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Gravity gradiometer aiding of a strapdown inertial navigation system (INS)

in the event of Global Navigation Satellite System (GNSS) signal loss, or as a com-

plement to an INS/GNSS system, is proposed. Gravity gradiometry is ideal for

covert military applications where a self contained, passive, spoof-free aid is de-

sirable, and for space navigation near planetary bodies and moons where GNSS is

unavailable. This dissertation provides the first comprehensive discussion on gravity

gradiometry fundamentals, map modeling, and regional and altitude effects on the

gravitational gradient signal for use as a navigation aid. A thorough methodology to

implement strapdown and stabilized gravity gradiometer instruments (GGIs) into

an autonomous extended Kalman filter is also presented in the open literature for

the first time. Lastly, a brief discussion on extraterrestrial navigation using gravity

gradiometry is given.

To quantify the potential performance for future gravity gradiometer instru-

ments as an INS aid, extensive Monte Carlo simulations of a hypersonic scramjet



cruise missile were performed. The results for the 1000 km range mission indicate

that GGI updates significantly improve the navigation accuracy of the autonomous

INS. The sensitivities of the system to variations in inertial measurement unit (IMU)

quality, gravity field variation, GGI noise, update rate, and type are also investi-

gated along with a baseline INS/Global Positioning System (GPS). Given emerging

technologies that have the potential to drastically decrease gradiometer noise levels,

a hypothetical future grade gravity gradiometer aided INS is shown to bound root-

mean-square (RMS) position errors at 0.336 m, velocity errors at 0.0069 m/s, and

attitude errors at 0.00977◦, which is comparable to the nominal INS/GPS system

with 10 sec updates.

The performance of two subsonic cases is also investigated and produced im-

pressive passive navigation accuracy. A commercial aircraft simulation using a fu-

ture grade GGI provided RMS errors of 0.288 m in position, 0.0050 m/s in velocity,

and 0.0135◦ in attitude. A low altitude and velocity gravity gradiometer based sur-

vey simulation similarly showed sub-meter RMS position errors of 0.539 m, velocity

errors of 0.0094 m/s, and attitude errors of 0.0198◦.
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A.8 Off-Diagonal σΓn, log10(Eö), at 10 km (a) ΓNE (b) ΓND (c) ΓED . . . 297
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A.10 Off-Diagonal σΓn, log10(Eö), at 100 km (a) ΓNE (b) ΓND (c) ΓED . . . 299

C.1 Extended Kalman Filter, from Ref. [9] . . . . . . . . . . . . . . . . . 310

D.1 Perifocal Coordinate System, from Ref. [115] . . . . . . . . . . . . . . 335

D.2 GPS Visibility Angles, From Ref. [7] . . . . . . . . . . . . . . . . . . 339

D.3 Simulated GPS Satellite Visibility . . . . . . . . . . . . . . . . . . . . 341

D.4 Simulated GPS Geometric Dilution of Precision . . . . . . . . . . . . 350

xx



LIST OF SYMBOLS

A = Area, m2

Abw = Wetted body area, m2

Acle = Cowl lip leading edge area, m2

Acsurf = Cowl surface area, m2

Acx = Axially projected cowl area, m2

(Ai/A1)max = Maximum geometric contraction ratio

Aq = Quanternion 4×4 skew symmetric matrix of ωbnb, rad/s

Awall = Combustor wall area, m2

A0 = Capture area, m2

(A0/Ai) = Capture area ratio

(A0/A1) = Inlet contraction ratio

(A4/A2) = Combustor expansion ratio

(A5/Ai) = Base-to-inlet area ratio

(A5/A0) = Base-to-capture area ratio

a = Specific force vector, m/s2

ae = Semimajor axis of Earth, m

aGPS = Semimajor axis of GPS orbit, m

aT = Amplitude of Gaussian height distribution, m2

a∞ = Freestream speed of sound, m/s2

a, b, c = Polynomial curve-fit coefficients (Ch. 3)

b = Bias
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Chapter 1

Introduction

1.1 Motivation

High accuracy position, velocity, and attitude estimation is required for many

aerospace vehicle mission objectives. Such accuracy requirements are typically

achieved by an integrated inertial navigation system (INS) consisting of inertial

measurement units (IMUs) and an external aid to prevent error accumulation due

to uncompensated instrument errors and geodetic/geophysical uncertainties,1–6 See

Fig. 1.1 from Ritland.6 Of the common available aids, all-weather Global Navigation

Satellite Systems (GNSS), specifically the Global Positioning System (GPS), have

become the most popular means to limit INS errors.1,2, 4, 6–9 GNSS aiding does have

the noted disadvantages that it relies on expensive segments (space, control, and

user) that require constant maintenance and monitoring, data rates are relatively

low, the greatest accuracy requires constant satellite tracking, satellite geometry

can yield poor performance (especially in altitude), orientation information requires

multiple antennas, and the weak signal can be easily jammed or spoofed. Further-

more, GNSS aiding is ineffective for exploration missions far from Earth, such as

the Moon or Mars.
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Figure 1.1: Aided Inertial Navigation using an Extended Kalman Filter, from Ref. [6]

In the event of non-GNSS environments, the INS must integrate the inertial

measurements with any uncompensated errors which can produce unacceptable state

estimation, divergence, and/or loss of vehicle. During these periods, several other

aids may be used for robustness.6 Vision based systems, which are becoming in-

creasingly prevalent with unmanned reconnaissance vehicles, require optical access

that may be infeasible aboard some systems such as hypersonic cruise vehicles, and

are susceptible to weather variations. Vision aids may also have high computational

requirements that are prohibitive with current technology. Terrain aids typically

emit a radar or laser that can be sensed by other users which is undesirable for

covert military missions. And like optical systems, terrain aiding often relies on

matching the sensor measurement to a pre-surveyed map that may be sensitive to

temporal variations and anomalies, such as fluctuations in water or sand. This dis-

sertation proposes the use of a completely self contained, passive system that relies

on gravity gradiometry for INS aiding that exhibits none of the issues above.
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Figure 1.2: Recent Scramjet Research Programs

An airbreathing hypersonic cruise vehicle was chosen as the primary example

mission for such a system due to the interest following the successful X-43A,10–12

HyShot,13–15 and HyFly/FASST tests,16 and its relevance to the X-51 Scramjet En-

gine Demonstrator – WaveRider (SED-WR) program.17,18 Furthermore, gravity

gradiometer instrument (GGI) aiding for scramjet applications has two distinct ad-

vantages over low-speed/low-altitude flight. First, because the vehicle is traveling

at high speeds (Mach 6–8) and the GGI produces only a moderate update rate (∼1

Hz), the gravitational gradients are sampled at position intervals >1500 m that al-

low for greater gravity variations than those that would be observed for low velocity

vehicles. Second, the high altitudes required for scramjet cruise (∼22–26 km) at-

tenuates high frequency gravity anomalies found at lower altitude so the system is

less susceptible to terrain anomalies.19,20

Unfortunately, current gradiometer systems are too massive and sizeable for

many airborne applications, so continued improvements must be made to make
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GGIs a viable airborne INS aid. For these reasons, and to show applicably to a

wider range of missions, two subsonic cases are also simulated with less rigor. The

first represents a commercial aircraft at cruise conditions, and the second is a low

speed and altitude gravity survey mission.

1.2 Previous Work

1.2.1 Gravity Gradiometer Instruments

The first gravity gradiometer instrument (GGI) was invented by Hungarian

physicist Loránd (Roland von) Eötvös in the late 1880s using a specialized tor-

sion balance to investigate gravitational phenomenon.21 His extensive and ground-

breaking research in gravitational gradiometry led to the naming of the Eötvös as

the fundamental unit of the gravitational gradient. (1Eö ≡ 10−9s−2, which is physi-

cally equivalent to measuring the gradient of 10 grains of sand 1 cm away, assuming

1 grain of sand ≈ 1 milligram.)22 Over the past century, gravity gradiometer in-

struments have evolved from torsion balances to precisely machined sensors that are

typically based on finite differencing linear accelerometers or torsion beams.

This subsection summarizes the history and research in developing airborne

and space-borne gravity gradiometer instruments for navigation aiding and survey-

ing. The original 1960s airborne GGIs are described first, followed by the current

generation airborne GGIs. Superconducting and cold atom interferometer GGIs are

also discussed as they are believed to be the enabling technologies to improve future
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generation gradiometer sensitivities.

1.2.1.1 First Generation Airborne GGIs

The 1960s brought about many innovative technological breakthroughs in the

field of inertial navigation systems. As the error sources of inertial measurement

units became better understood, and more precise and accurate accelerometers and

gyroscopes became available, “the Air Force Geophysics Laboratory (then called

Air Force Research Laboratory) sought to develop efficient approaches for mapping

the short-wavelength features of the Earth’s gravity field over large geographic ar-

eas” to improve the navigation performance of autonomous inertial systems.23 This

issue arises due to Einstein’s equivalence principle which states that inertial ac-

celerations are indistinguishable from accelerations caused by a gravitational field.

Therefore, accelerometers are unable to measure acceleration, and instead measure

specific forces which is the acceleration of the system in an inertial frame minus the

gravitational acceleration in the inertial frame:

ai = v̇i − gi. (1.1)

Because of this issue, an INS using accelerometers must include an estimate of

the true gravitational field in which the vehicle operates in order to calculate the

true vehicle accelerations. Until this point in time, the uncertainty attributed to

the accelerometer errors, δa, was sufficiently large that the gravitational modeling

errors, even for simple models, were safely negligible. Mathematically,

δv̇i = δai + δgi ≈ δai. (1.2)
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With improvements in accelerometer design and fabrication, INS analysts began to

speculate that gravitational errors would need to be modeled and compensated for.5

One approach was to use a gravity gradiometer instrument to update the INS’s

gravity model, usually by spatial integration of the gravitational gradients in real

time (See Sec. 1.2.2.1).

However, with the publication of Kalman’s seminal papers,24,25 the growth of

other INS aids, and the difficulty in design and manufacture of a robust, sensitive,

small GGI, gravity gradiometer aided inertial navigation became largely forgotten.

Fortuitously, with the rise of oil prices and the potential profit of mineral exploration

(specifically diamond mines), GGI development is being actively pursued by several

commercial enterprises to provide a fast, low cost surveying and prospecting service

to these industries. (The current exploration instruments are discussed in detail in

the next section.)

Here, the first generation airborne gravity gradiometer instruments developed

simultaneously in the 1960s and 1970s by the Charles S. Draper Laboratories,

Hughes Research Laboratories, and Bell Aerospace / Textron are reviewed. All

three GGIs were pursued under Department of Defense (DoD) funding as a poten-

tial airborne INS aid with the goal of producing an airborne GGI with a noise level

of 10 Eö moving-window averaged at a data rate of 10 sec.26
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Figure 1.3: Draper Cylindrical and Spherical GGI Schematics, from Ref. [28]

Charles S. Draper Laboratory Floated GGI

The Draper Lab’s floated gravity gradiometer instrument was initially de-

veloped as a “feasibility” cylindrical model27 and later into a spherical model.

Trageser28 describes the feasibility model in detail along with test results which

proved its surprising sensitivity to puddles on the roof of the laboratory.Because

the instrument was stationary (unlike the other two 1960s GGIs), its noise level

was limited primarily by the thermal noise floor. For benchtop tests using a human

fist the cylindrical Draper GGI produced a 0.99 Eö mean root-mean-square (RMS)

error. When using a 100 kg lead ball the RMS was 1.15 Eö with a 10 sec integration

and 0.50 Eö for a 120 sec integration.

Draper’s spherical GGI built on lessons learned from their cylindrical model

and focused on “attaining [a] high degree of mass balance, temperature control and

material stabilities” to meet the DoD specifications.29 The spherical design was also

relatively immune to platform jitter compared to the feasibility model. The 10 cm,

0.7 kg spherical GGI used two silver-filled tungsten proof masses attached to either
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end of a sphere floated in Freon 113 to produce a pair of torques that could be used

to measure two off-diagonal elements of the gravitational gradient tensor, see right

portion of Fig. 1.3.30 A cluster of three GGIs in an umbrella configuration could

then be used to measure the full tensor.26,28 The spherical GGI development began

in 1974 and was first tested in Septemeber 1976. In laboratory experiments with a

100 kg lead mass, this second Draper GGI produced near-thermal noise noise limits

(0.085 Eö experimental vs. 0.045 Eö theory) with a bias stability less than 1 Eö over

several days.30

Grubin later proposed adding a second pair of proof masses to the Draper

GGI in order to measure three components of the gravitational gradient tensor.31

This would also allow the use of only two floated GGIs to measure the full gradient

tensor, and the orientation of the instruments could be optimized for robustness.

While current airborne GGIs are all based off of the Bell/Textron instrument, as

described shortly, the Draper Lab notion of producing an extremely sensitive non-

rotating gradiometer is the basis for research of superconducting and cold atom

interferometer GGIs.

Hughes Research Laboratory Rotating Torsional GGI

Hughes Research Laboratory took a drastically different approach to devel-

oping its gradiometer sensor. Hughes quickly rotated a precisely manufactured

cruciform shape of four proof masses and thin arms to measure the gravitational

gradients using torque differences. The premise was to measure the gravitational
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Figure 1.4: Hughes Rotating Torsional GGI, from Ref. [33]

gradients at a sufficiently high frequency that the linear and angular motions had

negligible error contributions.32 This resulted in Hughes having to overcome var-

ious precision manufacturing issues, and to contend with bearing noise, a highly

isoelastic structure, and material stabilities.29

A summary of the instrument and its idealized performance (perfectly matched

masses and lengths) is presented by Bell et al.32 They show that the GGI mea-

surement dynamics are uniquely driven by the gravitational gradients at twice the

instrument rotation rate. Berman continued this analysis in two papers where he

investigated errors that occur at multiples of the rotation rate since they would be

seen as gravitational gradients.33,34 The four rotating proof mass modes (gravita-

tional gradient, torsional, and two orthogonal translations) are also modeled along

with the error due to a center of gravity offset and general asymmetry.

A summary of the Hughes rotating torsional GGI is as follows. The overall

instrument has an approximately 4.5” (12 cm) diameter, the proof masses are 0.75”
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(2 cm) cubed, and the arms connecting the masses are 1.5” (4 cm) long × 0.75” (2

cm) wide × 0.050” (.13 cm) thick. The cruciform sensor has a resonance frequency

of 200 cycle per second and is rotated at 6000 revolutions per minute.32

Bell Aerospace / Textron Rotating Accelerometer GGI

The rotating finite differenced accelerometer gravity gradiometer instrument

developed and tested by the Bell Aerospace Division of Textron, Inc. is easily the

most published first generation airborne GGI, and has continued to live on to the

present day.20,26,29,35–41 The Bell / Textron GGI is based on summing two finite

differenced accelerometer pairs tangentially mounted on a (relatively slow) rotat-

ing disc. The instrument was originally used aboard Trident fleet submarines for

improved navigation accuracy during periods of prolonged submersion,42 and later

tested for surveying feasibility on land, rail, and in the air.38 Most recently, it has

been developed into an airborne surveying tool for prospecting and mineral explo-

ration as detailed in the next subsection.

Metzger29 presented a thorough review of research and development practices

for the Bell / Textron GGI. He explained that this gradiometer had a 15 cm baseline

between accelerometers and was rotated at a 1/4 Hz frequency to decrease the power

of the Bell Model IV accelerometer’s turn-on bias as seen in Fig. 1.5. The scale

factor error then became the predominant source of GGI error and was corrected

with two feedback loops: one that balances the accelerometers in each pair, and

one that balances the two pairs. This effectively matched the scale factor error of
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Figure 1.5: Accelerometer Null Bias vs. Rotation Rate (Cycles/Hour), from Ref. [29]

three accelerometers to that of the fourth at every revolution. Misalignments were

also corrected at 1/4 Hz, and further error compensation was achieved by shaking

and dithering the instrument at specific frequencies.20 Laboratory tests conducted

in the mid 1970s showed that this instrument was able to produce noise levels of 2

Eö with a 10 sec moving window average.29

The Bell / Textron GGI, like the Hughes instrument, measured the difference

of two on-diagonal gravitational gradients and another off-diagonal gradient as a

result of the instrument’s rotation, see Fig. 1.6 and Sec. 5.1.3 for details. In order

to measure the full gravitational gradiometer tensor, three instruments were “sym-

metrically positioned about the vertical axis, with each gradiometer inclined at the

same ‘umbrella’ angle; i.e., the spin axis of each instrument is oriented at the same

angle away from the vertical, analogous to the spindles of an umbrellas,”23 as shown
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Figure 1.6: Bell / Textron Rotating Accelerometer GGI, (Schematic, GGI w/ Sta-

bilized Platform, and Internal Umbrella Configuration) from Ref. [47]

in the bottom right of Fig. 1.6. The entire umbrella configuration was also rotated

at a much slower 500◦/hr.40

Richman43 proposed a finite differenced accelerometer GGI that was based on

using two separated IMUs on an airplane. The issues of aircraft flexure, among

others, likely prohibited this concept from being developed further.

1.2.1.2 Current Generation GGIs

Bell / Textron Derived GGIs

The Bell / Textron instrument technology was eventually acquired by Lock-

heed Martin which has since produced several current-generation rotating GGIs

including eight-accelerometer partial tensor GGIs (BHP Billiton’s Falcon Airborne

Gravity Gradiometer (AGG)44,45 and the Arms Control Verification Gravity Gra-
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diometer (ACVGG)39,46), and full tensor GGIs similar to the original Bell / Textron

GGI (Bell Geospace’s 3-D Full Tensor Gradiometer (3D-FTG)47,48 and ARKeX’s

FTGeX45).

The BHP Billiton FalconTM AGG44,49–51 was the first commercial system to

use a gradiometer for airborne surveying and mineral deposit exploration. The

instrument development began in 1993 with initial studies. Although the results

weren’t very promising, the decision to move forward with construction of the Falcon

AGG was made in March 1994. The first mission was flown in late 1997, and

the first system, Einstein, was operational in 1999 using a Cessna Grand Caravan

airplane. Since then three other systems have been delivered, including one aboard

a helicopter for improved spatial resolution because of the reduced flight speed. One

major drawback of this airborne GGI is that it only includes one rotating disc, so

that only a partial-tensor measurement is made.

The Arms Control Verification Gravity Gradiometer is similar to the Falcon

AGG in that it is comprised of a single rotating disc with eight-accelerometers that

produces a partial-tensor measurement. The ACVGG was developed under funding

by the Defense Threat Reduction Agency46 and the Defense Nuclear Agency20 for

surface gravity surveys. While little has been published on this instrument, it is

reported to have a 30 cm baseline between accelerometer pairs (twice that of the

Bell / Testron GGI) and it’s rotation rate is “dramatically increased” compared to

the original 1/4 Hz frequency.20 From these improvements, the projected stationary

survey noise is said to be 1 Eö at a 1 Hz update rate.46 A similar instrument was

patented in 1994 by Hoffmeyer and Affleck that provides some further detail into
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eight rotating accelerometer GGIs.39

Bell Geospace, who had acquired exclusive rights to the Bell / Textron tech-

nology and performed several marine surveys, took notice at the potential profit of

BHP Billiton’s airborne survey system and began work on their own.52 The primary

advantage of Bell Geospace’s Airborne 3D Full Tensor Gradiometer (Air-FTG R©) to

the Falcon AGG is the ability to measure the full gravitational gradient tensor.53

Like the original Bell / Textron GGI, the 3D FTG sensor uses three GGIs each with

four rotating accelerometers to provide a full gravitational tensor observation aboard

either airborne or marine missions (Marine-FTG R©). Also, like the Falcon AGG, the

Air-FTG system performs airborne surveys on a Cessna Grand Caravan equipped

with various technologies to accurately map terrain variations and eliminate their

gravitational contributions to the GGI signal during post-processing. The result is a

detailed map of gravitational anomalies below the survey area that warrant further

investigation if they exhibit mineral or oil deposit characteristics.48,54 Unfortunately,

current airborne GGI exploration systems are able to discriminate only major dia-

mond formations because smaller formations are masked by the instrument’s noise

floor.54

ARKeX is another commercial organization that has developed an airborne

full-tensor gradiometer for mineral exploration (FTGeX) with the aid of Lockheed

Martin. This Oxford Instruments Superconducting Ltd. spin-off reports that their

Cessna-based survey system has been used extensively since its deployment in Spring

2005.55–57 And currently, ARKeX is pursuing the development of a superconducting

GGI that will decrease the instrument’s noise floor at least a factor of ten so that
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smaller mineral formations may be discovered.

Lastly, a room temperature, stationary GGI was briefly mentioned by Glea-

son20 to have been investigated by researchers at the Johns Hopkins University /

Applied Physics Laboratory around 1995. The goal noise level was reported to be

0.1 Eö up to a 100 Hz data rate. Unfortunately, to the present author’s knowledge,

this instrument has never been discussed again in the open literature.

Superconducting Airborne GGIs

Gravity gradiometer instruments saw over an order-of-magnitude improvement

in noise sensitivity with the use of superconducting technologies in the early 1980s.

With the incorporation of superconducting quantum interference devices (SQUIDs)

and wire electric discharge machining (EDM), incredibly precise measurements of

accelerometer proof masses were possible. A revolutionary single axis supercon-

ducting gravity gradiometer (SGG) at the University of Maryland produced a noise

floor of 1 Eö/
√
Hz in 1987.58,59 Further development provided by NASA funding

led to a three-axis SGG with an improved noise of 0.02 Eö/
√
Hz, Fig. 1.7.60–63 This

NASA SGG was meant for a global survey mission aboard a satellite, and was able

to reduce its noise three orders of magnitude below the room-temperature Bell /

Textron derived GGIs by keeping the instrument at a cryogenic temperature of ∼4

K which enhances the mechanical linearity of the proof mass deflections.

The University of Maryland’s Superconducting Angular Accelerometer (UMD

SAA, Fig. 1.8 (a)) and the University of Western Australia’s Orthogonal Quadrupole
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Figure 1.7: University of Maryland Superconducting Gravity Gradiometer, from

Ref. [63]

(a) (b)

Figure 1.8: UMD SAA (a) and Cryostat (b), from Ref. [66]
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Responder (UWA OQR, Fig. 1.9) are two superconducting GGIs designed for air-

borne surveying.19,64–66 Both instruments use angular, instead of linear, accelerom-

eters as their basic means of measuring the gravitational gradients because the

angular accelerometers are more robust to demanding aircraft dynamics. The UMD

SAA has a predicted airborne surveying performance of 0.34 Eo at a 1 sec update

rate.64 The main issue with both of these systems is the need to enclose the GGI in

a closed-loop refrigerant system, or cryostat, to maintain the ∼4 K operating tem-

perature, as shown in Fig. 1.8 (b). Also, a sophisticated stabilized platform must

be incorporated to isolate the GGI from the vehicle’s dynamics.

Both the UMD SAA and UWA OQR are being pursued by ARKeX and Gedex

to design an airborne survey system with a 1 Eö/
√
Hz design goal. The ARKeX

Exploration Gravity Gradiometer (EGG) is reported to only measure the vertical

gravitational gradient,45,55,56,67 while the Gedex High-Definition Airborne Gravity

Gradiometer (HD-AGGTM) is likely a full-tensor GGI based primarily on the UMD

SAA that includes funding support from De Beers.68–73

The European Space Agency’s Gravity Field and Steady-State Ocean Cir-

culation Explorer (ESA GOCE) satellite will incorporate an Electrostatic Gravity

Gradiometer (EGG) as its primary payload to map Earth’s gravitational field spa-

tially and temporally.74,75 The difference between the GOCE EGG and many of

the other superconducting GGIs is that the EGG uses capacitance (i.e. voltage) to

measure the accelerometer’s proof mass displacements whereas the UMD and UWA

GGIs rely on inductance (i.e. current).74 The noise specification for this 137 kg,

1.32 m × 0.9 m × 0.9 m state-of-the-art instrument is an impressive 3mEö/
√
Hz
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Figure 1.9: UWA OQR, from Ref. [19]

Figure 1.10: ESA GOCE EGG, from

Ref. [75]

with a data rate of up to 10 sec.74

The University of Texas’s operational Gravity Recovery and Climate Exper-

iment (GRACE) mission uses twin satellites as the proof masses of an effective

gravity gradiometer instrument with a 220 km baseline.76 While not a supercon-

ducting GGI per se, this novel system shows the current state of the art in satellite

gravity gradiometry.

The last superconducting GGI to mention is a novel sensor from Gravitec that

is based on measuring the behavior of a superconducting string.45,77–80 The size (400

× 30 × 30 mm) and mass (0.5 kg) of this gradiometer is tremendously smaller than

the other surveyed instruments and its goal noise level of 5 Eö/
√
Hz at 5–10 Hz

measuring all off-diagonal graviational gradients is also encouraging. Unfortunately,

the open literature does not provide much detailed information on how exactly this
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GGI is intended to perform, nor how it will overcome the challenges present in the

others sensors. But, if this GGI comes to fruition, it could revolutionize current

airborne GGI survey systems.

Cold Atom Interferometer GGIs

Innovative research in cold atom interferometry (based on work that has al-

ready garnered two Nobel Prizes in Physics)81,82 may lead to dramatically reduced

GGI noise levels.83–85 The premise of a cold atom accelerometer is to cool ∼109

cesium atoms to 2µK so that their wave-like properties can be exploited when the

atoms are launched vertically. Then using interferometric methods, the gravita-

tional acceleration on the drag-free atoms can be measured with laser light pulses.

A vertical GGI that incorporates two such cold atom accelerometers using the same

cesium atoms produced a noise of 30 Eö/
√
Hz with its 1.4 m baseline. If the baseline

were increased to 10 m, the noise floor is predicted to decrease to 4 mEö/
√
Hz.85

1.2.1.3 Gravity Gradiometer Instrument Specifications

Table 1.1 summarizes the instruments above and their specifications.

1.2.2 Gravity Gradiometer Aided Inertial Navigation

The use of gravity gradiometer instruments as an INS aid has been identified

and investigated since the 1960s. Most of the early research focused on real-time

determination of the gravity anomaly to provide improved un-aided inertial naviga-
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Table 1.1: Gravity Gradiometer Instruments
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tion (i.e. dead-reckoning) accuracy. Eventually, GGI-based gravity mapping mis-

sions were proposed and researched so that these high accuracy and resolution maps

could be stored onboard non-GGI aided INSs. Then, once these gravity field maps
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were available, it was identified that they could be used for matching onboard GGI

measurements to the stored map for position updating. While the work in this dis-

sertation is focused on simulating map-matched GGI/INS systems, a high accuracy

gravity field model is a necessity. Therefore, a review of the literature pertaining to

the determination of gravity anomalies using a GGI/INS (which is a precursor to

mapping missions), GGI/INS mapping and surveying, and map-matched GGI/INS

technology is presented in the subsequent subsections. A brief summary of some

other novel applications of gravity gradiometer instruments is also given.

1.2.2.1 Real-Time Determination of the Gravity Anomaly

The 1975 AIAA Guidance and Control conference in Boston, MA held a spe-

cial session on gravity gradiometry technology that produced many seminal papers

in this field.28,35,86–88 Gerber86 investigated the effect of GGI errors (white noise,

time-correlated noise, random constant bias, and random constant drift) on a one-

dimensional integrated INS. He found that transient errors were dominated by GGI

biases and long-term errors were governed by noise near the Schuler frequency. Gru-

bin,87 the next paper in the session, presented a similar paper with 1-D simulations

that looked at the effect of gravity anomalies on an INS’s position accuracy with and

without an onboard GGI. Grubin examined the effects of GGI biases, scale factors,

and misalignments along with gravity anomaly bias and Schuler resonance, and he

concluded that the GGI bias produced the largest INS position error. One primary

difference between these two papers is in their modeling of the gravity field. Gerber
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Figure 1.11: Block Diagram of INS/GGI for Real-Time Determination of Gravity

Anomaly, from Ref. [88]

chose to take a stochastic approach while Grubin used a simple deterministic model

with several randomly placed masses.

The third paper in the session, by Heller and Jordan,88 proved that GGI

aiding of a reference gravity field was optimal (Fig. 1.11), as had been assumed by

the previous two papers. The authors compared the simulated INS performance of

a reference ellipsoidal gravity model aided with GGI updates and the performance

of direct integration of the GGI signal with the reference gravity model acting as an

aid with a finite update rate. They concluded that the main issue with the latter

system is that the error growth exhibits a diverging random walk trend because of the

integration of the GGI noise. The other two papers in this 1975 session are reviewed

elsewhere in this chapter. Trageser’s paper28 on the Draper GGI was discussed on

pg. 7, and Metzger and Jircitano’s paper35 on a map-matching GGI/INS will be

discussed on pg. 28.

Over the years, the interest in a GGI-aided INS for real-time gravity anomaly
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determination has decreased as the difficulty in the instrument design was identi-

fied. Occasionally, people have revisited the subject and added some modest gains

to the state of the art. Zondek89 is notable for extending this use of a GGI/INS to

an Earth-orbiting satellite as a means to improve its ephemerides. Specifically, the

paper focuses on measuring and correcting for high-frequency orbit errors due to

unmodeled gravitational phenomenon. Wells and Breakwell90 derived several one-

dimensional filters (one Kalman and two Weiner-Hoph) to blend GGI and Doppler

velocity measurements into an INS. The Weiner-Hoph filters were necessary to im-

plement a higher-order nonlinear gravity model that would be impossible to include

in a Kalman filter due to its inherent assumption of linearized error dynamics.

Hopkins91 investigated the effect of a GGI-aided INS to reduce anomalous

gravitational errors during GPS outages. Unlike the work in this dissertation, there

is no comparison of the GGI measurement to a stored gravity map. Instead, Hopkins

only looks at whether or not to model the gravitational errors in a GPS/INS by using

a gradiometer as an additional sensor. He shows that the gravity error modeling and

the added GGI provide further refinement of the navigation solution during GPS

blackouts.

Shingu92,93 simulated a GGI-aided INS to estimate unmodeled gravity errors

for a more robust inertial navigation. His chosen application was a long-range au-

tonomous rocket trajectory where a portion of the Earth’s mass was concentrated

in a single location unbeknownst to the rocket’s INS.

Most recently, Jekeli94 simulated a GGI-aided INS consisting of future-grade

IMUs for accurate long term dead-reckoning as part by a Defense Advanced Research
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Projects Agency (DARPA) concept. He showed that the unmodeled gravitational

disturbances from a simulated mountainous region would produce ∼5 km of horizon-

tal position error after one hour dead-reckoning with future-grade IMUs. However,

with an integrated, onboard GGI with 0.1 Eö noise updating at 1 Hz, the position er-

rors decreased to only 5 m—a three order of magnitude improvement. This reference

is particularly notable for its clear derivation of a strapdown gradiometer’s linearized

measurement errors and the integration of a GGI into a 6 degree of freedom INS.

This dissertation extends Jekeli’s work by including map-matching of the GGI mea-

surement to a stored gravity map, adding orientation effects to the derivation of the

GGI measurement errors, and derivation of a stabilized GGI with its linearized error

measurement. Furthermore, the system error state transition matrix is calculated

more computationally efficient in this work as compared to Jekeli.

Kwon and Jekeli95 also investigated the DARPA problem of accurate long-term

dead reckoning from the viewpoint of using a high-resolution onboard gravity map

instead of an onboard GGI. Using the future-grade IMUs, they showed by simulation

that ground data needed to be gridded at a 2 arcmin resolution with accuracy of

5 mgal (5×10−5 m/s2) or better in order to provide the goal of 5 m position error

after one hour of free-inertial dead reckoning.

1.2.2.2 Gravity Gradiometer Surveying

Gravity gradiometry technology has been proposed as an alternative or re-

placement to traditional gravimeter surveying. The major advantages to a GGI-
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Figure 1.12: Gravitational Gradient Survey Integration Methodologies, from

Ref. [96]

based survey system are:

• Improved high frequency observability due to the gravitational gradients being

the derivative of the gravitational acceleration.

• More information available since Γn is a 3 × 3 tensor measurement while the

gravimeter’s acceleration is at most a 3-element array.

• GGI, unlike gravimeter, measurements are decoupled from linear accelerations

so that accurate estimation of these accelerations is unnecessary.

Jordan96 was the first to research using an airborne gradiometer for fast, large-

scale survey missions. He compared three methods of using the GGI measurements,

see Fig. 1.12: a simple integration of only the gradient of the vertical gravitational

acceleration with respect to the velocity vector (ΓxD) to yield scalar gravity anoma-

lies; integration of the gradients of the gravitational acceleration with respect to the

velocity vector (ΓxN,ΓxE,ΓxD) to yield a vector of the gravity anomaly; and optimal

integration of the full tensor. By simulating a mission over a salt dome field, Jordan
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showed that at least three components of the gradient tensor should be measured,

but that the accuracy improvement from using three to nine elements was rather

small. He also concluded that a GGI-based survey can save time and money because

a 18 km-spaced GGI survey was comparable to a 8 km- spaced airborne gravimeter

survey. Sensitivities to track spacing, GGI noise, vehicle speed, and survey altitude

were also presented.

A decade later, Brzezowski and Heller23 discussed the error sources of a GGI

survey mission in detail. The error contributions are, in summary:

• Gradiometer System Errors: GGI noise; environmentally induced errors;

navigation, attitude, and attitude-rate uncertainties; and gimbal, vehicle, and

limited nearby-object compensation.

• Discrete Sampling Effects: aliasing of frequencies higher than half the

sampling frequency, which determines the spatial resolution of the survey when

multiplied by the aircraft speed.

• Limited Data Extent: the limitation in determining the low frequency signal

content because the far-field gravity is not measured.

Then, using three gravity field characteristics (low, medium, and high variations),

Brzezowski and Heller showed that it is easier to compute the deflections of the

vertical of the gravitational vector than to compute the magnitude of the gravita-

tional disturbance. Furthermore, “rougher,” or highly variant, gravity fields caused

larger survey errors. And surprisingly, limited data extent produced about half the

modeled survey error.
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Jekeli38 summarized the Gravity Gradiometer Survey System (GGSS) experi-

mental test program of 1983–1989. The GGSS used a full tensor Bell / Textron GGI

mounted in a large conversion van to investigate the usefulness of the system for air-

borne, road, and rail surveying. The airborne GGI tests were the first of their kind

and were accomplished by loading the van aboard an aircraft and then flying tracks

over a 315 km × 315 km area at a 700 m altitude. The test was plagued by poor

GPS coverage and of the 128 tracks flown, only 19 were chosen for analysis. Rather

surprisingly, this first flight test of an airborne GGI produced average noise levels

of only ∼10 Eö with a 10 sec average, while 3–6 Eö was expected. Moreover, the

results of the GGSS program likely motivated early development of the commercial

airborne GGI survey systems.

Jekeli97,98 later compared airborne gravimetry and gradiometry survey errors

in the frequency domain. He reiterated the potential benefits of an airborne GGI

system but noted that the current limitation is the self-generating noise of the

instrument, which is over an order of magnitude of other GGI system errors. He

concluded that the future of gravity surveys would preferably lie with GGIs because

future gradiometer-based surveys only require improvements in IMU quality, while

gravimeter-based surveys also require improvements in real time kinematic (RTK)

GPS to compensate for the vehicle’s accelerations. (A full technical report on this

work is also available from Ohio State University.)99
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1.2.2.3 Gravitational Gradient Map-Matching

Although not much has been published in the open literature, map-matched

gravity gradiometer aiding dates back to the 1975 AIAA Guidance and Control

conference. A one-dimensional covariance analysis by Metzger and Jircitano35,100

estimated INS position accuracy based on gravity and gradient map-matching for

mobile systems (4–240 m/s). The premise was to simulate an initial mapping mission

and then compare the steady state lag of a second GGI/INS mission following the

same trajectory. They show that the gravitational gradients are preferable for map-

matching since their shorter correlation distances (4,600 m vs. 37,000 m) produced

higher frequency signals and thus finer spatial resolutions. Increases in instrument

noise and vehicle velocity, or decreases in map record length, are shown to degrade

performance. The velocity effects are due to the assumption that the GGI produces

measurements at every 10 seconds, so the initial mapping mission produces coarser

maps when simulated at higher velocities. For the work presented in this disserta-

tion, the gravity map is a fixed resolution regardless of vehicle velocity so position

error is less sensitive to cruise speed.

In 1990, Affleck and Jircitano36 presented three-dimensional results of an in-

tegrated INS/GGI simulation for low speed airborne and submarine systems. Un-

fortunately, the depth of the presented analysis was minimal, most likely due to the

proprietary nature of the original work and the classification of some of the tech-

nology. Indeed, the vast majority of their simulations are shown as simple block

diagrams. Nevertheless, the results are quite promising as shown in Fig. 1.13. This
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(a)

(b)

Figure 1.13: Horizontal (a) and Vertical (b) Position Error vs. Cruise Altitude, from

Ref. [20]; originally from Ref. [36]
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dissertation’s research is essentially a continuation of Affleck and Jircitano’s work

but with the noted difference that the current work presents the detailed analyses

that are omitted in the reference. Furthermore, this present work extends the anal-

ysis to the hypersonic regime and includes simulation of future-grade GGIs that the

reference did not consider.

The following year Jircitano and Dosch proposed and patented a Gravity Aided

INS (GAINS) using a GGI and a vertical gravimeter for covert submarine naviga-

tion.37,101 This concept built on the prior two references and includes specifics in the

modeling of the gravity field, but their filter implementation is again shown as only

a block diagram. From the schematic, the filter states included GGI, gravimeter,

depth sensor, and IMU instrument errors along with the standard INS position, ve-

locity, and attitude error dynamics. The filter also includes states for the estimated

gravitational field potential, acceleration, gradient and third order derivative. With

their covert navigation system, the authors showed that modern submarines could

produce position errors as low as ∼30 m.

More recently, Zhang et al.102 simulated a map-matched GGI/INS for an au-

tonomous underwater vehicle (AUV), similar to the prior papers. Unfortunately,

like the previously cited papers, the presented analysis consists of only flow charts

and results. Their results show an estimated position accuracy of tens of meters for

their AUV concept.

A different GGI/INS map-matching approach was taken by Archibald for his

doctoral work.103 He implemented neural networks to match large-area noisy and

truth gravitational gradient and magnetic field maps. While INS simulations were
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shown to motivate his research, the neural network was not integrated with the INS.

Regardless, the novel concept of matching large-scale geophysical quantities could

be used as an initial estimate of a user’s position state.

Lastly, Gleason20 discussed many of the practical issues of a GGI/INS for

navigation and terrain avoidance at length. The paper focuses on extrapolation

of gridded gravity data at a given altitude using Fast Fourier Transforms (FFTs),

terrain elevation, and density assumptions. He also showed that the at-altitude

gravitational field can be optimally estimated when ground gravity data is available.

Some of the other issues discussed were the effects of vehicle velocity and altitude,

gradiometer noise level and data rate, and the design of a low-pass filter to reduce

high frequency instrument errors.

1.2.3 Other Gravity Gradiometer Instrument Applications

Some other novel applications for gravity gradiometer instruments are sum-

marized below to show the versatility of this relatively unknown sensor.

1.2.3.1 Close-Loop Satellite Attitude Refinement

Roberson104 proposed using a hypothetical differenced accelerometer GGI to

compute the radial (i.e. vertical) gravitational gradient of the Earth so that fine

tilt orientation could be achieved aboard an orbiting satellite. He motivated his

research by the discovery that the primary radial gradient produced a torque on

satellites that caused their long axis to be aligned with the gradient. Thus, because
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the orientation of this gradient is well known, it could be exploited for high accuracy

attitude determination. He also derived error equations for the GGI assuming scale

factor, bias, and misalignments in accelerometer pairs that pointed radially away

from the Earth’s center. While his derivations are informative to show the effects of

the accelerometer errors on the overall GGI error, their derivation is rather confusing

and limited to a partial-tensor measurement (ΓND,ΓED,ΓDD).

Diesel105 showed that a single rotating accelerometer could theoretically pro-

vide a measurement of the gravitational gradient as the IMU sensor records mea-

surements at various locations. The periodic measurement could then be used to

finely estimate the spacecraft’s tilt errors because the tangential gradient signal is

zero in the vertical and horizontal directions. Diesel also comments on a controller

to stabilize the system, the filter power spectral density, sensor dynamics and an

error analysis.

1.2.3.2 Arms Treaty Verification

The use of a GGI to estimate the mass properties of arms treaty-limited sys-

tems was first proposed by Parmentola.106 He investigated using a GGI to take

an effective gravitational X-ray of two Tomahawk-scale cruise missiles; one with a

simulated conventional warhead, and one with a nuclear warhead. By unobtrusively

scanning the gravitational gradients 0.5 m away from the missile, the warhead type

could be unambiguously determined.

Gray, Parmentola, and LeSchack22 expanded this work by using a least squares
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approach to invert noisy GGI measurements to estimate the mass properties of an

object. The paper discusses the numerical issues of calculating the measurement

matrix pseudo-inverse and provides background on the multipole expansion for the

mass properties. Then by simulating objects moving on an assembly line near a

GGI, it was shown that this system could be a viable tool in monitoring arms

treaty-limited objects. Moreover, it was concluded that the GGI estimated non-

uniform and less spherical objects less accurately than a uniform sphere; however,

this result may be heavily dependent on their choice of a multipole expansion in

estimating the object’s mass distribution.

Determination of asteroid and comet mass distributions using a GGI has also

been proposed.107 Although this is not a treaty-limited object, the problem formu-

lation is quite similar.

1.2.3.3 Underground Bunker or Void Detection

The notion of using a GGI system for underground bunker or void detection is

essentially the same as using it for surveying or exploration. The premise is to take

a gravitational survey of an area along with its terrain elevation and back out any

anomalous features. The difference is now that instead of an increased gravitational

potential for the exploration missions, there is a decrease due to the void.

Romaides et al.46 undertook an experimental ground-based validation study

using the ACVGG (see pg. 13) and these principles. Preliminary tests were per-

formed over a subway car storage facility in Cambridge, MA that showed the clear
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presence of the underground tunnel. A full-scale survey was then performed at

Vandenberg Air Force Base over the Missile Alert Facility (MAF) bunkers using

the ACVGG and a state of the art gravimeter. Although the bunkers were heav-

ily reinforced with concrete that helped compensate for the absence of mass, the

GGI-based survey unambiguously resolved the MAF location, unlike the gravimeter

survey. The results from this study are particularly promising since they show a

viable tool for determining the location of underground bunkers in the global war

on terror.

1.2.3.4 All Accelerometer Inertial Navigation

Gravity gradiometer instruments have also been proposed as an extension to

gyro-less all-accelerometer inertial navigation systems.108 Zorn presented two pa-

per on this topic that envisioned a 12-accelerometer GGI to measure specific force,

angular accelerations, and the full-tensor gravitational gradient tensor (Section 5.2

discusses a similar GGI, and pg. 186 explains how the angular acceleration is observ-

able). Zorn’s first paper40 summarizes the concept and derives the applicable mea-

surements for the system. The second paper41 continues the work by simulating two

INS/GPS systems to investigate the sensor requirements for the all-accelerometer

INS to be comparable to a tactical-grade INS with gyros. For a constant altitude,

speed, and turning radius simulation, it was shown that the all-accelerometer INS

(which is essentially a GGI) needed a 10−6 improvement in the accelerometer bias

stability and white noise level to yield a comparable tactical-grade INS/GPS navi-
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Figure 1.14: Map-Matching GGI/INS using an Extended Kalman Filter

gation accuracy. This vast reduction in accelerometer error is directly attributed to

the need to accurately measure the angular acceleration of the vehicle so that the

attitude could be determined after integrating twice.

1.3 Objective

The objective of this dissertation is to show the potential benefit of a novel

gravity gradiometer aided inertial navigation system. The premise is to compare

GGI measurements with an onboard gravity field map to produce delta-position cor-

rections through an extended Kalman filter implementation, as shown schematically

in Fig. 1.14. Conceptually, this system functions in much the same manner as

a terrain-based map-matching INS aid. The main difference is that the emitting

radar or laser sensor of a terrain-based system is replaced with the self-contained,

passive gravity gradiometer instrument. Furthermore, instead of making a single

range measurement (or possibly a Doppler as well), a GGI can make up to six

non-symmetric measurements of the gravitational gradient tensor.

In order to quantify the performance of the INS/GGI system a characterization
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of the gravitational gradients is first undertaken. Of utmost importance are the

gradient variations since the slope of the gravitational gradients are used for the

position updates. In other words, if the gradients were constant, there would be no

discernable features in the signal to derive position knowledge, see dashed gradients

in Fig. 1.15 compared to the solid curves. Conversely, if the gradient variation is

sufficiently large compared to the GGI noise level, these changes may be exploited

to update the INS position estimate. The primary questions to be answered are:

• How much do the gravitational gradients vary?

• Which gravitational gradient varies the most?

• Where do the gravitational gradients most?

• How does altitude effect the gradient variations?

As a corollary to the gravitational gradient characterization study, and the lack

of available terrain elevation data for this work, a first-order analysis of when one

may neglect local terrain effects is carried out. In order to broaden the applicability

of this study, a parametric “mountain” is simulated and its vertical gravitational

gradient is computed for a variety of dimensions and user altitudes. Then, to reduce

one of the independent variables, the “mountain” width is optimized to provide the

maximum gravitational gradient so that the terrain contributions may be estimated

as a function of terrain peak and user altitude.

After these fundamental gravitational gradient questions are answered, the

map-matching GGI-aided INS simulations are performed to quantify the potential

performance and sensitivities of future INS/GGI systems. The first objective to

this goal is the modeling of the inertial measurement unit signals. A hypersonic
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scramjet is chosen for the majority of the simulations. The off-design aerodynam-

ics and propulsion characteristics are used to calculate the trim conditions over a

1000 km range cruise. Then, the trim angles are finite differenced to calculate the

body-to-navigation frame portion of the gyro signal. The assumed trajectory and

cruise velocity and altitude are used to calculate the accelerometer signals for the

simulation.

The details of integrating a gravity gradiometer instrument into an inertial

navigation system using an extended Kalman filter implementation are also pre-

sented thoroughly for the first time. Extensions and modifications to traditional

INS simulations are documented to enable stable filter performance. In the event of

filter divergence, the reason (numerical truncation error) is identified and solutions

are proposed.

Furthermore, the simulated gravity gradiometer instrument measurement and

their linearized errors are derived thoroughly for the first time in the open litera-

ture. Specifically, the inclusion of tilt errors and the conversion from the GGI tensor

measurements to vector measurements to allow for the filter implementation is per-

formed for the first time. Completely new derivations for a stabilized GGI are also

performed for this dissertation work.

The hypersonic INS/GGI navigation system sensitivities are identified through

the use of numerous Monte Carlo simulation configurations. The varied design

parameters are: instrument noise, update rate, and type (strapdown or stabilized);

gravitational gradient variation; IMU quality (navigation or tactical grade); and

Mach number. Also, to compare with current technologies, an INS/GPS system
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is simulated. The effects of GPS measurements (pseudorange with or with out

pseudorange rate), update rate, and IMU quality are also quantified.

Two subsonic INS/GGI cases are also simulated to show the potential per-

formance on current platforms. A commercial aircraft mission and a GGI-survey

mission are both simulated using the “best” INS/GGI design parameters from the

hypersonic simulations. These cases are also important because current GGIs are

too large and heavy for missile-class vehicles, but can be used aboard these two

current subsonic vehicles.

1.4 Dissertation Outline

This dissertation consists of seven chapters and five appendices, organized as

follows.

Chapter 2 discusses some fundamental aspects of gravity gradiometry includ-

ing the gravitational potential and acceleration, and the centripetal components of

gravity. A brief review of how the gravity field is typically modeled and how it was

modeled for this work is presented. The parametric terrain study to estimate when

local terrain contributions may be negelected from the computed gravity map is also

undertaken in this chapter. Then the gravitational gradient sensitivities to altitude

and location on the Earth are shown. Lastly, the simulated trajectories used in

the Monte Carlo simulations are detailed along with a study to estimate the stored

map’s linear interpolation error as a function of grid resolution.

The third chapter presents the hypersonic vehicle model used for the ma-
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jority of the simulations. The aerodynamic and propulsion characteristics from a

JHU/APL reference are described and the implemented curve-fit calculations are

given. A simple mass model is then determined so that the trim conditions can

be computed over the assumed trajectories. The trim pitch and roll angles are

lastly finite differenced to produce part of the simulated gyro signals for the INS

simulations.

Chapter 4 details the intertial navigation system model. Standard coordinate

frames and transformations are reviewed, then the navigation equations are derived

from first principles. The INS linearized error dynamics are also derived thoroughly.

And lastly, the simulated acclerometer and gyro measurement errors are presented

along with a survey of current tactical and navigation grade IMU specifications.

The modifications to traditional INS simulations in order to integrate a GGI aid is

also identified in this chapter.

The fifth chapter presents a thorough methodology for modeling many grav-

ity gradiometer instruments. Then the rotating, stabilized GGI measurements are

derived clearly for reference purposes since many references provide at most a con-

fusing derivation of this type of GGI measurement. Next, the assumed twelve-

accelerometer GGI is described. Strapdown and stabilized GGI measurements and

their linearized error equations are also derived comprehensively for the first time.

Chapter 6 explains the Monte Carlo simulation set up and assumptions. A

parametric analysis on the effect of Monte Carlo set size is undertaken, and then

the INS/GGI and baseline INS/GPS results are presented for numerous system

configurations.
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Chapter 7 summarizes the contributions of this work to the state-of-the-art

and recommends a set of work for future study.

Several appendices are also included in this dissertation to supplement the

content of the main body. Appendix A consists of additional global gravitational

gradient maps at various altitudes, which are used in the analyses of Ch. 2. Appendix

B supplements Ch. 3 with additional polynomial curve fits for the thrust coefficient

propulsion calculations. Appendix C presents an overview of the extended Kalman

filter model implemented for this work. A review of the Kalman filter assumptions,

stochastic processes, and linear system dynamics are also shown. And a new method

to calculate the gyro noise portion of the error state transition matrix is discussed

as well. Appendix D details the modeled nominal 24-satellite GPS constellation and

the assumed measurements for the baseline INS/GPS analyses. Lastly, App. E lists

the extensive mean-radial-spherical-error results from the Monte Carlo simulations.
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Chapter 2

Gravity Map Model

This chapter presents the model used to simulate the gravity field for this work.

Section 2.1 first presents a brief review of the gravity potential and its derivatives.

Section 2.2.1 and 2.2.2 then describe how the gravity field is typically modeled using

spherical harmonic and local terrain models. Section 2.2.3 next estimates when the

local terrain effects may be omitted from the gravitational field model, and Sec. 2.2.4

discusses and estimates other vehicle self-generated bias sources. A global-scale

characterization of the gravitational gradients using a spherical harmonic model is

performed in Sec. 2.3 to identify trends in the gradients for use as a navigation map-

matching aid. Then the two chosen simulation trajectories are detailed in Sec. 2.4

along with studies to determine the stored gravity field grid spacing. Lastly, Sec. 2.5

summarizes the contributions and results from this chapter.

2.1 Gravity Gradiometry

The gravitational potential is defined as109,110

φg ≡
∫∫∫

V

ρ(r′)

|r− r′|
dV, (2.1)
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where ρ is the density of the attracting mass at r′ and r is the vehicle (or “user”)

location. The first derivative of the the potential yields the gravitational vector:

gn ≡ ∇φg =


gN

gE

gD

 , (2.2)

where it has been assumed that the coordinates are in the local North-East-Down

navigation frame, see Sec. 4.1.3. The second derivative produces the gravitational

gradient tensor:

Γn ≡ ∇∇Tφg =


ΓNN ΓNE ΓND

ΓNE ΓEE ΓED

ΓND ΓED ΓDD

.

 (2.3)

The trace of Γn, or equivalently the Laplacian of the potential, is equal to Fourier’s

equation:109

4φg = ΓNN + ΓEE + ΓDD = −4πGρ(r), (2.4)

where G is Newton’s gravitational constant and ρ here is the density at the user.

Because the density of the Earth (mean crust ∼2,670 kg/m3)110 is much greater

than the atmosphere (at sea level ∼1.2 kg/m3), it is common to assume a “free-air”

gravitational potential so that the gravitational attraction of the air is neglected.

Thus, Fourier’s equation is now

4φg = ΓNN + ΓEE + ΓDD = 0, (2.5)

which is Laplace’s equation. The general solution to Laplace’s equation is an infinite

harmonic summation, to be discussed in the next section.
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Before continuing, a word on nomenclature is in order. Throughout much

of the literature the term “gravity gradient” has been used. In the strict sense,

the quantity that is being referred to is the gravitational gradient—not the gravity

gradient. Gravity is defined as the sum of the gravitational and centrifugal potentials

(or accelerations, or gradients). It will be shown later that the measurement made

by a gravity gradiometer is a combination of the gravitational gradient and noise

in the form of angular rates and accelerations, see Sec. 5.1. The terms “gravity

gradient” and “gravity gradiometer” in some sense are misnomers, as the quantities

that are being used are more accurately gravitational gradients.

For completeness, the centripetal potential is the analytic function:111

φc =
ω2
e

2
(r cosφ)2 , (2.6)

where ωe is Earth’s rotation rate, φ is the latitude of the user, and r is the radius

from the user to the center of the Earth. The first derivative of Eq. (2.6) is then the

centripetal acceleration due to the Earth’s rotation.

2.2 Gravity Map Modeling

Gravitational field maps are typically computed by the summation of a spher-

ical harmonic model to capture low frequency, long range gravitational effects and

integration of local terrain elevation to capture the high frequency, short range ef-

fects.95 The centripetal portion is then added to compute the gravity acceleration

vector. And since the centripetal effects are simple analytical functions, this section

will focus solely on the more complicated modeling of the gravitational potential
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and its derivatives.

2.2.1 Spherical Harmonics

The general solution to Laplace’s equation, Eq. (2.5), is an infinite harmonic

summation. In spherical coordinates:109,112

φg(r, θ, λ) =
GM

r

[
1 +

∞∑
n=2

(ae
r

)n n∑
m=0

(
C̄nm cos(mλ) + S̄nm sin(mλ)

)
P̄nm(θ)

]
,

(2.7)

where θ is the colatitude (= π/2− latitude), λ is the longitude, n and m are the

degree and order of the fully normalized coefficients (C̄nm,S̄nm), and P̄nm(θ) is the

fully normalized associated Legendre function. The equation is referenced to a given

gravitational parameter GM which is the universal gravitational constant times the

total mass of the attracting body, and ae is a reference radius (for Earth ae =

6,378,137 m).113,114 In practice, the series is truncated at a maximum degree, nmax,

based on the available coefficient set.

There are three designations for spherical harmonics.109,115 The first designa-

tion is a zonal harmonic when m = 0, Fig. 2.1 (a). These harmonics are indepen-

dent of λ and related to the well known unnormalized J harmonics by (Vallado,115

pg. 518):

Jn = −C̄n,0
√

2n+ 1. (2.8)

The J2 term is by far the largest harmonic term (zonal or otherwise) as it accounts

for the bulk ellipsoidal shape of the Earth. The second special designation is a

sectoral harmonic which occurs when m = n, Fig. 2.1 (b). These harmonics are
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(a) (b) (c)

Figure 2.1: Spherical Harmonic Classifications (a) Zonal (b) Sectoral (c) Tesseral,

from Ref. [109]

independent of latitude and account for gravitational variations in slices parallel to

the meridian. Lastly, when 0 < m < n the harmonics are designated as tesseral

and essentially account for potential variations in a checkerboard-like pattern of

alternating mass distributions, Fig. 2.1 (c).

While spherical harmonic models allow for calculation of global gravitational

potentials, their usefulness is limited primarily by the finite spatial resolution of

the model. And although there is no universal definition for the spherical harmonic

model’s resolution, a convenient and common definition is the half wavelength of

the maximum zonal harmonic with respect to the equatorial radius:116

S.H.M.res =
πae
nmax

≈ 20× 106 m

nmax
. (2.9)

Many spherical harmonic gravity models have been published for Earth with

the most extensive being the EGM96 set that includes coefficients up to degree

and order 360.114 Recent work such as the GFZ Potsdam CHAMP (Challenging

Minisatellite Payload) and the University of Texas GRACE (Gravity Recovery and
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Climate Experiment) satellite missions are producing higher accuracy coefficients;

however, their maximum degree and order is currently only 140 (CHAMP)117 or 200

(GRACE).118 And since the resolution is proportional to 1/nmax, EGM96 is about

twice as fine as GRACE’s GGM02C.118 Therefore, to produce the highest resolution

gravitational maps, the EGM96 coefficient set was chosen.

The calculation of the spherical harmonic potential and its derivatives (vec-

tor and gradient tensor) is rather straight forward except for the calculation of the

associated Legendre functions.111,119 For the present work, the National Oceanic

and Atmospheric Administration (NOAA) / National Geodetic Survey (NGS) pro-

gram geopot97.v0.4e.f was modified to produce gridded gravity accelerations and

gravitational gradients at user defined latitude, longitude, and altitude ranges.120,121

The code calculates the Legendre functions and derivatives using an efficient itera-

tive Clenshaw summation.119,122 However, this version of the program may not work

or be as efficient for future higher degree coefficient sets because of numerical preci-

sion limitations. Instead, the new geopot07.f123 may be used for nmax ≤ 2190, or

the Fortran 95 package SHTOOLS by Wieczorek124 may be used up to nmax ≈ 2800.

Another approach would be to implement one of the algorithms presented by Holmes

and Featherstone.125

As mentioned, the spherical harmonic models alias higher frequency (and finer

resolution) terrain contributions due to its finite summation of Eq. (2.7). A discus-

sion on methods to account for the terrain effects is presented in the next section,

and a fundamental investigation as to when the terrain effects may be neglected is

performed in Sec. 2.2.3. Section 2.2.4 then discusses other gravitational gradient
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biases.

2.2.2 Terrain Elevation Contributions

Referring back to the spherical harmonic gravitational potential, Eq. (2.7),

and the gradient tensor definition, Eq. (2.3), one can show that to first order the

gravitational gradients are inversely proportional to the cube of the distance between

the vehicle and attracting mass because the gradients are the second derivative of

the potential, which is itself inversely proportional to the distance. Mathematically,

φg ≈
GM

r
→ ∂2φg

∂r2
= ΓDD ≈

2GM

r3
. (2.10)

Therefore, because the gradients attenuate proportional to distance cubed, local

terrain elevation variations will be negligible at sufficiently high altitudes compared

to a given gradiometer instrument’s noise level. Conversely, for low altitude appli-

cations, such as surveying missions, the signal-to-noise ratio due to the local terrain

variation is large enough that it should be included in the computed gravity map.

In these latter cases digital elevation maps and an assumption of the ter-

rain’s density can be used to account for local terrain contributions. Jekeli and

Zhu surveyed several algorithms including prism, fast Fourier transform (FFT), and

ordinary numerical integration methods for two terrain data sets and found that

FFTs can produce accurate models at a constant gridded altitude with low compu-

tation time.110 Gleason also presented an FFT method that included several discrete

density layers and showed that one can optimally estimate gravity at altitude with

knowledge of surface gravity data and terrain elevation.20 Thus, when terrain ef-
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fects are not negligible (i.e. low altitudes and/or low GGI noise), an FFT model

such as those described in the above references should be included in gravity field

mapping. A limitation of the current work is the omission of such terrain effects in

the simulated gravity field which causes a reduction in the available gradient signal

frequencies. This is especially true for the subsonic GGI survey simulation since its

assumed altitude is only 100 m.

2.2.3 Minimum Altitude to Neglect Terrain Effects

This section presents a parametric study of when terrain effects may be ne-

glected for a given GGI noise level and user altitude. To bound the analysis, a

single hypothetical mountain directly below the user is simulated and its vertical

gravitational gradient is calculated. The vertical component was chosen as it is the

largest component of the gradient tensor as shown later in Fig. 2.11. The mountain

is assumed to have a zero-mean, normal, Gaussian height distribution, see Eq. (C.8)

on pg. 313:

hT (s) =
aT

σT
√

2π
exp

(
− s2

2σ2
T

)
, (2.11)

where hT is the height of the mountain, s is the horizontal distance from the ori-

gin of the mountain, aT and σT are the amplitude and standard deviation of the

distribution, respectively. Figure 2.2 shows a schematic of the mountain for several

design parameters. A Gaussian distribution was chosen because it qualitatively es-

timates the shape of a mountain and its distribution is uniquely defined by only two

parameters, thereby facilitating the parametric nature of this study.
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Figure 2.2: Schematic of Modeled Gaussian Mountain

The vertical gravitational gradient is calculated according to:110

ΓDD = GρT

∫∫
A

T33dA, (2.12)

where the integration in the vertical direction has been performed so that

T33 =


1

(h− hT )2
− 1

h2
, s = 0

1

s2

[
h− hT
rh

−
(
h− hT
rh

)3

− h

r0

+

(
h

r0

)3
]
, s 6= 0

(2.13)

where h is the user altitude, and

r2
h ≡ s2 + (h− hT )2, (2.14)

r2
0 ≡ s2 + h2. (2.15)

For a given peak altitude, hT (0), and standard deviation, σT , the amplitude is

computed by

aT =
√

2πhT (0)σT . (2.16)
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Figure 2.3: Terrain Contribution to ΓDD

Then ΓDD is calculated by numerically integrating Eq. (2.12) and (2.13) by:

ΓDD = πGρT

6σT∑
si=0

(T33,i+1 + T33,i) si∆s+ (2T33,i+1 + T33,i)
∆s2

3
, (2.17)

where s is a 2,001-element equispaced array of the horizontal distance from the origin

to six times the standard deviation parameter and T33,i is the value from Eq. (2.13)

at si. Also, it is assumed that G = 6.6742 × 10−11 m3/(kg · s2) and ρT = 2,670

kg/m3.

To investigate a wide range of terrain possibilities, the simulated mountain’s

standard deviation and peak altitude were normalized by the user altitude and varied

logarithmically. (Section 2.2.3.1 proves that the gradient calculation, as formulated,

is uniquely defined by σT and hT (0)/h.) The vertical gravitational gradient due to

the simulated mountains are shown in Fig. 2.3. This plot can be used to estimate
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when terrain effects may be neglected by:

1. Identifying the largest terrain object(s) from an elevation map and estimating

the peak, hT (0), and standard deviation, σT , of the object.

2. Normalizing hT (0) and σT by the predicted user’s flight altitude, h.

3. Locating the corresponding vertical gravitational gradient in Fig. 2.3 for the

estimated hT (0)/h and σT/h.

4. Then, the terrain effects may be neglected for modeling purposes if the esti-

mated ΓDD is sufficiently less than the GGI noise.

It should be noted, that many mountains actually sit on large plateaus, which act as

an altitude bias that has no effect on the terrain contribution of the gradient signal.

Indeed, it can be shown that an infinite uniform sheet of mass has zero vertical

gravitational gradient. In this regard, when estimating a mountain’s characteristics,

the peak should be referenced to the map’s minimum elevation; not necessarily mean

sea level.

Figure 2.3 also presents the interesting trend that the largest gravitational

gradient occurs when σT/h ≈ 1.29 for values of hT (0)/h < 10−2 and decreases to

unity as hT (0) approaches h, as shown in Fig. 2.4. Therefore, low altitude surveys

are more susceptible to more compact terrain variations, while higher applications

are more sensitive to “wider mountains.” The optimal σT/h ratios which maximize

ΓDD are a function of hT (0)/h only; however, at high altitudes σT grows large enough

that these features would be accounted for in the spherical harmonic model. Thus, a

constraint of 3σT ≤ (πa)/nmax ≈ 55 km for nmax =360, from the spherical harmonic

resolution definition of Eq. (2.9), can be set to limit the maximum standard deviation
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Figure 2.4: Optimal σT/h to Maximize Terrain ΓDD

parameter.

Figure 2.5 uses the optimal σT/h ratios and the σT ≤ 18.6 km constraint to

calculate the maximum ΓDD for a variety of peak terrain and user altitude config-

urations. This figure allows one to not have to estimate σT/h for a given mission

and terrain elevation map. Therefore, using Fig. 2.5 one can estimate the terrain

contribution to the vertical gravitational gradient for various missions given only

the peak terrain and user altitude. Then, if the user’s GGI noise level is sufficiently

above the estimate in the figure, the terrain effects may be neglected.

For example, a commercial aircraft cruising at a 10 km altitude using a current-

grade airborne GGI with an ∼5 Eö noise level would be affected by mountains

approximately 100 m and taller. And a satellite in a 300 km altitude orbit with

a space-grade 0.01 Eö GGI noise level would only be affected by terrain effects
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greater than about 500 m tall. The hypersonic cases simulated in this work are at

an ∼24 km altitude and have GGI noise levels ≤0.1 Eö. Therefore, according to

Fig. 2.5, terrain effects of 10 m and less should produce gradients above the noise

GGI noise floor and should thus be included in future work. For reference purposes,

a 100 m altitude corresponds to an ∼30 story building, the largest mountain in the

contiguous United States is Mount Whitney at 4.4 km, and the largest in the world

is Mount Everest at 8.8 km from sea level.

2.2.3.1 Normalization of Terrain ΓDD Computation

The proof of non-dimensionalizing the Gaussian distribution parameters by

the user altitude will be shown in parts. The dependence of hT (0)/h and σT/h on

the horizontal distance (s), terrain elevation (hT ), rh, r0, and T33,i components will

be derived in succession. Then these components will be substituted into Eq. (2.17)

to show that, as posed, ΓDD is indeed a function of only the two normalized Gaussian

distribution design parameters.

The horizontal distance array is assumed to be equally-spaced from 0 to six

times the standard deviation parameter:

s =

[
0 :

6σT
2000

: 6σT

]
. (2.18)

This can be rewritten in terms of σT/h by factoring out the user altitude:

s = h

[
0 :

6

2000

(σT
h

)
: 6
(σT
h

)]
≡ hfs

(σT
h

)
, (2.19)

where the second equality denotes that s is equal to a function of only σT/h mul-

tiplied by the user altitude, h. Similarly, the increment of the horizontal distance
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array is:

∆s =
6σT
2000

= h
6

2000

(σT
h

)
≡ hf∆s

(σT
h

)
. (2.20)

The Gaussian terrain elevation is, from Eq. (2.11):

hT (s) = hT (0) exp

[
−1

2

(
s

σT

)2
]
, (2.21)

where the amplitude aT has been replaced by Eq. (2.16). Then, substituting the

horizontal distance, Eq. (2.18), into the terrain elevation equation results in

hT (s) = hT (0) exp

(
−1

2

[
0 :

6

2000
: 6

]2
)
. (2.22)

The exponential portion is now shown to be independent of the standard deviation

parameter because of the choice of the assumed horizontal distance array. And the

terrain elevation can be rewritten as:

hT (s) = h

(
hT (0)

h

)
exp

(
−1

2

[
0 :

6

2000
: 6

]2
)
≡ hfhT

(
hT (0)

h

)
. (2.23)

The distances r0 and rh can then be derived as functions of only hT (0)/h and

σT/h multiplied by the user altitude. Starting with Eq. (2.15), and substituting in

Eq. (2.19),

r0 =
√
s2 + h2 = h

√
f 2
s (σT/h) + 1 ≡ hfr0 (σT/h) (2.24)

And substituting Eq. (2.19) and (2.23) into (2.14) yields

rh =
√
s2 + (h− hT )2 =

√
h2f 2

s (σT/h) + [h− hfhT (hT (0)/h)]2

= h

√
f 2
s (σT/h) + [1− fhT (hT (0)/h)]2 ≡ hfrh

(
hT (0)

h
,
σT
h

)
. (2.25)
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Then these terms can be substituted into the calculations of T33,i. For the

singularity case of s = 0,

T33,0 =
1

(h− hT )2 −
1

h2
=

1

h2

{
1

[1− fhT (hT (0)/h)]2
− 1

}
≡ 1

h2
fT33,0

(
hT (0)

h

)
.

(2.26)

When s 6= 0, there are two main components to T33,i: (h − hT )/rh and h/r0. The

first component can be rearranged as

h− hT
rh

=
h (1− hT/h)

rh
=
h (1− fhT (hT (0)/h))

hfrh (hT (0)/h, σT/h)
≡ fT33,i1

(
hT (0)

h
,
σT
h

)
. (2.27)

The second component is

h

r0

=
h

hfr0 (σT/h)
≡ fT33,i2

(σT
h

)
. (2.28)

Then, from Eq. (2.13), T33 for s 6= 0 can be rewritten as

T33,i =
1

h2f 2
s (σT/h)

(
fT33,i1

− f 3
T33,i1

− fT33,i2
+ f 3

T33,i2

)
≡ 1

h2
fT33,i

(
hT (0)

h
,
σT
h

)
. (2.29)

Finally, the vertical gradient can be found from Eq. (2.17) using the change

of integration variable from s to s/h and substitution of the relations above:

ΓDD = πGρT

6σT /h∑
(s/h)i=0

(T33,i+1 + T33,i)
( s
h

)
i
∆
( s
h

)
h2

+ (2T33,i+1 + T33,i)
1

3
∆
( s
h

)2

h2

= πGρT

6σT /h∑
(s/h)i=0

h2

(
1

h2
fT33,i+1

+
1

h2
fT33,i

)
fsf∆s

+ h2

(
2

1

h2
fT33,i+1

+
1

h2
fT33,i

)
f 2

∆s

3

≡ πGρT

6σT /h∑
(s/h)i=0

fΓDD

(
hT (0)

h
,
σT
h

)
. (2.30)
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The altitude dependence in the T33 calculations are thus effectively canceled by the

choice of defining s as a function of σT , which caused ΓDD to be independent of h.

2.2.4 Gravitational Gradient Biases

Nearby masses, such as the vehicle’s structure, fuel, and payload, must also be

accounted for in the INS/GGI filter since they can produce non-negligible gravita-

tional gradients. Many of these vehicle masses produce essentially constant gravita-

tional gradient biases since they consist of constant masses that are positioned at a

constant distance from the instrument. However, other self-generated gradients are

time-varying such as fuel consumption and slosh, control surface (fin) deflections,

and passenger movement in the case of a commercial aircraft system. To use the

proposed INS/GGI navigation system effectively, the onboard filter must estimate

and compensate each one of these additional biases accurately so that the external

gravitational field may be used for position updates.

In order to estimate the gravitational gradient contribution from a variety of

bias sources, the generating bodies are modeled as simple point masses. Then, using

Eq. (2.10) on pg. 48:

∂2φg
∂r2

= Γ ≈ 2GM

r3
,

the gravitational gradient contribution from a point mass is a function of only the

bias’s mass, M , and its distance from the user, r. Figure 2.6 plots the magnitude

of the gradient for masses from 0.1 kg to 1 metric ton (1,000 kg) at a distance of

10 cm to 100 m. Each mass has a slope of −3 on the log-log axes because of the
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Figure 2.6: Point Mass Gravitational Gradient Contribution

inverse-cube relation of the point mass gradient to the displacement distance. For

example, a 10 kg mass produces a 1 Eö gravitational gradient at 1 m and a 0.001

Eö gradient at 10 m. Furthermore, a 0.1 kg mass 1 m from a GGI is equivalent to

a 100 kg mass at a 10 m distance. Also, as the displacement is increased 2.154×

(i.e. 3
√

10×), the gravitational gradient bias decreases an order of magnitude. And

lastly, for a given distance, the gravitational gradient is directly proportional to the

bias source’s mass, so that a larger mass produces a linearly proportionate larger

gradient bias.

As another example, if a 100 kg (∼220 lb) person is 2.5 m from a GGI, they

would produce ∼1 Eö gravitational gradient. Then, as the person walks away from

the instrument, their gravitational gradient measurement would be 0.1 Eö at about

5.4 m, 0.01 Eö at ∼12 m, and 0.001 Eö at 25 m. Then, in terms of GGI noise levels, a
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1 Eö sensor would have to account for all 100 kg and larger masses 2.5 m and closer,

and a 0.001 Eö sensor would have to compensate for all masses ≥100 kg within 25 m

of the GGI. The same 0.001 Eö GGI would also have to account for all 10 kg masses

within ∼12 m, and 1 kg masses within ∼5.4 m of the instrument. Therefore, for a

given GGI noise level, all self-generated vehicle biases should be taken into account,

and ideally the largest time-varying biases should be placed farthest away from the

GGI so that their errors are inherently reduced.

2.3 Gravitational Gradient Characterization

In this section the regional and altitude effects of the gravitational gradients

are investigated on a global scale. The following figures plot components of the

gradient tensor using the full 360 degree and order EGM96 spherical harmonic model

and the modified geopot97 code at given altitudes. As discussed, the EGM96’s

finite resolution aliases high frequency terrain effects so that the true gravitational

gradients at low altitudes are most likely larger than those presented. Nevertheless,

the spherical harmonic model allows for identification of global areas of interest and

trends.

Referring to Fig. 2.7 (c), the gravitational gradients are intuitively highest and

vary most rapidly in mountainous ranges, as seen over the Rockies, coast of South

America, and Himalayas. More surprisingly, areas in the Pacific Ocean also produce

noticeable gradients, particularly around Indonesia and west of Japan. Therefore,

it can be seen that unlike other map matching aids (e.g. terrain or vision), gravity
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Figure 2.7: Inline Gravitational Gradients at Surface (a) ΓNN (b) ΓEE (c) ΓDD
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gradient aiding can be applicable over bodies of water.

Figures 2.7 and 2.8 plot all six gravitational gradients at the Earth’s surface.

The first set of figures correspond to three inline gradients, and the second set are

the three off-diagonal gradients. The inline gradients are plotted with a colorbar

varying from ±20 Eö from the mean, and the off-diagonal gradients are plotted with

a ±10 Eö variation to compare how much the gradient signal varies.

Comparing the inline gradients, it is apparent that the vertical gravitational

gradient varies more noticeably than either ΓNN or ΓEE. This result is due to the

coupling of the three inline gradients by Laplace’s equation, Eq. (2.5) on pg. 43, so

that

ΓDD = − (ΓNN + ΓEE) . (2.31)

The regions where the gradients are the largest and vary the most is, however,

relatively independent of the gradient. This is also true for the three off-diagonal

gradients.

Comparing the off-diagonal components in Fig. 2.8, it is apparent that the

North-East gravitational gradient varies the least while the North-Down and East-

Down components have about the same variation. The reason for this is that the

ΓND and ΓED gradients are the spatial derivatives of the vertical gravitational accel-

eration (gD). The ΓNE component, however, is the horizontal derivative of the other

horizontal gravitational acceleration, which is typically orders of magnitude smaller

than gD. The North-Down component also has a prominent low-frequency variation

in the latitudinal (North/South) direction due to the bulk oblateness of the Earth.

62



(a)

(b)

(c)

Figure 2.8: Off-Diagonal Gradients at Surface (a) ΓNE (b) ΓND (c) ΓED
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Figure 2.9: East-Down Gravitational Gradient at Three Altitudes

To qualitatively show the effects of altitude attenuation on the high frequency

gravitational gradient signals, Fig. 2.9 plots the East-Down gradient at three al-

titudes focusing on North and South America. Comparing the surface and 10 km

plots, it is apparent that many of the high frequency components of the gravitational

signal have been removed as the altitude was increased. This is particularly notice-

able in moderate areas like Canada and Brazil. As the altitude is increased from

10 km to 100 km, almost all distinguishable gravitational gradient variations are

removed. At this altitude, only the largest mountain ranges produce subtle changes

in the gravitational gradient. Thus, increasing one’s altitude acts to smooth the

gravitational gradient signal and thereby reduce its usefulness for map-matching.

This trend is common for all six gradients. (Appendix A includes additional plots

of the global gravitational gradients at various altitudes.)
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Figure 2.10: ΓDD Standard Deviation, log10(Eö), at Surface

To further investigate the regional and altitude effects on the gradiometer

aided INS system, standard deviations were computed over a horizontal ∼220 km ×

220 km moving window (corresponding to 5 × 5 Γn grid points). This analysis aids

in quantifying the expected gravitational gradient signal variations over a region of

interest and helps to quantify the altitude trends. Figure 2.10 logarithmically plots

the standard deviation of the vertical gradient at the Earth’s surface, which was

calculated from Fig. 2.7 (c). Similar standard deviation plots were computed for all

six gradients at several altitudes and are shown in Appendix A. The geographical

regions of high and low gradient variation are essentially the same for each Γn com-

ponent, but the magnitude of the standard deviations are functions of the gradient

components and altitude. Figure 2.11 summarizes the global minimum, mean, and

maximum gravitational gradient standard deviations for the computed components

as a function of altitude. The ΓEE and ΓNN standard deviations are approximately

equal, so the East-East component is omitted in the figure.
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Referring to Fig. 2.11, the vertical gradient (ΓDD) has the largest variation

as expected because it is the largest component of the gradient tensor. The spa-

tial derivatives of the vertical gravitational acceleration (i.e. ∂gD/∂N = ΓND and

∂gD/∂E = ΓED) have the next largest variation due to gD being the largest com-

ponent of the gravitational vector. The other inline gradients, ΓNN and ΓEE, have

variations that are about half those of ΓDD due to the coupling of these gradients

due to Laplace’s constraint, as shown in Eq. (2.5) and (2.31). Lastly, the ΓNE com-

ponent has the least variation because it is the longitudinal derivative of gN , which

is itself quite small. The change in the ΓND trend at the highest altitudes is caused

by Earth’s oblateness which yields comparably large ΓND variations at the equator

and poles, See Fig. A.10 (b) on pg. 299.

It should be noted that the gradient variations at lower altitudes in Fig. 2.11

are rather conservative because of the aliasing of terrain effects. However, even with

this omission, the gradient signal variations are on the same order of magnitude as

the airborne GGI noises in Table 1.1. The gradient signal variation is an important

part of the navigation performance because it is what allows the Kalman filter to

make delta corrections to the observable system states. As an analogy to terrain

based systems, if the user is standing in a flat region, it is nearly impossible to gain

any orientation or position information. Conversely, if the user is in a hilly terrain,

one can estimate where they are in relation to their local elevation map. The same

general concept holds for gradient navigation—that performance is proportional to

signal variation. However, the notion of preferring high gravitational variations is in

direct contrast with typical inertial navigation because gravity variations are usually
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seen as sources of error to the INS.

Therefore, if the signal-to-noise ratio were to increase by decreasing the GGI

noise, it appears that one could theoretically achieve an improvement in navigation

performance using a GGI-aided INS for airborne applications, especially over regions

with a strong gravitational gradient (high variations). The same can be said for

Low-Earth-Orbit (LEO) satellites. The current primary issues limiting an INS/GGI

system are:

1. The lack of high resolution, accurate gravitational maps over many regions.

2. The prohibitive size, weight, and noise floor of current GGIs.

3. The absence of open-literature algorithms to optimally blend GGI measure-

ments into an inertial navigation system.

This dissertation makes the assumptions that the first two issues are solved at some

point in the future and focuses on the algorithm development and quantification of

the potential performance of future INS/GGI systems.

2.4 Simulation Trajectories

In order to investigate the sensitivity of the gravitational gradient signal vari-

ation on the INS/GGI navigation performance, two 1000 km constant latitude tra-

jectories in the contiguous United States were chosen. The “High” gravity gradient

variation trajectory follows the Northern border of Wyoming, and the “Low” gradi-

ent trajectory follows near the Northern border of Kansas into Missouri and Illinois.

Figure 2.12 plots these two trajectories over the logarithmic standard deviation plot
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Table 2.1: Simulated Trajectories

Latitude Longitude

High Gradient Variation 45.0◦ [−113.0◦:−100.3◦]

Low Gradient Variation 38.0◦ [−100.0◦:−88.6◦]

Figure 2.12: Simulated Trajectories

of the vertical gradient at a 10 km altitude. Figure 2.13 plots the gravity accelera-

tion and the gravitational gradients for the two trajectories at the Mach 7 altitude.

The constant latitude and the longitude ranges are summarized in Table 2.1.

The 1000 km range was chosen as it is approximately the maximum range

that a cruise missile can travel without violating arms treaties. The choice of a

constant latitude, Eastern cruise was so that the longitude rate is constant for a

given velocity, see Eq. (4.51) on pg. 152. The two subsonic cases were simulated to
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ranges such that the filter achieved steady state operation at about halfway into the

simulation. The commercial aircraft range was set to 200 km, and the GGI-survey

case range was 50 km.

For the hypersonic scramjet simulations, the cruise altitude was calculated so

that the vehicle flew at a constant one-atmosphere dynamic pressure according to

the 1976 standard atmosphere model.126 The velocities and altitudes were calculated

as follows. Given a freestream Mach number, the cruise velocity is

v∞ = M∞a∞ = M∞
√
γ∞R∞T∞, (2.32)

where a∞ is the freestream speed of sound at altitude, γ∞ is the ratio of specific

heats and is assumed to be 1.4, R∞ = 287 J/kg-K is the gas constant for air, and the

atmospheric temperature causes the altitude dependence. Then, using the definition

of dynamic pressure, the velocity can also be found as

q∞ ≡
1

2
ρ∞(h)v2

∞ → v∞ =

√
2q∞
ρ∞(h)

. (2.33)

These two equations can be set equal to each other and squared to yield

2q∞ = M2
∞γ∞ (ρ∞R∞T∞) = M2

∞γ∞P∞(h), (2.34)

where the ideal gas equation has been used for the second equality. This relation

can now be solved for pressure as a function of the prescribed dynamic pressure and

Mach number:

P∞(h) =
2q∞

γ∞M2
∞
. (2.35)

A bisection method is used to numerically calculate the altitude so that the pres-

sure as defined by the 1976 standard atmosphere model is equal to the given Mach
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Table 2.2: Simulated Cruise Values

Mach 6 Mach 7 Mach 8 747-100 GGI Survey

Altitude, m 22,043.8 24,040.2 25,785.3 10,000.0 100.0

Velocity, m/s 1,778.43 2,084.22 2,391.29 250.0 40.0

Range, km 1,000.0 1,000.0 1,000.0 500.0 300.0

Final Time, sec 565.20 482.45 420.60 802.60 1,252.15

number and the assumed dynamic pressure constraint. Equation (2.32) is then used

to calculate the East velocity with the at-altitude freestream temperature from the

standard atmosphere calculation. Table 2.2 summarizes the cruise altitudes, East-

ern velocities, range, and total simulation time for the three cruise Mach numbers

simulated and the two subsonic cases.

For the two subsonic cases, the velocities and altitudes were chosen to ap-

proximate a commercial aircraft and a GGI-based survey/exploration mission. The

commercial aircraft mission is assumed to be a Boeing 747-100 class vehicle which

cruises at approximately 250 m/s (M∞ ≈ 0.84) at a 10,000 m (∼33,000 ft) alti-

tude.127 The GGI survey mission assumes a 100 m altitude based on the Falcon

AGG specification for their average fixed wing system.† The velocity is estimated to

be 40 m/s, which is slightly higher than the stall speed of a Cessna Grand Caravan

(61 knots ≈ 31.4 m/s)128 since this is the platform for most airborne GGI exploration

systems, and reduced speed improves the spatial resolution of the survey.

The details of the gravity field maps that were computed and stored for the INS

simulations are summarized in Sec. 2.4.2. But first, the methodology to determine

†http://falcon.bhpbilliton.com/falcon/specifications.asp, cited 6 Nov. 2007
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the map resolution is presented in the following section.

2.4.1 Gravity Map Resolution

2.4.1.1 Horizontal Resolution

For a given altitude, the gravitational potential and horizontal (latitudal and

longitudal) derivatives are linear combinations of sine and cosine waves, see Eq. (2.7).

To determine the chosen resolution on the gravity map in the horizontal directions,

and to estimate the error due to the linear interpolation between grid points, a MAT-

LAB script was written that calculated the residual error between a fine, “truth,”

cosine wave and the linearly interpolated, “estimated,” cosine wave for various res-

olutions:

ehoriz = | cos(sT )− ̂cos(sT )|, (2.36)

where the truth resolution is

sT =

[
0 :

π

100Nhoriz

: π

]
. (2.37)

The number of node points for the coarse cosine wave was defined by

Nhoriz =
aeπ/nmax
horizmap res

, (2.38)

where the numerator is the spherical harmonic resolution and the denominator is

the variable gravity map resolution. The bounds of [0 : π] for the independent cosine

wave variable, s, were chosen because it is half a period and thus corresponds to the

highest half-wavelength of the spherical harmonic resolution as defined in Eq. (2.9)
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Figure 2.14: Horizontal Spherical Harmonic Error Due to Linear Interpolation, with

500 m Resolution

on pg. 46. The coarse cosine wave was created with a resolution of Nhoriz, or

s =

[
0 :

π

Nhoriz

: π

]
. (2.39)

The estimated cosine wave was then linearly interpolated to each of the truth nodes

by

̂cos(sT ) = cos(s)i +

(
cos(s)i+1 − cos(s)i

si+1 − si

)
(sT − si) , (2.40)

and the error residual between the coarse and fine cosine waves was computed by

Eq. (2.36).

Figure 2.14 plots the horizontal residuals for the case of horizmap res = 500 m,

other resolutions exhibit similar trends but varying magnitudes and periods. For all

cases, the maximum error occurs near the 0 and π locations of cos(s) because the

slopes are most nonlinear at these points.
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Figure 2.15: Horizontal Spherical Harmonic Error Due to Linear Interpolation vs.

Map Resolution

The resolution of the estimated cosine curve, horizmap res, was varied from

10 m to 1 km and the maximum residual for each case was stored and plotted as

Fig. 2.15. As seen is this figure, as the map spacing decreases, the error due to linear

interpolation decreases as one might expect. Also, it is apparent that as the map

resolution continues to become more and more fine, there is diminishing returns in

terms of the error residual. Therefore a compromise between acceptable error and

gravity map storage size must be made (as the horizontal resolution is decreased

by half, the storage requirements increase by a factor of four because of the two

horizontal dimensions). For this work an error limit of 0.01% was chosen, which

leads to a horizontal spacing of 500 m and an linear interpolation error of 0.00983%.
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2.4.1.2 Vertical Resolution

The vertical resolution was determined by investigating the nominal magni-

tude of the vertical gravitational acceleration, gradient, and third order derivative

as functions of altitude. Each of these functions were also normalized by the nom-

inal altitude for the Mach 6 cruise trajectory (hnom = 22,043.8 m) because the

gravitational quantities are largest at lowest altitudes. (The subsonic cases are dis-

cussed at the end of this section.) The assumed simplistic normalized gravitational

acceleration is

gD(h)

gD(hnom)
≈

[
g0

(
ae

ae + h

)2
]
/

[
g0

(
ae

ae + hnom

)2
]

=

(
ae + hnom
ae + h

)2

, (2.41)

where ae = 6, 378, 137 m for Earth’s semimajor axis.113,114 The normalized vertical

gradient is

ΓDD(h)

ΓDD(hnom)
≈
[
−2g0a

2
e

(ae + h)3

]
/

[
−2g0a

2
e

(ae + hnom)3

]
=

(
ae + hnom
ae + h

)3

. (2.42)

And the normalized gradient derivative is

∂ΓDD

∂h
≈
[

6g0a
2
e

(ae + h)4

]
/

[
6g0a

2
e

(ae + hnom)4

]
=

(
ae + hnom
ae + h

)4

. (2.43)

The altitudes investigated were 1200 m below the nominal altitude to 1200 m above,

which corresponds to approximately the final 1-σ filter altitude error for the Mach

6 cruise simulation with a tactical grade IMU and no external measurements.

Again, coarse and fine normalized gravitational parameters were computed

using the relations above and the linear interpolation residuals were calculated.

Figure 2.16 plots the residuals for the three gravitational quantities with a vertical
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Figure 2.16: Vertical Spherical Harmonic Error Due to Linear Interpolation, with

160 m Resolution

resolution of 160 m (Nvert = 16). The third derivative of the gravitational potential,

∂ΓDD/∂h, produces the largest linear interpolation errors because it has the greatest

exponential compared to ΓDD and gD.

Instead of varying the vertical resolution, as done above with the horizontal

resolution, the number of node points was varied. Nvert was investigated from 11

to 20, corresponding to a vertical resolution of 218 m to 120 m. The maximum

residuals are summarized in Fig. 2.17 along with the 0.01% error constraint. From

Fig. 2.17, the vertical resolution is set by the third derivative of the gravitational

potential at a value of 160 m, or Nvert = 16, and the maximum linear interpolation

error is 0.00991%.

For the commercial aircraft case with the assumed 10,000 m altitude, a 160 m

grid resolution causes a linear interpolation error of 0.00992%. For this case, only

the best INS/GGI system was simulated, which has position errors on the order of
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Figure 2.17: Vertical Spherical Harmonic Error Due to Linear Interpolation vs. Map

Resolution

a meter. Therefore, only 3 altitude grid points were used for the map: one at the

nominal altitude, and one each plus/minus the 160 m vertical grid resolution.

The gravity gradiometer instrument survey mission altitude is 100 m, so this

was set as the grid resolution for this gravity field map since negative altitudes would

not be physical. With the survey altitude of 100 m and the 100 m resolution, the

linear interpolation error was calculated to be 0.00621%. Again, only 3 grid points

were used for this case since only the best INS/GGI system was simulated and the

position errors (< 1 m) are much less than the grid resolution.
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Table 2.3: Gravitational Gradient Map Parameters

High Gravitational Gradient Variation Trajectory

M∞ Latitude, ◦ Nφ Longitude, ◦ Nλ Altitude, m Nh

6 44.982 – 45.018 9 -113.0 – -100.2705 2005 20843.8 – 23243.8 16

7 44.9865 – 45.0135 7 -113.0 – -100.2768 2004 23080.2 – 25000.2 13

8 44.991 – 45.009 5 -113.0 – -100.2832 2003 25065.3 – 26505.3 10

Low Gravitational Gradient Variation Trajectory

M∞ Latitude, ◦ Nφ Longitude, ◦ Nλ Altitude, m Nh

6 37.982 – 38.018 9 -100.0 – -88.5774 2005 20843.8 – 23243.8 16

7 37.9865 – 38.0135 7 -100.0 – -88.5831 2004 23080.2 – 25000.2 13

8 37.991 – 38.009 5 -100.0 – -88.5888 2003 25065.3 – 26505.3 10

2.4.2 Simulated Gravity Field Maps

Table 2.3 summarizes the inputs to the modified geopot97 code. The varia-

tion in the nominal latitude, final latitude, and nominal altitude parameters were

computed from the final 1-σ filter position errors of these states using a tactical

grade INS with no external updates. Because faster simulations traveled the 1,000

km range in a shorter period of time, their dead-reckoning position error has less

time to grow and therefore the position errors are less. This also results in smaller

storage requirements for the faster simulations because the finite spatial resolutions

were held constant.

The latitude resolutions were converted from position to degrees by

∆φ[◦] =
∆φ[m]

ae

(
180◦

π[rad]

)
. (2.44)
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Table 2.4: Gravitational Gradient Map Storage Requirements

M∞ 6 7 8

Ngrid 288,720 182,364 100,150

File Size, KB 70,207 44,345 24,354

The longitude resolutions were converted by

∆λ[◦] =
∆λ[m]

ae cosφnom

(
180◦

π[rad]

)
. (2.45)

The storage requirements for the tabulated φ, λ, h, φg,g
n, and Γn components

using eight significant figures is summarized in Table 2.4, where Ngrid = Nφ+ Nλ+

Nh. The files were saved as ASCII text, and the storage requirements could have

been reduced if it were saved as a binary file.

The subsonic cases were simulated over only the high Γn variation trajectory.

Their horizontal grid parameters were kept the same as the Mach 8 case and the

altitude nodes were defined as described at the end of the last section.

2.5 Chapter Summary

This chapter presents a review of gravity gradiometry, spherical harmonics,

and local terrain integration methods for the purpose of gravity field modeling in

Sec. 2.1–2.2.2.

Section 2.2.3 then estimates when the high frequency local terrain effects may

be neglected compared to a given GGI noise level. Using a parametric model for the

analysis, it is shown that the gravitational gradient contribution of the mountain can
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be computed by only two parameters (width and height of the terrain feature) since

the user altitude can be used to normalize these values, as shown in Sec. 2.2.3.1.

And it is found that wider mountains have a larger effect on higher altitude missions,

whereas narrower features with the same peak height produce larger gradients for

lower altitude missions. Also, the width parameter is then optimized to maximize

the gravitational gradient so that the vertical gradient contribution from a terrain

feature can be estimated by only the user altitude and the peak height of the feature,

as shown in Fig. 2.5. If the estimated gradient is sufficiently less than the GGI noise

level, then the terrain effects may be neglected from the computed gravitational

map.

Section 2.2.4 next estimates the gravitational gradients due to a variety of

point masses at various distances from a GGI. It is shown in Fig. 2.6 that when the

GGI noise level is reduced an order of magnitude, the GGI is able to measure a mass

1/10 the original mass at the original distance or a mass the same size as the original

mass but at a distance 2.154 times the original distance. Therefore, for the GGIs

simulated later in Ch. 6 (σνL = 0.1–0.001 Eö), almost all vehicle mass distributions

would need to be accounted for in a real GGI navigation system. However, for

the simulations preformed in this work, these additional vehicle-generated gradient

contributions are ignored because of the low fidelity mass model in Sec. 3.2. Also, it

is noted that stationary mass distributions produce a constant gravitational gradient

bias that can be calibrated by the INS/GGI, and only moving masses need to be

estimated and corrected for by the onboard filter. For this latter case, it is suggested

to maximize the separation distance between the GGI and the moving mass so that
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its measured gradient is reduced.

The gravitational gradient characterization studies in Sec. 2.3 serve to answer

the four questions posed on pg. 37:

• First, it is shown that the gravitational gradient signal variation is on the

same order of magnitude as current airborne and space-borne GGI noise lev-

els, i.e. ∼1–10 and 0.001-0.01 Eö, respectively. The signal-to-noise ratio for

lower altitude airborne applications is quite conservative, however, because

the high frequency fluctuations from local terrain effects are not modeled.

Therefore, there is enough information that an airborne gravity gradiometer

map-matching aid should be able to provide position information to an INS.

• The order in which the gravitational gradient tensor components vary, from

greatest to least, is ΓDD, ΓND and ΓED, ΓNN and ΓEE, and ΓNE; as shown in

Fig. 2.11 on pg. 66.

• In the global gravitational gradient plots it is shown that Γn varies most in

mountainous regions, as one might expect. However, it is also shown that there

are noticeable areas of high gradient variation over certain bodies of water.

• Lastly, Fig. 2.11 shows that altitude does not attenuate the magnitude of the

gradient variation below about 1,000 m. But, the low altitude trends shown

in the figure would likely change if local terrain effects were included in the

analysis.

Section 2.4 lastly discusses the two chosen trajectories over the USA (“high”

and “low” gradient variations) for the simulations performed in Ch. 6. The calcula-

tion of the three hypersonic cruise vehicles’ altitudes and velocities are also shown
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in this section, as are the assumptions for the two subsonic simulations (see Table

2.2). Section 2.4.1 then details the gravity map resolution studies that determined

the 500 m horizontal and 160 m vertical grid spacing so that the linear interpolation

error is less than 0.01%. Lastly, Sec. 2.4.2 summarizes the stored gravity field maps

that are needed for the computation of the hypersonic missile trim states in the

following chapter, the gravity vector and the gravitational gradients for the INS in

Ch. 4, and the gradient portion of the simulated GGI measurements in Ch. 5.
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Chapter 3

Hypersonic Vehicle Model

The hypersonic vehicle modeled in this work is based primarily on a 1982

Advisory Group for Aeronautical Research and Development (AGARD) report by

the Johns Hopkins University / Applied Physics Lab (JHU/APL) which presents a

surprisingly candid, in-depth design methodology to model the propulsion system

and aerodynamics of parametric scramjet missiles.129 This dissertation digitized and

curve-fit many of the results of this reference so that they may be implemented as

a parametric first-order hypersonic missile design tool.

Several extensions to the original report are also derived and implemented to

produce realistic truth inertial measurement unit signals. First, volume calculations

and a parametric mass model are added. Then, trim state relations are newly derived

for numerical computation of the missile’s trim pitch, roll, and equivalence ratio at

a point in time. The trim state calculations are used to numerically integrate the

missile’s mass properties over a 1,000 km (540 nautical mile) range simulation as

fuel is being burned and the vehicle accounts for variations in the acceleration due

to gravity. The pitch and roll trim states are lastly finite differenced so that they

may be used as part of the gyro signals in the inertial navigation system simulation.

The following section describes the methodology to calculate the propulsion
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and aerodynamic characteristics of the axisymmetric scramjet missile as set forth in

the cited reference.129 Appendix B supplements this section with numerous thrust

coefficient curve fits. The last part of Sec. 3.1 then validates the implemented

Fortran code with the reference’s example calculations. Section 3.2 explains the

parametric mass model used for the analysis and the calculation of the internal

volume of the missile. This section also details some of the additional assumptions

pertaining to the dimensions of the vehicle. Section 3.3 next derives the trim state

relations and presents how these results are used to simulate the INS truth gyro and

accelerometer signals, and the last section summarizes the chapter results.

3.1 JHU/APL Axisymmetric Scramjet Model

The JHU/APL AGARD report129 presents a design study for a hypersonic

scramjet missile that is boosted to Mach 4 on a first stage rocket and then accelerates

to a Mach 8 cruise. The missile is assumed to be launched from a volume constrained

box, so that the total length is a fixed 4.0 m and the diameter is a fixed 0.50 m. The

inlet may be either a full axisymmetric chin inlet (as assumed in this work) an aft

inlet, or a sector of one of these two inlets with an on-design Mach number, Mdes,

of 6, 7, or 8. In this work, the scramjet is assumed to cruise at its on-design Mach

number at one of the three values in the report, i.e. M∞ = Mdes = 6, 7, or 8.

From analyzing the many tradeoffs in the inlet designs, the reference129 con-

cludes that the full axisymmetric chin inlet allows for maximum capture area and

engine thrust. Therefore, this type of vehicle inlet is chosen for the scramjet models
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in this dissertation. The effect of on-design inlet Mach number was not thoroughly

investigated here because of the assumption that the cruise M∞ = Mdes. Also, for

the simulations in this dissertation, the missiles are assumed to fly at their constant

on-design Mach number so that the off-design M∞ effects could have been neglected.

However, for design purposes, the report’s assumed operating range of Mach 4–8 and

an angle of attack from 0–10◦ are maintained for calculating the maximum geometric

contraction ratio in Sec. 3.1.1.2. Other design choices in the implemented scramjet

model are detailed in their respective sections.

The results in the JHU/APL AGARD reference129 were first scanned from a

microfiche-sourced hard copy of the report and stored as image files. Engauge Dig-

itizer 2.14,† a free software package, was then used to automatically and manually

identify feature points on the graphical results of the image files. The software al-

lows the user to define arbitrary axes on the image file so that rotation and scaling

of the feature points are computed internally in the program. The data sets were

then imported into MATLAB and curve fit using the polyfit.m function and an

assumption of either quadratic polynomials or linear segments. The coefficients pro-

duced from the MATLAB curve fits are listed in the appropriate discussions below

and in App. B for the thrust coefficient calculations. The interpolation between

various curvefits is also discussed in the following subsections.

The first subsection describes the calculation of the propulsion system and the

assumptions used in the reference report’s analyses. The next subsection details the

aerodynamic model and the multitude of drag terms included. The last subsection

†http://digitizer.sourceforge.net/
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validates the implementation of these two subsections as a computer code with

example calculations in the appendix of the reference report.

3.1.1 Propulsion

According to the 1982 JHU/APL report,129 “the results presented and assump-

tions used . . . are based on experimental data and analytical techniques developed

from testing and analyzing scramjet engines over the past 20 years.” And while this

reference is somewhat dated when taking into account the developments in scram-

jet technologies over the past 25 years,130–132 it is arguably the most in-depth open

literature reference regarding the full design of a hypersonic scramjet. And the in-

clusion of the off-design propulsion and aerodynamics (which is absent from most

references) allows for calculation of the trim states.

The reference uses the integral form of the mass, momentum, energy, and

species conservation equations at several discrete thermodynamic stations to com-

pute the thrust coefficient of the hypersonic scramjet.129 The first station is the

freestream, “∞,” flow station that is unaffected by the hypersonic vehicle. The

properties at this station are uniquely defined by the velocity of the vehicle and an

assumption of the atmosphere at altitude. The reference states that all calculations

were performed at a 15,240 m (50,000 ft) altitude for simplicity, and that variations

in the altitude would have had only a minor effect on the overall thrust coefficient.

For this work, the 1976 standard atmosphere is modeled to calculate the freestream

pressure, density, and temperature for a given altitude.126 The next station, “0,”
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Figure 3.1: Scramjet Missile Geometry and Thermodynamic Stations

consists of the properties just behind the initial cone forebody’s oblique shock. The

area of this station, A0, is the capture area that is ingested into the engine and is

at most equal to the geometric inlet area, Ai. The “1” station is at the entrance

of the constant area isolator (or diffuser) and accounts for the total pressure losses

from the inlet shocks. The “2” station is at the exit of the constant-area isolator

(or equivalently, the combustor entrance) and compensates for the shock train in

the isolator. The combustor is modeled between stations “2” and “4” as a constant

expansion area section. And lastly, the nozzle is modeled from station “4” to “5,”

with its exit area, A5, serving as the reference area for all the propulsion and aero-

dynamic force coefficients. Figure 3.1 illustrates the thermodynamic stations on a

Mach 7-designed scramjet.

The freestream and exit properties are then used to calculate the thrust coef-

ficient referenced to the capture area, A0, at a given freestream Mach number, angle

of attack, and equivalence ratio by

(CT )ref =
0.98F5 − F∞ − P∞ (A5 − A0)

q∞A0

(3.1)

where F5 is the nozzle stream thrust with an 98% efficiency, F∞ is the freestream
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stream thrust using the calculated capture area, P∞ is the freestream static pressure,

and q∞ is the freestream dynamic pressure. The reference plots the thrust coefficient

as a function of the inlet contraction ratio, (A0/A1), for the following discrete design

parameter configurations:

• Base-to-capture area ratio: (A5/A0) = 1, 2, 3, 4, 6, and 8.

• Combustor expansion ratio: (A4/A2) = 2, 3, and 4.

• Freestream Mach number: M∞ = 3 to 8 in intervals of 1.

• Equivalence ratio: ER = 0.25, 0.50, 0.75, and 1.00 or the maximum ER to

cause thermal choking.

Mathematically, the thrust coefficient as shown in the reference appendices is

(
T

q∞A0

)
ref

= f

(
A0

A1

,
A5

A0

,
A4

A2

,M∞, ER

)
. (3.2)

There is also an implicit dependence on angle of attack in the thrust coefficient

calculations because the inlet contraction ratio is calculated by

(
A0

A1

)
=

(
A0

Ai

)(
Ai
A1

)
max

, (3.3)

where the mass capture area ratio, (A0/Ai), is a function of Mdes, M∞, and α as

detailed in the following subsection. The maximum geometric contraction ratio,

(Ai/A1)max is calculated from the assumed range of operating conditions of M∞ =

[4:8] and α = [0:10◦] and is explained further in Sec. 3.1.1.2. The base-to-capture

area ratio, (A5/A0), is also dependent on Mdes, M∞, and α because it is calculated

by (
A5

A0

)
=

(
A5

Ai

)
/

(
A0

Ai

)
, (3.4)
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and (A0/Ai) is dependent on these parameters. (A5/Ai) is a constant, user-defined

design parameter, which in this work is set to 1.10 to maximize the capture area

and thus engine thrust.

Therefore, for a given on-design inlet Mach number, Mdes, and a current M∞

and α, (A0/A1) and (A5/A0) are calculated by Eq. (3.3) and (3.4). Then, with

the user-defined combustor expansion ratio, (A4/A2), and a given equivalence ratio,

the thrust coefficient may be computed. The details of how these calculations are

implemented is explained in Sec. 3.1.1.3.

Lastly, for the sake of completeness, the primary assumptions made in the

reference’s thrust coefficient computations are:129

1. A constant area isolator, so that A2 = A1.

2. RJ-5 fuel with a 100% combustion efficiency.

3. A combustor wall-to-entrance area ratio, (Awall/A4), of 40.

4. Inlet and combustor flows are in thermochemical equilibrium.

5. Combustor wall heat transfer is neglected.

6. Nozzle exit thrust efficiency of 98% for an expansion one-third between the

frozen and equilibrium chemistry solutions.

3.1.1.1 Off-Design Mass Capture

The reference plots the off-design mass capture as a function of angle of attack

from −10◦ to 10◦ for the three on-design Mach numbers (Mdes = 6, 7, 8) and six

freestream Mach numbers (M∞ = 3–8 in intervals of one). Because the scramjets in

this work are assumed to have a full axisymmetric chin inlet, the off-design capture
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area is a function of only the magnitude of the angle of attack. So, when the digitized

graph was curve fit, the capture areas for the negative angles of attack were treated

as if they were positive. The result is a quadratic function of angle of attack at a

given Mdes and M∞:

(
A0

Ai

)
ref

=


1.0 if M∞ ≥Mdes &

α < αmin,Mdes,M∞

aMdes,M∞ α
2 + bMdes,M∞ α + cMdes,M∞ else

(3.5)

where the coefficients for the quadratic are given in Table 3.1 along with the αmin

values at the givenMdes andM∞ nodes. The first part of the if-statement in Eq. (3.5)

is a constraint to ensure that the capture area ratio is never greater than 1, which

may be calculated when the inlet is oversped (M∞ > Mdes) at low angles of attack.

After the capture area has been calculated at the desired angle of attack, cubic

interpolation is used to compute (A0/Ai) at the desired freestream Mach number

using the four closest M∞ nodes so that (A0/Ai) = f(M∞, α).

3.1.1.2 Maximum Geometric Contraction Ratio

The maximum geometric contraction ratio is computed by taking the low-

est geometric contraction ratio over the assumed operating range so that the inlet

operating conditions are not violated for any point in the design space. The max-

imum contraction area ratio, (A0/A1)max, is computed in the reference using an

empirical relation for the inlet kinetic energy efficiency and an approximation of

the total pressure recovery of the cone inlet.129 The data points from the graphical

representation of the maximum capture area are listed in Table 3.2. The geomet-
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Table 3.1: Capture Area Curve-Fit Coefficients

Mach 6 Inlet

M∞ a6,M∞ b6,M∞ c6,M∞ αmin,6,M∞

3 -0.50381096e-3 0.0 0.62345823 —

4 -0.92407015e-3 0.0 0.74196463 —

5 -0.13984166e-2 0.0 0.87788013 —

6 -0.10985493e-2 -0.10907126e-1 1.0184941 1.4761375

7 -0.35091049e-2 0.27913499e-1 0.94327056 3.9772961

8 -0.30688169e-2 0.24114687e-1 0.96142167 5.6218745

Mach 7 Inlet

M∞ a7,M∞ b7,M∞ c7,M∞ αmin,7,M∞

3 -0.33911231e-3 0.0 0.55158020 —

4 -0.81493479e-3 0.0 0.66104957 —

5 -0.11643156e-2 0.0 0.77025633 —

6 -0.16964511e-2 0.0 0.89003444 —

7 -0.14945940e-2 -0.99412493e-2 1.0146784 1.24389711

8 -0.41068464e-2 0.29071650e-1 0.94410395 3.5394128

Mach 8 Inlet

M∞ a8,M∞ b8,M∞ c8,M∞ αmin,8,M∞

3 -0.19959882e-3 0.d0 0.49430093 —

4 -0.67340679e-3 0.d0 0.58781782 —

5 -0.11137407e-2 0.d0 0.69188719 —

6 -0.14964941e-2 0.d0 0.79606842 —

7 -0.22808079e-2 0.d0 0.89916475 —

8 -0.19133374e-2 -0.60703864e-2 1.0059433 0.78489235
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Table 3.2: Maximum Contraction Ratio

M∞ 3 4 5 6 7 8

(A0/A1)max 3.15567 5.20698 7.15743 8.36812 8.50000 7.98145

ric contraction ratio, (Ai/A1), is then calculated over the operating design space of

M∞ = [4:8] and α = [0:10◦] using cubic interpolation of the nodes of Table 3.2 for

(A0/A1)max and the analysis in the previous subsection for (A0/Ai). The minimum

value of the geometric contraction ratio over the entire operating regime is then used

as the maximum allowable geometric contraction ratio. Mathematically,129

(
Ai
A1

)
max

= min

[(
A0

A1

)
max

/

(
A0

Ai

)]
. (3.6)

3.1.1.3 Thrust Coefficient

The thrust coefficient is then calculated after the contraction ratio, (A0/A1),

and base area-to-capture area, (A5/A0), values are computed at the free stream

Mach number and angle of attack of interest. The contraction ratio, (A0/A1), is

calculated by multiplying the capture area ratio in Sec. 3.1.1.1 at a given M∞ and α

with the maximum geometric contraction ratio in the previous subsection, as shown

in Eq. (3.3) on pg. 89. And the base area-to-capture area ratio is computed by

Eq. (3.4) again using the (A0/Ai) at the desired Mach number and angle of attack.

The thrust coefficient (referenced to the capture area) is calculated as a func-

tion of (A0/A1) by the polynomial curve fits in App. B. The reference plots results

for combustor expansion ratios, (A4/A2), of 2, 3, or 4. However, only the combustor
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expansion ratios of 3 and 4 were curve fit in this work, since they are shown to

prevent thermal choking over a much larger operating range than the (A4/A2) = 2

results. Also, this work assumes a value of (A4/A2) = 3 to allow for increased inter-

nal vehicle volume over (A4/A2) = 4, and because the higher combustor expansion

ratio has little effect on the thrust levels.

The thrust coefficient is calculated at each of the four closest base area-to-

capture ratio (A5/A0), freestream Mach number, and equivalence ratio nodes for

the given combustor expansion ratio, (A4/A2) = 3. After the thrust coefficients

are calculated for the 64 nodes (4 (A5/A0), 4 M∞, and 4 ER), these values are

re-referenced to the base area by

(
T

q∞A5

)
=

(
T

q∞A0

)
ref

/

(
A5

A0

)
node

(3.7)

and interpolated cubicly to the computed (A5/A0) at a given freestream Mach num-

ber and angle of attack, i.e. (A5/A0) = f(M∞, α). This process results in 16 thrust

coefficients at 4 M∞ and 4 ER nodes, which are then cubicly interpolated to the

desired free stream Mach number and lastly the equivalence ratio. Thus, the thrust

coefficient is

CT ≡
(

T

q∞A5

)
= f (M∞, α, ER) . (3.8)

3.1.2 Aerodynamics

The aerodynamics forces modeled in the reference129 are comprised of three

major sources: the profile drag coefficient, the inlet additive drag coefficient, and

the normal force coefficient. Each component, and the profile drag subcomponents,
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will be presented in detail in the following subsections. Many of the missile dimen-

sions will also be presented in the profile drag subsection, and used again in the

computation of the missile volume in Sec. 3.2.1.

3.1.2.1 Profile Drag Coefficient

The profile drag is the drag present at all angles of attack and is sometimes

referred to as the axial force. For this model, the profile drag is the sum of the wave

drag caused by the 6◦ cowl angle, the leading edge drag due to the 0.254 cm (0.1”)

bluntness of the cowl, the exterior body (skin) friction, and the wave and friction

drag from the four tail surfaces. Each of the profile drag components are detailed

below along with any assumptions made by the reference source.129

Cowl Wave Drag

The cowl wave drag is caused by the oblique shock from the 6◦ cowl angle

assumed by the reference.129 The cowl wave drag was calculated using “a finite

difference solution of the hyperbolic equations of motion for a steady inviscid flow,”

(Waltrup et al.,129 pg. 8-5) which is the same technique used for the off-design

capture area and inlet additive drag calculations.

The cowl wave drag is normalized by the axially projected cowl area, Acx ,

and plotted in the report as a function of freestream Mach number for design Mach

numbers from 4 to 8 in intervals of 1. The cowl wave drag exhibits two different

trends, one when the inlet is undersped (M∞ ≤ Mdes) which is a function of Mdes,
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and one when the inlet is oversped (M∞ > Mdes) which is independent of Mdes. The

reason for this behavior is that when the inlet is flying slower than the shock-on-

cowl-lip inlet-design Mach number, the initial shock off the 12.5◦ conical forebody

is outside the cowl and the cowl sees a flow field dependent on this initial shock.

When the inlet is oversped, the forebody shock is inside the cowl and the cowl wave

drag is just a function of the freestream flow.

For a Mach 6 designed inlet flying at a freestream Mach number lower than

Mach 6, the curve-fit cowl wave drag is

(
CDcw
Acx

× 104 1

in2

)
ref

= 0.020828418M2
∞ − 0.28005453M∞ + 2.3813260. (3.9)

For an undersped Mach 7 inlet, the curve-fit cowl wave drag is

(
CDcw
Acx

× 104 1

in2

)
ref

= 0.012006681M2
∞ − 0.19139457M∞ + 2.0817794. (3.10)

And for the Mach 8 inlet flying below Mach 8, the curve-fit cowl wave drag is

(
CDcw
Acx

× 104 1

in2

)
ref

= 0.011497814M2
∞ − 0.18189467M∞ + 1.9660494. (3.11)

Lastly, for an oversped inlet with any Mdes, the curve-fit cowl wave drag is

(
CDcw
Acx

× 104 1

in2

)
ref

= 0.024652242M2
∞ − 0.44480915M∞ + 3.2354515. (3.12)

The reference’s presented cowl wave drag coefficient is then re-referenced to the base

area in terms of metric units by:

CDcw ≡
(
Dcw

q∞A5

)
=

(
CDcw
Acx

× 104 1

in2

)
ref

(Acx)
(
10−4

)(in
m

)2

, (3.13)

where 1 inch equals 0.0254 meters, and Acx is the cowl area projected axially.
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Figure 3.2: Scramjet Missile Front View

The axially projected cowl area is simply the difference between the base area

and the inlet area, as shown in Fig. 3.2 of the front view of the modeled vehicle.

From the given reference base area,

A5 = πr2
5 = 0.785m2, (3.14)

(using the reference base radius r5 = 0.5 m) and the user defined geometric design

parameter, (A5/Ai), the axial cowl area is

Acx = A5 − Ai = A5

(
1− (A5/Ai)

−1
)
. (3.15)

For this work, (A5/Ai) is assumed to be 1.1 so that the inlet is able to capture nearly

all of the incoming flow. Therefore, Acx = 0.0714 m2 for the scramjet designs in this

dissertation.
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Cowl Leading Edge Drag

The cowl leading edge drag is caused by the bow shock that is formed from the

reference’s assumed cowl lip diameter of 0.254 cm (0.1”).129 The way in which the

reference calculates this quantity is not reported, but it is graphically represented as

a function of M∞ for the three inlet design Mach numbers and referenced to the cowl

leading edge area. The relationships follow linear trends that include a sharp drop

in the drag coefficient when the inlet is near the on-design Mach number because

the initial cone shock is on the cowl at this condition. The drag is then essentially

constant when the inlet is oversped because the cone shock no longer affects the

cowl’s leading edge drag.

For Mach 6 on-design inlets, the curve fits for the cowl leading edge drag are

(
CDle
Acle

× 103 1

in2

)
ref

=


0.98467225M∞ + 2.5726761, M∞ ≤ 5.89020

−14.454016M∞ + 93.270209, else

−0.0033134638M∞ + 3.8911951, M∞ ≥ 6.17372

(3.16)

Similarly, the Mach 7 designed inlet curve fits are

(
CDle
Acle

× 103 1

in2

)
ref

=


0.97465857M∞ + 2.8212132, M∞ ≤ 6.8018133

−15.048172M∞ + 111.33128, else

−0.0042186311M∞ + 3.8984785, M∞ ≥ 7.1323400

(3.17)
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And the Mach 8 inlet polynomial-fit calculations are

(
CDle
Acle

× 103 1

in2

)
ref

=


0.97924800M∞ + 2.9478391, M∞ ≤ 7.7620733

−15.065858M∞ + 127.50517, else

0.00093863892M∞ + 3.8535373, M∞ ≥ 8.1997933

(3.18)

The cowl leading edge drag is then referenced to only the base area by

CDle ≡
(

Dle

q∞A5

)
=

(
CDle
Acle

× 103 1

in2

)
ref

(Acle)
(
10−3

)(in
m

)2

, (3.19)

The cowl lip leading edge area, Acle , is calculated by multiplying the circum-

ference of the inlet and the diameter of the cowl lip leading edge:

Acle = (2π ri) dle, (3.20)

where dle = 0.00254 m (0.1”) and the inlet radius is computed from the inlet area,

ri =
√
Ai/π =

√
A5

π(A5/Ai)
, (3.21)

which is 0.477 m following the (A5/Ai) = 1.1 assumption in this work.

Body Friction Drag

The reference computes the exterior surface’s body (skin) friction “assuming a

smooth adiabatic wall with a fully developed turbulent boundary layer” (Waltrup et

al.,129 pg. 8-20). The reference’s body friction is normalized by the wetted body area

and plotted as a function of freestream Mach number. The quadratic polynomial

curve fit for the skin friction is(
CDf
Abw
× 106 1

in2

)
ref

= 0.028936761M2
∞ − 0.83731029M∞ + 6.3921607. (3.22)
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Figure 3.3: Detail of Scramjet Missile Cowl

And in metric units, referenced to the base area:

CDf ≡
(

Df

q∞A5

)
=

(
CDf
Abw
× 106 1

in2

)
ref

(Abw)
(
10−6

)(in
m

)2

(3.23)

where Abw is the wetted body area that consists of the sum of the cowl surface area

and the constant radius, “cylinder,” surface area.

The cowl surface area is found by using the reference’s 6◦ cowl angle129 and

trigonometry to be

Acsurf = π (ri + r5)
√
L2
cowl + (r5 − ri)2, (3.24)

where the cowl length is

Lcowl =
r5 − ri
tan 6◦

, (3.25)

and the square root term in Acsurf is the hypotenuse of the cowl.

The “cylinder” surface area is the length of the missile excluding the cone
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Table 3.3: Shock Angles for 12.5◦ Cone

Mach Number 6 7 8

Conical Shock Angle, ◦ 16.63569672 15.90885885 15.41968796

forebody and cowl lengths multiplied by the circumference of the base:

Acylsurf = (2π r5)Lcyl, (3.26)

where

Lcyl = Ltotal − Li − Lcowl, (3.27)

Ltotal = 4.0 m is assumed in the reference,129 Lcowl is calculated from Eq. (3.25), and

Li is calculated from the on-design shock on cowl lip condition (i.e. whenM∞ = Mdes

and α = 0). From geometry, see Fig. 3.5 on pg. 111, the inlet length is

Li =
ri

tan βs
, (3.28)

where βs is the oblique conical shock angle from the 12.5◦ cone forebody. The shock

angle for the shock on cowl lip condition is a function of the on-design Mach number

and the cone half-angle (12.5◦). βs can be found by numerically solving the Taylor-

Maccoll equations from an initial shock angle to the cone surface and then iterating

the shock angle until the computed cone surface angle converges to the desired cone

angle (See Anderson,133 Ch. 10 for details). For this work, an online java program

developed by Chris Hood134 at the University of Colorado, Boulder was used for

these computations and the results are summarized in Table 3.3.
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Now, using Eq. (3.24)–(3.28) and Table 3.3, the body wetted area is

Abw = Acsurf + Acylsurf . (3.29)

Tail Drag

The last profile drag contributions come from the wave and skin friction

from the four tail fins. The reference computes the tail wave drag based on two-

dimensional flow over a 15◦ wedge with a 55◦ sweep angle using the freestream Mach

number.129 The tail’s 0.2581 m2 (400 in2) surface area skin friction is computed with

the same assumptions as the body friction above. From these assumptions, many

higher-order effects are omitted including the flow distortion from the forebody, cowl

and missile body, and the tail’s contribution to the lift force. With these omissions,

the tail wave drag, Dtw, and friction drag, Dtf , are only a function of the freestream

Mach number:

(
Dtw

q∞A5

× 103 1

in2

)
ref

= 0.010669708M2
∞ − 0.21896876M∞ + 9.8720353, (3.30)

(
Dtf

q∞A5

× 103 1

in2

)
ref

= 0.026468258M2
∞ − 0.75490733M∞ + 5.6466228, (3.31)

The actual tail drag coefficients referenced to the base area (CDtw and CDtf ) are

found by multiplying the curve fit calculations by 10−3 and (in/m)2.
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Profile Drag Summary

To recapitulate, the total profile drag coefficient for a given inlet design Mach

number and current freestream Mach number is

CD,0 ≡
(

D0

q∞A5

)
= CDcw + CDle + CDf + CDtw + CDtf , (3.32)

where Eq. (3.13), (3.19), (3.23), (3.30), and (3.31) are used for the components of

the profile drag.

3.1.2.2 Additive Drag Coefficient

The inlet additive drag is the wave drag caused by the conical shock off of

the inlet forebody. This quantity is calculated by integrating the pressure along the

streamtube behind the forebody shock using the same numerical procedure as the

capture area and cowl wave drag computations.129

The reference129 plots the additive drag coefficient normalized by the inlet

area for various design Mach number (Mdes = 4, 6, 7, 8), freestream Mach number

(M∞ = 3–8 in intervals of 1), and angle of attack (α = 0◦, 5◦, 10◦) configurations as

a function of inlet “smile” angle. The report129 states that full axisymmetric chin

inlets (φsmile = 360◦) are the most efficient configuration since they maximize mass

capture to the inlet, so only these inlets were curve fit and modeled.

For code implementation, the additive drag is calculated by quadratical inter-

polation from the design Mach number’s α node values, Table 3.4, to the desired

angle of attack at each of the M∞ nodes. These values are then cubicly interpolated

to the desired freestream Mach number. A constraint is also added to ensure the
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Table 3.4: Additive Drag Coefficient Data

Mach 6 Inlet

M∞ α = 0◦ α = 5◦ α = 10◦

3 0.0397868 0.0398905 0.0398908

4 0.0246806 0.0252112 0.0265942

5 0.0117020 0.0122356 0.0141486

6 0.0 0.00372576 0.00787309

7 0.0 0.0 0.0

8 0.0 0.0 0.0

Mach 7 Inlet

M∞ α = 0◦ α = 5◦ α = 10◦

3 0.0491538 0.0491329 0.0496144

4 0.0342637 0.0349434 0.0372098

5 0.0215513 0.0225873 0.0250972

6 0.0102914 0.0112934 0.0148257

7 0.0 0.00395732 0.00901193

8 0.0 0.0 0.00610441

Mach 8 Inlet

M∞ α = 0◦ α = 5◦ α = 10◦

3 0.0565045 0.0561253 0.0548474

4 0.0417301 0.0425830 0.0454651

5 0.0298079 0.0307331 0.0341246

6 0.0186616 0.0201850 0.0241256

7 0.00881249 0.0109387 0.0154648

8 0.0 0.00130182 0.0108252
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additive drag coefficient is at least zero and never negative, as might be calculated

from the interpolation procedure.

After the interpolations, the additive drag is re-normalized from the inlet area

to the base area by

CDadd ≡
(
Dadd

q∞A5

)
=

(
Dadd

q∞Ai

)
ref

/

(
A5

Ai

)
, (3.33)

where the base area to inlet area ratio, (A5/Ai), is again one of the design parameters.

3.1.2.3 Normal Force Coefficient

The normal force coefficient is arguably the most deficient aspect of the aero-

dynamic model presented in the reference.129 The simple analytic relation for the

normal force coefficient is given as:

CN ≡
(

N

q∞A5

)
= (−0.3M∞ + 5.4)α, (3.34)

where α is in radians. This relation is said to be “representative of those computed

for other hypersonic missile designs,” Waltrup et al.,129 pg. 8-20. Improvements

to this normal force coefficient could include the effects from the geometric design

parameters and tail fin deflections. However, for the first order system analysis in

this work, this relation was assumed to reasonably accurate.

3.1.3 Code Validation

This subsection validates the implemented Fortran 90/95 program using the

previous two subsections’ curve-fit aerodynamics and propulsion with several ex-

ample calculations in the appendix of the JHU / APL reference.129 The reference
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Table 3.5: Scramjet Design Validation for M∞ = 4.0, α = 0.0◦, ER = 1.0

Parameter Code Reference Error, %

CDcw 0.028220 0.0281 0.4292

CDle 0.026047 0.0261 −0.2027

CDf 0.028290 0.0285 −0.7351

CDtw 0.009166 0.0092 −0.3600

CDtf 0.003050 0.0030 1.6828

CDadd 0.010327 0.0104 −0.7057

CD 0.105102 0.1053 −0.1879

CT 0.490926 0.4872 0.7647

calculations use a Mach 6 inlet design (Mdes = 6) and a base-to-inlet area ratio,

(A5/Ai), of 2.39 for the scramjet design parameters and investigates its Mach 4 and

8 performance. Specifically, the reference computes the drag and thrust coefficient

values for Mach 4, 0◦ α; Mach 8, 0◦ α; and Mach 8, 5◦ α conditions with an equiv-

alence ratio of 1.0. The trim equivalence ratio for the Mach 8, 5◦ angle of attack

cruise is also estimated in the reference. For all cases, the assumed operating de-

sign range was M∞ = [4:8] and α = [0:10◦], which dictates the maximum geometric

contraction ratio as discussed in Sec. 3.1.1.2.

The results of the example calculation for the Mdes = 6, M∞ = 4.0, 0.0

angle of attack, 1.0 ER condition are listed in Table 3.5. The drag coefficient

components, total drag coefficient, and thrust coefficient are listed for the Fortran

code’s calculated values, the reference’s values,129 and the percent error between the

two.† As shown in Table 3.5, the computed drag coefficient components are less than

†There are two typographical errors in the reference’s calculation of the drag coefficient.129
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Table 3.6: Scramjet Design Validation for M∞ = 8.0, α = 0.0◦, ER = 1.0

Parameter Code Reference Error, %

CDcw 0.022209 0.0221 0.4927

CDle 0.015460 0.0155 −0.2599

CDf 0.012472 0.0123 1.4006

CDtw 0.008803 0.0088 0.0358

CDtf 0.001301 0.0013 0.1025

CDadd 0.0 0.0 —

CD 0.060245 0.0600 0.4089

CT 0.198546 0.2043 −2.8166

1% in error except for the tail wave drag, which has a rather small contribution to the

overall drag coefficient. Thus, the overall CD error for this operating condition is only

−0.188% compared to the reference’s calculations. The thrust coefficient—which

requires more extensive curve-fitting and interpolation in the Fortran program—

produces a larger error of 0.765%.

The drag and thrust coefficient results for the Mach 8, 0◦ α, ER = 1.0 oper-

ating condition for the Mach 6 inlet design is listed in Table 3.6. The components

of the drag coefficient are typically under 1% in error, and the overall CD is over-

predicted by only 0.409% from the reference.129 The thrust coefficient, however, is

under-predicted 2.82% compared to the reference’s calculations. Considering the

The first typo is in the additive drag coefficient calculation. The reference reports that “CDadd
=

0.248/2.39 = 0.0104,” which is mathematically incorrect. The first value should be 0.0248. The

second typo is with the total drag coefficient, CD. The reference reports it as 0.1503 instead of

0.1053, which is the value that is computed if the individual drag elements are summed.
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error in computing the numerous curve-fits and interpolating between the 64 thrust

coefficient nodes (see Sec. 3.1.1.3), the approximately 3% error is quite good. Fur-

thermore, this under-prediction allows for a slightly conservative estimate of the

scramjet’s thrust level.

The third example calculation presented in the reference129 is for a Mach 8

cruise at a 5◦ angle of attack and ER = 1.0. The only difference in the total drag

coefficient between this case and the M∞ = 8, α = 0 case in Table 3.6 is the induced

drag caused by the normal force coefficient. This drag term is

CDα = CN sin(α), (3.35)

which equals 0.0228 for M∞ = 8 and α = 5◦, where CN is calculated by Eq. (3.34)

on pg. 105. Therefore, the total drag coefficient as computed by the implemented

code is 0.830627, the reference’s CD = 0.828, and the error is 0.3172%. The thrust

coefficient for the M∞ = 8, α = 5◦ configuration is the same as for the Mach 8, α =

0◦ case, so the error is again −2.82%.

Lastly, the reference129 estimates the trim equivalence ratio, ER∗, for the

M∞ = 8, α = 5◦ condition. The trim ER as computed by the reference is the

value when CD = CT at the given M∞ and α. As defined in this manner, the

Fortran program’s ER∗ = 0.448 and the reference’s trim equivalence ratio is 0.437

thus resulting in a 2.52% error between the two results. This error is primarily

attributed to this dissertaion’s code under-predicting the thrust coefficient as shown

in Table 3.6.

Overall, the comparison with the Fortran program’s calculation of the aerody-
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Figure 3.4: Scramjet Missile Volume Definitions

namic and propulsion forces are in excellent agreement with the example calculations

in the source reference.129 The total drag coefficients are predicted within 1% and

the thrust coefficients are at worse in error of less than 3%.

3.2 Mass Model

The mass model implemented in this work is based off the parametric model

used by Starkey in his doctoral work.135 The model assumes that the initial total

vehicle mass, m(t0), is comprised of only fuel and a constant density structure that

ideally compensates for all subsystem masses that would be included on the vehicle.

The division of the two mass components is defined by the fuel volume fraction,

(Vf/Vtotal), and an assumption for the fuel density, ρf , and structural density, ρstr:

m(t0) = (1− (Vf/Vtotal))Vtotalρstr + (Vf/Vtotal)Vtotalρf . (3.36)

The total volume, Vtotal, is calculated from summing the internal volume of

the scramjet missile. A summary of the different scramjet volumes is illustrated in

Fig. 3.4. The cone volume consists of the 12.5◦ forebody, Vcone,1, and the internal
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portion of the isolator, Vcone,2. The isolator volume is a sum of the 6◦ cowl volume,

Vcowl = Viso,1, the constant area cowl volume, Viso2 , and the exterior portion of the

isolator, Viso,3. The combustor volume, Vcomb, nozzle volume, Vnoz, and the volume

of the four tail fins, Vfin, are the other components of the total vehicle volume, Vtotal.

The following subsection details how each of these components are evaluated.

Section 3.2.2 then presents a discussion on the fuel choice used in this work and

how the structural density, ρstr, and fuel volume fraction, (Vf/Vtotal), were chosen

to meet the design goals of a approximately 1,100 kg initial mass and 25–30% initial

fuel mass fraction.

3.2.1 Internal Volume Calculation

This subsection details the component volume calculations for the modeled

scramjet. The dimensions and volumes are described in the following order: cone

inlet, isolator and cone rear, combustor, nozzle, and tail fins. A summary of these

volumes concludes this subsection.

Inlet

The inlet is a 12.5◦ cone whose maximum radius, rcone, is calculated by first

computing the isolator area:

A1 =

(
Ai
A1

)−1

max

Ai = π(r2
i − r2

cone), (3.37)

where (Ai/A1)max is the maximum geometric contraction ratio as defined in Eq. (3.6)

on pg. 93, and the second equality is a result of the geometry, as shown in Fig. 3.5.
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Figure 3.5: Detail of Scramjet Missile Inlet

Solving the second equality for the maximum cone radius yields

rcone =
√
r2
i − A1/π. (3.38)

The length of the inlet cone from the tip to where the flow begins to be turned

downwards is also found from geometry:

Lcone =
rcone

tan(12.5◦)
. (3.39)

The volume of the 12.5◦ cone prior to turning the flow downward is then analytically

Vcone,1 =
π

3
r2
coneLcone. (3.40)

Isolator / Rear of Cone

The volume of the 6◦ cowl from the inlet radius, ri, to the base radius, r5, is

Vcowl = Viso,1 =
π

3
Lcowl(r

2
i + rir5 + r2

5)− πr2
iLcowl, (3.41)

where Lcowl is calculated in Eq. (3.25) on pg. 100. The volume of the constant

cross-sectional area portion of the cowl/isolator between Li + Lcowl and Lcone, see

Fig. 3.5 and 3.6, is

Viso,2 = π
(
r2

5 − r2
i

)
(Lcone − Li − Lcowl) . (3.42)
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Figure 3.6: Detail of Scramjet Missile Isolator

The constant-area isolator dimensions are calculated with the assumption that

the rear of the cone forebody (i.e. the inner portion of the isolator) is a quadratic

polynomial:

riso,in(s) = aiso

(
s

Liso

)2

+ biso

(
s

Liso

)
+ ciso, (3.43)

where s is the axial length of the isolator beginning where the cone directs the flow

down (s = [0:Liso]), see Fig. 3.6. The coefficients for the isolator’s inner geometry are

a result of known constraints and several assumptions to make the isolator appear

similar to other JHU/APL designs.136,137 The first constraint is that the initial value

of the isolator equals the maximum cone radius:

riso,in(0) = rcone = ciso. (3.44)

Then substituting Eq. (3.44) into (3.43) and adding the constraint that the cone

radius at the end of the isolator is zero:

riso,in(Liso) = aiso + biso + rcone = 0 → aiso = −biso − rcone. (3.45)

Now it is assumed that biso = 0, thus aiso = −rcone, to make the isolator look

similar to the schematic presented in a 2001 JHU/APL design137 which uses the
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same methodologies as the original 1982 reference.129 Substituting these coefficients

into the isolator quadratic equation,

riso,in(s) = −rcone
(

s

Liso

)2

+ rcone. (3.46)

Furthermore, the isolator length is assumed to be

Liso = 2Li − Lcone, (3.47)

again so that the overall missile dimensions approximately correspond to the 2001

JHU/APL paper by Waltrup.137

Now that the interior curve of the isolator is defined, the exterior curve is

calculated using the isolator’s constant area assumption. Therefore,

A1 = const = π
(
r2
iso,out − r2

iso,in

)
→ riso,out(s) =

√
A1/π + riso,in(s)2, (3.48)

where riso,in(s) is given by Eq. (3.46). A close up of the isolator geometry for the

Mach 7 inlet design is shown in Fig. 3.6 on pg. 112.

The volume of the rear of the cone is numerically integrated by

Vcone,2 =

∫ Liso

0

πr2
iso,in(s)ds

=

Liso∑
s=0

[
π

(
riso,in(si) + riso,in(si−1)

2

)2

(si − si−1)

]
, (3.49)

which is essentially summing small segments of a cylinder, and si is the ith element

of the 100-element equispaced s array from zero to Liso. The isolator’s outer volume

is similarly numerically integrated by

Viso,3 = πr2
5Liso −

∫ Liso

0

πr2
iso,out(s)ds

=

Liso∑
s=0

{
π

[
r2

5 −
(
riso,out(si) + riso,out(si−1)

2

)2
]

(si − si−1)

}
. (3.50)
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Combustor

The combustor is modeled as a linear expansion specified by (A4/A2) from the

isolator exit to the nozzle entrance. The length of the combustor is calculated using

the assumption that the combustor wall area is 40 times that of the combustor

entrance area, i.e. (Awall/A2) = 40, as given in the primary reference.129 The

combustor wall’s surface area is then

Awall = π (r2 + r4)

√
L2
comb + (r4 − r2)2, (3.51)

where r2 = riso,out(Liso) and the combustor exit radius, r4, is

(
A4

A2

)
=
πr2

4

πr2
2

→ r4 = r2

√
(A4/A2) (3.52)

Solving Eq. (3.51) for the combustor length gives

Lcomb =

√[
Awall

π(r2 + r4)

]2

− (r4 − r2)2, (3.53)

and the combustor volume is then

Vcomb = πr2
5Lcomb −

π

3
Lcomb

(
r2

2 + r2r4 + r2
4

)
. (3.54)

The figures in this chapter show the modeled combuster with an expansion ratio,

(A4/A2), of three with a Mach 7 designed inlet.

Nozzle

The nozzle is modeled as a quadratic polynomial in a manner similar to the

internal isolator geometry with two known boundary conditions, rnoz(0) = r4 and
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rnoz(Lnoz) = r5, and a known length:

Lnoz = Ltotal − (Lcone + Liso + Lcomb) . (3.55)

Using the quadratic polynomial equation,

rnoz(snoz) = anoz

(
snoz
Lnoz

)2

+ bnoz

(
snoz
Lnoz

)
+ cnoz, (3.56)

where snoz = [0 : Lnoz], substituting in the boundary conditions, and solving for the

first and third coefficients yields

anoz = r5 − bnoz − r4 (3.57)

cnoz = r4. (3.58)

The midpoint value is then

rnoz(Lnoz/2) =
1

4
anoz +

1

2
bnoz + cnoz =

1

4
(r5 + bnoz + 3r4) =

1

4
(3r5 + r4) , (3.59)

where the last equality is an assumed constraint so that the nozzle geometry is

qualitatively similar to typical nozzles. Solving Eq. (3.59) for the second coefficient

yields:

bnoz = 2 (r5 − r4) . (3.60)

All three coefficients are then substituted into Eq. (3.56) to produce the geometry

of the nozzle boundary:

rnoz(snoz) = (r4 − r5)

(
snoz
Lnoz

)2

+ 2 (r5 − r4)

(
snoz
Lnoz

)
+ r4. (3.61)

The volume of this portion of the missile is the volume of an external cylinder
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Figure 3.7: Scramjet Missile Fin Detail

of radius r5 and length Lnoz minus the internal volume of the nozzle:

Vnoz = πr2
5Lnoz −

∫ Lnoz

0

πr2
noz(snoz)dsnoz (3.62)

= πr2
5Lnoz −

Lnoz∑
snoz=0

π

(
rnoz(snoz,i) + rnoz(snoz,i−1)

2

)2

(snoz,i − snoz,i−1),

where snoz,i is the ith element in the 100-element equally spaced array from zero to

Lnoz, and Lnoz as defined in Eq. (3.55).

Tail Fins

The volume of the four tail fins is the final component of the total volume of

the modeled scramjet missile. Following the reference’s assumptions of a 15◦ wedge

angle,129 the length of the fin at the tip is

Lfin,tip =
tfin

tan(15◦)
, (3.63)

where tfin is the thickness of the fin and Fig. 3.7 shows the fin dimensions. The

reference129 also assumes a 5% thickness for the tail. For this work it is assumed
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that this constraint is in relation to the length of the fin at its base, so

tfin = 0.05Lfin, (3.64)

where Lfin is the tail fin’s length where it is mounted to the missile body. Substi-

tuting the fin thickness into the tail’s length at the tip, Eq. (3.63), yields

Lfin,tip =
0.05

tan(15◦)
Lfin. (3.65)

The width of the tail fin, wfin, is computed from the reference’s assumption

that the fins have a 55◦ sweep angle.129 Using the tangent of the sweep angle and

the difference in the fin length at the base and tip, one has

tan(55◦) =
Lfin − Lfin,tip

wfin
→ wfin =

1− (0.05/ tan(15◦))

tan(55◦)
Lfin, (3.66)

where Eq. (3.65) has been used for Lfin,tip. From the reference,129 the total planform

area of the four fins is 400 in2, so each fin’s planform area is 100 in2 or 0.06452 m2.

Using the dimensions calculated above, the planform area is

Afin = 0.5 (Lfin + Lfin,tip)wfin =
Lfinwfin

2

(
1 +

0.05

tan(15◦)

)
=

L2
fin

2 tan(55◦)

[
1−

(
0.05

tan(15◦)

)2
]
. (3.67)

Rearranging, the fin base length can be solved for as:

Lfin =

√
2Afin tan(55◦)

1− (0.05/ tan(15◦))2 . (3.68)

With Eq. (3.64), (3.66), and (3.68), the volume of a single tail fin (which is the same

for all missile designs) is

Vfin = 0.5Lfin,tipwfintfin + 0.5 (Lfin − Lfin,tip)wfintfin

= 0.5Lfinwfintfin = 0.025L2
finwfin = 0.00119 m3, (3.69)
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where Lfin = 0.437 m from Eq. (3.68) and wfin = 0.249 m from Eq. (3.66).

Internal Volume Summary

The total scramjet volume is calculated by

Vtotal =
2∑
i=1

Vcone,i +
3∑
i=1

Viso,i + Vcomb + Vnoz + 4Vfin, (3.70)

where Eq. (3.40)–(3.42), (3.49), (3.50), (3.54), (3.63), and (3.69) are used for the

various component volumes.

3.2.2 Determination of Mass Model Design Parameters

Now that the total missile volume can be calculated for a given Mdes, (A5/Ai),

and (A4/A2), there are three quantities that need to be determined to calculate the

initial mass of the modeled scramjet using Eq. (3.36) on pg. 109: the fuel density,

ρf , average structural density, ρstr, and fuel volume fraction, (Vf/Vtotal).

JP-10 is assumed as the fuel for the scramjet missile. This fuel type was chosen

based on Edwards’ 2003 survey paper on aerospace propellants138 which states that

JP-10 is “the only airbreathing-missile fuel in operational use by the United States at

the present time.” Furthermore, the fuel assumed in the JHU/APL report (RJ-5),129

had “cost and freeze-point limitations [that] prevented field use.” In hindsight, JP-7,

which was used by the Mach 3+ SR-71138 and proposed for the Mach 5 X-51,18 may

have proven to be a better fuel choice because of its improved regenerative cooling

properties over JP-10. Regardless, JP-10’s density of 940 kg/m3 is used for the

scramjet mass model in this dissertation (Horning,139 pg. 131). JP-10’s hydrogen-
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Figure 3.8: Scramjet Fuel Mass Fraction vs. (Vf/Vtotal)

to-carbon ratio, (H/C), is 1.61 which results in a stoichiometric fuel-to-air ratio of

0.07066 using (Heiser and Pratt,140 pg. 112):

fstoich =
36 + 3(H/C)

103[4 + (H/C)]
, (3.71)

which assumes air is comprised of 79% nitrogen and 21% oxygen.

Four average structural densities are considered for the mass model: aluminum

(2,700 kg/m3), titanium (4,507 kg/m3), steel (7,850 kg/m3), and tungsten (19,255

kg/m3). Figure 3.8 plots the fuel mass fraction as a function of the fuel volume

fraction from 20–90% for the four structural densities using the relation

m(t0)

mf (t0)
=
mstr +mf (t0)

mf (t0)
=

(1− (Vf/Vtotal))

(Vf/Vtotal)

ρstr
ρf

+ 1, (3.72)

and the JP-10 fuel density. Billig states, “The mass fraction of propellant for a

rocket for a tactical missile is typically 50-70% of the initial weight as compared to

25-30% for the ramjet,” (Jensen and Netzer,141 pg. 12) so the modeled scramjet’s
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Figure 3.9: Scramjet Mass vs. (Vf/Vtotal), Mach 7 inlet

fuel mass fraction would ideally fall in this range, which is shown as dashed lines in

the figure.

The second design constraint considered in the determination of the mass prop-

erties of the scramjet model is its initial mass, m(t0). The initial mass for the Mach

7 inlet design is plotted as Fig. 3.9 for fuel volume fractions between 20 and 90% us-

ing Eq. (3.36) on pg. 109. The estimated initial masses of two JHU/APL hypersonic

missile designs (excluding their rocket booster masses) are plotted as dashed lines

in the figure. The Mach 7.5 SCRAM missile initial mass is approximated as 850 kg

and the Mach 4–6 Dual Combustor Ramjet (DCR) initial mass as 1,240 kg from

Waltrup et al.’s survey of U.S. Navy high speed air-breathing propulsion systems.142

Therefore, the second design constraint imposed is an initial wet mass of ∼1,100 kg

which is the average of these two designs.

From Fig. 3.9, it is apparent that the initial mass of the scramjet is quite
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sensitive to (Vf/Vtotal) near the m(t0) = 1,100 kg constraint. For an aluminum

structure, the fuel volume fraction would be less than 20% which causes a fuel

mass fraction of less than 10% as shown in Fig. 3.8. For a titanium structure,

the fuel volume is about 50% for an initial mass of 1,100 kg and the resultant fuel

mass fraction is 17.3%. A steel structure requires a 75% (Vf/Vtotal) to produce

a 1,100 kg initial mass and thus a 22% fuel mass fraction. Lastly, the tungsten

structure needs a fuel volume fraction over 90% to yield the desired initial mass,

which is deemed unreasonably high. Although none of the modeled densities meet

both design constraints, the titanium structure with a 50% fuel volume fraction was

chosen as a compromise between the two constraints.

3.2.3 Modeled Axisymmetric Hypersonic Missile Summary

The primary design parameters used to model the hypersonic, axisymmetric

scramjet missiles in this work are listed in Table 3.7. The top portion of the table

summarizes the main geometric design parameters for the vehicles. The middle

portion summarizes the fuel and mass properties of the vehicle. And the bottom

portion summarizes the cruise dynamic pressure and the operating ranges used to

calculate the maximum contraction ratio, (Ai/A1)max, and the gridded aerodynamic

and propulsion data for the trim calculations in the next section. Table 3.8 lists the

resultant maximum contraction ratios and the operating point that sets this value,

the total volume of the three missile designs, the initial fuel mass, and the initial

vehicle mass. Again, the fuel mass fraction is 17.3%.
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Table 3.7: Modeled Scramjet Design Parameters

Design Parameter Symbol Value Units

Total Length Ltotal 4.0 m

Base (Reference) Radius r5 0.25 m

Base-to-Inlet Area Ratio (A5/Ai) 1.1 —

Combustor Expansion Area Ratio (A4/A2) 3.0 —

Combustor Wall-to-Entrance Area Ratio (Awall/A2) 40.0 —

Fuel Density (JP-10) ρf 940.0 kg/m3

Fuel Hydrogen-to-Carbon Ratio (JP-10) (H/C) 1.61 —

Stoichiometric Fuel-to-Air Ratio (JP-10) fstoich 0.07066 —

Structural Density (Titanium) ρstr 4507 kg/m3

Fuel-to-Total Volume Ratio (Vf/Vtotal) 0.5 —

Cruise Dynamic Pressure q∞ 101325 Pa

Freestream Mach Number Range M∞ 4–8 —

Angle of Attack Range α 0–10 ◦

Equivalence Ratio Range ER 0.25–1 —

Table 3.8: Scramjet Missile Design Summary

Mdes (Ai/A1)max Total Volume Fuel Mass Total Mass

6 7.0178 at M∞ = 4.0, α = 0◦ 0.3887 m3 182.7 kg 1058.5 kg

7 7.8768 at M∞ = 4.0, α = 0◦ 0.4034 m3 189.6 kg 1098.7 kg

8 7.9814 at M∞ = 8.0, α = 0◦ 0.4102 m3 192.8 kg 1117.1 kg
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3.3 Trim State Calculation

Detailed trim conditions are used to compute the trim pitch, roll, and equiv-

alence ratio profiles along the 1,000 km cruise trajectory as fuel is burned and the

vehicle compensates for changes in the gravity vector. The trim Euler angles are

then finite differenced to produce the body-to-navigation frame angular rates that

are a portion of the overall simulated truth gyro signal. The accelerometer spe-

cific force measurements are more easily simulated for cruise since they are analytic

functions of the trajectory.

The assumed cruise trajectories in this work are due East at a constant velocity

and altitude, see Sec. 2.4. Therefore, the yaw angle of the vehicle is held at 90◦

throughout the duration of the simulation. Also, because of the constant altitude

assumption, the flight path angle, γfpa, of the missile is always zero so that the pitch

angle, θb, is equivalent to the angle of attack, i.e. θb ≡ α + γfpa = α. The pitch

angle, roll angle, and equivalence ratio are then the three variables used to trim

the scramjet’s accelerations at each simulation epoch. Because of the low fidelity

aerodynamics of the tail fins, and the absence of a high-fidelity mass model, the

moment dynamics are not trimmed in this work.

The next subsection derives the trim state calculations used in this work start-

ing with the free-body diagram of the missile and the vehicle dynamics. The fol-

lowing subsection presents the results of finite differencing the trim pitch and roll

angles along with the simulated navigation-frame specific forces.
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Figure 3.10: Scramjet Missile Free Body Diagram

3.3.1 Free Body Diagram & Cruise Dynamics

The dynamics of the missile are computed in the North-East-Down navigation

frame (see Sec. 4.1.3 for details on the NED coordinate frame). The forces acting

on the vehicle are the thrust, drag, and normal force as shown in Fig. 3.10. The

gravitational, centripetal, and Coriolis accelerations are accounted for separately

in the specific force term of the vehicle dynamics, see Eq. (3.84) on pg. 128. The

scramjet thrust is assumed to be aligned with the body’s line of symmetry which is

inclined from the Easterly cruise by the pitch angle (or equivently α). The vehicle

drag is defined as the sum of the profile drag and additive drag and is opposite of

the velocity vector, i.e. in the West direction. The normal force is nominally in

the body frame’s “up” direction, but may also be rolled North or South to compen-

sate for latitudinal gravitational variations during cruise. For all aerodynamic and

propulsion force calculations, it is assumed that the vehicle is flying at a constant

1-atmosphere dyanmic pressure as discussed in Sec. 2.4.

The sum of these forces in the navigation frame are calculated as follows. The

thrust is aligned predominately in the East direction, but also has a small component
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in the negative Down (“up”) direction, so that

Tn = T (M∞, α, ER) (0, cosα, − sinα)T , (3.73)

where the functional dependence of Mach number, angle of attack, and equivalence

ratio on thrust is explicitly shown, and the angle of attack is used in place of the

pitch angle to coincide with the standard aerodynamic/propulsion nomenclature in

the majority of this chapter. The drag is simply in the West, and is a function of

the freestream Mach number and angle of attack (due to the additive drag):

Dn = (0, −D(M∞, α), 0)T . (3.74)

Lastly, the normal force has a small component in the West direction due to the

vehicle’s angle of attack and its “up” component has a small portion of lift in the

North/South axes:

Nn = N(M∞, α) (− cosα sinφb, − sinα, − cosα cosφb)
T . (3.75)

Then setting the sum of these forces equal to the mass times the specific forces in

the n-frame:

maN = −N(α) cosα sinφb (3.76a)

maE = T (α,ER) cosα−D(α)−N(α) sinα (3.76b)

maD = −T (α,ER) sinα−N(α) cosα cosφb, (3.76c)

which is a set of three nonlinear equations with three unknowns (α, φb, and ER).

The freestream Mach number dependence is dropped above because it will be as-

sumed that the vehicle cruises at the constant, on-design Mach number throughout
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the simulation. Also, the vehicle mass and specific forces on the left hand side of

the equations are known quantities for a given position and velocity by Eq. (3.84)

discussed in the following subsection. Therefore, the trim states (α∗, φ∗b , ER
∗) are

computed by solving Eq. (3.76a)–(3.76c) at each epoch along the trajectory given

the calculated man.

The trim roll angle, φ∗b , can be calculated as a function of the trim angle of

attack, α∗, using Eq. (3.76a):

φ∗b = sin−1

(
−maN

N(α∗) cosα∗

)
. (3.77)

The trim angle of attack (or trim pitch angle) is found by solving Eq. (3.76b)

and (3.76c) for the thrust term and then dividing the Down equation from the East

equation to remove the dependence on equivalence ratio:

tanα =
−N(α) cosα cosφb −maD
N(α) sinα +D(α) +maE

. (3.78)

Rearranging so that the roll angle term is isolated on the left hand side results in

−N(α) cosα cosφb = (N(α) sinα +D(α) +maE) tanα +maD. (3.79)

Squaring this equation, and then using the fact that sin2 φb + cos2 φb = 1 with

Eq. (3.77) for the sine term, the roll dependence can be removed so that the entire

expression is only a function of the trim angle of attack:

N2(α) cos2 α cos2 φb = N2(α) cos2 α

[
1−

(
maN

N(α) cosα

)2
]

N2(α) cos2 α− (maN)2 = [(N(α) sinα +D(α) +maE) tanα +maD]2 .(3.80)

Then rearranging slightly,

N2(α) cos2 α = [(N(α) sinα +D(α) +maE) tanα +maD]2 + (maN)2 , (3.81)
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which is essentially a relationship for matching the lift and weight of the missile at

the current epoch. This equation is only a function of the angle of attack and is

numerically solved for the trim value, α∗, using a bisection method to bound the

trim α from gridded aerodynamics tables of N(α)M∞=Mdes
and D(α)M∞=Mdes

and a

false position method with cubic interpolation to refine the value.

The equivalence ratio is computing using Eq. (3.76b) after being rearranged

slightly to

T (α∗, ER) cosα∗ = N(α∗) sinα∗ +D(α∗) +maE. (3.82)

This equation is effectively a higher-order T = D constraint. The thrust’s trim

equivalence ratio is numerically calculated using a bisection and false position meth-

od with cubic interpolation and α∗ from Eq. (3.81).

3.3.2 Simulated Pitch and Roll Rates

In order to calculate the trim states, the specific forces, an, must be computed

at each epoch along the trajectory. These quantities can be found from rearranging

Eq. (4.47) on pg. 151 in terms of the specific force vector:

an = v̇n + (Ωn
in + Ωn

ie) vn − gn. (3.83)

For the constant altitude, constant Eastern velocity trajectory assumed, v̇n = 0,

vn = (0, vE, 0)T , and φ̇ = ḣ = 0. Then substituting these conditions into the

expanded velocity dynamics of Eq. (4.49) on pg. 152 yields the trajectory’s specific
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force equation in the n-frame:

an =


aN

aE

aD

 =



(
λ̇+ 2ωe

)
vE sinφ− gN

−gE(
λ̇+ 2ωe

)
vE cosφ− gD

 , (3.84)

where λ̇ = vE/ ((Ne + h) cosφ). The details of these derivations and how the ele-

ments are calculated are explained in Ch. 4. The gravity acceleration vector, gn, is

calculated using the 360 degree and order EGM96 spherical harmonic model and the

modified geopot97 code as explained in Sec. 2.4. Table 2.2 on pg. 72 summarizes

the cruise altitudes and velocities for the 1-atmosphere dynamic pressure, Mach 6,

7, and 8 designs.

Then, starting with the initial scramjet masses (Table 3.8 on pg. 122), the

first trim state is computed from Eq. (3.81), (3.77), and (3.82). Using the trim

equivalence ratio, ER∗, and the capture area at the design Mach number (which

also equals the freestream Mach number) and trim angle of attack:

A∗0(Mdes,M∞, α) =

(
A0

Ai

)
Mdes,M∞,α∗

(
Ai
A5

)
A5, (3.85)

where (A5/Ai) = 1.1 in this work and A5 = 0.785 m2 using r5 = 0.25 m from the

JHU/APL reference,129 the fuel mass flow rate is

ṁf =

(
ṁf

ṁ0

)
ṁ0 = (ER∗fstoich) (ρ∞vEA

∗
0) , (3.86)

where the stoichiometric fuel-to-air ratio is calculated by Eq. (3.71) on pg. 119 as

0.07066 and the freestream density at altitude is computed using the 1976 standard

atmosphere model.126 The mass of the scramjet is next reduced by Euler integration
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at the 20 Hz simulation time step:

m(t+ ∆t) = m(t)− ṁf∆t. (3.87)

The trim states are then recalculated and this process is repeated for the entire

1,000 km cruise trajectory.

The trim state and mass profiles are stored in memory and the pitch (angle

of attack) and roll rates are computed by first-order forward finite differences of

their respective trim values. The trim states, angular rates, and the mass profiles

are written out as a text file for the 1,000 km downrange at the 20 Hz simulation

time step. This file is then read in by the INS simulation and used as part of the

simulated gyro signals.

The total simulated truth gyro signals are a sum of the navigation-to-inertial

and the body-to-navigation frame rotations:

ωbib = ωbin + ωbnb = Cb
nω

n
in + ωbnb. (3.88)

where Cb
n is computed using the INS truth quaternion as discussed in Sec. 4.3.3.1,

ωnin is calculated by Eq. (4.23) on pg. 144, and ωbnb is found by Eq. (4.33) on pg. 147

using the roll and pitch rates (φ̇b and θ̇b) calculated in this section. As a reminder,

the yaw angle, ψb, is a constant 90◦ to ensure the Eastern flight, so its rate is always

zero, i.e. ψ̇b(t) = 0.

Figure 3.11 plots the Mach 6, 7, and 8 trim roll and pitch rate profiles along

with the trim equivalence ratio profile over the 1,000 km simulation. The high

gravitational gradient variation trajectory results are shown in red solid lines and

the low Γn variation trajectory is shown in blue dashed lines. (Section 2.4 details the

129



(a)
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Figure 3.11: Trim Roll Rate, Pitch Rate, and Equivalence Ratio (a) Mach 6 (b)

Mach 7 (c) Mach 8
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Table 3.9: Scramjet Initial Trim Angles and Excess Fuel

Mdes Γn Var. α∗(t0) φ∗b(t0) mf (tf )

6 High 7.4721◦ -4.6525◦ 2.70 kg

7 High 8.2970◦ -6.2255◦ 54.38 kg

8 High 8.9666◦ -8.1503◦ 6.51 kg

6 Low 7.4417◦ -3.7964◦ 2.86 kg

7 Low 8.2524◦ -5.0580◦ 54.43 kg

8 Low 8.9021◦ -6.6034◦ 7.33 kg

two trajectories). The trim roll rates are quite insensitive to the simulation Mach

number because they compensate for the (approximately same) small North/South

deflections of the gravity vector. The trim pitch rate is negative throughout the

simulation since the vehicle pitches down as fuel mass is expended and the lift

required to match the weight of the vehicle is decreased. The equivalence ratio

also decreases along the trajectory since the thrust level increases and the drag

decreases as α∗ decreases and also because the reduced vehicle mass requires less

thrust compensation, as shown in Eq. (3.82).

Table 3.9 lists the initial trim pitch, α(t0), and roll, φ∗b(t0), angles along with

the excess fuel at the end of the simulation. The initial trim angles increase with

higher Mach number primarily due to the increased initial mass of the higher speed

vehicles which requires more lift and thus a higher α∗. The trim roll angle is coupled

to the trim α by Eq. (3.77) on pg. 126 so that as the trim pitch angle increases the

vehicle must roll more to compensate for the gravity vector deflection towards the

South. The excess fuel mass is listed to show that the 17.3% fuel mass fraction is
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Figure 3.12: Trim Specific Forces, Mach 7

sufficient for each of the cruise simulations.

Figure 3.12 plots the simulated specific forces along the 1,000 km trajectory for

the Mach 7 design. The Mach 6 and 8 systems are identical to these plots with the

only difference being the bias of the North and Down specific forces caused by the

(λ̇+ 2ωe)vE term in Eq. (3.84) on pg. 128. The variation of the signals in Fig. 3.12

are attributed solely to the gravitational field since the other terms in the specific

force calculations are constant along the trajectory and the centripetal acceleration

is constant for a constant latitude and altitude cruise.

3.4 Chapter Summary

This chapter details the hypersonic missile model used for the majority of

the navigation simulations in Ch. 6. The first section consists of extensive curve

fits from a JHU/APL reference129 and an interpolation methodology to calculate

the on- and off-design thrust, drag, and normal forces for several axisymmetric

missile designs. (Appendix B includes additional thrust coefficient curve fits for

the propulsion analysis.) Section 3.1.3 validates the implemented Fortran code to
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the reference’s129 sample calculations and shows that the model used in this work

is accurate to within 1% of the drag coefficient and 3% of the thrust coefficient

computations.

Section 3.2 extends the original JHU/APL report to include a simple para-

metric mass model. Section 3.2.1 details the assumptions and calculations used to

compute the total missile volume. Section 3.2.2 then explains the design constraints

and assumptions used to determine the missile model’s mass properties of 50% JP-

10 fuel and 50% titanium structure by volume. The three scramjet designs (M∞ =

6, 7, and 8) are finally summarized in Sec. 3.2.3.

Section 3.3 incorporates the off-design angle of attack and equivalence ratio

aerodynamic and propulsion performance developed in Sec. 3.1 and the mass model

of Sec. 3.2 to compute the trim states along the 1,000 km cruise. Section 3.3.1

derives new trim relations to balance the forces of the vehicle using the angle of

attack (pitch angle), roll angle, and equivalence ratio as the trim variables. Then

Sec. 3.3.2 explains how the vehicle is numerically integrated along the 1,000 km

range trajectory as mass is being expended and the vehicle is pitching, rolling, and

throttling to maintain constant altitude and velocity cruise conditions. This section

also details how the pitch (angle of attack) and roll angles are finite differenced to

produce the navigation-to-body rotation rates needed for a portion of the simulated

gyro signals in the INS dynamics, which are explained in the following chapter.

Furthermore, the trim accelerometer specific forces are shown in this section, which

are also derived thoroughly in the next INS chapter.
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Chapter 4

Inertial Navigation System

In this chapter, the inertial navigation system (INS) model is derived. The

chapter begins with a summary of the relevant coordinate frames needed and the

transformations between these frames. Then the navigation equations used to nu-

merically integrate the inertial measurements into velocity, position, and orientation

information are derived. Lastly, the inertial measurement unit (IMU) characteristics

are given along with the equations used to model their error behavior.

4.1 Coordinate Frames

4.1.1 Earth-Centered-Inertial Frame

The Earth-centered inertial, or “i-”, frame is defined in such a way that New-

ton’s laws of motion hold. According to his First Law, a body at rest (or constant

velocity) will remain at rest (or constant velocity) in the absence of applied forces.

And, according to his Second Law, the time rate of change of momentum is equal

to the sum of forces applied:

d

dt

(
miṙ

i
)

= Fi, (4.1)
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where mi is the inertial mass of the object, ṙi is its linear velocity in the inertial

frame, and Fi is the sum of the applied forces in the inertial frame. If the mass is

constant, the more common

mir̈
i = Fi (4.2)

expression is found, where r̈ is now the linear acceleration of the object.

In order to use classical navigation theory, Newton’s Second Law must be

modified with a gravitational term. This modification is necessitated by the fact

that the gravitational field is a kinematic force that induces accelerations that are

independent of mass, which causes different behavior than the externally applied

force, Fi, that Newton described (Jekeli,1 pg. 4). Thus, Eq. (4.2) becomes

mir̈
i = Fi +mgg

i (4.3)

where the second term is the force due to the gravitational field from Earth’s mass

attracting the user. Specifically, mg is the gravitational mass and g is the gravi-

tational vector. Now, invoking the Weak Equivalence Principle, which essentially

states that an object will accelerate at the same rate regardless of its mass, one can

equate the inertial and gravitational masses mi = mg = m. This gives the relation:

r̈i = ai + gi, (4.4)

where ai = F/m is the specific force or acceleration due to applied forces in the in-

ertial frame. Furthermore, a is the sensed quantity measured by the accelerometers

because the proof mass in the accelerometer behaves identically to linear and gravi-

tational accelerations (except in opposite signs). For a more thorough discussion of

these concepts, the reader may consult Jekeli1 pg. 3–6.
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Figure 4.1: Earth-Centered-Inertial Coordinate System, from Ref. [115]

Now, the inertial frame is defined as follows for terrestrial navigation. The

Earth-Centered-Inertial (ECI) frame is a non-rotating rectilinear coordinate system

with its origin located at the Earth’s center (See Fig. 4.1, from Vallado,115 pg. 157).

The 1-axis (Î in the figure) points to the mean vernal equinox, the 3-axis (K̂)

is aligned with the Earth’s spin axis through the North pole, and the 2-axis (Ĵ)

completes the right hand orthogonal coordinate system. Technically, this frame is

not truly inertial. Although the coordinate system does not rotate with respect to

the stars, the frame’s center is accelerating due to the Earth’s rotation around the

Sun.

4.1.2 Earth-Centered-Earth-Fixed Frame

The Earth-Centered-Earth-Fixed (ECEF) or “e-” frame is similar to the iner-

tial frame except it rotates with the Earth. The coordinate system origin is still at
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the Earth’s center and the 3-axis is aligned with the spin axis through the North

pole; however, the 1-axis now points through the mean Greenwich meridian at the

equator. The 2-axis completes a right hand orthogonal frame. This frame is partic-

ularly notable for its use within the Global Positioning System’s satellite broadcast

(App. D).

4.1.3 Navigation Frame

The Navigation or “n-” frame is a local geodetic system that will serve as the

primary frame of interest (See Fig. 4.2). The frame has its origin at the vehicle’s

center of mass and it’s 1-axis points North, 3-axis points down (perpendicular to the

local Earth ellipsoid’s surface), and the 2-axis completes the right hand convention

such that it points East. Other n-frame variations exist such as East-North-Up and

South-East-Up; however, North-East-Down is the most common orientation and

will be used throughout this work.

4.1.4 Body Frame

The Body or “b-” frame is also a local system whose origin is located at the

vehicle’s center of mass. The 1-axis is aligned to point through the front, the 2-axis

through the right, and the 3-axis down through the floor, as shown in Fig. 4.3. The

inertial measurement units (IMUs) used in this study are all assumed to be strap-

down systems where the accelerometers and gyros are aligned the b-frame axes. As

discussed later in Sec. 4.5.1, the truth accelerometer and gyro coordinate systems
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Figure 4.2: Navigation Frame (North-East-Down) Coordinate System, modified

from Ref. [115]

Figure 4.3: Body Frame Coordinate System and Euhler Angles, from Ref. [145]
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were originally perturbed slightly from the true body frame to add uncompensated

errors to the system. Unfortunately, this addition caused may of the INS/GGI sim-

ulations to diverge, so these errors were decided to be removed for the simulations.

4.2 Coordinate Transformations

4.2.1 Fundamental Concepts

This subsection explains the concepts used in the subsequent sections which

describe specific coordinate transformations. First, transformation (direction co-

sine) matrices and their properties will be discussed. Then Euler angles and their

small angle approximations will be presented. This section will conclude with the

definition of the time rate of change of a coordinate transformation matrix.

Assume a single point defined in two frames so that its three-element position

vector is defined as rs in the first arbitrary frame and rt in the second arbitrary

frame. The transformation matrix from the first frame to the second, Ct
s, is defined

to satisfy

rt = Ct
sr
s. (4.5)

And the elements of the transformation matrix are

ci,j = esi · etj = cos(θ), (4.6)

where esi is the unit vector along the ith axis of the s-frame, etj is similarly defined,

and θ is the angle between esi and etj. Therefore, the elements of the transformation

matrix are equivalent to the cosine of the angles between the frame axes, and thus
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commonly referred to as a direction cosine matrix.

The transformation matrix is also an orthogonal matrix and has the prop-

erty that its inverse is equivalent to its transpose, which is also equivalent to the

transformation matrix from the t-frame to the s-frame. Mathematically,

(
Ct
s

)−1
=
(
Ct
s

)T
= Cs

t . (4.7)

The transformation matrix could also be formulated as a series of specific

rotations about three axes. Assuming the first rotation is α about the 1-axis of

the s-frame, the second rotation is β about the newly defined “2-axis,” and the last

rotation is γ about the newest “3-axis,”

Ct
s = R3(γ)R2(β)R1(α) (4.8)

=


cos γ sin γ 0

− sin γ cosα 0

0 0 1




cos β 0 − sin β

0 1 0

sin β 0 cos β




1 0 0

0 cosα sinα

0 − sinα cosα



=


c(γ)c(β) c(γ)s(β)s(α) + s(γ)c(α) −c(γ)s(β)c(α) + s(γ)s(α)

−s(γ)c(β) −s(γ)s(β)s(α) + c(γ)c(α) s(γ)s(β)c(α) + c(γ)s(α)

s(β) −c(β)s(α) c(β)c(α)

 ,

where c() denotes cosine and s() denotes sine in the last equality. The rotation

angles can also be calculated from a given transformation matrix using its elements:

α = tan−1

(
−c3,2

c3,3

)
, β = sin−1 (c3,1) , γ = tan−1

(
−c2,1

c1,1

)
. (4.9)

If α, β, and γ are assumed to be small angles, then cos θ ≈ 1 and sin θ ≈ θ
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(where θ is an arbitrary small angle). Neglecting second-order small angles,

Ct
s ≈


1 γ −β

−γ 1 α

β −α 1

 =


1 0 0

0 1 0

0 0 1

−


0 −γ β

γ 0 −α

−β α 0


≈ I −Ψ, (4.10)

where I is a 3 × 3 identity matrix and Ψ is the skew symmetric matrix of ψ =

(α, β, γ)T which is equivalent to ψ × (), see Eq. (4.18). Using Eq. (4.7),

Cs
t =

(
Ct
s

)T ≈ I + Ψ (4.11)

for small rotation angles.

The transformation of a second order tensor from one frame to another requires

two direction cosine matrix multiplications. This can be proven as follows. Starting

with an arbitrary linear equation in the arbitrary s-frame,

ys = Asxs (4.12)

and the transformations for each vector,

xs = Cs
t x

t; ys = Cs
t y

t, (4.13)

where the t-frame is also arbitrary, one can substitute these relations into Eq. (4.12)

above to get

Cs
t y

t = AsCs
t x

t. (4.14)

Then using the property that the inverse of the transformation matrix is equal to

its transpose, Eq. (4.7), yt can be solved as

yt = Ct
sA

sCs
t x

t = Atxt. (4.15)
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Therefore, pre- and post-multiplication of a coordinate transformation matrix is

needed to rotate a tensor from one frame to another, i.e.,

At = Ct
sA

sCs
t . (4.16)

The last concept to discuss is the time rate of change of Ct
s. It can be shown

that (Jekeli,1 pg. 21)

Ċt
s = Ct

sΩ
s
ts, (4.17)

where Ωs
ts is the skew symmetric matrix for the transformation matrix’s rotation

rate ωsts. If ωsts = (ω1, ω2, ω3)T , then Ωs
ts is equivalent to ωsts × () and defined as

Ωs
ts =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (4.18)

The terminology of the angular rate subscripts and superscripts should be clarified at

this point. An arbitrary rotation rate, ωtsr, is the angular velocity of the arbitrary

r-frame with respect to the s-frame, but with coordinates in the t-frame. The

terminology for an arbitrary skew symmetric matrix, Ωt
sr, is the same.

4.2.2 ECEF to ECI Transformation

Neglecting Earth’s polar axis motion and any nutation of its spin axis, the rota-

tion between the Earth-Centered-Earth-Fixed (ECEF) and Earth-Centered-Inertial

(ECI) frames can be estimated as a single rotation about the Earth’s spin axis, i.e.,

the 3-axis of both frames (Jekeli,1 pg. 22). The rotation rate of the Earth can also

be assumed a constant, ωe, and the total rotation between the e-frame and i-frame
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is then ωet. The rotation rate vector from ECEF to ECI, with coordinates in the

e-frame is

ωeie = (0, 0, ωe)
T , (4.19)

and the transformation matrix from the i-frame to the e-frame is

Ce
i = R3(ωet) =


cosωet sinωet 0

− sinωet cosωet 0

0 0 1

 . (4.20)

4.2.3 Navigation to ECEF Transformation

The navigation frame can be transformed to the e-frame by two rotations.

The first rotation is about the n-frame’s 2-axis (East) to align the n-frame’s 3-axis

with the Earth’s spin axis (ECEF 3-axis). A rotation about the spin axis is then

performed to align the 1- and 2- axes. Denoting the geodetic latitude as φ and

geodetic longitude as λ, the n-frame to e-frame transformation matrix is

Ce
n = R3(−λ)R2(

π

2
+ φ) =


− sinφ cosλ − sinλ − cosφ cosλ

− sinφ sinλ cosλ − cosφ sinλ

cosφ 0 − sinφ

 . (4.21)

Solving Eq. (4.17) for the rotation rate vector gives

ωnen =
(
λ̇ cosφ, − φ̇, − λ̇ sinφ

)T
, (4.22)

where φ̇ is the angular rate of latitude and λ̇ is the longitude rate.

The rotation rate of the navigation frame with respect to the inertial frame

will also be used. This rotation rate is calculated by noting ωnin = ωnie + ωnen and
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ωnie = Cn
eω

e
ie. Therefore, using Eq. (4.19), (4.21), and (4.22),

ωnin =
(

(λ̇+ ωe) cosφ, − φ̇, − (λ̇+ ωe) sinφ
)T

. (4.23)

To conclude this subsection, the relationship between the navigation frame

position coordinates (φ, λ, h) and the ECEF position coordinates will be given.

This transformation will be useful in calculating the GPS measurements and the

geometric dilution of precision (GDOP). This relationship is (Torge,143 pg. 99–100

or Jekeli,1 pg. 23) 
re1

re2

re3

 =


(Ne + h) cosφ cosλ

(Ne + h) cosφ sinλ

(Ne(1− e2) + h) sinφ

 , (4.24)

where Ne is the radius of curvature in the prime vertical plane and e2 is the first

eccentricity of the Earth ellipsoid squared. For completeness, Me is the radius of

curvature in the meridian, and all three properties are defined as

Ne =
aa√

1− e2 sin2 φ
, (4.25)

e2 =

√
a2
e − b2

e

a2
e

= 2fe − f 2
e , (4.26)

where ae is Earth’s semimajor axis, be is the semimajor axis, fe is the flatness of

Earth’s ellipsoid, and

Me =
ae(1− e2)

(1− e2 sin2 φ)3/2
. (4.27)

Figure 4.4 illustrates several of these parameters with reference to a simplified Earth

ellipsoid, from Jekeli,1 pg. 23.
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Figure 4.4: Coordinate System Transformation, from Ref. [1]

Table 4.1: World Geodetic System 1984 Properties

Parameter Name Symbol WGS84 Value

Semi-Major Axis ae 6,378,137.0 m

Semi-Minor Axis be 6,356,752.3142 m

First Eccentricity Squared e2 6.694 379 990 14 × 10−3

Reciprocal of Flattening 1/fe 298.257 223 563

Earth’s Gravitational Constant GM 3.986 004 418 × 1014 m3/s2

Earth’s Rotation Rate ωe 7.292 115 0 × 10−5 rad/s
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The values for the Earth ellipsoid, defined by the Department of Defense’s

World Geodetic System 1984 (and used in the EGM96 spherical harmonic model)

are summarized in Table 4.1.113

4.2.4 Body to Navigation Transformation

The body to navigation frame transformation is comprised of three rotations.

The first rotation is a negative roll (−φb) about the b-frame’s 1-axis, followed by a

negative pitch (−θb) rotation about the new 2-axis, and concluded with a negative

yaw (−ψb) rotation about the newest 3-axis. Since matrix multiplication is not

communicative (i.e., AB 6= BA), the Euler angles of this transformation (roll, pitch,

and yaw) are defined by the order of rotations above, as shown in Fig. 4.3 on pg. 138.

Mathematically, the body to navigation rotation matrix is

Cn
b = R3(−ψb)R2(−θb)R1(−φb), (4.28)

or when expanded:

Cn
b =


c(ψb)c(θb) c(ψb)s(θb)s(φb)− s(ψb)c(φb) c(ψb)s(θb)c(φb) + s(ψb)s(φb)

s(ψb)c(θb) s(ψb)s(θb)s(φb) + c(ψb)c(φb) s(ψb)s(θb)c(φb)− c(ψb)s(φb)

−s(θb) c(θb)s(φb) c(θb)c(φb)

 ,

(4.29)

where c() denotes cosine and s() denotes sine. The Euler angles can also be found

using the Cn
b coefficients, similar to Eq. (4.9), by

φb = tan−1

(
c3,2

c3,3

)
, θb = −sin−1 (c3,1) , ψb = tan−1

(
c2,1

c1,1

)
. (4.30)
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The relationship between the Euler angle rates and the rotation matrix rates

are also based on the specific rotation order. If b1 is defined as the frame that θb

rotates about and b2 as the frame that ψb rotates about, the transformation matrix

can be rewritten as

Cn
b = Cn

b2
Cb2
b1
Cb1
b . (4.31)

The rotation rate of the matrix can also be decomposed into the three rotations due

to each of the Euler angle rates (φ̇b,θ̇b,ψ̇b):

ωbnb = ωbnb2 + ωbb2b1 + ωbb1b = Cb
b1
Cb1
b2
ωb2nb2 + Cb

b1
ωb1b2b1 + ωbb1b

= Cb
b1
Cb1
b2


0

0

ψ̇b

+ Cb
b1


0

θ̇b

0

+


φ̇b

0

0

 . (4.32)

Using Eq. (4.28) and (4.31), it can be shown that Cb1
b2

= R2(θb) and Cb
b1

= R1(φb).

Then, substituting back in and arranging, the rotation rate of the body-to-navigation

frame transformation matrix is

ωbnb =


1 0 − sin θb

0 cosφb cos θb sinφb

0 − sinφb cos θb cosφb




φ̇b

θ̇b

ψ̇b

 , (4.33)

where the Euler angle rates are given by the time rate of change of the trim profiles

as discussed in Sec. 3.3.2.

Sec. 4.3.3.1 dicusses the quaternion equivalent to this section, which is used

for more stable numerical integration.
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4.3 Inertial Navigation Equations

In this section, the inertial navigation equations are derived and their nu-

merical mechanization is presented. The navigation equations illustrate how the

measured specific forces and angular rates are integrated into meaningful position,

velocity, and attitude information. The derivation of the equations are first pre-

sented for an arbitrary frame and then specified to the n-frame. Quaternions are

also discussed as a means of integrating the body to navigation rotation matrix.

Lastly, the classical fourth-order Runge-Kutta algorithm is described as it is used to

integrate the inertial navigation system (INS) states and the rotation quaternion.

4.3.1 Arbitrary Frame Equations

Before focusing on the rotating n-frame navigation equations, the dynamic

equations in an arbitrary frame will be investigated. This subsection will thus

illuminate the acceleration sources present for any possible coordinate system. The

next subsection will then use these results in the derivation of the n-frame navigation

equations that were implemented in this work.

The derivation starts with a point in an arbitrary frame, ra, and the transfor-

mation from an initial arbitrary frame to an inertial frame, Ci
a, so that

ri = Ci
ar
a. (4.34)

Then, using the chain rule to differentiate Eq. (4.34) with respect to time gives

ṙi = Ci
aΩ

a
iar

a + Ci
aṙ
a, (4.35)
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where Eq. (4.17) on pg. 142 is used for the rotation matrix derivative term. Taking

the derivative with respect to time again and arranging gives

r̈i = Ci
ar̈
a + 2Ci

aΩ
a
iaṙ

a + Ci
a

(
Ωa
iaΩ

a
ia + Ω̇a

ia

)
ra = ai + gi, (4.36)

where Eq. (4.4) on pg. 135 is used for the second equality. Solving for the arbitrary-

frame acceleration now gives

r̈a = −2Ωa
iaṙ

a −
(

Ωa
iaΩ

a
ia + Ω̇a

ia

)
ra + aa + ga, (4.37)

where aa ≡ Ca
i a

i and ga ≡ Ca
i g

i. The first term in Eq. (4.37) is the Coriolis

acceleration due to an object having a velocity in a rotating frame. The first part

of the parenthetic term is the centrifugal acceleration felt by the object as the

frame rotates, and the second term in the parenthesis is due to the frame’s angular

acceleration.

Equation (4.37) is a second order differential equation describing the acceler-

ation of a system that has the current velocity, ṙa, and position states, ra, being

forced be an aa and ga. Most second order systems are solved by splitting the system

into two first order systems as such:

d

dt
ṙa = −2Ωa

iaṙ
a −

(
Ωa
iaΩ

a
ia + Ω̇a

ia

)
ṙa + aa + ga,

d

dt
ra = ṙa. (4.38)

The system states (position and velocity, along with the transformation matrix) can

now be solved using a numerical integration algorithm for first order systems (Sec.

4.3.3). For strapdown accelerometers, the specific force in the a-frame is calculated
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by transforming the accelerometer readings in the b-frame to the arbitrary frame

with the current estimated Ca
b rotation matrix:

aa = Ca
b a

b. (4.39)

The rotation matrix, Ca
b , is integrated according to Eq. (4.17) on pg. 142, and the

rotation rate vector is given by

ωbab = ωbib − Cb
aω

a
ia, (4.40)

where ωbib is the gyro measurement and ωaia is the calculated rotation rate of the

arbitrary frame to the inertial with coordinates in the a-frame using the current INS

states.

4.3.2 Navigation Frame Equations

This section uses the results from the previous section to derive the North-

East-Down (n-frame) navigation equations. The navigation frame mechanization is

noticeably different than other mechanizations1,2 (namely the i-frame or e-frame)

because the velocity variables, vn = (vN , vE, vD)T , are not the time rate of change

of the position variables, rn = (φ, λ, h)T . Instead, the n-frame velocities are defined

as

vn = Cn
e ṙe, (4.41)

where ṙe is the ECEF velocity vector. The n-frame position is similarly defined.

Taking the derivative of Eq. (4.41) and using Eq. (4.17) for the rotation matrix

derivative,

v̇n = Cn
e Ωe

neṙ
e + Cn

e r̈e. (4.42)
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Substituting Eq. (4.37) on pg. 149 with the arbitrary frame now being the ECEF

frame, noting that the Earth rotates at a constant rate (Ω̇e
ie = 0) and, by definition,

ṙe = Ce
nv

n, we now have

v̇n = Cn
e Ωe

neC
e
nv

n − 2Cn
e Ωe

ieC
e
nv

n − Cn
e Ωe

ieΩ
e
ier

e + an + gn, (4.43)

where an = Cn
e ae and gn = Cn

e ge. Next, it can be shown that Cn
e Ωe

neC
e
n = Ωn

ne and

similarly, Cn
e Ωe

ieC
e
n = Ωn

ie using Eq. (4.16) on pg. 142. By inspection, one also has

Ωn
ne = −Ωn

en. So,

v̇n = − (Ωn
en + 2Ωn

ie) vn + an + gn, (4.44)

where

gn ≡ gn − Cn
e Ωe

ieΩ
e
ier

e, (4.45)

which is the sum of the gravitational acceleration due to mass attraction and the

centrifugal acceleration, more commonly referred to as gravity. Lastly, we can rear-

range the angular rate matrices because Ωn
ie = Ωn

in + Ωn
ne, so

Ωn
en + 2Ωn

ie = Ωn
en + Ωn

ie + (Ωn
in + Ωn

ne)

= Ωn
en + Ωn

ie + (Ωn
in − Ωn

en)

= Ωn
ie + Ωn

in. (4.46)

Substituting back into Eq. (4.44), the velocity navigation equations are finally

v̇n = − (Ωn
in + Ωn

ie) vn + an + gn, (4.47)

where the gravity term is defined in Eq. (4.45).

The skew symmetric matrices that multiply the velocity vector are found as fol-

lows. The navigation frame to inertial frame rotation rate, ωnin, is given by Eq. (4.23)
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on pg. 144, and the ECEF to ECI rotation, ωnie, is calculated by multiplying the

transpose of Eq. (4.21) and ωeie from Eq. (4.19) on pg. 143. With the skew symmetric

definition, Eq. (4.18), the matrices are

− (Ωn
in + Ωn

ie) =


0 −(λ̇+ 2ωe) sinφ φ̇

(λ̇+ 2ωe) sinφ 0 (λ̇+ 2ωe) cosφ

−φ̇ −(λ̇+ 2ωe) cosφ 0

 . (4.48)

The velocity navigation equations are then

v̇n =


v̇N

v̇E

v̇D

 =


−(λ̇+ 2ωe)vE sinφ+ vDφ̇+ aN + gN

(λ̇+ 2ωe)(vN sinφ+ vD cosφ) + aE + gE

−vN φ̇− (λ̇+ 2ωe)vE cosφ+ aD + gD

 . (4.49)

The navigation equations for the position states are much simpler to derive.

Starting with the navigation to ECEF position coordinate transformation, Eq. (4.24)

on pg. 144, one substitutes the definitions of Ne, Eq. (4.25), and Me, Eq. (4.27).

Then differentiating with respect to time and pre-multiplying by Cn
e , the transpose

of Eq. (4.21), one has

vn =


vN

vE

vD

 =


φ̇(Me + h)

λ̇(Ne + h) cosφ

−ḣ

 . (4.50)

Solving for the time rate of change of latitude, longitude, and altitude, the position

navigation equations are:

ṙn =


φ̇

λ̇

ḣ

 =


vN

Me + h

vE
(Ne + h) cosφ

−vD

 . (4.51)

152



With the velocity navigation equations, Eq. (4.49), there are now six nonlinear

differential equations that will be used to integrate the accelerometer readings into

the navigation frame velocity and position components.

However, the strapdown IMUs are rigidly fixed to the body frame, so the rota-

tion matrix Cn
b must also be simultaneously computed to transform the accelerom-

eter measurements into the n-frame (by an = Cn
b ab). The differential equation

for this rotation matrix is given by Eq. (4.17) on pg. 142, which specified to the

body-to-navigation frame transformation is

Ċn
b = Cn

b Ωb
nb. (4.52)

The angular rates for the rotation rate are found by subtracting the calculated

navigation-to-inertial rate, ωnin (Eq. (4.23) on pg. 144), from the gyro measurement,

ωbib:

ωbnb = ωbib − Cb
nω

n
in. (4.53)

The specifics of the rotation matrix integration will be addressed in the mechaniza-

tion section (Sec. 4.3.3).

The gravity acceleration vector, Eq. 4.45 on pg. 151, is linearly interpolated

from the gridded, precomputed gravity map using the full 360 degree and order

EGM95 spherical harmonic model for the gravitational acceleration. The geopot97

program used for the spherical harmonic calculations adds the centrifugal potential,

acceleration, and gradients by default to give the full gravity quantities. For the

gravitational gradient portion of the precomputed maps, the centrifugal gradient

contribution was commented out from the source code. This was also done for the
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global gravitational gradient maps shown in this dissertation.

4.3.3 Navigation Mechanization

This subsection addresses the numerical integration of the body-to-navigation

frame transformation matrix and the six nonlinear navigation equations. The rota-

tion matrix integration is performed by transforming the matrix into a quaternion,

and a summary of its definition and use is presented first. The classical fourth-order

Runge-Kutta method used to simultaneously integrate the quaternion, velocity, and

position information is then described.

4.3.3.1 Body-to-Navigation Frame Quaternion

Quaternions are another way to present orientation information in lieu of a

transformation matrix. A quaternion is a four-element vector similar to a complex

number with three imaginary components. The three imaginary parts essentially

make up a single axis of rotation and the lone real part defines the magnitude of the

rotation about that axis.144,145 This is in contrast to the transformation matrix that

can be decomposed into three rotations about three orthogonal axes, see Eq. (4.8)

on pg. 140. (For a thorough survey of attitude represenations and their history, one

may consult Phillips et al.145,146)

The transformation between the rotation matrix and a quaternion is straight-

forward and will be given without derivation (See Jekeli,1 pg. 13–18 for a more

detailed discussion). If the ith row and jth column component of Cn
b is ci,j, then the
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quaternion equivalent is†

q =



1
2

√
1 + c1,1 + c2,2 + c3,3

(c2,3 − c3,2) / (4q1)

(c3,1 − c1,3) / (4q1)

(c1,2 − c2,1) / (4q1)


, (4.54)

where q1 is the first component of the quaternion and represents the magnitude of

the rotation. The remaining quaternion components represent the elements of the

single rotation axis. Given a quaternion, the equivalent transformation matrix is

can be found to be

Cn
b =


q2

1 + q2
2 − q2

3 − q2
4 2(q2q3 + q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) q2
1 − q2

2 + q2
3 − q2

4 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 − q1q2) q2
1 − q2

2 − q2
3 + q2

4

 , (4.55)

where qi is the ith component of the quaternion. The quaternion equivalent of the

rotation matrix time derivative is

q̇ =
1

2
Aqq, (4.56)

where Aq is the 4 × 4 skew symmetric matrix for the angular rate ωbnb, Eq. (4.53)

on pg. 153:

Aq =



0 ω1 ω2 ω3

−ω1 0 ω3 −ω2

−ω2 −ω3 0 ω1

−ω3 ω2 −ω1 0


, (4.57)

†This quaternion definition is based on Jekeli,1 and it should be noted that other references

may define the real and imaginary components of the quaternion in a slightly different manner.
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and where ωi is the ith component of ωbnb.

The body-to-navigation frame rotation matrix is integrated by first converting

the direction cosine matrix into a quaternion using Eq. (4.54). Equations (4.56),

(4.57), and (4.53) on pg. 153 for the calculated rotation rate are used to integrate the

quaternion elements simultaneously with the position and velocity states using the

Runge-Kutta algorithm in the next section. After the integration is completed, the

new quaternion is transformed back into a direction cosine matrix using Eq. (4.55).

4.3.3.2 Fourth-Order Runge-Kutta Integration

This subsection describes the algorithm used to integrate the velocity, position,

and attitude quaternion states. Numerical integration of a differential equation is

typically conducted by estimating the slope of the dynamical equation over a small

interval and then using an Eulerian update. The choice of how one estimates the

slope over the interval can be arbitrary, but the desire is to minimize the error

between the true and estimated slopes. The error is often found by taking the

Taylor series expansion of the function, and then a finite number of terms are used to

minimize the resultant Taylor series error. The most common numerical integration

algorithms are of the Runge-Kutta family.

All Runge-Kutta methods are of the form (Chapra and Canale,147 pg. 695):

xk+1 = xk + f(xk, tk,∆tk)∆tk, (4.58)

where xk is the system state vector to be numerically integrated, ∆t is the inte-

gration time step, and the subscripts denote the discrete time epoch. The term f
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is equivalent to the continuous dynamics of the system (i.e., ẋ) and is referred to

as the increment function, which may be an explicit function of the current states,

time, and time step. The increment function can also be envisioned as the estimated

slope between the state vector at two epochs. Assuming there is no explicit depen-

dence on time, as is the case for the dynamical systems in this work, and the time

step is constant, the Runge-Kutta increment functions have the form (Chapra and

Canale,147 pg. 695):

f(xk,∆t) = a1k1 + a2k2 + · · ·+ ankn, (4.59)

where the coefficients ai and the vectors ki (the slope evaluations at different con-

ditions) are chosen to minimize the Taylor series error.

The most popular Runge-Kutta method is the classical Fourth-Order method

(Chapra and Canale,147 pg. 701):

xi+1 = xi +
1

6
(k1 + 2k2 + 2k3 + k4) ∆t, (4.60)

and the slope evaluations are performed according to

k1 = f(xk)

k2 = f(xk +
1

2
k1∆t)

k3 = f(xk +
1

2
k2∆t)

k4 = f(xk + k3∆t). (4.61)

Thus, there are four slope evaluations for each integration interval. The first eval-

uation is done at the original point, the second and third slopes are calculated at

157



Figure 4.5: Fourth-Order Runge-Kutta Schematic, from Ref. [147]

the estimated midpoint, and the last slope is found from the estimated final point

(as represented in Fig. 4.5, from Chapra and Canale,147 pg. 701). These estimated

slopes are then linearly combined using Eq. (4.60) to find the state vector at the

new time epoch, xk+1, from Eq. (4.58) with fourth-order accuracy in time.

The state vector in this work, x, consists of the navigation position and veloc-

ity states (φ, λ, h, vN , vE, vD)T , the body-to-navigation frame quaternion, q, and the

IMU and GPS states, which will be described in Sec. 4.5.1 and D.4, respectively.

The slope evaluation vector, f , corresponds to the navigation equations given by

Eq. (4.49) on pg. 152 and (4.51) on pg. 152, the quaternion time derivative given

by Eq. (4.56) on pg. 155, and the IMU state rates in Sec. 4.5.2. The GPS states are

integrated slightly differently using Eq. (D.41) and (D.42) because of the process

noise added to these states. The gravity vector is also calculated at each slope eval-

uation for the given position using the stored gravity field map. And the simulated

IMU specific forces, Eq. (3.84) on pg. 128, and angular rates, Eq. (3.88), pg. 129,
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are assumed to be constant for each integration interval.

4.4 Inertial Navigation Error Equations

To derive the necessary linear error dynamics for the extended Kalman filter,

the navigation error equations will be differentially perturbed. This perturbation

technique follows the error definition in Eq. (C.38) on pg. 323, which can be rewritten

as

x̂(t) = x(t) + δx(t). (4.62)

This equation defines the estimated states, x̂, as the sum of the truth states, x,

and a linear perturbation, or error, from the truth, δx. It should be noted that

the δ operator is equivalent to the perturbation or linear error about the true non-

linear navigation equations. Also, the δ operator is communicative with the time

differential operator, d/dt (Jekeli,1 pg. 141).

4.4.1 Position Error Equations

The position error equations are derived by a linear perturbation of the position

navigation equations. To better explain the perturbation procedure, first take a

Taylor series expansion of the position dynamics, Eq. (4.51), about the true position

and velocity states and define this quantity as the estimated position dynamics:

˙̂r
n

= ṙn +

[
∂ṙn

∂rn

]
x=x̂

(r̂n − rn) +
1

2

[
∂2ṙn

(∂rn)2

]
x=x̂

(r̂n − rn)2 + · · ·

+

[
∂ṙn

∂vn

]
x=x̂

(v̂n − vn) +
1

2

[
∂2ṙn

(∂vn)2

]
x=x̂

(v̂n − vn)2 + · · · . (4.63)
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Then, taking only the first order terms and rewriting in terms of errors, the per-

turbed position dynamics are

˙̂r
n
− ṙn = δṙn = +

[
∂ṙn

∂rn

]
x=x̂

δrn +

[
∂ṙn

∂vn

]
x=x̂

δvn. (4.64)

Introducing the shorthand notation of Fȧb for the partial derivative matrix of ȧ with

respect to b, the error dynamics can be written as

δṙn = Fṙrδr
n + Fṙvδv

n. (4.65)

And the coefficient matrices for the partial derivatives of the position dynamics with

respect to position and velocity are

Fṙr ≡
∂ṙn

∂rn
=


∂φ̇
∂φ

∂φ̇
∂λ

∂φ̇
∂h

∂λ̇
∂φ

∂λ̇
∂λ

∂λ̇
∂h

∂ḣ
∂φ

∂ḣ
∂λ

∂ḣ
∂h

 , Fṙv ≡
∂ṙn

∂vn
=


∂φ̇
∂vN

∂φ̇
∂vE

∂φ̇
∂vD

∂λ̇
∂vN

∂λ̇
∂vE

∂λ̇
∂vD

∂ḣ
∂vN

∂ḣ
∂vE

∂ḣ
∂vD

 . (4.66)

For trajectories along an approximately constant latitude, the radii of curvature,

Me and Ne, are constant, and the coefficient matrices for the position error can be

derived as

Fṙr =


0 0 −vN

(Me + h)2

vE sinφ
(Ne + h) cos2 φ

0 −vE
(Ne + h)2 cosφ

0 0 0

 (4.67)

Fṙv =


1

Me + h
0 0

0 1
(Ne + h) cosφ

0

0 0 −1

 . (4.68)

For the attitude and velocity error dynamics that follow, the linear perturba-

tions will be calculated directly without an explicit Taylor series expansion.
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4.4.2 Attitude Error Equations

The errors in the attitude (i.e., the rotation matrix) equations will be ad-

dressed next because these results will be used in the velocity error derivations of the

following section. Three approaches are dominant in the literature to account for at-

titude errors: the ψ-angle,148,149 φ-angle,149,150 and quaternion formulations.151,152

The ψ-angle approach uses the attitude errors between the estimated and true body

frame while the φ-angle approach uses the angular errors between the navigation

frame and the estimated platform frame as its error states, which is more typi-

cally used for stabilized IMU suites. It has been shown that these two methods are

equivalent by simulation, and are analytically related by:149

φ = ψ + δθ, (4.69)

where δθ is the angular error between the estimated n-frame and true b-frame.

Between these formulations, the ψ-angle approach was chosen because it produces

simpler, and thus computationally faster, error dynamics.149,153

The quaternion formulation has also been shown to be equivalent to the φ-

angle error with an additional scale factor proportional to acceleration, which can

be removed by normalizing the quaternion.151,152 The quaternion formulation was

not chosen because its error dynamics are much more complicated than the other

two approaches and it requires four, instead of three, error states with the added

unit normalization constraint.

As mentioned above, ψ is the angular error between the estimated and true

body frames, therefore its derivation comes from a perturbation about the true
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body frame.1,148,153 Perturbing the body-to-navigation rotation matrix differential,

Eq. (4.52) on pg. 153, gives

δĊn
b = δCn

b Ωb
nb + Cn

b δΩ
b
nb. (4.70)

Also, if the estimated rotation matrix is a small rotation from the true Cn
b , then

according to Eq. (4.10) on pg. 141,

Ĉn
b = (I −Ψn)Cn

b = Cn
b −ΨnCn

b , (4.71)

where Ψn is the skew symmetric matrix representation of ψ × (), see Eq. (4.18) on

pg. 142. Using the definition that the rotation error is the estimated rotation minus

the truth, the body-to-navigation rotation error matrix is

δCn
b ≡ Ĉn

b − Cn
b = −ΨnCn

b . (4.72)

Now, differentiating this error equation with respect to time gives an alternative

relation for the rotation matrix error dynamics:

δĊn
b = −Ψ̇nCn

b −ΨnĊn
b = −Ψ̇nCn

b −ΨnCn
b Ωb

nb, (4.73)

where Eq. (4.52) on pg. 153 has been used for Ċn
b in the last equality. Equating

Eq. (4.70) and Eq. (4.73):

δCn
b Ωb

nb + Cn
b δΩ

b
nb = −Ψ̇nCn

b −ΨnCn
b Ωb

nb (4.74)

Cn
b δΩ

b
nb = −Ψ̇nCn

b , (4.75)

where Eq. (4.72) was used to cancel the two terms between lines. Solving for Ψ̇n,

Ψ̇n = −Cn
b δΩ

b
nbC

b
n = −δΩn

nb, (4.76)
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where Eq. (4.16) on pg. 142 is used for the second equality. Therefore, the right

hand side is a skew-symmetric matrix, see Eq. (4.18), with elements equal to the

vector −δωnnb = −Cn
b δω

b
nb.

154 The vector equivalent is then

ψ̇n = −Cn
b δω

b
nb. (4.77)

To get the body-to-navigation frame angular rate errors, we perturb Eq. (4.53)

on pg. 153 to get

δωbnb = δωbib − δCb
nω

n
in − Cb

nδω
n
in. (4.78)

The rotation error matrix δCn
b is equivalent to

δCb
n = (δCn

b )T = (−ΨnCn
b )T = Cb

n (−Ψn)T = Cb
nΨn, (4.79)

where the property that a symmetric matrix is equal to the negative of its transpose

has been used.

Substituting Eq. (4.79) and (4.78) into (4.77), one has

ψ̇n = −Cn
b δω

b
ib + Ψnωnin + δωnin. (4.80)

It can readily be shown that ψn × ωnin is equivalent to −ωnin × ψn, see Eq. (4.97).

Therefore, after some slight rearranging, the small error angles between the esti-

mated body frame and the true body frame are governed by the dynamics:

ψ̇n = δωnin − ωnin ×ψn − Cn
b δω

b
ib. (4.81)

The first term on the right hand side is the error due to the incorrect rotation of

the navigation frame with respect to the inertial frame in n-frame coordinates, and

is a function of the position and velocity states, see Eq. (4.23). The second term
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is implemented as a skew symmetric matrix of −ωnin that couples the estimated

n-to-i frame rotation rate with the angular errors, and the third term is the gyro

sensor errors rotated into the n-frame. Section 4.5.1 details the simulated gyro error

models.

The ωnin error is calculated by perturbing Eq. (4.23) on pg. 144, repeated here

with the position rates substituted:

ωnin =


vE

Ne + h
+ ωe cosφ

− vN
Me + h

−vE tanφ
Ne + h

− ωe sinφ

 . (4.82)

Because the angular rate is a function of the position and velocity states, its per-

turbed (i.e., linearized error) value has the from

δωnin = Fψ̇rδr
n + Fψ̇vδv

n, (4.83)

and the partial derivatives for the coefficient matrices are

Fψ̇r ≡
∂ωnin
∂rn

=


−ωe sinφ 0 − λ̇ cosφ

Ne + h

0 0
φ̇

Me + h

− λ̇
cosφ

0
λ̇ sinφ
Ne + h

 (4.84)

Fψ̇v ≡
∂ωnin
∂vn

=


0 1

Ne + h
0

− 1
Me + h

0 0

0 − tanφ
Ne + h

0

 , (4.85)

where the position dependence on Ne and Me have been neglected (Jekeli,1 pg. 154),

and the position rates have been used for brevity, see Eq. (4.51) on pg. 152.
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Using Eq. (4.81) to estimate the rotation errors, one can attempt to correct

the estimated body-to-navigation rotation matrix, Cn
b (Shin,155 pg. 46). With the

small rotation assumption, Eq. (4.71) on pg. 162 can be solved for the true rotation

matrix as

Cn
b = (I −Ψn)−1 Ĉn

b . (4.86)

To first order, the true (or more accurately, the updated estimate of the) rotation

matrix is

Ĉn+
b = Cn

b ≈ (I + Ψn) Ĉn−
b , (4.87)

where Eq. (4.11) on pg. 141 has been used. This relation is used within the Extended

Kalman Filter to update the estimated rotation matrix after each measurement.

Also, theψn-angle errors are reset to zero after the update because of the assumption

that there are no known systematic errors.

4.4.3 Velocity Error Equations

The velocity error equations are also derived by a linear perturbation analysis.

Beginning with the velocity dynamics, Eq. (4.47) on pg. 151, the velocity error

dynamics have the form

δv̇n = −δ [(Ωn
in + Ωn

ie) vn] + δan + δgn. (4.88)

We will first focus on the Coriolis error, which is a function of the position and

velocity states only. Using Eq. (4.49) on pg. 152, neglecting the accelerometer read-

ings and gravity acceleration, and substituting in the position rates from Eq. (4.51)
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on pg. 152:

− (Ωn
in + Ωn

ie) vn =


−v

2
E tanφ
Ne + h

− 2ωevE sinφ+ vNvD
Me + h

vNvE tanφ+ vEvD
Ne + h

+ 2ωevN sinφ+ 2ωevD cosφ

− v2
N

Me + h
− v2

E
Ne + h

− 2ωevE cosφ

 . (4.89)

Because of the dependence on position and velocity, the Coriolis error has the form

−δ [(Ωn
in + Ωn

ie) vn] = Fv̇rδr
n + Fv̇rδv

n (4.90)

= −
[
∂[(Ωn

in + Ωn
ie)v

n]

∂rn

]
δrn −

[
∂[(Ωn

in + Ωn
ie)v

n]

∂vn

]
δvn.

Taking the partial derivates and assuming N and M are again constant,

−∂[(Ωn
in + Ωn

ie)v
n]

∂rn
= (4.91)

− v2
E

(Ne + h) cos2 φ
− 2ωevE cosφ 0

v2
E tanφ

(Ne + h)2 −
vNvD

(Me + h)2

vNvE
(Ne + h) cos2 φ

+ 2ωe(vN cosφ− vD sinφ) 0 −(vN tanφ− vD)vE
(Ne + h)2

2ωevE sinφ 0
v2
N

(Me + h)2 +
v2
E

(Ne + h)2


,

−∂[(Ωn
in + Ωn

ie)v
n]

∂vn
= (4.92)

vD
Me + h

−2vE tanφ
Ne + h

− 2ωe sinφ vN
Me + h

vE tanφ
Ne + h

+ 2ωe sinφ
vN tanφ+ vD

Ne + h
vE

Ne + h
+ 2ωe cosφ

− 2vN
Me + h

− 2vE
Ne + h

− 2ωe cosφ 0

 .

Using the position rates for φ̇ and λ̇, and defining the mean curvature Re ≡
√
MeNe,
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the partial derivatives can be simplified to

Fv̇r = ≡ −∂[(Ωn
in + Ωn

ie)v
n]

∂rn
(4.93)

=


−
(

λ̇
cosφ

+ 2ωe cosφ

)
vE 0

vEλ̇ sinφ− vDφ̇
Re + h

vN λ̇
cosφ

+ 2ωe (vN cosφ− vD sinφ) 0 − λ̇ (vN sinφ+ vD cosφ)
Re + h

2ωevE sinφ 0 φ̇2 + λ̇2 cos2 φ

 ,

Fv̇v ≡ −∂[(Ωn
in + Ωn

ie)v
n]

∂vn

=


vD

Re + h
−2(λ̇+ ωe) sinφ φ̇

(λ̇+ 2ωe) sinφ
vN tanφ+ vD

Re + h
(λ̇+ 2ωe) cosφ

−2φ̇ −2(λ̇+ ωe) cosφ 0

 . (4.94)

The velocity error dynamics due to the n-frame specific force errors are at-

tributed to two parts: the body-to-navigation frame rotation and the accelerometer

sensors. Symbolically:

δan = δCn
b ab + Cn

b δa
b. (4.95)

The rotation matrix error is given by Eq. (4.72) on pg. 162, so

δCn
b ab = −ΨnCn

b ab = −Ψnan. (4.96)

It can easily be verified that

−Ψnan =


an2ψ

n
3 − an3ψ

n
2

−an1ψn3 + an3ψ
n
1

an1ψ
n
2 − an2ψ

n
1

 =


0 −an3 an2

an3 0 −an1

−an2 an1 0

 = an ×ψn. (4.97)

The error from the specific force term is now

δan = an ×ψn + Cn
b δa

b, (4.98)

167



where δab are the errors caused by the accelerometer sensor triad, which will be

derived in Sec. 4.5.1.

The gravity error term is modeled by taking into account only the error in

the gravitational acceleration. Because Earth’s rotation rate is known with high

precision, and the position error is typically small, the gravity error due to the

centripetal acceleration is neglected. This term could be added in future work.

Using the full gravitational gradient tensor, the gravity error is modeled as:

δgn ≈ δgn = Γn


Re 0 0

0 Re 0

0 0 −1

 δrn ≡ Fgrδr
n, (4.99)

where the middle matrix approximates the Jacobian between the North-East-Down

positions and the navigation position states, and the mean curvature of Earth at

the current estimated position is defined as Re ≡
√
MeNe. The values of the grav-

itational gradients are calculated by linearly interpolation from the stored, gridded

gravity map to the current estimated position.

4.4.4 Summary

The linearized error dynamics are used to update the filter error covariance

matrix. The error dynamics are not actually integrated numerically, instead they

are only used to compute the error state transition matrix as discussed at the end of

Sec. C.5.1. The position, velocity, and attitude errors constitute nine of the twenty-

six states that the filter estimates in its covariance matrix. The linear errors of these
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states can be summarized as

d

dt


δrn

δvn

ψn

 = δẋINS =


Fṙr Fṙv 0

Fv̇r + Fgr Fv̇v [ân×]

Fψ̇r Fψ̇v [ω̂nin×]

 δxINS

+


0 0

Ĉn
b 0

0 −Ĉn
b


 δab

δωbib

 , (4.100)

where Eq. (4.67) and (4.68) define the position error matrices, Fṙr and Fṙv; Eq.

(4.93), (4.99), and (4.94) define the velocity errors, Fv̇r, Fgr, and Fv̇v; and Eq.

(4.84) and (4.85) define the attitude error matrices, Fψ̇r and Fψ̇v. The term [ân×]

is a skew symmetric matrix of the filter-corrected specific force measurements rotated

from the body frame to the navigation frame using the current estimate of Cn
b , i.e.

ân = Ĉn
b âb. (4.101)

The [ω̂nin×] term is another skew symmetric matrix whose components are calculated

from Eq. (4.23) using the current estimates of the position and velocity states.

The last two terms on the right of Eq. (4.100) are due to the inertial mea-

surement unit errors which are rotated into the navigation frame by Ĉn
b . The filter

is augmented with the IMU error states as described in the following section. This

allows the filter to reduce some of the IMU errors in-flight with the information from

the external INS aid. Also, the strapdown gravity gradiometer instrument requires

an estimate of the angular velocity of the body frame which is calculated from the

estimated gyro readings as described later in Sec. 5.2.1.
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4.5 Inertial Measurement Unit Model

This section presents the details of how the measured and filter-corrected IMU

readings are simulated. The suite of inertial measurement units in this work con-

sists of a triad of accelerometers and a triad of gyros. IMUs are able to produce

uninterrupted specific force and angular rate measurements in highly dynamic envi-

ronments. Unfortunately, direct integration of these measurements (dead-reckoning

navigation) results in navigation state error growth that may reach unacceptably

high levels and even loss of vehicle. To ensure safe and reliable performance, an

external aid with a finite accuracy is often blended into the IMU-only navigation

solution through a Kalman filter approach. However, to produce an optimal Kalman

gain, the IMU error sources must be modeled accurately.

This next subsection describes the various IMU error sources and how they are

modeled for this work. The following subsection surveys the current state-of-the-art

in navigation and tactical grade inertial measurement unit specifications and details

how these values are used for the simulated IMU readings.

4.5.1 IMU Error Model

The sources of error from an inertial measurement unit include uncompensated

scale factors, biases, thermal effects, nonlinearities, misalignments, non-orthogonal-

ities, and electronic measurement noise.1,2 Each of these error sources are described

as follows.

Scale Factor errors cause measurement errors that are proportional to the
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true specific force of angular rate measurement. Theses errors are usually time

invariant and are modeled as random constants.

Bias error, also referred to as turn-on bias, bias repeatability, bias stability,

drift bias (for gyros), or offset (for accelerometers), is the initially offset constant

sensor reading that changes each time the instrument is turned on. Because of this,

it is often modeled as a simple random constant.

Thermal Effects in the mechanical properties of the IMUs can result in the

scale factor and/or bias error to vary over time. In these cases, a correlated (Gauss-

Markov) random walk process may be added to the random constant assumption of

the scale factor and/or bias error.

Nonlinearities in the IMUs can cause the linear input/output relationship of

the sensor to vary off nominal, particularly during periods of high dynamics. These

errors are often modeled by a sum of linear and/or quadratic accelerations with

random constant coefficients (Farrell and Barth,2 pg. 216 & 218). For example, the

accelerometer nonlinearity term may be modeled as

nlaj = kaj,1(aa1)2 + kaj,2(aa2)2 + kaj,3(aa3)2 + kaj,4(aa1a
a
2) + kaj,5(aa1a

a
3) + kaj,6(aa2a

a
3). (4.102)

where the a terms are the components of the truth specific forces and the k terms

are random constants.

Misalignments and Non-orthogonalities result when the IMU package is

not mounted perfectly along the body axes or when the IMU sensors themselves

are not aligned sufficiently with respect to each other. Since strapdown IMUs and

their package are assumed to by rigidly attached to the vehicle, these errors are
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modeled as a small error rotation matrix with random constants. For example, if

the accelerometers were misaligned and non-orthogonal to each other in an a-frame,

the body-frame specific forces would be estimated as

ãb = (I −∆a) ãa, (4.103)

where

∆a =


0 d1 d2

d3 0 d4

d5 d6 0

 , (4.104)

and the d terms are random constants. Because of the non-orthogonalities, the ∆a

matrix is not necessarily skew symmetric.

Instrument Noise is usually due to high frequency electronic noise that varies

from each measurement reading. Since these variations happen at a frequency faster

than the update rate of the sensor, they are often modeled as zero-mean white noises.

For the gyro noise in this work a first order Gauss-Markov is tuned with a small

enough time constant that it approximates white noise. The accelerometer noise is

modeled as white.

Including all the errors above, the measured specific force sensed by an ac-

celerometer in its local a-frame is2

ãaj =
(
1− SF a

j

) (
aaj − baj − nlaj − waj

)
, (4.105)

where aaj is the truth specific force measurement, SF a
j is the truth scale factor, baj is

the turn-on bias, nlaj is the measurement nonlinearity as defined above, and waj is the

white noise of the sensor. The triad of accelerometer specific forces would then be
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estimated in the body frame by Eq. (4.103) using an estimate of the misalignments

and non-orthogonalities. The gyro measurements would be implemented similarly.

The issue with including all the error terms is that the Kalman filter must

account for each of these errors to operate optimally. This entails augmenting the

filter state vector with each coefficient in each error term, which would drastically

increase the size of the filter and the computational costs. As a compromise, it is

common to include only the largest sources of error such as IMU biases and noise,

and to a lesser extent scale factors. For this work, IMU scale factor and bias states

are augmented to the filter state vector along with a noise state for each of the gyros.

Originally, misalignments and accelerometer nonlinearities were implemented

into the simulation to provide uncompensated errors to the system that would test

the filter robustness. Unfortunately, some of the INS/GGI simulations reduced the

tilt errors to the point that the uncompensated misalignments caused divergence

to occur. Therefore these errors were turned off for all Monte Carlo simulations

presented. The non-orthogonalities and gyro nonlinearities are not widely reported

in the surveyed IMU specifications and were thus never pursued for implementation

into the simulation.

Following the assumption of no misalignments or non-orthogonalities, the

IMUs are all aligned with the body frame axes. It is also implicitly assumed that

the IMUs either reside at the center of mass of the vehicle or have already had

compensation for any lever arm effects on the readings. Therefore, along with the
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neglection of the nonlinearities, the accelerometer specific force measurement is

ãbj =
(
1− SF a

j

) (
abj − baj − waj

)
, (4.106)

and the gyro measurement is similarly,

ω̃bib,j =
(
1− SF g

j

) (
ωbib,j − b

g
j − n

g
j

)
, (4.107)

where ngj is the noise state that approximates a white noise process.

The filter estimates the scale factors and biases of the IMUs (and the gyro

noise) so that it assumes the IMU readings are

ãbj =
(

1− ŜF
a

j

)(
âbj − b̂aj

)
, (4.108)

where the noise is compensated for in the error process noise matrix, Qk, and

ω̃bib,j =
(

1− ŜF
g

j

)(
ω̂bib,j − b̂

g
j − n̂

g
j

)
. (4.109)

These relationships can then be solved for the estimated specific forces and angular

rates:

âbj =
ãbj

1− ŜF
a

j

+ b̂aj , (4.110)

ω̂bib,j =
ω̃bib,j

1− ŜF
g

j

+ b̂gj + n̂gj . (4.111)

These estimated measurements are then processed by the INS when integrating the

navigation states and computing the linearized navigation errors.

In order for the filter to update its estimate of the IMU errors (which are ini-

tialized to zero in the estimated state vector) their linearized errors must be derived
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and the IMU states need to be added to the total filter state vector. The accelerom-

eter specific force error can be derived by subtracting the truth measurement (from

rearranging Eq. (4.106)) from the filter-estimated measurement:

δabj = âbj − abj =

(
ãbj

1− ŜF
a

j

+ b̂aj

)
−

(
ãbj

1− SF a
j

+ baj + waj

)

=
(1− SF a

j )− (1− ŜF
a

j )

(1− ŜF
a

j )(1− SF a
j )

ãbj + δbaj − waj . (4.112)

Noting that scale factors are on the order of 1 × 10−4 for the surveyed IMUs, the

accelerometer errors can be approximated as

δabj ≈ (δSF a
j )ãbj + δbaj − waj . (4.113)

The gyro error can be similarly found, but with the slight difference of the noise

state:

δωbib,j ≈ (δSF g
j )ω̃bib,j + δbgj + δnaj . (4.114)

The IMU error states added to the Kalman filter state vector are then:

δxa =
(
δSF a

x , δSF
a
y , δSF

a
z , δbax, δb

a
y, δb

a
z

)T
(4.115)

δxg =
(
δSF g

x , δSF
g
y , δSF

g
z , δbgx, δb

g
y, δb

g
z, δngx, δn

g
y, δn

g
z

)T
. (4.116)

The accelerometer errors can also be re-written in vector form as

δab =
(
diag(ãb), I

)T
δxa −wa, (4.117)

where diag(ãb) is a diagonal matrix whose elements are the components of the un-

corrected accelerometer measurements and I is a 3 × 3 identity matrix. The gyro

errors in vector notation are

δωbib =
(

diag(ω̃bib), I, I
)T

δxg. (4.118)
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Equation (4.117) and (4.118) are then substituted back into Eq. (4.100) to produce

the total linearized INS error dynamics.

The dynamics for the scale factors and biases are all zero since they are

modeled as random constants. The gyro noise dynamics follow the description in

Sec. C.2.3 for the Gauss-Markov process estimating a white noise. In summary,

d

dt
δxg = 0, (4.119)

and

d

dt
δxg =

d

dt


δSFg

δbg

δng

 =


0 0 0

0 0 0

0 0 −βI

 δxg +


0

0

wg(t)

 . (4.120)

The discrete implementation of the gyro errors is, see Sec. C.2.3,

δxg,k+1 =


1 0 0

0 1 0

0 0 exp(−β∆t)

 δxg,k +


0

0

wg
k

 , (4.121)

where the variance of the discrete driving noise is

σ2
wg = (qwg/∆t) [1− exp(−2β∆t)] , (4.122)

where qwq is the power spectral density of the gyro white noise and β = 2.146/(2∆t).

The gyro noise states’ portion of the filter discrete process noise covariance matrix

is then

Qk,ng = E
[
(wg

k) (wg
k)
T
]

= σ2
wgI, (4.123)

where I is a 3 × 3 identity matrix.
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The accelerometer noise portion of the filter’s discrete process noise covariance

matrix is a little more complicated to calculate. Using the velocity error dynamics,

Eq. (4.100) on pg. 169, and the accelerometer errors, Eq. (4.117) on pg. 175, the

acceleration error due to the accelerometer noise is

δv̇nwa = −Cn
b wa. (4.124)

The resultant velocity error can then be approximated by a simple Euler integration,

see Eq. (C.29) on pg. 317, so that

δvnwa ≈ v̇nwa∆t = −Cn
b wa∆t. (4.125)

The discrete process noise covariance matrix for the velocity errors can now be

calculated by

Qk,δvn = E
[
(δvnwa) (δvnwa)

T
]
≈ E

[
(−Cn

b wa∆t) (−Cn
b wa∆t)T

]
= Cn

b E
[
(wa) (wa)T

]
Cb
n∆t2 = Cn

b C
b
nσ

2
wa∆t

2

= σ2
wa∆t

2I, (4.126)

where E
[
(wa) (wa)T

]
= σ2

waI is used in the second line.

The rest of the discrete process noise covariance matrix is zero for the INS and

IMU states. The GPS receiver clock states’ process noise covariance is derived in

Sec. D.4.

4.5.2 IMU Specifications

A survey of current IMU sensor specifications was conducted to provide real-

istic values for the simulated IMU instrument errors. Sensors manufactured by
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Honeywell,156,157 Northrop Grumman,158 Astronautics Corporation of America’s

Kearfott,159 BEI Technologies’ Systron Donner,160 and the German iMAR (Iner-

tiale Mess-, Automatisierungs- und Regelsysteme)161 are summarized in Tables 4.2

and 4.3, where the navigation grade IMUs are in the top portion of each table and

the tactical grade sensors are in the bottom. This survey is not meant to be com-

plete, but rather it is used to show the current (as of 2006) state-of-the-art in IMU

sensor manufacturing. Using these IMU data sheets as reference, the navigation

and tactical grade IMU specifications used in this study are listed in Table 4.4. The

modeled specifications were chosen by taking the more aggressive performance spec-

ification in each IMU class. The units reported in the IMU specifications can be a

source of confusion, so the values used in the Monte Carlo simulations are detailed

below.

The truth uncompensated scale factor standard deviation is calculated by

multiplying the value in Table 4.4 by 1×10−6. This term is dimensionless and

needs no unit conversion.

The standard deviation of the random constant accelerometer bias is converted

to standard metric units by

σbaj
[
m/s2

]
= σbaj [µg]

(
1× 10−6

1µ

)(
9.81m/s2

1g

)
(4.127)

The 1-σ value for the navigation grade accelerometer turn-on bias is then 0.00147

m/s2 and the tactical grade value is 0.0491 × 10−3 m/s2. The gyro bias standard

deviation is similarly converted to radians per second by

σbgj [rad/s] = σbgj

[ ◦

Hr

](
πrad

180◦

)(
1Hr

3600sec

)
. (4.128)
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Table 4.2: Navigation and Tactical Grade Acceleromter Specifications
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Table 4.3: Navigation and Tactical Grade Gyro Specifications
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Table 4.4: Simulated Navigation and Tactical Grade IMU Specifications

Navigation Grade Tactical Grade

Accel. Gyro Accel. Gyro

Scale Factor 60 ppm 10ppm 300 ppm 200 ppm

Turn-On Bias 15 µg 0.003 ◦/Hr 500 µg 1.0 ◦/Hr

Sensor Noise 8 µg/
√
Hz 0.001 ◦/

√
Hr 100 µg/

√
Hz 0.02 ◦/

√
Hr

Misalignment 0.1 mrad 0.1 mrad 0.3 mrad 0.5 mrad

Non-Linearity 15 µg/g2 — 20 µg/g2 —

and the navigation grade 1-σ bias is 1.45×10−8 rad/s (0.833×10−6 ◦/s). The tactical

gyro bias is 4.85×10−6 rad/s (0.278×10−3 ◦/s).

The instrument noise is sometimes referred to as the random walk parameter

of the sensor because the result of integrating the noise is a random walk behavior

of the sensor measurement. The actual value cited in most IMU data sheets is the

square root of the white noise power spectral density (PSD). As shown in Eq. C.9

on pg. 313, the variance of a white process is equivalent to the PSD divided by the

sampling rate. Therefore, the noise variance for each sensor is calculated as

σ2
wa

[(
m/s2

)2
]

=

[
√
qwa
[
µg/
√
Hz
](9.81× 10−6m/s

1µg

)]2

/∆t, (4.129)

qwg

∆t

[
(rad/s)2] =

[
√
qwg [

◦/
√
Hr]

(
πrad

180◦

)√
1Hr

3600sec

]2

/∆t, (4.130)

where
√
qw is the parameter specified in Table 4.4, and the gyro noise value above

is implemented as described at the end of the previous subsection. As shown in the

two equations above, the value of the simulated noise variance is proportional to

the frequency of the updates. IMUs are able to produce data rates up to several
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thousand Hz, but for this work the simulation is updated at a frequency of only 20

Hz to keep the computational costs fairly low. This results in an accelerometer 1-σ

noise level of 0.000351 m/s2 for nav.-grade IMUs and 0.00439 m/s2 for tac.-grade

IMUs. The gyro noise as calculated from (4.122) and (4.130) is 0.130×10−5 rad/s

(0.745×10−4 ◦/s) for the navigation grade IMUs and 0.260×10−4 rad/s (0.149×10−2

◦/s) for the tactical grade gyros. (David Gaylor’s research report “Simulation of an

Unaided INS in Orbit” was used as a reference for this discussion.)162

4.6 Chapter Summary

This chapter reviews inertial navigation system fundamentals in Sec. 4.1 and

4.2. The INS state dynamics are then derived in Sec. 4.3, followed by their linearized

errors in Sec. 4.4. These four sections follow standard INS formulations with only one

modification for the use with a GGI aid—the velocity error dynamics due to gravity

acceleration registration errors. This error source must include the full gravitational

gradient tensor and a Jacobian between the coordinate frame of the gravity map

and the n-frame’s latitude, longitude, and altitude states, as shown in Eq. (4.99)

on pg. 168. This term differs from typical INSs which only account for the vertical

gravitational gradient of a point mass Earth.

Section 4.5 next discusses the accelerometer and gyro error models simulated

in this work. Section 4.5.1 reviews typical IMU error sources and details the scale

factor, bias, and noise models used to corrupt the truth IMU measurements. For this

work, the scale factor and bias of each accelerometer and gyro is augmented to the

182



filter state vector to allow for in-flight calibration of the IMU errors and for optimal

calculation of the Kalman gain. The second modification to a traditional INS for

GGI aiding is the need to model the gyro noise as a Gauss-Markov process that

estimates white noise, and to augment the filter state with the gyro noises so that

strapdown GGIs are able to estimate all gyro angular velocity errors. This results in

the calculation of the gyro noise portion of the error state transition matrix having

to include a full exponential term instead of just a first order Taylor series expansion

of the matrix exponential (as shown in Eq. (4.121) on pg. 176 and discussed further

at the end of Sec. C.5.1). This estimation of the error state transition matrix is

an improvement on Jekeli’s method94 which used a more computationally expensive

procedure that truncated the matrix exponential expansion at 30 terms.

Section 4.5.2 then surveys current navigation and tactical grade IMU error

specifications. The IMU errors simulated for the navigation analyses in Ch. 6 are

then summarized in Table 4.4.

The INS dynamics and error models presented in this chapter are used as the

basis for the Monte Carlo simulations in Ch. 6 for both the INS/GGI and INS/GPS

systems. The noisy GGI or GPS measurements are blended into the INS-estimated

states through an extended Kalman filter as explained in App. C. The measurements

are detailed in the next chapter for the gravity gradiometer instrument updates, and

in App. D for the baseline GPS updates.
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Chapter 5

Gravity Gradiometer Instrument Model

As surveyed in Sec. 1.2.1, gravity gradiometer instruments (GGIs) have been

manufactured in a multitude of configurations. This chapter presents and derives the

measurement observables and linearized error models for several finite-differenced

accelerometer-based GGIs. The first section derives a general accelerometer-based

GGI measurement formulation. These results are then used to derive the stabilized,

rotating disc GGI measurements that many references state without derivation.

Next, the envisioned non-rotating, 12-accelerometer GGI is discussed and its mea-

surements are derived assuming the instrument is either strapped down to the body

or stabilized with respect to inertial. The linearized strapdown and stabilized error

equations are lastly comprehensively derived for the first time so that they may be

used in the extended Kalman filter simulations.

5.1 Accelerometer-Based GGI Measurements

In an arbitrary, rotating “a-” frame, the sensed specific force measured by a

3-axis accelerometer triad is, see Eq. (4.37) on pg. 149,

aa = r̈a + 2Ωa
iaṙ

a +
(

Ωa
iaΩ

a
ia + Ω̇a

ia

)
ra − ga, (5.1)
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where ra is the accelerometer triad’s position, ga is the gravitational acceleration

vector, Ωa
ia is the skew symmetric matrix (see Eq. (4.18) on pg. 142) of the angular

velocity from the a-frame to the i-frame, and Ω̇a
ia is the corresponding angular accel-

eration, all with coordinates in the a-frame. Now, assuming that two accelerometer

triads are rigidly fixed at a specified baseline (lb ≡ ra2 − ra1) so that l̇b = l̈b = 0, and

the angular rates and accelerations are equivalent, these triads may be differenced

to yield

a1 − a2 = −l̈b − 2Ωa
ial̇b −

(
Ωa
iaΩ

a
ia + Ω̇a

ia

)
lb − g1 + g2

=
(

Γa − Ωa
iaΩ

a
ia − Ω̇a

ia

)
(ra2 − ra1)

≡ L′a (ra2 − ra1) . (5.2)

The second equality uses the assumption that the gravitational acceleration has a

linear variation between the two accelerometer triads so that ga2 − ga1 = Γa(ra2 − ra1).

This linear assumption is quite valid since typical GGI baselines are less than one

meter (See Sec. 1.2.1), whereas gradient correlation distances are on the order of

kilometers.87,88

With knowledge of the accelerometer positions, the gradiometer measurement

can now be made:

(a1 − a2) / (r2 − r1) = Γa − Ωa
iaΩ

a
ia − Ω̇a

ia ≡ L′a. (5.3)

It is important to note that the gravitational gradient tensor cannot be directly

measured; instead, the gradients are masked by centripetal and angular accelera-

tions. To exploit the gravitational gradients for position aiding, these rotational

effects must be estimated or removed.

185



The angular acceleration may be easily removed, at least in theory, by aver-

aging the GGI measurement with its transpose:

1

2

(
L′a + (L′a)T

)
= Γa − Ωa

iaΩ
a
ia ≡ La. (5.4)

Or equivalently, the six non-symmetric tensor component measurements can be

represented in vector notation as

La ≡



La11

La12

La13

La22

La23

La33



=



Γa11 + ω2
y + ω2

z

Γa12 − ωxωy

Γa13 − ωxωz

Γa22 + ω2
x + ω2

z

Γa23 − ωyωz

Γa33 + ω2
x + ω2

y



, (5.5)

where ωaia = (ωx, ωy, ωz)
T is the angular velocity. The angular accelerations may be

removed in this manner because they are the only asymmetric term in the raw GGI

measurement, whereas the gravitational gradient and the centripetal acceleration

matrices are both symmetric.

Another interesting corollary is that the angular accelerations can be observed

directly by averaging the raw GGI measurement with the negative of its transpose:

1

2

(
L′a − (L′a)T

)
= Ω̇a

ia. (5.6)

The observability of the angular accelerations, which may be integrated twice to

produce orientation information, is the basis for using a GGI for all-accelerometer

inertial navigation. For more on this topic see Sec. 1.2.3 on pg. 31 and the papers

by Zorn.40,41
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A short word on nomenclature is necessary at this point. The GGI mea-

surement observable, Γa − Ωa
iaΩ

a
ia − Ω̇a

ia, is not typically given a dedicated symbol.

Therefore, this work essentially follows the terminology used by Jekeli94 because his

derivation was used as a starting point for many of the derivation in this chapter.

The primary difference between the nomenclature in this work and Jekeli’s is that

he uses L to denote this GGI measurement. However, Jekeli notes that the gravita-

tional gradient tensor is more easily observed when the angular acceleration term,

Ω̇a
ia, is not estimated. Thus, this work exclusively uses La ≡ Γa −Ωa

iaΩ
a
ia as the pri-

mary GGI measurement and L′a as the raw, uncorrected measurement observable

that includes the angular accelerations.

To complete the generic GGI measurement formulation, two items need to be

addressed: The calculation of the gravitational gradients from the stored navigation

frame to the measured accelerometer frame, and the contributions to ωaia. The

gradient transformation will be discussed first, and the rotation rates will follow.

5.1.1 Gravitational Gradient Transformation Matrix

The pre-computed gravitational gradient tensor map is rotated transformed

into the measurement frame by pre- and post-multiplication of a navigation-to-

accelerometer frame direction cosine matrix, see Eq. (4.16) on pg. 142,

Γa = Ca
nΓnCa

n. (5.7)

The coordinate transformation matrices may also be expanded to include an in-

termediate gravity gradiometer instrument (“g-”) frame so that rotating disc GGIs
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may be investigated. The expanded transformation is then:

Γa = Ca
nΓnCn

a = Ca
gC

g
nΓnCn

gC
g
a . (5.8)

This new g-frame can be specialized to the body frame for a strapdown GGI:

Γa = Ca
bC

b
nΓnCn

b C
b
a. (5.9)

or to the inertial frame for a stabilized instrument:

Γa = Ca
i C

i
nΓnCn

i C
i
a. (5.10)

The body-to-navigation frame rotation matrix is tracked by the INS. The Ci
n trans-

formation is uniquely a function of position and time:

Ci
n = Ci

eC
e
n

= (Ce
i )
TCe

n = R3(−λ− ωet)R2(π/2 + φ) (5.11)

=


− sinφ cos(λ+ ωet) − sin(λ+ ωet) − cosφ cos(λ+ ωet)

− sinφ sin(λ+ ωet) cos(λ+ ωet) − cosφ sin(λ+ ωet)

cosφ 0 − sinφ

 ,

where Eq. (4.20) and (4.21) on pg. 143 have been used. The Ca
b and Ca

i rotations are

based on the orientation of the accelerometer pairs. These gradient transformations

will be further specified in the following sections.

The coordinate transformation Γa = Ca
nΓnCn

a can be alternatively written in

vector notation as

Γa = T anΓn, (5.12)

where

Γa ≡ (Γa11,Γ
a
12,Γ

a
13,Γ

a
22,Γ

a
23,Γ

a
33)T (5.13)
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and

Γn ≡ (Γn11,Γ
n
12,Γ

n
13,Γ

n
22,Γ

n
23,Γ

n
33)T (5.14)

are vectors of the diagonal and upper-diagonal elements of the gravitational gradient

tensor. This new 6 × 6 transformation matrix, T an , is comprised of the components

of Ca
n and can be derived in two ways as follows.

The first way to derive T an is to symbolically compute Γa = Ca
nΓnCn

a and then

rearrange the components of Γa into Γa and factor out Γn into Γn. This results in

T an =



c2
11 2c11c12 2c11c13 c2

12 2c12c13 c2
13

c11c21 c11c22 + c12c21 c11c23 + c13c21 c12c22 c12c23 + c13c22 c13c23

c11c31 c11c32 + c12c31 c11c33 + c13c31 c12c32 c12c33 + c13c32 c13c33

c2
21 2c21c22 2c21c23 c2

22 2c22c23 c2
23

c21c31 c21c32 + c22c31 c21c33 + c23c31 c22c32 c22c33 + c23c32 c23c33

c2
31 2c31c32 2c31c33 c2

32 2c32c33 c2
33



,

(5.15)

where cij is the ith row and jth column of Ca
n.†

Looking at Eq. (5.15), it appears that there are some patterns imbedded in

the matrix. To better understand where these patterns arise from, and to develop

a more robust shorthand notation for populating T an , start with a single component

†The transformation matrix elements here are in the opposite order as those in the author’s

conference papers.163,164 This is because the elements were based on Cnb which is tracked by the

INS quaternion. Here, it is based on Can which is essentially the transpose of Cnb if the GGI is a

strapdown sensor, thus causing the cij in the conference papers to become cji here. Also, it was

discovered after the conference proceedings that there is a small typo in these two references. The

element in the first row, second column of T bn should be 2c11c21 in these papers.
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of Γa, say Γaij. One can then say that this component is equal to the summation of

Γn and some coefficients that may be written as partial derivatives:

Γaij =
3∑

k=1

3∑
l=1

(
∂xai
∂xnk

)(
∂xaj
∂xnl

)
Γnkl, (5.16)

where the partial derivative coefficients will be explained shortly. Expanding out

this summation and combining coefficients for the symmetric elements of Γn, i.e.

Γnkl = Γnlk, gives

Γaij =

(
∂xai
∂xn1

)(
∂xaj
∂xn1

)
Γn11 +

[(
∂xai
∂xn1

)(
∂xaj
∂xn2

)
+

(
∂xai
∂xn2

)(
∂xaj
∂xn1

)]
Γn12

+

[(
∂xai
∂xn1

)(
∂xaj
∂xn3

)
+

(
∂xai
∂xn3

)(
∂xaj
∂xn1

)]
Γn13 +

(
∂xai
∂xn2

)(
∂xaj
∂xn2

)
Γn22

+

[(
∂xai
∂xn2

)(
∂xaj
∂xn3

)
+

(
∂xai
∂xn3

)(
∂xaj
∂xn2

)]
Γn23 +

(
∂xai
∂xn3

)(
∂xaj
∂xn3

)
Γn33.(5.17)

Now, the partial derivative coefficients may be thought of as the components of Ca
n

because xa = Ca
nx

n so each element of xa is

xai = ci1x
n
1 + ci2x

n
2 + ci3x

n
3

=

(
∂xai
∂xn1

)
xn1 +

(
∂xai
∂xn2

)
xn2 +

(
∂xai
∂xn3

)
xn3 , (5.18)

where cij is again the ith row and jth column of Ca
n, and the second equality is using

the notion that the transformation matrix is like a partial derivative of one element

in one frame to another element in another state. Finally, substituting this notion

that
(
∂xai /∂x

n
j

)
= cij into Eq. (5.17), one has

Γaij = (ci1cj1) Γn11 + (ci1cj2 + ci2cj1) Γn12 + (ci1cj3 + ci3cj1) Γn13

+ (ci2cj2) Γn22 + (ci2cj3 + ci3cj2) Γn23 + (ci3cj3) Γn33, (5.19)

which is essentially a row of T an multiplied by Γn. This equation is useful because

it is a more convenient, and less error prone, way to implement T an as compared to
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Eq. (5.15) where all the rows have been written out. (Deriving this version of the

T an transformation matrix for the dissertation is how the errors in the conference

paper T bn transformations were discovered.)

This T an transformation matrix is a generic coordinate transformation for any

n-frame symmetric matrix whose components are ordered as (11, 12, 13, 22, 23, 33)T

to the corresponding a-frame vector. The initial and final coordinate frames are

arbitrary as long as the cij coefficients used to populate the transformation matrix

are consistent. In other words, if two arbitrary frames are used, say the “s” and

“t” frames, then T ts can be computed using either formulation above by using the

cij components of the known or calculated 3 × 3 Ct
s direction cosine matrix. Fur-

thermore, this transformation matrix is computationally efficient because it exploits

the tensor symmetry and is, most importantly, necessary for the linearized error

formulations that follows.

5.1.2 Inertial-to-Accelerometer Frame Rotation Rate

The inertial-to-accelerometer angular velocity, ωaia, can be decomposed into

three components:

1. The inertial-to-body frame rotation rate, ωbib, which is measured by the on-

board strapdown gyros.

2. The body-to-accelerometer frame rotation rate, ωgbg, which accounts for rota-

tion of the overall GGI with respect to the body axes.

3. The gradiometer-to-accelerometer frame rotation rate, ωaga, which accounts for

rotating disc GGIs, like the Bell/Textron models.
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Mathematically, and including the appropriate coordinate frame transformations,

ωaia = Ca
gC

g
bω

b
ib + Ca

gω
g
bg + ωaga. (5.20)

This angular velocity can now be specified to strapdown and stabilized GGIs with

either rotating or stationary accelerometers.

For the strapdown GGI case, the gradiometer frame is assumed to be aligned

with the body axes so that the “g” subscripts and superscripts may be replaced

with “b.” This results in

ωaia = Ca
bC

b
bω

b
ib + Ca

bω
b
bb + ωaba

= Ca
bω

b
ib + ωaba, (5.21)

since Cb
b = I and ωbbb = 0. Therefore, a strapdown GGI must estimate the gyro

measurements correctly and account for any accelerometer-to-body frame rotations

and their rates to observe the gravitational gradient tensor.

The stabilized GGI instead assumes that the g-frame is aligned with the inertial

i-frame so that the “g-”scripts becomes “i”s:

ωaia = Ca
i C

i
bω

b
ib + Ca

i ω
i
bi + ωaga

= Ca
i

(
ωiib + ωibi

)
+ ωaga

= ωaga. (5.22)

This equation essentially states that the rotation rate of the accelerometers with

respect to the gradiometer frame is the only rate that needs to be estimated and

removed from the GGI measurement in order to exploit the gradient tensor for

position updates.
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The last portion of the rotation rate that needs to be addressed is the accel-

erometer-to-gradiometer frame rotation. As explained in the first chapter, the

Bell/Textron based GGIs use rotating accelerometers to modulate the gradient sig-

nal to a higher frequency that exhibits lower system error. These instruments typi-

cally rotate the accelerometers at a nominally constant angular velocity, ωaga, in the

direction out of the plane made by the four accelerometers. This results in

ωaga = (0, 0, ωrot)
T , (5.23)

where ωrot is the nominal rotation rate of the disc. For non-rotating GGIs, as is the

focus of this work, ωaga = 0 nominally.

5.1.3 Rotating, Stabilized GGI Measurements

This subsection uses the previous section’s results to derive the GGI mea-

surement made by the Bell/Textron based instruments. (The Hughes Research

Laboratory’s GGI also has the same resultant measurement; however, it is based

on torque differences.) The purpose of this subsection is, to attempt, to provide

a straightforward derivation of this instrument’s measurement observable because

most papers which reference this gradiometer either present a confusing derivation

or none at all. It is the hope to also show the flexibility of the previous section in

deriving current and future gradiometer measurements.

Beginning with the differenced accelerometer equation, Eq. (5.2), in the accel-

erometer-frame:

(a1 − a2) =
(

Γa − Ωa
iaΩ

a
ia − Ω̇a

ia

)
(r2 − r1) = L′a (r2 − r1) .
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Then assuming the accelerometer triads are single accelerometers whose sensitive

axes are in opposite directions and are displaced from the gradiometer disc’s origin by

one-half the instrument baseline in either direction (See Fig. 5.1), the accelerometer

measurements and positions are

aa1 =


0

a1

0

 , ra1 =


lb/2

0

0

 , aa2 =


0

−a2

0

 , ra2 =


−lb/2

0

0

 . (5.24)

Substituting these into the finite differenced accelerometer equation above,
0

aa1 + aa2

0

 = L′a


−lb

0

0

 = −lb


L′a11

L′a21

L′a31

 . (5.25)

Since the accelerometers are only measuring the second entry of the this array, the

GGI measurement can by found by taking that component and dividing it by the

instrument baseline:

(aa1 + aa2)/lb = −L′a21 = −
(
Γa21 − ωaxωay − ω̇az

)
, (5.26)

where the definition of L′a has been used, and (ωax, ω
a
y , ω

a
z )
T = ωaia.

The rotating gravitational gradient tensor in the accelerometer frame is calcu-

lated from the gradiometer frame by

Γa = Ca
gΓgCg

a , (5.27)
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Figure 5.1: Schematic of GGI with 2 Rotating Accelerometers

where the gradiometer-to-accelerometer frame rotation matrix is, from Fig. 5.1,

Ca
g = R3(θg) =


cos θg sin θg 0

− sin θg cos θg 0

0 0 0

 . (5.28)

Carrying out the multiplication and only keeping the Γa21 element,

Γa21 = −Γg11 sin θg cos θg − Γg12 sin2 θg + Γg12 cos2 θg + Γg22 sin θg cos θg

= (1/2) (Γg22 − Γg11) sin 2θg + Γg12 cos 2θg, (5.29)

and θg = ωrott, where ωrot is the nominally constant rotation rate of the GGI disc.

The Bell/Textron instrument is built and used on a stabilized platform, so its

accelerometer-to-inertial angular velocity is just the rotation rate of the accelerom-

eters with respect to the gradiometer frame. In other words,

ωaia = ωaga = (0, 0, ωrot)
T . (5.30)
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Figure 5.2: Schematic of GGI with 4 Rotating Accelerometers

Thus, there is essentially no angular motion in the x-y plane of the a- or g-frames,

and the only angular acceleration in the a-frame is caused by deviations from the

nominal disc rotation rate. Mathematically,

ωx = ωy = 0, (5.31)

ω̇z = δω̇rot. (5.32)

Therefore, after substituting Eq. (5.29) and (5.32) into Eq. (5.26), the stabi-

lized, rotating disc gradiometer measurement is

(aa1 + aa2)/lb = −L′a21 = (1/2) (Γg11 − Γg22) sin 2θg − Γg12 cos 2θg + δω̇rot.

Furthermore, if a second pair of accelerometers are mounted 90◦ from the first set
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in the xa-ya frame (Fig. 5.2), they would measure

(aa3 + aa4)/lb = (1/2) (Γg11 − Γg22) sin(2θg + 180◦)− Γg12 cos(2θg + 180◦) + δω̇rot

= −(1/2) (Γg11 − Γg22) sin 2θg + Γg12 cos 2θg + δω̇rot. (5.33)

Subtracting the second pair of accelerometers from the first pair produces a gra-

diometer measurement with twice the magnitude of a single accelerometer pair and

with no angular acceleration errors (at least theoretically):

[(aa1 + aa2)− (aa3 + aa4)] /lb = (Γg11 − Γg22) sin 2θg − 2Γg12 cos 2θg. (5.34)

The above equation is the measurement presented in many Bell/Textron GGI ref-

erences with obtuse or absent derivations. However, because current laboratory

gradiometers use non-rotating inertial measurement units, this type of sensor’s lin-

earized error equation was not pursued. But for completeness sake, it was presented

so that is could be used for reference purposes.

5.2 Modeled Twelve-Accelerometer GGI

This section describes the envisioned gravity gradiometer instrument that was

used in this research. The GGI is a set of three orthogonal accelerometer triads

equally displaced from a central accelerometer in each of the gradiometer frame’s

cardinal directions. Figure 5.3 illustrates this notional gradiometer where each ar-

row represents a single accelerometer. The location and normalized specific force

measurement for each of the twelve accelerometers are:
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Figure 5.3: Schematic of Modeled Twelve-Accelerometer GGI

ra1 = ra2 = ra3 = (0, 0, 0)T , (5.35a)

ra4 = ra5 = ra6 = (lb, 0, 0)T , (5.35b)

ra7 = ra8 = ra9 = (0, lb, 0)T , (5.35c)

ra10 = ra11 = ra12 = (0, 0, lb)
T , (5.35d)
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and

aa1/a1 = aa4/a4 = aa7/a7 = aa10/a10 = (1, 0, 0)T , (5.36a)

aa2/a2 = aa5/a5 = aa8/a8 = aa11/a11 = (0, 1, 0)T , (5.36b)

aa3/a3 = aa6/a6 = aa9/a9 = aa12/a12 = (0, 0, 1)T . (5.36c)

By differencing pairs of accelerometers that are located at different locations

and dividing by the instrument’s baseline distance, the full L′a tensor can be com-

puted. For example, the L′a11 component of the uncorrected GGI measurement ma-

trix is found by differencing the two xa accelerometers that are separated in the xa

direction, i.e. a4 and a1. Mathematically,

a4 − a1 = L′a (ra4 − ra1) ,
a4 − a1

0

0

 =


L′a11 L′a12 L′a13

L′a21 L′a22 L′a23

L′a31 L′a32 L′a33




lb − 0

0

0

 = lb


L′a11

L′a21

L′a31

 , (5.37)

where Eq. (5.2) on pg. 185 has been used. Because only the first element of the

array is measured by the accelerometers, one has

a4 − a1 = lbL
′a
11 → L′a11 = (a4 − a1)/lb. (5.38)

Similar pairs of accelerometers may be differenced to calculate all the elements in

L′a:

L′a =
1

lb


(a4 − a1) (a7 − a1) (a10 − a1)

(a5 − a2) (a8 − a2) (a11 − a2)

(a6 − a3) (a9 − a3) (a12 − a3)

 = Γa − Ωa
iaΩ

a
ia − Ω̇a

ia. (5.39)
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As shown by Eq. (5.4) on pg. 186, the angular accelerations can be elimi-

nated by averaging the L′a measurement with its transpose, which is equivalent to

averaging off-diagonal elements. For example,

(1/2)(L′a12 + L′a21) = [(a7 − a1) + (a5 − a2)] /(2lb)

= (1/2) [(Γa12 − ωxωy + ω̇z) + (Γa21 − ωxωy − ω̇z)]

La12 = [(a7 − a1) + (a5 − a2)] /(2lb) = Γa12 − ωxωy (5.40)

The full La tensor is similarly found by

La =
1

lb


(a4 − a1) 1

2
[(a7 − a1) + (a5 − a2)] 1

2
[(a10 − a1) + (a6 − a3)]

(a8 − a2) 1
2
[(a11 − a2) + (a9 − a3)]

sym (a12 − a3)

 .

(5.41)

Therefore, it is apparent that the on-diagonal elements of La require only two ac-

celerometers to measure, whereas the off-diagonal elements require four.

The individual accelerometers’ specific force measurements of the GGI are

not actually simulated. Instead, the overall measurement is computed for a given

position (and orientation and rotation rate for a strapdown GGI). This modeling

choice was made because the gradiometer’s manufacturer typically employs special

feedback loops to correct the GGI’s internal accelerometer errors and only the overall

instrument noise is specified. Also, because the accelerometers are stationary with

respect to the gradiometer frame, it is assumed that Ca
g = Cg

a = I, as shown in

Fig. 5.3. Thus, the noisy gradiometer measurement is simulated as

L̃a = L̃g = Cg
nΓnCn

g − Ωa
iaΩ

a
ia + VL, (5.42)
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where Γn = Γn(rn) is linearly interpolated from the gridded, stored gravitational

gradient map to the user’s true position, ωaia is calculated according to the discussion

in Sec. 5.1.2, and VL is a matrix of uncorellated, white Gaussian measurement noise

of specified variance. It is implicitly assumed that the GGI is at the vehicle’s center

of mass so that lever arm effects are neglected. Also, higher order interpolation

methods such as least-squares collocation, which optimally accounts for the error in

the estimated gravity field, could be implemented in place of the simplistic linear

interpolation.95,165

The gradiometer matrix measurement, Eq. (5.42), can be alternatively written

in vector form as

L̃a =



La11

La12

La13

La22

La23

La33



= T an



ΓNN

ΓNE

ΓND

ΓEE

ΓED

ΓDD



+



ω2
y + ω2

z

−ωxωy

−ωxωz

ω2
x + ω2

z

−ωyωz

ω2
x + ω2

y



+ νL, (5.43)

where ωj is the jth component of ωaia, T
a
n is calculated by Eq. (5.15) on pg. 189

using Ca
n = Cg

n, and νL is the vector of measurement noise. The estimated GGI

measurement is computed similarly, but using the INS’s estimated position (and

for the case of the strapdown GGI, orientation and rotation rate) and without an

estimate of the noise vector.

The overall twelve-accelerometer instrument may be physically strapped down

to the body or stabilized on an inertial platform. Each configuration has its own
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advantages and disadvantages, much like the tradeoffs between strapdown of stabi-

lized IMUs. The benefit of a strapdown GGI is that a massive, complex stabilized

platform is unnecessary for the instrument-vehicle integration. The drawbacks are

that the sensor must now be able to estimate the angular errors of the vehicle, which

may cause numerical issues as will be shown in the Results chapter, and that the

instrument must be robust enough to perform in a dynamic environment. When con-

sidering the precision of current GGI’s proof mass displacement measurement and

the dynamics of the airborne environment, the second issue (increased robustness)

is probably the most difficult to overcome. This leads to why almost all gradiome-

ters are integrated with a stabilized platform that isolates the sensor from the body

dynamics. These platforms, currently, are on the order of a washing machine in size,

and their isolation characteristics, along with the GGI fragility, are the limiting fac-

tors on noise level reduction for airborne gravity gradiometry (H. J. Paik, Personal

Communication, University of Maryland, College Park, May 14, 2007). The future

potential performance of both classes of sensors are investigated and reported in the

following chapters. But first, their measurements and linearized error dynamics are

derived for use by the extended Kalman filter in the next subsections.

5.2.1 Strapdown Gravity Gradiometer Instrument

As mentioned above, the strapdown GGI is assumed to make measurements in

the body frame with stationary accelerometers aligned to the body frame. Symboli-

cally, the strapped down gradiometer measurement is found by substituting Eq. (5.9)
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and (5.21) into Eq. (5.4) with Ca
g = I and ωaba = 0. The result is

Lb = Cb
nΓnCn

b − Ωb
ibΩ

b
ib. (5.44)

The body-to-navigation frame rotation matrix, Cn
b , is calculated by the truth inertial

navigation system quaternion, and Ωb
ib is the calculated by the truth simulated gyros.

The modeled GGI measurement is corrupted by white, Gaussian noise and uses

the truth INS and gyro states to calculate L̃b at a given data rate. The strapdown

GGI’s estimated measurement is modeled as

L̂b = Ĉb
nΓ̂nĈn

b − Ω̂b
ibΩ̂

b
ib. (5.45)

Where Ĉb
n is the INS estimate, Γ̂n = Γn(rn), and Ω̂b

ib is calculated from the gyro

measurement after it has been corrected for by scale factor, bias, and noise errors

(see Eq. (4.111) on pg. 174). The strapdown GGI residual is then

δLb = L̂b − L̃b, (5.46)

after being reorganized into vector notation.

The simulated strapdown gradiometer measurement and estimate could also

by calculated using Eq. (5.43) with the appropriate transformation matrix (Cb
n or

Ĉb
n), position (rn or r̂n) for the gradient interpolation, and gyro signal (ωbib or ω̃bib).

Of course, the noise vector would only by included in the simulated measurement,

not the estimate. The linearized error will now be derived for the Kalman filter

update equations.

Typically, the gravity gradient errors consist of registration errors due to in-

correct position knowledge, stored map errors, and instrument errors such as scale
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factors, biases, nonlinearities, noise, etc.20,36 The simplifying assumption will be

made that there are no map errors which implies that the spherical harmonic model

is sufficiently accurate at altitude. The assumption that the GGI errors are only a

product of white noise is also made. (Red noise is sometimes used for low frequency

deviations,99 but is neglected here because of the relatively fast update rates.) Since

a GGI is an extremely sensitive instrument, the manufacturer would employ its own

means to internally monitor and correct most other error sources. Therefore, only

the registration and white noise instrument error are considered from this set.

Other error sources occur due to incorrect rotation knowledge from the naviga-

tion frame to the gradiometer frame and centripetal errors due to imprecise rotation

rate knowledge. Jekeli94 included the centripetal terms, but the rotation matrix

error contribution has not been thoroughly derived or investigated to the authors’

knowledge. The following formulations will include both of these error sources along

with the registration and white noise errors for use with a strapdown GGI. The case

of a simulated stabilized GGI will then be derived from this expression.

To derive the strapdown GGI Kalman filter measurement form, we will begin

by linearly perturbing the gradiometer measurement, Eq. (5.44), to get

δLb = Cb
n (ΨnΓn + δΓn − ΓnΨn)Cn

b − δΩb
ibΩ

b
ib − Ωb

ibδΩ
b
ib + VL

= Cb
n

(
δΓn + Lnψ

)
Cn
b − Lbω + VL, (5.47)

where

Lnψ ≡ ΨnΓn − ΓnΨn, (5.48)

Lbω ≡ δΩb
ibΩ

b
ib + Ωb

ibδΩ
b
ib (5.49)
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are both symmetric matrices, Ψn is the skew-symmetric matrix of rotation errors

ψn = (ψN , ψE, ψD)T , and VL is a matrix of instrument errors that includes the

accelerometer differencing errors.

Following the assumptions above, the n-frame gravity gradients are only in

error due to incorrect position knowledge, or registration errors. Mathematically,

δΓn =

[
∂Γn

∂φ

]
δφ+

[
∂Γn

∂λ

]
δλ+

[
∂Γn

∂h

]
δh ≡

[
∂Γn

∂rn

]
δrn. (5.50)

Since six observations are made for each full tensor GGI measurement, [∂Γn/∂rn]

is a 6 × 3 matrix that represents the third-order tensor of the gravity potential.

Due to symmetry and Laplace’s constraint, this matrix could be computationally

reduced to only include its seven independent components.36 However, for simple

implementation purposes, the partial derivatives of Γn with respect to latitude,

longitude and altitude are computed by second-order central finite differences and

linear interpolation to the estimated position. As mentioned before, higher order

methods such as least-squares collocation would be preferable for a real system to

account for errors in the estimated gravity field.95,165

The error in the navigation-to-body frame rotation can be found by multiply-
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ing out Lnψ:

Lnψ ≡ ΨnΓn − ΓnΨn

=



2(ΓNDψE − ΓNEψD)
−ΓNDψN + ΓEDψE

+(ΓNN − ΓEE)ψD

ΓNEψN + (ΓDD − ΓNN)ψE

−ΓEDψD

2(−ΓEDψN + ΓNEψD)
(ΓEE − ΓDD)ψN − ΓNEψE

+ΓNDψD

sym 2(ΓEDψN − ΓNDψE).


(5.51)

Then, rearranging the diagonal and upper-diagonal elements into the equivalent

vector notations and factoring out ψn:

Lnψ,11

Lnψ,12

Lnψ,13

Lnψ,22

Lnψ,23

Lnψ,33



=



0 2ΓND −2ΓNE

−ΓND ΓED ΓNN − ΓEE

ΓNE ΓDD − ΓNN −ΓED

−2ΓED 0 2ΓNE

ΓEE − ΓDD −ΓNE ΓND

2ΓED −2ΓND 0




ψN

ψE

ψD

 , (5.52)

or more compactly

Ln
ψ =

[
∂Ln

ψ

∂ψn

]
ψn. (5.53)

Following a similar procedure, the rotation rate error contribution to the grav-
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ity measurement is calculated using Eq. (5.49), which when expanded out is

Lbω ≡ δΩb
ibΩ

b
ib + Ωb

ibδΩ
b
ib

=


−2(ωyδωy + ωzδωz) ωyδωx + ωxδωy ωzδωx + ωxδωz

−2(ωxδωx + ωzδωz) ωzδωy + ωyδωz

sym −2(ωxδωx + ωyδωy)

 ,

(5.54)

where (ωx, ωy, ωz)
T = ωbib here. Then the vector form is

Lb
ω ≡



Lbω,11

Lbω,12

Lbω,13

Lbω,22

Lbω,23

Lbω,33



=



0 −2ωy −2ωz

ωy ωx 0

ωz 0 ωx

−2ωx 0 −2ωz

0 ωz ωy

−2ωx −2ωy 0




δωx

δωy

δωz

 ≡
[
∂Lb

ω

∂ωbib

]
δωbib. (5.55)

The linearized measurement errors for a strapdown gravity gradiometer can

now be found. Substituting Eqs. (5.50), (5.52), & (5.55) into Eq. (5.47) with

the transformation matrix T bn (Eq. (5.15) using Cb
n), and the gyro error states,

Eq. (4.114) on pg. 175, gives

δLb = T bn

[
∂Γn

∂rn

]
δrn + T bn

[
∂Ln

ψ

∂ψn

]
ψn (5.56)

−
[
∂Lb

ω

∂ωbib

] [
ω̃bib·

]
δSFg −

[
∂Lb

ω

∂ωbib

]
δbg −

[
∂Lb

ω

∂ωbib

]
δng + νL,

where [ω̃bib·] is a diagonal matrix whose components are the measured rotation rate,

and νL is the vector of uncorrelated white measurement noise. The Kalman filter

update matrix is implemented by using the coefficient matrices of Eq. (5.56) above
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in the appropriate columns of the Hb
L matrix, and the remaining columns are filled

with zeros.

5.2.2 Stabilized Gravity Gradiometer Instrument

The stabilized gravity gradiometer instrument assumes that the stabilized plat-

form continually aligns the gradiometer’s axes to the Earth-Centered-Inertial frame.

Using Eq. (5.10) and (5.22) with the assumption that the accelerometers are sta-

tionary with respect to the g-frame so that Ca
g = I and ωaga = 0, the stabilized GGI

truth measurement is

Li = Ci
nΓnCn

i , (5.57)

because there are no GGI angular rates with respect to the inertial frame. The

navigation-to-inertial frame direction cosine matrix is calculated by Eq. (5.11) on

pg. 188 using the truth position.

The stabilized GGI residual is calculated by subtracting the noisy measure-

ment from the inertial navigation system’s estimated gradiometer reading:

δLi = L̂i −
(
Li + VL

)
, (5.58)

where Li + VL ≡ L̃i is the simulated measurement with error, and VL is a matrix of

uncorrelated measurement noise.

The linearized error between the GGI measurement and INS estimate is found

by linearly perturbing Eq. (5.57):

δLi = Ci
n (Ψn

inΓn + δΓn − ΓnΨn
in)Cn

i + VL (5.59)

= Ci
n

(
δΓn + Liψ

)
Cn
i + VL,
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where

Liψ ≡ Ψn
inΓn − ΓnΨn

in, (5.60)

and Ψn
in is the skew symmetric rotation error matrix from the navigation-to-inertial

frame with coordinates in the n-frame. This matrix is different than the traditional

matrix Ψn which is equivalent to Ψn
bn, or the n-to-b-frame rotation error.

The navigation-to-inertial frame error can be calculated as follows. First,

using the definition of a small-error rotation, Eq. (4.72) on pg. 162, and taking its

transpose, one has

δC i
n = Ci

nΨn
in. (5.61)

Using Eq. (5.11) and linearly perturbing each element results in

δC i
n =



− cosφ cosλδφ

+ sinφ sinλ(δλ+ ωeδt)
− cosλ(δλ+ ωeδt)

sinφ cosλδφ

+ cosφ sinλ(δλ+ ωeδt)

− cosφ sinλδφ

− sinφ cosλ(δλ+ ωeδt)
− sinλ(δλ+ ωeδt)

sinφ sinλδφ

− cosφ cosλ(δλ+ ωeδt)

− sinφδφ 0 − cosφδφ


,

(5.62)

which can be factored into Ci
n and the resultant small error rotation matrix:

Ψn
in =


0 sinφ(δλ+ ωeδt) −δφ

− sinφ(δλ+ ωeδt) 0 − cosφ(δλ+ ωeδt)

δφ cosφ(δλ+ ωeδt) 0

 (5.63)

which is the skew symmetric matrix of the error rotation vector

ψn
in = (cosφ(δλ+ ωeδt), − δφ, − sinφ(δλ+ ωeδt))

T , (5.64)
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This error rotation vector is essentially the same as ωnin rotation rate (Eq. (4.23) on

pg. 144), but where the time differential operator, d()/dt, has been replaced with

the linear perturbation operator, δ(). ψn
in can also be decomposed into INS error

states:

ψn
in =


0 cosφ 0

−1 0 0

0 − sinφ 0




δφ

δλ

δh

+


(ωe/c) cosφ

0

−(ωe/c) sinφ

 (cδbu) (5.65)

or, more compactly as

ψn
in =

[
∂ψn

in

∂rn

]
δrn +

[
∂ψn

in

∂cbu

]
cδbu, (5.66)

where ωe is Earth’s rotation rate, c is the speed of light, and cδbu is the user’s clock

error, which for this work has the same dynamics as the GPS clock from Sec. D.4.

The linearized stabilized gradiometer measurement error can now be found

using a formulation similar to Eq. (5.56) but using the new rotation error equation

above and omitting the gyro errors:

δLi = T in

{[
∂Γn

∂rn

]
+

[
∂Ln

ψ

∂ψn

] [
∂ψn

in

∂rn

]}
δrn + T in

[
∂Ln

ψ

∂ψn

] [
∂ψn

in

∂cbu

]
cδbu + νL, (5.67)

where T in is calculated using Eq. (5.15) on pg. 189 with Ci
n as calculated in Eq. (5.11)

on pg. 188.

5.3 Chapter Summary

This chapter presents a methodology to derive the measurements for a vast

array of GGI configurations in Sec. 5.1. The methodology includes a new trans-

formation matrix for converting on- and off-diagonal symmetric tensor components
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from the North-East-Down navigation frame to an arbitrary frame in Sec. 5.1.1. And

Sec. 5.1.2 includes the second part of the GGI measurement methodology which ac-

counts for angular velocity effects which essentially mask the gravitational gradients

in the GGI measurements. Section 5.1.3 then uses the presented methodology to

derive the rotating, stabilized GGI measurement produced by the Bell/Textron-

derived GGIs as an example of its applicability.

Section 5.2 details an envisioned 12-accelerometer, full-tensor GGI and derives

the most comprehensive open-literature GGI linearized error models to date, includ-

ing a new formulation for stabilized GGIs. As shown in Eq. (5.41) on pg. 200, for

the 12-accelerometer GGI only two accelerometers are required to measure the inline

(on-diagonal) gravitational gradients, but four accelerometers are necessary to mea-

sure the off-diagonal gradients and remove the angular accelerations from the GGI

observable. Section 5.2.1 then derives the measurement of a strapdown GGI and its

linearized error model. The error derivation is based on Jekeli,94 however Eq. (5.56)

on pg. 207 extends his derivation to include both the effect of the navigation-to-body

frame transformation, T bn, and the error associated with this rotation, ψn. Section

5.2.2 lastly derives a new stabilized GGI measurement formulation and its linearized

errors. This error model, Eq. (5.67), again includes rotation effects and errors (T in

and ψn
in), however this rotation error is comprised of position and time errors instead

of orientation errors. Therefore, the error derivations of the strapdown and stabi-

lized GGIs show that the strapdown sensor has direct observability of orientation

and gyro errors, whereas the stabilized sensor has better observability of registration

(position) errors through its rotation error term. These results produce a tradeoff
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between the two sensor types:

• A strapdown GGI-aided INS produces lower orientation and gyro errors over

a stabilized sensor, but increased position errors because of the need to con-

tinually estimate the orientation and gyro errors.

• A stabilized GGI-aided INS produces lower position errors than a strapdown

sensor, but reduced orientation performance and gyro calibration because of

the lack of observability of these states.

The next chapter thoroughly quantifies the tradeoffs between these two GGI types

through extensive Monte Carlo simulations.
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Chapter 6

Monte Carlo Simulation Results

This chapter presents and discusses the Monte Carlo simulation and results to

quantify the performance of the gradiometer aided inertial navigation system and

the baseline INS/GPS system. The first section gives an overview of how the simu-

lations were run and how the data was reduced. The second section compares three

Monte Carlo simulation set sizes and their effect on how closely they model the

Gaussian errors of the navigation system. The next section presents the INS/GGI

and INS/GPS results. The first half of each of the navigation aid’s results show

a representative time history of a simulation and a detailed analysis of the navi-

gation state errors. These results are shown as a preface to the second half of the

results where the sensitivities of various system parameters are quantified in terms

of their steady state mean-radial-spherical-errors (MRSEs). The conclusions from

these results are then summarized in Sec. 6.4.

6.1 Monte Carlo Simulation

For each Monte Carlo set and prior to any simulation run in the set, the stored

gravity field map and the body rate files (for the hypersonic cases) are opened and
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read into memory.This allows each simulation of the Monte Carlo set to run faster

because the file input is only required once. The only minor issue is that there is

now an initial time lag on the order of several seconds for the code to read in these

full files. For the subsonic cases, the body rates are set to zero along with the initial

pitch and roll angles and the time lag is shortened slightly. The yaw angle for all

cases is a constant 90◦ to ensure the Eastern cruise.

After reading the file inputs, the inertial measurement unit specifications were

set to either use the navigation or tactical grade values from Table 4.4 on pg. 181.

Next, the initial filter covariance matrix, P (0) was chosen to be a diagonal

matrix with the following values for the diagonal elements. The filter position state

variance was set to (10.0 m)2, and the latitude and longitude states were converted

to radians by dividing by a, Earth’s equatorial radius. The velocity variances were

set to (1.0 m/s)2, and the attitude states to (0.05◦)2. The filter variances for the

IMU scale factors and biases, and gyro noises, were set to their simulated IMU

specifications. The GPS receiver clock bias and drift variances were set to (15 m)2

and (0.5 m/s)2, respectively. This initial filter covariance was constant for all Monte

Carlo sets and was tuned so that the filter would reach steady state operation as

soon as possible for a wide variety of INS/GGI and INS/GPS configurations. As

discussed later in the results sections, this was not always the case.

Following the set up of the initial covariance matrix, 1,000 Monte Carlo sim-

ulations were run for a given set of system design parameters. (The sensitivity

of increasing the set size to 10,000 simulations or decreasing to 100 simulations is

discussed in the following section.) Each simulation in the set has its initial truth
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position, velocity, and attitude states set so that they correspond to the correct

Mach number, initial latitude and longitude for a given trajectory, and initial trim

angles. The filter’s estimated position, velocity, and attitude states are also set

to these values so that there are no initial errors for these nine states. The truth

IMU states are then randomly initialized according to the IMU specifications in

Table 4.4. Misalignments and nonlinearities were originally implemented into the

simulated IMU measurements to add uncompensated errors to the filter, but it was

quickly discovered that the INS/GGI simulations were too sensitive to prevent diver-

gence with these additional errors. Therefore, the misalignments and nonlinearities

errors were not simulated in any of the following simulations. The GPS receiver’s

truth bias and drift are randomly initialized with a 15 m and 0.5 m/s standard

deviation, respectively. The last term randomly initialized for each simulation is a

constant time offset between the simulation time and the GPS constellation time to

allow for a variety of GPS geometries.

The truth and estimated state vectors and the filter covariance matrix are

numerically integrated at 20 Hz with the truth and estimated IMU measurements

according to Ch. 4, and App. C and App. D. Then the simulated GGI or GPS

measurements are made at a given update rate that is constant for a given Monte

Carlo set. The noisy truth measurements are calculated using the current truth

states and white noise is added. The filter also estimates a noise-free measurement

at the same time using its current state estimate. The residual between these two

measurements and the linearized measurement errors are then used to compute the

Kalman gain to correct the estimated state vector and covariance matrix. The
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process of propagating the truth and estimated states and updating the estimated

states at a finite rate is continued until the truth longitude passes the given range

requirement.

In order to quantify the filter performance, the error in the 26 truth and filter-

estimated states are computed at each epoch. The maximum error, sum of the

error, and sum squared of the error of each state at each epoch are tallied for each

of the simulations in the Monte Carlo set. Once all 1000 simulations are completed

for a given set the mean, standard deviation, and maximum error of each state is

computed at each epoch and written to a file. The same process is done with the

filter’s 1-σ estimate of each state’s error using the diagonal elements of the filter

covariance matrix, see Eq. (C.7) on pg. 312:

σ̂xi =
√
P (i, i). (6.1)

The data in the Monte Carlo error file is reduced further by calculating the

root-mean-square (RMS) error of each state at each epoch using:

RMSi =
√
x2
i + σ2

xi
, (6.2)

where xi is the mean error of the ith state at a given epoch, and σxi is the standard

deviation of the error at the same epoch. The RMS of the filter estimates are

computed as well to identify if the filter is performing correctly.

The mean RMS for the position, velocity, and attitude states are then cal-

culated for several filter settling times and the presented results are tabulated as

follows. The top half of each table calculates the mean RMS from 1/10 of the

final simulation time until the end of the simulation as a way of quantifying the
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performance of the system while neglecting the initial filter settling transient. The

bottom half of each table quantifies the steady-state navigation performance by

calculating the mean RMS over only the last half of the simulation. The filter’s es-

timated 1-σ standard deviations are denoted as “Cov.” and are included to identify

the effectiveness of the filter and illuminate the presence of any divergence issues.

The mean-radial-spherical-error (MRSE) is also calculated to quantify the overall

position, velocity, and attitude error. The velocity MRSE is computed by:

vMRSE =
√
v2
N + v2

E + v2
D, (6.3)

and the position and attitude MRSEs are found similarly. The latitude error is

converted to crossrange error by multiplication of a, and the downrange error is

found by multiplying the longitude error by a cos(φnom), where φnom is the constant

truth latitude. (Appendix E tabulates the position, velocity, and attitude MRSEs

for each of the Monte Carlo sets with the two filter settling times above and the

MRSE for the entire simulation.)

The hypersonic un-aided INS results are presented as Table 6.2 in a slightly

different fashion. Without external aiding, the navigation filter propagates the in-

ertial navigation states with the initialized uncompensated accelerometer and gyro

errors. These errors cause the position, velocity, and attitude errors to grow steadily

over time so that the mean RMS errors are less informative than for the aided cases.

Instead, the RMS error states at the end of the simulation (at the 1,000 km down-

range) are presented along with the maximum error encountered for the entire 1,000

simulation set. The navigation and tactical grade IMUs are presented as the top
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Table 6.1: Steady State Error Versus Monte Carlo Set Size

North / Pitch East / Roll Down / Yaw

Set Size State Units RMS Cov. RMS Cov. RMS Cov.

Pos. m 0.1929 0.2049 0.2311 0.2221 0.1145 0.1148

100 Vel. m/s 0.0044 0.0045 0.0041 0.0038 0.0016 0.0015

Att. ◦×10−3 1.2851 1.2965 1.0427 0.9934 7.5255 7.4114

Pos. m 0.2055 0.2049 0.2229 0.2221 0.1144 0.1148

1,000 Vel. m/s 0.0045 0.0045 0.0038 0.0038 0.0016 0.0015

Att. ◦×10−3 1.2945 1.2965 0.9892 0.9935 7.1992 7.4121

Pos. m 0.2039 0.2049 0.2220 0.2221 0.1148 0.1148

10,000 Vel. m/s 0.0045 0.0045 0.0038 0.0038 0.0015 0.0015

Att. ◦×10−3 1.2885 1.2965 0.9982 0.9935 7.3265 7.4119

and bottom half of the table, respectively.

6.2 Monte Carlo Set Size

Three Monte Carlo set sizes were compared to investigate the effect of in-

creasing or decreasing the number of simulation runs per a given INS configuration.

The chosen test case was the Mach 6, high Γn variation trajectory INS/GGI system

with navigation grade IMUs aided by a stabilized 0.001 Eö gradiometer at 1 Hz.

This configuration was picked because it yields the best INS/GGI performance and

has an increased simulation duration versus the Mach 7 “Best” case presented in

Sec. 6.3.1.1.

The computed steady state error and filter estimate for each of the nine nav-

igation states is summarized in Table 6.1 for Monte Carlo sets of 100, 1,000 and
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10,000 simulations. The figure of merit that is used for this steady is how closely

the Monte Carlo steady state errors predict the optimal filter performance since this

estimates how closely the simulations capture all random processes of the simulation.

Quantitatively, this term is

RMSi

R̂MSi
− 1, (6.4)

where RMSi is the ith state’s steady state RMS computed from the Monte Carlo

set and R̂MSi is the steady state filter estimate of the error. The quantity would

be zero for an infinite number of random simulations assuming the filter is optimal.

The value of R̂MS for each state was chosen to be the average of the three steady

state filter values, i.e. from the 100, 1,000, and 10,000 sets. Figure 6.1 plots the

100 and 1,000 set steady state filter error normalized by the 10,000 simulation set

values for each of the nine navigation states (φ, λ, h, vN , vE, vD, ψN , ψE, ψD). From

this plot, it is apparent that the filter estimate error is essentially constant regardless

of Monte Carlo set size.

Figure 6.2 then plots the normalized steady state error RMS as calculated by

Eq. (6.4). The 100 Monte Carlo set has the largest deviation from the filter estimate

because there are not enough simulations to accurately capture a full Gaussian

distribution of all the random states. The 1,000 set, on the other hand, has less

than a 1% variation from the filter estimate for all states except the Eastern velocity

(1.35%) and yaw angle, ψD (2.87%). And the 10,000 simulation set better captures

only five of the nine navigation states compared to the 1,000 simulation set.

The mean-radial-spherical-error for the normalized position, velocity, and at-
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Figure 6.1: Normalized Steady State Filter Error vs. Monte Carlo Set Size

Figure 6.2: Normalized Steady State Error vs. Monte Carlo Set Size
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Figure 6.3: Normalized Steady State MRSE vs. Monte Carlo Set Size

titude states are plotted in Fig. 6.3 as a function of the Monte Carlo set size. The

position and velocity errors are much better estimated when the number of simula-

tions is increased from 100 to 1,000. However, increasing the set size from 1,000 to

10,000 has diminishing returns. The attitude error linearly decreases as the set size

is increased by an order of magnitude.

It should be noted that while increasing the number of simulations better

captures all the randomness of the system, the computational effort increases sub-

stantially. For the hypersonic simulations, a 1,000 simulation Monte Carlo set took

about 16–20 minutes to run on a dual processor 64-bit AMD 2.2 GHz Opteron 246

with 2 GB of RAM. The 10,000 simulation set took on the order of 3–4 hours to

complete, and the 100 simulation set several minutes. Taking the computation time,

number of Monte Carlo configurations simulated, and the trends in Fig. 6.3 into ac-

count, the nominal 1,000 simulation set size was deemed a good compromise for this
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work.

6.3 Results

Before presenting the Monte Carlo sensitivity results, several single simulation

results will be shown to better understand the later discussions. The Monte Carlo

errors and filter estimates are tabulated for the nine navigation states for the two

settling times discussed above, and the columns of the tables are organized as follows.

The North / Pitch columns constitute the crossrange, Northern velocity, and ψN

(pitch) errors, the East / Roll columns similarly constitute the downrange, Eastern

velocity, and ψE (roll) errors, and the Down / Yaw columns the altitude, Downward

velocity, and yaw errors.

In order to limit the scope of the sample simulation results presented, the

“Best” or “Nominal” case for each INS aid, GGI and GPS, will be first shown. Then

one of the system design parameters will be deviated from this best or nominal case.

The gradiometer cases are presented first, followed by the GPS cases.

The Monte Carlo steady state MRSE sensitivities to numerous parameters

are then presented. These results are first shown by comparing the main system

design parameters (IMU quality and GGI type or GPS measurement) as a function

of GGI noise of GPS update interval. Then, the sensitivity to Mach number and Γn

variation (for the hypersonic cases) are shown. The two subsonic cases are discussed

in the single simulation result sections.

As motivation for the need of an external aid to the INS, the dead reckoning
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inertial navigation results are listed in Table 6.2 for the mean and maximum RMS

at the end of the hypersonic 1,000 km simulations. These results are only for the

high gravitational gradient variation trajectories. The low Γn variation trajectory

free-inertial errors are given in Tables E.2 and E.4 on pg. 358.

As shown in Table 6.2, after the Mach 7 free inertial 1,000 km cruise, the

position errors grow to 25 m in the horizatal and 65 m in the vertical for a navigation

grade IMU with no initial position, velocity, or attitude errors. The maximum error

for the free inertial Monte Carlo simulations are approximately 4 times as large.

The tactical grade IMUs produce nearly 1 km horizontal errors and 700 m vertical

error for a total position error of 1.5 km due to only IMU error sources. The Mach 6

cases produce dead reckoning errors since the simulation is run longer and the error

growth is a function of time. The Mach 8 case is simulated for a shorter duration and

therefore has lower free-inertial errors. To enable safe operation of such systems and

to meet precision strike goals (on the order og 3 m),166 an external aid is a necessity.

6.3.1 Gravity Gradiometer Aided INS

Table 6.3 summarizes the 162 hypersonic gravity gradiometer aided inertial

navigation system configurations tested in this work. The subsonic cases were only

simulated along the high gravitational gradient variation trajectories with navigation

grade IMUs and a stabilized GGI with 0.1, or 0.001 Eö updates at 1 Hz.
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Table 6.2: Dead Reckoning Navigation Accuracy after 1000 km Cruise, High Γn

Variation Trajectory

M∞ North / Pitch East / Roll Down / Yaw

IMU State Units RMS Max RMS Max RMS Max

Mach 6 Pos. m 31.635 107.96 34.665 109.35 97.457 356.11

Nav. Vel. m/s 0.0925 0.2941 0.1081 0.3388 0.3635 1.3564

Att. ◦×10−3 0.6222 2.0768 0.6595 2.3628 0.7135 2.6651

Mach 6 Pos. m 1428.9 4323.4 1452.3 5107.9 945.93 3586.6

Tac. Vel. m/s 6.9633 20.405 7.0990 24.955 3.7091 14.651

Att. ◦×10−3 144.47 447.63 148.02 485.69 159.95 613.88

Mach 7 Pos. m 23.823 85.192 26.542 88.183 65.974 278.82

Nav. Vel. m/s 0.0817 0.2394 0.0965 0.3456 0.2787 0.9450

Att. ◦×10−3 0.5744 2.4795 0.5459 2.2561 0.6129 1.9046

Mach 7 Pos. m 918.82 3468.8 952.09 3095.8 703.89 2878.8

Tac. Vel. m/s 5.0600 19.586 5.2833 16.942 3.1409 12.570

Att. ◦×10−3 126.02 437.87 121.19 434.81 132.75 443.72

Mach 8 Pos. m 21.588 104.31 20.740 66.693 48.893 158.06

Nav. Vel. m/s 0.0770 0.2786 0.0821 0.2667 0.2323 0.7725

Att. ◦×10−3 0.5110 1.8697 0.4941 1.6466 0.5351 1.6637

Mach 8 Pos. m 655.86 2338.8 680.45 2722.5 500.13 1771.4

Tac. Vel. m/s 4.1040 15.929 4.2188 15.004 2.5330 8.9636

Att. ◦×10−3 113.97 458.36 113.18 417.27 116.21 408.02
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Table 6.3: INS/GGI Monte Carlo Test Matrix

Parameter Values #

IMU Grade Navigation, Tactical (Stab. only) 2

Mach Number 6, 7, 8 3

Gradient Variation “High,” “Low” 2

Instrument Noise 0.1, 0.01, 0.001 Eö (1-σ) 3

Instrument Type Stabilized, Strapdown 2

Data Rate 1, 5, 10 sec 3

6.3.1.1 Monte Carlo Results

For the single simulation runs, only the Mach 7 cases will be shown since they

represent the same trends as the other two hypersonic cases. The “best” INS/GGI

system configuration is summarized in Table 6.4 along with the varied parameter

values chosen to give a brief discussion of some of the system sensitivities. The

subsonic 0.1 and 0.001 Eö INS/GGI cases will be presented and discussed at the

end of this subsection.

Table 6.4: INS/GGI “Best” and Off-Nominal Simulation Parameters

IMU Trajectory Noise Type Data Rate

“Best” Value Nav. High Γn Variation 0.001 Eö Stabilized 1 sec

Perturbed Value Tac. Low Γn Variation 0.1 Eö Strapdown 10 sec

225



Hypersonic Cases

Figure 6.4 plots a single “Best” case stabilized gradiometer simulation error

and 1-σ filter envelope for the nine navigation states. As shown, the filter accurately

predicts the errors for each state with this future-grade gradiometer. Compared to

the free inertial final position error, the covert GGI-aided INS reduces the steady

state MRSE by a factor of 220 from 75.0 to 0.336 m. The steady state (500 km

settling time) velocity error is also reduced remarkably to 0.0069 m/s, a factor of

nearly 45 below the free-inertial case.

The attitude states surprisingly increase in error from the unaided simula-

tions. This result is somewhat misleading as it is actually due to the simulation

formulation—not the INS/GGI filter performance. Because the simulations were

conducted without any initial position, velocity, or attitude errors, the free-inertial

attitude errors are governed primarily by the uncompensated gyro errors. The nav-

igation grade gyros have a simulated turn-on bias of 0.003◦/Hr, which therefore

cause only a 0.4×10−3◦ attitude error after the 482 sec Mach 7 simulation; close to

the values reported in Table 6.2. Had the free-inertial simulation introduced initial

attitude errors, the final errors would have grown much larger, and the improvement

in attitude determination by GGI-aiding would be more obvious.

Some trends that are apparent for all simulated gradiometer-aided systems

can be identified by Table 6.5. First, the vertical position and velocity errors are

typically one-half the horizontal errors. This performance characteristic is attributed

to the fact that the vertical gravitational gradient, ΓDD, is approximately twice that
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Figure 6.4: Sample “Best” Stabilized Gradiometer-Aided INS Simulation

Table 6.5: “Best” Gradiometer-Aided INS Case

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 1.2069 1.2692 0.3331 0.3469 0.4711 0.4770

100 km Vel. m/s 0.0124 0.4474 0.0151 0.4466 0.0103 0.4455

Att. ◦×10−3 0.9076 23.138 0.6166 22.820 5.3159 27.662

Pos. m 0.2172 0.2172 0.2244 0.2259 0.1239 0.1229

500 km Vel. m/s 0.0054 0.0054 0.0039 0.0039 0.0019 0.0019

Att. ◦×10−3 1.6298 1.6488 1.1060 1.0763 9.5646 9.7920
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of ΓNN or ΓEE by Laplace’s constraint, Eq. (2.5) on pg. 43. Hence, variations in

the inline horizontal gradients cause greater variations in the vertical component.

Second, the tilt errors, ψN (pitch for Eastern flight) and ψE (roll), are reduced to

an error floor of ∼0.001◦ while the yaw error dominates the total attitude error.

This phenomenon occurs because the gradiometer acts as essentially a gravitational

compass to hone in on the vertical gradient and reduce the tilt errors. Furthermore,

due to Earth’s oblateness, the gravitational gradients are more sensitive to latitude

than longitude variations so the ψE (roll) error has slightly better performance than

the ψN (pitch) error.

Figure 6.5 shows a single simulation using the “Best” case parameters but

with the navigation grade IMUs replaced by a tactical grade suite. Table 6.6 lists

the 1,000 Monte Carlo navigation results. For this case the filter again accurately

estimates the navigation errors. The INS/GGI produces position errors only slightly

greater than those of the “Best” case, and corresponds to a three order-of-magnitude

improvement from the free inertial tactical grade IMU errors. Velocity errors are

reduced by over two orders-of-magnitude. The attitude errors are only reduced by

a factor of two, however this is again caused by the simulation formulation.

The “Best” case parameter set is next flown over the “Low” gravity gradient

variation trajectory to investigate the sensitivity of the system on signal strength.

As seen in Fig. 6.6 and Table 6.7, there is minimal change in navigation performance

between the two chosen trajectories. The most apparent difference between these

two cases is that the lobe pattern of the filter 1-σ envelope is less pronounced com-

pared to Fig. 6.4 and 6.5. The North (crossrange) position error is essentially the
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Figure 6.5: Sample Tactical Grade IMU Gradiometer-Aided INS Simulation

Table 6.6: Tactical Grade IMU, Gradiometer-Aided INS Case

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 1.2911 1.3136 0.4212 0.4264 0.5151 0.5080

100 km Vel. m/s 0.0176 0.4527 0.0220 0.4537 0.0129 0.4482

Att. ◦×10−3 13.726 38.116 13.095 37.154 55.708 81.951

Pos. m 0.2991 0.2970 0.3701 0.3690 0.1777 0.1787

500 km Vel. m/s 0.0150 0.0148 0.0167 0.0166 0.0068 0.0068

Att. ◦×10−3 24.626 28.610 23.492 26.878 100.19 107.51
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Figure 6.6: Sample “Low” Gravity Gradient Trajectory Gradiometer-Aided INS

Simulation

Table 6.7: “Low” Gravity Gradient Variation Gradiometer-Aided INS Case

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 0.5544 0.5456 0.7716 0.7762 0.3811 0.3899

100 km Vel. m/s 0.0115 0.4474 0.0032 0.4467 0.0253 0.4454

Att. ◦×10−3 0.8298 23.039 0.6211 22.829 5.0592 27.503

Pos. m 0.2102 0.2092 0.2499 0.2488 0.1165 0.1176

500 km Vel. m/s 0.0054 0.0054 0.0041 0.0041 0.0018 0.0018

Att. ◦×10−3 1.4896 1.4739 1.1139 1.0950 9.1022 9.5086
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same for both trajectories, the East (downrange error) is about 10% higher for the

“Low” trajectory, and the altitude error is surpisingly 6% lower for the “Low” tra-

jectory. Again the vertical errors are approximately half those of the horizontal and

the attitude errors are dominated by the yaw error. These results are quite promis-

ing. Initially it was believed that the gradiometer-aided INS would only be viable

over regions with large gradient variations. But from this analysis it is now believed

that the INS/GGI navigation package can yield exceptional performance with min-

imum sensitivity to the region of interest if the GGI noise floor can be reduced to

0.001 Eö/
√
Hz. A more complete investigation is performed and discussed in the

following subsection that shows that signal variation does indeed affect navigation

performance for other configurations and higher GGI noise levels.

Figure 6.7 plots a sample simulation over the “High” gradient variation tra-

jectory, but now with increased gradiometer noise. The noise was increased from

0.001 Eö to 0.1 Eö with updates still simulated at 1 Hz. This increased noise value

is still more than an order of magnitude lower than any currently planned airborne

gradiometer. However, simulations performed with a 1 Eö simulated noise level

showed negligible improvement over the free-inertial simulations, so a noise value of

0.1 Eö was chosen to show the effect of greater instrument noise on overall system

performace. With the two order-of-magnitude increase in noise, the total steady

state position error increased by a factor of 75 over the “Best” case INS/GGI. The

velocity error increased by a factor of 40. The total attitude error is approximately

the same regardless of noise level. Yet again, this result is slightly misleading. The

tilt errors increased by a factor of 5 with the increased noise as one might expecet,
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but the yaw error was halved over the low noise case. The reason for the decrease in

yaw angle error is that the filter covariance was initially high enough that it never

attempted to update the yaw estimate, thus allowing the yaw to propagate as if it

were a free-inertial case with errors occurring from the gyro bias and a random walk

from integrating its noise. As mentioned above, with the lack of initial position, ve-

locity, and attitude errors, the attitude errors remain quite small without updates.

If the initial filter covariance were tuned differently, the yaw angle error would have

likely increased over the “Best” case yaw error. The yaw error issue will be even

more apparent in the sensitivity study results.

Next, the “Best” case INS/GGI was simulated with 10 sec updates insead of

the 1 sec updates in the other cases. By sampling at longer intervals, the filter

processes fewer measurements over the cruise profile and thus the filter requires

more time to reach steady state. Moreover, the decreased update rate effectively

increases the noise in terms of its simulated power spectral density, see Eq. (6.5) on

pg. 244. Figure 6.8 illustrates that the filter undergoes many saw-tooth error spikes

between measurement updates in the initial portion of the 10 sec update INS/GGI

simulation. After about halfway through the simulation the filter has converged to

steady state position, velocity, and tilt errors. At this point, the filter begins to

remove the yaw error until the simulation ends. The speed that the filter reaches

steady state could be improved by additional filter tuning. Referring to Table 6.9,

the position errors grew consistently by a factor of 3 over the 1 sec update results,

however the total position error was still less than a meter (0.9789 m). The velocity

errors for the 10 sec update case are about twice those of the nominal 1 Hz case
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Figure 6.7: Sample Increased Noise Gradiometer-Aided INS Simulation

Table 6.8: Increased Noise Gradiometer-Aided INS Case

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 8.6561 12.969 11.476 13.665 5.7341 9.5701

100 km Vel. m/s 0.0988 0.5453 0.1299 0.5654 0.0577 0.4940

Att. ◦×10−3 3.6155 27.152 2.8556 26.061 2.9739 49.546

Pos. m 14.919 15.376 18.833 19.307 9.2399 9.3009

500 km Vel. m/s 0.1616 0.1815 0.2101 0.2178 0.0875 0.0891

Att. ◦×10−3 6.5040 8.8750 5.1360 6.9104 5.3491 49.183
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Figure 6.8: Sample Stabilized Gradiometer-Aided INS Simulation with 10 sec Up-

dates

Table 6.9: Stabilized Gradiometer-Aided INS Case with 10 sec Updates

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 1.4780 1.5096 0.5849 0.5765 0.6223 0.6194

100 km Vel. m/s 0.0164 0.4525 0.0171 0.4490 0.0119 0.4473

Att. ◦×10−3 1.2480 23.743 0.8191 23.099 9.8083 34.572

Pos. m 0.6152 0.6499 0.6601 0.6392 0.3796 0.3792

500 km Vel. m/s 0.0129 0.0146 0.0084 0.0082 0.0052 0.0052

Att. ◦×10−3 2.2424 2.7375 1.4705 1.5795 17.651 22.230
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(0.0163 vs. 0.0069 m/s), and similarly the attitude errors grew by a factor of 2 (17.85

vs. 9.765◦).

The final gradiometer-aided INS parameter to be perturbed is the use of a

strapdown GGI instead of a stabilized GGI. The benefits of a strapdown version of

a gradiometer versus a stabilized version is similar to the tradeoffs between strap-

down and stabilized IMU sensors. A strapdown system provides for a smaller and,

ideally, a mechanically less complicated sensor at the cost of additional computing

requirements to address the angular rate and angular acceleration issues. Because

angular rates and accelerations present themselves as false gravitational gradients,

see Eq. (5.3) and (5.4) on pg. 185, all airborne gradiometers have been built with

a stabilized platform in mind. If the angular accelerations and rates could be suffi-

ciently estimated by either gyros (as assumed in this work) or by the gradiometer

measurements itself (see Eq. (5.6) on pg. 186), a strapdown gradiometer could be

built with reduced mass and volume. As explained next, the strapdown INS/GGI

simulated here brings up unexpected computional issues.

Figure 6.9 plots a representative strapdown gradiometer-aided INS simulation.

It is quite apparent that in this configuration the filter diverges, most noteably in al-

titude. This divergence is believed to be caused by numerical truncation error in the

filter covariance propagation, Eq. (C.40) on pg. 324, and Kalman gain calculation,

Eq. (C.49) on pg. 326:

Pk+1 = ΦkPkΦ
T
k +Qk

Kk+1 = P−k+1H
T
k+1

(
Hk+1P

−
k+1H

T
k+1 +Rk+1

)−1
.
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Figure 6.9: Sample Strapdown Gradiometer-Aided INS Simulation

Table 6.10: Strapdown Gradiometer-Aided INS Case

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 7.0255 7.4693 6.5463 4.6380 2.2185 3.3934

100 km Vel. m/s 0.0464 0.4645 0.0450 0.4613 0.0108 0.4463

Att. ◦×10−3 0.0349 0.0854 0.0483 0.1033 2.2739 23.039

Pos. m 12.617 5.4450 10.730 4.4720 2.6048 0.2349

500 km Vel. m/s 0.0735 0.0360 0.0669 0.0304 0.0095 0.0033

Att. ◦×10−3 0.0285 0.0176 0.0468 0.0157 3.6020 1.5141
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All real quantities in the FORTRAN simulations use double precision data types,

however the gyro process noise variance in Qk and Pk is many orders-of-magnitude

larger than the gradiometer measurement noise variance in Rk and therefore numer-

ical truncation occurs in the Kalman gain calculation. This truncation essentially

causes the filter to ignore some of the GGI measurement noise matrix, RGGI =

diag(σ2
νL

), and therefore the Kalman gain is not calculated optimally. For cases

where the GGI noise is increased or the gyro noise is reduced so their variances are

closer, no divergence exists. Furthermore, filter divergence occurs almost instantly

when the GGI noise is decreased below 0.001 Eö with navigation grade gyros. In

order to alleviate this issue, higher numerical precision could be used in the simula-

tion, and/or a square-root Kalman filter implementation could be chosen instead of

the standard filter implemented in this research. This divergence issue also caused

all strapdown gradiometer aided INS simulations with tactical grade IMUs to di-

verge instantly. Regardless of the slow filter divergence, the strapdown gradiometer

INS results are listed in Table 6.10. Surprisingly, the position errors are less than

17 m even with filter divergence. For the Monte Carlo sensitivities in the next sub-

section, the actual diverging errors are presented along with an extrapolation of the

converged filter results into the 0.001 Eö GGI configurations.

Subsonic Cases

A representative time history of the commercial aircraft INS/GGI is shown in

Fig. 6.10 and the Monte Carlo results are listed in Table 6.11. This case uses the
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Figure 6.10: Sample Commercial Aircraft INS/GGI Simulation

Table 6.11: Commercial Aircraft INS/GGI Case

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 0.5459 0.5522 0.6386 0.6225 0.3091 0.3516

50 km Vel. m/s 0.0174 0.4462 0.0141 0.4465 1.4869 0.4451

Att. ◦×10−3 0.5209 22.729 0.5003 22.722 7.4570 30.0509

Pos. m 0.1479 0.1476 0.2291 0.2252 0.0933 0.0923

250 km Vel. m/s 0.0031 0.0031 0.0037 0.0037 0.0011 0.0011

Att. ◦×10−3 0.9338 0.9082 0.8968 0.8970 13.420 14.088
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“best” parameters as listed in Table 6.4 with the only difference being the reduced

altitude of 10,000 m and East velocity of 250 m/s. The simulation is also run to a

downrange of 500 km instead of 1,000 km. As shown in both Fig. 6.10 and Table

6.11, the filter is accurately estimating the simulation errors.

Comparing this simulation with the Mach 7 “best” INS/GGI system shows sur-

prisingly little change in navigation performance. The downrange and East velocity

errors are practically identical. The crossrange error is about 2/3 the hypersonic

case, and the altitude error is about 3/4. The crosstrack (North) and downward ve-

locity errors are both approximately half those of the Mach 7 simulation. And lastly,

all steady state errors are comparable. These results are encouraging because they

show that a future-grade gradiometers can provide exceptional navigation aiding

even if their size and mass were not reduced to missile-class sizes.

Figure 6.11 and Table 6.12 show the results of the commercial aircraft case if

its noise level were increased to 0.1 Eö with a 1 Hz update rate. The navigation

performance is similar to the hypersonic case shown in Fig. 6.7 and Table 6.8.

These results give an estimate as what a nearer-future INS/GGI system’s navigation

accuracy might be. It should be noted that the local terrain effects have not been

included in any of the simulations, so this INS/GGI navigation accuracy would likely

be improved if more signal frequencies were included.

The GGI-based survey mission results are presented in Fig. 6.12 and Table

6.13. This system is the closest to the current environment of airborne gradiometry.

However, the simulations here are presented with space-grade noise levels which

are three orders of magnitude lower than currently proposed airborne gradiometers.
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Figure 6.11: Sample Commercial Aircraft INS/GGI Simulation w/ Increased Noise

Table 6.12: Commercial Aircraft INS/GGI Case w/ Increased Noise

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 5.7697 9.8692 8.3473 11.382 4.9747 8.7136

50 km Vel. m/s 0.0609 0.4909 0.0720 0.5040 2.9411 0.4786

Att. ◦×10−3 1.1469 23.398 0.9617 23.486 5.0887 49.220

Pos. m 9.6523 9.7997 14.681 14.842 7.9068 7.7713

250 km Vel. m/s 0.0753 0.0835 0.1087 0.1072 0.0635 0.0614

Att. ◦×10−3 2.0607 2.1133 1.7274 2.2715 9.1567 48.596
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Figure 6.12: Sample GGI Survey INS/GGI Simulation

Table 6.13: GGI Survey INS/GGI Case

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 0.5568 0.5740 0.7188 0.6438 0.3760 0.3352

30 km Vel. m/s 0.0569 0.4463 0.0357 0.4470 4.2667 0.4451

Att. ◦×10−3 0.5459 22.722 0.5356 22.716 10.9640 32.003

Pos. m 0.1917 0.1869 0.4885 0.3345 0.1217 0.1106

150 km Vel. m/s 0.0034 0.0033 0.0086 0.0046 0.0013 0.0011

Att. ◦×10−3 0.9788 0.8999 0.9601 0.8885 19.731 17.604
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The simulation is also run for 300 km at a velocity of 40 m/s and a 100 m cruise

altitude.

From Table 6.13, this low altitude and velocity system has degraded perfor-

mance in its downrange and alongtrack (East) velocity accuracy. Comparing the

filter estimates of these states to the Monte Carlo simulation errors, it also appears

that the filter may not be performing correctly since the simulation errors are no-

ticeably higher than the filter’s estimates. The errors of these East states are also

about twice those of the commercial aircraft and comparable scramjet cases. The

other position errors are about 30% higher than the other subsonic case, and the

North and Downward velocity errors are about the same.

The case where the GGI noise is simulated at 0.1 Eö at 1 Hz is shown in

Fig. 6.13 and the Monte Carlo results are listed in Table 6.14. These results show

that a future-grade airborne GGI aided INS can provide reasonable covert, passive

navigation. If terrain effects were included in the gravitational field, these results

would like be improved. The velocity accuracy is also improved over the comparable

high-noise INS/GGI simulations because the truth velocity is decreased to only 40

m/s for the GGI-survey simulations.

6.3.1.2 Sensitivity Results

This section investigates many of the sensitivities of future INS/GGI systems.

The first set of plots (Fig. 6.14 and 6.15) compares the performance of the grav-

ity gradiometer instrument type and the effect of the IMU grade on the system
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Figure 6.13: Sample GGI Survey INS/GGI Simulation w/ Increased Noise

Table 6.14: GGI Survey INS/GGI Case w/ Increased Noise

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 6.3029 10.573 10.675 13.010 5.4411 9.1511

30 km Vel. m/s 0.0640 0.4813 0.0534 0.4812 5.3278 0.4674

Att. ◦×10−3 0.6774 22.894 0.7255 23.130 9.3193 46.656

Pos. m 10.580 11.068 18.833 17.774 8.6461 8.5760

150 km Vel. m/s 0.0563 0.0664 0.0729 0.0661 0.0433 0.0413

Att. ◦×10−3 1.2154 1.2094 1.3021 1.6341 16.771 43.982
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performance. Only the steady state mean-radial-spherical-errors for the Mach 7

simulations are presented in this analysis as a baseline for the following plots. Fig-

ures 6.16–6.21 then focus on one of the three INS/GGI system configurations and

investigates the sensitivities of speed/altitude on the system and the gravity gra-

dient signal variations. Each of these figures are normalized by the Mach 7, high

Γn variation trajectory cases that are presented in Fig. 6.14 and 6.15. Because the

MRSE attitude errors from the Monte Carlo simulations were found to be some-

what misleading due to the initial filter covariance matrix, the filter’s estimate of

the attitude errors are also included in the results.

The GGI update rate and noise are combined in terms of the sensor’s effective

power spectral density (PSD) in an effort to reduce the results that are presented.

Referring to Eq. (C.9) on pg. 313, the square root of the instrument’s PSD can be

written as

√
qGGI = σνL

√
∆tGGI , (6.5)

which has units of Eö
√
s, or equivalently Eö/

√
Hz (similar to the IMU noise spec-

ifications). Therefore, increasing the time between instrument updates causes an

effective increase in the GGI noise by a factor of
√

∆tGGI . All the INS/GGI results

are plotted with this parameter as the abscissa (x-axis).

Figure 6.14 plots the position and velocity MRSE for the nominal Mach 7

INS/GGI cases along the high gradient variation trajectory. Referring to part (a)

of the figure, the stabilized GGI cases have improved position accuracy over the

strapdown GGI case because the stabilized sensor does not estimate the gyro or
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(a)

(b)

Figure 6.14: INS/GGI Steady State MRSEs for Mach 7, High Γn Variation, (a)

Position (b) Velocity
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attitude errors in order to observe the gravitational gradients, see Eq. (5.67) on

pg. 210. The strapdown GGI has approximately 2.4–8.1 times the position MRSE

compared to the navigation grade IMU / stabilized GGI system, with the largest

sensitivity occurring at the lowest noise levels. For GGI noise <0.01 Eö/
√
Hz, the

strapdown GGI filter begins to diverge, which causes increased error. The stabilized

GGI with tactical grade IMUs produces position accuracy only 19–56% more than

that of the stabilized GGI with navigation grade IMUs, with the largest sensitivity

at the lowest GGI noise levels.

Neither GGIs have direct observability of the velocity errors (Eq. (5.67) and

Eq. (5.56) on pg. 207). Thus, the velocity error corrections are made by way of

the position and attitude error observability. And since a stabilized GGI has better

position accuracy but worse attitude accuracy, whereas the strapdown GGI has

reduced position accuracy and improved attitude accuracy, the velocity errors of

both sensors are somewhat similar. From Fig. 6.14 (b), the stabilized GGIs have

superior velocity performance for the lowest GGI noise levels even with the non-

diverging strapdown GGI extrapolation. At higher noise levels, the navigation grade

INS/GGI systems are comparable. The tactical grade IMU / stabilized GGI system

has approximately 1.7–2.8 times the velocity error of the comparable INS/GGI with

navigation grade IMUs. And again, the largest error sensitivity occurs for the lowest

GGI noises.

The attitude errors for the three INS/GGI configurations are shown in Fig. 6.15

with the actual steady state MRSE (a) and the filter estimated MRSE (b). Because

of the attitude and gyro error observability, the strapdown GGI produces about
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(a)

(b)

Figure 6.15: INS/GGI Steady State Attitude MRSEs for Mach 7, High Γn Variation,

(a) Monte Carlo (b) Filter
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an order of magnitude lower orientation error than the comparable stabilized GGI

/ navigation grade IMU case. Even for the low noise, diverging simulations, the

strapdown GGI outperforms the stabilized GGI. The tactical grade IMU / stabilized

GGI case has a steady 0.1◦ total attitude error for all simulated noise levels which is

due to the yaw error not reaching steady state by the end of the simulation, as can

be seen in Fig. 6.5. Had the filter been tuned differently, these INS/GGI systems

would have reached a steady state yaw error faster and would have most likely

changed the results. Also, the chosen initial filter covariance caused the stabilized

GGI with navigation grade IMUs to overestimate the attitude errors at high noise

levels and thereby allowed the gyros to run without corrections, thus causing lower

errors when
√
qGGI < 0.01 Eö/

√
Hz.

Stabilized GGI, Navigation Grade IMU

Figures 6.16 and 6.17 show the GGI/INS steady state MRSE sensitivities

for the INS with navigation grade IMUs and a stabilized GGI aid. All the plot

are normalized by the M∞ = 7, high Γn variation cases shown in Fig. 6.14. The

high gradient variation trajectories are plotted with solid lines and the low gradient

trajectories are plotted with dashed lines. Furthermore, the Mach 6 cases use circles

for data point markers, Mach 7 use asterisks, and Mach 8 uses squares.

Referring to Fig. 6.16 (a), increasing speed and altitude (larger Mach number)

increases the overall position error on average 5%. This performance degradation is

due to two main factors. First, the faster trajectories travel the 1000 km range in
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(a)

(b)

Figure 6.16: Normalized INS/GGI Steady State MRSE for Stabilized GGI w/

Nav. Grade IMUs, (a) Position (b) Velocity

249



a shorter time span so fewer measurements are made during a simulation. Second,

the increase in cruise altitude reduces the magnitude of the gravitational gradient

variations. And comparing the gradient variation simulations, the dashed lines, the

position errors increase about 2% over the comparable high Γn variation cases. At

the highest noise levels, the results are less sensitive to these effects because the GGI

is relatively ineffective as a map-matching INS aid.

The velocity sensitivities follow the same trends as the position errors but have

approximately twice the magnitude in their variations. Increasing or decreasing the

cruise Mach number causes 7–24% change in velocity MRSE (∼15% on average).

The lower signal variation results in about a 5% increase in the total error. Also,

GGI noise levels near 0.02 Eö/
√
Hz are most sensitive to these changes. These

results are quite promising because they show that a future GGI with a noise level

of 0.001 Eö
√
Hz is essentially insensitive to the magnitude of the signal variation

so that it could be an effective INS aid worldwide—not just over regions with high

gradient variations.

Figure 6.17 plots the attitude sensitivities for this configuration. Referring

back to Fig. 6.15, the filter overestimates the attitude error for GGI noises greater

than 0.01 Eö. Therefore, the Monte Carlo error in part (a) of the Fig. 6.17 exhibits

odd trends above this noise level. For the lower noise cases, the filter performs

optimally and the trends in Fig. 6.17 (a) and (b) are similar. Referring to the fil-

ter estimated attitude MRSE, part (b), increasing the cruise velocity and altitude

increases the attitude MRSE up to 30%. This sensitivity reduced as GGI noise

increases and the gyros tend toward their dead-reckoning, free-inertial values. Sur-
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(a)

(b)

Figure 6.17: Normalized INS/GGI Steady State Attitude MRSE for Stabilized GGI

w/ Nav. Grade IMUs, (a) Monte Carlo (b) Filter
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prisingly, the lower Γn variation trajectories reduce the attitude error by almost 5%.

The cause of this improvement in attitude accuracy is unknown, but may be due to

the gravity vector being more stable so that the attitude errors are less affected by

gravity errors.

Stabilized GGI, Tactical Grade IMU

Figure 6.18 plots the position and velocity sensitivities for the INS/GGI cases

with tactical grade IMUs and a stabilized gradiometer. The position MRSE is less

sensitive to Mach number and gradient variation changes compared to the previous

navigation grade IMU / stabilized GGI system, especially at the lower and higher

GGI noise levels. At the lowest GGI noise level, the position accuracy varies less

than 2% from the nominal Mach 7, high gradient trajectory simulation. For GGI

noise levels in the 0.01–0.1 Eö/
√
Hz range, an increase in Mach number causes the

position MRSE to rise about 5%. The trajectories cause on average about a 1%

change in the position MRSE. For the low GGI noise levels, the lower Γn variation

trajectories produces lower errors, but for
√
qGGI ≥ 0.01 Eö/

√
Hz this trend reverses.

The velocity sensitivities are similar to the navigation grade IMU / stabilized

GGI trends. The primary difference is that the tactical grade IMU system perfor-

mance is almost entirely insensitive to speed / altitude or gradient signal variation at

the lowest GGI noise levels. For a 0.001 Eö/
√
Hz stabilized GGI, there is less than

a 1% change in the velocity MRSE. For a 0.01 Eö/
√
Hz sensor, the velocity MRSE

has about 15% variation due to Mach number changes and about 5% sensitivity to
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(a)

(b)

Figure 6.18: Normalized INS/GGI Steady State MRSE for Stabilized GGI w/

Tac. Grade IMUs, (a) Position (b) Velocity
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signal variation. At the higher noise levels, the INS/GGI becomes less sensitive to

these changes as it again starts to act more like a dead-reckoning, GGI-less INS.

Comparing the Monte Carlo and filter-estimated attitude MRSE in Fig. 6.19,

it is evident that the filter is working optimally. Also, these plots show that the

attitude errors are insensitive to the trajectory’s gradient signal variation. According

to the filter estimates, there is only a small increase in the error for high gravity

field variations at low GGI noise levels and the trend reverses at higher GGI noises.

The Mach number affects the attitude errors 5–10% with an increase in error as the

speed decreases. This result is caused by the yaw error not reaching steady state by

the end of the simulation (see Fig. 6.5). Therefore, since the lower Mach number

cases run for a longer time, the yaw error increases to a higher value. If the initial

filter covariance matrix were tuned differently these results would likely be different.

Navigation Grade IMU, Strapdown GGI

The normalized MRSE for the strapdown GGI with navigation grade IMUs

are plotted in Fig. 6.20 and 6.21. The trends below the 0.01 Eö/
√
Hz GGI noise

levels will not be discussed in depth because they include the numerical divergence

issues discussed on pg. 235. Furthermore, all strapdown GGI / tactical grade IMU

systems diverged immediately due to the increased gyro noise of the tactical IMUs.

Therefore only the navigation grade IMUs could be simulated with the strapdown

gradiometer.

As shown in Fig. 6.20, the strapdown GGI system is very sensitive to the
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(a)

(b)

Figure 6.19: Normalized INS/GGI Steady State Attitude MRSE for Stabilized GGI

w/ Tac. Grade IMUs, (a) Monte Carlo (b) Filter
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(a)

(b)

Figure 6.20: Normalized INS/GGI Steady State MRSE for Strapdown GGI w/

Nav. Grade IMUs, (a) Position (b) Velocity
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(a)

(b)

Figure 6.21: Normalized INS/GGI Steady State Attitude MRSE for Strapdown GGI

w/ Nav. Grade IMUs, (a) Monte Carlo (b) Filter
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gravitational gradient signal variation. At a GGI noise of 0.01 Eö/
√
Hz the lower

Γn variation trajectories have over 2.5 times the position error and between 1.5–

2.5 the velocity error as the corresponding high Γn variation trajectory cases. The

navigation performance is less sensitive at high GGI noise levels because the GGI

is less efficient as an INS aid. And at the two highest GGI noise levels, the low Γn

variation cases produce lower position and velocity MRSE since the gravity errors

contributing to the velocity errors are smaller. Increasing the Mach number is shown

to degrade position and velocity accuracy by up to 20%. This trend is reversed for

the position MRSE at high GGI noise levels.

Figure 6.21 shows that the attitude errors for the strapdown GGI system are

also quite sensitive to the gravitational gradient signal strength. At worse, the

lower gradient variation trajectory doubles the total attitude error. The attitude

sensitivity to Mach number is much lower, but follows some rather odd trends.

The Monte Carlo errors show that increasing M∞ increases the error for the low Γn

variation cases with GGI noises <0.1 Eö/
√
Hz and the high Γn cases with GGI noise

≥0.1 Eö. For the other cases, the Mach number sensitivity trends are reversed. It is

unknown why these trends occur, but the magnitude of these sensitivities (∼10%)

are large enough to warrant further investigation.

6.3.2 Global Positioning System Aided Navigation

Like the INS/GGI results, the INS/GPS results are first presented and dis-

cussed in terms of single representative simulations and their detailed errors. The
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Table 6.15: INS/GPS Nominal and Off-Nominal Simulation Parameters

IMU Trajectory Measurements Data Rate

Nominal Value Nav. High Γn Variation ρ and ρ̇ 1 sec

Perturbed Value Tac. High Γn Variation ρ-Only 1 sec

Monte Carlo sensitivity results are shown and discussed afterwards. The nominal

INS/GPS simulation set parameters are listed in Table 6.15 along with their per-

turbed values. The full hypersonic INS/GPS text matrix used for the sensitivity

analyses is summarized in Table 6.16. The subsonic INS/GPS simulations were only

performed with navigation grade IMUs and GPS pseudorange and range-rate mea-

surements at a 1 Hz update rate to provide a baseline to the INS/GGI simulations.

The primary concern with an INS/GPS system is the update rate or blackout

duration of the GPS receiver. This rate is a function of the receiver design and the

vehicle dynamics. For the atmospheric, hypersonic cruise simulations, the update

intervals were varied from 1 sec to 300 sec. The subsonic systems’ sensitivity to

update rate was not investigated since they are used as only a baseline comparison

Table 6.16: INS/GPS Monte Carlo Test Matrix

Parameter Values #

IMU Grade Navigation, Tactical 2

Mach Number 6, 7, 8 3

Measurement Type ρ Only, ρ and ρ̇ 2

Data Rate 1, 10, [30:30:120], [180:60:300] sec 9
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to the proposed future INS/GGI system. Also, all the INS/GPS simulations were

performed over only the high gravitational gradient variation trajectory because the

effect of GPS visibility and GDOP on the two trajectories is small, as shown in

Fig. D.3 on pg. 341 and Fig. D.4 on pg. 350.

6.3.2.1 Monte Carlo Results

Hypersonic Cases

A sample simulation of the nominal Global Positioning System case is given

in Fig. 6.22. The simulation uses the nominal 24-satellite GPS constellation and

simulates pseudorange and pseudorange rate measurements to aid a navigation-

grade INS at Mach 7. As shown in Fig. 6.22, the INS/GPS filter is stable and quickly

reaches steady state in the horizontal and tilt states. The altitude, vertical velocity,

and yaw states are less observable to the filter and therefore take slightly longer to

correct and reach steady state values. The horizontal position state error envelopes

have a discontinuous jump at 72 sec because the number of visible satellites increases

from 6 to 7. This increase in measurement observables causes the geometric dilution

of precision (GDOP) to drop from 11 to 3.4 instanteously and the filter covariance

to reduce accordingly. Compared to the “Best” gradiometer-aided INS case, the

nominal GPS performance is approximately twice as good, see Table 6.5 and 6.17.

The North (crossrange) position error is half that of the INS/GGI case, and the

East (downrange) error is one-quarter the gradiometer case, but the altitude is

much closer to the nav.-grade IMU / stabilized GGI scenario. The overall velocity
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error is about half the INS/GGI error (0.0031 vs. 0.0069 m/s), as is the yaw error.

The tilt errors are only slightly lower then the gradiometer-aided case.

Figure 6.23 and Table 6.18 present results for the INS/GPS with tactical grade

IMUs and both GPS measurements. The odd filter envelope towards the end of the

simulation is due to two satellites going out of view, one at 407 sec and another at 426

sec. This tactical-grade case follows trends similar to the previous navigation grade

case in relation to the comparable GGI cases. The tactical gradiometer crossrange

position error is a factor of 2 larger than the current GPS case, the downrange

error is a factor of 4 larger, and the altitude is only about 20% larger. The total

velocity error for the tactical GPS is about half that of the tactical GGI case (0.0129

vs. 0.0234 m/s), and the total attitude error is comparable to the gradiometer case

(0.0950 vs. 0.106◦).

The last sample GPS case to be presented is the effect of measurement observ-

ables. If only pseudorange measurements (i.e. position information) were available,

the performance is significantly degraded because of the lack of velocity and pre-

cise position knowledge from the pseudorange rate measurements, see Eq. (D.20) on

pg. 345. Referring to Fig. 6.24 and Table 6.19, the total position error increases to

almost 10 times that of the nominal navigation grade INS/GPS case. The velocity

error is a little less sensitive, and only increases by a factor of 7. The attitude

error also increases, but only by a factor of 3 over the case when pseudorange rate

measurements are also made.
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Figure 6.22: Sample Nominal Global Positioning System Simulation

Table 6.17: Nominal Global Positioning System Case

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 0.5487 0.3908 0.2848 0.2363 0.6372 0.4076

100 km Vel. m/s 0.1394 0.1561 0.1140 0.1125 0.1143 0.1260

Att. ◦×10−3 0.7448 22.969 0.5160 22.751 3.1799 25.347

Pos. m 0.1031 0.0953 0.0594 0.0540 0.1030 0.0869

500 km Vel. m/s 0.0024 0.0024 0.0016 0.0015 0.0015 0.0014

Att. ◦×10−3 1.3350 1.3442 0.9228 0.9517 5.7198 5.6250
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Figure 6.23: Sample Tactical Grade IMU Global Positioning System Simulation

Table 6.18: Tactical Grade IMU Global Positioning System Case

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 0.5405 0.4089 0.2773 0.2495 0.6456 0.4273

100 km Vel. m/s 0.1398 0.1562 0.1183 0.1126 0.1209 0.1271

Att. ◦×10−3 13.439 37.976 12.768 37.120 49.469 81.184

Pos. m 0.1496 0.1402 0.0942 0.0862 0.1429 0.1288

500 km Vel. m/s 0.0091 0.0089 0.0071 0.0069 0.0058 0.0057

Att. ◦×10−3 24.110 28.357 22.898 26.816 88.961 106.13
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Figure 6.24: Sample Pseudorange Only Global Positioning System Simulation

Table 6.19: Pseudorange Only Global Positioning System Case

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 4.8386 2.2330 1.8196 1.3189 3.2582 1.6642

100 km Vel. m/s 0.0197 0.4545 0.0178 0.4480 0.0157 0.4490

Att. ◦×10−3 1.2829 23.806 0.8624 23.166 10.358 35.401

Pos. m 1.0518 0.9264 0.4696 0.4216 0.8063 0.5913

500 km Vel. m/s 0.0182 0.0181 0.0071 0.0065 0.0112 0.0082

Att. ◦×10−3 2.3054 2.8519 1.5483 1.6996 18.640 23.722
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Subsonic Cases

A commercial aircraft INS/GPS simulation is shown in Fig. 6.25 and the Monte

Carlo set results are listed in Table 6.20. From the figure, the position, velocity,

and attitude states reach steady-state conditions at or before the 250 km (∼400

sec) settling period. The position MRSE is almost half the low-noise INS/GGI

simulation (0.1521 vs. 0.2281 m), with the crossrange (North) error being halved

and the downrange (East) error being reduced to a third the INS/GGI value, see

Table 6.11. The altitude error is approximately the same for both the INS/GPS

and INS/GGI cases since the gradiometer-aiding system has improved performance

in the vertical channel. The total velocity error for this GPS-aided case is 60% that

of the INS/GGI (0.0029 vs. 0.0050 m/s). And again, the improvement is almost

exclusively due to the reduced horizontal errors. The attitude error is similar to the

INS/GGI simulation.

The GGI survey INS/GPS case is presented in Fig. 6.26 as a sample time

history and in Table 6.21 for the full 1,000 simulation Monte Carlo set. This low-

altitude, low-velocity INS/GPS case has a remarkable improvement in the navigation

accuracy over the comparable INS/GGI case shown on pg. 241. The overall position

MRSE decreases by a factor of four (0.1441 vs. 0.5387 m) primarily due to the

downrange error decreasing by a factor of 7. The difference in performance of these

two systems may be due to the shorter range of the simulation (300 km) which

reduces the amount of variation of the gravitational gradient signal compared to

the other cases (which end at 500 or 1,000 km). If the local terrain effects were
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Figure 6.25: Sample Commercial Aircraft Global Positioning System Simulation

Table 6.20: Commercial Aircraft INS/GPS Case

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 0.5966 0.3750 0.2899 0.2343 0.6597 0.3923

50 km Vel. m/s 0.1365 0.1526 0.1120 0.1092 2.4688 0.1233

Att. ◦×10−3 0.5081 22.719 0.4887 22.716 7.7545 29.476

Pos. m 0.0999 0.0880 0.0640 0.0569 0.0952 0.0739

250 km Vel. m/s 0.0021 0.0020 0.0016 0.0015 0.0011 0.0010

Att. ◦×10−3 0.9091 0.8916 0.8733 0.8849 13.955 13.054
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included in the gravitational gradient signal model, the INS/GGI error should be

reduced to a value closer to that of the INS/GGI case. The velocity error is about

a third of the INS/GGI value (0.0028 vs. 0.0094 m/s) with the largest decrease in

the alongtrack (East) component. And the tilt errors are about the same for both

navigation aids. The INS/GPS yaw error, however, increases to twice the value of

the INS/GGI error.

6.3.2.2 Sensitivity Results

The INS/GPS sensitivities are presented in a similar fashion to the INS/GGI

cases. First, the Mach 7 steady state MRSEs will be compared for INS/GPS config-

urations with either navigation or tactical grade IMUs and GPS pseudorange with

and without pseudorange rate updates. After these results, the sensitivity of Mach

number on the navigation performance is discussed for the four INS/GPS systems.

Figure 6.27 plots the steady state Mach 7 position and velocity MRSE for the

four INS/GPS systems simulated and update intervals from 1 to 300 sec. From

part (a), the position error is strongly a function of GPS measurement. When

pseudorange rate measurements are simulated, the position MRSE decreases on

average by a factor 8 for the navigation grade IMU INS/GPS, and a factor of 7 for

the tactical grade IMU system. The effect of IMU quality on the position error is

less severe. For the ρ and ρ̇ simulations, the tactical grade IMUs increase the error

35%, and for the ρ-only cases the error increases 25% for ∆tGPS < 90 sec.

The velocity errors exhibit similar trends, but with the noted difference that
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Figure 6.26: Sample GGI Survey Global Positioning System Simulation

Table 6.21: GGI Survey INS/GPS Case

Settling North / Pitch East / Roll Down / Yaw

Time State Units Error Cov. Error Cov. Error Cov.

Pos. m 0.5980 0.3753 0.2791 0.2266 0.7167 0.3881

30 km Vel. m/s 0.1374 0.1537 0.1144 0.1114 5.6713 0.1260

Att. ◦×10−3 0.5039 22.712 0.4992 22.710 21.861 31.739

Pos. m 0.0964 0.0861 0.0630 0.0556 0.0866 0.0692

150 km Vel. m/s 0.0021 0.0019 0.0016 0.0015 0.0010 0.0009

Att. ◦×10−3 0.9015 0.8807 0.8921 0.8780 39.346 17.129
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(a)

(b)

Figure 6.27: INS/GPS Steady State MRSE for Mach 7 Simulations, (a) Position (b)

Velocity
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the IMU quality causes larger variations. The increase in velocity error due to a

tactical grade IMU is about 150% for the ρ and ρ̇ simulations and 90% for the ρ-only

simulations. The sensitivity to measurement type is 400–590% for the navigation

grade INS/GPS and 80–420% for the tactical grade configuration.

There is a substantial increase in the position and velocity errors when the

GPS update interval is greater than about 90 sec. The reason for this is that the

GPS measurements are made so infrequent that the in-flight calibration of the IMU

errors can not be performed as efficiently. For low ∆tGPS, the GPS-aiding allows

the INS to reduce the accelerometer and gyro bias and (to a lesser extent) scale

factor errors so that between updates the dead reckoning navigation accuracy is

improved. In other words, the INS/GPS in-flight calibration essentially improves

the quality of the IMUs. The pseudorange-only / navigation grade IMU system

does not follow this trend at long update intervals because the filter overestimates

the attitude errors here, which causes the filter to perform suboptimally as seen in

Fig. 6.28.

Comparing the Monte Carlo and filter-estimated errors of Fig. 6.28, it is ap-

parent that the INS/GPS is accurately predicting the errors for all cases except the

navigation grade IMUs at high update intervals. For ∆tGPS > 30 sec, the ρ-only

attitude errors start to be overestimated. The ρ and ρ̇ navigation grade INS/GPS

begins to perform suboptimally at ∆tGPS ≥ 90 sec. Comparing these errors before

these times, the attitude error increases 170–300% with a lack of pseudorange rate

measurements. Because there is no direct observability of the attitude errors from

the GPS measurements, the INS/GPS must use the estimated velocity vector to
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(a)

(b)

Figure 6.28: INS/GPS Steady State Attitude MRSE for Mach 7 Simulations, (a)

Monte Carlo (d) Filter
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estimate the attitude states. So, when the velocity observability is decreased, i.e.

no ρ̇ measurements, the performance is degraded. The tactical IMU systems both

have an approximately constant 0.1◦ attitude error because the yaw error has not

reached steady state by the end of the simulation. Furthermore, because of this

poor tuning of the initial filter covariance of the yaw state, the attitude sensitivities

to Mach number with not be presented. The total attitude MRSE is tabulated,

however, in App. E for the interested reader.

Navigation Grade IMU, Pseudorange & Pseudorange Rate

The position and velocity sensitivities to Mach number are plotted in Fig. 6.29

for the navigation grade INS/GPS with pseudorange and range-rate measurements.

The first noticeable characteristic of these plots is the spike at 120 sec for the Mach

8 simulation. This spike is a result of the in-flight IMU calibration issue. Because

the Mach 8 case is simulated for the shortest amount of time to reach its 1000

km range, fewer updates are made than for the other two cases. Therefore, the

faster simulation transitions to higher errors at a lower ∆tGPS because fewer overall

measurements are made in the simulation. Neglecting this phenomenon, the position

MRSE produces an 8% change in error for a change in Mach number. The velocity

errors have an average sensitivity of 15% for changes in Mach number.
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(a)

(b)

Figure 6.29: Normalized INS/GPS Steady State MRSE w/ ρ & ρ̇ Measurements

and Nav. Grade IMUs, (a) Position (b) Velocity
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(a)

(b)

Figure 6.30: Normalized INS/GPS Steady State MRSE w/ ρ & ρ̇ Measurements

and Tac. Grade IMUs, (a) Position (b) Velocity
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Tactical Grade IMU, Pseudorange & Pseudorange Rate

The MRSE of the tactical grade INS with pseudorange and pseudorange rate

measurements is plotted in Fig. 6.30. Like the navigation grade INS/GPS above, the

sensitivities have spikes due to the transition from efficient calibration of the IMU

errors to less efficient calibration. This results in the negative spike at ∆tGPS = 90

sec for the Mach 6 case since the baseline (Mach 7) simulation has increased error

occuring at an earlier update interval than the Mach 6 baseline. The positive spike

at ∆tGPS = 120 sec for the Mach 8 case follows the same reasoning. At the highest

measurement intervals, the INS/GPS is essentially a dead-reckoning system. Prior

to the two spikes mentioned, the position error increases about 5% for an increase

or decrease in Mach number from the M∞ = 7 baseline. The reason why both the

Mach 6 and 8 cases increase error is unknown. The Mach 6 position errors may

have increased because the yaw errors are greater than the Mach 7 or 8 cases which

may act to offset the additional updates made. Conversely, the Mach 8 simulations

have less updates over their mission duration, but the yaw error has less time to

accumulate as well. The velocity errors follow the same trends but with reduced

sensitivity to Mach number.

Navigation Grade IMU, Pseudorange-Only

The GPS pseudorange-only updates to a navigation grade IMU INS/GPS pro-

duce unusual sensitivities to changes in Mach number, as shown in Fig. 6.31. The

position and velocity errors typically increase for higher Mach numbers, but the
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(a)

(b)

Figure 6.31: Normalized INS/GPS Steady State MRSE w/ ρ Measurements and

Nav. Grade IMUs, (a) Position (b) Velocity
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Mach 8 case at the fastest data rate cause less position error than the corresponding

Mach 7 simulation set. The cause of this outlier is unknown. The over estimation

of the yaw errors in the filter cause a suboptimal Kalman gain calculation which

may be partially responsible. On average, the Mach 6 position errors decrease about

5% from the baseline, and the Mach 8 errors increase around 5% when the lowest

and highest update interval results are ignored. The velocity errors are much more

sensitive to Mach number. The Mach 6 velocity MRSE drops ∼15% and the Mach

8 rises 10–20% for most cases. The longest ∆tGPS results are almost dead reckoning

case because so few measurements are made.

Tactical Grade IMU, Pseudorange-Only

The Mach number sensitivities of the tactical grade IMU, ρ-only INS/GPS is

less ambiguous than the preceding system. The lower quality IMUs cause the gyro

and attitude to increase more rapidly so that the filter performs optimally even at

the longest ∆tGPS, unlike the previous nav.–grade configuration. The higher Mach

numbers produce larger position and velocity errors because fewer GPS updates

are processed during a simulation run. The position errors vary less than 10% for

updates occurring at least every 30 seconds. For longer update intervals, the errors

can increase over 20-57%. The velocity error sensitivities increase about 10–15% for

the Mach 8 case and decrease about the same percentage when the Mach number is

decreased to 6.
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(a)

(b)

Figure 6.32: Normalized INS/GPS Steady State MRSE w/ ρ Measurements and

Tac. Grade IMUs, (a) Position (b) Velocity
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6.4 Chapter Summary

The results from the 1,000-set Monte Carlo INS/GGI and INS/GPS simula-

tions are presented and discussed in this chapter. Section 6.1 discusses how the

Monte Carlo simulations are performed using the elements of the previous chapters

and first four appendices. The following section studies the effect of set size on

how well the Monte Carlo simulations capture all the random processes of a sample

INS/GGI simulation. It is shown in Sec. 6.2 that the filter-estimated errors are

insensitive to Monte Carlo set size, and that the Monte Carlo derived errors capture

the random processes more accurately as the set size is increased. However, increas-

ing the Monte Carlo set size corresponds to an approximately linear increase in the

computational expense with diminishing returns in the effectiveness of capturing

the random processes (see Fig. 6.3 on pg. 221).

Section 6.3 then quantifies the navigation accuracy and sensitivities of the

completely inertial, passive, covert INS/GGI and baseline INS/GPS systems. The

INS/GGI results show surprisingly impressive sub-meter, INS/GPS-like total posi-

tion error for a system with a space-grade stabilized GGI and current navigation

grade IMUs for both hypersonic and subsonic missions. The INS/GGI also typically

has half the vertical position and velocity errors compared to it horizontal errors

because of the stronger signal variation in altitude.

The hypersonic INS/GGI system sensitivities to noise level, Mach number and

gravitational gradient variation are also thoroughly investigated through extensive

Monte Carlo simulations in Sec. 6.3.1. The main conclusions from these analyses
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are as follows:

• A stabilized GGI with navigation grade IMUs at Mach 7 over the high Γn

variation trajectory produces a total position MRSE of 0.336 m when the

GGI noise level is 0.001 Eö at an update rate of 1 Hz.

• A strapdown GGI aided INS produces up to an order of magnitude increase in

the position error of a comparable stabilized GGI, with the largest sensitivity

occuring at the lowest noise levels.

• Conversely, the stabilized GGI produces attitude (i.e. orientation) errors that

are an order of magnitude higher than the strapdown sensor.

• Reducing the quality of the IMUs with a stabilized GGI aided INS causes a

20–50% increase in position error and a 70–180% increase in velocity error.

The strapdown GGI is also shown to cause filter divergence when estimating gyro

noise that is much larger than its own instrument noise. Two solutions are suggested

to combat the numerical truncation issue that is at the root of the divergence:

1. Higher precision data types may be used to compute the Kalman gain matrix.

(Double precision is used exclusively in this work.)

2. A square-root Kalman filter may be implemented instead of the traditional

filter used in this work. The premise is that a square-root filter uses standard

deviations instead of variances in its calculations, so that the values of the gyro

and GGI noises are more similar in magnitude and thus numerical truncation

is less likely to occur.

Table 6.22 summarizes the steady-state position MRSE as a function of GGI

noise level through power law regressions. The conclusions resulting from these
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Table 6.22: Hypersonic INS/GGI Postion MRSE (m) Sensitivity to GGI Noise

GGI Type IMU Γn Var. Mach 6 Mach 7 Mach 8

Stabilized Nav. High 209
√
qGGI

0.939 219
√
qGGI

0.938 227
√
qGGI

0.934

Stabilized Tac. High 244
√
qGGI

0.903 250
√
qGGI

0.902 258
√
qGGI

0.904

Strapdown Nav. High 376
√
qGGI

0.620 377
√
qGGI

0.602 359
√
qGGI

0.580

Stabilized Nav. Low 217
√
qGGI

0.943 226
√
qGGI

0.941 235
√
qGGI

0.937

Stabilized Tac. Low 246
√
qGGI

0.905 260
√
qGGI

0.910 263
√
qGGI

0.907

Strapdown Nav. Low 286
√
qGGI

0.302 212
√
qGGI

0.211 164
√
qGGI

0.138

GGI noise level,
√
qGGI , is in Eö/

√
Hz units

analyses are:

• Future improvements in GGI noise levels will lead to greater improvements in

position error if the gradiometer is stabilized than if it is a strapdown sensor.

This is shown in the exponential coefficients, which are the slopes of results

such as Fig. 6.14 (a) on pg. 245. The main reason for the lower performance

of the strapdown GGI/INS is its need to account for the IMU gyro errors.

• The stabilized GGI, navigation grade IMU system produces about a factor

of 8.5 steady state position MRSE sensitivity to a 10× change in GGI noise

level. The stabilized GGI, tactical grade IMU system is slightly less sensitive

at about a factor of 8 for an order of magnitude change in
√
qGGI .

• The strapdown GGI/INS produces only a factor of 4 improvement in position

MRSE with a ten-fold improvement in GGI noise level when flying over the

high Γn variation trajectory. And the sensitivity is reduced further to a factor

of 1.4–2 when the system is flown over the low gradient variation trajectory
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Table 6.23: Hypersonic INS/GGI Sensitivities to Γn Variation and Mach Number

Γn Variation Mach Number

GGI Type IMU Pos. Vel. Att. Pos. Vel. Att.

Stabilized Nav. 1 1 1 1 2 2

Stabilized Tac. 1 1 1 1 2 2

Strapdown Nav. 3 3 3 2 2 1

Error Sensitivity: 1) <10%, 2) 10–100%, 3) >100%

and
√
qGGI is varied by a factor of 10.

The system specific INS/GGI sensitivities are summarized in Table 6.23 in

terms of the order of magnitude of the error variation. The primary conclusions are:

• The stabilized GGI aided INS is insensitive to changes in the gravitational

gradient signal variation. The position, velocity, and attitude errors typically

vary less than 10% between the high and low Γn trajectory results.

• The stabilized GGI aided INS position error is also insensitive to Mach number

variations. However, the velocity and attitude errors are more sensitive and

increase over 10% when the Mach number is increased or decreased.

• The strapdown GGI aided INS, however, is extremely sensitive to changes in

the gravitational gradient signal. Position, velocity, and attitude errors can

increase over 100% the high Γn trajectory values when the same configuration

is flown over the low gradient variation trajectory.

• The strapdown GGI aided INS is noticeably less sensitive to Mach number

variations. The position and velocity errors can increase up to 20% when the

282



Mach number is increased by 1, and the attitude error is least sensitive and

changes at most 10% because most of the strapdown GGI update information

is used to correct attitude and gyro errors.

Section 6.3.2 investigates the nominal integrated INS/GPS navigation perfor-

mance. The Monte Carlo simulation results show sub-meter position errors for GPS

update intervals of 30 seconds or faster when pseudorange and pseudorange rate

measurements are available. However, the absence of pseudorange rate measure-

ments produces almost an order of magnitude increase in the total position error.

The effect of IMU quality is much less severe, and position MRSE only increases

about 30% when tactical grade IMUs are simulated.

Compared to the INS/GGI results, the INS/GPS system with ρ and ρ̇ updates

at 1 Hz produces about half the position MRSE of a 0.001 Eö stabilized GGI aided

INS with 1 Hz updates, regardless of the IMU quality. Also, the INS/GPS system

needs ρ and ρ̇ measurements only once every 10 sec to produce the same position

MRSE as the 0.001 Eö stabilized GGI/INS with 1 Hz updates.

The main unexpected result from the INS/GPS simulations is the large error

growth when GPS updates occur less than every minute. The inability to reduce

the IMU errors in-flight produces about an order of magnitude increase in position

and velocity error when the GPS update interval increases from 60 to 90 seconds.
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Chapter 7

Conclusions and Future Work

This dissertation presents the first complete open literature methodology,

derivation, implementation, and simulation of a map-matching gravity gradiome-

ter aided inertial navigation system. Gravity gradiometer aiding is particularly

applicable to military applications where GNSS signals may be jammed, spoofed,

or otherwise unavailable. A hypersonic atmospheric cruise missile was thus chosen

as an ideal application since its first use will be for a high speed cruise missile, and

the high velocities and temperatures of flight may cause traditional aids to perform

poorly or be impractical. Moreover, the increased velocity allows for greater gravita-

tional variation between measurements, and the relatively high altitudes attenuate

small terrain anomalies and fluctuations. However, the current size (∼1 m3) and

weight (∼250 kg without additional electronics cabinet) of current commercial air-

borne GGIs is prohibitively large. Therefore, further research and development is

required to reduce future generation gradiometers to the point where they may be

integrated into size and weight constrained air vehicles. For the nearer future, two

subsonic missions which can accomodate the mass and volume of current GGIs are

also simulated.
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7.1 Summary of Contributions

The following are the primary contributions that this dissertation makes to

the state of the art.

• The characterization of gravitational gradients for use as a map-matching nav-

igation aid is performed for the first time.

• A parametric analysis is presented to estimate when local terrain effects may

be neglected from a computed gravitational field map.

• Improvements to an integrated INS/GGI using a Kalman filter approach are

identified and implemented.

• A thorough methodology to determine the measurement of a strapdown /

stabilized, stationary / rotating accelerometer, stationary / rotating gravity

gradiometer instrument is derived.

• This work provides the first linearized error derivation of a strapdown GGI

that includes attitude errors and a means to convert tensor measurements from

the body frame to the navigation frame.

• This work also derives a new formulation and linearized error equation for

a stabilized GGI whose attitude and attitude rate errors are included in the

sensor noise specification.

• This work is the first to simulate an INS/GGI system at hypersonic speeds and

altitudes. And the first to simulate an airborne INS/GGI with space-grade

GGI noise levels.

• The hypersonic INS/GGI sensitivities to noise level, Mach number, and gra-

dient signal variation are investigated for the first time.
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• The first comprehensive study of a hypersonic INS/GPS system and it’s sen-

sitivities to Mach number, IMU quality, GPS update interval, and available

measurements is also performed.

7.2 Recommendations for Future Work

Some areas of future work are proposed below pertaining to an integrated

INS/GGI system. Other applications for gravity gradiometer instruments are dis-

cussed afterwards along with a brief mention of the similarity of the current work

to magnetometer-based map-matching navigation.

• The gravitational gradient field could be characterized with local terrain effects

included. This analysis would be infeasible on a global scale, but could be

useful over moderate regions of interest.

• The gravitational potential, acceleration, gradients, and possibly third order

gradients could be augmented to the filter state vector. This would allow the

filter to essentially update the state estimates using an optimal fit of the gravity

field instead of a single point measurement as done in this work. This would,

however, involve implementing a possibly complex linearized gravitational field

model.94,167–171

• To alleviate the strapdown GGI divergence issue, a square-root Kalman filter

or higher precision floating point operations may be implemented.

• The centripetal errors in the velocity error dynamics could be added. Also,

the effect of Earth’s oblateness could be included in the Jacobian from the

gravity map coordinates to the navigation frame position states.
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• INS/GGI simulations could be performed that included local terrain effects in

the gravitational field map. This is particularly important for lower altitude

missions since the spherical harmonic model severely aliases the true signal

content.

• The sensitivity of the INS/GGI system to gravitational field errors in the

onboard gravity map could be investigated. In such cases, the inclusion of

a higher order method for interpolating the gravity field data from the pre-

computed map could be implemented and its benefit could be assessed.95,165

Gravity gradiometer based navigation is also viable for extraterrestrial appli-

cations where navigation satellites are unavailable. Spherical harmonic models for

the Moon, Mars, and Venus are available online†, and can be used to assess the

navigation performance on and around these bodies. An ideal extraterrestrial mis-

sion would be to first send a satellite with a gradiometer payload to perform high

resolution gravity maps of the planetary bodies. Then, future gradiometer-equipped

missions would not only be able to improve the gravity model, but eventually nav-

igate using the gravitational gradient map and the tools described herein. Low

temperature, exo-atmospheric applications are particularly appealing because gra-

diometer instruments can yield higher precision due to reduced noise having to be

filtered from vehicle motion and the improved mechanical stability at low tempera-

tures.

Some other extensions to this work could be the use of a gravity gradiometer

instrument for obstacle avoidance. In theory, as a GGI-equipped system moves

†http://pds-geosciences.wustl.edu/dataserv/index.htm
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toward an obstacle it would measure an increase in the gravitational potential of

the obstruction and could move to avoid collision. Similarly, a GGI system could

traverse a corridor by avoiding the increased gravitational gradients as it nears one

of the boundaries.

One last application for a gravity gradiometer instrument that could have near-

future impact is its use as a warning system. If a GGI were properly calibrated, it

could be used to measure large masses moving toward or near the instrument. This

could be implemented as a missile defense system if the sensor noise is low enough

and the gravitational gradients caused by the incoming missile is large enough to be

unambiguously detected.

As one final comment, because the magnetic potential field possesses many

of the same properties as the gravitational field, the methodology presented within

this work may be useful in magnetometer-based map-matching inertial navigation

systems.172
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Appendix A

Global Gravitational Maps

This appendix provides additional global gravitational gradient plots at various

altitudes. The first four sets of plots, Fig. A.1–A.4, illustrate the gradients as

computed by the modified NGS/NOAA geopot97.v0.4.e.f program for all six

gradients at 10 km and 100 km altitudes. (The gravitational gradient plots at the

Earth’s surface are shown in Fig. 2.7 & 2.8 on pg. 61 & 63.) The inline gradients

are plotted with a 20 Eö variation from the global mean of the gradient component

and the off-diagonal gradients are plotted with a 10 Eö variation from their means.

The second set of figures are the 5 × 5 grid point (∼220 × 220 km) moving-

window standard deviation plots that quantify the variation of the gravitational

gradient signal. All six components of the gradient tensor are shown at 0, 10, and

100 km altitudes in terms of log10(Eö). Similar plots were computed for altitudes of

100 m, 1 km, and 500 km. These figures are not shown because they are qualitatively

simular to Fig. A.5–A.9, and their magnitudes are summarized in Fig. 2.11 on pg. 66.
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(a)

(b)

(c)

Figure A.1: Inline Gravitational Gradients at 10 km (a) ΓNN (b) ΓEE (c) ΓDD
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(a)

(b)

(c)

Figure A.2: Off-Diagonal Gradients at 10 km (a) ΓNE (b) ΓND (c) ΓED
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(a)

(b)

(c)

Figure A.3: Inline Gravitational Gradients at 100 km (a) ΓNN (b) ΓEE (c) ΓDD
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(a)

(b)

(c)

Figure A.4: Off-Diagonal Gradients at 100 km (a) ΓNE (b) ΓND (c) ΓED
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(a)

(b)

(c)

Figure A.5: Inline σΓn, log10(Eö), at Surface (a) ΓNN (b) ΓEE (c) ΓDD
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(a)

(b)

(c)

Figure A.6: Off-Diagonal σΓn, log10(Eö), at Surface (a) ΓNE (b) ΓND (c) ΓED
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(a)

(b)

(c)

Figure A.7: Inline σΓn, log10(Eö), at 10 km (a) ΓNN (b) ΓEE (c) ΓDD
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(a)

(b)

(c)

Figure A.8: Off-Diagonal σΓn, log10(Eö), at 10 km (a) ΓNE (b) ΓND (c) ΓED
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(a)

(b)

(c)

Figure A.9: Inline σΓn, log10(Eö), at 100 km (a) ΓNN (b) ΓEE (c) ΓDD
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(a)

(b)

(c)

Figure A.10: Off-Diagonal σΓn, log10(Eö), at 100 km (a) ΓNE (b) ΓND (c) ΓED
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Appendix B

Thrust Coefficient Curve Fits

The thrust coefficient is calculated as a function of the inlet compression ratio,

(A0/A1), at a given design Mach number, freestream Mach number, and angle of

attack by the quadratic polynomial curve-fit:

CT,ref =

(
T

q∞A0

)
ref

=


a

(
A0

A1

)2

+ b

(
A0

A1

)
+ c, if

(
A0

A1

)
≤
(
A0

A1

)
max

0, else

(B.1)

where the coefficients a, b, and c are defined for the following configurations:

• Base Area-to-Capture Area Ratio: (A5/A0) = 1, 2, 3, 4, 6, and 8.

• Equivalence Ratio: ER = 0.25, 0.50, 0.75, and 1.00 or ERmax to cause

thermal choking.

• Freestream Mach Number: M∞ = 4, 5, 6, 7, and 8.

• Combustor Expansion Ratio: (A4/A2) = 2, 3, and 4.

The thrust coefficients were only curve fit for combustor expansion ratios of 3 and 4.

Tables B.1–B.6 list the curve fit coefficients for the (A4/A2) = 4 scramjets and each

of the (A5/A0), ER, and M∞ configurations along with the maximum contraction

ratio, (A0/A1)max, values where the fits are valid.

Table B.7 then lists the curve-fit coefficients that are different for a combustor

expansion ratio of 3. The (A0/A1)max values are the same as those in the (A4/A2) = 4
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tables. The changes are primarily in the lower Mach number regime where the thrust

coefficient is most sensitive to the combustor expansion. At the other conditions,

the two combustor expansion ratios result in essentially the same thrust level so

that the (A4/A2) = 4 fits are valid for the (A4/A2) = 3 designs.
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Table B.1: Thrust Coefficient Curve-Fits, (A4/A2) = 4, (A5/A0) = 1

ER M∞ a b c (A0/A1)max

4 -0.49869841e-1 0.49430349 -0.82621644 5.34124

5 -0.68479882e-2 0.99125012e-1 -0.10943232 7.22688

0.25 6 -0.45458090e-2 0.66848095e-1 -0.10020729 8.36429

7 -0.67763083e-2 0.96744182e-1 -0.25636996 8.51539

8 -0.74915009e-2 0.98622305e-1 -0.27782115 7.95164

4 -0.76991209e-1 0.73788027 -1.0082527 5.29383

5 -0.89241822e-2 0.14105697 0.51239270e-2 7.21112

0.50 6 -0.71480649e-2 0.11498241 -0.93289771e-1 8.41051

7 -0.49207419e-2 0.80802043e-1 -0.97280841e-1 8.57179

8 -0.68767250e-2 0.10346300 -0.23251623 7.98609

4 -0.83692969e-1 0.80721960 -0.94895952 5.25097

5 -0.14337469e-1 0.21505580 0.16144186e-1 7.16958

0.75 6 -0.76123522e-2 0.13438755 -0.10170729e-1 8.35844

7 -0.38090162e-2 0.74719918e-1 0.35054487e-1 8.52622

8 -0.78741334e-2 0.12091532 -0.19482288 8.00242

4 -0.95907300e-1 0.96465505 -1.2327463 5.28320

1.00 5 -0.18608201e-1 0.26443796 0.75892441e-1 6.90048

or 6 -0.76161545e-2 0.14704879 0.67975813e-1 8.20316

ERmax 7 -0.52199660e-2 0.10007825 0.62896756e-1 8.53903

8 -0.76527114e-2 0.12160603 -0.12667565 7.94352
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Table B.2: Thrust Coefficient Curve-Fits, (A4/A2) = 4, (A5/A0) = 2

ER M∞ a b c (A0/A1)max

4 -0.14723606e-1 0.15796242 0.51099570e-1 5.14437

5 -0.61912328e-2 0.81047984e-1 0.49456662e-1 7.44221

0.25 6 -0.41471505e-2 0.59300713e-1 -0.10809633e-2 8.30857

7 -0.32666482e-2 0.45973194e-1 -0.30536811e-1 8.52718

8 -0.37074063e-2 0.47618649e-1 -0.72715650e-1 7.97840

4 -0.31959459e-1 0.30944616 0.15479222 5.24959

5 -0.73712938e-2 0.11021194 0.23658088 7.19087

0.50 6 -0.54228444e-2 0.85381017e-1 0.12362564 8.35794

7 -0.42692735e-2 0.67897666e-1 0.46325748e-1 8.44007

8 -0.52866323e-2 0.73192206e-1 -0.35329442e-1 7.97164

4 -0.29631520e-1 0.29916407 0.48348068 5.28796

5 -0.93505382e-2 0.14449643 0.40529337 7.28516

0.75 6 -0.67267738e-2 0.10948393 0.25521763 8.41082

7 -0.49389437e-2 0.85813169e-1 0.13326497 8.53236

8 -0.50788323e-2 0.79375985e-1 0.46574283e-1 7.96868

4 -0.36879008e-1 0.37874472 0.51512400 5.28645

1.00 5 -0.14375675e-1 0.19316592 0.52549549 7.23138

or 6 -0.72949267e-2 0.12302538 0.36783282 8.36721

ERmax 7 -0.52483802e-2 0.93660064e-1 0.22848722 8.61187

8 -0.64503764e-2 0.99332058e-1 0.76087323e-1 8.16626
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Table B.3: Thrust Coefficient Curve-Fits, (A4/A2) = 4, (A5/A0) = 3

ER M∞ a b c (A0/A1)max

4 -0.11146619e-1 0.12005949 0.13773469 5.24767

5 -0.34334492e-2 0.51767211e-1 0.10856734 7.21186

0.25 6 -0.28067197e-2 0.41974676e-1 0.39753387e-1 8.26063

7 -0.24956469e-2 0.35852152e-1 -0.26626258e-2 8.49547

8 -0.27291409e-2 0.35642461e-1 -0.38064314e-1 7.89869

4 -0.22256065e-1 0.21882103 0.38402274 5.26673

5 -0.73835782e-2 0.10376249 0.31873785 7.22574

0.50 6 -0.51619733e-2 0.77800273e-1 0.18304066 8.26729

7 -0.36059536e-2 0.57763705e-1 0.10704738 8.52998

8 -0.41643449e-2 0.59162080e-1 0.27658310e-1 7.85842

4 -0.20878524e-1 0.21415689 0.74281116 5.19420

5 -0.79771064e-2 0.12288176 0.52224229 7.21105

0.75 6 -0.70450758e-2 0.10813795 0.29998903 8.24834

7 -0.50225198e-2 0.79620912e-1 0.20958715 8.49802

8 -0.55665969e-2 0.81268786e-1 0.80020500e-1 7.95805

4 -0.33413460e-1 0.33764979 0.72563305 5.21640

1.00 5 -0.14096373e-1 0.18317335 0.64149865 7.13521

or 6 -0.54601094e-2 0.95317851e-1 0.51840686 8.23574

ERmax 7 -0.63256723e-2 0.10099417 0.27526047 8.46407

8 -0.59622853e-2 0.88468574e-1 0.17026105 7.97723
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Table B.4: Thrust Coefficient Curve-Fits, (A4/A2) = 4, (A5/A0) = 4

ER M∞ a b c (A0/A1)max

4 -0.11735694e-1 0.12017128 0.10247929 5.15165

5 -0.39596504e-2 0.54340433e-1 0.85155807e-1 7.18347

0.25 6 -0.27058573e-2 0.39683807e-1 0.34540011e-1 8.18063

7 -0.22989753e-2 0.32597252e-1 0.12484620e-2 8.54976

8 -0.32100665e-2 0.39236480e-1 -0.46205128e-1 7.84728

4 -0.26173887e-1 0.24413133 0.32844282 5.19329

5 -0.73612348e-2 0.10218527 0.29417668 7.09964

0.50 6 -0.38172068e-2 0.61641187e-1 0.22316541 8.16017

7 -0.36021941e-2 0.55258603e-1 0.12305535 8.45813

8 -0.35772045e-2 0.50520919e-1 0.59264004e-1 7.94291

4 -0.22675460e-1 0.22457780 0.72504452 5.25161

5 -0.65538781e-2 0.10185956 0.57817918 7.19310

0.50 6 -0.41582314e-2 0.71822435e-1 0.41713740 8.26676

7 -0.53155034e-2 0.81314672e-1 0.21679152 8.52047

8 -0.47039122e-2 0.68863229e-1 0.13574411 8.02259

4 -0.27615043e-1 0.28026860 0.87356171 5.22439

1.00 5 -0.93552788e-2 0.13103816 0.77145709 7.33966

or 6 -0.61425042e-2 0.98500147e-1 0.52539729 8.21213

ERmax 7 -0.39304571e-2 0.70793960e-1 0.36916636 8.49806

8 -0.59267952e-2 0.87243640e-1 0.18333127 7.94496
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Table B.5: Thrust Coefficient Curve-Fits, (A4/A2) = 4, (A5/A0) = 6

ER M∞ a b c (A0/A1)max

4 -0.12529136e-1 0.12206898 -0.14968492e-1 5.27252

5 -0.34291034e-2 0.44775234e-1 0.50857793e-1 7.23918

0.25 6 -0.17723672e-2 0.27413365e-1 0.27566069e-1 8.32048

7 -0.22768270e-2 0.31015937e-1 -0.20237576e-1 8.49832

8 -0.29900442e-2 0.36468051e-1 -0.53566511e-1 7.95358

4 -0.17822279e-1 0.16317851 0.43083852 5.26965

5 -0.41700614e-2 0.63750064e-1 0.36001300 7.23207

0.50 6 -0.36742344e-2 0.55665557e-1 0.22172396 8.36120

7 -0.28725371e-2 0.45126210e-1 0.14099377 8.51603

8 -0.41147649e-2 0.53997072e-1 0.54505152e-1 8.01917

4 -0.73027373e-2 0.85815793e-1 0.96204392 4.89482

5 -0.71594565e-2 0.10308161 0.56938533 7.16355

0.75 6 -0.32037931e-2 0.58435989e-1 0.44438378 8.29234

7 -0.33599537e-2 0.57076361e-1 0.28317578 8.52126

8 -0.47533838e-2 0.67321569e-1 0.14667716 7.94179

4 -0.24566725e-1 0.24658399 0.90865333 5.25089

1.00 5 -0.12409402e-1 0.15827602 0.69721794 7.13662

or 6 -0.50926776e-2 0.85637217e-1 0.55995518 8.27444

ERmax 7 -0.37227053e-2 0.64248349e-1 0.40919142 8.38862

8 -0.41636836e-2 0.64323415e-1 0.27021240 7.93855
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Table B.6: Thrust Coefficient Curve-Fits, (A4/A2) = 4, (A5/A0) = 8

ER M∞ a b c (A0/A1)max

4 -0.81368756e-2 0.83305787e-1 -0.78812864e-1 5.26415

5 -0.24273038e-2 0.37205281e-1 -0.28679517e-1 7.08101

0.25 6 -0.27358687e-2 0.37034942e-1 -0.49023916e-1 8.25361

7 -0.21923976e-2 0.29228660e-1 -0.52145408e-1 8.56251

8 -0.18622312e-2 0.23863216e-1 -0.60198579e-1 7.91689

4 -0.15535548e-1 0.15076497 0.29289183 5.25000

5 -0.49321370e-2 0.69684983e-1 0.27020668 7.14472

0.50 6 -0.28437544e-2 0.45463429e-1 0.19738206 8.24510

7 -0.22132714e-2 0.35625016e-1 0.12808787 8.57162

8 -0.30407192e-2 0.41748329e-1 0.54903349e-1 7.95809

4 -0.20904792e-1 0.19666099 0.63291311 5.26652

5 -0.43906829e-2 0.68583118e-1 0.60015736 7.04946

0.75 6 -0.32898975e-2 0.55867996e-1 0.42090689 8.23280

7 -0.33136575e-2 0.54277481e-1 0.26759355 8.51059

8 -0.37348158e-2 0.54625293e-1 0.16373794 7.95528

4 -0.31442963e-1 0.32812950 0.63112734 5.56779

1.00 5 -0.10250625e-1 0.13090870 0.72675794 7.16425

or 6 -0.33573140e-2 0.62001513e-1 0.59820948 8.34410

ERmax 7 -0.39744570e-2 0.63993267e-1 0.41216060 8.55414

8 -0.42656742e-2 0.64204486e-1 0.26598943 8.03373
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Table B.7: Thrust Coefficient Curve-Fit Corrections when (A4/A2) = 3

(A0/A1) ER M∞ a b c

1 0.25 4 -0.20378066e-1 0.21893979 -0.17174159

5 -0.61046225e-2 0.91499066e-1 -0.68965469e-1

0.50 4 -0.33391996e-1 0.34025251 -0.83416244e-1

5 -0.92850269e-2 0.14476685 0.19757637e-1

6 -0.33391996e-1 0.34025251 -0.83416244e-1

7 -0.92850269e-2 0.14476685 0.19757637e-1

0.75 4 -0.37944022e-1 0.41943896 -0.83230792e-1

5 -0.14127845e-1 0.20846118 0.71733448e-1

6 -0.37944022e-1 0.41943896 -0.83230792e-1

1.00 or ERmax 4 -0.58856104e-1 0.63578795 -0.40942939

5 -0.20862734e-1 0.27915649 0.77373924e-1

6 -0.91072104e-2 0.15896258 0.76438585e-1

2 0.25 4 -0.14047642e-1 0.14979141 0.85859973e-1

0.50 4 -0.29743597e-1 0.28007699 0.25672616

5 -0.62390492e-2 0.98860848e-1 0.28015185

0.75 4 -0.21746194e-1 0.24603850 0.59721737

5 -0.92268944e-2 0.13712409 0.45986089

1.00 or ERmax 4 -0.29013543e-1 0.32770909 0.63977507

3 0.50 4 -0.26227989e-1 0.24948865 0.34706481

0.75 4 -0.21193622e-1 0.23135170 0.70716066

5 -0.81680616e-2 0.12046957 0.55572720

1.00 or ERmax 4 -0.26329484e-1 0.29179985 0.82637599

4 0.75 4 -0.15057494e-1 0.17001544 0.84237894

5 -0.62919768e-2 0.94912554e-1 0.62820260

1.00 or ERmax 4 -0.31547564e-1 0.31857302 0.81193267

6 0.50 4 -0.18223755e-1 0.16971610 0.41201838

0.75 4 -0.90162669e-2 0.11241800 0.90180647

1.00 or ERmax 4 -0.18108766e-1 0.19886729 1.0167907

8 1.00 4 -0.24920003e-1 0.26817736 0.78188375
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Appendix C

Extended Kalman Filter Model

This chapter describes the process of filtering and the derivation of the Kalman

filter gain to minimize the error of a dynamical system. The first section provides

a definition for filtering and assumptions used in the following sections. The next

section briefly discusses the Wiener filter as a segue into the importance of Kalman’s

work in the early 1960’s. The third section derives the the Kalman filter with a

preface on linear system dynamics. The last section describes the extended Kalman

filter, the linearization of the system dynamics, and a summary of the implemented

model.

C.1 Filtering Assumptions

The problem of accurately estimating the states of a system can be broken

into three categories.1,9 The first, and the focus of this chapter, is filtering where

the goal is to estimate the states at the current time with information up to and

including the current time. The second category is prediction where the goal is to

estimate the states at a future time. And the last category is that of smoothing

where the estimated states at a given time of interest is based on information before
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Figure C.1: Extended Kalman Filter, from Ref. [9]

and after this time epoch. Filtering is the main concern for navigation systems

because one wishes to continually have an accurate estimate of the states of the

system with minimal computational load to allow real time processing.

A number of reasonable assumptions must be made pertaining to the sys-

tem modeling in order to make the mathematics tractable and ultimately derive

the optimal Kalman gain.1,9 The first assumption will be that the system can be

modeled by linear dynamics. This assumption will be used through the majority of

the derivations but will be extended to include nonlinear systems whose dynamics

have been linearized about the current state estimate (i.e. an extended Kalman

filter as shown in Fig. C.1 from Brown and Hwang,9 pg. 344). The other main

assumption is that the random processes and measurement noises are driven by un-

correlated white Gaussian variables. This assumption is based on the Central Limit

Theorem of statistics which states that the summation of a set of random variables
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with finite variance will tend to a normal, Gaussian distribution.Since the process

and measurement noises are typically small variations about a true unbiased (i.e.,

zero-mean) value, this assumption holds well. Also, the assumption that the noises

are uncorrelated is reasonable since each noise is typically produced by a different

sensor or system. And furthermore, the white noise assumption holds as long as

we concern ourself with a finite band of system frequencies which is sufficiently less

than the highest system frequencies.

C.2 Random Processes

This section provides several definitions used in the derivation of the Kalman

filter gain. First, the probability density function is defined as (Jekeli,1 pg. 166):∫ b

a

fx(x)dx ≡P(a ≤ xk ≤ b) (C.1)

Or in words, this function defines the probability that a random variable, xk, will

have a particular value in the interval [a, b]. The mean, µx, or expectation, E[x], of

a random variable is defined as its first moment (Jekeli,1 pg. 168 and Brown and

Hwang,9 pg. 26):

µx = E[x] ≡
∫ ∞
−∞

xfx(x)dx. (C.2)

The variance, or degree that the random number’s value deviates from the mean is

defined as the second moment:

σ2
x ≡ E[(xk − µx)2] = E[x2

k]− µ2
x (C.3)

=

∫ ∞
−∞

(x− µx)2fx(x)dx.
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The standard deviation is commonly used in place of the variance and is defined

as the square-root of the variance, σx. The last definition is that of the covariance

between two random variables xk and yk:

cov(xk, yk) ≡ E[(xk − µx)(yk − µy)] = E[xkyk]− µxµy, (C.4)

where E[xy] =
∫∞
−∞

∫∞
−∞ xyf(x, y)dxdy and f(x, y) is the joint density function. If

the two random variables are uncorrelated,

cov(xk, yk) = 0, ∴ E[xkyk] = µxµy. (C.5)

For a vector of random variables, x, the vector mean is defined like before:

µx = E[x]. (C.6)

The covariance matrix of a random vector with itself is defined as

Px = cov(x,x) =


cov(x1, x1) · · · cov(x1, xN)

...
. . .

...

cov(xN , x1) · · · cov(xN , xN)

 , (C.7)

where x1 denotes the first random variable and xN denotes the last random variable

in the vector x. Also, because cov(xi, xj) = cov(xj, xi), the covariance matrix is

symmetric (Px = P T
x ). And furthermore, the diagonal elements of the covariance

matrix are equal to the variances of the random variable vector.

Following the assumptions given in Sec. C.1, zero-mean white Gaussian ran-

dom processes will be used to model the forcing noises in the system dynamics. A

Gaussian or normal process is defined by the probability density function (Brown
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and Hwang,9 pg. 25–26):

fN(x) =
1

σx
√

2π
exp

[
− 1

2σ2
x

(x− µx)2

]
. (C.8)

As shown, the Gaussian distribution is defined completely by its mean and variance.

This distribution can then be specialized to a zero-mean white noise process, denote

as w(t) or v(t). By definition, the noise will have a mean of zero. The variance,

however, is harder to quantify. White noise is characterized by having zero covari-

ance over any non-zero time interval (Jekeli,1 pg. 177), meaning the variance is only

defined at an infinitesimal period of time. This un-physical definition is mathemat-

ically realized using the Dirac delta function, and it can be shown that the variance

of a white noise process is (Jekeli,1 pg. 179):

σ2
w = qw/∆t, (C.9)

where qw is the amplitude of the power spectral density, which is constant for all

frequencies and the impetus for the process being labeled white.

The next subsections define three stochastic models that will be used in the

accelerometer, gyro, and GPS receiver clock error models.

C.2.1 Random Constant

A random constant is usually used to model a random bias or any other con-

stant that does not have a predetermined value. The differential equation that

describes a random constant is

ẋ(t) = 0, x(t0) = x0, (C.10)
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where the initial condition (x0) has a given variance (σ2
x) and zero mean.

C.2.2 Random Walk

A random walk is a process whose value varies, or “walks,” stochastically over

time. This process is modeled as an integrated white Gaussian noise, w(t), with a

mean of zero and a known variance (σ2
w):

ẋ(t) = w(t), x(t0) = 0. (C.11)

The initial value of the random walk process is assumed to be zero. However, if the

system being modeled has a random initial condition, the system may be modeled

as the combination of a random walk and a random constant.

C.2.3 First Order Gauss-Markov Process

A Gauss-Markov process is a random process whose characteristics are corre-

lated from one time to another. A first order Gauss-Markov is defined by the linear

differential equation:

ẋ(t) = −βx(t) + w(t), x(t0) = 0, (C.12)

where β is a time constant that describes the level of correlation. For low β, the

correlation is reduced so that the signal begins to resemble a white noise process.

The gyro noise is modeled in this manner so that its contribution to the angular

velocity error can be accounted for in the strapdown gravity gradiometer instrument

measurement updates, see Sec. 5.2.1.
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For this work, the first order Gauss-Markov process is discretely modeled by

xk+1 = exp (−β∆t)xk + wk, (C.13)

where β = 2.146/(0.5∆t) is the prescribed time constant,94 and the discrete white

process variance is (Brown and Hwang,9 pg. 124)

σ2
gm = (qw/∆t) [1− exp(−2β∆t)] . (C.14)

C.3 Linear Dynamic Systems

An n-dimensional linear system is one whose dynamics can be written as

ẋ(t) = A(t)x(t) +B(t)u(t) +M(t)w(t) (C.15a)

y(t) = C(t)x(t) +D(t)u(t) +N(t)ν(t), (C.15b)

where x(t) is the n-dimensional continuous state vector of the system, u(t) is the

command control input to the the system, y(t) is the output measurement vector,

and w(t) and ν(t) are the continuous random process and measurement noises,

respectively. The matrices on the right hand side of the equations may be time

varying, and essentially map the current states, controls, and noises into the state

derivatives and measurements. The general theory of linear dynamic systems can

be found in references such as Chen.173 The discussion here will now be focused to

the filtering problem at hand.

With the assumptions that there are no explicit control inputs and the noises

are mapped directly to the state derivatives and measurements, the linear dynamics
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can be rewritten as

ẋ(t) = F (t)x(t) + w(t) (C.16a)

y(t) = H(t)x(t) + ν(t). (C.16b)

A change in notation has also been performed to coincide with typical filtering

terminology. To derive the discrete form of the linear dynamics, we first solve

for x(t). The general solution to a differential equation is the summation of its

homogeneous and particular solutions. The homogeneous solution to Eq. (C.16a),

i.e.

ẋH(t) = F (t)xH(t), w(t) = 0 (C.17)

is given as

xH(t) = Φ(t, t0)xH(t0), (C.18)

where Φ(t, t0) is the state transition matrix from time t0 to t. The particular solution

is found by assuming the form

xP (t) = Φ(t, t0)νP (t), and xP (t0) = 0, (C.19)

where vP(t) is a time varying forcing vector that will be found. Substitution of the

particular solution into the dynamic equation yields

Φ̇(t, t0)νP (t) + Φ(t, t0)ν̇P (t) = F (t)Φ(t, t0)νP + w(t). (C.20)

With the properties that the state transition matrix is by definition invertible and

its time derivative is:1,173

Φ̇(t, t0) = F (t)Φ(t, t0), (C.21)
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one can solve for ν̇P (t) and integrate to get

νP (t) =

∫ t

t0

Φ−1(τ, t0)w(τ)dτ. (C.22)

Substituting νP (t) back into Eq. (C.19), adding the particular and homogeneous

solutions together, and using the properties that

Φ−1(τ, t0) = Φ(t0, τ), and (C.23)

Φ(t, t0)Φ(t0, τ) = Φ(t, τ), (C.24)

the general solution to Eq. (C.16a) is found to be

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)w(τ)dτ. (C.25)

Applying the solution and Eq. (C.16b) to two discrete times t = tk+1 and t0 = tk,

the discrete linear dynamics are then

xk+1 = Φkxk + wk (C.26a)

yk+1 = Hk+1xk+1 + νk+1, (C.26b)

where the subscripts refer to the time of interest (tk or tk+1), and

Φk ≡ Φ(tk+1, tk) (C.27)

wk ≡
∫ tk+1

tk

Φ(t, τ)w(τ)dτ. (C.28)

For “small” time increments, the state transition matrix tends to the identity matrix

so that the discrete process noise can be approximated as

wk ≈
∫ tk+1

tk

w(τ)dτ ≈ w(tk)∆t. (C.29)
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C.4 Wiener Filter

Filtering has its roots in the field of electronics.9 The goal there, and in

some degree universally, is to produce the greatest signal to noise separation when

the characteristics of both processes are known. In electronics, this was usually

implemented as a way to keep a certain range of frequencies and filter out all others,

as in the removal of noise from an amplitude or frequency modulated radio signal.

Norbert Wiener, during World War II, addressed this signal to noise filter

problem and produced the Wiener filter, first published in 1949.174 With the as-

sumption that the signal and noise were random processes with known characteris-

tics, the Wiener filter solved for the optimal filter weighting function to minimize

the mean-square error.

A limitation to the Wiener filter is its assumption that the signal and noise

are both “noise-like” processes. In many cases, the signal is partially deterministic

and hence the Wiener filter is no longer optimal. Also, the Wiener filter assumes a

single-input-single-output (SISO) system, which greatly restricts its usefulness. The

complementary Wiener filter attempts to extend the Wiener filter for use in multiple-

input-multiple-output (MIMO) systems, however the noise-like assumption persists.

The last major hindrance in the Wiener filter is its lack of recursion, especially when

formulated for a discrete system. The discrete Wiener filter solves for the optimal

weight factors (i.e., gains) for a state at a given time by using all the measurements

prior to and including the current time. When many measurements are made or the

state is estimated at many times, the Wiener filter solution becomes computationally
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infeasible. To alleviate some of the burden, only a set of measurements can be used

for each state estimate, but this then limits the filter knowledge in calculating the

optimal estimate.

C.5 Extended Kalman Filter

Rudolf E. Kalman in 1960 and 1961 published two papers that solved the

major problems relevant in the Wiener filter by formulating the problem in a state-

space manner.24,25 Kalman did not assume that both the signal and its corrupting

source were noise-like. Instead, it was only assumed that they were driven by un-

correlated process and measurement noises. The state-space derivation removed the

SISO assumption of the Wiener filter so that any number of inputs and outputs

could be modeled. And arguably the largest contribution of Kalman’s filter was

its use of recursion. Now, only the previous states and covariances were needed to

estimate the current state and covariance, which allowed for a much more efficient

implementation.

The only major restriction left in Kalman’s formulation was the assumption of

linear dynamics. Since most system dynamics are actually modeled with nonlinear

relations, the Kalman filter will not optimally produce the best state estimates.

One common solution to this problem is to linearize the system about a given state

trajectory. If a nominal trajectory is chosen, the Kalman gains can be computed

offline and the implementation is referred to as a Linear Kalman Filter. The major

downfall of this method is that the guidance law must keep the true trajectory near
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the pre-computed nominal one or the filter will diverge. However, is the system

is continuously linearized with the current estimated states, an Extended Kalman

Filter (EKF) is implemented. This typically results in better performance than the

Linear Kalman filter since the estimates are usually closer to the true values than

the nominal trajectory. This work uses the EKF implementation for this reason, and

will be explained in the next sections. It should be noted, though, that the EKF is

slightly riskier because divergence will result when the errors between the true and

estimated trajectories grow too large, as shown with some of the strapdown GGI

aided INS simulations.

The following three subsections derive the various components of the Extended

Kalman Filter. The first subsection explains the process of linearizing the true

nonlinear equations with respect to the current states. The next subsection defines

an error as used in this dissertation and the Kalman filter propagation and update

equations. And the last section summarizes the initialization, propagation, and

update of the Extended Kalman Filter.

C.5.1 System Linearization

The Kalman filter was originally derived to give the optimal gain for the blend-

ing of noisy measurements into corrections for the estimated states given a linear

dynamical system. Unfortunately, most system dynamics are nonlinear (i.e., the

navigation equations in Sec. 4.3). One popular way to still use the Kalman filter

methods is to linearize the nonlinear system dynamics. The linearization is a good
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approximation of the true system dynamics as long as the higher order terms and

time increment are sufficiently “small”.

For a generic nonlinear system, the dynamical equations are

ẋ(t) = f (x(t),u(t), t) + w(t) (C.30a)

y(t) = h (x(t), t) + ν(t), (C.30b)

where f is the nonlinear time rate of change of the states and y is the nonlinear

measurement. Taking a Taylor series expansion of the dynamics about the estimated

states, assuming u = 0, and temporarily dropping the explicit time dependence

notation, gives

ẋ = f (x̂) +

[
∂f

∂x

]
x=x̂

(x− x̂) +
1

2

[
∂2f

∂x2

]
x=x̂

(x− x̂)2 + · · ·+ w (C.31a)

y = h (x̂) +

[
∂h

∂x

]
x=x̂

(x− x̂) +
1

2

[
∂2h

∂x2

]
x−x̂

(x− x̂)2 + · · ·+ ν, (C.31b)

where x is the vector of truth states and x̂ is the vector of estimated states. Ne-

glecting the second and higher order terms, the linearized dynamics are

ẋ(t) ≈ f(x̂(t), t) + F (t) (x(t)− x̂(t)) + w(t) (C.32a)

y(t) ≈ h(x̂(t), t) +H(t) (x(t)− x̂(t)) + ν(t), (C.32b)

where the linearized dynamic equations and measurement matrices are

F (t) ≡
[
∂f(t)

∂x(t)

]
x(t)=x̂(t)

(C.33a)

H(t) ≡
[
∂h(t)

∂x(t)

]
x(t)=x̂(t)

. (C.33b)
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If the estimated nonlinear state dynamics and measurement are defined as

˙̂x(t) ≡ f(x̂(t), t) (C.34a)

ŷ(t) ≡ h(x̂(t), t), (C.34b)

and an error state is defined as the perturbation between the estimated state and

the true state, see Eq. (C.38), the linear dynamics become

˙̂x(t)− ẋ(t) = δẋ(t) = F (t)δx(t)−w(t) (C.35a)

ŷk+1 − yk+1 = δy(t) = H(t)δx(t)− ν(t). (C.35b)

And the discrete error dynamics are (from Sec. C.3)

δxk+1 = Φkδxk −wk (C.36a)

ŷk+1 − yk+1 = δyk+1 = Hk+1δxk+1 − νk+1. (C.36b)

The state transition matrix is often calculated using a first order Taylor series ex-

pansion of the matrix exponential of the linearized dynamics, F , matrix:

Φk = eFk∆t ≈ I + Fk∆t, (C.37)

where it has been assumed that Fk is constant over the time interval. Unfortunately,

this approximation is poor for the exponential in the Gauss-Markov process. Jekeli

addressed this problem by increasing the series truncation to 30 terms.94 This

approach was implemented initially, but the run times were drastically increased. It

was then found that setting the gyro noise portion of the state transition matrix to

diag(exp(−β∆t)) was as effective as the higher order series but without the added

computational burden.
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The linearized state dynamics matrix, F (t), is summarized in Sec. 4.4.4 for

the inertial navigation states, Sec. 4.5.1 for the IMU states, and in Sec. D.4 for the

GPS receiver clock states. The linearized measurement matrix, H(t), is derived in

Sec. 5.2.1 and 5.2.2 for gravity gradiometer instrument aiding and Sec. D.3.2 and

D.3.3 for the global positioning system aiding.

C.5.2 Discrete Kalman Filter

The derivation of the discrete Kalman filter propagation and update equations

will liberally use the error states, which are defined as

δx ≡ x̂− x, (C.38)

where δx is a small perturbation (or error) from the true state, x, and x̂ is the filter-

estimated state. It should be noted that this definition of the error is not universal.

Many papers define the error as the true value minus the estimated value; however,

in this work all errors will be consistently defined as those in Eq. (C.38). These

error states are also assumed to propagate in time according to the discrete linear

system dynamics of Eq. (C.36a).

The error covariance matrix is also of significant importance in the Kalman

filter equations because it provides the filter a current estimate of all the system

errors. This covariance matrix at time tk is defined as

Pk ≡ cov(δxk, δxk) (C.39)

= E[(δxk − µδx)(δxk − µδx)T ] = E[(δxk)(δxk)
T ],
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where the last equality holds assuming the errors have zero-mean, which is a result

of the forcing white process noise having zero mean. The propagation of the error

covariance is found by substituting in the linear error dynamics with the assumption

that the process noise and error states are uncorrelated so E[δxkwk] = 0. Therefore,

Pk+1 = E[(δxk+1)(δxk+1)T ] = E[(Φkδx−wk)(Φkδx−wk)
T ]

= ΦkE[δxkδx
T
k ]ΦT

k − E[wkδx
t
k]Φ

T
k − ΦkE[δxkw

T
k ] + E[wkw

T
k ]

= ΦkPkΦ
T
k +Qk, (C.40)

where the discrete process noise covariance is defined as

Qk ≡ E[wkw
T
k ]. (C.41)

Without external measurements, Eq. (C.36a) and (C.40) can be propagated deter-

ministically from their initial conditions to yield the error and covariance at any

time in the future. Only knowledge of the discrete error process noise, Qk, and the

error state transition matrix, Φk, are required for the calculations.

When external measurements are collected, for example by a GGI or GPS,

a feedback loop is used to blend the noisy measurements with the current state

estimates to produce the best updated estimate of the state vector. The derivation

that follows minimizes the mean square error the of the state vector, and then is

used to update the whole estimated states. Starting with the measurement update

feedback form:

δx+
k+1 = δx−k+1 +Kk+1 (yk+1 − ŷk+1) = δx−k+1 +Kk+1δyk+1, (C.42)

where the superscript “+” means the updated or a posteriori error state, “−” is the a
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priori error, and Kk+1 is the Kalman gain matrix to be derived. Then, substituting

the discrete measurements, Eq. (C.36b), yields

δx+
k+1 = δx−k+1 −Kk+1

(
Hk+1δx

−
k+1 − νk+1

)
= (I −Kk+1Hk+1) δx−k+1 +Kk+1νk+1. (C.43)

The a posteriori error state is next substituted back into the definition of the error

covariance matrix to get the updated error covariance:

P+
k+1 = E

[
(δx+

k+1)(δx+
k+1)T

]
= (I −Kk+1Hk+1)E

[
(δx−k+1)(δx−k+1)T

]
(I −Kk+1Hk+1)T

+ (I −Kk+1Hk+1)E
[
(δx−k+1)(νk+1)T

]
KT
k+1

+ Kk+1E
[
(νk+1)(δx−k+1)T

]
(I −Kk+1Hk+1)T

+ Kk+1E
[
(νk+1)(νk+1)T

]
KT
k+1. (C.44)

Assuming the errors and measurement noises are uncorrelated, E
[
(δx−)(ν)T

]
= 0,

and the updated covariance matrix is now simply

P+
k+1 = (I −Kk+1Hk+1)P−k+1 (I −Kk+1Hk+1)T +Kk+1Rk+1K

T
k+1, (C.45)

where P−k+1 is the a priori error covariance and the measurement noise covariance

is defined as

Rk+1 ≡ E
[
νk+1ν

T
k+1

]
. (C.46)

The updated covariance in Eq. (C.45) is also referred to as the Joseph Form. Other

forms can be derived by substituting the Kalman gain into the Joseph form that are

less computationally expensive. However, the Joseph form is used in this research
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because it has better numerical properties (Brown and Hwang,9 pg. 261). Also, after

each iteration, the covariance matrix is recalculated by

Pk+1 =
1

2

(
Pk+1 + P T

k+1

)
(C.47)

to reenforce the symmetric property to hold.

Like the Wiener filter, the goal of the Kalman filter is to minimize the mean-

square error of the states by optimally blending the measurement with the estimated

states. Mathematically, the Kalman gain is found by minimizing the trace (sum of

diagonal elements) of the error covariance matrix since this is the sum of the error

variances, see Eq. (C.7) on pg. 312. It can be shown that (Brown and Hwang,9

pg. 217):

d
(
trace P+

k+1

)
d Kk+1

= −2
(
Hk+1P

−
k+1

)T
+ 2Kk+1

(
Hk+1P

−
k+1H

T
k+1 +Rk+1

)
. (C.48)

Setting this derivative equal to zero and solving for the Kalman gain matrix gives

Kk+1 = P−k+1H
T
k+1

(
Hk+1P

−
k+1H

T
k+1 +Rk+1

)−1
, (C.49)

which is the optimal gain used in Eq. (C.42).

While the discussion throughout this section has focused on the error states,

what we are truly concerned with is how the “whole” state estimates are updated us-

ing the noisy measurement information and the Kalman gain. Using the error update

equation, Eq. (C.42) and substituting the definition of the error terms, Eq. (C.38):

x̂+
k+1 − x+

k+1 = x̂−k+1 − x−k+1 +Kk+1 (yk+1 − ŷk+1) . (C.50)

Since xk+1 is the true state at time tk+1, its a priori and a posteriori values are
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equivalent, so the estimated states are updated using

x̂+
k+1 = x̂−k+1 +Kk+1 (yk+1 − ŷk+1) . (C.51)

C.5.3 Summary

The Extended Kalman filter algorithm is summarized in this section. The

summary is separated into the three major EKF components.

Initial Conditions

The Extended Kalman filter is initialized with an estimated and truth state

vector and rotation matrix. The initial error covariance is typically defined as a

diagonal matrix whose elements correspond to the initial state error variances.

x(t0) = x0 (C.52)

x̂(t0) = x̂0 (C.53)

Cn
b (t0) = Cn

b,0 (C.54)

Ĉn
b (t0) = Ĉn

b,0 (C.55)

P (t0) = P0 (C.56)

Propagation

The nonlinear system dynamics are used to numerically integrate the truth and

estimated state vectors and the rotation matrices using the simulated accelerometer

and gyro measurements, see Ch. 4 and Sec. 3.3.2. The rotation matrix is integrated
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using its equivalent quaternion as discussed in Sec. 4.3.3.1, and the GPS receiver

dynamics are integrated according to Sec. D.4. The INS states use a fourth-order

Runge-Kutta algorithm (Sec. 4.3.3.2) to numerically integrate the states at a con-

stant rate of 20 Hz. At each time step the system dynamics are also linearized

about the current state estimates and the error covariance is propagated using the

error state transition matrix as discussed at the end of Sec. C.5.1. The IMU process

noises are derived in Sec. 4.5.2, and the GPS clock process noises are explained in

Sec. D.4.

ẋ(tk) = f (x (tk)) + w(tk) (C.57)

q̇(tk) =
1

2
Aqq (C.58)

˙̂x(tk) = f (x̂ (tk)) (C.59)

˙̂q(tk) =
1

2
Âqq̂ (C.60)

Fk =

[
∂f

∂x

]
x=x̂(tk)

(C.61)

Φk = I + Fk∆t (C.62)

Φk,gyro noise = diag(e−β∆t) (C.63)

Pk+1 = ΦkPkΦ
T
k +Qk (C.64)

Measurement Update

When an external measurement is made using the GGI or GPS, the linearized

measurement matrix is calculated and the Kalman gain is computed. The estimated

states are then updated using the Kalman gain and the residual of the noisy truth

measurement and the estimated measurement. All measurements are simulated
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using nonlinear equations, see Eq. (5.44), (5.57), (D.14), and (D.19). And their

linearized errors are given in Eq. (5.56), (5.67), (D.15), and (D.20) respectively.

The estimated rotation matrix is also updated using the calculated rotation angle

errors, and then these states are reset to zero, as explained in Sec. 4.4.2.

yk+1 = h(xk+1) + νk+1 (C.65)

ŷk+1 = h(x̂k+1) (C.66)

Hk+1 =

[
∂h

∂x

]
x=x̂k+1

(C.67)

Kk+1 = Pk+1H
T
k+1

(
Hk+1Pk+1H

T
k+1 +Rk+1

)−1
(C.68)

x̂k+1 = x̂k+1 +Kk+1 (yk+1 − ŷk+1) (C.69)

Ĉn
b = (I + Ψn) Ĉn

b (C.70)

ψn = 0 (C.71)

P+
k+1 = (I −Kk+1Hk+1)Pk+1 (I −Kk+1Hk+1)T

+Kk+1Rk+1K
T
k+1 (C.72)
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Appendix D

Global Positioning System Model

The nominal United States of America’s twenty-four satellite Global Position-

ing System (GPS) was modeled and integrated with the inertial navigation system

(INS) to provide baseline navigation performance for various GPS dropouts and

measurements. This chapter describes the modeling of the nominal constellation

and the determination of each satellite vehicle’s (SV) position and velocity as a

function of time. The simulated measurements and their Kalman filter models are

described in Sec. D.3 along with the visibility test to determine which SVs provide

measurements and the importance of the geometric dilution of precision. The user’s

GPS receiver clock model is presented in the following section with the simulated

noise values. Lastly, Sec. D.5 summarizes the Fortran module implementation of

this chapter and its use in the overall simulation.

D.1 GPS Satellite Constellation

The position and velocity of each satellite in the nominal 24-satellite GPS

constellation can be calculated by the following orbital parameters. The nominal

design values are an eccentricity eGPS = 0.00, inclination iGPS = 55◦, and semimajor

330



axis aGPS = 26, 561.75km. In reality, the eccentricity is generally less than 0.02

(Parkinson and Spilker,7 pg. 179), thus for modeling purposes it will be assumed

that the eccentricity is always zero . Also, due to the assumption of a circular

orbit, the semimajor axis is equivalent to the semiminor axis, and orbital radius is

therefore constant. It should be noted that the stated orbital radius above has been

corrected for Earth’s bulk oblateness (Parkinson and Spilker,7 pg. 178–181). Each

SV’s position and velocity can then be determined by these assumed nominal values,

a value of the Earth’s gravitational constant, each SV’s initial right ascension of the

ascending node and argument of latitude at a given reference time, and the time

offset between the current time and the initial reference time.

Earth’s gravitational constant is modeled as the more accurate 1984 World

Geodetic System (WGS84) value, GM = 3.986004418×1014 m3/s2, than the original

GPS value of GM = 3.9860050 × 1014 m3/s2 (Ref. [113], pg. 3-3). According

to the WGS84 report,113 the GPS Operational Control Segment began using the

improved value during the fall of 1994 and removed a radial bias of 1.3 m for the

orbit estimators. In an effort to maintain consistency between previous and future

GPS receivers, the GPS interface control document175 continues to use the original,

less accurate gravitational constant. However, for the purposes of simulating the

GPS satellite vehicles’ (SV) position and velocity, the current and more accurate

WGS84 gravitational value is used.

The orbital period of the nominal GPS constellation can be found from the
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Table D.1: Simulated GPS Parameters

Parameter Name Symbol Value Units

Semimajor Axis aGPS 26,561.75 km

Eccentricity eGPS 0.00 —

Inclination iGPS 55.0 ◦

Earth’s Gravitational Constant GM 3.986 004 418 × 1014 m3/s2

Orbital Period PGPS 43,082.015 s

Initial Reference Time t0 Midnight, July 1, 1993 —

Earth’s Rotation Rate ωe 7.292 115 1467 × 10−5 rad/s

Speed of Light c 2.99792458 × 108 m/s

orbital radius and Earth’s gravitational constant by115

PGPS = 2π
√
a3
GPS/GM = 43, 082.015s, (D.1)

using the values of aGPS and GM above. The GPS period is approximately one half

a sidereal day = 0.5 ∗ (2π)/ωe = 43, 082.050s. The minimal difference between the

two values is due to the correction of Earth’s oblateness in the value of aGPS, and

truncation error with the GPS definition175 of π. The parameters used for the simu-

lated GPS module are summarized in Table D.1 which includes the initial reference

time and the ICD-GPS-200175 values of Earth’s rotation, ωe, (which is equivalent

to the International Astronomical Union value stated in WGS84 reference113) and

speed of light, c. These parameters are constant for each satellite in the constella-

tion, and the remainder of this section explains the two parameters that uniquely

define a specific SV’s position and velocity.
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The twenty-four satellites of the GPS-24 constellation are divided into six

orbit planes with four satellite vehicles each. The orbit planes are defined by six

right ascensions of the ascending node, ΩGPS, which are the angles in the equatorial

plane measured positively from the Earth-Centered-Inertial frame’s x-axis (the mean

vernal equinox) to the location of the ascending node. The ascending node is defined

as the point on the equatorial plane at which the satellite crosses the equator from

South to North (Vallado,115 pg. 107). The right ascension of the ascending node is

constant in the ECI frame, and the GPS constellation planes are equispaced by 60◦

starting at 32.847◦ as tabulated in Table D.2 (from Parkinson and Spilker,7 pg. 181).

For each ΩGPS, four satellites are “phased” by having various mean anomalies,

MGPS, that have been optimized to minimize the effects of a single SV failure on the

total system performance.7 For the idealized circular inclined SV orbit, the mean

anomaly is equivalent to the true anomaly, νGPS, and the argument of latitude, uGPS

(Vallado,115 pg. 108–111). The argument of latitude will be used for the remainder

of this dissertation, but it should be noted that the actual GPS signal broadcast

includes information to correct for deviations from this ideal scenario. For these

more realistic situations, these three orbital angles are not equal and the method

to calculate the SV position is more complicated (see ICD-GPS-200,175 pg. 98–100

or Parkinson and Spilker,7 pg. 138†). For both the idealized and realistic cases, the

mean anomaly varies linearly in time, and continuing with the assumption of the

†It should be noted that on pg. 138 of Parkinson and Spilker, there is a slight typo in the

calculation of “yk.” The correct equation is yk = x′k sin Ωk + y′k cos ik cos Ωk, not yk = y′k sin Ωk +

y′k cos ik cos Ωk.
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Table D.2: GPS-24 Satellite Constellation, from Ref. [7]

SV ID ΩGPS, ◦ uGPS(t0), ◦ SV ID ΩGPS, ◦ uGPS(t0), ◦

1 A3 272.847 11.676 13 D1 92.847 135.226

2 A4 272.847 41.806 14 D4 92.847 167.356

3 A2 272.847 161.786 15 D2 92.847 265.446

4 A1 272.847 268.126 16 D3 92.847 35.156

5 B1 332.847 80.956 17 E1 152.847 197.046

6 B2 332.847 173.336 18 E2 152.847 302.596

7 B4 332.847 204.376 19 E4 152.847 333.686

8 B3 332.847 309.976 20 E3 152.847 66.066

9 C1 32.847 111.876 21 F1 212.847 238.886

10 C4 32.847 241.556 22 F2 212.847 345.226

11 C3 32.847 339.666 23 F3 212.847 105.206

12 C2 32.847 11.796 24 F4 212.847 135.346

nominal circular inclined orbit the argument of latitude does as well. The value of

the argument of latitude for the jth SV at a given time is

uGPS,j(t) = uGPS,j(t0) + (t− t0)

√
GM

a3
GPS

= uGPS,j(t0) + (t− t0)
2π

PGPS
, (D.2)

where uGPS is in radians, and t is the current time in relation to t0 (defined as

midnight, July 1, 1993) (Parkinson and Spilker,7 pg. 138, 180). The arguments of

latitude for the nominal reference constellation at the reference time are tabulated

in Table D.2 (from Parkinson and Spilker,7 pg. 181).
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D.2 GPS Satellite Vehicle Position and Velocity

The Global Positioning System’s satellite vehicle position and velocity are first

computed in each satellite’s orbital plane and then rotated into the Earth-Centered-

Earth-Fixed (ECEF) coordinate frame. The Kalman filter later accounts for the

transformation from the ECEF frame into the navigation frame through appropriate

transformation matrices.

The Perifocal coordinate system (PQW) is a satellite-based frame with its

origin at the Earth’s center. The 1-axis (P̂ in Fig. D.1) typically points toward the

orbit perigee, but because the orbit is circular the perigee is undefined and the x-axis

is thus defined to point toward ΩGPS,j, i.e., the mean vernal equinox of the jth SV

orbit. The 2-axis (Q̂) is in the orbital plane and 90◦ from ΩGPS,j in the direction of

satellite motion. The 3-axis (Ŵ ) completes the right hand coordinate system and

is out of the orbit plane so that there is no position or velocity component in this

Figure D.1: Perifocal Coordinate System, from Ref. [115]
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direction (Vallado,115 pg. 161–162).

The jth GPS satellite’s position and velocity as a function of the true anomaly

and orbit semi-parameter, pGPS, is (Vallado,115 pg. 122–125)

r
PQWj

j =

(
pGPS cos(νGPS,j(t))

1 + eGPS cos(νGPS,j(t))
,

pGPS sin(νGPS,j(t))

1 + eGPS cos(νGPS,j(t))
, 0

)
(D.3)

v
PQWj

j =

(
−

√
GM

pGPS
sin(νGPS,j(t)),

√
GM

pGPS

[
eGPS + cos(νGPS,j(t))

]
, 0

)
.(D.4)

For the assumed circular inclined orbit, several simplifications can be made to the

expressions above. First, the semi-parameter is equal to the orbit radius and semi-

major axis since eGPS = 0.00.115 Second, the true anomaly can be replaced by the

argument of latitude as explained on page 333. The circular inclined orbit position

and velocity of the jth SV in its PQW coordinate frame is now

r
PQWj

j =

(
aGPS cos(uGPS,j(t)), aGPS sin(uGPS,j(t)), 0

)
(D.5)

v
PQWj

j =

(
−
√
GM

aGPS
sin(uGPS,j(t)),

√
GM

aGPS
cos(uGPS,j(t)), 0

)
. (D.6)

The PQW to ECEF coordinate transformation generally consists of four ro-

tations. The first three rotations transform the position and velocity vectors to the

ECI frame, and the last rotation transforms from the ECI to the ECEF frame. The

general PQW to ECI transformation is (Vallado,115 pg. 173)

Ci
PQWj

= R3(−ΩGPS,j)R1(−iGPS)R3(−ωGPS,j), (D.7)

where ωGPS,j is the argument of perigee of the jth SV. For a circular orbit, this ωGPS,j

is undefined and thus set to zero.115 The ECEF to ECI transformation is a single

rotation due to Earth’s spin:

Ce
i = R3

(
ωe(t− t0)

)
,
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repeated from Eq. (4.20). The rotations about Earth’s spin axis can be combined,

and the total PQW to ECEF transformation for the jth SV is now

Ce
PQWj

= R3

(
− ΩGPS,j + ωe(t− t0)

)
R1(−iGPS) (D.8)

= R3(−Ωj(t))R1(−iGPS)

=


cos(Ωj(t)) − sin(Ωj(t)) cos(iGPS) sin(Ωj(t)) sin(iGPS)

sin(Ωj(t)) cos(Ωj(t)) cos(iGPS) − cos(Ωj(t)) sin(iGPS)

0 sin(iGPS) cos(iGPS)

 ,

using the definitions of the rotation matrices from Eq. (4.8) and defining the short-

hand notation of Ωj(t) ≡ ΩGPS,j − ωe(t− t0).

The position and velocity for the GPS SVs can now be found in the ECEF

frame. Multiplying Eq. (D.8) by Eq. (D.5) yields the position of the jth satellite:

rej = aGPS


cos(Ωj) cos(uGPS,j)− sin(Ωj) cos(iGPS) sin(uGPS,j)

sin(Ωj) cos(uGPS,j) + cos(Ωj) cos(iGPS) sin(uGPS,j)

sin(iGPS) sin(uGPS,j)

 , (D.9)

where the explicit time dependency of Ωj and uGPS,j has been dropped for brevity.

The jth satellite velocity is similarly found from Eq. (D.6) and (D.8) to be

vej =

√
GM

aGPS


− cos(Ωj) sin(uGPS,j)− sin(Ωj) cos(iGPS) cos(uGPS,j)

− sin(Ωj) sin(uGPS,j) + cos(Ωj) cos(iGPS) cos(uGPS,j)

sin(iGPS) cos(uGPS,j)

 . (D.10)

D.3 GPS Measurements

This section describes the simulated GPS measurement observables. The first

subsection explains the method to calculate which satellites are visible to the user.
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The next subsection defines the primary code-based GPS measurement denoted as

pseudorange. The following subsection defines a carrier-phase based measurement

equivalent to the time rate of change of the pseudorange which is used to yield

velocity and precise position information. And the final subsection defines and

discusses the important geometric dilution of precision quantity.

D.3.1 Visibility Test

The GPS satellites only present information to the user when their broadcast

line-of-sight to the user is unobstructed. The primary obstruction source is the

Earth, i.e., when the user and the satellite are on opposite sides of the Earth. Local

terrain, buildings, and an assortment of other features may also obstruct the GPS

signal between the user and a given satellite vehicle. Furthermore, satellites with low

elevation angles relative to the user transmit farther through the atmosphere than

SVs with high elevation angles, thereby causing increased error effects associated

with the ionosphere and troposphere. For these reasons, GPS receivers typically

ignore SVs below a minimum elevation angle, Emin. Determining when a SV is

“in-view” and able to produce measurement information is therefore important to

correctly simulate the GPS constellation’s usefulness, and is the subject of this

subsection.

According to Parkinson and Spilker7 pg. 183, “Each GPS satellite broadcasts

to the Earth with an antenna coverage pattern that somewhat exceeds the angle

αGPS = 13.87◦ subtended by the Earth.” The satellite half-angle, αGPS, is also a
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Figure D.2: GPS Visibility Angles, From Ref. [7]

function of minimum elevation angle (Parkinson and Spilker,7 pg. 184):

αGPS = sin−1

(
ae
aGPS

cos (Emin)

)
, (D.11)

where ae = 6, 378, 137.0 m is the semimajor axis of Earth, given in Table 4.1 on

page 145.

The Earth half-angle, βGPS, is the maximum angle between the user and satel-

lite where a satellite is still visible. Referencing Fig. D.2 from Parkinson and Spilker,7

pg. 183, and using the fact that the sum of angles in a triangle is π, the Earth half-

angle can be found from βGPS + (π/2 + Emin) + αGPS = π to be

βGPS =
π

2
− Emin − αGPS. (D.12)

It should be noted that this expression and Fig. D.2 both assume that the altitude of

the user is much less than Earth’s radius so that αGPS intersects the user’s position.
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This is a reasonable assumption for the current work because the nominal altitudes

are ∼25 km, so that altitude is approximately 0.4% the Earth’s semimajor axis.

The actual angle between the user, re, and a given satellite, rej , (in ECEF

coordinates) with the Earth’s center as the vertex can be found from the dot product

of the two vectors:

θGPS,j = cos−1

(
re · rej
||re|| ||rej ||

)
. (D.13)

The visibility test is then to compute θGPS,j for all 24 SVs at the given epoch, and

if θGPS,j ≤ βGPS, the jth GPS satellite is visible to the user. (The user’s position in

ECEF coordinates is calculated using Eq. (4.24) and the current n-frame position

states, and the rej calculation was given in the previous section).

In this research the altitudes of the hypersonic scramjet simulations are rela-

tively high (∼25 km) so that local terrain and building obstructions are neglected.

Therefore, a zero-degree elevation limit is used when determining the visibility of a

GPS satellite. This results in a satellite half-angle, αGPS, equal to 13.89◦ and an

Earth half-angle, βGPS, of 76.11◦. (For lower altitudes, it is common to use a 5◦

elevation angle7 and thus the reduced αGPS = 13.84◦ and βGPS = 71.16◦.)

The percentage of satellite vehicles visible is shown in Fig. D.3. The figure was

obtained by propagating the GPS constellation over two periods (∼24 hours) using

100,000 time steps. The user’s position was held constant at the initial longitude,

latitude, and altitude for the Mach 6 cases (See Table D.3). The Mach 7 and 8

cases produced higher altitudes, but negligibly different results than the Mach 6

cases. As shown in the figure, typically 8 or 9 satellites are visible. Ten satellites are
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Figure D.3: Simulated GPS Satellite Visibility

somewhat common, however 11 satellites and less than 8 satellites are quite rare.

Furthermore, there were no cases when less than 6 or more than 11 satellites were

in view. The sensitivity to user position is also moderately small as shown by the

similar trends for the two assumed user positions. The “High Gravity Gradients”

cases are more focused at the 8 or 9 SV range whereas the “Low” cases are more

likely to have 10 visible satellites.

D.3.2 Pseudorange

Pseudorange is the the principal measurement observable produced by the

Global Positioning System. The term “pseudo”-range is used because the measure-

ment is comprised of the range between the satellite and user with an additional error
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Table D.3: User Position for GPS Satellite Visibility Analysis

Case Longitude, ◦ Latitude, ◦ Altitude, m

High Gravity Gradients 45.0 -113.0 22043.8

Low Gravity Gradients 38.0 -100.0 22043.8

due to the user’s receiver clock bias. This clock bias between the user’s on-board

receiver and the satellite constellation time is the largest error source in determining

the true range between user and satellite, and is therefore explicitly determined in

the measurement. Other sources of error, such as the atmosphere, ephemeris data,

satellite clock bias, multipath, and receiver noise are accounted for in the User-

Equivalent-Range-Error (UERE) whose error budget is tabulated at the end of this

subsection.

The pseudorange measurement, using the user’s position transformed into

ECEF coordinates, re, and the jth satellite vehicle, is nominally

ρj = ||rej − re||+ cbu, (D.14)

where the speed of light is taken as c = 2.99792458 × 108 m/s (ICD-GPS-200,175

pg. 89), and bu is the user’s GPS receiver clock bias.

The Kalman Filter measurements are calculated by a small perturbation analy-

sis. Neglecting broadcast, atmospheric, multipath, and receiver errors, pseudorange

is a function of only position and clock bias. The small perturbation of the jth

pseudorange measurement is then

δρj =

[
∂ρj
∂re

] [
∂re

∂rn

]
δrn + c · δbu + νρ, (D.15)
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where δrn is the user position error in the n-frame, δbu is the user clock bias error,

and νρ is a white noise process that captures the additional uncompensated error

sources. The partial derivatives of Eq. (D.14) with respect to user’s ECEF position

are [
∂ρj
∂re

]
=

(
re − rej

)T
||rej − re||

, (D.16)

which is equivalent to the transpose of the jth satellite to user line-of-sight unit

vector.

The position Jacobian from the navigation frame to the ECEF frame is found

by taking the partial derivatives of the ECEF position vector with respect to the

navigation frame variables. Recalling Eq. (4.24) on page 144:
re1

re2

re3

 =


(Ne + h) cosφ cosλ

(Ne + h) cosφ sinλ

(Ne(1− e2) + h) sinφ

 ,

the Jacobian is then found to be

[
∂re

∂rn

]
=


∂re1/∂φ ∂re1/∂λ ∂re1/∂h

∂re2/∂φ ∂re2/∂λ ∂re2/∂h

∂re3/∂φ ∂re3/∂λ ∂re3/∂h

 (D.17)

=


−(Ne + h) sinφ cosλ −(Ne + h) cosφ sinλ cosφ cosλ

−(Ne + h) sinφ sinλ (Ne + h) cosφ cosλ cosφ sinλ

(Ne (1− e2) + h) cosφ 0 sinφ

 ,

where it has been assumed that the change in radius of curvature, Ne, due to latitude,

φ, is negligible (Jekeli,1 pg. 154). Also, the ECEF position vector is independent of
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Table D.4: Precise Positioning System Error Model, P/Y Code, from Ref. [7]

One-Sigma Error, m

Error Source Bias Random Total

Ephemeris Data 2.1 0.0 2.1

Satellite Clock 2.0 0.7 2.1

Ionosphere 1.0 0.7 1.2

Troposphere 0.5 0.5 0.7

Multipath 1.0 1.0 1.4

Receiver Measurement 0.5 0.2 0.5

RMS User Equivalent Range Error (UERE) 3.3 1.5 3.6

Filtered RMS UERE 3.3 0.4 3.3

the navigation frame velocity vector, vn, so this Jacobian has been omitted in the

pseudorange linear perturbation in Eq. (D.15).

Lastly, the uncompensated errors, νρ, are modeled as a white noise process

with a standard deviation of 3.6 meters, which corresponds to the unfiltered root-

mean-square (RMS) UERE. The individual error sources are given in Table D.4

(from Parkinson and Spilker,7 pg. 483). Parkinson and Spilker,7 Jekeli,1 and Farrell

and Barth2 provide further discussions on the cause of the pseudorange errors as

well as some ways to model and reduce them.

D.3.3 Pseudorange Rate

The user’s GPS receiver can measure the frequency shift of the carrier wave

from the nominal broadcast values. The observed frequency differs due to Doppler

shifts produced by satellite and user motion as well as frequency drift (bias time rate
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of change) of the satellite and user clocks. The idealized Doppler shift caused by the

velocity difference in the jth satellite and user along their line of sight is (Parkinson

and Spilker,7 pg. 411)

Dj = −
{(

vej − ve

c

)
·
(

rej − re

||rej − re||

)}
fcarrier, (D.18)

where the user’s ECEF velocity is found by ve = Ce
nv

n and Ce
n is given in Eq. (4.21)

on page 143. The nominal carrier frequency has been denoted fcarrier. For the

Global Positioning System two signals are transmitted at different frequencies: L1 =

1575.42 MHz and L2 = 1227.60 MHz.

The Doppler shift can be converted into a pseudorange rate (also known as

carrier phase Doppler) measurement by scaling the idealized Doppler by the speed

of light and the carrier frequency, and including the user’s clock bias rate. Math-

ematically, the jth pseudorange rate measurement is then (Parkinson and Spilker,7

pg. 411)

ρ̇j = −Dj
c

fcarrier
+ cḃu

=
(
vej − ve

)
·
(

rej − re

||rej − re||

)
+ cḃu. (D.19)

The pseudorange rate Kalman Filter measurements are found by a small per-

turbation analysis similar to the pseudorange measurements above. Again, neglect-

ing the broadcast, atmospheric, multipath, and receiver errors, the pseudorange

rate measurement is a function of only user position, velocity, and clock bias rate.

Therefore the small perturbation of the jth measurement is of the form

δρ̇j =

{[
∂ρ̇j
∂re

] [
∂re

∂rn

]
+

[
∂ρ̇j
∂ve

] [
∂ve

∂rn

]}
δrn+

[
∂ρ̇j
∂ve

] [
∂ve

∂vn

]
δvn+c·δḃu+νρ̇, (D.20)
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where δvn is the n-frame user velocity error, δḃu is the error of the user clock bias

rate, and νρ̇ is a white noise process that accounts for the additional uncompensated

errors. As explained on page 344, the ECEF position is independent of the n-frame

velocities, so this Jacobian is a zero-matrix and has been omitted in the linearized

pseudorange rate equation above. Parkinson and Spilker7 neglect the position error

terms in the pseudorange rate measurement above by implicitly assuming that the

line of sight vector error is negligible. This assumption was first implemented,

however the filter simulation quickly diverged making it evident that this was an

invalid assumption for the hypersonic velocities simulated. After including these

terms, the filter performed as expected.

The partial derivatives of the pseudorange rate with respect to ECEF position

and velocity can be found to be

[
∂ρ̇j
∂re

]
=

(
v̂e − vej

)T
||rej − r̂e||

+

(
vej − v̂e

)
·
(
rej − r̂e

)
||rej − r̂e||3

(
r̂ej − re

)T
(D.21)[

∂ρ̇j
∂ve

]
=

(
r̂e − rej

)T
||rej − r̂e||

. (D.22)

The Jacobians of the ECEF velocity vector are found by taking the partial

derivatives of

ve = Ce
nv

n =


−(sinφ cosλ)vN − (sinλ)vE − (cosφ cosλ)vD

−(sinφ sinλ)vN + (cosλ)vE − (cosφ sinλ)vD

(cosφ)vN − (sinφ)vD

 (D.23)

with respect to the navigation position and velocity states. The n-frame position to
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ECEF velocity Jacobian is then

[
∂ve

∂rn

]
=


∂vN/∂φ ∂vN/∂λ ∂vN/∂h

∂vE/∂φ ∂vE/∂λ ∂vE/∂h

∂vD/∂φ ∂vD/∂λ ∂vD/∂h

 (D.24)

=


−(cosφ cosλ)vN + (sinφ cosλ)vD (sinφ sinλ)vN − (cosλ)vE + (cosφ sinλ)vD 0

−(cosφ sinλ)vN + (sinφ sinλ)vD −(sinφ cosλ)vN − (sinλ)vE − (cosφ cosλ)vD 0

−(sinφ)vN − (cosφ)vD 0 0

 ,

and the n-frame to ECEF velocity Jacobian is equal to the Ce
n transformation matrix:

[
∂ve

∂vn

]
= Ce

n =


− sinφ cosλ − sinλ − cosφ cosλ

− sinφ sinλ cosλ − cosφ sinλ

cosφ 0 − sinφ

 . (D.25)

The position transformation Jacobian in Eq. (D.20) is given in Eq. (D.17).

Because the author was unable to find a definitive pseudorange rate error

budget, the total uncompensated error is estimated using the following assumptions.

The pseudorange rate error, νρ̇, is modeled as a white noise process with a standard

deviation of 0.20 m/s. This value is estimated assuming that the user’s GPS receiver

can reliably measure the Doppler shift to within 1 Hz. The Doppler measurement

is then scaled by c/L1 to get a corresponding pseudorange rate error of 0.1903 m/s

which is rounded to the above simulated value. Moreover, according to pg. 1-6

of the NAVSTAR GPS User Equipment Introduction,176 the Precise Positioning

System “receivers can achieve 0.2 metres per second 3-D velocity accuracy, but this

is somewhat dependent on receiver design.” Therefore, while the pseudorange rate

error has been estimated less elegantly than the pseudorange UERE, it is deemed
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suitable for this baseline simulation analysis and provides the desirable excellent

integrated navigation performance.

D.3.4 Geometric Dilution of Precision

The effective error of the GPS measurements depend heavily on the orienta-

tion of the visible satellite-to-user line of sight vectors. The Geometric Dilution

of Precision (GDOP) is a quantitative measurement of this phenomenon, and the

sensed error at a given time is essentially the nominal error value multiplied by the

GDOP.

The Geometric Dilution of Precision can be defined by starting with the pseu-

dorange error perturbation, Eq. (D.15), and keeping the user position vector in

ECEF coordinates so that

δρj =

[
∂ρj
∂re

]
δre + c · δbu + νρ. (D.26)

For N visible satellites and pseudorange measurements and rearranging slightly,

δρ− νρ =


∂ρ1/∂re 1

...
...

∂ρN/∂re 1


 δre

c · δbu

 ≡ GδxG, (D.27)

where G is the GPS geometry matrix (because the partial derivatives are equal to

the unit vector from the satellite to the user) and δxG is the vector of position errors

(including user clock bias in terms of meters). The position errors can then be found

by taking the pseudo-inverse of G:

δxG =
(
GTG

)−1
GT (δρ− νρ) . (D.28)
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The covariance of the position error (and clock bias) is then

E
[
(δxG)

(
δxTG

)]
=
(
GTG

)−1
GTE

[
(δρ− νρ) (δρ− νρ)T

]
G
(
GTG

)−1
, (D.29)

where the geometry matrix has been pulled out of the expectation operator because

it contains no random component. Assuming the pseudorange perturbation and

noise are uncorrelated between measurements and their variance is a constant, the

expectation term can be rewritten as σ2I, where σ2 is the constant variance and I

is a 4 × 4 identity matrix. The position covariance can now be simplified to

E
[
(δxG)

(
δxTG

)]
= σ2

(
GTG

)−1
, (D.30)

where
(
GTG

)−1
is “the matrix of multipliers of ranging variance to give position

variance.” (Parkinson and Spilker,7 pg. 474) The individual components of the

matrix yield the dilutions of precision (DOPs) along its diagonal:

(
GTG

)−1
=



(re1 DOP)2 covariance terms

(re2 DOP)2

(re3 DOP)2

covariance terms (Time DOP)2


. (D.31)

The GDOP is the total RMS of the DOPs and is calculated by taking the square root

of the trace of
(
GTG

)−1
. Furthermore, the position dilution of precision (PDOP)

can be found be taking the square root of the sums of the first three diagonal

components, and the time DOP is the square root of the fourth diagonal element.

The GDOP is important as it states that for a given ranging error, the effective

position (including clock bias) error is proportionally greater by the given GDOP
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Figure D.4: Simulated GPS Geometric Dilution of Precision

value, as shown by Eq. (D.30). The GDOP for the two initial simulation positions

given in Table D.3 over the course of two GPS orbits is shown in Fig. D.4. The

number of visible satellites are also plotted to show the effect of a satellite going in

and out of view. The GDOP spikes around four hours are characteristic of periods

of poor satellite geometry even though seven satellites are visible. This results in

approximately an order of magnitude greater position error than other simulation

periods where the GDOP is much closer to unity. Furthermore, this underscores the

need to simulate the GPS constellation at different times in their orbits to quantify

the effect of time on navigation performance.
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D.4 GPS Receiver Error Model

Two states are used to model the user’s GPS receiver clock bias, bu, and bias

rate (drift), ḃu. These states both vary due to phase and frequency fluctuations in the

receiver’s clock oscillator or the atomic frequency standard.1,2, 7, 9 These variations

are modeled by white noise processes with phase and frequency power spectral

densities (Sφ and Sf ) estimated from the user’s clock Allan variance parameters.

The clock’s dynamic model is therefore written as

d

dt

 bu

ḃu

 =

 0 1

0 0


 bu

ḃu

+

 νφ

νf

 . (D.32)

The state transition matrix for the GPS receiver clock can be exactly calculated by

its first-order Taylor series expansion:

Φu =

 1 ∆t

0 1

 , (D.33)

and used to solve for the discrete process noise matrix (Farrell and Barth,2 pg. 152):

Qk,u =

 Sφ∆t+ 1
3
Sf∆t

3 1
2
Sf∆t

2

1
2
Sf∆t

2 Sf∆t

 , (D.34)

where ∆t is the sampling period. The simulated values for the power spectral

densities are then found by fitting the first component of Qk,u with the Allan clock

error variance (Brown and Hwang,9 pg. 430)

1

2
h0∆t+ 2h−1∆t2 +

2

3
π2h−2∆t3, (D.35)

at two sampling periods with the method of least-squares. The h terms above are

the Allan variance parameters associated with the noise of a given clock type as
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Table D.5: Simulated GPS Receiver Clock Parameters

Allan Variance Parameters Power Spectral Densities

h0 h−1 h−2 Sφ, s
2/s Sf , s

2/s3

2× 10−19 7× 10−21 2× 10−20 1.00693069× 10−19 4.03101008× 10−19

a function of sampling time. The least-squares formulation is then (Farrell and

Barth,2 pg. 153†)

 Sφ

Sf

 =
1

∆t1∆t32−∆t2∆t31

 ∆t32 −∆t31

−3∆t2 3∆t1


 ∆t1 ∆t21 ∆t31

∆t2 ∆t22 ∆t32




h0/2

2h−1

(2/3)π2h−2

 ,

(D.36)

where ∆t1 and ∆t2 are the sampling periods to fit around. The simulated PSDs fit

to sampling periods of ∆t1 = 1/20s and ∆t2 = 5s are given in Table D.5 along with

the Allan variance parameters for the assumed temperature-compensated crystal

(from Brown and Hwang,9 pg. 431).

For consistency with standard GPS terminology, the actual clock states used

in the simulation are scaled by the speed of light to states in terms of position and

velocity instead of time bias and frequency drift. In order to correctly account for

the scaling, the driving noise power spectral densities are multiplied by the speed of

†There is an error in the equation in Farrell and Barth. The coefficient to the h−2 term should

be 2
3π

2; the reference omitted the square on π.

352



light squared. Therefore, the clock states are implemented by

d

dt

 cbu

cḃu

 =

 0 1

0 0


 cbu

cḃu

+

 cνφ

cνf


ẋu = Fuxu + νu, (D.37)

where the scaled driving noises have variances of

σ2
φ =

c2Sφ
∆t

= 0.18099684
[m
s

]2

(D.38)

σ2
f =

c2Sf
∆t

= 0.72457824
[m
s2

]2

, (D.39)

assuming the integration time step, ∆t = 1/20s.

The clock noise states, νu, are simulated using a random Gaussian distribution

and the variances above. The clock states, xu, are then numerically integrated as

follows. The clock bias state, cbu, uses a trapezoidal integration for the clock bias

rate term and Euler integration for the noise term, so that

(cbu)k+1 = (cbu)k +
1

2

(
(cḃu)k+1 + (cḃu)k

)
∆t+ (cνφ)k∆t. (D.40)

The clock bias rate uses Eulerian integration:

(cḃu)k+1 = (cḃu)k + (cνf )k. (D.41)

And substituting the new clock bias rate into the clock bias integration equation:

(cbu)k+1 = (cbu)k + (cḃu)k∆t+ (cνf )k
∆t2

2
+ (cνφ)k∆t. (D.42)

D.5 Summary

This section summarizes how this chapter is implemented into the overall

Fortran simulation. The GPS update rate is first input by the program user. Then
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for each simulation run, the main Fortran program randomly initializes a time offset

so that the GPS constellation is arbitrarily positioned at a point in its orbit. The

truth clock states are randomly initialized with variances of (15 m)2 and (0.5 m/s)2,

and the initial filter covariance matrix, P (t0), uses the same values at the diagonal

elements corresponding to these states. Also, the estimated clock states are both

initialized to zero.

While no measurements are being made, the truth and estimated clock states

are numerically integrated according to Eq. (D.41) and (D.42) using the scaled

noise variances in Eq. (D.38) and (D.39). The Kalman filter covariance matrices

are propagated using the state transition matrix of Eq. (D.33) and the process noise

matrix of Eq. (D.34) multiplied by the speed of light squared (because of the unit

conversion explained at the end of the last section).

When a GPS measurement is to be made, the Fortran GPS module first cal-

culates the position of each satellite at the current simulation time plus additional

time offset using Eq. (D.9). The user’s truth and estimated ECEF position states

are then calculated by Eq. (4.24) on page 144 or 343 using the current navigation

frame truth and estimated position states, respectively. The visibility of each SV

is determined by the discussion in Sec. D.3.1, particularly Eq. (D.13) using a zero-

degree minimum elevation mask. Then, for each visibile satellite, the GDOP is

calculated according to Sec. D.3.4 using the estimated ECEF user position states,

and the velocities are calculated by Eq. (D.10).

The truth and estimated pseudoranges and (optionally) pseudorange rates are

determined by Eq. (D.14) and Eq. (D.19) for each visible SV. The residuals are next
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calculated by

residualj = (ρj + νρ)− ρ̂j, (D.43)

where the first term on the right hand side is the simulated noisy jth pseudorange

measured by the GPS receiver, and ρ̂j is the jth estimated pseudorange. The pseudo-

range rate residuals are similarly calculated. The variances for each measurement are

(3.6m)2 and (0.20 m/s)2. Lastly, the Kalman filter measurement matrices, HGPS,

are constructed using Eq. (D.15)–(D.17) for pseudorange, and Eq.(D.20)–(D.22),

(D.17), and (D.24)–(D.25) for pseudorange rate. The measurement noise matrices,

RGPS, are diagonal matrices with the specified noise variances. The GPS module

then passes the Kalman filter matrices and the measurement residuals to the main

Fortran program which uses the Kalman filter subroutines to improve the estimated

state vector according to App. C.
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Appendix E

Additional Monte Carlo Results

This appendix supplements the results presented in Ch. 6 with additional

hypersonic Monte Carlo simulations which were used in the sensitivity analyses

of the aforementioned chapter. Each table in this appendix lists the mean radial

spherical error (MRSE) for the position, velocity, and attitude states after three

settling distances: 0 km, which is the MRSE value for the entire simulation duration;

100 km, which is the MRSE that neglects the initial filter transients; and 500 km,

which approximates the steady state cruise errors. It should be noted that the

tactical grade IMU cases do not typically reach a steady state yaw error by the 500

km settling distance, so the results for the tac. grade IMU simulations are not quite

indicative of the true steady state attitude MRSE. (See Ch. 6 for further discussion.)

The current appendix is order as follows. Section E.1 summarizes the dead

reckoning (free-inertial) hypersonic results. Section E.2 then lists the MRSE for

the gravity gradiometer aided inertial navigation system simulations. And lastly,

Sec. E.3 presents the baseline INS/Global Positioning System navigation results.
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E.1 Dead Reckoning Results

The mean radial spherical error (MRSE) results for the 1,000 km dead reckon-

ing (free-inertial) Monte Carlo simulations are shown in Tables E.1–E.4. The first

two tables list the navigation grade IMU error accumulation due to the accelerom-

eter, gyro, and gravity errors from over the high and low gravitational gradient

variation trajectories. Tables E.3 and E.4 then summarize the tactical grade IMU

dead reckoning errors for both the high and low Γ variation trajectories. Each table

includes the Mach 6, 7, and 8 scramjet results computed from the 1,000-simulation

Monte Carlo sets.

Table E.1: Dead Reckoning: Navigation Grade IMUs, High Γ Variation

Settling Distance: 0 km 100 km 500 km

M State Units Error Cov. Error Cov. Error Cov.

Pos. m 37.603 616.54 40.535 679.67 64.539 1219.3

6 Vel. m/s 0.1592 3.1474 0.1722 3.3051 0.2821 4.6106

Att. ◦×10−3 0.4693 83.459 0.5044 83.129 0.9010 80.446

Pos. m 27.853 477.67 29.801 526.11 45.862 942.84

7 Vel. m/s 0.1304 2.8758 0.1404 3.0039 0.2249 4.0617

Att. ◦×10−3 0.4142 84.335 0.4446 84.100 0.7936 82.147

Pos. m 23.795 385.35 25.155 424.08 36.456 759.37

8 Vel. m/s 0.1147 2.6615 0.1229 2.7658 0.1921 3.6260

Att. ◦×10−3 0.3731 84.927 0.3999 84.757 0.7132 83.308
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Table E.2: Dead Reckoning: Navigation Grade IMUs, Low Γ Variation

Settling Distance: 0 km 100 km 500 km

M State Units Error Cov. Error Cov. Error Cov.

Pos. m 40.337 616.09 43.365 679.13 68.483 1217.9

6 Vel. m/s 0.1730 3.1446 0.1852 3.3020 0.2860 4.6051

Att. ◦×10−3 0.4625 83.348 0.4968 83.005 0.8874 80.213

Pos. m 32.497 476.91 34.637 525.26 52.539 940.96

7 Vel. m/s 0.1519 2.8693 0.1618 2.9967 0.2434 4.0491

Att. ◦×10−3 0.4177 84.253 0.4485 84.008 0.8005 81.978

Pos. m 26.361 384.56 27.756 423.20 39.596 757.25

8 Vel. m/s 0.1272 2.6523 0.1346 2.7557 0.1948 3.6080

Att. ◦×10−3 0.3725 84.860 0.3992 84.682 0.7117 83.171

Table E.3: Dead Reckoning: Tactical Grade IMUs, High Γ Variation

Settling Distance: 0 km 100 km 500 km

M State Units Error Cov. Error Cov. Error Cov.

Pos. m 587.03 858.47 650.87 948.43 1163.03 1703.1

6 Vel. m/s 3.3720 4.9110 3.7191 5.2612 6.6611 8.1173

Att. ◦×10−3 101.24 150.76 110.94 157.74 199.56 214.69

Pos. m 402.25 624.50 445.58 689.21 793.21 1236.3

7 Vel. m/s 2.5937 4.1264 2.8577 4.3905 5.1105 6.5430

Att. ◦×10−3 84.806 138.47 92.930 144.13 167.13 190.17

Pos. m 291.01 481.03 322.09 530.36 571.58 950.66

8 Vel. m/s 2.1124 3.5942 2.3261 3.7997 4.1555 5.4744

Att. ◦×10−3 76.327 129.38 83.637 134.05 150.43 172.03
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Table E.4: Dead Reckoning: Tactical Grade IMUs, Low Γ Variation

Settling Distance: 0 km 100 km 500 km

M State Units Error Cov. Error Cov. Error Cov.

Pos. m 600.86 857.51 665.92 947.31 1187.9 1700.7

6 Vel. m/s 3.4138 4.9042 3.7649 5.2536 6.7456 8.1035

Att. ◦×10−3 100.97 150.64 110.64 157.61 199.01 214.44

Pos. m 406.42 623.41 449.95 688.00 798.90 1233.8

7 Vel. m/s 2.6216 4.1164 2.8885 4.3796 5.1666 6.5234

Att. ◦×10−3 86.438 138.38 94.729 144.03 170.36 189.99

Pos. m 294.77 479.94 325.96 529.16 576.10 948.03

8 Vel. m/s 2.1049 3.5823 2.3168 3.7866 4.1368 5.4505

Att. ◦×10−3 75.739 129.30 83.000 133.97 149.25 171.88

E.2 Gravity Gradiometer Aided Navigation

The hypersonic gravity gradiometer aided INS MRSE results are listed in

Tables E.5–E.22 for the two GGI types, two simulated IMU specifications, two Γ

variation trajectories, and three cruise Mach numbers. Each table includes the posi-

tion, velocity, and attitude MRSEs for the three settling distances, three simulated

GGI noise level standard deviations (σL = 0.001, 0.01, and 0.1 Eö; 1 Eö ≡ 10−9

s−2), and three update rates (∆t = 1, 5, and 10 sec).

Tables E.5–E.7 on pg. 361–363 present the stabilized gradiometer, navigation

grade inertial measurement unit INS results over the high gravitational gradient

variation trajectory for the three simulated Mach numbers (6, 7, and 8). Tables

E.8–E.10 on pg. 364–366 then present the same stabilized GGI, nav. grade IMU
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configuration results as simulated over the low Γ variation trajectory.

Tables E.11–E.16 on pg. 367–372 next list the stabilized GGI, tactical grade

IMU Monte Carlo simulation results. The first three tables correspond to the high

gravitational gradient variation trajectory simulations at the three hypersonic ve-

locities, and the latter three tables correspond to the low Γ variation trajectories.

Lastly, Tables E.17–E.22 summarize the simulated strapdown GGI, naviga-

tion grade IMU configuration’s hypersonic navigation performance on pg. 373–378.

Tables E.17–E.19 are for the high Γ variation trajectories, and Tables E.20–E.22 are

for the low Γ variation trajectories with each table representing a single cruise Mach

number.

Inertial navigation systems consisting of a strapdown GGI and tactical grade

IMUs were simulated, but diverged almost instantly because of the numerical trun-

cation issues discussed in Ch. 6. Therefore, full Monte Carlo simulations were not

performed for this INS/GGI configuration.
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Table E.5: INS/GGI: Stabilized GGI, Nav. Grade IMUs, High Γ Var., Mach 6

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 1.2531 1.2989 1.3047 1.3507 0.3240 0.3233

1 Vel. m/s 0.0329 0.7149 0.0218 0.7730 0.0061 0.0061

Att. ◦×10−3 4.6307 44.066 4.1034 41.700 7.3813 7.5899

.001 Pos. m 1.4827 1.5706 1.4659 1.5293 0.6709 0.6764

5 Vel. m/s 0.0375 0.7315 0.0241 0.7756 0.0111 0.0113

Att. ◦×10−3 6.7807 46.714 6.6872 43.694 12.032 12.702

.001 Pos. m 1.6852 1.8337 1.6328 1.6632 0.9219 0.9355

10 Vel. m/s 0.0378 0.7475 0.0258 0.7775 0.0145 0.0151

Att. ◦×10−3 7.9106 48.414 8.1111 45.189 14.595 16.373

.01 Pos. m 4.2590 6.3569 4.0783 6.3627 2.7380 2.7931

1 Vel. m/s 0.0714 0.7733 0.0378 0.7900 0.0353 0.0384

Att. ◦×10−3 11.114 54.886 11.960 51.867 21.525 31.614

.01 Pos. m 6.2098 8.4138 5.7123 7.9871 5.8824 5.9503

5 Vel. m/s 0.0946 0.8129 0.0543 0.8082 0.0649 0.0714

Att. ◦×10−3 9.6797 59.181 10.526 56.611 18.943 41.637

.01 Pos. m 7.5477 9.8941 6.9249 9.1992 8.2130 8.2657

10 Vel. m/s 0.1063 0.8357 0.0668 0.8206 0.0870 0.0938

Att. ◦×10−3 8.2927 60.526 9.0137 58.113 16.220 44.641

.1 Pos. m 15.355 21.463 14.725 20.229 24.307 24.691

1 Vel. m/s 0.1882 0.9465 0.1468 0.9010 0.2315 0.2438

Att. ◦×10−3 5.2273 63.162 5.5696 61.019 10.019 49.365

.1 Pos. m 28.506 36.364 29.453 35.596 50.802 52.640

5 Vel. m/s 0.2869 1.0802 0.2663 1.0240 0.4466 0.4801

Att. ◦×10−3 5.9907 64.981 6.4128 62.957 11.536 51.142

.1 Pos. m 38.230 46.576 40.543 46.613 70.711 72.572

10 Vel. m/s 0.3520 1.1616 0.3477 1.1072 0.5939 0.6404

Att. ◦×10−3 7.3783 66.145 7.9951 64.196 14.385 52.246
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Table E.6: INS/GGI: Stabilized GGI, Nav. Grade IMUs, High Γ Var., Mach 7

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 1.2858 1.3474 1.3377 1.3996 0.3360 0.3366

1 Vel. m/s 0.0344 0.7177 0.0221 0.7734 0.0069 0.0069

Att. ◦×10−3 5.8014 45.380 5.4279 42.677 9.7653 9.9880

.001 Pos. m 1.5576 1.6357 1.5396 1.5892 0.7060 0.7114

5 Vel. m/s 0.0388 0.7362 0.0245 0.7766 0.0125 0.0132

Att. ◦×10−3 8.3911 49.012 8.5468 45.838 15.379 17.710

.001 Pos. m 1.7653 1.9214 1.7070 1.7306 0.9789 0.9873

10 Vel. m/s 0.0388 0.7543 0.0265 0.7788 0.0163 0.0175

Att. ◦×10−3 9.4599 51.125 9.9213 47.880 17.853 22.453

.01 Pos. m 4.3398 6.4797 4.1528 6.4685 2.9415 2.9683

1 Vel. m/s 0.0765 0.7823 0.0406 0.7936 0.0405 0.0446

Att. ◦×10−3 10.628 57.784 11.490 55.045 20.678 38.059

.01 Pos. m 6.4176 8.6453 5.9515 8.2043 6.2902 6.3438

5 Vel. m/s 0.1030 0.8267 0.0609 0.8152 0.0778 0.0838

Att. ◦×10−3 7.8673 61.192 8.5309 58.844 15.350 45.735

.01 Pos. m 7.8314 10.207 7.2554 9.5085 8.6661 8.8306

10 Vel. m/s 0.1166 0.8526 0.0760 0.8303 0.1037 0.1114

Att. ◦×10−3 6.3584 62.100 6.8687 59.851 12.358 47.571

.1 Pos. m 15.801 22.149 15.476 21.131 25.742 26.376

1 Vel. m/s 0.2099 0.9780 0.1731 0.9279 0.2791 0.2972

Att. ◦×10−3 5.1509 64.289 5.4837 62.220 9.8638 50.453

.1 Pos. m 29.654 37.527 31.209 37.315 54.014 55.778

5 Vel. m/s 0.3237 1.1297 0.3150 1.0749 0.5359 0.5817

Att. ◦×10−3 7.9576 66.730 8.6592 64.820 15.580 52.815

.1 Pos. m 38.213 47.951 41.029 48.672 71.806 76.289

10 Vel. m/s 0.3784 1.2194 0.3855 1.1693 0.6626 0.7628

Att. ◦×10−3 9.4384 68.321 10.346 66.528 18.617 54.658
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Table E.7: INS/GGI: Stabilized GGI, Nav. Grade IMUs, High Γ Var., Mach 8

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 0.9765 0.9817 0.9767 0.9747 0.3499 0.3538

1 Vel. m/s 0.0371 0.7211 0.0224 0.7740 0.0077 0.0079

Att. ◦×10−3 7.2219 47.151 7.0175 44.118 12.628 13.345

.001 Pos. m 1.2578 1.3065 1.1955 1.1997 0.7512 0.7591

5 Vel. m/s 0.0399 0.7399 0.0257 0.7780 0.0143 0.0154

Att. ◦×10−3 9.7615 51.306 10.104 48.138 18.186 22.706

.001 Pos. m 1.4293 1.6283 1.3431 1.3650 1.0406 1.0566

10 Vel. m/s 0.0385 0.7599 0.0276 0.7806 0.0188 0.0204

Att. ◦×10−3 10.532 53.342 11.159 50.227 20.084 27.343

.01 Pos. m 5.1153 6.7624 4.9641 6.6903 3.1325 3.1783

1 Vel. m/s 0.0841 0.7954 0.0452 0.7984 0.0486 0.0527

Att. ◦×10−3 9.5473 60.050 10.348 57.546 18.625 42.745

.01 Pos. m 7.3771 9.1563 6.9826 8.6860 6.7539 6.8215

5 Vel. m/s 0.1146 0.8438 0.0718 0.8251 0.0964 0.1022

Att. ◦×10−3 6.4039 62.521 6.9014 60.300 12.418 47.928

.01 Pos. m 8.8600 10.834 8.3882 10.138 9.2846 9.4656

10 Vel. m/s 0.1297 0.8716 0.0895 0.8430 0.1279 0.1357

Att. ◦×10−3 5.4356 63.176 5.8384 61.017 10.504 49.014

.1 Pos. m 15.837 22.842 15.785 22.040 27.348 27.852

1 Vel. m/s 0.2330 1.0090 0.2029 0.9559 0.3341 0.3531

Att. ◦×10−3 6.2879 65.533 6.7847 63.539 12.207 51.516

.1 Pos. m 29.388 38.489 31.256 38.732 55.213 58.116

5 Vel. m/s 0.3458 1.1746 0.3447 1.1221 0.5902 0.6742

Att. ◦×10−3 9.9194 68.776 10.882 67.018 19.585 55.184

.1 Pos. m 38.383 48.932 41.542 50.181 73.711 78.760

10 Vel. m/s 0.3973 1.2677 0.4110 1.2219 0.7093 0.8633

Att. ◦×10−3 11.307 70.738 12.459 69.141 22.424 57.892
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Table E.8: INS/GGI: Stabilized GGI, Nav. Grade IMUs, Low Γ Var., Mach 6

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 0.9714 0.9920 0.9788 0.9958 0.3229 0.3243

1 Vel. m/s 0.0365 0.7155 0.0282 0.7730 0.0062 0.0062

Att. ◦×10−3 4.5738 44.072 4.0177 41.595 7.2266 7.3473

.001 Pos. m 1.2545 1.2819 1.2038 1.1952 0.6869 0.6849

5 Vel. m/s 0.0403 0.7308 0.0311 0.7758 0.0114 0.0116

Att. ◦×10−3 6.4881 46.504 6.3177 43.469 11.367 12.205

.001 Pos. m 1.3947 1.5562 1.3151 1.3428 0.9489 0.9516

10 Vel. m/s 0.0396 0.7465 0.0317 0.7778 0.0150 0.0155

Att. ◦×10−3 7.6265 47.951 7.7610 44.766 13.965 15.426

.01 Pos. m 5.0184 6.6512 4.9109 6.6363 2.8394 2.8668

1 Vel. m/s 0.0747 0.7762 0.0430 0.7912 0.0374 0.0407

Att. ◦×10−3 10.464 54.686 11.261 51.621 20.265 31.215

.01 Pos. m 7.0229 8.8622 6.6195 8.4535 6.0551 6.1688

5 Vel. m/s 0.0991 0.8159 0.0602 0.8115 0.0713 0.0777

Att. ◦×10−3 9.9498 58.936 10.823 56.336 19.477 41.163

.01 Pos. m 8.4670 10.418 7.9533 9.7743 8.4144 8.5652

10 Vel. m/s 0.1100 0.8386 0.0715 0.8250 0.0933 0.1024

Att. ◦×10−3 8.6197 60.312 9.3712 57.873 16.863 44.206

.1 Pos. m 15.121 22.028 14.486 20.920 24.961 25.409

1 Vel. m/s 0.1949 0.9523 0.1532 0.9094 0.2473 0.2615

Att. ◦×10−3 5.4494 63.235 5.8115 61.097 10.454 49.428

.1 Pos. m 28.994 37.422 30.018 36.815 52.933 54.276

5 Vel. m/s 0.3040 1.0947 0.2839 1.0414 0.4873 0.5165

Att. ◦×10−3 6.5818 65.271 7.0718 63.266 12.722 51.407

.1 Pos. m 38.482 47.937 40.868 48.158 72.500 74.775

10 Vel. m/s 0.3655 1.1804 0.3613 1.1292 0.6282 0.6857

Att. ◦×10−3 7.9138 66.544 8.5915 64.624 15.458 52.666
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Table E.9: INS/GGI: Stabilized GGI, Nav. Grade IMUs, Low Γ Var., Mach 7

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 0.9950 1.0033 1.0017 1.0036 0.3399 0.3389

1 Vel. m/s 0.0376 0.7182 0.0280 0.7734 0.0070 0.0071

Att. ◦×10−3 5.5955 45.355 5.1643 42.526 9.2903 9.6843

.001 Pos. m 1.2616 1.3115 1.2074 1.2176 0.7194 0.7258

5 Vel. m/s 0.0416 0.7353 0.0316 0.7768 0.0132 0.0137

Att. ◦×10−3 8.1191 48.665 8.2355 45.461 14.818 16.952

.001 Pos. m 1.4334 1.6102 1.3542 1.3762 0.9989 1.0116

10 Vel. m/s 0.0408 0.7533 0.0326 0.7792 0.0172 0.0183

Att. ◦×10−3 9.2658 50.461 9.6888 47.214 17.434 21.079

.01 Pos. m 5.1651 6.7707 5.0479 6.7403 2.9773 3.0544

1 Vel. m/s 0.0806 0.7858 0.0454 0.7952 0.0439 0.0477

Att. ◦×10−3 10.829 57.510 11.748 54.729 21.141 37.610

.01 Pos. m 7.2413 9.0953 6.8573 8.6759 6.4223 6.5768

5 Vel. m/s 0.1082 0.8303 0.0666 0.8193 0.0849 0.0921

Att. ◦×10−3 8.1863 60.982 8.8848 58.610 15.986 45.397

.01 Pos. m 8.6145 10.732 8.1227 10.086 8.8989 9.1391

10 Vel. m/s 0.1203 0.8560 0.0806 0.8354 0.1126 0.1221

Att. ◦×10−3 7.0102 61.951 7.5971 59.686 13.668 47.321

.1 Pos. m 15.799 22.741 15.455 21.829 26.713 27.117

1 Vel. m/s 0.2188 0.9855 0.1811 0.9378 0.3013 0.3182

Att. ◦×10−3 5.5495 64.425 5.9248 62.364 10.657 50.595

.1 Pos. m 29.544 38.573 31.115 38.497 54.941 57.351

5 Vel. m/s 0.3347 1.1456 0.3255 1.0935 0.5645 0.6203

Att. ◦×10−3 8.5104 67.140 9.2760 65.260 16.689 53.292

.1 Pos. m 39.089 49.246 41.985 50.124 74.497 78.333

10 Vel. m/s 0.3961 1.2381 0.4023 1.1909 0.7016 0.8068

Att. ◦×10−3 10.072 68.833 11.047 67.080 19.878 55.332
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Table E.10: INS/GGI: Stabilized GGI, Nav. Grade IMUs, Low Γ Var., Mach 8

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 0.9724 1.0150 0.9729 1.0124 0.3558 0.3551

1 Vel. m/s 0.0399 0.7210 0.0294 0.7740 0.0078 0.0081

Att. ◦×10−3 6.9399 46.973 6.7099 43.908 12.072 12.997

.001 Pos. m 1.2827 1.3400 1.2251 1.2400 0.7600 0.7656

5 Vel. m/s 0.0425 0.7398 0.0316 0.7780 0.0150 0.0158

Att. ◦×10−3 9.6522 51.051 10.012 47.842 18.017 22.279

.001 Pos. m 1.4856 1.6611 1.4073 1.4078 1.0604 1.0679

10 Vel. m/s 0.0423 0.7599 0.0339 0.7808 0.0195 0.0211

Att. ◦×10−3 10.302 53.044 10.919 49.892 19.650 26.877

.01 Pos. m 5.2330 6.8807 5.1124 6.8358 3.1665 3.2274

1 Vel. m/s 0.0868 0.7954 0.0495 0.7993 0.0510 0.0550

Att. ◦×10−3 9.6770 59.749 10.508 57.216 18.910 42.382

.01 Pos. m 7.4060 9.3081 7.0380 8.8836 6.9301 6.9591

5 Vel. m/s 0.1176 0.8449 0.0750 0.8275 0.1021 0.1076

Att. ◦×10−3 6.6443 62.350 7.1724 60.117 12.904 47.810

.01 Pos. m 8.8994 11.014 8.4681 10.377 9.5483 9.6757

10 Vel. m/s 0.1316 0.8736 0.0922 0.8465 0.1349 0.1435

Att. ◦×10−3 5.6786 63.071 6.1073 60.907 10.986 48.978

.1 Pos. m 16.125 23.341 16.089 22.626 27.854 28.605

1 Vel. m/s 0.2393 1.0178 0.2079 0.9669 0.3505 0.3766

Att. ◦×10−3 6.6706 65.743 7.2092 63.766 12.970 51.780

.1 Pos. m 30.430 39.384 32.424 39.743 57.274 59.608

5 Vel. m/s 0.3569 1.1904 0.3559 1.1404 0.6186 0.7120

Att. ◦×10−3 10.495 69.294 11.525 67.579 20.739 55.911

.1 Pos. m 39.661 50.042 42.962 51.426 76.241 80.662

10 Vel. m/s 0.4089 1.2843 0.4231 1.2409 0.7403 0.9024

Att. ◦×10−3 12.008 71.324 13.240 69.779 23.827 58.794
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Table E.11: INS/GGI: Stabilized GGI, Tac. Grade IMUs, High Γ Var., Mach 6

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 1.3231 1.3759 1.3761 1.4306 0.5057 0.5057

1 Vel. m/s 0.0431 0.7247 0.0312 0.7821 0.0233 0.0232

Att. ◦×10−3 58.730 100.11 63.449 103.28 114.10 125.99

.001 Pos. m 1.6710 1.7042 1.6602 1.6651 0.9825 0.9875

5 Vel. m/s 0.0520 0.7448 0.0370 0.7877 0.0342 0.0344

Att. ◦×10−3 58.215 101.20 63.016 104.17 113.32 127.66

.001 Pos. m 1.8600 2.0077 1.8059 1.8369 1.3408 1.3292

10 Vel. m/s 0.0559 0.7628 0.0414 0.7911 0.0413 0.0413

Att. ◦×10−3 59.311 101.76 64.269 104.62 115.57 128.51

.01 Pos. m 4.6339 6.6840 4.4683 6.7035 3.6301 3.6291

1 Vel. m/s 0.0981 0.7963 0.0636 0.8121 0.0830 0.0828

Att. ◦×10−3 62.651 103.48 68.178 106.20 122.61 131.39

.01 Pos. m 6.9845 9.1623 6.5602 8.7890 7.6677 7.6952

5 Vel. m/s 0.1402 0.8523 0.1025 0.8487 0.1524 0.1541

Att. ◦×10−3 62.818 104.72 68.467 107.45 123.13 133.40

.01 Pos. m 8.6750 10.989 8.1695 10.386 10.687 10.718

10 Vel. m/s 0.1656 0.8883 0.1303 0.8759 0.2031 0.2065

Att. ◦×10−3 60.505 105.34 65.957 108.10 118.61 134.27

.1 Pos. m 18.629 24.653 18.384 23.769 30.930 31.226

1 Vel. m/s 0.3263 1.0775 0.2985 1.0442 0.5054 0.5243

Att. ◦×10−3 66.331 109.15 72.332 112.11 130.08 139.33

.1 Pos. m 35.344 42.309 37.024 42.181 64.462 64.438

5 Vel. m/s 0.5182 1.2996 0.5190 1.2660 0.9017 0.9308

Att. ◦×10−3 68.834 113.91 75.068 117.22 134.99 146.39

.1 Pos. m 46.740 54.223 49.943 55.065 87.681 87.634

10 Vel. m/s 0.6310 1.4263 0.6500 1.3996 1.1383 1.1723

Att. ◦×10−3 72.038 116.32 78.571 119.83 141.29 150.25
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Table E.12: INS/GGI: Stabilized GGI, Tac. Grade IMUs, High Γ Var., Mach 7

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 1.3945 1.4171 1.4525 1.4715 0.5079 0.5063

1 Vel. m/s 0.0442 0.7271 0.0310 0.7821 0.0234 0.0233

Att. ◦×10−3 54.575 95.312 58.850 97.720 105.81 114.45

.001 Pos. m 1.7128 1.7546 1.6992 1.7097 1.0013 0.9952

5 Vel. m/s 0.0536 0.7489 0.0376 0.7879 0.0351 0.0349

Att. ◦×10−3 52.251 96.237 56.443 98.378 101.48 115.70

.001 Pos. m 1.9323 2.0790 1.8793 1.8879 1.3612 1.3495

10 Vel. m/s 0.0567 0.7690 0.0422 0.7918 0.0429 0.0425

Att. ◦×10−3 53.352 96.701 57.830 98.717 103.98 116.33

.01 Pos. m 4.6671 6.8126 4.4894 6.8206 3.8253 3.8064

1 Vel. m/s 0.1059 0.8066 0.0704 0.8178 0.0948 0.0938

Att. ◦×10−3 52.631 98.023 57.232 99.924 102.90 118.41

.01 Pos. m 7.2763 9.4384 6.8759 9.0638 8.1560 8.1496

5 Vel. m/s 0.1565 0.8724 0.1190 0.8637 0.1811 0.1825

Att. ◦×10−3 55.267 99.266 60.220 101.20 108.27 120.15

.01 Pos. m 8.8874 11.345 8.4168 10.752 11.084 11.325

10 Vel. m/s 0.1844 0.9137 0.1494 0.8959 0.2371 0.2441

Att. ◦×10−3 56.193 100.12 61.253 102.10 110.13 121.30

.1 Pos. m 18.950 25.100 18.977 24.406 32.064 32.304

1 Vel. m/s 0.3545 1.1144 0.3320 1.0779 0.5655 0.5829

Att. ◦×10−3 59.555 105.03 64.935 107.36 116.75 128.42

.1 Pos. m 34.952 42.736 37.007 43.067 64.393 65.950

5 Vel. m/s 0.5373 1.3390 0.5458 1.3060 0.9509 0.9969

Att. ◦×10−3 64.645 109.99 70.547 112.73 126.84 136.45

.1 Pos. m 46.599 54.648 50.244 56.055 88.272 89.338

10 Vel. m/s 0.6591 1.4677 0.6889 1.4434 1.2076 1.2444

Att. ◦×10−3 65.068 112.29 71.030 115.23 127.71 140.38
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Table E.13: INS/GGI: Stabilized GGI, Tac. Grade IMUs, High Γ Var., Mach 8

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 1.0238 1.0623 1.0246 1.0605 0.5124 0.5089

1 Vel. m/s 0.0466 0.7303 0.0310 0.7823 0.0236 0.0235

Att. ◦×10−3 47.931 91.931 51.553 93.689 92.692 106.02

.001 Pos. m 1.3676 1.4381 1.3118 1.3403 1.0111 1.0140

5 Vel. m/s 0.0533 0.7520 0.0375 0.7888 0.0360 0.0363

Att. ◦×10−3 46.739 92.644 50.427 94.161 90.664 106.86

.001 Pos. m 1.6187 1.7986 1.5422 1.5468 1.3841 1.3869

10 Vel. m/s 0.0559 0.7741 0.0426 0.7933 0.0452 0.0452

Att. ◦×10−3 46.451 92.978 50.213 94.397 90.274 107.27

.01 Pos. m 5.5411 7.1543 5.4245 7.1197 4.0157 4.0148

1 Vel. m/s 0.1151 0.8221 0.0783 0.8260 0.1086 0.1095

Att. ◦×10−3 48.273 94.297 52.529 95.620 94.449 109.11

.01 Pos. m 8.2062 9.9848 7.8933 9.6023 8.4953 8.5383

5 Vel. m/s 0.1702 0.8939 0.1327 0.8791 0.2071 0.2112

Att. ◦×10−3 49.109 95.930 53.496 97.341 96.178 111.38

.01 Pos. m 10.014 11.969 9.6483 11.396 11.678 11.788

10 Vel. m/s 0.2009 0.9370 0.1670 0.9139 0.2687 0.2768

Att. ◦×10−3 50.440 97.020 54.978 98.505 98.849 112.94

.1 Pos. m 18.562 25.474 18.772 24.956 32.705 33.025

1 Vel. m/s 0.3676 1.1412 0.3495 1.1016 0.5985 0.6217

Att. ◦×10−3 55.383 102.44 60.408 104.36 108.61 121.44

.1 Pos. m 35.079 43.085 37.546 43.795 66.500 66.991

5 Vel. m/s 0.5603 1.3682 0.5772 1.3357 1.0080 1.0448

Att. ◦×10−3 61.055 107.07 66.696 109.41 119.93 129.40

.1 Pos. m 45.921 54.914 49.862 56.770 88.660 90.360

10 Vel. m/s 0.6795 1.4980 0.7169 1.4758 1.2592 1.2972

Att. ◦×10−3 62.306 109.20 68.049 111.75 122.37 133.22
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Table E.14: INS/GGI: Stabilized GGI, Tac. Grade IMUs, Low Γ Var., Mach 6

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 1.0699 1.0826 1.0847 1.0931 0.5017 0.4988

1 Vel. m/s 0.0454 0.7250 0.0346 0.7820 0.0232 0.0232

Att. ◦×10−3 60.112 99.734 64.988 102.82 116.86 125.15

.001 Pos. m 1.3865 1.4356 1.3410 1.3593 0.9764 0.9792

5 Vel. m/s 0.0528 0.7438 0.0395 0.7876 0.0345 0.0345

Att. ◦×10−3 60.145 100.79 65.136 103.72 117.13 126.84

.001 Pos. m 1.6137 1.7503 1.5440 1.5489 1.3260 1.3213

10 Vel. m/s 0.0550 0.7616 0.0423 0.7912 0.0418 0.0416

Att. ◦×10−3 58.692 101.30 63.577 104.14 114.32 127.64

.01 Pos. m 5.4416 7.0280 5.3717 7.0429 3.6341 3.6588

1 Vel. m/s 0.0990 0.7994 0.0641 0.8136 0.0859 0.0865

Att. ◦×10−3 59.232 103.39 64.438 106.07 115.88 131.18

.01 Pos. m 7.7770 9.6410 7.4369 9.3079 7.7802 7.7959

5 Vel. m/s 0.1430 0.8560 0.1044 0.8528 0.1622 0.1637

Att. ◦×10−3 62.767 104.77 68.392 107.50 122.99 133.44

.01 Pos. m 9.5300 11.519 9.1229 10.989 10.744 10.847

10 Vel. m/s 0.1688 0.8919 0.1331 0.8809 0.2140 0.2184

Att. ◦×10−3 63.951 105.47 69.727 108.23 125.39 134.41

.1 Pos. m 18.174 25.055 17.891 24.280 31.132 31.584

1 Vel. m/s 0.3316 1.0843 0.3032 1.0536 0.5239 0.5446

Att. ◦×10−3 67.543 109.53 73.669 112.52 132.48 139.87

.1 Pos. m 34.651 42.976 36.255 42.964 64.141 65.278

5 Vel. m/s 0.5227 1.3113 0.5219 1.2803 0.9159 0.9604

Att. ◦×10−3 69.363 114.36 75.664 117.71 136.06 147.11

.1 Pos. m 46.324 55.103 49.517 56.075 88.024 88.882

10 Vel. m/s 0.6384 1.4419 0.6577 1.4180 1.1609 1.2093

Att. ◦×10−3 73.264 116.78 79.936 120.32 143.75 151.00
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Table E.15: INS/GGI: Stabilized GGI, Tac. Grade IMUs, Low Γ Var., Mach 7

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 1.0732 1.0880 1.0834 1.0943 0.4997 0.5013

1 Vel. m/s 0.0477 0.7275 0.0355 0.7820 0.0232 0.0233

Att. ◦×10−3 51.086 95.050 54.992 97.384 98.865 113.87

.001 Pos. m 1.4101 1.4508 1.3611 1.3663 0.9988 0.9921

5 Vel. m/s 0.0545 0.7478 0.0404 0.7880 0.0357 0.0353

Att. ◦×10−3 53.171 95.955 57.448 98.075 103.28 115.19

.001 Pos. m 1.6341 1.7867 1.5639 1.5639 1.3495 1.3486

10 Vel. m/s 0.0568 0.7677 0.0439 0.7920 0.0436 0.0433

Att. ◦×10−3 52.543 96.380 56.876 98.407 102.25 115.81

.01 Pos. m 5.4598 7.1478 5.3621 7.1511 3.8303 3.8534

1 Vel. m/s 0.1067 0.8106 0.0702 0.8201 0.0991 0.0994

Att. ◦×10−3 54.200 98.032 58.986 99.926 106.05 118.43

.01 Pos. m 8.0740 9.9015 7.7839 9.5654 8.2502 8.2545

5 Vel. m/s 0.1573 0.8765 0.1196 0.8681 0.1901 0.1931

Att. ◦×10−3 56.157 99.459 61.202 101.40 110.03 120.44

.01 Pos. m 9.8845 11.855 9.5303 11.330 11.448 11.452

10 Vel. m/s 0.1884 0.9172 0.1539 0.9009 0.2520 0.2560

Att. ◦×10−3 54.527 100.37 59.405 102.37 106.80 121.67

.1 Pos. m 18.711 25.506 18.694 24.897 32.553 32.651

1 Vel. m/s 0.3616 1.1203 0.3386 1.0859 0.5864 0.6004

Att. ◦×10−3 60.411 105.44 65.873 107.80 118.43 129.08

.1 Pos. m 35.586 43.425 37.718 43.852 66.796 66.820

5 Vel. m/s 0.5581 1.3507 0.5672 1.3200 0.9971 1.0257

Att. ◦×10−3 64.907 110.41 70.837 113.19 127.36 137.18

.1 Pos. m 46.713 55.545 50.404 57.067 89.629 90.614

10 Vel. m/s 0.6673 1.4833 0.6965 1.4615 1.2289 1.2810

Att. ◦×10−3 65.971 112.72 72.032 115.71 129.51 141.17
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Table E.16: INS/GGI: Stabilized GGI, Tac. Grade IMUs, Low Γ Var., Mach 8

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 1.0823 1.0935 1.0908 1.0963 0.5094 0.5050

1 Vel. m/s 0.0494 0.7300 0.0360 0.7822 0.0237 0.0236

Att. ◦×10−3 48.022 91.710 51.664 93.444 92.878 105.66

.001 Pos. m 1.4272 1.4685 1.3787 1.3774 1.0121 1.0120

5 Vel. m/s 0.0552 0.7518 0.0405 0.7888 0.0366 0.0368

Att. ◦×10−3 46.707 92.485 50.373 93.985 90.554 106.63

.001 Pos. m 1.6427 1.8272 1.5719 1.5855 1.3873 1.3873

10 Vel. m/s 0.0574 0.7741 0.0446 0.7935 0.0460 0.0462

Att. ◦×10−3 45.922 92.848 49.678 94.259 89.300 107.11

.01 Pos. m 5.5815 7.2673 5.4870 7.2597 4.0456 4.0461

1 Vel. m/s 0.1162 0.8229 0.0785 0.8277 0.1133 0.1140

Att. ◦×10−3 48.178 94.329 52.430 95.657 94.254 109.21

.01 Pos. m 8.3029 10.109 8.0238 9.7708 8.5573 8.6143

5 Vel. m/s 0.1709 0.8958 0.1324 0.8823 0.2126 0.2192

Att. ◦×10−3 51.206 96.131 55.814 97.562 100.34 111.73

.01 Pos. m 10.059 12.101 9.7358 11.582 11.811 11.891

10 Vel. m/s 0.2032 0.9393 0.1690 0.9177 0.2798 0.2862

Att. ◦×10−3 50.756 97.294 55.301 98.806 99.414 113.41

.1 Pos. m 18.877 25.778 19.119 25.325 33.298 33.380

1 Vel. m/s 0.3786 1.1467 0.3604 1.1089 0.6249 0.6378

Att. ◦×10−3 56.281 102.83 61.392 104.79 110.37 122.13

.1 Pos. m 35.560 43.677 38.063 44.471 67.381 67.894

5 Vel. m/s 0.5732 1.3803 0.5904 1.3499 1.0368 1.0740

Att. ◦×10−3 60.758 107.48 66.361 109.87 119.31 130.16

.1 Pos. m 46.409 55.697 50.392 57.653 89.584 91.632

10 Vel. m/s 0.6804 1.5131 0.7173 1.4931 1.2654 1.3322

Att. ◦×10−3 64.644 109.66 70.643 112.26 127.02 134.09
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Table E.17: INS/GGI: Strapdown GGI, Nav. Grade IMUs, High Γ Var., Mach 6

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 11.729 10.620 10.244 9.5024 17.445 7.2003

1 Vel. m/s 0.1392 0.7848 0.0637 0.7904 0.0957 0.0435

Att. ◦×10−3 4.5092 23.133 2.2844 22.997 3.5618 1.4451

.001 Pos. m 14.505 12.739 13.552 11.453 23.442 10.885

5 Vel. m/s 0.1354 0.8057 0.0734 0.7985 0.1127 0.0595

Att. ◦×10−3 4.9722 23.969 3.1423 23.489 5.0903 2.3304

.001 Pos. m 15.450 13.848 14.979 12.437 26.155 12.697

10 Vel. m/s 0.1229 0.8203 0.0758 0.8021 0.1152 0.0662

Att. ◦×10−3 4.8798 24.509 3.4646 23.734 5.7539 2.7714

.01 Pos. m 13.394 18.565 13.347 17.384 22.260 20.979

1 Vel. m/s 0.1071 0.8422 0.0651 0.8154 0.0873 0.0882

Att. ◦×10−3 3.6818 24.929 2.5823 24.229 3.6387 3.6432

.01 Pos. m 19.559 25.050 20.161 24.114 34.501 33.108

5 Vel. m/s 0.1217 0.8730 0.0808 0.8311 0.1161 0.1142

Att. ◦×10−3 3.9487 25.629 2.8725 24.541 4.0807 4.2050

.01 Pos. m 24.451 29.499 25.619 28.813 44.376 41.580

10 Vel. m/s 0.1317 0.8901 0.0945 0.8416 0.1391 0.1328

Att. ◦×10−3 4.0718 25.992 3.0613 24.696 4.4083 4.4844

.1 Pos. m 45.886 54.123 49.582 55.404 88.854 88.671

1 Vel. m/s 0.1820 0.9656 0.1570 0.8985 0.2519 0.2387

Att. ◦×10−3 4.7328 27.550 3.6868 25.701 6.0294 6.2251

.1 Pos. m 77.306 89.088 84.900 94.007 152.44 158.22

5 Vel. m/s 0.2413 1.0449 0.2381 0.9754 0.3985 0.3887

Att. ◦×10−3 6.1010 29.794 5.5657 27.791 9.4547 9.9866

.1 Pos. m 92.553 111.81 102.00 119.20 183.19 203.57

10 Vel. m/s 0.2709 1.0917 0.2767 1.0251 0.4683 0.4854

Att. ◦×10−3 6.7348 31.167 6.4908 29.228 11.145 12.574
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Table E.18: INS/GGI: Strapdown GGI, Nav. Grade IMUs, High Γ Var., Mach 7

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 11.104 10.476 9.8557 9.4242 16.766 7.0500

1 Vel. m/s 0.1413 0.7926 0.0656 0.7923 0.0999 0.0473

Att. ◦×10−3 4.3016 23.080 2.2747 23.040 3.6024 1.5143

.001 Pos. m 13.900 12.470 13.257 11.288 22.912 10.536

5 Vel. m/s 0.1368 0.8140 0.0761 0.8004 0.1170 0.0630

Att. ◦×10−3 4.8303 23.947 3.2593 23.545 5.3360 2.4235

.001 Pos. m 15.110 13.582 15.007 12.291 26.152 12.367

10 Vel. m/s 0.1236 0.8296 0.0795 0.8042 0.1228 0.0699

Att. ◦×10−3 4.3971 24.516 3.2534 23.769 5.3480 2.8284

.01 Pos. m 13.988 18.801 14.209 17.863 23.748 21.796

1 Vel. m/s 0.1110 0.8534 0.0694 0.8200 0.0955 0.0964

Att. ◦×10−3 3.5192 24.753 2.4831 24.156 3.5028 3.5073

.01 Pos. m 20.658 26.176 21.625 25.643 37.226 35.859

5 Vel. m/s 0.1292 0.8886 0.0905 0.8404 0.1330 0.1323

Att. ◦×10−3 3.8057 25.499 2.7287 24.466 3.9343 4.0662

.01 Pos. m 25.999 31.048 27.575 30.847 47.922 45.251

10 Vel. m/s 0.1423 0.9081 0.1088 0.8538 0.1672 0.1569

Att. ◦×10−3 3.9337 25.916 2.9311 24.647 4.2702 4.3911

.1 Pos. m 47.962 57.258 52.234 59.408 93.650 95.971

1 Vel. m/s 0.1960 0.9921 0.1789 0.9232 0.2935 0.2901

Att. ◦×10−3 4.9006 27.748 3.8088 25.888 6.2745 6.5618

.1 Pos. m 78.696 95.330 86.691 101.56 155.67 171.91

5 Vel. m/s 0.2675 1.0880 0.2723 1.0217 0.4604 0.4854

Att. ◦×10−3 6.1600 30.271 5.6886 28.297 9.6896 10.899

.1 Pos. m 93.744 118.30 103.55 127.03 185.99 217.69

10 Vel. m/s 0.3018 1.1446 0.3159 1.0832 0.5398 0.6034

Att. ◦×10−3 7.0573 31.695 6.9041 29.799 11.894 13.602
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Table E.19: INS/GGI: Strapdown GGI, Nav. Grade IMUs, High Γ Var., Mach 8

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 12.367 11.018 11.476 9.9472 19.885 8.0657

1 Vel. m/s 0.1544 0.8020 0.0853 0.7962 0.1172 0.0552

Att. ◦×10−3 4.4648 23.126 2.8837 23.246 4.2404 1.9055

.001 Pos. m 15.171 13.361 14.918 12.306 26.187 12.310

5 Vel. m/s 0.1518 0.8221 0.0964 0.8066 0.1360 0.0755

Att. ◦×10−3 4.2822 23.834 3.1523 23.709 4.7159 2.7391

.001 Pos. m 16.482 14.483 16.675 13.419 29.393 14.311

10 Vel. m/s 0.1408 0.8363 0.0994 0.8111 0.1406 0.0838

Att. ◦×10−3 3.8930 24.307 3.0941 23.857 4.6375 3.0061

.01 Pos. m 13.895 19.934 14.363 19.224 24.855 23.918

1 Vel. m/s 0.1185 0.8676 0.0780 0.8294 0.1070 0.1142

Att. ◦×10−3 3.5846 24.570 2.5018 24.104 3.2687 3.4106

.01 Pos. m 21.052 27.579 22.285 27.402 39.203 38.684

5 Vel. m/s 0.1406 0.9051 0.1037 0.8532 0.1532 0.1569

Att. ◦×10−3 4.0411 25.220 2.8674 24.415 3.8765 3.9705

.01 Pos. m 25.159 32.570 26.891 32.803 47.607 48.427

10 Vel. m/s 0.1488 0.9256 0.1182 0.8683 0.1796 0.1855

Att. ◦×10−3 4.0596 25.603 2.9650 24.615 4.1312 4.3304

.1 Pos. m 49.816 60.139 54.530 63.026 98.044 102.57

1 Vel. m/s 0.2150 1.0186 0.2047 0.9496 0.3394 0.3466

Att. ◦×10−3 5.0269 27.976 3.9617 26.101 6.5785 6.9411

.1 Pos. m 78.404 99.729 86.566 106.91 155.69 181.59

5 Vel. m/s 0.2929 1.1317 0.3047 1.0695 0.5201 0.5838

Att. ◦×10−3 6.2973 30.657 5.8815 28.707 10.090 11.632

.1 Pos. m 88.244 121.32 97.586 130.84 175.51 224.55

10 Vel. m/s 0.3205 1.1950 0.3393 1.1390 0.5813 0.7134

Att. ◦×10−3 6.6646 32.032 6.4966 30.163 11.191 14.253
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Table E.20: INS/GGI: Strapdown GGI, Nav. Grade IMUs, Low Γ Var., Mach 6

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 16.736 12.817 15.795 11.646 27.817 10.743

1 Vel. m/s 0.1507 0.7932 0.0747 0.7985 0.1204 0.0606

Att. ◦×10−3 5.5260 23.231 3.4075 23.336 4.8853 2.1038

.001 Pos. m 27.762 17.487 28.071 16.522 50.143 19.522

5 Vel. m/s 0.1597 0.8131 0.0956 0.8088 0.1578 0.0814

Att. ◦×10−3 5.7841 24.086 4.0349 23.907 6.0346 3.1310

.001 Pos. m 34.850 20.555 36.120 19.789 64.642 25.399

10 Vel. m/s 0.1630 0.8266 0.1109 0.8145 0.1859 0.0926

Att. ◦×10−3 5.7427 24.532 4.2648 24.113 6.2382 3.5023

.01 Pos. m 30.791 37.114 32.988 37.826 58.910 57.459

1 Vel. m/s 0.1341 0.8678 0.1011 0.8449 0.1597 0.1522

Att. ◦×10−3 4.3583 25.368 3.4604 24.846 4.7248 4.7618

.01 Pos. m 48.175 55.893 52.358 58.402 93.832 94.657

5 Vel. m/s 0.1744 0.9180 0.1472 0.8837 0.2413 0.2300

Att. ◦×10−3 5.5147 26.683 4.6128 25.968 6.8237 6.7813

.01 Pos. m 58.321 67.103 63.606 70.744 114.09 116.99

10 Vel. m/s 0.1971 0.9460 0.1738 0.9070 0.2891 0.2790

Att. ◦×10−3 6.0139 27.524 5.1380 26.720 7.7761 8.1360

.1 Pos. m 90.808 122.70 99.781 132.15 179.53 227.86

1 Vel. m/s 0.2657 1.0718 0.2551 1.0193 0.4308 0.5219

Att. ◦×10−3 7.5158 31.939 6.6880 30.654 11.441 15.149

.1 Pos. m 89.802 166.73 98.804 180.82 177.73 315.34

5 Vel. m/s 0.2597 1.1657 0.2557 1.1131 0.4297 0.7051

Att. ◦×10−3 6.8928 35.035 6.3846 33.646 10.840 20.532

.1 Pos. m 84.666 180.80 93.196 196.29 167.60 342.94

10 Vel. m/s 0.2499 1.1996 0.2496 1.1481 0.4171 0.7629

Att. ◦×10−3 6.1561 35.914 5.8084 34.522 9.7851 22.109
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Table E.21: INS/GGI: Strapdown GGI, Nav. Grade IMUs, Low Γ Var., Mach 7

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 17.857 13.173 17.279 12.152 30.535 11.657

1 Vel. m/s 0.1582 0.8009 0.0815 0.8010 0.1328 0.0658

Att. ◦×10−3 5.3710 23.212 3.4249 23.407 5.0142 2.2169

.001 Pos. m 30.343 18.481 31.280 17.788 55.909 21.800

5 Vel. m/s 0.1744 0.8235 0.1121 0.8139 0.1878 0.0920

Att. ◦×10−3 5.4181 24.008 3.8370 23.915 5.7317 3.1305

.001 Pos. m 38.831 21.978 41.050 21.551 73.584 28.572

10 Vel. m/s 0.1809 0.8397 0.1361 0.8217 0.2304 0.1075

Att. ◦×10−3 5.1474 24.483 4.0197 24.106 6.1252 3.4762

.01 Pos. m 33.584 39.647 36.310 40.899 64.936 63.044

1 Vel. m/s 0.1514 0.8903 0.1219 0.8623 0.1985 0.1888

Att. ◦×10−3 4.3859 25.354 3.4727 24.957 4.9292 4.9571

.01 Pos. m 50.680 59.498 55.327 62.732 99.201 102.57

5 Vel. m/s 0.1975 0.9501 0.1743 0.9115 0.2903 0.2912

Att. ◦×10−3 5.5170 26.881 4.5459 26.269 6.8538 7.3190

.01 Pos. m 60.548 71.466 66.332 75.954 118.99 126.52

10 Vel. m/s 0.2215 0.9833 0.2055 0.9407 0.3466 0.3547

Att. ◦×10−3 6.1351 27.847 5.2935 27.128 8.1956 8.8647

.1 Pos. m 82.158 124.57 90.409 134.71 162.65 232.54

1 Vel. m/s 0.2727 1.1192 0.2668 1.0679 0.4533 0.6295

Att. ◦×10−3 7.1033 32.266 6.2155 30.964 10.633 15.707

.1 Pos. m 75.095 158.09 82.684 171.70 148.69 298.79

5 Vel. m/s 0.2520 1.2072 0.2515 1.1576 0.4228 0.7945

Att. ◦×10−3 6.0438 34.694 5.5046 33.233 9.2896 19.790

.1 Pos. m 70.082 168.51 77.204 183.11 138.77 319.00

10 Vel. m/s 0.2397 1.2406 0.2429 1.1926 0.4062 0.8464

Att. ◦×10−3 5.5213 35.355 5.1550 33.877 8.6051 20.949
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Table E.22: INS/GGI: Strapdown GGI, Nav. Grade IMUs, Low Γ Var., Mach 8

σL Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

.001 Pos. m 18.948 13.630 18.783 12.758 33.302 12.747

1 Vel. m/s 0.1662 0.8087 0.0916 0.8044 0.1511 0.0728

Att. ◦×10−3 5.0291 23.172 3.1762 23.456 4.7050 2.2858

.001 Pos. m 34.199 19.541 35.953 19.108 64.368 24.178

5 Vel. m/s 0.1949 0.8348 0.1389 0.8209 0.2360 0.1063

Att. ◦×10−3 5.2052 23.933 3.7671 23.920 5.6605 3.1211

.001 Pos. m 41.521 23.393 44.352 23.283 79.512 31.693

10 Vel. m/s 0.2018 0.8537 0.1625 0.8310 0.2786 0.1269

Att. ◦×10−3 5.1076 24.458 4.1260 24.115 6.2961 3.4723

.01 Pos. m 35.201 41.704 38.255 43.401 68.468 67.616

1 Vel. m/s 0.1685 0.9128 0.1419 0.8810 0.2335 0.2290

Att. ◦×10−3 4.4146 25.392 3.4656 25.089 5.1002 5.1848

.01 Pos. m 53.276 62.397 58.394 66.225 104.72 108.98

5 Vel. m/s 0.2217 0.9813 0.2049 0.9398 0.3467 0.3551

Att. ◦×10−3 5.7894 27.100 4.7768 26.549 7.3772 7.8135

.01 Pos. m 62.383 74.728 68.537 79.877 122.99 133.72

10 Vel. m/s 0.2482 1.0187 0.2381 0.9741 0.4062 0.4310

Att. ◦×10−3 6.2644 28.147 5.4253 27.464 8.6084 9.4613

.1 Pos. m 71.488 122.86 78.717 133.15 141.60 229.75

1 Vel. m/s 0.2664 1.1578 0.2629 1.1083 0.4454 0.7168

Att. ◦×10−3 6.3558 32.340 5.4502 30.981 9.2523 15.735

.1 Pos. m 61.617 148.17 67.863 161.01 121.98 279.42

5 Vel. m/s 0.2389 1.2399 0.2409 1.1930 0.4037 0.8612

Att. ◦×10−3 5.3044 34.249 4.7899 32.707 7.9991 18.841

.1 Pos. m 62.495 156.54 68.916 170.15 123.83 295.48

10 Vel. m/s 0.2423 1.2741 0.2490 1.2292 0.4180 0.9109

Att. ◦×10−3 5.1465 34.808 4.8173 33.251 7.9939 19.819
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E.3 Global Positioning System Aided Navigation

The baseline hypersonic INS/GPS Monte Carlo simulation results are summa-

rized in Tables E.23–E.34.

Tables E.23–E.25 list the MRSE results for the Mach 6, 7, and 8 cases with

navigation grade IMUs and GPS pseudorange, ρ, and pseudorange rate, ρ̇, updates

at intervals of 1 to 300 seconds. Tables E.26–E.28 on pg. 383-385 summarize the

tactical grade IMU, ρ and ρ̇ results as GPS updates are simulated every 1–300

seconds.

Tables E.29–E.34 list the pseudorange-only INS/GPS results for the hypersonic

Monte Carlo simulations. The first half of the tables, on pg. 386–388, are performed

with the simulated navigation grade IMU specifications. And Tables E.32–E.34 on

pg. 389–391 list the tactical grade IMU, pseudorange-only INS simulations for the

Mach 6, 7, and 8 cases.

All INS/GPS simulations are performed over the high gravitational gradient

variation trajectories since the low Γ variation trajectories produce essentially the

same GPS visibility and geometric dilution of precision (GDOP) values as the high Γ

trajectories, as shown in Sec. D.3. Therefore, the INS/GPS navigation performance

should be nearly identical between the two trajectories.
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Table E.23: INS/GPS: ρ & ρ̇ Updates, Nav. Grade IMUs, Mach 6

Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

Pos. m 1.0153 0.5806 1.0771 0.6039 0.1663 0.1357

1 Vel. m/s 0.1927 0.2094 0.2074 0.2259 0.0032 0.0029

Att. ◦×10−3 3.5271 41.958 3.0019 40.874 5.3976 5.3941

Pos. m 1.2715 0.7988 1.2421 0.7429 0.4642 0.3948

10 Vel. m/s 0.2113 0.2222 0.2175 0.2287 0.0072 0.0065

Att. ◦×10−3 4.5543 43.681 4.2191 41.671 7.5889 7.5228

Pos. m 1.6828 1.3727 1.3366 0.9194 0.9005 0.6841

30 Vel. m/s 0.2223 0.2472 0.2120 0.2308 0.0122 0.0102

Att. ◦×10−3 5.5208 46.314 5.4406 42.562 9.7880 9.8346

Pos. m 2.4643 2.5036 1.3077 1.0611 1.1323 0.9879

60 Vel. m/s 0.2375 0.2713 0.2128 0.2327 0.0151 0.0143

Att. ◦×10−3 6.0396 47.918 6.6964 43.683 12.048 12.652

Pos. m 2.8265 2.6694 1.6654 1.2651 1.5420 1.3510

90 Vel. m/s 0.2465 0.2706 0.2213 0.2325 0.0200 0.0189

Att. ◦×10−3 7.1277 48.894 7.9054 44.791 14.225 15.355

Pos. m 3.1126 3.0220 1.9793 1.6316 2.0355 2.0056

120 Vel. m/s 0.2494 0.2793 0.2244 0.2413 0.0248 0.0285

Att. ◦×10−3 5.6479 51.756 6.2606 48.050 11.264 22.974

Pos. m 11.106 12.080 10.916 11.746 18.190 20.310

180 Vel. m/s 0.3209 0.3696 0.3052 0.3414 0.1851 0.2174

Att. ◦×10−3 4.5634 61.997 5.0503 59.655 9.0826 46.199

Pos. m 23.191 23.167 24.354 24.053 42.451 42.454

240 Vel. m/s 0.4246 0.4606 0.4203 0.4427 0.3931 0.4001

Att. ◦×10−3 5.8967 64.220 6.5311 62.127 11.747 50.222

Pos. m 31.562 42.041 33.561 45.032 59.069 80.218

300 Vel. m/s 0.4825 0.5798 0.4822 0.5754 0.4828 0.6434

Att. ◦×10−3 5.5397 65.586 6.1345 63.591 11.033 51.624
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Table E.24: INS/GPS: ρ & ρ̇ Updates, Nav. Grade IMUs, Mach 7

Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

Pos. m 0.8455 0.5903 0.8878 0.6121 0.1574 0.1398

1 Vel. m/s 0.1983 0.2137 0.2133 0.2300 0.0033 0.0031

Att. ◦×10−3 3.8905 42.456 3.3065 41.081 5.9456 5.8611

Pos. m 1.3752 0.8313 1.3505 0.7700 0.5407 0.4261

10 Vel. m/s 0.2039 0.2237 0.2076 0.2283 0.0090 0.0076

Att. ◦×10−3 5.4510 44.839 5.1901 42.500 9.3365 9.5509

Pos. m 1.5499 1.3799 1.1710 0.9195 0.8136 0.7112

30 Vel. m/s 0.2244 0.2480 0.2124 0.2302 0.0130 0.0119

Att. ◦×10−3 6.5897 47.657 6.8312 43.927 12.290 13.102

Pos. m 2.4149 2.2778 1.4855 1.1235 1.2897 1.0805

60 Vel. m/s 0.2342 0.2650 0.2103 0.2298 0.0189 0.0171

Att. ◦×10−3 7.4678 49.486 8.2850 45.462 14.908 16.781

Pos. m 2.9581 2.6011 1.9840 1.4404 1.8732 1.6322

90 Vel. m/s 0.2573 0.2777 0.2316 0.2422 0.0255 0.0249

Att. ◦×10−3 7.7110 51.502 8.5540 47.755 15.391 22.059

Pos. m 3.0919 2.8461 2.1925 1.7505 2.3539 2.2219

120 Vel. m/s 0.2482 0.2752 0.2239 0.2408 0.0300 0.0347

Att. ◦×10−3 5.4358 55.547 6.0259 52.369 10.840 32.277

Pos. m 14.377 14.707 14.725 14.959 25.043 26.091

180 Vel. m/s 0.3767 0.4082 0.3659 0.3880 0.2840 0.3053

Att. ◦×10−3 5.4406 64.566 6.0259 62.500 10.837 50.581

Pos. m 26.145 25.994 27.859 27.499 48.990 48.660

240 Vel. m/s 0.4703 0.4977 0.4720 0.4878 0.4897 0.4863

Att. ◦×10−3 6.6106 65.302 7.3276 63.290 13.180 51.365

Pos. m 29.752 64.824 31.769 70.655 55.436 126.34

300 Vel. m/s 0.4479 0.7566 0.4454 0.7759 0.4270 1.0132

Att. ◦×10−3 4.7688 69.240 5.2797 67.513 9.4946 55.742
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Table E.25: INS/GPS: ρ & ρ̇ Updates, Nav. Grade IMUs, Mach 8

Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

Pos. m 0.9622 0.5905 1.0141 0.6103 0.1789 0.1487

1 Vel. m/s 0.1968 0.2104 0.2108 0.2256 0.0038 0.0035

Att. ◦×10−3 4.4477 43.108 3.8104 41.461 6.8537 6.7323

Pos. m 1.1600 0.8466 1.1092 0.7793 0.5429 0.4498

10 Vel. m/s 0.2114 0.2272 0.2148 0.2301 0.0097 0.0087

Att. ◦×10−3 6.7862 46.227 6.6718 43.646 12.005 12.208

Pos. m 1.9290 1.4572 1.5304 0.9671 0.9382 0.7807

30 Vel. m/s 0.2315 0.2504 0.2165 0.2303 0.0158 0.0140

Att. ◦×10−3 7.8858 49.351 8.4014 45.692 15.119 17.080

Pos. m 2.5532 2.2038 1.7487 1.2356 1.4404 1.2615

60 Vel. m/s 0.2454 0.2686 0.2206 0.2354 0.0222 0.0214

Att. ◦×10−3 9.1541 51.822 10.158 48.112 18.282 22.583

Pos. m 2.8408 2.4777 2.0405 1.5070 1.9100 1.7485

90 Vel. m/s 0.2515 0.2789 0.2268 0.2455 0.0286 0.0294

Att. ◦×10−3 7.2581 54.453 8.0517 51.108 14.489 29.156

Pos. m 5.1623 5.4951 4.6559 4.8938 7.1414 7.9608

120 Vel. m/s 0.2785 0.3165 0.2585 0.2881 0.0998 0.1173

Att. ◦×10−3 4.4391 59.660 4.9161 56.974 8.8425 40.150

Pos. m 16.510 16.777 17.233 17.465 29.480 30.614

180 Vel. m/s 0.4178 0.4437 0.4113 0.4302 0.3642 0.3831

Att. ◦×10−3 6.7129 65.682 7.4417 63.686 13.388 51.515

Pos. m 22.716 36.251 24.158 39.086 42.094 69.547

240 Vel. m/s 0.4401 0.6058 0.4381 0.6099 0.4248 0.7061

Att. ◦×10−3 5.8799 68.180 6.5165 66.368 11.722 54.344

Pos. m 32.998 85.686 35.535 94.040 62.54 168.49

300 Vel. m/s 0.4395 0.9194 0.4357 0.9598 0.4049 1.3491

Att. ◦×10−3 3.7842 73.128 4.1873 71.742 7.5293 61.532
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Table E.26: INS/GPS: ρ & ρ̇ Updates, Tac. Grade IMUs, Mach 6

Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

Pos. m 1.1096 0.6226 1.1786 0.6472 0.2357 0.2116

1 Vel. m/s 0.2057 0.2196 0.2207 0.2361 0.0130 0.0127

Att. ◦×10−3 58.597 98.863 63.113 102.35 113.49 124.20

Pos. m 1.4541 0.8889 1.4315 0.8332 0.6415 0.5557

10 Vel. m/s 0.2182 0.2332 0.2227 0.2385 0.0220 0.0214

Att. ◦×10−3 58.819 99.965 63.534 103.22 114.25 125.83

Pos. m 1.8339 1.5308 1.4421 1.0466 1.0820 0.9521

30 Vel. m/s 0.2380 0.2600 0.2224 0.2398 0.0316 0.0304

Att. ◦×10−3 59.788 101.18 64.886 103.82 116.68 126.97

Pos. m 2.8754 2.8610 1.6789 1.3774 1.6798 1.5718

60 Vel. m/s 0.2575 0.2877 0.2274 0.2446 0.0453 0.0447

Att. ◦×10−3 59.393 102.18 64.760 104.56 116.46 128.37

Pos. m 3.5836 3.4358 2.4028 1.9909 2.8881 2.6856

90 Vel. m/s 0.2745 0.3019 0.2447 0.2595 0.0680 0.0666

Att. ◦×10−3 59.042 102.98 64.373 105.47 115.76 130.08

Pos. m 7.5166 7.5455 6.8036 6.6463 10.945 11.152

120 Vel. m/s 0.3491 0.3749 0.3268 0.3411 0.2208 0.2262

Att. ◦×10−3 61.312 105.51 66.868 108.18 120.25 133.84

Pos. m 31.672 31.541 33.758 33.299 59.538 59.114

180 Vel. m/s 0.6227 0.6566 0.6355 0.6551 0.7996 0.7968

Att. ◦×10−3 65.757 110.82 71.701 113.89 128.94 141.69

Pos. m 53.853 50.643 58.373 54.497 103.74 97.221

240 Vel. m/s 0.8192 0.8214 0.8535 0.8381 1.1879 1.1220

Att. ◦×10−3 70.645 112.98 77.071 116.21 138.60 144.95

Pos. m 79.024 83.950 86.273 91.462 153.84 163.74

300 Vel. m/s 0.9895 1.0497 1.0406 1.0904 1.5111 1.5624

Att. ◦×10−3 71.162 114.82 77.631 118.20 139.61 147.89
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Table E.27: INS/GPS: ρ & ρ̇ Updates, Tac. Grade IMUs, Mach 7

Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

Pos. m 0.8448 0.6190 0.8864 0.6419 0.2273 0.2090

1 Vel. m/s 0.2051 0.2153 0.2195 0.2307 0.0129 0.0127

Att. ◦×10−3 49.379 94.176 52.828 97.010 94.972 113.08

Pos. m 1.2727 0.8790 1.2359 0.8162 0.6082 0.5476

10 Vel. m/s 0.2143 0.2328 0.2170 0.2361 0.0220 0.0214

Att. ◦×10−3 51.267 95.147 55.186 97.660 99.220 114.31

Pos. m 1.8464 1.5253 1.4645 1.0484 1.0640 0.9437

30 Vel. m/s 0.2338 0.2616 0.2181 0.2408 0.0317 0.0303

Att. ◦×10−3 52.478 96.194 56.933 98.105 102.36 115.15

Pos. m 2.9395 2.6398 1.9315 1.4369 1.9255 1.6422

60 Vel. m/s 0.2665 0.2880 0.2366 0.2490 0.0492 0.0462

Att. ◦×10−3 53.318 97.030 58.145 98.723 104.54 116.33

Pos. m 4.4633 4.2712 3.6240 3.2581 5.1615 5.0088

90 Vel. m/s 0.2981 0.3256 0.2724 0.2902 0.1213 0.1211

Att. ◦×10−3 55.153 98.446 60.167 100.25 108.18 118.52

Pos. m 8.0701 8.0768 7.6707 7.5506 12.515 12.803

120 Vel. m/s 0.3752 0.3991 0.3581 0.3726 0.2738 0.2811

Att. ◦×10−3 57.211 101.13 62.404 103.15 112.20 122.64

Pos. m 31.716 31.481 33.962 33.502 59.872 59.422

180 Vel. m/s 0.6650 0.6949 0.6823 0.7016 0.8758 0.8694

Att. ◦×10−3 60.609 106.55 66.094 109.00 118.83 130.79

Pos. m 57.174 57.189 62.255 62.091 110.92 110.89

240 Vel. m/s 0.8701 0.8962 0.9099 0.9262 1.2780 1.2801

Att. ◦×10−3 63.780 109.24 69.620 111.91 125.18 135.23

Pos. m 78.038 96.760 85.400 106.03 152.13 189.96

300 Vel. m/s 1.0128 1.1543 1.0684 1.2122 1.5615 1.7881

Att. ◦×10−3 63.888 110.70 69.728 113.51 125.37 137.68
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Table E.28: INS/GPS: ρ & ρ̇ Updates, Tac. Grade IMUs, Mach 8

Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

Pos. m 1.0085 0.6247 1.0643 0.6462 0.2400 0.2145

1 Vel. m/s 0.2000 0.2160 0.2132 0.2308 0.0130 0.0127

Att. ◦×10−3 45.699 90.855 48.730 93.182 87.610 105.07

Pos. m 1.2069 0.9133 1.1569 0.8446 0.6479 0.5656

10 Vel. m/s 0.2170 0.2353 0.2186 0.2368 0.0227 0.0219

Att. ◦×10−3 48.046 91.764 51.656 93.694 92.880 105.99

Pos. m 1.9185 1.5571 1.5177 1.0597 1.1516 0.9738

30 Vel. m/s 0.2358 0.2607 0.2184 0.2384 0.0332 0.0316

Att. ◦×10−3 47.854 92.678 51.902 94.035 93.323 106.61

Pos. m 2.9568 2.5538 2.1535 1.5688 2.1568 1.8963

60 Vel. m/s 0.2609 0.2874 0.2340 0.2519 0.0568 0.0532

Att. ◦×10−3 46.984 93.332 51.224 94.517 92.097 107.46

Pos. m 4.8598 4.7534 4.2319 4.0276 6.3613 6.4023

90 Vel. m/s 0.3241 0.3447 0.3021 0.3148 0.1637 0.1679

Att. ◦×10−3 47.948 95.610 52.266 96.965 93.973 110.74

Pos. m 12.869 12.827 13.156 13.006 22.368 22.565

120 Vel. m/s 0.4536 0.4793 0.4473 0.4650 0.4362 0.4427

Att. ◦×10−3 52.335 99.249 57.059 100.89 102.59 116.28

Pos. m 31.637 32.036 34.038 34.329 59.816 60.900

180 Vel. m/s 0.6769 0.7170 0.6973 0.7292 0.8950 0.9147

Att. ◦×10−3 58.800 103.74 64.210 105.78 115.46 123.63

Pos. m 51.035 57.997 55.520 63.195 98.385 112.88

240 Vel. m/s 0.8548 0.9264 0.8920 0.9628 1.2266 1.3421

Att. ◦×10−3 58.527 105.76 63.888 107.97 114.87 127.11

Pos. m 89.218 118.92 97.933 130.88 174.56 234.72

300 Vel. m/s 1.1044 1.3274 1.1693 1.4075 1.7276 2.1370

Att. ◦×10−3 61.095 109.35 66.738 111.91 120.01 133.51
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Table E.29: INS/GPS: ρ Updates, Nav. Grade IMUs, Mach 6

Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

Pos. m 5.7337 2.9529 5.9940 2.9678 1.2628 1.0801

1 Vel. m/s 0.0550 0.7373 0.0283 0.7786 0.0184 0.0175

Att. ◦×10−3 8.5429 48.760 8.6979 45.839 15.652 17.935

Pos. m 6.9961 4.3938 6.8666 4.0566 3.4967 3.0628

10 Vel. m/s 0.0747 0.7764 0.0429 0.7915 0.0452 0.0428

Att. ◦×10−3 11.746 55.214 12.588 52.394 22.654 32.738

Pos. m 9.0135 6.6522 8.7520 5.3034 6.2100 5.2876

30 Vel. m/s 0.0718 0.8354 0.0566 0.8039 0.0712 0.0661

Att. ◦×10−3 11.261 58.193 12.480 55.419 22.461 39.118

Pos. m 10.070 10.867 9.8697 6.6449 8.5678 7.7020

60 Vel. m/s 0.0671 0.9110 0.0697 0.8158 0.0946 0.0885

Att. ◦×10−3 10.182 59.675 11.301 57.091 20.339 42.503

Pos. m 11.880 11.895 11.811 7.8020 11.550 9.7868

90 Vel. m/s 0.0777 0.9195 0.0815 0.8253 0.1157 0.1065

Att. ◦×10−3 8.7932 60.582 9.7577 58.121 17.559 44.546

Pos. m 12.780 13.097 12.770 9.1506 12.993 12.245

120 Vel. m/s 0.0852 0.9304 0.0898 0.8374 0.1308 0.1294

Att. ◦×10−3 6.7070 61.278 7.4391 58.907 13.385 46.002

Pos. m 15.024 39.844 15.360 39.181 18.405 66.673

180 Vel. m/s 0.0938 1.1736 0.0991 1.1091 0.1461 0.6587

Att. ◦×10−3 1.9838 66.883 2.1874 64.952 3.9310 52.433

Pos. m 17.499 87.837 18.049 92.682 22.807 163.05

240 Vel. m/s 0.1029 1.5607 0.1094 1.5430 0.1662 1.4802

Att. ◦×10−3 1.0613 73.096 1.1632 71.708 2.0874 61.543

Pos. m 18.788 132.14 19.601 141.79 26.505 251.38

300 Vel. m/s 0.1143 1.8582 0.1222 1.8749 0.1906 2.0820

Att. ◦×10−3 0.9091 76.269 0.9939 75.185 1.7829 66.917
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Table E.30: INS/GPS: ρ Updates, Nav. Grade IMUs, Mach 7

Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

Pos. m 5.8780 3.0802 6.1105 3.0814 1.4060 1.1771

1 Vel. m/s 0.0607 0.7435 0.0309 0.7803 0.0225 0.0209

Att. ◦×10−3 10.077 51.500 10.472 48.545 18.846 23.953

Pos. m 7.5515 4.6390 7.4026 4.2807 3.9170 3.4009

10 Vel. m/s 0.0809 0.7870 0.0469 0.7959 0.0533 0.0506

Att. ◦×10−3 11.414 58.079 12.276 55.469 22.093 38.894

Pos. m 8.9762 6.7441 8.7676 5.3157 6.5078 5.4300

30 Vel. m/s 0.0754 0.8500 0.0642 0.8084 0.0842 0.0738

Att. ◦×10−3 9.7306 60.325 10.777 57.827 19.395 43.674

Pos. m 10.696 10.257 10.500 6.7629 9.1676 7.9058

60 Vel. m/s 0.0726 0.9153 0.0761 0.8219 0.1068 0.0992

Att. ◦×10−3 8.3040 61.522 9.2145 59.171 16.580 46.260

Pos. m 11.768 11.502 11.754 8.1620 11.880 10.523

90 Vel. m/s 0.0866 0.9281 0.0915 0.8362 0.1337 0.1263

Att. ◦×10−3 6.6073 62.122 7.3284 59.842 13.185 47.372

Pos. m 12.517 12.513 12.633 9.2943 13.807 12.525

120 Vel. m/s 0.0942 0.9362 0.1001 0.8452 0.1499 0.1431

Att. ◦×10−3 4.6282 62.793 5.1280 60.603 9.2241 48.869

Pos. m 14.746 49.744 15.037 50.993 17.627 87.982

180 Vel. m/s 0.0947 1.3228 0.1005 1.2777 0.1498 0.9802

Att. ◦×10−3 1.3737 71.404 1.5122 69.863 2.7158 58.892

Pos. m 16.743 100.78 17.325 107.78 22.295 190.25

240 Vel. m/s 0.1037 1.7541 0.1105 1.7606 0.1686 1.8798

Att. ◦×10−3 0.9397 78.138 1.0295 77.243 1.8465 70.280

Pos. m 16.041 130.31 16.582 140.24 21.235 248.31

300 Vel. m/s 0.1002 1.8757 0.1067 1.8937 0.1628 2.0901

Att. ◦×10−3 0.7743 78.392 0.8452 77.523 1.5148 70.751

387



Table E.31: INS/GPS: ρ Updates, Nav. Grade IMUs, Mach 8

Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

Pos. m 5.4744 3.0245 5.6716 3.0270 1.3097 1.1960

1 Vel. m/s 0.0615 0.7475 0.0300 0.7816 0.0227 0.0230

Att. ◦×10−3 11.075 54.109 11.620 51.247 20.914 29.566

Pos. m 7.4604 4.6138 7.3223 4.2442 3.9691 3.4374

10 Vel. m/s 0.0849 0.7951 0.0505 0.7989 0.0591 0.0554

Att. ◦×10−3 10.051 60.153 10.799 57.719 19.437 43.045

Pos. m 8.4087 7.1502 8.2802 5.6041 6.9087 5.8526

30 Vel. m/s 0.0760 0.8676 0.0697 0.8147 0.0947 0.0848

Att. ◦×10−3 7.7684 61.939 8.5997 59.631 15.476 46.718

Pos. m 10.739 10.128 10.679 7.2131 10.395 8.7704

60 Vel. m/s 0.0844 0.9238 0.0893 0.8322 0.1307 0.1179

Att. ◦×10−3 6.4071 62.810 7.1061 60.596 12.787 48.352

Pos. m 12.428 11.411 12.452 8.6520 12.854 11.310

90 Vel. m/s 0.0999 0.9378 0.1065 0.8479 0.1616 0.1478

Att. ◦×10−3 5.4215 63.282 6.0101 61.114 10.813 49.081

Pos. m 13.734 18.903 13.899 17.039 15.428 26.525

120 Vel. m/s 0.1013 1.0309 0.1079 0.9516 0.1639 0.3476

Att. ◦×10−3 3.5153 65.912 3.8913 63.921 6.9989 51.541

Pos. m 14.781 56.458 15.156 59.002 18.387 102.41

180 Vel. m/s 0.0956 1.4501 0.1015 1.4210 0.1517 1.2464

Att. ◦×10−3 1.2162 75.676 1.3381 74.534 2.4027 65.857

Pos. m 16.037 92.621 16.362 98.999 19.229 174.17

240 Vel. m/s 0.0974 1.7381 0.1036 1.7417 0.1558 1.8198

Att. ◦×10−3 0.8875 79.727 0.9721 78.997 1.7437 73.227

Pos. m 15.870 146.70 16.209 158.94 19.259 282.02

300 Vel. m/s 0.0950 1.9308 0.1009 1.9545 0.1515 2.1790

Att. ◦×10−3 0.6715 80.379 0.7320 79.718 1.3110 74.468
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Table E.32: INS/GPS: ρ Updates, Tac. Grade IMUs, Mach 6

Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

Pos. m 6.1444 3.1146 6.4395 3.1375 1.5785 1.3797

1 Vel. m/s 0.0686 0.7505 0.0406 0.7904 0.0410 0.0395

Att. ◦×10−3 62.797 101.82 68.052 104.80 122.38 128.86

Pos. m 8.2561 4.8787 8.1887 4.5618 4.8311 3.9098

10 Vel. m/s 0.1030 0.7989 0.0692 0.8123 0.0932 0.0824

Att. ◦×10−3 63.846 103.53 69.427 106.34 124.86 131.67

Pos. m 9.6738 7.2846 9.4505 5.9720 7.4679 6.5207

30 Vel. m/s 0.1157 0.8672 0.0961 0.8343 0.1417 0.1251

Att. ◦×10−3 62.667 104.40 68.388 107.05 122.99 132.84

Pos. m 12.057 12.015 11.835 7.9115 11.373 10.045

60 Vel. m/s 0.1387 0.9558 0.1274 0.8630 0.1981 0.1814

Att. ◦×10−3 61.470 105.02 67.058 107.71 120.59 133.77

Pos. m 14.147 14.070 14.140 10.227 15.503 14.184

90 Vel. m/s 0.1719 0.9867 0.1637 0.8975 0.2630 0.2495

Att. ◦×10−3 62.182 105.74 67.832 108.47 121.98 134.75

Pos. m 19.468 20.116 20.134 17.015 26.984 26.531

120 Vel. m/s 0.2616 1.0839 0.2642 1.0062 0.4443 0.4605

Att. ◦×10−3 68.238 109.02 74.466 111.97 133.92 139.11

Pos. m 63.737 83.014 69.541 86.989 117.59 152.62

180 Vel. m/s 0.7959 1.7888 0.8576 1.7928 1.5118 1.9036

Att. ◦×10−3 75.996 123.86 82.949 128.04 149.17 163.18

Pos. m 118.44 154.82 130.21 166.68 225.95 295.97

240 Vel. m/s 1.2884 2.4213 1.4044 2.4955 2.4943 3.1559

Att. ◦×10−3 85.052 132.23 92.955 137.23 167.18 178.59

Pos. m 189.50 241.57 209.15 263.08 367.88 469.52

300 Vel. m/s 1.8557 3.0311 2.0348 3.1736 3.6318 4.3763

Att. ◦×10−3 94.237 140.22 103.11 146.06 185.46 193.93
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Table E.33: INS/GPS: ρ Updates, Tac. Grade IMUs, Mach 7

Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

Pos. m 6.4903 3.1435 6.7685 3.1578 1.6236 1.4001

1 Vel. m/s 0.0737 0.7550 0.0421 0.7912 0.0430 0.0411

Att. ◦×10−3 52.241 96.691 56.462 98.835 101.51 116.56

Pos. m 8.2089 4.8668 8.1591 4.5423 4.8222 3.9436

10 Vel. m/s 0.1098 0.8080 0.0757 0.8168 0.1050 0.0909

Att. ◦×10−3 55.871 97.965 60.713 99.925 109.16 118.43

Pos. m 10.186 7.6940 10.046 6.3402 8.2014 7.1209

30 Vel. m/s 0.1240 0.8879 0.1088 0.8468 0.1659 0.1490

Att. ◦×10−3 53.376 98.784 58.185 100.66 104.61 119.47

Pos. m 12.129 11.778 12.058 8.4607 12.403 10.988

60 Vel. m/s 0.1532 0.9708 0.1469 0.8818 0.2331 0.2168

Att. ◦×10−3 55.166 99.552 60.160 101.47 108.16 120.51

Pos. m 15.173 15.034 15.516 12.096 19.259 17.571

90 Vel. m/s 0.2107 1.0263 0.2113 0.9437 0.3485 0.3347

Att. ◦×10−3 56.485 101.30 61.602 103.34 110.76 122.89

Pos. m 20.581 20.547 21.493 18.289 29.872 28.842

120 Vel. m/s 0.3058 1.1246 0.3168 1.0536 0.5385 0.5486

Att. ◦×10−3 60.353 105.50 65.813 107.85 118.33 129.11

Pos. m 65.260 84.052 71.076 88.821 118.68 155.76

180 Vel. m/s 0.8604 1.8885 0.9319 1.9045 1.6439 2.0863

Att. ◦×10−3 71.762 120.57 78.416 124.32 141.01 155.38

Pos. m 133.05 173.27 146.43 187.94 254.47 334.23

240 Vel. m/s 1.4506 2.6366 1.5884 2.7361 2.8272 3.5799

Att. ◦×10−3 81.341 130.68 89.037 135.49 160.12 174.78

Pos. m 125.72 189.31 138.37 205.70 240.63 366.09

300 Vel. m/s 1.4457 2.6940 1.5824 2.7992 2.8152 3.6867

Att. ◦×10−3 80.152 130.08 87.724 134.83 157.76 173.61
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Table E.34: INS/GPS: ρ Updates, Tac. Grade IMUs, Mach 8

Settling Distance: 0 km 100 km 500 km

∆t State Units Error Cov. Error Cov. Error Cov.

Pos. m 5.8145 3.1507 6.0425 3.1574 1.6854 1.4473

1 Vel. m/s 0.0758 0.7596 0.0439 0.7927 0.0467 0.0435

Att. ◦×10−3 48.233 92.998 52.090 94.511 93.657 107.48

Pos. m 8.5636 4.9282 8.4419 4.5952 4.7636 4.0728

10 Vel. m/s 0.1161 0.8187 0.0815 0.8230 0.1148 0.1020

Att. ◦×10−3 49.537 94.103 53.826 95.458 96.778 108.90

Pos. m 9.7680 7.8781 9.6873 6.4150 8.4260 7.3441

30 Vel. m/s 0.1301 0.9080 0.1203 0.8574 0.1856 0.1680

Att. ◦×10−3 50.373 95.009 54.931 96.339 98.771 110.05

Pos. m 13.291 11.998 13.338 9.2909 14.277 12.469

60 Vel. m/s 0.1788 0.9936 0.1783 0.9085 0.2898 0.2645

Att. ◦×10−3 50.010 96.389 54.510 97.812 98.006 112.00

Pos. m 15.867 15.156 16.248 12.812 20.017 18.872

90 Vel. m/s 0.2371 1.0539 0.2434 0.9758 0.4060 0.3918

Att. ◦×10−3 53.753 98.838 58.626 100.45 105.41 115.64

Pos. m 26.862 29.905 28.437 29.216 41.732 48.458

120 Vel. m/s 0.4015 1.2765 0.4254 1.2239 0.7347 0.8485

Att. ◦×10−3 57.305 105.31 62.547 107.48 112.46 126.30

Pos. m 65.493 86.432 71.395 92.009 119.38 161.56

180 Vel. m/s 0.8905 1.9625 0.9686 1.9871 1.7118 2.2229

Att. ◦×10−3 67.304 117.58 73.609 120.98 132.37 148.90

Pos. m 92.039 135.98 100.91 147.03 172.71 260.57

240 Vel. m/s 1.1728 2.3885 1.2817 2.4605 2.2738 3.0722

Att. ◦×10−3 71.857 123.08 78.670 127.07 141.48 159.58

Pos. m 105.18 185.25 115.63 201.73 200.01 359.01

300 Vel. m/s 1.2368 2.5613 1.3534 2.6521 2.4029 3.4112

Att. ◦×10−3 70.362 123.12 77.023 127.11 138.52 159.66

391



BIBLIOGRAPHY

[1] Jekeli, C., Inertial Navigation Systems with Geodetic Applications , Walter de
Gruyter, New York, 2001.

[2] Farrell, J. A. and Barth, M., The Global Positioning System & Inertial Navi-
gation, McGraw-Hill, New York, 1999.

[3] Chatfield, A., Fundamentals of High Accuracy Inertial Navigation, AIAA,
Reston, VA, 1997.

[4] Titterton, D. H. and Weston, J. L., Strapdown Inertial Navigation, AIAA,
Reston, VA, 2nd ed., 2004.

[5] Levine, S. A. and Gelb, A., “Effect of Deflections of the Vertical on the Per-
formance of a Terrestrial Inertial Navigation System,” Journal of Spacecraft
and Rockets , Vol. 6, No. 9, 1969, pp. 978–984, See also AIAA 1968–847.

[6] Ritland, J. T., “Survey of Aided-Inertial Navigation Systems for Missiles,”
AIAA Guidance, Navigation and Control Conference, Boston, MA, Aug. 14-
16, 1989, AIAA 1989–3497.

[7] Parkinson, B. W. and Spilker, Jr., J. J., editors, Global Positioning System:
Theory and Applications Volume I , AIAA, Washington, DC, 1996.

[8] Parkinson, B. W. and Spilker, Jr., J. J., editors, Global Positioning System:
Theory and Applications Volume II , AIAA, Washington, DC, 1996.

[9] Brown, R. G. and Hwang, P. Y. C., Introduction to Random Signals and
Applied Kalman Filtering , Wiley, New York, 3rd ed., 1997.

[10] Thompson, E., Henry, K., and Williams, L., “Guinness World Records Rec-
ognizes NASA Speed Record,” Press release: 04-279, NASA, Aug. 30, 2004.

[11] Thompson, E., Henry, K., and Williams, L., “Faster than a Speeding Bullet:
Guiness Recognizes NASA Scramjet,” Press release: 05-156, NASA, June 20,
2005.

[12] Marshall, L., Bahm, C., Corpening, G., and Sherrill, R., “Overview With
Results and Lessons Learned of the X-43A Mach 10 Flight,” AIAA/CIRA
13th International Space Planes and Hypersonics Systems and Technologies
Conference, Capua, Italy, May 16-20, 2005, AIAA 2005–3336.

[13] Boyce, R., Gerard, S., and Paull, A., “The HyShot Scramjet Flight
Experiment—Flight Data and CFD Calculations Compared,” 12th AIAA In-
ternational Space Planes and Hypersonic Systems and Technologies , Norfolk,
Virginia, Dec. 15-19, 2003, AIAA 2003–7029.

392



[14] Smart, M. K., Hass, N. E., and Paull, A., “Flight Data Analysis of the HyShot
2 Scramjet Flight Experiment,” Vol. 44, No. 10, Oct. 2006, See also AIAA
2005–3354.

[15] Centre of Hypersonics, “HyShot,” The University of Queensland, Australia,
cited 24 Jan. 2007 <http://www.uq.edu.au/hypersonics/index.html?page
=19501>.

[16] “Air-Breathing, Scramjet-Powered Vehicle Tested,” News release, DARPA,
Dec. 15, 2005, cited 24 Jan. 2007 <http://www.darpa.mil/body/news/2005/
hyfly_test.pdf>.

[17] Jackson, K. Y., “Scramjet Engine Gears up for Flight Tests,” news@afrl Fea-
tures, AFRL, March 2006, cited 24 Jan. 2007 <http://www.afrl.af.mil/news/
mar06/features/flight_tests.pdf>.

[18] Shachtman, N., “Hypersonic Cruise Missile: America’s New Global
Strike Weapon,” Popular Mechanics , Jan. 2007, cited 24 Jan. 2007
<http://www.popularmechanics.com/technology/military_law/4203874
.html>.

[19] Matthews, R., Mobile Gravity Gradiometry , Ph.D. thesis, The University of
Western Australia, Dept. of Physics, 2002.

[20] Gleason, D. M., “Passive Airborne Navigation and Terrain Avoidance Using
Gravity Gradiometry,” AIAA Journal of Guidance, Control, and Dynamics ,
Vol. 18, No. 6, 1995, pp. 1450–1458.
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