
Experiments with Digital Video Playback �Richard Gerber and Ladan GharaiInstitute for Advanced Computer StudiesDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742frich, ladang@cs.umd.eduUMD Technical Report CS-TR-3551, UMIACS TR 95-103AbstractIn this paper we describe our experiments on digital video applications, concentrating onthe static and dynamic tradeo�s involved in video playback. Our results were extracted from acontrolled series 272 tests, which we ran in three stages.In the �rst stage of 120 tests, we used a simple player-monitor tool to evaluate the e�ectsof various static parameters: compression type, frame size, digitized rate, spatial quality andkeyframe distribution. The tests were carried out on two Apple Macintosh platforms: at thelower end a Quadra 950, and at the higher end, a Power PC 7100/80. Our quantitative metricsincluded average playback rate, as well as the rate's variance over one-second intervals.The �rst set of experiments unveiled several anomalous latencies. To track them down weran an additional 120 tests, whose analysis led us to �nd the locus of the system's bottlenecks.They also let us conclude that a software-only solution was su�cient for good video playbackon the systems under observation { provided that the operating system is tuned accordingly.In the next step we attempted to achieve this goal, by implementing our own video playbacksoftware and accompanying device-level handlers. Our emphasis was on achieving a controlled,deterministic coordination between the various system components. An additional set of 32experiments were carried out on our platforms, which showed signi�cant improvements in ourquantitative performance measurements, as well as in visual quality.Keywords: Digital Video, Performance Analysis, Measurements, Experiment Construction,Operating Systems.�This research is supported in part by ONR grant N00014-94-10228, NSF grant CCR-9209333, and NSF YoungInvestigator Award CCR-9357850. 1

1 IntroductionThere is usually a wide asymmetry between the workstation on which a digital video is mastered,and the target platforms on which it is played. Video editing systems contain expensive peripheralslike full-screen, full color digitizers, high-capacity RAID disk con�gurations, etc. Due to the qualityrequirements involved, this kind of equipment is fully warranted: a broadcast-quality video demandsa resolution of 640 � 480, a display rate of 30 frames per second, and a color depth of 24 bits perpixel. Some simple multiplication yields a transfer rate of 27 Mbytes per second, or roughly 50Gbytes of storage for a one-half hour production.On the other hand, a target system may be an average-level home computer, maybe possessing2 Gbytes of disk space, with peak transfer rates of 2.5 Mbytes per second. The computer's displaylogic will usually not include high-end video de-compressor functionality; thus video decompressionwill be done in software, as will bu�er management, synchronizing the video and audio tracks, etc.Therefore, the inevitable �nal step in editing is the attempt to reconcile the vast di�erencesbetween the producer's workstation, and those of the potential consumers. The problem of tuning avideo production to a target platform { and tuning the platform to the video { demands somethingakin to a traditional \load-balancing" solution, applied with both quantitative and qualitativemetrics. But this raises two questions:1. Since a video can be tuned in a variety of ways, which methods lead to the best results onconsumer-grade platforms?2. While only one digital video gets released, there are many potential platforms on which it willget played. Each has its own resource constraints and processing abilities. So in order toachieve smooth, deterministic playback quality on each, a certain amount of dynamic tuningcan be done as well. Is this currently done in commercial software, and if not, can it be done?As for static tuning, all down-sampling schemes include some sacri�ce in quality { e.g., onecan control the amount of signal loss used in digital compression, or decrease the color-depth,the digitized rate, frame size, etc. The theory is that if any of these options are chosen, thendisk transfer rates are reduced, as are storage requirements, CPU utilizations, demands for RAMbu�ers, overload sensitivity { with the result being a smoother, more deterministic video. But itis not at all apparent which option (or combination of options) should be selected to achieve thegreatest bene�t. Indeed, as we show in this paper, it is not even true that a such \quality-reducing"measures necessarily lead to a reduction in dropped frames.As for dynamic tuning, assume that video V is mastered at 30 frames per second (henceforthabbreviated as \fps"), and that platform A can play it with minimal dropping of frames. Thelesser-endowed platform B may be able to play a statically down-sampled, 15fps version of V .Does this imply that B can play the 30fps version, and on-the-
y tune it down to 15fps? If so, the30fps version can be the released version. If not, then perhaps the 15fps version should be releasedinstead.We attempted to quanti�ably answer these two questions via a controlled series of of 2722

experiments, which we ran in three stages. In the �rst stage we used a player-monitor tool toevaluate the e�ects of various static tuning approaches. The results unveiled several anomalouslatencies, and to track them down we ran an additional 120 tests, which uncovered where thebottlenecks were. Based on these results, we re-tooled the system's video playback software, andincorporated our changes into a new player-monitor, whose goal was to achieve good dynamictuning. We evaluated its performance with 32 more experiments, and we compared them with theperformance of commercial-grade software.This paper contains the results of our tests, their analysis, and the system architectural changesthat we made based on our conclusions.1.1 Metrics and VariablesBefore setting out, we had to: (1) develop sound, quantitative metrics which loosely corresponded to\qualitative performance;" (2) select suitable, comparable platforms on which we could benchmarkour experiments; (3) �nd a set of test videos with a controlled spectrum of content (e.g., di�erentcolor and light densities, sound quality, scene transitions, etc.), which would permit making somegeneral conclusions from our results; and (4) identify a set of test variables, whose instantiationswould generate our \test runs."(1) Metrics. When analyzing clusters of similar experiments, we found two metrics that stoodout as roughly correlating to visual quality. They are: (a) total frames displayed vs. total framesin movie, and (b) the display rate's variance (measured in one second quanta) over the course ofthe movie.When comparing di�erent \runs" of a single movie, the �rst metric gives an indication of averageplayback quality over the course of each run. Letting e denote a run of a digital movie, we denoteFT (e) as the movie's total, \preferred" number of frames that should be displayed throughout therun. Alternatively, we let FD(e) be the measured number of frames that actually get displayed. Ift(e) is the movie's duration (in seconds), we can extract the following properties:RPREF(e) def= FT (e)t(e) (Preferred Rate)R(e) def= FD(e)t(e) (Mean Rate)That is, RPREF(e) is the digitized rate of the movie in fps, and R(e) is the e�ective, mean rate ofthe movie's playback performance in an experiment e.But FD(e) and R(e) tell only one side of the story, since a test may experience a given R(e) ina variety of ways. It may be due to a nearly uniform rate throughout { for example, when every-other frame is played. Alternatively, there may be large \spikes" during which very few framesare displayed. A third scenario is realized when there are be repeated, radical oscillations, i.e.,high-rate intervals, followed by low-rate intervals, etc.For example, Figure 1 shows three trials, all of which possess about the same R, but which3

Frames/Sec

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Frames/Sec

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Frames/Sec

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00Figure 1: Playing Three Digital Versions of a Video: (1) Smooth, (2) Spikes and (3) Ocillationshow very di�erent quality. To distinguish between these cases (and others), we use the frame rate'svariance (per second quantum). That is, letting Fi(e) be the number of frames displayed duringthe ith second of e, then R�2(e) is de�ned as:R�2(e) def= Pt(e)i=0 (R(e)� Fi(e))2t(e)(2) Suitable, Comparable Platforms. We selected two Apple Macintosh computers to be ourtest platforms { Quadra 950's (at the lower end), and Power PC 7100/80's (at the higher end). (InSection 3 we detail the di�ering speci�cations of these platforms.)Our decision to use Macintoshes was preceded by a \qualitative" investigation into the videocapabilities of di�erent contemporary, a�ordable workstations.1 While there is a wide variety ofworkstations currently available, Apple's products still seem to deliver the best \software-codec"video.2 This is partially due to the fact that over the years, Apple has invested heavily in optimizingthe QuickTime and QuickDraw libraries.3 But perhaps of greater importance is the fact that atthe application level, Mac tasks are largely nonpreemptive and event-driven, while multi-threadingis usually a cooperative a�air.While these \features" lead to a very awkward programming style (every application programessentially becomes a system program too), they also end up providing an interference-free platformfor evaluating video applications.But using the Macintosh platform, with its proprietary operating system and codec drivers,presented a unique challenge throughout this work: We had to develop a true exogenous testingstrategy, relatively independent of the innards of the system. As it turns out, we were able to1We intentionally excluded specialized high-end equipment, such as SGI's graphics workstations.2A codec is a compression/decompression scheme. A software codec is a set of algorithms in which video com-pression and/or decompression is performed without special hardware.3QuickTime includes a standard API for interfacing with codecs, and with functions to build, store and playmovies. QuickDraw encompasses a set of functions which draw single frames to the screen.4

?

Signal
160x120

Size Requirements
Space/TransferFrame RateCodec QualityKeyframes

Per Second

30

 1

Quality

100%

 0%

10

15

320x240

Figure 2: Instantiating the Variablesincrementally deduce, and then pinpoint where various bottlenecks lay. We also were able toimplement key optimizations { but only after analyzing the results of a great many tests.(3) Test Videos. There was a natural way to control all of the variables involved, which wasrecord, digitize, edit, and assemble our own movie with our own video equipment. This decisiongave us ultimate control over content, and allowed us to get a su�ciently wide spectrum of changesin motion, light, sound, etc.We were then able to compare the quality of the computer-based, digital experiments with ouroriginal, analogue Hi8 clips played on a high-quality VCR.(4) Variables. Once we had our digital \master," we produced sixty di�erent copies, with eachpossessing a set of uniquely instantiated variables. We identi�ed �ve variables which play dominantroles in determining the quality of the �nal result (Figure 2): codec type, frame size, digitized rate (orRPREF), spatial quality and keyframe distribution. The last two are artifacts of digital compression:spatial quality is the amount of original signal loss permitted in each compressed frame, whereasthe keyframe distribution is the distribution of frames which are stored as compressed, still pictures{ while the remainder are processed via interpolation relative to the keyframes.Other variables, such as sound quality, were kept �xed. (Throughout we maintained 16-bitstereo sound, sampled at 44kHz.)While all of these variables have an e�ect on the ultimate playback quality (and potentiallythe transfer rates required), the actual contribution of each is not easy to determine { hencecomplicating the static tuning problem. Picture size, for example, is immediately identi�able,and most people would agree that \bigger is better." Yet while too big a frame size will lead tountenable data rates, depending on the other parameters chosen, reducing it may not lead to asizeable reduction. As for frame rates, in some presentations the human eye cannot perceive thequalitative di�erences between playback rates of 30, 20 or 15 fps { it is usually a function of typeand amount of inter-frame motion.Moreover, these variables are not at all independent, and the interplay between them is highly5

nonlinear. Codec selection always has an e�ect on tolerable keyframe distributions, as well as onacceptable spatial quality. Yet the actual relationships are usually content-dependent, and will varyover the course of a presentation. Hence the need for some degree of dynamic tuning as well { evenin the highest-end system.1.2 Remainder of the PaperThe remainder of this paper is organized as follows. In Section 2 we survey some of the relatedsystems work in digital video. Then in Section 3, we describe how we generated our test cases, andhow we controlled the variables involved. In Sections 4 we describe our �rst series of test results, andwe analyze the signi�cance of each variable. In Section 5 we track down the bottlenecks realizedin the �rst series, using a second series of experiments. In Section 6 we give the design of ourimproved video-playback software, and we present the results we obtained with it. We conclude inSection 7.2 Related WorkTo date, the area of digital video has been treated largely as a problem of system design andimplementation, without the experimental focus which we take in this paper. Nonetheless, somerecent papers touch on many of the same issues we raise in our experiments, and they come tosome similar conclusions.Stone and Je�ay's study of delay and jitter management [8] is highly relevant to our workon dynamic tuning. As they note, a network's display latency e�ectively determines client's framerate, and that latency is, for obvious reasons, inversely proportional to permissible display rates. Asthey have found in networked tra�c { and as we have found in dealing with disks and compressionsoftware { a balance must be found between a stream's jitter and its delivery rate. Stone and Je�ayprescribe a queue monitoring policy for dynamic adjustment of display latency, which supports low-latency conferences with acceptable gap-rates.A related issue is achieving graceful degradation of service in the event of network congestion.One approach to this problem is for the client to adaptively scale the playback rate by deterministi-cally dropping some of its frames. If this is done properly, the radical oscillations seen in Figure 1(3)should not occur, and ideally R�2(e) will be close to zero. This is the approach taken in the theNemesis [5] project, which uses a predictive prefetch algorithm to scale a client's input streams.One limitation is the exclusive reliance on the JPEG codec { thus, the prefetch algorithm assumesthat any frame may either be retrieved or dropped. This type of rate-based scaling is signi�cantlymore complicated when applied to codecs with inter-frame dependencies, such as Cinepak, MPEG,etc.The system described in [1] scales not only the rate, but also the spatial resolution of a videostream. This is done by packaging three versions of every frame, with each o�ering a monotonicimprovement over the previous one. The �rst is a 160x120 abstraction of the original picture; the6

next is the residue term which, when added to the 160x120 image, achieves a resolution of 320x240.The �nal version is another residue which can be added to the 320x240 image, resulting in full640x480 resolution. At any point in the process the codec can stop improving the current frame,and proceed to the next. Of course, this
exibility is achieved by using a custom codec, which wasdesigned speci�cally for this purpose.Our focus on IO and data paths is echoed in [2, 3], which proposes a means of optimizing thetransmission of compressed videos. While a network may be able to transmit the video frames,the destination station may end up being the bottleneck. Display quality may decrease not as aresult of network capability, but rather due to insu�cient I/O throughput. In this work a splicemechanism is introduced, in which an application can associate a kernel-level data source with itssink point; this allows for a direct point-to-point data path between source and sink, obviatingunnecessary kernel interference.Two additional playback-enhancing techniques concentrate on optimizing disk performance;these are disk scheduling and block placement. Simulation studies conducted in [7] show that goodperformance for single streams can be realized by both CSCAN and SCAN-EDF { a hybrid ofthe traditional SCAN technique, and the \earliest-deadline-�rst" strategy used in real-time threadschedulers. Moreover, both algorithms can support a number of concurrent streams, and bothhave reasonable response times for aperiodic requests. Another technique, the Group SweepingScheme [4], is a hybrid of round-robin and SCAN. A number of \groups" are scheduled via round-robin, whereas within each group the SCAN algorithm is used. To a large extent, this allows forcompromising between the disk-head's ability to \sweep up" physically neighboring blocks, and thetemporal requirements imposed on concurrent, time-based media streams.Our experiments could not test this important aspect of the system architecture. The reason isfairly simple: if one wishes to use o�-the-shelf disks, then one must live with the vendor-supplied,proprietary policies which are hard-coded into controller's micro-program. These include blockscheduling, lookahead-bu�er maintenance, local caching, etc. On the positive side, however, diskcontrollers are increasingly being optimized for \multimedia systems" { which usually translatesinto good \sustained" read/write performance over contiguous blocks.But there is an obvious relationship between disk scheduling and placement, and placementis an area where the multimedia system designer can have an immediate e�ect. The trade-o�sare enunciated in [4]: contiguous placement is optimal for most disk-schedulers, but it requiresallocating a huge \chunk" of consecutive tracks to each �le. This policy is only manageable forread-only �les, and it can introduce signi�cant external fragmentation. On the other hand, scatteredplacement is more space-e�cient, and streamlines the management of read-write �les. The downsideis that a large number of intra-�le seeks will be required { which can inject a large performancepenalty.In this paper we are concerned with testing read-only performance, and each test is run undernearly optimal disk conditions. We �rst de-fragment the entire �le system, and then we optimizeeach �le into single chunks of contiguous blocks.Finally, the abilities of our player-monitor are similar to that described in [9], where MPEG-7

encoded video streams can be generated expressly for providing statistical information on the data,such as distribution of ATM cells per frame, auto-correlation and cell inter-arrival times.3 Experiment Construction and Variable InstantiationIn this section we provide an overview of the methods used in constructing our test videos. Ourobjective was to procure a su�ciently wide spectrum of changes in light, color and motion within{ and between { the scenes. To this extent, about 50% of our test video consists of brightly-lit,exterior scenes, with the remainder shot indoors. The longest scene has a duration of 13 seconds,and is mostly static, whereas there is 15 second \collage" of active short scenes, each of whichconsumes roughly 1 second of time. About 15% of the movie contains dialogue set over backgroundmusic (to check synchronization), while the remaining \soundtrack" contains only music.The digitized clips were edited using Adobe Premiere 4.0, with which we also inserted titlesequences. The �nal \cut" is 80 seconds, with RPREF set to 30 fps, and it formed the \digitalmaster" for each test case. Without belaboring the details, we carried out the following steps:(1) Using a Hi8 video camera to photograph about 3-4 hours worth of video \clips," which includedscenes with di�erent levels of light, color, motion, etc.; (2) Using a JPEG hardware codec todigitize the clips into a 7100/80 { and storing them on a 2.1G disk; (3) Using Adobe Premiere 4.0to assemble an 80 second master, which contained su�cient contrast to stress the capabilities ofcompression and playback software; (4) Employing sound-processing software to sample and �lter\background music" from CDs, and inserting them in the movie at appropriate levels; (5) Usingthe Premiere/Digitizer combination in conjunction with the Quicktime libraries to generate 60software-digitized copies from our master { each copy representing a separate instantiation of ourvariables; and (6) Archiving our 60 �les on six CDs (Figure 3).We were then able to run the tests and monitor their our testing tools, which we built for thispurpose.3.1 Hardware and SoftwareTable 3.1 presents the equipment we used. While most of the speci�cations are self-explanatory,a few comments are relevant here.Digitizer: The Radius VideoVision Studio (or VVS) is essentially a hardware JPEG codeccapable of realtime, 30fps full-screen digitization and compression (or equivalently, de-compressionon playback). The VVS is capable of digitizing frame sizes 640x480 with little signal loss, and no\drop-out" frames. JPEG compression possesses a large degree of parallelism, which a hardwarecodec can easily exploit.All of this stated, we were unable to use this equipment at its peak potential { our 2.1Gbyte diskwas not fast enough to keep up with the required transfer rates, nor was it su�ciently large to storea reasonable amount of footage. After determining the ability of the system via trial-and-error,we found a reasonable compromise between quality and capacity: digitizing at 30fps, but with a8

Master Copy

Cinepak

Video

JPEG

30fps

15fps

1/2

1/4

100%

75%

100%

75%

1k
3k

5k
10k

Figure 3: Test Movie Instantiation.Computing EquipmentTest Platform 1: PPC 7100/80CPU: MC601 80MHz, Floating PointMemory: 24MbInternal Hard Drive: 696 Mbyte, IBM DSAS3720CD: Apple 300i (2-speed, Internal)OS: System 7.5, Minimal ExtensionsDisk Drivers: From FWB Test Platform 2: Quadra 950CPU: MC68040 33 MHz, Floating PointMemory: 16MbInternal Hard Drive: 234Mb, Quantum LP2435CD: Apple 300i (2-speed, External)OS: System 7.5, Minimal ExtensionsDisk Drivers: From FWBEssential Peripherals Video EquipmentExternal Hard Drive: 2.1Gbyte, Seagate ST12400NDigitizer: Radius VideoVision Studio 2.0CD Writer: Pinnacle Micro RCD 1000Tape Drive: Exabyte 2000 Cameras: Sony CCD TR700s Hi8 FormatTime Code, HiFi Stereo, S-video In/OutVCR: Sony EVS7000 Hi8 FormatTime Code, Single-Frame Advance/RetractEdit Marks, PCM Audio Dubbing, S-videoSoftwareMetrowerks Gold C/C++ Compiler (PPC/68K Compiler/Debugger)Adobe Premiere, Adobe Photoshop (Video and Photo Editing Tools)Macromedia SoundEdit 16 (Sound Sampler and Filtering Tools)Assorted Quicktime Tools (For \massaging" Quicktime Movies)TimeWare Movie Monitor (Our monitoring program to test playback)Table 1: Hardware and Software Used to Generate and Run Experiments9

frame size of 320x240, and with a small amount of signal loss. For the sake of our experimentswe considered this to be our \baseline," ranking it at \100% quality." All subsequent software-compressed copies were generated from the VVS-digitized \master" at this baseline quality.The outstanding performance of the hardware codec raises the following question: if silicon cando the job so well, why should we bother measuring software-codec playback performance? Oneanswer is obvious: most users will not invest in a digitizer that costs more than the computer itself.But the real answer lies in the asymmetry between the producer's system and that of the videoconsumer. While a real-time JPEG capture card may be suitable for a high-priced video work-station, if one is purely interested in transmitting and viewing videos, then such an arrangementis probably the worst alternative. JPEG cards do not perform inter-frame compression, and theyproduce signi�cantly more data than most systems can accommodate. On the other hand, full-�eld, full-color, realtime MPEG (and Motion-JPEG) decompression cards are still very specializedperipherals, and are quite expensive.But there is even a better reason why we should be interested in purely software schemes. Aswe show in the sequel, when the system software is tuned appropriately, a good software-codec ismore than capable of delivering high-quality video. Conversely, if the operating system imposeshigh latencies on large IO transfers, even the fanciest hardware codec will probably fail to live upto its rated potential.Hard Disks: Our \main" disk drive was a 2.1 Gbyte Seagate \Barracuda," which we used fordigitizing our clips, as well as in monitoring the playback quality of each test run. Using a varietyof commercial benchmarking tools, we measured the Barracuda's normal transfer rates as follows:Read Transfers: 2790 Kbytes/secWrite Transfers: 3100 Kbytes/secAll of the disk drivers were installed using FWB's Hard Disk Toolset, and we also used FWB'sutilities for formatting and partitioning. In particular, we disabled re-mapping bad sectors to theend of the disk; rather, we con�gured the drivers to simply skip them. This minimized the amountof head movement in both sampling and playback.3.2 VariablesNext we produced 60 test �les, each of which containing an instantiation of our variables: codectype, frame size, digitized rate (orRPREF), spatial quality and keyframe distribution. Anther variablethat could have been altered { but was not { was sound quality. Across all experiment it remained�xed, at 16-bit stereo sampled at 44kHz.Formally, the variable space ranges overCodec� Rate�KFD � Size� Qualitywhere1. Codec 2 fC;V; Jg denotes the compression scheme used. Here \C" is Radius's Cinepak10

1 sec 1 secFigure 4: One-Second Strip of Frames, with Rate = 15 and KFD = 5. Apple Video (Left) andCinepak (Right).codec, \V" is the \Apple Video" codec (sometimes known as \Road Pizza"), and \J" standsfor QuickTime's frame-by-frame, still-JPEG codec.2. Rate 2 f15; 30g denotes preferred playback rate, or RPREF.3. KFD 2 f1; 3; 5; 10g denotes the keyframe distribution used. For example, if KFD = 5 thismeans that every �fth frame is a keyframe. (Note that when the \J" codec is used, KFD isalways set to 1, since all frames in a JPEG movie can be considered keyframes.)4. Size 2 fhalf ; quatg denotes the frame size along one axis, where \half" is 320x160 pixels, andwhere \quat" is 160x80.5. Quality 2 f75; 100g denotes the degree of spatial quality that is maintained in the re-digitizedtest �le. When Quality = 75, this implies that the codec attempts to keep 75% of the originalquality, and Quality = 100 means that the codec is used at its \best possible" setting.Our test instances have labels like \C/30/3/half/75," which denotes a movie re-digitized in theCinepak codec at 30 fps, with one keyframe every third frame, in a frame size of 320x160 with a75% quality index.Codecs and Keyframes. JPEG [6] is basically a compression standard for still-pictures, whichcan produce nearly lossless digital copies. It turned out to be a poor performer at playback time, andwe used it as our \high watermark" for image quality, while simultaneously as a \low watermark"for motion quality.Whereas still-JPEG involves processing each frame individually, the Apple Video and Cinepakcodecs also employ inter-frame (or \temporal") compression. In this scheme keyframes are com-pressed as still pictures, while the other frames are interpolated relative to their preceeding keyframesas in \Video," or relative to their preceding neighboring frames as in \Cinepak" (Figure 4).QuickTime does this in a rather crude (but e�ective) manner: when temporally compressingApple Video frame k relative to its keyframe i, k's pixel-map is simply subtracted from that of i,and the result is compressed. This type of compression can often be a time-consuming process. Forexample, each re-compression of our 80-second test in Cinepak required about two hours.11

QuickDraw IO Compression ManagerandComponent ManagerMovie ToolBoxApplication
JPEG Video Cinepak MPEG DigitizerCards

QuickTime ApplicationMovie ToolBoxFigure 5: Quicktime Structure (left), and its interface to Movie Monitor I(right)3.3 System FactorsWe eliminated the e�ects of disk fragmentation. Whenever we ran a test sequence, we �rst refor-matted our disk drive, then we copied a set of our test CDs onto the disk, after which we againre-optimized the entire disk (which eliminated any external and internal fragmentation). We alsoused the same physical disk on both of our test machines, hand-carrying it back and forth betweenthem.Finally, every test was run at least �ve times; surprisingly, our metrics R and R�2 showed verylow deviation across the trials. We attribute this to the tight interaction between Mac applicationprograms and the operating system; i.e., the system rarely \steals" CPU cycles from an applicationwithout the application yielding time.4 Test Series I: Static TuningWe now turn to our �rst set of experiments, in which we tested all possible \static tuning" decisionsmade over the domains of our variables. The results were obtained by a player-monitor tool, whichuses the high-level video playback API included in Quicktime { i.e., the same functions used inalmost all movie players. We �rst describe the monitor's architecture, and proceed to analyze thetest results.4.1 Movie Monitor IQuickTime presents a uniform API for Mac media applications4 , and it includes internal inter-faces to most of the commonly used codecs, as well as to third party digitizer cards. QuickTimehas a layered architecture (Figure 5), and an application interacts with it via functions contained4QuickTime for Windows is also available for playback on PCs, and some of QuickTime's functionality has alsobeen ported to Unix. 12

in either the Movie ToolBox or the Compression Manager. As a rule, the typical movie player willdeal exclusively with the ToolBox, whereas a video editing program (like Adobe Premiere) will alsodirectly invoke the lower-level codec controlling functions in the Compression Manager.A QuickTime �le (called type MooV on the Mac) consists of two parts: (1) a hierarchal datastructure containing frame-by-frame information about the movie (e.g., size, duration, �le location);and (2) the movie data itself. All of the information in the data structure can be extracted viafunction calls to the Movie ToolBox.Our Movie Monitor I is just a typical, though somewhat scaled down, video player for theMacintosh. Like most players, it repeatedly calls the ToolBox function MovieTasks() to retrieve,bu�er, decompress and display frames, and to synchronize the audio and video streams. Themonitor also maintains running information on the frames that get displayed, and those that aredropped. It keeps this frame-by-frame data in a running bit-vector associated with each movie;after testing the movie, the bit-vector is used to generate a set of playback-performance measures(such as FD, R�2 , R, etc.).Although the Movie Monitor is e�cient { and the code requires a minuscule amount of memory{ whenever it executes it turns into a memory hog. In fact, it grabs all of the memory currentlyavailable on our systems (usually about 20Mbytes). This is for a good reason: the greater itsmemory partition, the more bu�ers can be a�orded to the QuickTime decompression software. Weset out to test the capabilities of video playback performance, not the speed of garbage collection.4.2 Test ResultsThe results of our initial half-screen tests are listed in Figure 15 (in the Appendix); to betterunderstand the \highlights" of the half-screen tests, we present their R data in Figures 6-7.Platform and Codec Variables. One need not delve into the numbers to make some coarseobservations, which stand out in the bar charts. First, excluding a few notable exceptions (to whichwe return shortly), the PPC tests show superior results to those run on the Quadra. Another fairlyobvious observation is that JPEG is a very poor performer, while Cinepak shows the best averageperformance in most test cases.Compression Variables. As for the e�ects of compression, it appears that reducing spatial qualityhardly leads to uniform bene�ts across the tests; moreover, the results of temporal compressionare highly unpredictable. But there are two groups of trials on which these factors seem to have amore pronounced impact: the PPC/Video tests digitized at 30 fps, and the Quadra/Cinepak testsdigitized at 30 fps.Examining all of the tests, the conclusion we reached is as follows: that when R was over(34)RPREF, additional spatial and temporal compression failed to raise it further (but only realizeda degradation of quality). This is a bit surprising: comparing the size of the \C/30/1/half/100"video to that of \C/30/10/half/75," we see a reduction from 65 Mbytes to 45 Mbytes, i.e., thetransfer-rate is reduced by over 30%.The other observation is that there are many instances where even with a large amount of spatial13

R
R

Cinepak @30 fps, KFD 2 f1; 5; 10g Apple Video @30 fps, KFD 2 f1; 5; 10g JPEG @30 fps0102030 1 10 1 105 5KFD 100 75 1 5 10 1 5 100102030KFD 100 75 1 10102030KFDCinepak @15 fps, KFD 2 f1; 5g Apple Video @15 fps, KFD 2 f1; 5g JPEG @15 fps1 5 1 50102030 100 75KFD14.1 1 5 1 53001020KFD 100 75 1 10102030KFDFigure 6: R of All Half-Screen Runs Played on PPC 7100/80 o� of Disk. Keyframes are Numbered1-10. Solid Bars Denote Quality = 100, Striped Bars Denote Quality = 75R
R

Cinepak @30 fps, KFD 2 f1; 5; 10g Apple Video @30 fps,KFD 2 f1; 5; 10g JPEG @30 fps1 5 10 1 5 100102030 100 75KFD 1 5 10 1 5 100102030KFD 100 75 0102030 1 1KFDCinepak @15 fps, KFD 2 f1; 5g Apple Video @15 fps,KFD 2 f1; 5g JPEG @15 fps0102030 1 5 1 5KFD 100 75 0102030 1 5 1 5100 75KFD 0102030 1 1KFDFigure 7: R of All Half-Screen Runs Played on Quadra 950/33 o� of Disk. Keyframes are Numbered1-10. Solid Bars Denote Quality = 100, Striped Bars Denote Quality = 7514

R Codec 2 fC;Vg, Rate = 30, Quality = 100, Codec 2 fC;Vg, Rate = 15, Quality = 100,KFD = 1, Size 2 fhalf; quatg KFD = 1, Size 2 fhalf; quatg0102030 size 12 14 12 14Cinepak Video 0102030 size Cinepak Video12 14 12 14Figure 8: R High-Quality PPC 7100/80 Runs, Where Screen Size is Altered. Solid Bars DenoteSize = half, Striped Bars Denote Size = quatand temporal compression, poor performance poor abysmal. For example, comparing the Quadra'streatment of \V/15/1/half/100" to that of \V/15/5/half/75" { a reduction in size from 139 Mbytesto 82 Mbytes { we end up playing 353 more frames, which still fails to achieve decent visualquality. This is also evident when comparing the 25% quality reduction from \J/15/1/half/100"to \J/15/1/half/75," which reduces the �le size from 109 Mbytes to 45 Mbytes! The performance,however, still does not rise above 4.12 fps (on the PPC) or 1.79 fps (on the Quadra).The E�ect of Frame Size. Since a 160x120 �eld contains 1/4 the number of pixels of a 320x240�eld, one would expect the \quat" video track sizes (and transfer rates) to be much lower than thecorresponding \half" track sizes. And examining the data in Figure 15 and Figure 16, one seesthat this is often true: going from \C/30/1/half/100" to \C/30/1/quat/100" we get a video trackreduction from 51 Mbytes to 15 Mbytes; from \V/30/1/half/100" to \V/30/1/quat/100" we geta reduction from 124 Mbytes to 32 Mbytes; and \J/30/1/half/100" reduces from 95 Mbytes to 32Mbytes in \J/30/1/quat/100." (Note that the sound track remains a constant 14 Mbytes.)But watching a video on a 160x120 screen is hardly satisfying; thus the reduced size should,one hopes, pay o� in many fewer dropped frames. Does it?Figure 8 compares the e�ects of frame size on selected 30fps and 15fps trials. In the case ofApple Video at 30fps, the answer is \yes." In fact, the e�ective playback rate R increases four-foldfrom 6.6 to 25.36 { echoing the 75% reduction in transfer rate. As for the other samples, the resultis less clear. And while Cinepak's rate improves from 22.96 fps to 27.32 fps, most people wouldprefer the larger frame size to a relatively small increase in the display rate.As for the 15fps runs, the Apple Video and Cinepak codecs show only minimal improvement;e.g., the signi�cant frame-size reduction buys Cinepak a rate increase of 0.18 fps, from 14.11 to14.29. That is, once RPREF is set to 15 fps, substantially lowering the data-rate by reducing framesize clearly abuts against the law of diminishing returns.But this raises an interesting, perplexing question: Exactly what does it take to achieve the full15fps playback rate? We return to this question shortly.15

Frames Displayed Per Sec

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time (sec)

Frames Displayed Per Sec

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time (sec)Figure 9: C/30/1/half/100 (left) and C/15/1/half/100 (right)
SCSI codec

display

deviceFigure 10: System components involved in video playback.The E�ects of Rate Changes. Considering the Rate variable, the Apple Video statistics inFigures 6-7 show situations where 15 fps tests realize a higher playback rate than their corresponding30 fps versions. This is true in all of the Video test results on the Quadra, and strikingly so in the100%-quality runs on the PPC. Even though this is a very fast CPU, with a su�ciently good disk,the QuickTime de-compression logic still seems to \thrash" on the 30 fps version. It does betterwith more deterministic (albeit lower) playback rates.A similar situation arises when a reduction in RPREF leaves R almost unchanged, but radicallyenhances the movie's visual quality. In Figure 9, we compare the results of two Quadra/Cinepakplayback runs, \C/30/1/half/100" (with R = 13:62) and \C/15/1/half/100" (with R = 13:91).Tracking the on-line behavior of the two, it is easy to see why we also use variances to comparetwo runs with similar average behavior. Visually, the 15 fps version looks smooth and continuous,while the 30 fps playback is jerky (as its graph portrays).5 Test Series II: Tracking the BottlenecksWhat accounts for the high amount of jitter realized in some of the 30fps trials? Three potentialbottlenecks suggest themselves: (1) the display manager, (2) the codec or (3) the IO channelbetween the hard drive and the codec (Figure 10).We considered Case (1) unlikely, since intuitively it seemed that decompressing a frame wouldbe much more time-consuming than simply displaying it. Also, the codec's output gets streameddirectly to QuickDraw (for screen updates), and QuickDraw is probably the most �nely-tuned part16

of the Macintosh. To substantiate this intuition, we set up a small test: we measured the CPUtime required to decompress a series of 1200 frames; then we measured the time it took to bothdecompress and display them. Within the granularity of the platform's clock, the two times weremore or less the same.So exploring Case (2), perhaps the de-compressor is much slower than the IO. In this case, thefollowing scenario could play out: while the QuickTime drivers attempt to retrieve frames at a rateof 30fps, the frames can only be decompressed at a rate of, say 20fps. The result is a repetitivepurge of the input queue, followed by a (belated) request to transfer a new set frames from disk.But Case (3) { i.e., unduly slow IO transfers { could also account for the regular oscillation indisplay rates. The premise here is that whenever a codec's input bu�er contains compressed frames,they can quickly be de-compressed and drawn on the screen. On the other hand, IO transfers willresult in prolonged periods of the bu�er being empty.A 15fps test demands only one-half of the display rate of its 30fps counterpart, and a pro-portionally lower IO transfer rate (see Figure 15). So it will put less pressure on both potentialbottlenecks { which probably explains the 15fps's low-amplitude waveform (in Figure 9).But it seems that the bottlenecks involved in the 30fps tests could be reduced if there wereat least some degree of dynamic tuning, or perhaps more controlled coordination between thecomponents involved. That is, if the platform is only capable of playing a 30fps movie at 20fps,then all of these components should be tuned to work at a nearly constant, deterministic rate of20 fps.The RAM Tests. Our measurements presented us with even more surprising anomalies. Consider,for example, the half-screen/PPC/Cinepak runs listed in Figure 15. Note that all of the 30fps testsdisplay at least 1800 out of 2400 total frames in the 80 second segment. Why, then, is it the casethat not a single 15fps test displays all (or almost all) of its 1200 frames? Since the platform\proves" that it can run at a rate of 22fps when \asked" to run at 30fps, one would expect it tobe capable of running at 15fps \upon request." This phenomenon is somewhat analogous to theopposite - i.e., the case in which a movie plays better at 15fps than it does at 30fps.Clearly there is little dynamic tuning going on here; moreover, resources are frequently goingunused. This is surprising in a robust and hand-tuned piece of software such as Apple's Quicktime,and it motivated us to pursue the next series of tests { to test the ability of the codecs alone, withoutIO. Thus we simply extended Monitor I to play our test movies in eight 10 second segments { witheach segment �rst prefetched into RAM, and then played out of RAM. During an IO transfer (whichis typically quite brief, but noticeable), the monitor stops its movie-progress clock, and then resetsit after it the transfer is done. The net result is a tool which measures the performance of the CPUand the display drivers, but not the IO subsystem.Figure 11, and the �gures in the Appendix, illustrate the di�erences between the disk-basedtests, and those played out of RAM. The contrast is striking: the PPC Cinepak and Video versionsplay almost every single frame when run out of RAM. This is true for all of the runs. Mostincredibly, the Apple Video test climbs from R = 6:60 to R = 29:48.17

R
R

PPC 7100/80 @ 30fps PPC 7100/80 @ 15fps0102030 Cinepak Videodisk RAM disk RAMQuadra 950/33 @ 30fps Quadra 950/33 @ 15fps0102030 Cinepak Videodisk RAM disk RAMFigure 11: 320 � 240, Highest temporal and spatial compression, Disk vs. RAM playback. Resultsfrom the disk runs are portrayed with solid bars, whereas the RAM runs are in striped bars.With one set of notable exceptions, the Quadra's performance improvement is not as uniform.The exceptions are all of the Cinepak 30 fps runs, which climb to nearly perfect display rates like29.98, 30.00, 29.85, etc. In fact, the Cinepak tests do marginally better on the Quadra than on thePPC (but the di�erences are minute, since they are nearly perfect).As for the Apple Video tests, the performance increase is marked, but not as much as on thePPC. This leads us to conclude that the decompression algorithm is su�ciently compute-intensiveto stress the 68040/33, while the 7100 can handle the half-screen decompression easily.Can we conclude that the disk is the bottleneck? \Common wisdom" dictates that this is true,since (1) it is a physical device, limited by seek times, rotational delays, etc., and (2) it is connectedvia a SCSI bus, not the local bus.However in this case the numbers do not lead to such a conclusion. The PPC hardware, forexample, a�ords the ability to perform asynchronous, DMA'd block transfers. As we mentionedin Section 3, our disk is capable of handling read transfers at 2.7 Mbytes/sec. Since the largest�le is \only" 138 Mbytes, the maximum demand from any of our tests is 1.7 Mbytes/sec { a largenumber, to be sure, but not one that will choke the system, even including the DMA's memory\cycle-stealing." So it seems that while IO may be asynchronous and DMA'd, it is not su�cientlyasynchronous for the QuickTime codecs to run at their peak rates.Moreover, we hypothesized that if a full pipeline e�ect were achieved between the system el-ements in Figure 10, there would be no di�culty in delivering near-30fps data rates on the PPC18

PatrollerFeedBackPredictor Scheduler IOCodec Request QueueFrame QueuePlayout CallBack SoundCallBackSoundCardQuickDraw Figure 12: Movie MonitorIIsystem. To test this hypothesis, we built a new player-monitor which e�ectively bypasses the MovieToolBox API. In doing so, we had to support our own bu�ering and IO functionality, as we describein the next section.6 Test Series III: Dynamic TuningOur new player-monitor (Movie Monitor II) was designed to dynamically tune digital videos, in partby streaming data from the SCSI disk through the codec software. Accomplishing this objectiverequired implementing our own IO handlers, memory bu�ering, and performing low-level codeccontrol via QuickTime's Compression Manager. In this section we describe the structure of theMovie Monitor II, and then we present the results of the tests we ran with it.6.1 The Player StructureFigure 12 depicts the structure of our player-monitor, which is composed of four threads and twocallback functions. As the �gure shows, the system operates as a simple feedback loop. Based onthe player's past performance, the Predictor thread selects a set of frames to be played in the future,and inserts their frame numbers into the Request Queue. The IO thread removes them, looks uptheir corresponding �le locations, and initiates the appropriate asynchronous IO commands for theSCSI manager. If there are requests for neighboring frames, the IO thread will attempt to bundleas many neighbors as possible within a single IO transfer. By bundling adjacent frames the IOthread (and all associated SCSI handlers) can execute less frequently; this CPU time can be betterused by activities such as decompression. But when frame transfers are bundled, none of them canbe processed until the entire bundle arrives. For this reason the IO thread only bundles when itgets su�ciently ahead of playout.When an IO operation completes, its callback function preemptively executes like an interruptservice routine. It inserts a pointer to each transferred frame into the Frame Queue. They sub-19

sequently get removed by the Playout Thread which, according to its real-time movie clock, willeither display the associated frames, or just discard them. If the frames have been delivered ontime, then they get decompressed using the Compression Manager's codec interface, and displayedvia QuickDraw.The �nal thread used in processing video is called the Patroller. It is responsible for ensuringthat none of the outstanding frame requests for the IO are outdated { lest frames end up gettingtransferred needlessly.Part of the Playout Thread's job is to update feedback information for the Predictor, which isdone at every time interval �. (For the results displayed in the sequel, � was set to 12sec.) Thefeedback is in the form of a predicted playout rate for the next interval, and the Predictor uses it todynamically tune its prefetch rate. This scheme is partially aided by the scheduler, which ensuresthat the Predictor gets at most most 12 second ahead of the Playout thread.Let t be a multiple of �, and let PR(t) be the predicted playback rate for the time interval[t; t + �]. Then if we let R(t) be the rate that the Playout thread actually achieved during theinterval, PR(t+�) is calculated as follows:PR(t+�) = " �R(t) + (1� �)PR(t) when R(t) < PR(t)min(R(t) + c;RPREF) when R(t) = PR(t)where for the purposes of our experiments, we set � = :85 and c = 1. In other words, when playbackfalls behind its predicted rate, we exponentially average the old prediction with the achieved rate.(This is to smooth out sporadically large frame sizes, or abnormally high decompression times.)But when playback meets its prediction, we gradually ratchet up the new prefetch rate, so thateventually the highest potential quality can be realized.The objective of our design is to let the system achieve a steady state, so that IO and playbackare always working in parallel, at their full capacity. This means the Playout thread should neverhave to wait for a frame { the IO should always have prefetched it ahead of time, while the Playoutthread was processing a previous frame.Keyframes. Our scheme is signi�cantly complicated by the existence of keyframes; e.g., if akeyframe is dropped, then the the interpolated sequence following has to be discarded. Thus, whilePR(t) is the current predicted rate, the Predictor thread cannot simply fetch frames at a constantfrequency. First a decision is made whether an entire sequence will be avoided. If not, its keyframeis requested, as are selected interpolated frames within the sequence. The Playout thread mayend up only decompressing { but not playing { the keyframe, so that it can be used to display itsdependent, interpolated frames.Memory Management. We chose to implement our own memory management, and we used asimple �xed-size bu�ering scheme. At initialization time, the player-monitor determines how muchmemory M it can allocate, after which it con�gures its bu�er pool. Using a rough rule of thumbwe decided that if possible, the number of bu�ers n should be able to accommodate 1 to 2 seconds20

of video; this translates to 30 bu�ers for 15fps movies, and 60 bu�ers for 30fps movies.As for the bu�er size s, it should be su�ciently large for the IO thread to frequently bundle itstransfers. We attempt to set s so that between 3 and 5 average-sized frames can be bundled, andso that s can hold the largest frame in the entire video.Letting B be our bundling factor, fmax be the size of largest frame, and favg be the averageframe size, we attempt to reconcile all of our memory constraints by solving for B, s and n in(1) max(fmax; B � favg) � s(2) s � n �M(3) 1 � B � 5(4) RPREF � n � 2 � RPREFFor the tests run in this paper, our system initially sets n to 2 �RPREF, and then maximizes B overequations (1)-(4). With such a scheme Monitor II ends up using signi�cantly less memory thanMonitor I.Sound. The Mac comes equipped with an asynchronous sound card, which handles the physicalprocessing of digital sound. Our player interacts with this device via a simple double-bu�eringscheme. When one bu�er is almost �nished being played, the sound card triggers a callbackroutine, and then switches to the other bu�er. The callback initiates an IO transfer for anotherchuck of sound. Unlike video sound samples cannot be dropped, and so the IO thread gives thempriority.6.2 Test ResultsThis time we con�ned our attention to the higher-quality videos, excluding the 160x120 cases, aswell as those of 75% spatial quality. Thus our narrower domain was:Rate 2 f15; 30g; Codec 2 fC;V; Jg; Size = half; Quality = 100; KFD 2 f1; 3; 5; 10gFigures 13,14 and 19 summarize results we obtained. On the PPC we obtained perfect (or nearperfect) playout for all Cinepak and Apple Video movies. Overall, the 30fps PPC/Cinepak testsimproved by about 6fps, while the 30fps PPC/Video tests improved by 19-23 fps. In particular,the highest quality Apple Video test jumped from R = 6:6 to R = 29:36. In fact here we canhardly claim that the gains are due to dynamic tuning, since almost every frame is played in everymovie. Rather, a better design allows the components to be truly asynchronous, and achieve ahigher degree of pipelining.On the other hand, dynamic tuning is tested on the slower Quadra 950/33. Relying on its ownlower-level control, our Monitor II does a far superior job than Monitor I, which uses the proprietarycode in the Movie ToolBox. Signi�cantly, the highest quality Quadra/Video tests improves fromR = 3:39 to R = 14:41, and other tests show similar improvement. While 14fps is still not 30fps,it is a de�nite improvement over 3fps. Further, we no longer see an inverse relationship between21

Frames Displayed Per Sec

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time(Sec)PPC: C/30/1/half/100 Frames Displayed Per Sec

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time(Sec)PPC: V/30/1/half/100
Frames Displayed Per Sec

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time(Sec)Quadra: C/30/1/half/100 Frames Displayed Per Sec

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time(Sec)Quadra: V/30/1/half/100Figure 13: Comparison of playback schemes, for 30fps movies. Solid lines denote MonitorI anddashed lines denote MonitorIIRPREF(e) (preferred rate) and R(e) (mean rate).Our rough numerical analysis proved to be correct. If a video's data transfer requirements canbe sustained by the SCSI disk, then asynchronous IO should never create a bottleneck. DirectDMA'd transfers into the player's bu�ers should not consume appreciable CPU time, thus it canbe dedicated entirely to decompression.Our results all indicate that this is what is happening. Both codecs achieved near-perfectplayback rates on the PPC, where the processor is capable of keeping up with both codecs' CPUrequirements. However on the slower Quadra, the Cinepak movies were able to achieve higher ratesthan their Apple Video counterparts. This is because the Apple Video codec is more compute-intensive.We attribute the improvements in Monitor II to its almost classical producer-consumer struc-ture. The IO thread { playing the role of producer { constantly supplies a steady
ow of framesto be consumed by the Playout thread. It is never forced to \wait" for the arrival of a frame,which results in higher display rates with lower variance. This translates directly into better visualquality.7 ConclusionIn this paper we reported results of three sets of experiments. The �rst tested a range of staticvideo tuning methods. They also unveiled several anomalies { one of which was that low-ratemovies often had superior playback quality to their higher-rate counterparts. To understand why,we ran a second set of tests, which tested the performance of the individual components involved.We concluded that many of the videos would realize far superior playback quality, if only IO and22

Frames Displayed Per Sec

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time(Sec)PPC: C/15/1/half/100 Frames Displayed Per Sec

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time(Sec)PPC: V/15/1/half/100
Frames Displayed Per Sec

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time(Sec)Quadra: C/15/1/half/100 Frames Displayed Per Sec

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time(Sec)Quadra: V/15/1/half/100Figure 14: Comparison of playback schemes, for 15fps movies. Solid lines denote MonitorI anddashed lines denote MonitorIIcodec operations were su�ciently pipelined.In the next step we attempted to achieve this goal, by implementing our own video playbacksoftware and accompanying device-level handlers. Our emphasis was on achieving a controlled,deterministic coordination between the various system components. An additional set of 32 experi-ments were carried out on our platforms, which showed signi�cant improvements in our quantitativeperformance measurements, as well as in visual quality.In the future, we hope to achieve the same improvements with high quality, full screen digitalvideos. A 30 fps video with a frame size of 640x480 will put signi�cantly greater pressure on thesystem's resources, and dynamic tuning will play an even more prominent role.References[1] Navin Chaddha, Gerard A.Wall, and Brian Schmidt. An End to End Software Only ScalableVideo Delivery System. In Proceedings of the Workshop on Network and Operating Systems forDigital Audio and Video (NOSSDAV 95, 1995.[2] Kevin Fall. A Peer-to-Peer I/O System in Support of I/O Intensive Workloads. PhD thesis,University of California at San Diego, 1994.[3] Kevin Fall and Joseph Pasquale. Improving Continuous-Media Playback Performance with In-Kernel Data Paths. In Proceedings of the First International IEEE Conference on MultimediaComputing and Systems, pages 100{109, 1994.[4] D.James Gemmell, Harrick M.Vin, Dilip D.Kandlur, P.Venkat Rangan, and Lawrence A.Rowe.Multimedia Storage Servers: A tutorial. IEEE Computer, pages 40{49, May 1995.23

[5] Howard P. Katse� and Bethany S.Robinson. Predictive Prefetch in the Nemesis MultimediaInformation Service. In ACM Multimedia Proceedings, pages 201{209, 1993.[6] Gregory K.Wallace. The JPEG Still Picture Compression Standard. Communications of theACM, 34(4), 4 1991.[7] A.L. Narasimha Reddy and James C.Wyllie. IO Issues in a Multimedia System. IEEE Computer,pages 69{74, March 1994.[8] Donald L. Stone and Kevin Je�ay. An Empirical Study of Delay Jitter Management Policies.Multimedia Systems, 2(6):267{279, 1995.[9] Toshiyuki Urabe, Hassan Afzal, Grace Ho, and Pramod Pancha Magda El Zarki. MPEGTool:an X Window-Based MPEG Encoder and Statistics Tool. Multimedia Systems, 1(6):220{229,1994.

24

A Additional Test ResultsTest Movie Size PPC QuadraCodec/FPS/KFD/Size/Quality Total Video FT FD R R�2 FD R R�2C 30 1 half 100 65668948 51556948 2400 1837 22.96 5.30 1090 13.62 29.56C 30 3 half 100 55288196 41176196 2400 1884 23.55 5.17 1323 16.54 31.15C 30 5 half 100 53200812 39088812 2400 1882 23.52 7.55 1341 16.76 28.59C 30 10 half 100 51599160 37487160 2400 1893 23.66 8.63 1315 16.44 29.67C 30 1 half 75 56272532 42160532 2400 1868 23.35 6.65 1066 13.32 33.66C 30 3 half 75 48114560 34002560 2400 1978 24.73 5.25 1461 18.26 25.09C 30 5 half 75 46467008 32355008 2400 2015 25.19 5.49 1557 19.46 24.22C 30 10 half 75 45253496 31141496 2400 2038 25.48 5.70 1607 20.09 24.17V 30 1 half 100 138782648 124670648 2400 528 6.60 17.97 271 3.39 1.91V 30 3 half 100 126319334 112207334 2400 809 10.11 39.94 255 3.19 1.74V 30 5 half 100 123699495 109587495 2400 847 10.59 42.59 267 3.34 2.24V 30 10 half 100 121666111 107554111 2400 802 10.03 44.64 218 2.73 1.05V 30 1 half 75 110761808 96649808 2400 994 12.43 29.94 336 4.20 1.16V 30 3 half 75 89538819 75426819 2400 1446 18.07 25.38 388 4.85 7.66V 30 5 half 75 85251859 71139859 2400 1430 17.88 27.29 471 5.89 22.98V 30 10 half 75 81892471 67780471 2400 1551 19.39 24.11 507 6.34 39.47J 30 1 half 100 94238136 80126136 2400 313 3.91 0.29 112 1.40 0.24J 30 1 half 75 76101834 61989834 2400 325 4.06 0.28 124 1.55 0.25C 15 1 half 100 39892376 25780376 1200 1129 14.11 1.04 1113 13.91 1.99C 15 3 half 100 34932804 20820804 1200 1148 14.35 0.57 1117 13.96 1.60C 15 5 half 100 33894160 19782160 1200 1140 14.25 0.76 1117 13.96 1.60C 15 1 half 75 35187128 21075128 1200 1139 14.24 0.75 1117 13.96 1.60C 15 3 half 75 31257064 17145064 1200 1142 14.28 0.69 1116 13.95 1.78C 15 5 half 75 30448024 16336024 1200 1142 14.28 0.69 1116 13.95 1.78V 15 1 half 100 76406147 62294147 1200 1083 13.54 2.92 593 7.41 8.49V 15 3 half 100 71468196 57356196 1200 1102 13.78 1.98 724 9.05 9.19V 15 5 half 100 70419248 56307248 1200 1097 13.71 1.81 747 9.34 9.44V 15 1 half 75 62437907 48325907 1200 1144 14.30 0.71 692 8.65 7.08V 15 3 half 75 53301189 39189189 1200 1129 14.11 1.49 894 11.18 8.36V 15 5 half 75 51404010 37292010 1200 1138 14.22 0.82 945 11.81 7.66J 15 1 half 100 109158425 95046425 1200 209 2.61 0.41 63 0.79 0.17J 15 1 half 75 45082267 30970267 1200 330 4.12 0.76 143 1.79 0.17Figure 15: PPC 7100/80 and Quadra 950/33, 320 � 240 { Played o� Disk, MonitorI
25

Test Movie Size PPC QuadraCodec/FPS/KFD/Size/Quality Total Video FT FD R R�2 FD R R�2C 30 1 quat 100 29766828 15654828 2400 2186 27.32 2.94 2157 26.96 8.37C 30 3 quat 100 27746068 13634068 2400 2166 27.07 4.43 2149 26.86 9.03C 30 5 quat 100 27310408 13198408 2400 2189 27.36 3.55 2192 27.40 7.84C 30 10 quat 100 26985084 12873084 2400 2194 27.43 3.37 2173 27.16 6.88C 30 1 quat 75 29449976 15337976 2400 2185 27.31 3.76 2176 27.20 8.15C 30 3 quat 75 26442288 12330288 2400 2190 27.38 3.46 2171 27.14 8.68C 30 5 quat 75 25860228 11748228 2400 2193 27.41 3.02 2185 27.31 8.44C 30 10 quat 75 25421516 11309516 2400 2193 27.41 3.17 2166 27.07 6.36V 30 1 quat 100 46998831 32886831 2400 2029 25.36 5.93 1903 23.79 8.92V 30 3 quat 100 42843008 28731008 2400 2084 26.05 4.94 1968 24.60 11.82V 30 10 quat 100 41322935 27210935 2400 2107 26.34 5.19 2037 25.46 9.22V 30 1 quat 75 38400471 24288471 2400 2129 26.61 3.64 2023 25.29 8.52V 30 3 quat 75 32259404 18147404 2400 2155 26.94 4.04 2103 26.29 9.60V 30 10 quat 75 30045289 15933289 2400 2174 27.18 3.31 2144 26.80 7.69J 30 1 quat 100 78918203 64806203 2400 616 7.70 1.01 177 2.21 0.37J 30 1 quat 75 36138726 22026726 2400 1006 12.57 3.27 444 5.55 1.12C 15 1 quat 100 21939432 7827432 1200 1143 14.29 0.67 1124 14.05 1.24C 15 3 quat 100 21037560 6925560 1200 1138 14.22 0.77 1122 14.03 1.39C 15 5 quat 100 20823272 6711272 1200 1136 14.20 0.88 1119 13.99 1.42C 15 1 quat 75 21780904 7668904 1200 1146 14.32 0.61 1120 14.00 1.26C 15 3 quat 75 20319956 6207956 1200 1144 14.30 0.66 1122 14.03 1.39C 15 5 quat 75 20029612 5917612 1200 1143 14.29 0.67 1119 13.99 1.42V 15 1 quat 100 30546740 16434740 1200 1146 14.32 0.61 1149 14.36 0.80V 15 3 quat 100 28887319 14775319 1200 1141 14.26 0.71 1124 14.05 1.24V 15 1 quat 75 26254172 12142172 1200 1140 14.25 0.73 1141 14.26 0.96V 15 3 quat 75 23659209 9547209 1200 1143 14.29 0.67 1131 14.14 1.13J 15 1 quat 100 46508263 32396263 1200 632 7.90 1.48 219 2.74 0.24J 15 1 quat 75 25122290 11010290 1200 1050 13.12 1.32 511 6.39 0.78Figure 16: PPC 7100/80 and Quadra 950/33, 160 � 120 { Played o� Disk, MonitorI
26

Test Movie Size PPC QuadraCodec/FPS/KFD/Size/Quality Total Video FT FD R R�2 FD R R�2C 30 1 half 100 65668948 51556948 2400 2397 29.96 0.04 2398 29.98 0.05C 30 3 half 100 55288196 41176196 2400 2393 29.91 0.08 2399 29.99 0.01C 30 5 half 100 53200812 39088812 2400 2392 29.90 0.11 2400 30.00 0.00C 30 10 half 100 51599160 37487160 2400 2389 29.86 0.14 2388 29.85 0.90C 30 1 half 75 56272532 42160532 2400 2399 29.99 0.01 2388 29.85 0.13C 30 3 half 75 48114560 34002560 2400 2389 29.86 0.12 2396 29.95 0.05C 30 5 half 75 46467008 32355008 2400 2392 29.90 0.11 2396 29.95 0.05C 30 10 half 75 45253496 31141496 2400 2394 29.93 0.07 2400 30.00 0.00V 30 1 half 100 138782648 124670648 2400 2358 29.48 0.55 461 5.76 73.18V 30 3 half 100 126319334 112207334 2400 2370 29.62 1.61 1516 18.95 47.70V 30 5 half 100 123699495 109587495 2400 2375 29.69 1.02 1662 20.77 50.62V 30 10 half 100 121666111 107554111 2400 2384 29.80 0.49 1809 22.61 60.69V 30 1 half 75 110761808 96649808 2400 2351 29.39 0.66 296 3.70 47.48V 30 3 half 75 89538819 75426819 2400 2371 29.64 1.43 1280 16.00 70.92V 30 5 half 75 85251859 71139859 2400 2376 29.70 1.09 1540 19.25 76.51V 30 10 half 75 81892471 67780471 2400 2372 29.65 0.91 1713 21.41 73.07J 30 1 half 100 94238136 80126136 2400 473 5.91 0.53 - - -J 30 1 half 75 76101834 61989834 2400 491 6.14 0.72 - - -C 15 1 half 100 39892376 25780376 1200 1200 15.00 0.00 1199 14.99 0.01C 15 3 half 100 34932804 20820804 1200 1200 15.00 0.00 1200 15.00 0.00C 15 5 half 100 33894160 19782160 1200 1200 15.00 0.00 1200 15.00 0.00C 15 1 half 75 35187128 21075128 1200 1200 15.00 0.00 1200 15.00 0.00C 15 3 half 75 31257064 17145064 1200 1200 15.00 0.00 1200 15.00 0.00C 15 5 half 75 30448024 16336024 1200 1200 15.00 0.00 1200 15.00 0.00V 15 1 half 100 76406147 62294147 1200 1200 15.00 0.00 1195 14.94 0.06V 15 3 half 100 71468196 57356196 1200 1198 14.97 0.11 1197 14.96 0.04V 15 5 half 100 70419248 56307248 1200 1197 14.96 0.20 1197 14.96 0.04V 15 1 half 75 62437907 48325907 1200 1200 15.00 0.00 1196 14.95 0.05V 15 3 half 75 53301189 39189189 1200 1197 14.96 0.20 1197 14.96 0.04V 15 5 half 75 51404010 37292010 1200 1197 14.96 0.20 1198 14.97 0.02J 15 1 half 100 109158425 95046425 1200 282 3.52 0.62 - - -J 15 1 half 75 45082267 30970267 1200 528 6.60 0.82 194 2.42 0.27Figure 17: PPC 7100/80 and Quadra 950/33, 320 � 240 { Played from RAM, MonitorI
27

Test Movie Size PPC QuadraCodec/FPS/KFD/Size/Quality Total Video FT FD R R�2 FD R R�2C 30 1 quat 100 29766828 15654828 2400 2399 29.99 0.01 2400 30.00 0.00C 30 3 quat 100 27746068 13634068 2400 2399 29.99 0.01 2400 30.00 0.00C 30 5 quat 100 27310408 13198408 2400 2399 29.99 0.01 2400 30.00 0.00C 30 10 quat 100 26985084 12873084 2400 2398 29.98 0.02 2400 30.00 0.00C 30 1 quat 75 29449976 15337976 2400 2398 29.98 0.02 2400 30.00 0.00C 30 3 quat 75 26442288 12330288 2400 2395 29.94 0.06 2400 30.00 0.00C 30 5 quat 75 25860228 11748228 2400 2399 29.99 0.01 2400 30.00 0.00C 30 10 quat 75 25421516 11309516 2400 2399 29.99 0.01 2400 30.00 0.00V 30 1 quat 100 46998831 32886831 2400 2395 29.94 0.06 2400 30.00 0.00V 30 3 quat 100 42843008 28731008 2400 2391 29.89 1.01 2400 30.00 0.00V 30 10 quat 100 41322935 27210935 2400 2393 29.91 0.24 2400 30.00 0.00V 30 1 quat 75 38400471 24288471 2400 2392 29.90 0.09 2399 29.99 0.01V 30 3 quat 75 32259404 18147404 2400 2389 29.86 1.50 2399 29.99 0.01V 30 10 quat 75 30045289 15933289 2400 2395 29.94 0.44 2400 30.00 0.00J 30 1 quat 100 78918203 64806203 2400 859 10.74 1.32 306 3.83 0.42J 30 1 quat 75 36138726 22026726 2400 1478 18.48 3.05 578 7.22 0.82C 15 1 quat 100 21939432 7827432 1200 1200 15.00 0.00 1200 15.00 0.00C 15 3 quat 100 21037560 6925560 1200 1200 15.00 0.00 1200 15.00 0.00C 15 5 quat 100 20823272 6711272 1200 1200 15.00 0.00 1200 15.00 0.00C 15 1 quat 75 21780904 7668904 1200 1200 15.00 0.00 1200 15.00 0.00C 15 3 quat 75 20319956 6207956 1200 1200 15.00 0.00 1200 15.00 0.00C 15 5 quat 75 20029612 5917612 1200 1200 15.00 0.00 1200 15.00 0.00V 15 1 quat 100 30546740 16434740 1200 1200 15.00 0.00 1200 15.00 0.00V 15 3 quat 100 28887319 14775319 1200 1198 14.97 0.11 1200 15.00 0.00V 15 1 quat 75 26254172 12142172 1200 1200 15.00 0.00 1200 15.00 0.00V 15 3 quat 75 23659209 9547209 1200 1197 14.96 0.20 1200 15.00 0.00J 15 1 quat 100 46508263 32396263 1200 858 10.72 1.25 336 4.20 0.33J 15 1 quat 75 25122290 11010290 1200 1197 14.96 0.04 578 7.22 0.67Figure 18: PPC 7100/80 and Quadra 950/33, 160 � 120 { Played from RAM, MonitorI
28

Test Movie Size PPC QuadraCodec/FPS/KFD/Size/Quality Total Video FT FD R R�2 FD R R�2C 30 1 half 100 65668948 51556948 2400 2386 29.83 0.24 1967 24.59 1.39C 30 3 half 100 55288196 41176196 2400 2388 29.85 0.11 1946 24.33 3.44C 30 5 half 100 53200812 39088812 2400 2360 29.50 0.30 2017 25.21 2.21C 30 10 half 100 51599160 37487160 2400 2365 29.56 0.21 2056 25.70 1.37V 30 1 half 100 138782648 124670648 2400 2349 29.36 0.93 1153 14.41 2.12V 30 3 half 100 126319334 112207334 2400 2358 29.48 0.48 930 11.62 25.74V 30 5 half 100 123699495 109587495 2400 2365 29.56 0.46 1194 14.93 9.70V 30 10 half 100 121666111 107554111 2400 2357 29.46 0.50 1276 15.95 10.29J 30 1 half 100 94238136 80126136 2400 251 3.14 0.29 142 1.77 0.22C 15 1 half 100 39892376 25780376 1200 1200 15.00 0.00 1186 14.82 0.17C 15 3 half 100 34932804 20820804 1200 1200 15.00 0.00 1183 14.79 0.13C 15 5 half 100 33894160 19782160 1200 1200 15.00 0.00 1195 14.94 0.12V 15 1 half 100 76406147 62294147 1200 1200 15.00 0.00 1016 12.70 1.21V 15 3 half 100 71468196 57356196 1200 1197 14.96 0.02 1036 12.95 0.96V 15 5 half 100 70419248 56307248 1200 1199 14.99 0.01 1053 13.16 0.90J 15 1 half 100 109158425 95046425 1200 194 2.42 0.44 75 0.94 0.13Figure 19: PPC 7100/80 and Quadra 950/33, 320 � 240 { Played o� Disk, MonitorII
29

