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1. INTRODUCTION

Consider the discrete-time system of K competing queues with a single Bernoulli server as described
in [5, 8]. For one-step costs which are linear in the queue sizes, it is well known [4, 5] that there
exists an optimal policy which is of the strict priority type, and this under several cost criteria,
including the discounted and average cost criteria. In these situations, the search for optimal
policies simply reduces to the computation of a few parameters. Renewed interest over the past
decade in stochastic control problems with constraints led Nain and Ross [19] to investigate a simple
scheduling problem for the discrete-time system of competing queues: Let J.(7) and J4(7) be two
cost functions, associated with the one-step cost functions ¢ and d, when the system is operated

under the policy 7. A single constraint optimization problem can then be defined as
(Pv): MinimizeJ.(7) subject to the constraint Jy(7) <V

for some scalar V. When both costs ¢ and d are linear in the queue sizes, under the average cost
criterion, Nain and Ross [19] obtained the following optimality result: There exist two fixed priority
policies, say g and g, and a constant #* in [0,1] so that, at every step, it is optimal to flip a coin
with probability #* for heads, and to use g (resp. 7) if a head (resp. tail) is observed. The optimal

randomization bias n* is selected so as to saturate the constraint.

In view of such results, it is quite natural to inquire whether this structural result for the
optimal constrained policy can be extended, say to cover

(i) the situation where the discounted or the finite-time cost criteria would be used;

(ii) the scheduling problem associated with a natural extension of the competing queue problem,
namely the so-called Klimov system [14], where upon service completion the customer may
either be routed to one of the other queues or leave the system.

More generally, one can certainly wonder as to the conditions under which the solution to a con-

strained MDP does exhibit such a structure. The interest in establishing such a structural optimal-

ity result should be quite clear. Indeed, once established, the search for optimal policies is reduced

to the identification of the two policies and to the computation of the randomization bias.

We answer (i)-(ii) in the affirmative in Section 5. In the process, we develop in Section 3 a more
general methodology which applies to systems with “index-like” optimal policies. This is embedded
in the only “structural” assumption (A1), whereby an optimal policy for the unconstrained problem

with cost ¢ + 8d can be found from a fixed, finite set of policies, where this set is independent

of § € [0,1]. In Section 4 we show that the technical conditions apply to many MDPs, with
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finite, discounted and average cost criteria. In Section 5 we establish the equivalence between
the discounted Klimov system and open (or arm-acquiring) bandit problems. This establishes the
structural result for the Klimov system under the discounted cost criterion, and for all bandits
problems under mild conditions. Under slightly stronger assumptions, the structural result also

holds for the Klimov system under the average-cost criterion.

Of course, optimization problems under constraints are not new. The first such problem was
solved for the finite-horizon cost by Derman and Klein [9]. When J(7) is the average cost criterion,
the existence of optimal stationary policies under multiple constraints was established by Derman
and Veinott [10], and by Hordijk and Kallenberg [13], both for finite state space S and action
space U, including the multi-class case. Under a single class assumption and for a single constraint,
the existence of optimal stationary policies which are randomized at a single state was proved by
Beutler and Ross [6] for finite S and compact U, and by Sennott [22] for countable S and compact
U. Borkar [7] has obtained analogous results under multiple constraints when S is countable and
U is compact, and has indicated similar results for other cost criteria. The multiple constraint
case for countable S and countable U is treated by Altman and Shwartz [2]. Frid [11] solved the
discounted problem with a single constraint, using the Lagrangian approach. In [3], Altman and
Shwartz prove existence of optimal policies for finite S and U under the discounted and other cost
criteria, in the presence of multiple constraints; they also present computational algorithms for

these optimal policies.

Unfortunately, except for the finite case and the specific example in [1], there are no efficient
methods for the computation of optimal policies. The results alluded to in the previous paragraph
establish the existence of an optimal stationary policy which randomizes between some stationary
deterministic policies. However, except for the finite case, the search for the two policies to ran-
domize is over all stationary deterministic policies. Our methodology provides conditions under

which this search can be restricted to a finite set of policies.

A few words on the notation and conventions used in this paper: For any set E endowed with
a topology, measurability is always taken to mean Borel measurability and the corresponding Borel
o-field, i.e., the smallest o-field on E generated by the open sets of the topology, is denoted by
B(E). Unless otherwise stated, lim,, lim, and lim,, are taken with n going to infinity. Moreover,

the infimum over an empty set is taken to be oo by convention.



2. THE GENERAL MODEL

To set up the discussion, we start with a MDP (5, U, P) as defined in the literature [20, 21, 25].
The state space § and the action space U are assumed to be Polish spaces; the one-step transition
mechanism P is defined through the family (Q(z, u; dy)) of measurable transition kernels. The state
process {X;, t = 0,1,...} and the control process {U;, t = 0,1,...} are defined on some measurable
space (2, F) (which for sake of concreteness is taken to be the canonical space S x (U x §)*

equipped with the product topology). The feedback information available to the decision-maker
is encoded through the random variables (rvs) {H, ¢t = 0,1,...} defined by Hy 2 Xp and by
H, 2 (Xo,U0, X1,...,Ut—1,X¢) for all t = 1,2,...so that the rvs Xy, U; and H, take values in S,
U and H; 2 6x (U x ), respectively; we also define the information o-field F; by &, == o{H,}.

The space of probability measures on B(U) is denoted by M(U). An admissible control policy
7 is defined as any collection {m;, ¢t = 0,1,...} of mappings n; : H; — IM(U) such that for all
t =0,1,... and every Borel subset B of U, the mapping H; — [0,1} : hy — m;(hy; B) is Borel
measurable. The collection of all such admissible policies is denoted by P.

Let p be a given probability measure on B(S). The definition of the MDP (S,U, P) then
postulates the existence of a collection of probability measures {P™, m € P} on F such that
conditions (2.1)—(2.2) below are satisfied: For every admissible policy m in P, the probability

measure P™ is constructed so that under P7, the rv X, has probability distribution g, the control

actions are selected according to
P"[U: € B| 7] = nf(H; B), B eB(U) t=0,1,...(2.1)
and the state transitions are realized according to
P"[ X1 € A| FeVo{U}] = Q(X:, U; A), A € B(S9). t=0,1,...(2.2)

The expectation operator associated with P™ is denoted by E”.

Following standard usage, a policy = in P is said to be a Markov policy if there exists a family
{gs, t = 0,1,...} of Borel mappings ¢; : S — M(U) such that =;(+; H;) = g4(-; X;) P™a.s. for
all t =0,1,... In the event the mappings {g;, t = 0,1,...} are all identical to a given mapping
g: S5 — M(U), the Markov policy is termed stationary and is identified with the mapping ¢ itself.



3. A GENERAL CONSTRAINED MDP

We interpret any Borel mapping ¢ : S X U — R as a one-step cost function. In order to avoid
unnecessary technicalities we always assume ¢ to be bounded below. In fact, as will be apparent
from the discussion, there is no loss of generality in assuming ¢ > 0, as we do from now on. For
any policy 7 in P, we define J.(7) as the total cost (associated with ¢) for operating the system

under policy 7. Several choices are possible and include the long-run average cost

¢
A — 1
¢ =1li Tl X, Us)|, 3.1
I ST B |y 32X 1) (3.)
and the infinite-horizon $-discounted cost
J(m) S BT | Y Be(X,, Us)] , 0<B<1. (3.2)
s=0
The definitions (3.1)—(3.2) are all well posed under the non-negativity assumption on c.
Now, we consider two Borel mappings ¢,d : S x U — R, and for some scalar V, we set
Pyi={reP:Jy(r) <V} (3.3)

The corresponding constrained optimization problem (Py/) is now formulated as
(Pv): Minimize J.(-) over Py.

Implicit in this formulation is the fact that the cost criteria J.(-) and Jy(-) are of the same type.

For every 6 in [0, 1], we define the mapping ¢g : § X U — R4 by

co(z,u) £ Oc(z,u) + (1 - )d(z,u), =€ S,uel. (3.4)

We alleviate somewhat the notation by using Jg(7) to denote the total cost associated with cg
under policy w, whence Jyg(7) = Jo(7) for § = 1 and Jy(7) = J4(7) for § = 0. The discussion is

given under the following general assumptions (A1), where

(A1) There exists a finite number of Markov stationary policies g1,...,gr, such that

(A1l.a) The condition
. . A
71161; Jo(m) = v, Jo(ge) = J7(0), 6€]0,1] (3.5)
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holds true; and
(A1.b) For each £ =1,..., L, the mapping 6 — J4(g;) is continuous on [0, 1].

It is plain that under (A1), the mapping § — J*(6) is continuous on [0, 1]. Asin [1], the Lagrangian
problem is defined as the problem of minimizing J4(-) over the unconstrained set of policies P. We

define
N@) 2 {ee{l,....,L}: Jo(ge) = J*(0)}, 6 €[0,1]. (3.6)
Using (A1) we readily obtain the following properties: For each 6 in [0, 1], the index set N(6) is

always non-empty by virtue of (Al.a), and (A1l.b) implies

lim J(g¢) = lim J(ge) = J*(8) , €€ N(9). (3.7)
618 616

Furthermore, if N(8) reduces to a singleton, then N() = N(8) in some open neighborhood of 4.

To proceed, we set
n(6) £ min{n € N(0): Ja(gn) = min Ja(ge)}, 0 €[0,1]. (3.8)

If Jo(gn0)) = Ja(gn(oy) > V, then the problem (Pv) is not feasible and therefore possesses no

solution. Assuming feasibility from now on, we set

N
0" = sup{f € [0,1]: J4(gns)) < V}. (3.9)
If 6* = 0, then necessarily J4(gn()) < V, but we may have to entertain the possibility that

min{J.(g¢): 1 <L< L, Ju(ge) <V} > riengv{Jc(W) s Ja(m) <V}

since the Lagrangian problem may not provide enough information.

If 6* = 1, then (Pv) has a solution: Indeed, let 6; T 1 in (0,1] so that J4(gn,)) < V for all
i = 1,2,... by the definition of 8*. A converging subsequence, say 6; T 1, can always be selected
so that n(f;) — n* for some n* in {1,...,L}. In fact, we can assert n(8;) = n* whenever j > j*
for some j*. It is plain that n* is an element of N(6;) for j > j*, whence Jy, (gn+) = J*(8;). The
continuity of § — J*(#) implies that n* is an element of N(1), and since J4(g,~) <V, we conclude

that the policy g,~ solves (Pv).

From now on, assume 0 < * < 1. Let 6; | 6* in (0,1) and denote by @ an accumulation

point of the sequence {n(#;), i =1,2,...}. Similarly, let 8; T * in (0,1) such that Jalgne;)) <V
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and denote by n an accumulation point of {n(6;), j = 1,2,...}. Again, we have n(f;) = @ and
n(0;) = n for all ¢ and j large enough. By (A1.b), we see that both @ and n are elements of N(6*),
so that the equalities

Tor(9) = Jor (gm) = J*(6) (3.10)

must hold. Moreover, it is plain that

Ji(gn) <V < Ju(gr)- (3.11)
The first inequality follows by construction and (A1.b), whereas the second inequality results from

the construction and (3.8)—(3.9).

Next, we define the policies g, g and {g", 0 < 5 < 1}, as the Markov stationary policies given
by

e
(>

'y (3.12)

I

and
A
g"=ng+(1-n)g, nelol] (3.13)

Then ¢" is the simple randomization between the two policies g and § with randomization bias 7.

The identities (3.10)—(3.11) now take the form
Jo~(g) = Jo=(7) = J*(67) (3.14)

and

Ja(g) <V < Ja(9). (3.15)
At this point, we can introduce the condition (A2).
(A2) The mapping n — J4(g") is continuous on [0, 1].
Lemma 1. Under (A1)—(A2), the equation
Ja(g") =V, ne€o0,1] (3.16)

has a solution n*.

Proof. This is immediate from the fact that the mapping n — J4(¢") is continuous on [0, 1] and
from the inequality (3.15) which can written as Jy(g') <V < Ja(g%).
|



We further assume that conditions (A3)—(AS5) are enforced, where

(A3) The equality
Jo-(97) = Jo=(g) » m€[0,1] (3.17)
holds;

(A4) The equality
Toe (") = 0" J(g" ) + (1= 6")Ja(g™) (3.18)

holds; and
(A5) For every admissible policy 7 in P, the inequality
Jou (1) < 0" Jo(7) 4+ (1 — 6%)J4(7) (3.19)
holds.
Theorem 2. Under (A1)—(AS5), the policy g (where n* is a solution of (3.16)) solves the
constrained problem (Pv) provided 68* > 0.
Proof. We first note that
TH(0%) = Jo-(g™) (3.20)
= 6"Jo(g™ ) + (1 6°)Ja(g™) (3:21)

where (3.20) follows from (3.14) and (A3), whereas (3.21) is validated by (A4). On the other

hand, we have
Joo(m)2 JX(0%), mEP (3.22)
by virtue of (Al.a), and

Jo- (1) < 0°Jo(m) + (1 = 0%)J4(n), T€P (3.23)

by invoking (A5). By Lemma 1, the policy g”" is an element of Py since J4(¢" ) = V by construc-
tion, and upon combining (3.20)—(3.23), we get

0" Jo(m)+ (1 — 6*)Ju(m) > Joe(7) > O*Jc(gn*) +(1-6")V, 7eP (3.24)
It is now plain from (3.24) that

0*J(¢" ) < 0*J. (), mE Py (3.25)
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and the result follows since 8* > 0.

Theorem 2 and its proof remain unchanged if (A2) is replaced by the conclusion of Lemma 1,
namely that

(A2bis) There exists a solution to equation (3.16),
and if, in addition, (3.17) is assumed to hold only for = n*. However, (A2)—(A3) seem more
natural and hold under weak conditions, as established in Section 4. Moreover, usually, n* is not

known and therefore (A2)—(A4) are verified by establishing the conditions for all 5 in [0, 1].

We conclude this section by noting that the Markovian properties and the specific structure
of the cost criterion are not used in the proof of Theorem 2, in that the discussion applies to any
optimization problem which satisfies conditions (A1)-(A5). The only point which requires special
care is the construction of an “interpolated” policy (3.13).

In particular, consider the finite-horizon g-discounted cost

Jo(m) 2 ET

T
Zﬁsc(Xs,Us)} , 0<B8<1,T=1,2,.... (3.26)

5=0

The derivation of Lemma 1 and Theorem 2 holds verbatim, provided (A1) holds with the word
“stationary” omitted. Since the identification of a policy g with a function g : § — IM(U) does not

hold, (3.13) is interpreted naturally as

A —
9{ =ng,+ (1 -ng,, nelo,1]. t=0,1,... (3.27)



4. THE ASSUMPTIONS

In this section we discuss the assumptions (A1)-(Ab); we give concrete and verifiable conditions

for several cost criteria. A specific model is analyzed in Section 5.

We focus on three cost criteria. The infinite-horizon §-discounted cost (3.2) and the long-run
average cost criterion (3.1) are the most common criteria in applications. The are often approxi-
mated by, or serve as an approximation for the finite-time S-discounted cost criterion (3.26). The
discussion and methods apply, mutatis mutandis, to other situations as well. However, for the sake

of brevity, we shall not elaborate in that direction.

The finite-time cost criterion — Condition (A2) holds if the costs are bounded since then the
costs are polynomial in 7. More generally, the same argument establishes (A2) if the costs are

merely bounded from below (or from above).

Assumption (A3) holds if (3.5) is valid for all initial conditions, since then a backward-
induction argument proves that for any n in [0,1], ¢7 is optimal for the Lagrangian problems.
Finally, (A4)—(AB) are always valid since under the non-negativity assumption on ¢ and d, the
equality

Jo(m) = 0J.(7)+ (1 - 0)Jq(x), 8¢€]0,1] (4.1)

holds for every admissible policy « in P. Condition (A1.b) immediately follows.

The discounted cost criterion — Condition (A2) holds if the costs are bounded since then the
total discounted cost can be approximated by a finite number of terms in (3.2) uniformly in 7, and
the argument for the finite case applies. More generally, under the same conditions as for the finite
cost, the same argument applies provided a finite approximation is valid. This is the case if the tail
of the infinite sum is bounded for # in [0, 1]. This condition holds for all but the most pathological

systems.

Assumption (A3) holds under rather weak conditions. For example, suppose the action space
is compact and the costs bounded above. Assume further that for each z in 9, the mappings
u — ¢(z,u) and u — d(z,u) are lower-semi continuous and that the transition kernel Q(z;-;dy)
is weakly continuous (that is, whenever ¢ : § — IR is bounded and continuous, the mapping
u — [c(y) dQ(z,u,dy) is continuous on U for each & in S). Then any policy with actions in the
optimal set (determined through the dynamic programming equation) is optimal for the Lagrangian
problem [21]. This implies that (3.17) holds whenever (3.5) is valid for each initial condition. Note

that in this case boundedness from above replaces boundedness from below.
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Finally, (A4)—(AS5) always hold since, as in the finite case, (4.1) holds, and condition (A1.b)

immediately follows.

The long-run average cost criterion — Condition (A2) was established when the state space
S is finite in [16], and for the queueing system discussed in the next section [18]. A general method
for verifying (A2) is available in [23]. In particular, this condition holds whenever the Markov
chain is ergodic under both g and G, provided the costs are integrable under the resulting invariant
measures [16].

Condition (A3) can be established using dynamic programming arguments, as in the case of
the discounted cost, although the requisite conditions are more stringent [21, 25]. For some systems
(such as the one described in Section 5), (A3) can be established by direct arguments [5, 18].

Finally, we observe that for every admissible policy = in P, the inequalities

t
— x| 1
Jo(m) = T, E et > eo(Xs,Us)
s=0

i t
= Tim, {HE" Hil Zo (X5, Us)| + (1= 0)ET ﬂ_l-—l ; d(Xs, Us)] }
— 1 < — 1 <
<OTm B7 | ;0 (X, Us)} + (1 - OimE™ ot ; d(X,, Us)}
=0J.(7)+ (1= 0)Ja(n), 6€l0,1] (4.2)

always hold, so that condition (A5) is always satisfied. The validity of (A4) is more delicate to
establish. In [23], the authors give conditions under which the long-run average cost criterion (3.1)
is obtained as a limit under stationary policies. Under these conditions, (A4) holds, and (A1.b)

follows.

5. BANDITS AND QUEUES

The purpose of this section is to show the equivalence between the discrete-time Klimov problem [14,
17] and arm-acquiring bandit processes [24]. Continuous-time versions of this result are discussed
in [15, 25]. Since both systems were discussed in detail elsewhere, we shall give only short, informal
descriptions. Throughout this section, the rv £ and the i.i.d. sequence {A(t), ¢ = 0,1,...} taking

their values in IN¥ are held fixed. We introduce the finiteness assumption

(F) El&i] < oo and E[Axt)]2Ai<oo, k=1,2,.. K.
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Arm-acquiring bandits.

The formulation is given in the terminology of queueing systems in order to facilitate the compar-
ison: Customers of type 1,2,..., N arrive into the system; a customer of type n can be in one of
the states {1,2,...,5,}. It is convenient to lump together customers sharing both type and state

[24]; we shall say that a customer of type n in state s, 1 < s < S,,, resides in queue k, where
n—1
k=Y Si+s (5.1)
i=1

and where K = ZnN=1 Sn. With this convention, the number of customers initially in the system
is £, and new customers arrive to the queues according to the arrival process {A(?), t = 0,1,...}.
At most one customer can be given service attention at a time. If a customer from queue k is
served in time slot ¢, then at the end of the slot, with probability pi, this customer moves to queue
£,1 < k,£ < K. All other customers do not change state—in other words, they remain at their
queues. The routing rvs are assumed to form an i.i.d. sequence. It is clear that the vector z in
IN¥, where z is the number of customers in queue k, serves as a state for this MDP provided
arrival, service completion and routing processes are mutually independent. This together with the
assumption on the routing mechanism implies that at each queue, the events that a customer leaves
the system can be modeled by i.i.d. Bernoulli rvs with queue-dependent parameter. The action
u = k is interpreted as service at queue k, u = 0 as idle server, with the provision that z; = 0
implies u # k, k = 1,2,..., K. If a customer in queue k is served, then reward r(k) is incurred.

The reward to be maximized is of the discounted type (3.2), and takes the form

Jr(m; ) 2gr

iﬂsr(Us)] , 0<pB<1 (5.2)

which is well defined since 7 is bounded.

The classical description of the arm-acquiring bandits requires Y2 ¢Pre=1foreach1 <k < K.
However, this restriction is a purely semantic one since the effect of departures from the system can
always be captured through the introduction of an absorbing queue with small (negative) reward

for service, so that it is never served.
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The discrete-time Klimov problem

Customers of type 1,2,..., K arrive to their respective queues according to the arrival process
{A(t), t = 0,1,...}. The number of customers present at time 0 is given by £. The server can
attend at most one queue at a time. If the server attends a non-empty queue, say queue k,
1 £ k £ K, during time slot ¢, then at the end of the slot the following sequence of events takes
place:
One customer leaves that queue with probability y; and, with probability 1 — ux no customer
leaves that queue;
If a customer has left queue k, then with probability f, it joins queue ¢, 1 < £ < K, and it
leaves the system with probability 1 — Eﬁ__l Pre-

Forl <k, < K, we set pgy 2 piPre for £ # k and piy 2 1—pr(1—=pgr). Using this transformation,
the values of u; are henceforth taken to be 1. Then clearly, assuming arrival, service completion
and routing processes to be mutually independent, the dynamics of this system are equivalent to

the dynamics of the corresponding arm-acquiring bandit system.

The state of this system is again the vector z in IN¥ where z, denotes the number of customers

in queue k, 1 < k < K. The cost for the Klimov problem is defined by

K
c(m,u):c(w)échxk, zeNF uw=0,1,...,K .
k=1

for some constants cy,...,cx (which are usually assumed non-negative). The objective is to mini-

mize the discounted cost associated with this one-step cost, viz.

J(r) B E

Zﬁsc(xs)] , TEP. (5.3)
s=0

Following the cost-transformation technique of [4, 3] it is straightforward to derive the identity

_E<9) g B
Jo(m) = -5 + i ﬁ)ZC(}\) -7 _ﬁJ&(ﬂ') , TEP. (5.4)
where the one-step cost ¢ is defined by
A K K
z,u)= Z 1{u = k)ér , & 2 [ck - Zpkgc,:| A<kE<K (5.5)
k=1 =1
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where action u is defined as in the bandit problem. As a result, for each fized 8 in (0, 1), we have
argmin J.(7) = argmax J(7) . (5.6)

The cost function é depends only on the queue being served, and so is a legitimate cost function

for the bandit problem.

The equivalence result

Theorem 3. Any discrete-time Klimov problem defines an arm-acquiring bandit system with the

same dynamics. Under (F'), they possess the same optimal policies, with costs related by (5.4)-
(5.5) (with r(k) 2 ¢k, 1 <k < K). Conversely, any arm-acquiring bandit system defines a Klimov

problem with the same dynamics. Moreover, Under (F), if the vector r 2 (r(1),r(2),...,r(K))

is in the range of I — P, then the cost in the Klimov problem can be defined so as to satisfy the

transformation (5.4)—-(5.5) (with & 2 r(k), 1 < k < K) and consequently, the same policies are

optimal for both systems.

The proof follows from the preceding discussion, upon observing that if r is in the range of

I — P then there is a one-to-one mapping between (¢q,...,cx) and (é1,...,¢x).
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Constrained Optimization

The best-known class of problems for which the hypotheses (A1)-(A5) hold is the class of arm-
acquiring (or open) bandit processes [24] described above. For consistency with the notation of
Section 3, we let ¢ and d still denote the two cost functions (although in this case they are inde-

pendent of z).

Lemma 4. For the arm-acquiring bandit problem under the discounted cost criterion, conditions

(A1)-(A5) hold.

Proof. It is well known [24] that the optimal policy for this system possesses an index-structure.
Thus an optimal policy (for any 0 < 6 < 1) chooses only which queue to serve. Therefore such
a policy is uniquely determined by an ordering of the queues, where a queue is served only if
queues with higher priority are empty. Since there is a finite number K'! of such policies, (Al.a)
follows. Since the costs are bounded and the action space is discrete, the argument in Section 4

now establishes the result. | ]

We call the Klimov problem stable if p 2\ (I — P)e < 1 (where e is the element of IN® with
all unit entries, i.e., e = (1,...,1)"). A policy is called non-idling if 2; = 0 implies u # k.

Lemma 5. Consider the average-cost case. Assume (F) and that the Klimov problem is stable.
Moreover, let ¢, > 0,1 < k < K. (i) If {ge, £ = 1,2,...,L} is a collection of stationary non-
idling policies, then (A1.b) and (A2)-(AS5) hold. (ii) If P is diagonal then (Al.a) holds, where
{g¢, £ =1,2,...,L} is a collection of strict priority policies.

Proof. Under the conditions in (i), Makowski and Shwartz [17, 23] establish (A2), whereas (A4)
follows from [23]. As discussed in Section 4, (A5) holds, and (A1.b) follows from (A4). Finally,

under the regularity conditions established in [17], standard dynamic programming techniques yield

(A3). Part (ii) is established in [4, 3]. [ |

When P is diagonal, Theorem 2 now implies the existence of an optimal policy which randomizes
between two strict priority policies, and we recover the results of [19]. In general, if we strengthen
(F) to require finite second moments, then [17, 18] establish that for every stationary non-idling
policy m, the average cost J.(7) of (3.1) is obtained as a limit. From general results on MDPs
there exists an optimal stationary policy for the average Lagrangian problem. Since the costs are

positive, sample path arguments imply that this policy can be assumed non-idling. A standard
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Tauberian theorem [12] now implies that for each stationary non-idling policy, the average cost is
the limit of the normalized discounted cost. Since (A1l.a) holds in the discounted case (Lemma 4)
where g¢1,...,g1 are strict priority policies, (Al.a) holds also for the average problem under the
above conditions. Theorem 2 now implies the existence of an average cost optimal policy which

randomizes between two strict priority policies.

Thus the result of Nain and Ross [19] extends to the Klimov problem, and this under both the

discounted and the average cost criteria.
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