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Close Conjunction Detection on Parallel Computer

Liam M. Healy
Naval Research Laboratory, Washington, D.C. 20375-5355

Close conjunction detection is the task of finding which satellites will come within a given distance of other
satellites. The algorithms described here are implemented on the Connection Machine (CM) in a program called
CM-COMBO. It will find close conjunctions of satellites over a time range for one, a few, or all satellites against the
original or another catalog and works with an arbitrary propagator. The problem of comparing an entire catalog
against itself is beyond the computing power of current serial machines. This program does not prefilter any orbits
and does not make any assumptions about the type of orbit (that it be nearly circular, for instance). This paper
describes the algorithm for this computation, the implementation on the CM, and results of several studies using

this program.

I. Introduction

CLOSE conjunction determination algorithm is one that takes

a catalog of satellites and determines which satellites come
within some specified distance of another over a period of time.
Such an algorithm should work with any propagator and make as
few assumptions as possible about the types of orbits of satellites in
the catalog. A propagator computes the phase space points at some
time step after the initial time, given the phase space values at an
initial time. The algorithm described here does not depend on any
particular propagator.

Traditionally, a single satellite is compared against a catalog of
satellites to find close encounters. This is the function of a program
called COMBO (Calculation of Miss Distance Between Objects)
running on serial computers at U.S. space surveillance centers. More
challenging, however, is the problem of the comparison of a large
number of satellites, comparisons that are either all to all within a
given catalog or between two large sets of satellites. This capabil-
ity would be useful, for example, in the study of debris, the hazard
to a proposed constellation of satellites, or the danger due to over-
crowding of the orbital environment. By taking advantage of parallel
processing on a computer such as the Connection Machine (CM), it
is feasible to do this.

The algorithms described here have all been implemented in CM
Fortran on a CM-5E with 256 nodes.

II. Single Satellite

For comparison of a catalog against a single satellite at a particular
time, a parallel processor is a natural. With the Cartesian coordinates
of the primary satellite available to all processors and the Cartesian
coordinates of all the other satellites at the other processors, a direct-
distance computation may be performed in parallel. This method as
described is adequate only for finding close pairs at a particular time
and not for pairs that come briefly within the desired critical distance
and then pass out in the time interval.

In order to find close conjunctions in a time interval, we do a
Taylor series extrapolation on the motion. We consider at one time

step a continuous time range, say an interval of time T centered
on the time #. Thus, the propagator would compute positions and
momenta at time #, and take a step to compute them at a time T
later, and so on. We wish to find all close conjunctions in the range
t €[ty ~T/2,ty+ T/2]. With the velocity information that comes
back from the propagator, we can extrapolate to find the closest
approach. Approximating the relative displacement vector of the
two satellites with a Taylor series

x =0+ (t — to)ko+ 3(t — to) %o+ L(t — 0%+ (D)

we may find the point of closest approach by the minimum value of
x - x. Truncating Eq. (1) at the linear term, we have

XX =Xg-Xg 4+ 2(t — ty)xg  Xo + (¢ — to)* %0 - X0 2)

The time at which this is an extremum can be solved by finding the
root of the derivative,
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To lowest order, the time of closest approach occurs at

Feosn = fo — o @
Xo * Xo
The vector xy and its derivative x; are usually calculated by the
propagator. The distance at the time of closest approach is eas-
ily calculated from this time, the initial values, and the Taylor
series (1).

After all the estimated closest approach distances and times have
been computed and likely close conjunctions within the time band
extracted, they may be refined using a Newton method iteration in
parallel using the actual propagator. Thus, the final answer is avail-
able to any desired accuracy within the capabilities of the specified
propagator. Although computing x - x with more terms in the Taylor
series (1) and solving for the time of closest approach by reversion

Liam M. Healy received an A. B. in physics from Harvard in 1979, an M.S. in 1981 and Ph.D. in 1986, both from
the University of Maryland, College Park, in Physics. His Ph.D. dissertation was on beam dynamics in particle
accelerators. Since 1987 he has been at the Naval Research Laboratery, first as a NRC Cooperative Research
Associate and currently as a Research Physicist in the Mathematics and Orbit Dynamics section of the Naval
Center for Space Technology. His research interests are in orbit dynamics and Hamiltonian systems, particularly
using symbolic and parallel computation.

Received Feb. 23, 1994; revision received Oct. 4, 1994; accepted for publication Nov. 28, 1994. This paper is declared a work of the U.S. Government and

is not subject to copyright protection in the United States.



of series give more accurate results, this turns out to be an ineffec-
tive use of computer time. For step sizes of 2 min the error made
by this linear approximation on the actual catalog is typically about
10 ms on average, resulting in an average distance error of about
2 m (the reason that the distance of closest approach changes so
little relative to the change in time is that the distance-time curve is
usually quite flat near the closest approach). The addition of higher
orders in the Taylor series, although improving these figures, greatly
slows the program. Since the final answer will be refined with the
actual propagator anyway, there is little point in doing the extra
computations earlier.

Aside from being designed for a parallel computer, this algorithm
has advantages over others previously reported. Hoots et al.! de-
scribe a method that uses extensive prefiltering of orbits, designed
to remove from consideration those satellites that could never be
near the primary. This requires careful consideration of different
kinds of orbits and detailed knowledge of the perturbations to be
considered. Furthermore, they use a Newton method iteration with
an idealized motion model to solve for the point of closest approach
for all satellite pairs not removed by the prefilter; the final stages of
iteration use the full propagator. Prefiltering the set requires extra
analysis and programming; furthermore, it is of very little advantage
in a parallel computer. Mietz? also uses prefiltering, which he calls
a “discard phase.” Alfano and Negron® use a curve-fitting approach,
which requires values at multiple time steps. They use a set of four
points at once, blending two parabolas formed from the first three
and last three points. The blending process is repeated with succes-
sive sets of points through the whole data set. The method presented
here is simpler conceptually and computationally and requires only
positions and velocities at a particular time in order to determine
conjunctions over an interval. Dybczyriski et al.* attempt to solve
the problem of the minimum distance between two orbits, rather
than two orbiting satellites. Their method is iterative and is based
on strictly Keplerian orbits. So too is the method of Beerer and
Bauer.” Theirs is based on spherical trigonometric relationships and
is valid only for circular orbits.

None of the previous work mentioned attempts to handle the
problem of an all-to-all comparison, only of a particular (primary)
satellite against the catalog. For a small number of primaries, one
can compute in succession using this one-to-all comparison, but
with too many primaries, a different approach is required.

III. Close Conjunction Sieve

The previous section has shown how to compute close conjunc-
tions between a primary (or limited number of primaries) and the
remaining catalog of satellites. Of different interest, for example, in
verifying debris hazard models, is the hazard of any satellite to any
other. In this case, specific conjunction detection is the same, but the
logistics of comparison will be different. To make matters easier,
consider first the conjunction determination at a particular time.

The computation of close miss distances involves finding all pairs
of satellites within a set that are within some specified critical dis-
tance ¢ at a given time. The general approach is as follows. One
may take the Cartesian coordinates x = [x, y, z]’, in arrays stored
on the parallel computer and duplicate the set:

Then, with one copy fixed, we shift all three arrays by one and
compute in parallel the distance of aligned coordinates,

[ = [ = | S
HE [ % | x|
J Compute distances J
[Ixz—xlll Ix,.—xn_xl|

saving in a separate array pairs that are closer than some critical
distance c. Then we repeat the shift-distance-save operation until
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all possible pairs have been compared. Counting the displacement
of the upper array to the left relative to the lower array by s, we
compare |x;,; — x;| in parallel forall 1 < i < a - 1 and serially
l1<s<n-—1

This method will determine all close pairs at the time, but it is
unnecessarily time consuming. We may greatly reduce the compu-
tations by sorting the elements in advance. The position vectors are
rearranged so that one Cartesian coordinate of the vector x, say z, is
sorted in ascending order. First observe that if two satellites differ
by more than ¢ in one coordinate, they are more than ¢ apart:

lzi —zjl > c= |xi —x;| > ¢ )

As a consequence of the sorted coordinates, if two satellites in the
array differ by more than ¢ in one coordinate, then a pair formed by
the first satellite and another later in the array than the second will
also differ by more than c in the coordinate:

k>j>i and |z;—zl>c=>lu—ul>c ©

These together imply that if, at a certain stage of the computation,
the minimum of the differences of the z values is greater than ¢, no
further shifts will produce an aligned pair whose Cartesian distance
is less than c. Thus we modify the algorithm above; if we let p be
the ranking of satellites by the z value, i.e.,

Zp-ly T Zpm1y) T Z Ll

shifting and finding distances produce
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Compute
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Now, however, after each shift an extra step checks the minimum z
differences,

LN 1214~ 2510 ™
for shift s in parallel of all aligned pairs. If this minimum is greater
than ¢, we terminate the computation, confident that all pairs that
are within a distance c of each other have been found. Since the need
for most of the shifts, which are done sequentially, is eliminated,
sorting improves the speed of the close conjunction determination
by a factor of more than 20.

Having found a fast way to determine all conjunctions within a
catalog at a particular time, we seek to expand this to the case of the
continuous-time interval ¢ € {tp — T'/2, tp + T /2] using the method
described in Sec. II. We shall need to modify the rearrangement of
the arrays, however. If we sort merely by the value at a particular
time and then shift until the minimum difference of the z values is
at least ¢, we might miss a pair that is, at £, greater than c apart
but will (or had) approached to less than ¢ within the time interval.
Thus we choose a different arrangement: The two arrays that are to
be compared will not have the same ordering.

For each satellite, we determine the lowest z value and the highest
z value in the time interval, i.e.,

Zmax =

) (8

max z
teltg—T/2.19+T/2)

min 0) ©9)

min z
telto—T/2,t5+T/2)

These are fairly easy to determine. If the sign of the z velocity is the
same at the beginning and end of the time interval and the interval is
sufficiently small, there is no turning during the interval. Depending
on this sign, the z at each end of the time interval is the minimum
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or maximum. If the signs are different, there is a turning. One can
use the time derivative of the z component of the Taylor expansion
(1) to solve for the time of z turning and the extremal distance.

The arrays of Cartesian positions at ¢, shifted left will be arranged
so that the corresponding values z™" would be arranged in increasing
order, and the other array will be arranged so that the values z™**
would be arranged in increasing order. Note that the two orderings
have no relation to one another: A satellite with z™® at position
does not necessarily have z™** at position ¢ too. If [ is the ranking
of satellites by z™" and & the ranking by z™**, then our comparison
looks like, for an example case of s = 1,

le“(l)(t)| X;-102 () | l Xp-tm(8) l

| Xp-10) (1) l | Xp-1(-1y (1) lxh-l(n)(t),
Estimate
minimum
¥ distances v
over interval
|x,—1(2) (t) . |xl_1(n) (t)
—xp-1y(D)] X511y (N

Here, t € [ty — T/2, ty + T /2] lies in the time interval and is the
estimated time at which the two satellites are closest and is in general
different for each pair.

In the single-time method, the arrays were first aligned and then
shifted once before the start of the comparison; then the comparison
proceeded with s = 1,2, ..., smu- This ensured that no duplicate
pairs and no self-pairs (both members of the same satellite) were
compared. Here, since the orderings are different, we have no such
assurance. We do not necessarily start at s = 1 but at a value Spyiq
yet to be found, which will in general be less than zero; that is, the
upper array starts out displaced to the right of the lower array.

The maximum value of the shift s is determined in the same
way as the fixed-time case described above. When the minimum of
the z differences between the two arrays is greater than the critical
distance, we can be assured that this alignment or further shifts left
will not produce any new close pairs. Thus if

: min max
min [zl‘l(iﬂ') - Zh"(i)] <c

no further shifting is necessary. Note that this time we do not take
an absolute value: It is the z™* subtracted from the z™". For ™ >
z™", this number is negative and thus is always less than the critical
distance, which must be nonnegative. Only when z™* < z™" for all
aligned pairs is it possible to consider an end to shifting.

The minimum value of the shift s is determined in a completely
different manner. The shift needed to align satellite i with satellite j
will be the lesser of &;; and E j;, where &;; = h(i)—I(j), keeping in
mind that a given satellite pair can be matched twice (z™"-ordered
to z™*-ordered and z™*-ordered to z™"-ordered). Let us call the
rank difference E; for a satellite / the difference between the high
and low ranking,

8 = 8 = () ~ 1)

One of the following must be true for all i and j, i # j:
h(j) < h() = h(j) 1) <h() - 1(G)= E;; < &;
(10
@Y < h()) = k@) —1() <h(j) —1(j) = 85 < E;

Thus min[E;;, E;] < max[E;, E;]. To cover all possible pairs, we
need only a negative shift given by

m:x[min[E,-j, 8;i]] < max[&;] an
i#j

where max[ ;] is the largest rank difference of all the satellites. The
most negative shift therefore is s (i) = 1 — max[E;].
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Intuitively, the satellites with the highest rank difference are the
fast movers in the z direction: They have the largest difference be-
tween minimum and maximum z. More accurately, they are the satel-
lites that cross the most number of other satellites in the z direction
during the time interval. Notice, however, that the algorithm makes
no assumptions about how satellites move or what their orbits are.

This treats only the case of conjunction determination all-to-all
within one set. It is possible by simple extension to make a com-
parison of two large sets. By keeping a logical array, we can divide
a single set of positions into two logical sets. A conjunction of
satellites belonging to the same set can be rejected, so that only
conjunctions between the sets are kept. An application might be
the comparison of the existing orbital catalog with a hypothetical
constellation or a simulated debris cloud.

IV. Direct Comparison

While the method described above will work to compare two large
sets of satellites, or all to all within one set, we can greatly improve
performance with a conceptually simple idea. We can reduce the
number of shifts by putting those satellites with the highest rank
difference and those with which they would be compared into a
direct comparison.

With actual catalogs, the value s(i) can be quite negative, ne-
cessitating many serial shifts. To cut computation time, remove the
fastest movers and do a direct comparison. Say that satellite i = i,
has the maximum value of rank difference, &;, = 201, but that the
next highest satellite i = i, has &;, = 101. Then, by directly com-
paring satellite ;s position with the 100 satellites it would have
been shifted over, we can start at shift sy,, = —100 instead of
Sstar = §(#1) = —200. This speeds things up tremendously because
the direct comparison can be done in parallel, whereas the shifts are
done one after another. In fact, several of the top few satellites in
rank difference can be brought out specially for a direct comparison
in parallel, greatly cutting the number of shifts.

Assume the rank differences have been sorted in decreasing order,
so that « is the index of the satellite with the highest rank difference
in the original array and B the next. Now look at where « occurs in
the z™"- and z™**-sorted arrays:

Bl ] [l o

|...Ixa| ...delxelel...lzmux_sort

Assuming this diagram shows the alignment with s = 5(i), we see
that the satellite & will be compared with two other satellites, labeled
a and f. At the next shift, s = s(@) + 1, it will be compared with
the satellites labeled b and e. At the third shift, it will be compared
with the satellites labeled ¢ and d. To alleviate the need for the three
sequential comparisons and shifts, we may transfer these values to
separate arrays for direct comparison:

ele e e[ [5] ] B

[xa [ [xc [xa] 2 [2,]--] €
S— N———
L H

Assuming that 85 < E, — 3, we may now start with initial shift
t = s(a)+ 3 and not lose anything. The new array that gets the high
movers will be called the broadcast (B) array, and the new array to
which they are compared will be called the comparee (C) array. The
size of these arrays I will call BC array size. In the diagram, the letter
L designates replaced comparisons of the broadcast satellite with the
Z™"-ordered array, and H designates replaced comparisons with the
Z™*-ordered array.

Depending on the size of the broadcast and comparee array, one
may pick the highest z satellites in rank difference and put them with
their comparee satellites into these arrays. Each satellite requires a
minimum shift of s({) = 1 — ;. For each satellite, the number
of potential conjunctions lost from increasing the initial shift to ¢
fless negative than s(i)} is 2(t — s(i)) = 2(&; + ¢t — 1), the factor
of 2 arising from the L and the H comparison. Table 1 shows the
arrangement of the B and C arrays, giving, for each element, the



Table 1 Arrangement of arrays for direct comparison

Index B array C array Comment
1 o a =I"Yh(@) + s(a@)] Start L
2 o b=1"1h(a)+ s(@)+ 1]

3 o ¢ =1"h(a) + s() + 2]

}—x(a) o l“[h(a)‘+t— 1] Enda L
1+1t—s(@) a f=h"1la) - s@)] Start « H
241 —s(@) a e=h"l(a) —s@) — 1]

3+t —s(a) o d =hl(@) — s(a) — 2]

i[r —s(@)) a h“[l(a).— t+1] End o H
14 2[f — s(a)] B 7Y h(B) + s(8)] Start S L
2420t — s(@)] B

[ZA(B) + s(B) + 1]

Note: Index is index in two arrays, B array is index in original order of satellite in B
array, and C array is index in original order of satellite in C array; a and g are original
ordering indices of high movers, and a, . . ., f correspond to example in diagrams.

index in the original array of the Cartesian coordinates that consti-
tute that element. The comments indicate where each block begins
and ends. The ordering of the satellites with high rank difference,
i.e.,, what is «, 8, etc., is not important. One might sort the rank
differences and select «, B, ..., but it is more convenient and faster
to pick a value of ¢, compute the total number of direct comparisons
necessary, see if they will fit in the arrays, and adjust ¢ if necessary.
Then the satellites with high rank difference may be picked off in
the order they occur in the original array.

V. Categorizing Conjunctions

There are essentially two types of conjunctions observed in the
catalog of Earth-orbiting satellites: coincidental conjunctions and
traveling partners. The former are satellites that once or periodically
are within the critical distance, because they are in different orbits.
The latter are satellites that, by accident or by design, are orbiting
together, such that they are always or nearly always within the crit-
ical distance of one another. A prime example of this is the Russian
space station Mir, which is recorded in the U.S. Space Command
catalog as seven separate pieces. Clearly, the coincidental conjunc-
tions are of primary interest; without assuming prior knowledge of
traveling partners in a given catalog, we would like to sort the con-
junctions into the two classes. The traveling partners, although for
the most part actually known about in advance, are not assumed to
be given. Instead, there are multiple cues that can help determine
the type of conjunction for a pair.

At each time step, there are two computations made to identify
conjunctions. First, the distances at the current time ¢, are computed.
Second, the time and distance of closest approach are estimated
according to Eq. (4). If the first distance is less than the critical
distance c, or if the second distance is less than ¢ and the time
within one-half the interval, T/2 of f,, then these values are saved
along with the identifying numbers for each member of the pair and
a key composed from these identifiers that uniquely identifies the
pair. At each step, this information is sorted by key and duplicate
conjunctions, which are now adjacent in the array, removed.

After the analysis at a particular time interval is done and the
information saved, the propagator advances to the next time step
and the process is repeated. After the entire period of simulation
has been completed, there will be a large collection of conjunction
information from all the time steps. To make sense of this, we will
need to sort and analyze it.

The global analysis of conjunction information must be able to
make sense of different kinds of distance functions in a way that
would match a knowledgeable person’s judgment. Consider the four
different distance functions given in Fig. 1; in each of these plots the
dashed line indicates the critical distance. Plot a is clearly a coinci-
dental conjunction, and there should be no problem categorizing it
as such. Likewise, plot b is clearly a traveling partner. Plot ¢ shows
the pitfall of judging the two cases based on a hard cutoff c: It is
obviously just like Fig. 1b, but at a greater distance, so that part

HEALY 827

Distance

Time

a) Coincidental conjunction

Distance

Time

b) Traveling partners

Distance

Time
c) Potentially ambiguous case

d) Two separate coincidental conjunctions

Fig.1 Some idealized distance functions for satellite pairs; dotted lines
indicate critical distance c.

of the time the two satellites are further than c apart. On the other
extreme, however, as the far distance increases, it becomes like plot
d, which we would want to categorize as two separate coincidental
conjunctions. Identifying criteria to accurately discriminate between
these cases is difficult; in practice those given below when applied
to real catalogs and a realistic critical distance ¢ rarely produce
misclassifications.

To formally classify the conjunctions, we sort the conjunction
information from all times using the pair key. This information in-
cludes the type of conjunction: distance within ¢ at #, (a current
contact) or estimated within the time interval (an estimated contact)
or both. If at least half the time steps have a conjunction of a par-
ticular pair and at least 90% of these are a current contact, that pair
is considered a traveling partner. Any pair that is not a traveling
partner and has an estimated contact is a coincidental conjunction
or conjunctions.

A third possibility must be considered, that of two (or more) sep-
arate coincidental conjunctions involving the same pair of satellites,
which might otherwise be interpreted as traveling partners, such as
Fig. 1d. If there is more than one estimated contact, and the stan-
dard deviation of the times of the multiple approaches is more than
some threshold, say 2.0 s, we shall take it as multiple coincidental
conjunctions. Any newly identified multiple coincidental conjunc-
tions are marked with each conjunction separate, and analysis is
then redone as two separate coincidental conjunctions.

For the traveling partner, we may compute the mean and standard
deviation of the distance and the percentage of time steps in which
the distance is within the critical distance. For the coincidental con-
junctions, we may find a more precise time and distance of closest
approach using a Newton search procedure and the actual propaga-
tor (rather than an extrapolation). This is not very computationally
intensive, because all coincidental conjunctions obtained through
the whole run are refined at the same time in parallel. The use of
the actual propagator assures that the resultant values are the closest
approach.

V1. Performance

The performance in the sieve mode is dependent on a number
of factors. Chief among these are the step size of propagation, the
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Fig. 2 Time of execution for 1 h of all-to-all simulation for various BC
array sizes, with step size of 240 s and ¢ = 2.5 km, 256 CM-5 nodes.
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Fig. 3 Time of execution for 1 h of all-to-all simulation for various
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Fig.4 Time of execution for 1 h of all-to-all simulation for various step
sizes, with ¢ = 1.0 km and BC size 16,256 CM-5 nodes.
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Fig.5 Time of execution for 30 min of all-to-all simulation, 3-min step
size, with ¢ = 2.5 km, on different-size machines.

critical distance c, and the BC array size. Also, the number of proces-
sors being used is obviously important, as is the size of the satellite
dimension for the arrays. The figures below show the relative perfor-
mance of a 1-h all-to-all close conjunction detection on the catalog
of 7613 satellites from May 24, 1993. The figures have both CM
elapsed time and CM busy time; the gap between the two times in-
dicates a significant amount of nonparallel work performed on the
process manager; as the number of satellites increases, we can ex-
pect greater parallelization and a relative closing of the gap

shows the dependence on the size of the BC arrays, Fig. 3 shows
the dependence on critical distance ¢, and Fig. 4 shows the depen-
dence on the time step. Although Fig. 4 shows that a larger step size
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is quicker, care must be taken. In this particular hour, there were
two coincidental conjunctions, one at a distance of 0.970 km and
the other at a distance of 0.994 km. With ¢ set to 1 km, both were
missed by the simulation with step size 480 s and the higher one was
missed with a step size of 240 s. This is because the actual distance
is so close to the cutoff that the linear extrapolation misses the con-
junction for longer step size. One may compensate for this by setting
the cutoff slightly higher; for the 240-s step simulation, the program
reported that the maximum of the distance adjustments was 0.094
km. Therefore, allowing for estimation errors of about double this
(giving a safety factor) should capture both conjunctions; indeed,
for ¢ = 1.2 km, both appear. Finally, Fig. 5 shows the dependence
of execution time on a CM-5 with the log, number of nodes. A
CM-5 node consists of a SPARC processor and four vector units. Of
course, although an increased number of nodes decreases execution
time, it is not “cost effective” for a fixed number of satellites; that is,
the product of time and number of nodes increases with an increase
in the number of nodes.

VII. New Studies

The unique capability of this program is to find close conjunctions
in an all-to-all comparison of a large set of satellites against itself. By
using the actual Space Surveillance catalog and running a simulation

-
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Table 2 Satellites broken up on July 27, 1993, 00:00 in simulation

Identification Semimajor Inclination, Mean anomaly, Argument perigee, Right ascension of

number axis, km Eccentricity deg deg deg ascending node, deg
118 7280.58 0.009158 66.78 —243 49.2 159.5
211 7101.36 0.010261 66.58 —158.4 166.1 56.2
4724 7431.89 0.065031 62.81 51.1 —105.9 1334
11671 6962.73 0.003230 82.51 1723 —306.5 61.4
11694 7847.57 0.001765 74.03 -22 -12.1 11.0
14801 7146.72 0.000728 74.07 155.0 —208.3 83.2
14814 7072.02 0.001526 74.03 11.6 1542 —44.4
17911 7006.59 0.002355 82.51 —128.7 1344 8.8
19396 7053.58 0.005222 58.50 —96.8 95.6 —1525
19440 7730.94 0.018462 73.75 178.2 —262.1 127.8

Table 3 Close conjunctions within 1 km for simulated breakup

(July 2, 1993)
Identification Identification
number 1 number 2 km Time
4578 1011270 0.329 17:53:40.308
12347 1009174 0.354 17:50:56.164
5266 1008571 0.481 15:41:59.240
20029 1008917 0.504 13:07:17.362
86654 1009569 0.649 15:07:29.632
5350 1008548 0.712 13:58:09.069
87590 1008679 0.808 16:23:54.327
15472 1009382 0.955 13:47:42.779
9617 1009301 0.976 16:51:23.967
17192 1009065 0.994 17:49:32.322

Fig. 8 Photograph of TIROS 10 (upper arrow) and NOAA 10 (lower
arrow), on May 21, 1993.

for 24 h, one can assess the degree of crowding in the space envi-
ronment. Using the catalog starting January 17, 1993, at 14:00:00,
we found all satellites that came within 2.0 km of another satellite in
the catalog. In this period, there were 140 coincidental conjunctions.
There were 57 that came within 1 km; Fig. 6 shows the cumulative
number of conjunctions for each distance. The work of Khutorovsky
et al.,” taking a different approach, supports these results.

As ameasure of the effectiveness of long-term prediction with the
existing propagator PPT2? one can predict the conjunctions several
days off and then, with daily catalogs updated with new observa-
tions, try to predict again for that time period. As the actual date
gets closer, the conjunction distance should converge to the actual
value. Figure 7 shows the distribution of errors made in predicting
the closest conjunction distance with catalogs 4, 3, 2, and 1 day prior
to the day of conjunction.

As a dramatic indication of a conjunction, the Naval Space Com-
mand ran conjunction predictions daily of 177 satellites with active
payloads against the catalog using CM~COMBO. A conjunction
was predicted for TIROS 10, launched July 2, 1965, and NOAA 10,
launched September 17, 1986 (two weather satellites). The closest
distance predicted was 2.113 km on May 21, 1993, 05:53:27.876.
This was videotaped by the Air Force Maui Optical Station in
Hawaii, and a frame from that videotape showing the conjunction
is provided in Fig. 8.

One simulation that can be performed easily with this program is
the computation of conjunctions of the existing catalog to a debris
cloud. With this CM program and the actual catalog from the Naval
Space Command for July 27, 1993, we simulated the explosions
of 10 low-Earth-orbit satellites, each into 400 fragments, with peak
distribution speeds of 100 m/s. A simulation with 4-min time steps
for a period of 6 h after the explosions comparing the debris against
the actual remaining catalog showed that 297 different satellites
from the catalog would come within 5.0 km of a fragment, with
the closest approach being 0.329 km. The run time on the 256-node
CM-5 for this simulation was about 17.5 min. The satellites whose
breakup was simulated, with their orbital elements, are given in
Table 2, and the conjunctions within 1 km are given in Table 3.

VIII. Conclusions

Using a parallel computer, it is possible in a reasonable amount
of time to find and classify the conjunctions all to all within a large
(8000 or more satellite) catalog or between two large catalogs. This
is accomplished with a sieve, which by sorting the Cartesian po-
sitions is able to eliminate from consideration the vast majority of
possible pairs. This method has been implemented on a CM and
was used to predict a conjunction of two weather satellites (which
were then subsequently photographed) and has been used for several
debris studies.
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