in whole genomes. Bioinformatics,
21(5):582–588, 2005.

[9] Susan Celniker, David Wheeler, Brent Kronmiller, Joseph Carlson, Aaron
Halpern, Sandeep Patel, Mark Adams, Mark Champe, Shannon Dugan, Er-
win Frise, Ann Hodgson, Reed George, Roger Hoskins, Todd Laverty, Donna
Muzny, Catherine Nelson, Joanne Pacleb, Soo Park, Barret Pfeiffer, Stephen
Richards, Erica Sodergren, Robert Svirskas, Paul Tabor, Kenneth Wan, Mark
Stapleton, Granger Sutton, Craig Venter, George Weinstock, Steven Scherer,
Eugene Myers, Richard Gibbs, and Gerald Rubin. Finishing a whole-genome
shotgun: Release 3 of the drosophila melanogaster euchromatic genome se-
quence. Genome Biology, 3(12):research0079.1–0079.14, 2002.

[10] G. Chaty and M. Chein. Minimally 2-edge connected graphs. Journal of Graph
Theory, 3:15–22, 1979.

[11] Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chim-
panzee genome and comparison with the human genome. Nature, 437(7055):69–
87, Sep 2005.

[12] Fan Chung, Linyuan Lu, T Gregory Dewey, and David J Galas. Duplication
models for biological networks. J. Comp. Biol., 10(5):677–687, January 2003.

102

[13] Rami A Dalloul, Julie A Long, Aleksey V Zimin, Luqman Aslam, Kathryn Beal,
Le Ann Blomberg, Pascal Bouffard, David W Burt, Oswald Crasta, Richard P
M A Crooijmans, Kristal Cooper, Roger A Coulombe, Supriyo De, Mary E
Delany, Jerry B Dodgson, Jennifer J Dong, Clive Evans, Karin M Frederick-
son, Paul Flicek, Liliana Florea, Otto Folkerts, Martien A M Groenen, Tim T
Harkins, Javier Herrero, Steve Hoffmann, Hendrik-Jan Megens, Andrew Jiang,
Pieter de Jong, Pete Kaiser, Heebal Kim, Kyu-Won Kim, Sungwon Kim, David
Langenberger, Mi-Kyung Lee, Taeheon Lee, Shrinivasrao Mane, Guillaume
Marçais, Manja Marz, Audrey P McElroy, Thero Modise, Mikhail Nefedov, Cé-
dric Notredame, Ian R Paton, William S Payne, Geo Pertea, Dennis Prickett,
Daniela Puiu, Dan Qioa, Emanuele Raineri, Magali Ruffier, Steven L Salzberg,
Michael C Schatz, Chantel Scheuring, Carl J Schmidt, Steven Schroeder,
Stephen M J Searle, Edward J Smith, Jacqueline Smith, Tad S Sonstegard,
Peter F Stadler, Hakim Tafer, Zhijian Jake Tu, Curtis P Van Tassell, Albert J
Vilella, Kelly P Williams, James A Yorke, Liqing Zhang, Hong-Bin Zhang, Xi-
aojun Zhang, Yang Zhang, and Kent M Reed. Multi-platform next-generation
sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and
analysis. PLoS Biol, 8(9), 2010.

[14] R. W. Dawes. Minimally 3-connected graphs. Journal of combinatorial theory,
Series B, 40:159–168, 1986.

[15] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, 2008.

[16] B. Deplancke et al. A gene-centered C. elegans protein-DNA interaction net-
work. Cell, 125(6):1193–1205, June 2006.

[17] Reinhard Diestel. Graph Theory. Springer-Verlag Heidelberg, New York, elec-
tronic edition 2005 edition, 2005.

[18] G. Ding and P. Chen. Generating r-regular graphs. Discrete Applied mathe-
matics, 129:239–343, 2003.

[19] S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks,
1(3):195–207, 1971.

[20] Janusz Dutkowski and Jerzy Tiuryn. Identification of functional modules from
conserved ancestral protein-protein interactions. Bioinformatics, 23(13):i149–
i158, 2007.

[21] Robert C. Edgar. MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Research, 32(5):1792–1797, 2004.

[22] Yoshimi Egawa, Katsumi Inoue, and Ken-ichi Kawarabayashi. Nonseparating
induced cycles consisting of contractible edges in k-connected graphs. Electronic
Notes in Discrete Matematics, 11:253–264, July 2002.

103

[23] J. Flannick, A. Novak, B. S. Srinivasan, H. H. McAdams, and S. Batzoglou.
Graemlin: general and robust alignment of multiple large interaction networks.
Genome Res., 16(9):1169–1181, 2006.

[24] D. V. Foster, S. A. Kauffman, and J. E. S. Socolar. Network growth models
and genetic regulatory networks. Phys. Rev. E, 73(3):031912, Mar 2006.

[25] Socorro Gama-Castro et al. RegulonDB (version 6.0): gene regulation model of
escherichia coli k-12 beyond transcription, active (experimental) annotated pro-
moters and textpresso navigation. Nucleic Acids Research, 36(suppl 1):D120–
D124, 2008.

[26] H. Gao, J.F. Groote, and W.H. Hesselink. Almost wait-free resizable hashta-
bles. In Proceeding of the 18th International Parallel and Distributed Processing
Symposium, page 50a, April 2004.

[27] T. A. Gibson and Goldberg D. S. Reverse engineering the evolution of protein
interaction networks. Pac. Symp. Biocomput., pages 190–202, 2009.

[28] Sante Gnerre, Iain Maccallum, Dariusz Przybylski, Filipe J Ribeiro, Joshua N
Burton, Bruce J Walker, Ted Sharpe, Giles Hall, Terrance P Shea, Sean Sykes,
Aaron M Berlin, Daniel Aird, Maura Costello, Riza Daza, Louise Williams,
Robert Nicol, Andreas Gnirke, Chad Nusbaum, Eric S Lander, and David B
Jaffe. High-quality draft assemblies of mammalian genomes from massively
parallel sequence data. Proc Natl Acad Sci U S A, 108(4):1513–8, Jan 2011.

[29] L. A. Goddyn and J. van den Heuvel. Removable circuits in multigraphs. Jour-
nal of combinatorial theory, Series B, 71:130–143, 1997.

[30] Jonathan L. Gross and Jay Yellen. Graph Theory and Its Applications. Discrete
Mathematics and Its Applications. 2006.

[31] R. Halin. Studies on minimally n-connected graphs. In Combinatorial mathe-
matics and its applications, pages 129–136, April 1967.

[32] R. Halin. A theorem on n-connected graphs. Journal of Combinatorial Theory,
7:150–154, 1969.

[33] Paul Havlak, Rui Chen, K. James Durbin, Amy Egan, Yanru Ren, Xing-Zhi
Song, George M. Weinstock, and Richard A. Gibbs. The Atlas Genome Assem-
bly System. Genome Research, 14(4):721–732, 2004.

[34] John Healy, Elizabeth E Thomas, Jacob T Schwartz, and Michael Wigler. An-
notating large genomes with exact word matches. Genome Res, 13(10):2306–15,
Oct 2003.

[35] D. A. Holton, B. Manvel, and B. D. McKay. Hamiltonian cycles in cubic 3-
connected bipartite planar graphs. Journal of combinatorial theory, Series B,
38:279–297, 1985.

104

[36] I Ispolatov, P L Krapivsky, and A Yuryev. Duplication-divergence model of
protein interaction network. Phys. Rev. E, 71(6 Pt 1):061911, June 2005.

[37] Takashi Ito, Tomoko Chiba, Ritsuko Ozawa, Mikio Yoshida, Masahira Hattori,
and Yoshiyuki Sakaki. A comprehensive two-hybrid analysis to explore the
yeast protein interactome. Proceedings of the National Academy of Sciences,
98(8):4569–4574, 2001.

[38] David B Jaffe, Jonathan Butler, et al. Whole-genome sequence assembly for
mammalian genomes: Arachne 2. Genome Res, 13(1):91–6, Jan 2003.

[39] E. L. Johnson. A proof of four-coloring of the edges of a cubic graph. American
Math Monthly, 73:52–55, 1966.

[40] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages
85–103. Plenum Press, 1972.

[41] J. Kececioglu and E. Myers. Combinatorial algorithms for dna sequence assem-
bly. Algorithmica, 13:7–51, 1995. 10.1007/BF01188580.

[42] David R Kelley, Michael C Schatz, and Steven L Salzberg. Quake: quality-aware
detection and correction of sequencing errors. Genome Biol, 11(11):R116, 2010.

[43] A. Kreimer, E. Borenstein, U. Gophna, and E. Ruppin. The evolution of
modularity in bacterial metabolic networks. Proc. Natl. Acad. Sci. USA,
105(19):6976–6981, 2008.

[44] M. Kriesell. A constructive characterization of 3-connected triangle-free graphs.
Journal of combinatorial theory, Series B, 97:358–370, 2007.

[45] Stefan Kurtz, Apurva Narechania, Joshua C Stein, and Doreen Ware. A new
method to compute k-mer frequencies and its application to annotate large
repetitive plant genomes. BMC Genomics, 9:517, 2008.

[46] Edya Ladan-mozes and Nir Shavit. An optimistic approach to lock-free fifo
queues. In In Proceedings of the 18th International Symposium on Distributed
Computing, LNCS 3274, pages 117–131. Springer, 2004.

[47] Tong Ihn Lee et al. Transcriptional regulatory networks in saccharomyces cere-
visiae. Science, 298(5594):799–804, 2002.

[48] A Lefebvre, T Lecroq, H Dauchel, and J Alexandre. FORRepeats: detects re-
peats on entire chromosomes and between genomes. Bioinformatics, 19(3):319–
26, Feb 2003.

[49] E. D. Levy and J. B. Pereira-Leal. Evolution and dynamics of protein interac-
tions and networks. Curr. Opin. Struct. Biol., 18(3):349–357, 2008.

105

[50] Harris A Lewin, Denis M Larkin, Joan Pontius, and Stephen J. O’Brien. Every
genome sequence needs a good map. Genome Research, 2009.

[51] Ruiqiang Li, Wei Fan, Geng Tian, et al. The sequence and de novo assembly
of the giant panda genome. Nature, 463(7279):311–317, 01 2010.

[52] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong Fang, Zhong-
bin Shi, Yingrui Li, Shengting Li, Gao Shan, Karsten Kristiansen, Songgang
Li, Huanming Yang, Jian Wang, and Jun Wang. De novo assembly of hu-
man genomes with massively parallel short read sequencing. Genome Research,
20(2):265–272, 2010.

[53] R. D. Lick. Critically and minimally n-connected graphs. Lecture notes in
mathematics: The Many Facets of Graph Theory, 110:199–205, 1969.

[54] Yue Liu, Xiang Qin, Xing-Zhi Henry Song, Huaiyang Jiang, Yufeng Shen,
K James Durbin, Sigbjørn Lien, Matthew Peter Kent, Marte Sodeland, Yanru
Ren, Lan Zhang, Erica Sodergren, Paul Havlak, Kim C Worley, George M We-
instock, and Richard A Gibbs. Bos taurus genome assembly. BMC Genomics,
10:180, 2009.

[55] W. Mader. Minimale n-fach zusammenhangende graphen mit maximaler kan-
tenzal. Arch. Math., 23:219–224, 1972.

[56] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.

[57] Marcel Margulies, Michael Egholm, William E. Altman, Said Attiya, Joel S.
Bader, Lisa A. Bemben, Jan Berka, Michael S. Braverman, Yi-Ju Chen, Zhoutao
Chen, Scott B. Dewell, Lei Du, Joseph M. Fierro, Xavier V. Gomes, Brian C.
Godwin, Wen He, Scott Helgesen, Chun He Ho, Gerard P. Irzyk, Szilveszter C.
Jando, Maria L. I. Alenquer, Thomas P. Jarvie, Kshama B. Jirage, Jong-Bum
Kim, James R. Knight, Janna R. Lanza, John H. Leamon, Steven M. Lefkowitz,
Ming Lei, Jing Li, Kenton L. Lohman, Hong Lu, Vinod B. Makhijani, Keith E.
McDade, Michael P. McKenna, Eugene W. Myers, Elizabeth Nickerson, John R.
Nobile, Ramona Plant, Bernard P. Puc, Michael T. Ronan, George T. Roth,
Gary J. Sarkis, Jan Fredrik Simons, John W. Simpson, Maithreyan Srinivasan,
Karrie R. Tartaro, Alexander Tomasz, Kari A. Vogt, Greg A. Volkmer, Shally H.
Wang, Yong Wang, Michael P. Weiner, Pengguang Yu, Richard F. Begley, and
Jonathan M. Rothberg. Genome sequencing in microfabricated high-density
picolitre reactors. Nature, 437(7057):376–380, 2005. 10.1038/nature03959.

[58] Sergei Maslov and Kim Sneppen. Computational architecture of the yeast reg-
ulatory network. Phys Biol, 2(4):S94–100, 2005.

[59] Lakshmi K. Matukumalli, Cynthia T. Lawley, Robert D. Schnabel, Jeremy F.
Taylor, Mark F. Allan, Michael P. Heaton, Jeff O’Connell, Stephen S. Moore,

106

Timothy P. L. Smith, Tad S. Sonstegard, and Curtis P. Van Tassell. Devel-
opment and characterization of a high density snp genotyping assay for cattle.
PLoS ONE, 4(4):e5350, 04 2009.

[60] D. Matula. k-components, cluster, and slicings in graphs. SIAM J. Appl. Math.,
22(3):459–480, 1972.

[61] M. Michael and M. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proceeding of PODC ’96, 1996.

[62] Maged M. Michael. High performance dynamic lock-free hash tables and list-
based sets. In SPAA ’02: Proceedings of the fourteenth annual ACM symposium
on Parallel algorithms and architectures, pages 73–82, New York, NY, USA,
2002. ACM.

[63] M. Middendorf, E. Ziv, and C. H. Wiggins. Inferring network mechanisms: the
Drosophila melanogaster protein interaction network. Proc. Natl. Acad. Sci.
USA, 102(9):3192–3197, 2005.

[64] Jason R Miller, Arthur L Delcher, Sergey Koren, Eli Venter, Brian P Walenz,
Anushka Brownley, Justin Johnson, Kelvin Li, Clark Mobarry, and Granger
Sutton. Aggressive assembly of pyrosequencing reads with mates. Bioinformat-
ics, 24(24):2818–24, Dec 2008.

[65] Jason R Miller, Sergey Koren, and Granger Sutton. Assembly algorithms for
next-generation sequencing data. Genomics, 95(6):315–27, Jun 2010.

[66] B. G. Mirkin, T. I. Fenner, M. Y. Galperin, and E. V. Koonin. Algorithms for
computing parsimonious evolutionary scenarios for genome evolution, the last
universal common ancestor and dominance of horizontal gene transfer in the
evolution of prokaryotes. BMC Evol. Biol., 3:2, 2003.

[67] A Mithani, GM Preston, and J Hein. A stochastic model for the evolution of
metabolic networks with neighbor dependence. Bioinformatics, 25(12):1528–
1535, 2009.

[68] Mouse Genome Sequencing Consortium, Robert H Waterston, Kerstin
Lindblad-Toh, Ewan Birney, Jane Rogers, Josep F Abril, Pankaj Agarwal, Richa
Agarwala, Rachel Ainscough, Marina Alexandersson, Peter An, Stylianos E
Antonarakis, John Attwood, Robert Baertsch, Jonathon Bailey, Karen Bar-
low, Stephan Beck, Eric Berry, Bruce Birren, Toby Bloom, Peer Bork, Marc
Botcherby, Nicolas Bray, Michael R Brent, Daniel G Brown, Stephen D Brown,
Carol Bult, John Burton, Jonathan Butler, Robert D Campbell, Piero Carninci,
Simon Cawley, Francesca Chiaromonte, Asif T Chinwalla, Deanna M Church,
Michele Clamp, Christopher Clee, Francis S Collins, Lisa L Cook, Richard R
Copley, Alan Coulson, Olivier Couronne, James Cuff, Val Curwen, Tim Cutts,
Mark Daly, Robert David, Joy Davies, Kimberly D Delehaunty, Justin Deri,
Emmanouil T Dermitzakis, Colin Dewey, Nicholas J Dickens, Mark Diekhans,

107

Sheila Dodge, Inna Dubchak, Diane M Dunn, Sean R Eddy, Laura Elnitski,
Richard D Emes, Pallavi Eswara, Eduardo Eyras, Adam Felsenfeld, Ginger A
Fewell, Paul Flicek, Karen Foley, Wayne N Frankel, Lucinda A Fulton, Robert S
Fulton, Terrence S Furey, Diane Gage, Richard A Gibbs, Gustavo Glusman,
Sante Gnerre, Nick Goldman, Leo Goodstadt, Darren Grafham, Tina A Graves,
Eric D Green, Simon Gregory, Roderic Guigó, Mark Guyer, Ross C Hardison,
David Haussler, Yoshihide Hayashizaki, LaDeana W Hillier, Angela Hinrichs,
Wratko Hlavina, Timothy Holzer, Fan Hsu, Axin Hua, Tim Hubbard, Adrienne
Hunt, Ian Jackson, David B Jaffe, L Steven Johnson, Matthew Jones, Thomas A
Jones, Ann Joy, Michael Kamal, Elinor K Karlsson, Donna Karolchik, Arka-
diusz Kasprzyk, Jun Kawai, Evan Keibler, Cristyn Kells, W James Kent, An-
drew Kirby, Diana L Kolbe, Ian Korf, Raju S Kucherlapati, Edward J Kul-
bokas, David Kulp, Tom Landers, J P Leger, Steven Leonard, Ivica Letu-
nic, Rosie Levine, Jia Li, Ming Li, Christine Lloyd, Susan Lucas, Bin Ma,
Donna R Maglott, Elaine R Mardis, Lucy Matthews, Evan Mauceli, John H
Mayer, Megan McCarthy, W Richard McCombie, Stuart McLaren, Kirsten
McLay, John D McPherson, Jim Meldrim, Beverley Meredith, Jill P Mesirov,
Webb Miller, Tracie L Miner, Emmanuel Mongin, Kate T Montgomery, Michael
Morgan, Richard Mott, James C Mullikin, Donna M Muzny, William E Nash,
Joanne O Nelson, Michael N Nhan, Robert Nicol, Zemin Ning, Chad Nusbaum,
Michael J O’Connor, Yasushi Okazaki, Karen Oliver, Emma Overton-Larty,
Lior Pachter, Genís Parra, Kymberlie H Pepin, Jane Peterson, Pavel Pevzner,
Robert Plumb, Craig S Pohl, Alex Poliakov, Tracy C Ponce, Chris P Ponting,
Simon Potter, Michael Quail, Alexandre Reymond, Bruce A Roe, Krishna M
Roskin, Edward M Rubin, Alistair G Rust, Ralph Santos, Victor Sapojnikov,
Brian Schultz, Jörg Schultz, Matthias S Schwartz, Scott Schwartz, Carol Scott,
Steven Seaman, Steve Searle, Ted Sharpe, Andrew Sheridan, Ratna Shown-
keen, Sarah Sims, Jonathan B Singer, Guy Slater, Arian Smit, Douglas R
Smith, Brian Spencer, Arne Stabenau, Nicole Stange-Thomann, Charles Sug-
net, Mikita Suyama, Glenn Tesler, Johanna Thompson, David Torrents, Evanne
Trevaskis, John Tromp, Catherine Ucla, Abel Ureta-Vidal, Jade P Vinson,
Andrew C Von Niederhausern, Claire M Wade, Melanie Wall, Ryan J We-
ber, Robert B Weiss, Michael C Wendl, Anthony P West, Kris Wetterstrand,
Raymond Wheeler, Simon Whelan, Jamey Wierzbowski, David Willey, Sophie
Williams, Richard K Wilson, Eitan Winter, Kim C Worley, Dudley Wyman,
Shan Yang, Shiaw-Pyng Yang, Evgeny M Zdobnov, Michael C Zody, and Eric S
Lander. Initial sequencing and comparative analysis of the mouse genome. Na-
ture, 420(6915):520–62, Dec 2002.

[69] E W Myers, G G Sutton, A L Delcher, et al. A whole-genome assembly of
Drosophila. Science, 287(5461):2196–204, Mar 2000.

[70] S. Navlakha and C. Kingsford. Network archaeology: Uncovering ancient net-
works from present-day interactions. PLoS Comput. Biol., 7(4):e1001119, 2011.

[71] Oystein Ore. The Four-Color Problem, volume 27. Academic Press Inc., 1967.

108

[72] L. Pachter. An introduction to reconstructing ancestral genomes. In Proc.
Symp. in Applied Mathematics, volume 64, pages 1–20, 2007.

[73] Philipp Pagel, Stefan Kovac, Matthias Oesterheld, Barbara Brauner, Irm-
traud Dunger-Kaltenbach, Goar Frishman, Corinna Montrone, Pekka Mark,
Volker Stümpflen, Hans-Werner Mewes, Andreas Ruepp, and Dmitrij Frish-
man. The mips mammalian protein–protein interaction database. Bioinformat-
ics, 21(6):832–834, 2005.

[74] Romualdo Pastor-Satorras, Eric Smith, and Ricard Sole. Evolving protein in-
teraction networks from gene duplication. J. Theor. Biol., 222:199–210, 2003.

[75] J. B. Pereira-Leal, E. D. Levy, C. Kamp, and S. A. Teichmann. Evolution of
protein complexes by duplication of homomeric interactions. Genome Biol.,
8(4):R51, 2007.

[76] P A Pevzner, H Tang, and M S Waterman. An eulerian path approach to dna
fragment assembly. Proc Natl Acad Sci U S A, 98(17):9748–53, Aug 2001.

[77] John W. Pinney, Grigoris D. Amoutzias, Magnus Rattray, and David L. Robert-
son. Reconstruction of ancestral protein interaction networks for the bZIP tran-
scription factors. Proc. Natl. Acad. Sci. USA, 104(51):20449–20453, 2007.

[78] Michael D. Plummer. On minimal blocks. Transactions of the American Math-
ematical Society, 134(1):85–94, 1968.

[79] M. Pop, D. S. Kosack, and S. L. Salzberg. Hierarchical scaffolding with bambus.
Genome Research, 14:149–159, 2004.

[80] Mihai Pop. Genome assembly reborn: recent computational challenges. Brief
Bioinform, 10(4):354–66, Jul 2009.

[81] C. Purcell and T. Harris. Non-blocking hashtables with open addressing. Tech-
nical Report 639, University of Cambridge, September 2005.

[82] Dana Randall. Efficient generation of random nonsingular matrices. Technical
report, University of California at Berkeley, Berkeley, CA, USA, 1991.

[83] Michael Roberts, Brian R Hunt, James A Yorke, Randall A Bolanos, and
Arthur L Delcher. A preprocessor for shotgun assembly of large genomes. J
Comput Biol, 11(4):734–52, 2004.

[84] Gabriel Robins and Alexander Zelikovsky. Improved steiner tree approximation
in graphs. In Proceedings of the eleventh annual ACM-SIAM symposium on
Discrete algorithms, SODA ’00, pages 770–779, Philadelphia, PA, USA, 2000.
Society for Industrial and Applied Mathematics.

[85] Steven L. Salzberg and James A. Yorke. Beware of mis-assembled genomes.
Bioinformatics, 21(24):4320–4321, 2005.

109

[86] Michael C. Schatz, Arthur L. Delcher, and Steven L. Salzberg. Assembly of
large genomes using second-generation sequencing. Genome Res, (9):1165–73,
Sep 2010.

[87] H. Seward. Information sorting in the application of electronic digital computers
to business operations. Master’s thesis, MIT, 1954.

[88] O. Shalev and N. Shavit. Split-ordered lists: Lock-free extensible hash tables.
Journal of the ACM, 53(3):379–405, 2006.

[89] H Shizuya, B Birren, U J Kim, V Mancino, T Slepak, Y Tachiiri, and M Simon.
Cloning and stable maintenance of 300-kilobase-pair fragments of human dna
in escherichia coli using an f-factor-based vector. Proc Natl Acad Sci U S A,
89(18):8794–7, Sep 1992.

[90] Suzanne S. Sindi, Brian R. Hunt, and James A. Yorke. Duplication count
distributions in DNA sequences. Phys. Rev. E, 78(6):061912, Dec 2008.

[91] Rohit Singh, Jinbo Xu, and Bonnie Berger. Pairwise global alignment of protein
interaction networks by matching neighborhood topology. In Proc. Intl. Conf.
on Research in Computational Molecular Biology (RECOMB), pages 16–31,
2007.

[92] Warren Snelling, Readman Chiu, Jacqueline Schein, Matthew Hobbs, Colette
Abbey, David Adelson, Jan Aerts, Gary Bennett, Ian Bosdet, Mekki Bous-
saha, Rudiger Brauning, Alexandre Caetano, Marcos Costa, Allan Crawford,
Brian Dalrymple, Andre Eggen, Annelie Everts-van der Wind, Sandrine Floriot,
Mathieu Gautier, Clare Gill, Ronnie Green, Robert Holt, Oliver Jann, Steven
Jones, Steven Kappes, John Keele, Pieter de Jong, Denis Larkin, Harris Lewin,
and John McEwan. A physical map of the bovine genome. Genome Biology,
8(8):R165, 2007.

[93] E. Steinitz and H. Rademacher. Vorlesungen über die Theorie de Polyeder unter
Einschluss der Elemente der Topologie. Springer, Berlin, 1934.

[94] A. J. Stewart, R. M. Seymour, and A. Pomiankowski. Degree dependence in
rates of transcription factor evolution explains the unusual structure of tran-
scription networks. Proc. Biol. Sci., 276(1666):2493–2501, 2009.

[95] R. Rivest T. Cormen, C. Leiserson. Introduction to algorithms, chapter 12. MIT
Press, 1990.

[96] Sarah A Teichmann and M Madan Babu. Gene regulatory network growth by
duplication. Nat. Genetics, 36(5):492–6, May 2004.

[97] Carsten Thomassen. Non-separating cycles in k-connected graphs. Journal of
Graph Theory, 5:351–354, 1981.

110

[98] Carsten Thomassen and Bjarne Toft. Non-separating induced cycles in graphs.
Journal of combinatorial theory, Series B, 31:199–224, 1981.

[99] W.T. Tutte. Connectivity in Graphs. Number 15 in Mathematical Expositions.
University of Toronto Press, 1966.

[100] Peter Uetz, Loic Giot, Gerard Cagney, Traci A. Mansfield, Richard S. Jud-
son, James R. Knight, Daniel Lockshon, Vaibhav Narayan, Maithreyan Srini-
vasan, Pascale Pochart, Alia Qureshi-Emili, Ying Li, Brian Godwin, Di-
ana Conover, Theodore Kalbfleisch, Govindan Vijayadamodar, Meijia Yang,
Mark Johnston, Stanley Fields, and Jonathan M. Rothberg. A comprehensive
analysis of protein-protein interactions in saccharomyces cerevisiae. Nature,
403(6770):623–627, 2000. 10.1038/35001009.

[101] J. Craig Venter, Mark D. Adams, Eugene W. Myers, Peter W. Li, Richard J.
Mural, Granger G. Sutton, Hamilton O. Smith, Mark Yandell, Cheryl A. Evans,
Robert A. Holt, Jeannine D. Gocayne, Peter Amanatides, Richard M. Ballew,
Daniel H. Huson, Jennifer Russo Wortman, Qing Zhang, Chinnappa D. Kodira,
Xiangqun H. Zheng, Lin Chen, Marian Skupski, Gangadharan Subramanian,
Paul D. Thomas, Jinghui Zhang, George L. Gabor Miklos, Catherine Nelson,
Samuel Broder, Andrew G. Clark, Joe Nadeau, Victor A. McKusick, Norton
Zinder, Arnold J. Levine, Richard J. Roberts, Mel Simon, Carolyn Slayman,
Michael Hunkapiller, Randall Bolanos, Arthur Delcher, Ian Dew, Daniel Fa-
sulo, Michael Flanigan, Liliana Florea, Aaron Halpern, Sridhar Hannenhalli,
Saul Kravitz, Samuel Levy, Clark Mobarry, Knut Reinert, Karin Remington,
Jane Abu-Threideh, Ellen Beasley, Kendra Biddick, Vivien Bonazzi, Rhonda
Brandon, Michele Cargill, Ishwar Chandramouliswaran, Rosane Charlab, Kabir
Chaturvedi, Zuoming Deng, Valentina Di Francesco, Patrick Dunn, Karen Eil-
beck, Carlos Evangelista, Andrei E. Gabrielian, Weiniu Gan, Wangmao Ge,
Fangcheng Gong, Zhiping Gu, Ping Guan, Thomas J. Heiman, Maureen E.
Higgins, Rui-Ru Ji, Zhaoxi Ke, Karen A. Ketchum, Zhongwu Lai, Yiding Lei,
Zhenya Li, Jiayin Li, Yong Liang, Xiaoying Lin, Fu Lu, Gennady V. Merkulov,
Natalia Milshina, Helen M. Moore, Ashwinikumar K Naik, Vaibhav A. Narayan,
Beena Neelam, Deborah Nusskern, Douglas B. Rusch, Steven Salzberg, Wei
Shao, Bixiong Shue, Jingtao Sun, Zhen Yuan Wang, Aihui Wang, Xin Wang,
Jian Wang, Ming-Hui Wei, Ron Wides, Chunlin Xiao, Chunhua Yan, Alison
Yao, Jane Ye, Ming Zhan, Weiqing Zhang, Hongyu Zhang, Qi Zhao, Lian-
sheng Zheng, Fei Zhong, Wenyan Zhong, Shiaoping C. Zhu, Shaying Zhao,
Dennis Gilbert, Suzanna Baumhueter, Gene Spier, Christine Carter, Anibal
Cravchik, Trevor Woodage, Feroze Ali, Huijin An, Aderonke Awe, Danita Bald-
win, Holly Baden, Mary Barnstead, Ian Barrow, Karen Beeson, Dana Busam,
Amy Carver, Angela Center, Ming Lai Cheng, Liz Curry, Steve Danaher, Lionel
Davenport, Raymond Desilets, Susanne Dietz, Kristina Dodson, Lisa Doup,
Steven Ferriera, Neha Garg, Andres Gluecksmann, Brit Hart, Jason Haynes,
Charles Haynes, Cheryl Heiner, Suzanne Hladun, Damon Hostin, Jarrett Houck,
Timothy Howland, Chinyere Ibegwam, Jeffery Johnson, Francis Kalush, Lesley

111

Kline, Shashi Koduru, Amy Love, Felecia Mann, David May, Steven McCaw-
ley, Tina McIntosh, Ivy McMullen, Mee Moy, Linda Moy, Brian Murphy, Keith
Nelson, Cynthia Pfannkoch, Eric Pratts, Vinita Puri, Hina Qureshi, Matthew
Reardon, Robert Rodriguez, Yu-Hui Rogers, Deanna Romblad, Bob Ruhfel,
Richard Scott, Cynthia Sitter, Michelle Smallwood, Erin Stewart, Renee Strong,
Ellen Suh, Reginald Thomas, Ni Ni Tint, Sukyee Tse, Claire Vech, Gary Wang,
Jeremy Wetter, Sherita Williams, Monica Williams, Sandra Windsor, Emily
Winn-Deen, Keriellen Wolfe, Jayshree Zaveri, Karena Zaveri, Josep F. Abril,
Roderic Guigó, Michael J. Campbell, Kimmen V. Sjolander, Brian Karlak, An-
ish Kejariwal, Huaiyu Mi, Betty Lazareva, Thomas Hatton, Apurva Narechania,
Karen Diemer, Anushya Muruganujan, Nan Guo, Shinji Sato, Vineet Bafna,
Sorin Istrail, Ross Lippert, Russell Schwartz, Brian Walenz, Shibu Yooseph,
David Allen, Anand Basu, James Baxendale, Louis Blick, Marcelo Caminha,
John Carnes-Stine, Parris Caulk, Yen-Hui Chiang, My Coyne, Carl Dahlke,
Anne Deslattes Mays, Maria Dombroski, Michael Donnelly, Dale Ely, Shiva
Esparham, Carl Fosler, Harold Gire, Stephen Glanowski, Kenneth Glasser,
Anna Glodek, Mark Gorokhov, Ken Graham, Barry Gropman, Michael Har-
ris, Jeremy Heil, Scott Henderson, Jeffrey Hoover, Donald Jennings, Catherine
Jordan, James Jordan, John Kasha, Leonid Kagan, Cheryl Kraft, Alexander
Levitsky, Mark Lewis, Xiangjun Liu, John Lopez, Daniel Ma, William Ma-
joros, Joe McDaniel, Sean Murphy, Matthew Newman, Trung Nguyen, Ngoc
Nguyen, Marc Nodell, Sue Pan, Jim Peck, Marshall Peterson, William Rowe,
Robert Sanders, John Scott, Michael Simpson, Thomas Smith, Arlan Sprague,
Timothy Stockwell, Russell Turner, Eli Venter, Mei Wang, Meiyuan Wen, David
Wu, Mitchell Wu, Ashley Xia, Ali Zandieh, and Xiaohong Zhu. The Sequence
of the Human Genome. Science, 291(5507):1304–1351, 2001.

[102] A. Wagner. Evolution of gene networks by gene duplications: A mathematical
model and its implications on genome organization. Proceedings of the National
Academy of Sciences, 91(10):4387–4391, May 1994.

[103] Xiuwei Zhang and Bernard Moret. Refining transcriptional regulatory networks
using network evolutionary models and gene histories. Alg. Mol. Biol., 5(1):1,
2010.

[104] Xiuwei Zhang and Bernard M. Moret. Boosting the performance of inference al-
gorithms for transcriptional regulatory networks using a phylogenetic approach.
In Proc. Intl. Workshop on Algorithms in Bioinformatics (WABI), pages 245–
258, 2008.

[105] Aleksey V Zimin, Arthur L Delcher, Liliana Florea, David R Kelley, Michael C
Schatz, Daniela Puiu, Finnian Hanrahan, Geo Pertea, Curtis P Van Tassell,
Tad S Sonstegard, Guillaume Marçais, Michael Roberts, Poorani Subramanian,
James A Yorke, and Steven L Salzberg. A whole-genome assembly of the do-
mestic cow, bos taurus. Genome Biol, 10(4):R42, 2009.

112

