Experiments with Digital Video Playback *

Richard Gerber and Ladan Gharai
Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, MD 20742

{rich, ladan}@cs.umd.edu

UMD Technical Report CS-TR-3551, UMIACS TR 95-103

Abstract

In this paper we describe our experiments on digital video applications, concentrating on
the static and dynamic tradeoffs involved in video playback. Our results were extracted from a
controlled series 272 tests, which we ran in three stages.

In the first stage of 120 tests, we used a simple player-monitor tool to evaluate the effects
of various static parameters: compression type, frame size, digitized rate, spatial quality and
keyframe distribution. The tests were carried out on two Apple Macintosh platforms: at the
lower end a Quadra 950, and at the higher end, a Power PC 7100/80. Our quantitative metrics
included average playback rate, as well as the rate’s variance over one-second intervals.

The first set of experiments unveiled several anomalous latencies. To track them down we
ran an additional 120 tests, whose analysis led us to find the locus of the system’s bottlenecks.
They also let us conclude that a software-only solution was sufficient for good video playback
on the systems under observation — provided that the operating system is tuned accordingly.

In the next step we attempted to achieve this goal, by implementing our own video playback
software and accompanying device-level handlers. Our emphasis was on achieving a controlled,
deterministic coordination between the various system components. An additional set of 32
experiments were carried out on our platforms, which showed significant improvements in our

quantitative performance measurements, as well as in visual quality.

Keywords: Digital Video, Performance Analysis, Measurements, Experiment Construction,

Operating Systems.
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1 Introduction

There is usually a wide asymmetry between the workstation on which a digital video is mastered,
and the target platforms on which it is played. Video editing systems contain expensive peripherals
like full-screen, full color digitizers, high-capacity RAID disk configurations, etc. Due to the quality
requirements involved, this kind of equipment is fully warranted: a broadcast-quality video demands
a resolution of 640 x 480, a display rate of 30 frames per second, and a color depth of 24 bits per
pixel. Some simple multiplication yields a transfer rate of 27 Mbytes per second, or roughly 50
Gbytes of storage for a one-half hour production.

On the other hand, a target system may be an average-level home computer, maybe possessing
2 Gbytes of disk space, with peak transfer rates of 2.5 Mbytes per second. The computer’s display
logic will usually not include high-end video de-compressor functionality; thus video decompression
will be done in software, as will buffer management, synchronizing the video and audio tracks, etc.

Therefore, the inevitable final step in editing is the attempt to reconcile the vast differences
between the producer’s workstation, and those of the potential consumers. The problem of tuning a
video production to a target platform — and tuning the platform to the video — demands something
akin to a traditional “load-balancing” solution, applied with both quantitative and qualitative

metrics. But this raises two questions:

1. Since a video can be tuned in a variety of ways, which methods lead to the best results on

consumer-grade platforms?

2. While only one digital video gets released, there are many potential platforms on which it will
get played. Fach has ils own resource constraints and processing abilities. So in order to
achieve smooth, deterministic playback quality on each, a certain amount of dynamic tuning

can be done as well. Is this currently done in commercial software, and if not, can it be done?

As for static tuning, all down-sampling schemes include some sacrifice in quality — e.g., one
can control the amount of signal loss used in digital compression, or decrease the color-depth,
the digitized rate, frame size, etc. The theory is that if any of these options are chosen, then
disk transfer rates are reduced, as are storage requirements, CPU utilizations, demands for RAM
buffers, overload sensitivity — with the result being a smoother, more deterministic video. But it
is not at all apparent which option (or combination of options) should be selected to achieve the
greatest benefit. Indeed, as we show in this paper, it is not even true that a such “quality-reducing”
measures necessarily lead to a reduction in dropped frames.

As for dynamic tuning, assume that video V' is mastered at 30 frames per second (henceforth
abbreviated as “fps”), and that platform A can play it with minimal dropping of frames. The
lesser-endowed platform B may be able to play a statically down-sampled, 15fps version of V.
Does this imply that B can play the 30fps version, and on-the-fly tune it down to 15fps? If so, the
30fps version can be the released version. If not, then perhaps the 15fps version should be released
instead.

We attempted to quantifiably answer these two questions via a controlled series of of 272



experiments, which we ran in three stages. In the first stage we used a player-monitor tool to
evaluate the effects of various static tuning approaches. The results unveiled several anomalous
latencies, and to track them down we ran an additional 120 tests, which uncovered where the
bottlenecks were. Based on these results, we re-tooled the system’s video playback software, and
incorporated our changes into a new player-monitor, whose goal was to achieve good dynamic
tuning. We evaluated its performance with 32 more experiments, and we compared them with the
performance of commercial-grade software.

This paper contains the results of our tests, their analysis, and the system architectural changes

that we made based on our conclusions.

1.1 Metrics and Variables

Before setting out, we had to: (1) develop sound, quantitative metrics which loosely corresponded to
“qualitative performance;” (2) select suitable, comparable platforms on which we could benchmark
our experiments; (3) find a set of test videos with a controlled spectrum of content (e.g., different
color and light densities, sound quality, scene transitions, etc.), which would permit making some
general conclusions from our results; and (4) identify a set of test variables, whose instantiations

would generate our “test runs.”

(1) Metrics. When analyzing clusters of similar experiments, we found two metrics that stood
out as roughly correlating to visual quality. They are: (a) total frames displayed vs. total frames
in movie, and (b) the display rate’s variance (measured in one second quanta) over the course of
the movie.

When comparing different “runs” of a single movie, the first metric gives an indication of average
playback quality over the course of each run. Letting e denote a run of a digital movie, we denote
Fr(e) as the movie’s total, “preferred” number of frames that should be displayed throughout the
run. Alternatively, we let Fp(e) be the measured number of frames that actually get displayed. If

t(e) is the movie’s duration (in seconds), we can extract the following properties:

Rprer(e) = (Preferred Rate)

Rie) def (e) (Mean Rate)

That is, Rprer(e) is the digitized rate of the movie in fps, and R(e) is the effective, mean rate of
the movie’s playback performance in an experiment e.

But Fp(e) and R(e) tell only one side of the story, since a test may experience a given R(e) in
a variety of ways. It may be due to a nearly uniform rate throughout — for example, when every-
other frame is played. Alternatively, there may be large “spikes” during which very few frames
are displayed. A third scenario is realized when there are be repeated, radical oscillations, i.e.,
high-rate intervals, followed by low-rate intervals, etc.

For example, Figure 1 shows three trials, all of which possess about the same R, but which
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Figure 1: Playing Three Digital Versions of a Video: (1) Smooth, (2) Spikes and (3) Ocillation

show very different quality. To distinguish between these cases (and others), we use the frame rate’s
variance (per second quantum). That is, letting F;(e) be the number of frames displayed during
the 7*" second of e, then R, (e) is defined as:

R (o) 2 Tk (RUe) = File))?
2 1

(¢)

(2) Suitable, Comparable Platforms. We selected two Apple Macintosh computers to be our
test platforms — Quadra 950’s (at the lower end), and Power PC 7100/80’s (at the higher end). (In
Section 3 we detail the differing specifications of these platforms.)

Our decision to use Macintoshes was preceded by a “qualitative” investigation into the video

L While there is a wide variety of

capabilities of different contemporary, affordable workstations.
workstations currently available, Apple’s products still seem to deliver the best “software-codec”
video.? This is partially due to the fact that over the years, Apple has invested heavily in optimizing
the QuickTime and QuickDraw libraries.> But perhaps of greater importance is the fact that at
the application level, Mac tasks are largely nonpreemptive and event-driven, while multi-threading
is usually a cooperative affair.

While these “features” lead to a very awkward programming style (every application program
essentially becomes a system program too), they also end up providing an interference-free platform
for evaluating video applications.

But using the Macintosh platform, with its proprietary operating system and codec drivers,
presented a unique challenge throughout this work: We had to develop a true exogenous testing

strategy, relatively independent of the innards of the system. As it turns out, we were able to

!We intentionally excluded specialized high-end equipment, such as SGI’s graphics workstations.

2A codec is a compression/decompression scheme. A software codec is a set of algorithms in which video com-
pression and/or decompression is performed without special hardware.

?QuickTime includes a standard API for interfacing with codecs, and with functions to build, store and play
movies. QuickDraw encompasses a set of functions which draw single frames to the screen.
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Figure 2: Instantiating the Variables

incrementally deduce, and then pinpoint where various bottlenecks lay. We also were able to

implement key optimizations — but only after analyzing the results of a great many tests.

(3) Test Videos. There was a natural way to control all of the variables involved, which was
record, digitize, edit, and assemble our own movie with our own video equipment. This decision
gave us ultimate control over content, and allowed us to get a sufficiently wide spectrum of changes
in motion, light, sound, etc.

We were then able to compare the quality of the computer-based, digital experiments with our
original, analogue Hi8 clips played on a high-quality VCR.

(4) Variables. Once we had our digital “master,”

we produced sixty different copies, with each
possessing a set of uniquely instantiated variables. We identified five variables which play dominant
roles in determining the quality of the final result (Figure 2): codec type, frame size, digitized rate (or
RprEer), spatial quality and keyframe distribution. The last two are artifacts of digital compression:
spatial quality is the amount of original signal loss permitted in each compressed frame, whereas
the keyframe distribution is the distribution of frames which are stored as compressed, still pictures
— while the remainder are processed via interpolation relative to the keyframes.

Other variables, such as sound quality, were kept fixed. (Throughout we maintained 16-bit
stereo sound, sampled at 44kHz.)

While all of these variables have an effect on the ultimate playback quality (and potentially
the transfer rates required), the actual contribution of each is not easy to determine — hence
complicating the static tuning problem. Picture size, for example, is immediately identifiable,

and most people would agree that “bigger is better.”

Yet while too big a frame size will lead to
untenable data rates, depending on the other parameters chosen, reducing it may not lead to a
sizeable reduction. As for frame rates, in some presentations the human eye cannot perceive the
qualitative differences between playback rates of 30, 20 or 15 fps — it is usually a function of type
and amount of inter-frame motion.

Moreover, these variables are not at all independent, and the interplay between them is highly



nonlinear. Codec selection always has an effect on tolerable keyframe distributions, as well as on
acceptable spatial quality. Yet the actual relationships are usually content-dependent, and will vary
over the course of a presentation. Hence the need for some degree of dynamic tuning as well — even

in the highest-end system.

1.2 Remainder of the Paper

The remainder of this paper is organized as follows. In Section 2 we survey some of the related
systems work in digital video. Then in Section 3, we describe how we generated our test cases, and
how we controlled the variables involved. In Sections 4 we describe our first series of test results, and
we analyze the significance of each variable. In Section 5 we track down the bottlenecks realized
in the first series, using a second series of experiments. In Section 6 we give the design of our
improved video-playback software, and we present the results we obtained with it. We conclude in

Section 7.

2 Related Work

To date, the area of digital video has been treated largely as a problem of system design and
implementation, without the experimental focus which we take in this paper. Nonetheless, some
recent papers touch on many of the same issues we raise in our experiments, and they come to
some similar conclusions.

Stone and Jeffay’s study of delay and jitter management [8] is highly relevant to our work
on dynamic tuning. As they note, a network’s display latency effectively determines client’s frame
rate, and that latency is, for obvious reasons, inversely proportional to permissible display rates. As
they have found in networked traffic — and as we have found in dealing with disks and compression
software — a balance must be found between a stream’s jitter and its delivery rate. Stone and Jeffay
prescribe a queue monitoring policy for dynamic adjustment of display latency, which supports low-
latency conferences with acceptable gap-rates.

A related issue is achieving graceful degradation of service in the event of network congestion.
One approach to this problem is for the client to adaptively scale the playback rate by deterministi-
cally dropping some of its frames. If this is done properly, the radical oscillations seen in Figure 1(3)
should not occur, and ideally R ,,(e) will be close to zero. This is the approach taken in the the
Nemesis [5] project, which uses a predictive prefetch algorithm to scale a client’s input streams.
One limitation is the exclusive reliance on the JPEG codec — thus, the prefetch algorithm assumes
that any frame may either be retrieved or dropped. This type of rate-based scaling is significantly
more complicated when applied to codecs with inter-frame dependencies, such as Cinepak, MPEG,
etc.

The system described in [1] scales not only the rate, but also the spatial resolution of a video
stream. This is done by packaging three versions of every frame, with each offering a monotonic

improvement over the previous one. The first is a 160x120 abstraction of the original picture; the



next is the residue term which, when added to the 160x120 image, achieves a resolution of 320x240.
The final version is another residue which can be added to the 320x240 image, resulting in full
640x480 resolution. At any point in the process the codec can stop improving the current frame,
and proceed to the next. Of course, this flexibility is achieved by using a custom codec, which was
designed specifically for this purpose.

Our focus on 10 and data paths is echoed in [2, 3], which proposes a means of optimizing the
transmission of compressed videos. While a network may be able to transmit the video frames,
the destination station may end up being the bottleneck. Display quality may decrease not as a
result of network capability, but rather due to insufficient I/O throughput. In this work a splice
mechanism is introduced, in which an application can associate a kernel-level data source with its
sink point; this allows for a direct point-to-point data path between source and sink, obviating
unnecessary kernel interference.

Two additional playback-enhancing techniques concentrate on optimizing disk performance;
these are disk scheduling and block placement. Simulation studies conducted in [7] show that good
performance for single streams can be realized by both CSCAN and SCAN-EDF — a hybrid of
the traditional SCAN technique, and the “earliest-deadline-first” strategy used in real-time thread
schedulers. Moreover, both algorithms can support a number of concurrent streams, and both
have reasonable response times for aperiodic requests. Another technique, the Group Sweeping
Scheme [4], is a hybrid of round-robin and SCAN. A number of “groups” are scheduled via round-
robin, whereas within each group the SCAN algorithm is used. To a large extent, this allows for
compromising between the disk-head’s ability to “sweep up” physically neighboring blocks, and the
temporal requirements imposed on concurrent, time-based media streams.

Our experiments could not test this important aspect of the system architecture. The reason is
fairly simple: if one wishes to use off-the-shelf disks, then one must live with the vendor-supplied,
proprietary policies which are hard-coded into controller’s micro-program. These include block
scheduling, lookahead-buffer maintenance, local caching, etc. On the positive side, however, disk
controllers are increasingly being optimized for “multimedia systems” — which usually translates
into good “sustained” read/write performance over contiguous blocks.

But there is an obvious relationship between disk scheduling and placement, and placement
is an area where the multimedia system designer can have an immediate effect. The trade-offs
are enunciated in [4]: contiguous placement is optimal for most disk-schedulers, but it requires
allocating a huge “chunk” of consecutive tracks to each file. This policy is only manageable for
read-only files, and it can introduce significant external fragmentation. On the other hand, scattered
placement is more space-efficient, and streamlines the management of read-write files. The downside
is that a large number of intra-file seeks will be required — which can inject a large performance
penalty.

In this paper we are concerned with testing read-only performance, and each test is run under
nearly optimal disk conditions. We first de-fragment the entire file system, and then we optimize
each file into single chunks of contiguous blocks.

Finally, the abilities of our player-monitor are similar to that described in [9], where MPEG-



encoded video streams can be generated expressly for providing statistical information on the data,

such as distribution of ATM cells per frame, auto-correlation and cell inter-arrival times.

3 Experiment Construction and Variable Instantiation

In this section we provide an overview of the methods used in constructing our test videos. Our
objective was to procure a sufficiently wide spectrum of changes in light, color and motion within
— and between — the scenes. To this extent, about 50% of our test video consists of brightly-lit,
exterior scenes, with the remainder shot indoors. The longest scene has a duration of 13 seconds,
and is mostly static, whereas there is 15 second “collage” of active short scenes, each of which
consumes roughly 1 second of time. About 15% of the movie contains dialogue set over background
music (to check synchronization), while the remaining “soundtrack” contains only music.

The digitized clips were edited using Adobe Premiere 4.0, with which we also inserted title
sequences. The final “cut” is 80 seconds, with Rprpr set to 30 fps, and it formed the “digital
master” for each test case. Without belaboring the details, we carried out the following steps:
(1) Using a Hi8 video camera to photograph about 3-4 hours worth of video “clips,” which included
scenes with different levels of light, color, motion, etc.; (2) Using a JPEG hardware codec to
digitize the clips into a 7100/80 — and storing them on a 2.1G disk; (3) Using Adobe Premiere 4.0
to assemble an 80 second master, which contained sufficient contrast to stress the capabilities of
compression and playback software; (4) Employing sound-processing software to sample and filter
“background music” from CDs, and inserting them in the movie at appropriate levels; (5) Using
the Premiere/Digitizer combination in conjunction with the Quicktime libraries to generate 60
software-digitized copies from our master — each copy representing a separate instantiation of our
variables; and (6) Archiving our 60 files on six CDs (Figure 3).

We were then able to run the tests and monitor their our testing tools, which we built for this

purpose.

3.1 Hardware and Software

Table 3.1 presents the equipment we used. While most of the specifications are self-explanatory,
a few comments are relevant here.

Digitizer: The Radius VideoVision Studio (or VVS) is essentially a hardware JPEG codec
capable of realtime, 30fps full-screen digitization and compression (or equivalently, de-compression
on playback). The VVS is capable of digitizing frame sizes 640x480 with little signal loss, and no
“drop-out” frames. JPEG compression possesses a large degree of parallelism, which a hardware
codec can easily exploit.

All of this stated, we were unable to use this equipment at its peak potential — our 2.1Gbyte disk
was not fast enough to keep up with the required transfer rates, nor was it sufficiently large to store
a reasonable amount of footage. After determining the ability of the system via trial-and-error,

we found a reasonable compromise between quality and capacity: digitizing at 30fps, but with a
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Figure 3: Test Movie Instantiation.

Computing Equipment

Test Platform 2: Quadra 950

Test Platform 1: PPC 7100/80
CPU: MC601 80MHz, Floating Point
Memory: 24Mb
Internal Hard Drive: 696 Mbyte, IBM DSAS3720
CD: Apple 300i (2-speed, Internal)
OS: System 7.5, Minimal Extensions
Disk Drivers: From FWB

CPU: MC68040 33 MHz, Floating Point
Memory: 16Mb

Internal Hard Drive: 234Mb, Quantum LP2435
CD: Apple 300i (2-speed, External)

OS: System 7.5, Minimal Extensions

Disk Drivers: From FWB

Essential Peripherals

Video Equipment

External Hard Drive: 2.1Gbyte, Seagate ST12400N
Digitizer: Radius VideoVision Studio 2.0

CD Writer: Pinnacle Micro RCD 1000

Tape Drive: Exabyte 2000

Cameras: Sony CCD TR700s Hi8 Format
Time Code, HiFi Stereo, S-video In/Out
VCR: Sony EVS7000 Hi8 Format
Time Code, Single-Frame Advance/Retract
Edit Marks, PCM Audio Dubbing, S-video

Software

Metrowerks Gold C/C++ Compiler (PPC/68K Compiler/Debugger)
Adobe Premiere, Adobe Photoshop (Video and Photo Editing Tools)
Macromedia SoundEdit 16 (Sound Sampler and Filtering Tools)
Assorted Quicktime Tools (For “massaging” Quicktime Movies)
TimeWare Movie Monitor (Our monitoring program to test playback)

Table 1: Hardware and Software Used to Generate and Run Experiments




frame size of 320x240, and with a small amount of signal loss. For the sake of our experiments
we considered this to be our “baseline,” ranking it at “100% quality.” All subsequent software-
compressed copies were generated from the VVS-digitized “master” at this baseline quality.

The outstanding performance of the hardware codec raises the following question: if silicon can
do the job so well, why should we bother measuring software-codec playback performance? One
answer is obvious: most users will not invest in a digitizer that costs more than the computer itself.

But the real answer lies in the asymmetry between the producer’s system and that of the video
consumer. While a real-time JPEG capture card may be suitable for a high-priced video work-
station, if one is purely interested in transmitting and viewing videos, then such an arrangement
is probably the worst alternative. JPEG cards do not perform inter-frame compression, and they
produce significantly more data than most systems can accommodate. On the other hand, full-
field, full-color, realtime MPEG (and Motion-JPEG) decompression cards are still very specialized
peripherals, and are quite expensive.

But there is even a better reason why we should be interested in purely software schemes. As
we show in the sequel, when the system software is tuned appropriately, a good software-codec is
more than capable of delivering high-quality video. Conversely, if the operating system imposes
high latencies on large IO transfers, even the fanciest hardware codec will probably fail to live up
to its rated potential.

Hard Disks: Our “main” disk drive was a 2.1 Gbyte Seagate “Barracuda,” which we used for
digitizing our clips, as well as in monitoring the playback quality of each test run. Using a variety

of commercial benchmarking tools, we measured the Barracuda’s normal transfer rates as follows:

Read Transfers: 2790 Kbytes/sec
Write Transfers: 3100 Kbytes/sec

All of the disk drivers were installed using FWB’s Hard Disk Toolset, and we also used FWB’s
utilities for formatting and partitioning. In particular, we disabled re-mapping bad sectors to the
end of the disk; rather, we configured the drivers to simply skip them. This minimized the amount

of head movement in both sampling and playback.

3.2 Variables

Next we produced 60 test files, each of which containing an instantiation of our variables: codec
type, frame size, digitized rate (or Rprgr ), spatial quality and keyframe distribution. Anther variable
that could have been altered — but was not — was sound quality. Across all experiment it remained
fixed, at 16-bit stereo sampled at 44kHz.

Formally, the variable space ranges over
Codec x Rate x KFD x Size X Quality

where

1. Codec € {C,V,J} denotes the compression scheme used. Here “C” is Radius’s Cinepak

10
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Figure 4: One-Second Strip of Frames, with Rate = 15 and K F'D = 5. Apple Video (Left) and
Cinepak (Right).

codec, “V” is the “Apple Video” codec (sometimes known as “Road Pizza”), and “J” stands
for QuickTime’s frame-by-frame, still-JPEG codec.

2. Rate € {15,30} denotes preferred playback rate, or Rprgr.

3. KFD € {1,3,5,10} denotes the keyframe distribution used. For example, if K'F'D = 5 this
means that every fifth frame is a keyframe. (Note that when the “J” codec is used, K F'D is

always set to 1, since all frames in a JPEG movie can be considered keyframes.)

4. Size € {half, quat} denotes the frame size along one axis, where “half” is 320x160 pixels, and
where “quat” is 160x80.

5. Quality € {75,100} denotes the degree of spatial quality that is maintained in the re-digitized
test file. When Quality = 75, this implies that the codec attempts to keep 75% of the original
quality, and Quality = 100 means that the codec is used at its “best possible” setting.

Our test instances have labels like “C/30/3/half/75,” which denotes a movie re-digitized in the
Cinepak codec at 30 fps, with one keyframe every third frame, in a frame size of 320x160 with a

75% quality index.

Codecs and Keyframes. JPEG [6] is basically a compression standard for still-pictures, which
can produce nearly lossless digital copies. It turned out to be a poor performer at playback time, and
we used it as our “high watermark” for image quality, while simultaneously as a “low watermark”
for motion quality.

Whereas still-JPEG involves processing each frame individually, the Apple Video and Cinepak
codecs also employ inter-frame (or “temporal”) compression. In this scheme keyframes are com-
pressed as still pictures, while the other frames are interpolated relative to their preceeding keyframes
as in “Video,” or relative to their preceding neighboring frames as in “Cinepak” (Figure 4).

QuickTime does this in a rather crude (but effective) manner: when temporally compressing
Apple Video frame k relative to its keyframe 2, k’s pixel-map is simply subtracted from that of ¢,
and the result is compressed. This type of compression can often be a time-consuming process. For

example, each re-compression of our 80-second test in Cinepak required about two hours.

11
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Figure 5: Quicktime Structure (left), and its interface to Movie Monitor I(right)

3.3 System Factors

We eliminated the effects of disk fragmentation. Whenever we ran a test sequence, we first refor-
matted our disk drive, then we copied a set of our test CDs onto the disk, after which we again
re-optimized the entire disk (which eliminated any external and internal fragmentation). We also
used the same physical disk on both of our test machines, hand-carrying it back and forth between
them.

Finally, every test was run at least five times; surprisingly, our metrics R and R, showed very
low deviation across the trials. We attribute this to the tight interaction between Mac application
programs and the operating system; i.e., the system rarely “steals” CPU cycles from an application

without the application yielding time.

4 Test Series I: Static Tuning

We now turn to our first set of experiments, in which we tested all possible “static tuning” decisions
made over the domains of our variables. The results were obtained by a player-monitor tool, which
uses the high-level video playback API included in Quicktime — i.e., the same functions used in
almost all movie players. We first describe the monitor’s architecture, and proceed to analyze the

test results.

4.1 Movie Monitor I

QuickTime presents a uniform API for Mac media applications?, and it includes internal inter-
faces to most of the commonly used codecs, as well as to third party digitizer cards. QuickTime

has a layered architecture (Figure 5), and an application interacts with it via functions contained

*QuickTime for Windows is also available for playback on PCs, and some of QuickTime’s functionality has also
been ported to Unix.
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in either the Movie ToolBox or the Compression Manager. As a rule, the typical movie player will
deal exclusively with the ToolBox, whereas a video editing program (like Adobe Premiere) will also
directly invoke the lower-level codec controlling functions in the Compression Manager.

A QuickTime file (called type MooV on the Mac) consists of two parts: (1) a hierarchal data
structure containing frame-by-frame information about the movie (e.g., size, duration, file location);
and (2) the movie data itself. All of the information in the data structure can be extracted via
function calls to the Movie ToolBox.

Our Movie Monitor I is just a typical, though somewhat scaled down, video player for the
Macintosh. Like most players, it repeatedly calls the ToolBox function MovieTasks() to retrieve,
buffer, decompress and display frames, and to synchronize the audio and video streams. The
monitor also maintains running information on the frames that get displayed, and those that are
dropped. It keeps this frame-by-frame data in a running bit-vector associated with each movie;
after testing the movie, the bit-vector is used to generate a set of playback-performance measures
(such as Fp, R,,, R, etc.).

Although the Movie Monitor is efficient — and the code requires a minuscule amount of memory
— whenever it executes it turns into a memory hog. In fact, it grabs all of the memory currently
available on our systems (usually about 20Mbytes). This is for a good reason: the greater its
memory partition, the more buffers can be afforded to the QuickTime decompression software. We

set out to test the capabilities of video playback performance, not the speed of garbage collection.

4.2 Test Results

The results of our initial half-screen tests are listed in Figure 15 (in the Appendix); to better
understand the “highlights” of the half-screen tests, we present their R data in Figures 6-7.

Platform and Codec Variables. One need not delve into the numbers to make some coarse
observations, which stand out in the bar charts. First, excluding a few notable exceptions (to which
we return shortly), the PPC tests show superior results to those run on the Quadra. Another fairly
obvious observation is that JPEG is a very poor performer, while Cinepak shows the best average

performance in most test cases.

Compression Variables. Asfor the effects of compression, it appears that reducing spatial quality
hardly leads to uniform benefits across the tests; moreover, the results of temporal compression
are highly unpredictable. But there are two groups of trials on which these factors seem to have a
more pronounced impact: the PPC/Video tests digitized at 30 fps, and the Quadra/Cinepak tests
digitized at 30 fps.

Examining all of the tests, the conclusion we reached is as follows: that when R was over
(%)RPREF, additional spatial and temporal compression failed to raise it further (but only realized
a degradation of quality). This is a bit surprising: comparing the size of the “C/30/1/half/100”
video to that of “C/30/10/half/75,” we see a reduction from 65 Mbytes to 45 Mbytes, i.e., the
transfer-rate is reduced by over 30%.

The other observation is that there are many instances where even with a large amount of spatial
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Figure 6: R of All Half-Screen Runs Played on PPC 7100/80 off of Disk. Keyframes are Numbered
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Figure 7: R of All Half-Screen Runs Played on Quadra 950/33 off of Disk.
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Figure 8: R High-Quality PPC 7100/80 Runs, Where Screen Size is Altered. Solid Bars Denote
Size = half, Striped Bars Denote Size = quat

and temporal compression, poor performance poor abysmal. For example, comparing the Quadra’s
treatment of “V/15/1/half/100” to that of “V/15/5/half/75” — a reduction in size from 139 Mbytes
to 82 Mbytes — we end up playing 353 more frames, which still fails to achieve decent visual
quality. This is also evident when comparing the 25% quality reduction from “J/15/1/half/100”
to “J/15/1/half/75,” which reduces the file size from 109 Mbytes to 45 Mbytes! The performance,
however, still does not rise above 4.12 fps (on the PPC) or 1.79 fps (on the Quadra).

The Effect of Frame Size. Since a 160x120 field contains 1/4 the number of pixels of a 320x240
field, one would expect the “quat” video track sizes (and transfer rates) to be much lower than the
corresponding “half” track sizes. And examining the data in Figure 15 and Figure 16, one sees
that this is often true: going from “C/30/1/half/100” to “C/30/1/quat/100” we get a video track
reduction from 51 Mbytes to 15 Mbytes; from “V/30/1/half/100” to “V/30/1/quat/100” we get
a reduction from 124 Mbytes to 32 Mbytes; and “J/30/1/half/100” reduces from 95 Mbytes to 32
Mbytes in “J/30/1/quat/100.” (Note that the sound track remains a constant 14 Mbytes.)

But watching a video on a 160x120 screen is hardly satisfying; thus the reduced size should,
one hopes, pay off in many fewer dropped frames. Does it?

Figure 8 compares the effects of frame size on selected 30fps and 15fps trials. In the case of
Apple Video at 30fps, the answer is “yes.” In fact, the effective playback rate R increases four-fold
from 6.6 to 25.36 — echoing the 75% reduction in transfer rate. As for the other samples, the result
is less clear. And while Cinepak’s rate improves from 22.96 fps to 27.32 fps, most people would
prefer the larger frame size to a relatively small increase in the display rate.

As for the 15fps runs, the Apple Video and Cinepak codecs show only minimal improvement;
e.g., the significant frame-size reduction buys Cinepak a rate increase of 0.18 fps, from 14.11 to
14.29. That is, once RpRrer is set to 15 fps, substantially lowering the data-rate by reducing frame
size clearly abuts against the law of diminishing returns.

But this raises an interesting, perplexing question: Exactly what does it take to achieve the full

15fps playback rate? We return to this question shortly.
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Figure 9: C/30/1/half/100 (left) and C/15/1/half/100 (right)
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Figure 10: System components involved in video playback.

The Effects of Rate Changes. Considering the Rate variable, the Apple Video statistics in
Figures 6-7 show situations where 15 fps tests realize a higher playback rate than their corresponding
30 fps versions. This is true in all of the Video test results on the Quadra, and strikingly so in the
100%-quality runs on the PPC. Even though this is a very fast CPU, with a sufficiently good disk,
the QuickTime de-compression logic still seems to “thrash” on the 30 fps version. It does better
with more deterministic (albeit lower) playback rates.

A similar situation arises when a reduction in Rprgr leaves R almost unchanged, but radically
enhances the movie’s visual quality. In Figure 9, we compare the results of two Quadra/Cinepak
playback tuns, “C/30/1/half/100” (with R = 13.62) and “C/15/1/half/100” (with R = 13.91).
Tracking the on-line behavior of the two, it is easy to see why we also use variances to compare
two runs with similar average behavior. Visually, the 15 fps version looks smooth and continuous,

while the 30 fps playback is jerky (as its graph portrays).

5 Test Series II: Tracking the Bottlenecks

What accounts for the high amount of jitter realized in some of the 30fps trials? Three potential
bottlenecks suggest themselves: (1) the display manager, (2) the codec or (3) the 10 channel
between the hard drive and the codec (Figure 10).

We considered Case (1) unlikely, since intuitively it seemed that decompressing a frame would
be much more time-consuming than simply displaying it. Also, the codec’s output gets streamed

directly to QuickDraw (for screen updates), and QuickDraw is probably the most finely-tuned part
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of the Macintosh. To substantiate this intuition, we set up a small test: we measured the CPU
time required to decompress a series of 1200 frames; then we measured the time it took to both
decompress and display them. Within the granularity of the platform’s clock, the two times were
more or less the same.

So exploring Case (2), perhaps the de-compressor is much slower than the I0. In this case, the
following scenario could play out: while the QuickTime drivers attempt to retrieve frames at a rate
of 30fps, the frames can only be decompressed at a rate of, say 20fps. The result is a repetitive
purge of the input queue, followed by a (belated) request to transfer a new set frames from disk.

But Case (3) — i.e., unduly slow IO transfers — could also account for the regular oscillation in
display rates. The premise here is that whenever a codec’s input buffer contains compressed frames,
they can quickly be de-compressed and drawn on the screen. On the other hand, 10 transfers will
result in prolonged periods of the buffer being empty.

A 15fps test demands only one-half of the display rate of its 30fps counterpart, and a pro-
portionally lower IO transfer rate (see Figure 15). So it will put less pressure on both potential
bottlenecks — which probably explains the 15fps’s low-amplitude waveform (in Figure 9).

But it seems that the bottlenecks involved in the 30fps tests could be reduced if there were
at least some degree of dynamic tuning, or perhaps more controlled coordination between the
components involved. That is, if the platform is only capable of playing a 30fps movie at 20fps,
then all of these components should be tuned to work at a nearly constant, deterministic rate of
20 fps.

The RAM Tests. Our measurements presented us with even more surprising anomalies. Consider,
for example, the half-screen/PPC/Cinepak runs listed in Figure 15. Note that all of the 30fps tests
display at least 1800 out of 2400 total frames in the 80 second segment. Why, then, is it the case
that not a single 15fps test displays all (or almost all) of its 1200 frames? Since the platform
“proves” that it can run at a rate of 22fps when “asked” to run at 30fps, one would expect it to
be capable of running at 15fps “upon request.” This phenomenon is somewhat analogous to the
opposite - i.e., the case in which a movie plays better at 15fps than it does at 30fps.

Clearly there is little dynamic tuning going on here; moreover, resources are frequently going
unused. This is surprising in a robust and hand-tuned piece of software such as Apple’s Quicktime,
and it motivated us to pursue the next series of tests — to test the ability of the codecs alone, without
10. Thus we simply extended Monitor I to play our test movies in eight 10 second segments — with
each segment first prefetched into RAM, and then played out of RAM. During an IO transfer (which
is typically quite brief, but noticeable), the monitor stops its movie-progress clock, and then resets
it after it the transfer is done. The net result is a tool which measures the performance of the CPU
and the display drivers, but not the 10 subsystem.

Figure 11, and the figures in the Appendix, illustrate the differences between the disk-based
tests, and those played out of RAM. The contrast is striking: the PPC Cinepak and Video versions
play almost every single frame when run out of RAM. This is true for all of the runs. Most
incredibly, the Apple Video test climbs from R = 6.60 to R = 29.48.
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Figure 11: 320 % 240, Highest temporal and spatial compression, Disk vs. RAM playback. Results
from the disk runs are portrayed with solid bars, whereas the RAM runs are in striped bars.

With one set of notable exceptions, the Quadra’s performance improvement is not as uniform.
The exceptions are all of the Cinepak 30 fps runs, which climb to nearly perfect display rates like
29.98. 30.00, 29.85, etc. In fact, the Cinepak tests do marginally better on the Quadra than on the
PPC (but the differences are minute, since they are nearly perfect).

As for the Apple Video tests, the performance increase is marked, but not as much as on the
PPC. This leads us to conclude that the decompression algorithm is sufficiently compute-intensive
to stress the 68040/33, while the 7100 can handle the half-screen decompression easily.

Can we conclude that the disk is the bottleneck? “Common wisdom” dictates that this is true,
since (1) it is a physical device, limited by seek times, rotational delays, etc., and (2) it is connected
via a SCSI bus, not the local bus.

However in this case the numbers do not lead to such a conclusion. The PPC hardware, for
example, affords the ability to perform asynchronous, DMA’d block transfers. As we mentioned
in Section 3, our disk is capable of handling read transfers at 2.7 Mbytes/sec. Since the largest
file is “only” 138 Mbytes, the maximum demand from any of our tests is 1.7 Mbytes/sec — a large
number, to be sure, but not one that will choke the system, even including the DMA’s memory
“cycle-stealing.” So it seems that while I0 may be asynchronous and DMA’d, it is not sufficiently
asynchronous for the QuickTime codecs to run at their peak rates.

Moreover, we hypothesized that if a full pipeline effect were achieved between the system el-

ements in Figure 10, there would be no difficulty in delivering near-30fps data rates on the PPC

18



| Scheduler |

- Request Queue
Predictor )—————=H 2' —»'_ _______ |
HjE|E|N|N|N|N|N|N I I Sound
| | CallBack
|
FeedBack : Sound

| Card

D

QuickDraw

Figure 12: Movie Monitorll

system. To test this hypothesis, we built a new player-monitor which effectively bypasses the Movie
ToolBox API. In doing so, we had to support our own buffering and 10 functionality, as we describe

in the next section.

6 Test Series IIl: Dynamic Tuning

Our new player-monitor (Movie Monitor II) was designed to dynamically tune digital videos, in part
by streaming data from the SCSI disk through the codec software. Accomplishing this objective
required implementing our own 10 handlers, memory buffering, and performing low-level codec
control via QuickTime’s Compression Manager. In this section we describe the structure of the

Movie Monitor II, and then we present the results of the tests we ran with it.

6.1 The Player Structure

Figure 12 depicts the structure of our player-monitor, which is composed of four threads and two
callback functions. As the figure shows, the system operates as a simple feedback loop. Based on
the player’s past performance, the Predictor thread selects a set of frames to be played in the future,
and inserts their frame numbers into the Request Queue. The 10 thread removes them, looks up
their corresponding file locations, and initiates the appropriate asynchronous IO commands for the
SCSI manager. If there are requests for neighboring frames, the 10 thread will attempt to bundle
as many neighbors as possible within a single 10 transfer. By bundling adjacent frames the 10
thread (and all associated SCSI handlers) can execute less frequently; this CPU time can be better
used by activities such as decompression. But when frame transfers are bundled, none of them can
be processed until the entire bundle arrives. For this reason the 10 thread only bundles when it
gets sufficiently ahead of playout.

When an 10 operation completes, its callback function preemptively executes like an interrupt

service routine. It inserts a pointer to each transferred frame into the Frame Queue. They sub-
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sequently get removed by the Playout Thread which, according to its real-time movie clock, will
either display the associated frames, or just discard them. If the frames have been delivered on
time, then they get decompressed using the Compression Manager’s codec interface, and displayed
via QuickDraw.

The final thread used in processing video is called the Patroller. It is responsible for ensuring
that none of the outstanding frame requests for the 10 are outdated — lest frames end up getting
transferred needlessly.

Part of the Playout Thread’s job is to update feedback information for the Predictor, which is
done at every time interval A. (For the results displayed in the sequel, A was set to %sec.) The
feedback is in the form of a predicted playout rate for the next interval, and the Predictor uses it to
dynamically tune its prefetch rate. This scheme is partially aided by the scheduler, which ensures
that the Predictor gets at most most % second ahead of the Playout thread.

Let t be a multiple of A, and let PR(t) be the predicted playback rate for the time interval
[t,t + A]. Then if we let R(¢) be the rate that the Playout thread actually achieved during the
interval, PR(t + A) is calculated as follows:

aR(t)+ (1 — a)PR(t) when R(t) < PR(1)

PR+ A) = min(R(t) + ¢, Rprer) When R(t) = PR(1)

where for the purposes of our experiments, we set & = .85 and ¢ = 1. In other words, when playback
falls behind its predicted rate, we exponentially average the old prediction with the achieved rate.
(This is to smooth out sporadically large frame sizes, or abnormally high decompression times.)
But when playback meets its prediction, we gradually ratchet up the new prefetch rate, so that
eventually the highest potential quality can be realized.

The objective of our design is to let the system achieve a steady state, so that IO and playback
are always working in parallel, at their full capacity. This means the Playout thread should never
have to wait for a frame — the 10 should always have prefetched it ahead of time, while the Playout

thread was processing a previous frame.

Keyframes. Our scheme is significantly complicated by the existence of keyframes; e.g.. if a
keyframe is dropped, then the the interpolated sequence following has to be discarded. Thus, while
PR(t) is the current predicted rate, the Predictor thread cannot simply fetch frames at a constant
frequency. First a decision is made whether an entire sequence will be avoided. If not, its keyframe
is requested, as are selected interpolated frames within the sequence. The Playout thread may
end up only decompressing — but not playing — the keyframe, so that it can be used to display its

dependent, interpolated frames.

Memory Management. We chose to implement our own memory management, and we used a
simple fixed-size buffering scheme. At initialization time, the player-monitor determines how much
memory M it can allocate, after which it configures its buffer pool. Using a rough rule of thumb

we decided that if possible, the number of buffers n should be able to accommodate 1 to 2 seconds
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of video; this translates to 30 buffers for 15fps movies, and 60 buffers for 30fps movies.

As for the buffer size s, it should be sufficiently large for the 10 thread to frequently bundle its
transfers. We attempt to set s so that between 3 and 5 average-sized frames can be bundled, and
so that s can hold the largest frame in the entire video.

Letting B be our bundling factor, f,.., be the size of largest frame, and f,,, be the average

frame size, we attempt to reconcile all of our memory constraints by solving for B, s and n in

(1) max(fmaamB * favg) S S
(2) sxn<M

(3) 1<B<5

(4)

4) Rprer < n < 2-RpREF

For the tests run in this paper, our system initially sets n to 2 - Rprpr, and then maximizes B over
equations (1)-(4). With such a scheme Monitor II ends up using significantly less memory than
Monitor L

Sound. The Mac comes equipped with an asynchronous sound card, which handles the physical
processing of digital sound. Our player interacts with this device via a simple double-buffering
scheme. When one buffer is almost finished being played, the sound card triggers a callback
routine, and then switches to the other buffer. The callback initiates an 1O transfer for another
chuck of sound. Unlike video sound samples cannot be dropped, and so the 10 thread gives them

priority.

6.2 Test Results

This time we confined our attention to the higher-quality videos, excluding the 160x120 cases, as

well as those of 75% spatial quality. Thus our narrower domain was:
Rate € {15,30}, Codec € {C,V,]J}, Size=half, Quality=100, KFD € {1,3,5,10}

Figures 13,14 and 19 summarize results we obtained. On the PPC we obtained perfect (or near
perfect) playout for all Cinepak and Apple Video movies. Overall, the 30fps PPC/Cinepak tests
improved by about 6fps, while the 30fps PPC/Video tests improved by 19-23 fps. In particular,
the highest quality Apple Video test jumped from R = 6.6 to R = 29.36. In fact here we can
hardly claim that the gains are due to dynamic tuning, since almost every frame is played in every
movie. Rather, a better design allows the components to be truly asynchronous, and achieve a
higher degree of pipelining.

On the other hand, dynamic tuning is tested on the slower Quadra 950/33. Relying on its own
lower-level control, our Monitor II does a far superior job than Monitor I, which uses the proprietary
code in the Movie ToolBox. Significantly, the highest quality Quadra/Video tests improves from
R = 3.39 to R = 14.41, and other tests show similar improvement. While 14fps is still not 30fps,

it is a definite improvement over 3fps. Further, we no longer see an inverse relationship between
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Figure 13: Comparison of playback schemes, for 30fps movies. Solid lines denote Monitorl and
dashed lines denote Monitorll

Rprer(e) (preferred rate) and R(e) (mean rate).

Our rough numerical analysis proved to be correct. If a video’s data transfer requirements can
be sustained by the SCSI disk, then asynchronous IO should never create a bottleneck. Direct
DMA’d transfers into the player’s buffers should not consume appreciable CPU time, thus it can
be dedicated entirely to decompression.

Our results all indicate that this is what is happening. Both codecs achieved near-perfect
playback rates on the PPC, where the processor is capable of keeping up with both codecs” CPU
requirements. However on the slower Quadra, the Cinepak movies were able to achieve higher rates
than their Apple Video counterparts. This is because the Apple Video codec is more compute-
intensive.

We attribute the improvements in Monitor II to its almost classical producer-consumer struc-
ture. The 10 thread — playing the role of producer — constantly supplies a steady flow of frames
to be consumed by the Playout thread. It is never forced to “wait” for the arrival of a frame,
which results in higher display rates with lower variance. This translates directly into better visual

quality.

7 Conclusion

In this paper we reported results of three sets of experiments. The first tested a range of static
video tuning methods. They also unveiled several anomalies — one of which was that low-rate
movies often had superior playback quality to their higher-rate counterparts. To understand why,
we ran a second set of tests, which tested the performance of the individual components involved.

We concluded that many of the videos would realize far superior playback quality, if only 10 and
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Figure 14: Comparison of playback schemes, for 15fps movies. Solid lines denote Monitorl and
dashed lines denote Monitorll

codec operations were sufficiently pipelined.

In the next step we attempted to achieve this goal, by implementing our own video playback
software and accompanying device-level handlers. Our emphasis was on achieving a controlled,
deterministic coordination between the various system components. An additional set of 32 experi-
ments were carried out on our platforms, which showed significant improvements in our quantitative
performance measurements, as well as in visual quality.

In the future, we hope to achieve the same improvements with high quality, full screen digital
videos. A 30 fps video with a frame size of 640x480 will put significantly greater pressure on the

system’s resources, and dynamic tuning will play an even more prominent role.
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A Additional Test Results

Test Movie Size PPC Quadra
Codec/FPS/KFD/Size/Quality Total Video Fr | Fp R Ru, | Fp R Rus
C 30 1 half 100 65668948 | 51556948 | 2400 | 1837 | 22.96 | 5.30 | 1090 | 13.62 | 29.56
C 30 3 half 100 55288196 | 41176196 | 2400 | 1884 | 23.55 | 5.17 | 1323 | 16.54 | 31.15
C 30 5 half 100 53200812 | 39088812 | 2400 | 1882 | 23.562 | 7.55 | 1341 | 16.76 | 28.59
C 30 10 half 100 51599160 | 37487160 | 2400 | 1893 | 23.66 | 8.63 | 1315 | 16.44 | 29.67
C 30 1 half 75 56272532 | 42160532 | 2400 | 1868 | 23.35 | 6.65 | 1066 | 13.32 | 33.66
C 30 3 half 75 48114560 | 34002560 | 2400 | 1978 | 24.73 | 5.25 | 1461 | 18.26 | 25.09
C 30 5 half 75 46467008 | 32355008 | 2400 | 2015 | 25.19 | 5.49 | 1557 | 19.46 | 24.22
C 30 10 half 75 45253496 | 31141496 | 2400 | 2038 | 25.48 | 5.70 | 1607 | 20.09 | 24.17
V 30 1 half 100 138782648 | 124670648 | 2400 | 528 | 6.60 | 17.97 | 271 | 3.39 | 1.91
V 30 3 half 100 126319334 | 112207334 | 2400 | 809 | 10.11 | 39.94 | 255 | 3.19 | 1.74
V 30 5 half 100 123699495 | 109587495 | 2400 | 847 | 10.59 | 42.59 | 267 | 3.34 | 2.24
V 30 10 half 100 121666111 | 107554111 | 2400 802 | 10.03 | 44.64 | 218 2.73 1.05
V 301 half 75 110761808 | 96649808 | 2400 | 994 | 12.43 | 29.94 | 336 | 4.20 | 1.16
V 30 3 half 75 89538819 | T7h426819 | 2400 | 1446 | 18.07 | 25.38 | 388 | 4.85 | 7.66
V 305 half 75 85251859 | 71139859 | 2400 | 1430 | 17.88 | 27.29 | 471 | 5.89 | 22.98
V 30 10 half 75 81892471 | 67780471 | 2400 | 1551 | 19.39 | 24.11 | 507 | 6.34 | 39.47
J 30 1 half 100 94238136 80126136 | 2400 313 3.91 0.29 112 1.40 0.24
J 30 1 half 75 76101834 | 61989834 | 2400 | 325 | 4.06 | 0.28 | 124 | 1.55| 0.25
C 15 1 half 100 39892376 25780376 | 1200 | 1129 | 14.11 1.04 | 1113 | 13.91 1.99
C 15 3 half 100 34932804 | 20820804 | 1200 | 1148 | 14.35 | 0.57 | 1117 | 13.96 | 1.60
C 15 5 half 100 33894160 | 19782160 | 1200 | 1140 | 14.25 | 0.76 | 1117 | 13.96 | 1.60
C 15 1 half 75 35187128 21075128 | 1200 | 1139 | 14.24 | 0.75 | 1117 | 13.96 1.60
C 15 3 half 75 31257064 17145064 | 1200 | 1142 | 14.28 0.69 | 1116 | 13.95 1.78
C 15 5 half 75 30448024 16336024 | 1200 | 1142 | 14.28 0.69 | 1116 | 13.95 1.78
V 15 1 half 100 76406147 | 62294147 | 1200 | 1083 | 13.54 | 2.92 593 7.41 8.49
V 15 3 half 100 71468196 | 57356196 | 1200 | 1102 | 13.78 | 1.98 | 724 | 9.05 | 9.19
V 15 5 half 100 70419248 | 56307248 | 1200 | 1097 | 13.71 | 1.81 | 747 | 9.34 | 9.44
V 15 1 half 75 62437907 | 48325907 | 1200 | 1144 | 14.30 | 0.71 | 692 | 8.65 | 7.08
V 15 3 half 75 53301189 39189189 | 1200 | 1129 | 14.11 1.49 894 | 11.18 8.36
V 155 half 75 51404010 37292010 | 1200 | 1138 | 14.22 0.82 945 | 11.81 7.66
J 15 1 half 100 109158425 | 95046425 | 1200 | 209 | 2.61 | 0.41 63| 0.79 | 0.17
J 15 1 half 75 45082267 | 30970267 | 1200 | 330 | 4.12 | 0.76 | 143 | 1.79 | 0.17

Figure 15: PPC 7100/80 and Quadra 950/33, 320 x 240 — Played off Disk, Monitorl
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Test Movie Size PPC Quadra
Codec/FPS/KFD/Size/Quality Total Video Fr | Fp R | Ru | Fp R Rus
C 30 1 quat 100 29766828 | 15654828 | 2400 | 2186 | 27.32 | 2.94 | 2157 | 26.96 | 8.37
C 30 3 quat 100 27746068 | 13634068 | 2400 | 2166 | 27.07 | 4.43 | 2149 | 26.86 | 9.03
C 30 5 quat 100 27310408 | 13198408 | 2400 | 2189 | 27.36 | 3.55 | 2192 | 27.40 | 7.84
C 30 10 quat 100 26985084 | 12873084 | 2400 | 2194 | 27.43 | 3.37 | 2173 | 27.16 | 6.88
C 30 1 quat 75 29449976 | 15337976 | 2400 | 2185 | 27.31 | 3.76 | 2176 | 27.20 | 8.15
C 30 3 quat 75 26442288 | 12330288 | 2400 | 2190 | 27.38 | 3.46 | 2171 | 27.14 | 8.68
C 30 5 quat 7b 25860228 | 11748228 | 2400 | 2193 | 27.41 | 3.02 | 2185 | 27.31 8.44
C 30 10 quat 75 25421516 | 11309516 | 2400 | 2193 | 27.41 | 3.17 | 2166 | 27.07 | 6.36
V 30 1 quat 100 46998831 | 32886831 | 2400 | 2029 | 25.36 | 5.93 | 1903 | 23.79 | 8.92
V 30 3 quat 100 42843008 | 28731008 | 2400 | 2084 | 26.05 | 4.94 | 1968 | 24.60 | 11.82
V 30 10 quat 100 41322935 | 27210935 | 2400 | 2107 | 26.34 | 5.19 | 2037 | 25.46 | 9.22
V 30 1 quat 75 38400471 | 24288471 | 2400 | 2129 | 26.61 | 3.64 | 2023 | 25.29 8.52
V 30 3 quat 75 32259404 | 18147404 | 2400 | 2155 | 26.94 | 4.04 | 2103 | 26.29 9.60
V 30 10 quat 75 30045289 | 15933289 | 2400 | 2174 | 27.18 | 3.31 | 2144 | 26.80 | 7.69
J 30 1 quat 100 78918203 | 64806203 | 2400 | 616 | 7.70 | 1.01 | 177 | 2.21 | 0.37
J 30 1 quat 75 36138726 | 22026726 | 2400 | 1006 | 12.57 | 3.27 | 444 | 5.55 | 1.12
C 15 1 quat 100 21939432 | 7827432 | 1200 | 1143 | 14.29 | 0.67 | 1124 | 14.05 1.24
C 15 3 quat 100 21037560 | 6925560 | 1200 | 1138 | 14.22 | 0.77 | 1122 | 14.03 | 1.39
C 15 5 quat 100 20823272 | 6711272 | 1200 | 1136 | 14.20 | 0.88 | 1119 | 13.99 1.42
C 151 quat 7b 21780904 | 7668904 | 1200 | 1146 | 14.32 | 0.61 | 1120 | 14.00 1.26
C 15 3 quat 75 20319956 | 6207956 | 1200 | 1144 | 14.30 | 0.66 | 1122 | 14.03 | 1.39
C 15 5 quat 7b 20029612 | 5917612 | 1200 | 1143 | 14.29 | 0.67 | 1119 | 13.99 1.42
V 15 1 quat 100 30546740 | 16434740 | 1200 | 1146 | 14.32 | 0.61 | 1149 | 14.36 0.80
V 15 3 quat 100 28887319 | 14775319 | 1200 | 1141 | 14.26 | 0.71 | 1124 | 14.05 1.24
V 15 1 quat 75 26254172 | 12142172 | 1200 | 1140 | 14.25 | 0.73 | 1141 | 14.26 0.96
V 15 3 quat 75 23659209 | 9547209 | 1200 | 1143 | 14.29 | 0.67 | 1131 | 14.14 1.13
J 15 1 quat 100 46508263 | 32396263 | 1200 | 632 | 7.90 | 1.48 | 219 | 2.74| 0.24
J 15 1 quat 75 25122290 | 11010290 | 1200 | 1050 | 13.12 | 1.32 511 6.39 0.78

Figure 16: PPC 7100/80 and Quadra 950/33, 160 x 120 — Played off Disk, Monitorl
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Test Movie Size PPC Quadra
Codec/FPS/KFD/Size/Quality Total Video Fr | Fp R | Ru | Fp R Rus
C 30 1 half 100 65668948 | 51556948 | 2400 | 2397 | 29.96 | 0.04 | 2398 | 29.98 | 0.05
C 30 3 half 100 55288196 | 41176196 | 2400 | 2393 | 29.91 | 0.08 | 2399 | 29.99 | 0.01
C 30 5 half 100 53200812 | 39088812 | 2400 | 2392 | 29.90 | 0.11 | 2400 | 30.00 | 0.00
C 30 10 half 100 51599160 | 37487160 | 2400 | 2389 | 29.86 | 0.14 | 2388 | 29.85 | 0.90
C 30 1 half 75 56272532 | 42160532 | 2400 | 2399 | 29.99 | 0.01 | 2388 | 29.85 | 0.13
C 30 3 half 75 48114560 | 34002560 | 2400 | 2389 | 29.86 | 0.12 | 2396 | 29.95 | 0.05
C 30 5 half 75 46467008 | 32355008 | 2400 | 2392 | 29.90 | 0.11 | 2396 | 29.95 | 0.05
C 30 10 half 75 45253496 | 31141496 | 2400 | 2394 | 29.93 | 0.07 | 2400 | 30.00 | 0.00
V 30 1 half 100 138782648 | 124670648 | 2400 | 2358 | 29.48 | 0.55 | 461 | 5.76 | 73.18
V 30 3 half 100 126319334 | 112207334 | 2400 | 2370 | 29.62 | 1.61 | 1516 | 18.95 | 47.70
V 30 5 half 100 123699495 | 109587495 | 2400 | 2375 | 29.69 | 1.02 | 1662 | 20.77 | 50.62
V 30 10 half 100 121666111 | 107554111 | 2400 | 2384 | 29.80 | 0.49 | 1809 | 22.61 | 60.69
V 301 half 75 110761808 | 96649808 | 2400 | 2351 | 29.39 | 0.66 | 296 | 3.70 | 47.48
V 30 3 half 75 89538819 | 7H426819 | 2400 | 2371 | 29.64 | 1.43 | 1280 | 16.00 | 70.92
V 305 half 75 85251859 | 71139859 | 2400 | 2376 | 29.70 | 1.09 | 1540 | 19.25 | 76.51
V 30 10 half 75 81892471 | 67780471 | 2400 | 2372 | 29.65 | 0.91 | 1713 | 21.41 | 73.07
J 30 1 half 100 94238136 | 80126136 | 2400 | 473 | 5.91 | 0.53 - - -
J 30 1 half 75 76101834 | 61989834 | 2400 | 491 | 6.14 | 0.72 - - -
C 15 1 half 100 39892376 | 25780376 | 1200 | 1200 | 15.00 | 0.00 | 1199 | 14.99 | 0.01
C 15 3 half 100 34932804 | 20820804 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 15 5 half 100 33894160 | 19782160 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 151 half 75 35187128 | 21075128 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 15 3 half 75 31257064 | 17145064 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 155 half 75 30448024 | 16336024 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
V 15 1 half 100 76406147 | 62294147 | 1200 | 1200 | 15.00 | 0.00 | 1195 | 14.94 | 0.06
V 15 3 half 100 71468196 | 57356196 | 1200 | 1198 | 14.97 | 0.11 | 1197 | 14.96 | 0.04
V 15 5 half 100 70419248 | 56307248 | 1200 | 1197 | 14.96 | 0.20 | 1197 | 14.96 | 0.04
V 15 1 half 75 62437907 | 48325907 | 1200 | 1200 | 15.00 | 0.00 | 1196 | 14.95 | 0.05
V 15 3 half 75 53301189 | 39189189 | 1200 | 1197 | 14.96 | 0.20 | 1197 | 14.96 | 0.04
V 155 half 75 51404010 37292010 | 1200 | 1197 | 14.96 | 0.20 | 1198 | 14.97 | 0.02
J 15 1 half 100 109158425 | 95046425 | 1200 282 3.52 | 0.62 - - -
J 15 1 half 75 45082267 | 30970267 | 1200 | 528 | 6.60 | 0.82 | 194 | 2.42 | 0.27

Figure 17: PPC 7100/80 and Quadra 950/33, 320 x 240 — Played from RAM, Monitorl
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Test Movie Size PPC Quadra
Codec/FPS/KFD/Size/Quality Total Video Fr | Fp R | Ru | Fp R | Ru
C 30 1 quat 100 29766828 | 15654828 | 2400 | 2399 | 29.99 | 0.01 | 2400 | 30.00 | 0.00
C 30 3 quat 100 27746068 | 13634068 | 2400 | 2399 | 29.99 | 0.01 | 2400 | 30.00 | 0.00
C 30 5 quat 100 27310408 | 13198408 | 2400 | 2399 | 29.99 | 0.01 | 2400 | 30.00 | 0.00
C 30 10 quat 100 26985084 | 12873084 | 2400 | 2398 | 29.98 | 0.02 | 2400 | 30.00 | 0.00
C 30 1 quat 75 29449976 | 15337976 | 2400 | 2398 | 29.98 | 0.02 | 2400 | 30.00 | 0.00
C 30 3 quat 75 26442288 | 12330288 | 2400 | 2395 | 29.94 | 0.06 | 2400 | 30.00 | 0.00
C 30 5 quat 75 25860228 | 11748228 | 2400 | 2399 | 29.99 | 0.01 | 2400 | 30.00 | 0.00
C 30 10 quat 75 25421516 | 11309516 | 2400 | 2399 | 29.99 | 0.01 | 2400 | 30.00 | 0.00
V 30 1 quat 100 46998831 | 32886831 | 2400 | 2395 | 29.94 | 0.06 | 2400 | 30.00 | 0.00
V 30 3 quat 100 42843008 | 28731008 | 2400 | 2391 | 29.89 | 1.01 | 2400 | 30.00 | 0.00
V 30 10 quat 100 41322935 | 27210935 | 2400 | 2393 | 29.91 | 0.24 | 2400 | 30.00 | 0.00
V 30 1 quat 75 38400471 | 24288471 | 2400 | 2392 | 29.90 | 0.09 | 2399 | 29.99 | 0.01
V 30 3 quat 75 32259404 | 18147404 | 2400 | 2389 | 29.86 | 1.50 | 2399 | 29.99 | 0.01
V 30 10 quat 75 30045289 | 15933289 | 2400 | 2395 | 29.94 | 0.44 | 2400 | 30.00 | 0.00
J 30 1 quat 100 78918203 | 64806203 | 2400 | 859 | 10.74 | 1.32 | 306 | 3.83 | 0.42
J 30 1 quat 75 36138726 | 22026726 | 2400 | 1478 | 18.48 | 3.06 | 578 | 7.22 | 0.82
C 15 1 quat 100 21939432 | 7827432 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 15 3 quat 100 21037560 | 6925560 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 15 5 quat 100 20823272 | 6711272 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 15 1 quat 75 21780904 | 7668904 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 15 3 quat 75 20319956 | 6207956 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 155 quat 75 20029612 | 5917612 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
V 15 1 quat 100 30546740 | 16434740 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
V 15 3 quat 100 28887319 | 14775319 | 1200 | 1198 | 14.97 | 0.11 | 1200 | 15.00 | 0.00
V 15 1 quat 75 26254172 | 12142172 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
V 15 3 quat 75 23659209 | 9547209 | 1200 | 1197 | 14.96 | 0.20 | 1200 | 15.00 | 0.00
J 15 1 quat 100 46508263 | 32396263 | 1200 | 858 | 10.72 | 1.25 | 336 | 4.20 | 0.33
J 15 1 quat 75 25122290 | 11010290 | 1200 | 1197 | 14.96 | 0.04 578 7.22 | 0.67

Figure 18: PPC 7100/80 and Quadra 950/33, 160 x 120 — Played from RAM, Monitorl
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Test Movie Size PPC Quadra
Codec/FPS/KFD/Size/Quality Total Video Fr | Fp R | Ru | Fp R Rus
C 30 1 half 100 65668948 | 51556948 | 2400 | 2386 | 29.83 | 0.24 | 1967 | 24.59 | 1.39
C 30 3 half 100 55288196 | 41176196 | 2400 | 2388 | 29.85 | 0.11 | 1946 | 24.33 | 3.44
C 30 5 half 100 53200812 | 39088812 | 2400 | 2360 | 29.50 | 0.30 | 2017 | 25.21 | 2.21
C 30 10 half 100 51599160 | 37487160 | 2400 | 2365 | 29.56 | 0.21 | 2056 | 25.70 | 1.37
V 30 1 half 100 138782648 | 124670648 | 2400 | 2349 | 29.36 | 0.93 | 1153 | 14.41 2.12
V 30 3 half 100 126319334 | 112207334 | 2400 | 2358 | 29.48 | 0.48 | 930 | 11.62 | 25.74
V 30 5 half 100 123699495 | 109587495 | 2400 | 2365 | 29.56 | 0.46 | 1194 | 14.93 | 9.70
V 30 10 half 100 121666111 | 107554111 | 2400 | 2357 | 29.46 | 0.50 | 1276 | 15.95 | 10.29
J 30 1 half 100 94238136 80126136 | 2400 251 3.14 | 0.29 142 1.77 | 0.22
C 15 1 half 100 39892376 | 25780376 | 1200 | 1200 | 15.00 | 0.00 | 1186 | 14.82 | 0.17
C 15 3 half 100 34932804 | 20820804 | 1200 | 1200 | 15.00 | 0.00 | 1183 | 14.79 | 0.13
C 15 5 half 100 33894160 | 19782160 | 1200 | 1200 | 15.00 | 0.00 | 1195 | 14.94 | 0.12
V 15 1 half 100 76406147 | 62294147 | 1200 | 1200 | 15.00 | 0.00 | 1016 | 12.70 1.21
V 15 3 half 100 71468196 | 57356196 | 1200 | 1197 | 14.96 | 0.02 | 1036 | 12.95 | 0.96
V 15 5 half 100 70419248 | 56307248 | 1200 | 1199 | 14.99 | 0.01 | 1053 | 13.16 | 0.90
J 15 1 half 100 109158425 | 95046425 | 1200 194 2.42 | 0.44 75 0.94 | 0.13

Figure 19: PPC 7100/80 and Quadra 950/33, 320 x 240 — Played off Disk, MonitorIl
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