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Prediction of water-borne diseases is a critical aspect especially for developing 

countries. The current study focuses on cholera since it is considered to be a continuous 

public health threat. Vibrio cholerae, causative agent of cholera, is an autochthonous 

bacterial inhabitant in the aquatic environment and it is highly unlikely that cholera will 

ever be fully eradicated. Consequently, to reduce the disease burden, enhanced cholera 

prediction models that include several months’ lead-time are still needed to further the 

development of effective mitigation and intervention strategies. Both regional and large-

scale environmental conditions can aid in understanding and predicting how and when 

outbreaks may occur. The overall goal of the research reported here was to develop a 

quantitative cholera prediction model with high quality, using regional and remote-

sensing data from endemic and epidemic regions, respectively, in the Bengal Delta. This 

research involved four separate supporting objectives: 1) Determination of the role of 

environmental factors associated with the seasonality and modulating dynamics in a 

cholera outbreak; 2) Development of a physically plausible hypothesis of how local 



 
 

environmental factors modulate cholera outbreak dynamics; 3) Identification of the major 

environmental controls triggers sporadic cholera outbreaks in epidemic regions ; 4) 

Construction of an accurate model for the Bengal Delta simulating and predicting the two 

transmission routes of cholera (primary and secondary). The modeling results show that, 

for a high quality model > 70% Pseudo-R Square, Bengal Delta cholera in coastal regions 

is characterized by a single spring peak, whereas Bengal Delta cholera in inland regions 

occurs in bimodal peaks, with distinct hydroclimatological explanations for the 

geographical differences. Results confirm that spring season cholera is associated with 

coastal seawater intrusion, and fall cholera outbreaks are driven by floods related to the 

monsoon. This is the first study that demonstrates the relationship between in situ 

environmental conditions with regard to cholera outbreaks. Furthermore, results from 

remote-sensing data show that ambient temperature followed by high rainfall periods are 

the main triggers of cholera outbreaks in epidemic regions. These findings provide 

important steps and contributions toward development of environmental factor-based 

predictive models for cholera outbreaks in the Bengal Delta region. 
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Chapter 1 

Introduction and Context 

1.1 Cholera dynamics:  

Cholera: Cholera, an acute water-borne diarrheal disease, remains a constant 

public health threat in the developing countries (World Health Organization (Morens et 

al., 2004; Ali et al., 2012; WHO 2012 Bulletin). The ongoing seventh pandemic of 

cholera, which started in 1960s, has been reported in over 50 countries affecting over 

seven million people (Gleick, 2008). The disease continues to be a serious threat in many 

tropical regions of the world, specifically in coastal areas of South Asia, Africa, and Latin 

America (Figure 1.1).  

Cholera has been a subject of major research interest, not only for its high 

incidence rate in the developing countries, but also because of inherent complexities and 

interactions associated with humans and the environment and as a re-emerging disease 

(see Table 1.1, Committee on Emerging Microbial Threats to Health, 1992 and 2003). 

The causative agent of cholera, Vibrio cholerae, can survive and proliferate in 

distinctively different environments: a) the micro-environment of the human intestine as 

a pathogenic bacterium; and b) the macro-environment of coastal and estuarine waters as 

both pathogenic and non-pathogenic bacteria. These bacteria are autochthonous to 

riverine, estuarine, and coastal waters, and they live in association with phyto- and 

zooplankton, algae, and crustaceans (Colwell, 1996; Huq, and Colwell1996.; Stine et al., 

2008; Hasan et al., 2012). Copepods, amphipods, and other crustaceans are dominant 

among zooplankton populations that have a chitinous exoskeleton, the most abundant 

polysaccharide in the marine environment (Tamplin et al., 1977; Huq et al., 1983; 
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Colwell et al., 1981). Large populations of Vibrio spp., including the pathogenic species 

of V. cholera, are harbored in the gut and attached to the copepod exoskeleton (Colwell 

and Huq, 1999; Tamplin et al., 1990; Huq et al., 1983; Colwell et al., 1981). Vibrio spp. 

play an essential role in recycling the chitinous insoluble polysaccharide in the aquatic 

ecosystem (Yu et al., 1991). Plankton is widely reported as a natural reservoir of V. 

cholerae (Colwell, 1996). On the other hand, phages may play a role in cholera 

epidemics, specifically the CTX phage-encoded cholera toxin and the toxin-coregulated 

pilus (TCP) genes associated with attachment. Lateral transfer of these genes leads to 

new strains containing virulence gene combinations (Waldor and Mekalanos 1996). 

When environmental conditions are unfavorable for active growth and cell division, the 

bacterium, including virulent strains of V. cholerae, has a selective advantage by entering 

into a dormant stage, called the viable but nonculturable (VBNC) state, (Colwell and Huq 

1994; McDougald et al., 1998; Kaneko and Colwell, 1975). 

 

Figure 1.1 Global examples of emerging and re-emerging infectious diseases. Red 

represents newly emerging diseases; blue, re-emerging/resurging diseases; black, a 

‘deliberately emerging’ disease. (Fauci, 2001) 
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Table1.1  Factors involved in the emergence of infectious diseases 

Committee on Emerging Microbial Threats to Health 1992 and 2003 (David et al., 2004) 

• Microbial adaptation and change 

• Human susceptibility to infection 

• Climate and weather 

• Changing ecosystems 

• Human demographics and behavior 

• Economic development and land use 

 

• International travel and commerce 

• Technology and industry 

• Breakdown of public health measures 

• Poverty and social inequality 

• War and famine 

• Lack of political will 

• Intent to harm 

Historically, cholera incidence has been linked to environmental and climate 

variables. Survival of V. cholerae as an aquatic bacterium is dependent on the physical 

characteristics of the water including alkalinity, salinity, and iron concentration, which 

influence virulence gene expression, e. g., genes that regulate production of cholera toxin 

responsible for watery diarrhea (Miller et al., 1982 and Islam et al., 2004). In general, V. 

cholerae does not grow at temperatures below 15
ο
C. However, aquatic water bodies with 

temperatures consistently above 20°C and salinities of 0.5–3.0% may harbor V. cholerae 

in endemic areas (Stephens et al., 1998, Louis et al., 2003). In the early 19
th

 century, the 

Bengal Delta was considered to be the native homeland of cholera (Pollitizer, WHO, 

1959). Bangladesh is one example of the coastal regions of Asia affected by the 

pandemics of cholera, including the current seventh pandemic. Although cholera has 

been reported in Africa, Australia, Europe, and in the Americas (Figure 2), Bangladesh 

has one of the highest rates of cholera in the world, with an incidence rate of about 2.0 

(range, 0.10 - 4.0) cases per 1000 people in endemic areas, and the mortality rate is about 

6.3 deaths per 100,000 people at risk (Bulletin of the World Health Organization WHO 

2012). There are two unique peaks of cholera epidemics in Bangladesh, in spring (minor 

peak: January-April/May) and in fall (major peak: September-November) 
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Figure 1.2 Countries affected by the Seventh Pandemic of Cholera (compiled from World 

Health Organization (WHO), Center for Disease Control and Prevention (CDC), and 

various news sources, Countries shaded have reported cholera outbreaks) 

Akanda et al., (2009) reported on the hydro-climatic factors affecting the outbreak 

of cholera in the Bengal Delta and proposed that intrusion of coastal water with low river 

discharge and flooding caused by high river discharge are the main forces responsible for 

spring and autumn outbreaks in the Bay of Bengal (BoB). In Bangladesh, various factors 

are known to facilitate spreading of the disease, including the characteristic heavy 

seasonal rainfall (Hashizume et al., 2008), seasonal flooding (Akanda et al., 2011 and 

Carrel et al., 2010), high population density concentrated near aquatic environments, and 

a high poverty level (Ali et al., 2002). Tauxe et al., (1994) proposed that cholera 

outbreaks usually occur when the temperature increases.  

Neilsen (1994) showed copepod production has two seasonal peaks. One peak is 

in February-April and the other is in August-September. These two peaks are relevant to 

earlier findings on the survival and multiplication of V. cholerae in the environment (Huq 

et al., 1983 and 1984). Historically, cholera has been associated with a range of 

environmental and climate variables, including sea surface temperature (SST) (Lobitz et 

al., 2000; de Magny et al., 2008), precipitation (Pascual et al., 2002; Hashizume et al., 
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2008), floods (Koelle et al., 2005), coastal salinity (Miller et al., 1982), peak river level 

(Schwartz et al., 2006), sea surface height (Lobitz et al., 2000) and fecal contamination 

(Islam et al., 2006). These studies did not focus on quantifying cholera incidence in 

Bangladesh and relating the seasonal hydroclimatological processes with biannual peaks 

of cholera. 

1.2 Dynamics of cholera space in epidemic and endemic regions 

 

A review of the literature indicates 

that the global understanding of cholera is 

mostly based on the Bengal Delta. In 

addition, most of the studies are focused on 

large-scale environmental conditions either 

measured by remote sensing or other large-

scale measuring methods that ignore 

regional processes of the water bodies. 

These studies linked historical incidence of 

cholera in the Bengal Delta with 

environmental and climate variables, such 

as precipitation (Hashizume et al. 2008), floods (Koelle et al., 2005), river level (Emch et 

al., 2008), sea surface temperature (Lobitz et al., 2000), coastal salinity (Miller et al., 

1982), dissolved organic matter (Worden et al., 2006), and fecal contamination (Islam et 

al., 2006).  Remote sensing measurement of large-scale climate variables provide a 

limited understanding of what it can offer and explain as the effect of coastal and 

Figure 1.3 Relationship between large-

scale environmental factors and cholera 

outbreaks: the missing outbreak link 

scheme for understanding cholera and the 

environment condition  
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hydrological connections with cholera incidence, using measurement of chlorophyll 

based on phytoplankton abundance. The coastal zone of the BoB shows high 

phytoplankton concentrations as well as high chlorophyll variability when compared with 

values further from the coast (Jutla et al., 2009). The effect of inter- and intra-annual 

variability of chlorophyll in coastal regions and the space-time variability of 

phytoplankton as an indication of subsequent zooplankton on cholera dynamics are still 

limited and incomplete.  

There is no doubt that large-scale geophysical variables such as SST, 

precipitation, and coastal chlorophyll (measured by satellite remote sensing) are often 

related to both local environmental factors in ponds as well as the BOB, and conditions 

favorable for bacterial growth. Local environmental factors, such as biological activity in 

the ponds from where the bulk of the population in endemic regions derives water for 

daily usage, are often neglected or oversimplified in disease transmission dynamics. How 

do local environmental factors affect cholera dynamics? Do local environmental factors 

have the same effect as large-scale environmental factors on cholera dynamics? What 

are the main local environmental drivers of a cholera outbreak?  

The continuing dilemma for both understanding (simulation) and prediction of 

cholera outbreaks derives from the following factors: 1) V. cholerae is naturally 

occurring in riverine, estuarine and coastal waters; 2) the difference in cholera disease 

between endemic and epidemic regions; and 3) emergence of new biotypes that can 

increase the incidence (or intensity) of disease (Morens et al., 2004). Simulation models 

should be transparent in quality for improved understanding of the main drivers of 

cholera incidence and spread. Examples of studies focused on models that lack the 
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essence of simulation models (transparency) are as follows: 1) Identifying the dominant 

zooplankton groups (rotifers and cladocerans) associated with detection of V. cholerae 

without correlating the data to its specific ecological drivers (Magny et al., 2011); 2) 

Identifying the ecological drivers, e.g., chlorophyll, without estimating the plausible 

hypothesis behind the prediction of seasonal double peak cholera outbreaks for the 

Bengal Delta  (Magny et al., 2008); 3) Explaining the seasonal double peaks of cholera 

outbreaks in the Bengal Delta through the role of rivers, without taking into account 

large-scale processes such as river discharge (Akanda et al., 2009); and 4) Lack of 

identification differentiating between the main environmental drivers in endemic and 

epidemic regions.  

A major question remaining unanswered about cholera in epidemic or non-

endemic regions is: What are the major environmental processes that may contribute to 

severe outbreaks of the disease. In this study, we seek to determine the main ecological 

drivers of the cholera outbreak in the Bengal Delta and construct a plausible hypothesis to 

explain the seasonal dual peaks of cholera in endemic regions and the main 

environmental driver of cholera outbreaks in epidemic regions.  

2 Aims and Objectives: 

2.1 Aims 

Four key observations were the motivation for developing and exploring cholera 

simulation and prediction models for cholera outbreaks in both endemic and epidemic 

regions. These observations include coastal ecology and use of recent local 

environmental factors, as well as remote-sensing data specifically: 1) Large-scale 

geophysical processes such as SST and coastal chlorophyll, have been implicated with  
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cholera outbreaks in several parts of the globe (Huq et al., 2005; Magny et al., 2008); 2) 

Local environmental factors, such as biological activity in ponds from where the bulk of 

the population in endemic regions derives water for daily use are often neglected or 

oversimplified in disease outbreak dynamics (Emch et al., 2008); 3) Appearance of new 

cholera cases in non-endemic regions like New Delhi; and 4) Rapid spread of cholera 

among human populations in some regions (WHO 2012). Establishing a connection 

between large- and local-scale environmental conditions enhanced our thinking toward 

identifying key environmental parameters driving cholera outbreaks. Further, developing 

a good quality model which includes the main environmental parameters associated with 

the emergence of cholera disease in epidemic/non-endemic regions is needed. Finally, 

simulation and prediction models that identify the major environmental cholera drivers in 

both endemic and epidemic regions would be extremely useful in developing strategies 

for preventing the disease.  

2.2 Objectives: 

The overall goal in the proposed research was to develop cholera 

simulation/prediction models that can simulate the dual peaks of the cholera outbreak in 

the Bengal Delta and provide insight on how a non-endemic region becomes endemic. To 

achieve this main goal, investigation was carried out based on the following research 

objectives: 

a. Determination of the role of environmental factors associated with seasonality 

and modulating the dynamics of a cholera outbreak. 

b. Identification and development of a physically plausible hypothesis of how 

local environmental factors modulate cholera outbreak dynamics.  
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c. Identification of the major environmental controls triggers sporadic cholera 

outbreaks in epidemic regions.   

d. Constructing a new model that accounts for both primary and secondary 

transmission routes 

This approach was employed to gain a comprehensive understanding that would allow 

identification of the major environmental conditions, either local or large scale, in both 

endemic and non-endemic regions. Furthermore, this approach provided a means to use 

the data to develop a good quality simulation model, for eventual use in predicting a 

cholera outbreak. 

Figure (1.4) illustrates the schematic outline and progression of my research. How local 

environmental factors can be related to large-scale environmental factors derived by 

remote sensing and their effect on shaping cholera outbreaks in endemic regions is 

discussed in Chapter 2. That chapter will also include an up-to-date literature review 

about cholera and its relationship with hydrological processes. My approach in chapter 2 

starts with a straightforward objective: The development of a simulation model for two 

distinct endemic regions with consideration of their unique settings. Such a premise will 

allow exploration of a transformational approach to protect vulnerable and resource-

limited regions against cholera. This was a unique opportunity to use the three year data 

set that includes local environmental parameters collected directly at the pond site, 

extremely valuable to determine their relationship to cholera incidence. Chapter 3 deals 

with identification of major environmental factors affecting cholera outbreaks in 

epidemic regions and provides an explanation of how cholera can emerge in non-endemic 
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areas. In this chapter, another data set was used, employing large-scale environmental 

conditions measured by remote sensing of a non-endemic region.  
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Figure 1.4 Research Pathway for cholera outbreak simulation and 

prediction  
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Objective 4 

What do we know about cholera and hydrology? 

What is the role of environmental factors in creating 

seasonality and modulating the cholera outbreak dynamics 

in a cholera outbreak? 

 

What is the major environmental control responsible for 

turning a non-infected area to an endemic one? 
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Building a model that accounts for both primary and 

secondary transmission routes  
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What is the physically plausible hypothesis that can explain 

how local environmental factors modulate cholera 

outbreaks dynamics? 
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Chapter 2 

Local Environmental Factors and Endemic Cholera 

2.1 Abstract: 

Cholera remains a major public health threat. Since Vibrio cholerae, the causative 

agent of the disease, is autochthonous to riverine, estuarine, and coastal waters, it is 

unlikely cholera bacteria can be eradicated from its natural habitat. However, prediction 

of impending cholera outbreaks, in conjunction with effective public health measures, 

can reduce incidence and/or intensity of cholera outbreaks. Understanding environmental 

controls of growth and proliferation of the cholera bacteria is an essential first step in 

developing warning systems for the disease. Large scale geophysical processes, such as 

river discharge, sea surface temperature, and coastal chlorophyll, have been implicated 

with the occurrence of cholera. Local environmental factors, such as biological activity of 

ponds from which communities in cholera endemic regions derive their water for daily 

use, are often neglected or oversimplified. Here, using in situ data collected from 14 sites 

in two geographically distinct locations in the Bengal Delta, we show that cholera in 

coastal regions is characterized by a spring peak associated with seawater intrusion of 

cholera bacteria to inland water bodies. However, cholera occurs inland from the Bengal 

Delta in bimodal peaks with two distinct hydroclimatological patterns. The spring season 

cholera is associated with coastal seawater intrusion, whereas fall cholera outbreaks are 

driven by floods related to the monsoon season. This study is the first to demonstrate a 

relationship between in situ environmental conditions and large-scale 

hydroclimatological events with respect to cholera outbreaks, providing yet another step 

toward the development of prediction models for cholera.  
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2.2 Introduction 

Microorganisms are the most ancient organisms on the planet and the largest 

reservoir of biodiversity on earth (Konstantinidis, 2006; Staley, 2006). Cohan (2001) 

stated that “Wherever there is life there are bacteria”. Consequently, bacteria are found 

in all kinds of environments. In those environments with or without eukaryotes, even in 

environments with no animals or plants are known to have several kinds of bacteria 

either as commensals or pathogens. The cholera bacterium is one example of an 

anecdotally reported bacterium. Bishagratna (1963) reported cholera as early as 400 

BC. Cholera is considered as the longest known water-borne disease in the history of 

mankind that can cause an epidemic. V. cholerae was first known as Comma bacillus 

that was discovered by F. Pacini in 1854. The discovery made by John Snow that 

cholera spreads through contaminated water was a big aid to understanding how cholera 

disease is transmitted. The pathogenic organisms are present in the aquatic ecosystem of 

Bangladesh throughout the year (Huq et al., 1990) in a special dormant state, called 

nonculturable state where surviving strains can multiply when the environment becomes 

favorable (Huq et al., 2005; Chun et al., 2009). This finding was useful for further 

understanding of how cholera is transmitted among humans.  

Cholera, an acute water-borne diarrheal disease, continues to be a major public 

health threat for less developed regions of the world. The cholera outbreak in Haiti in 

2010, affecting more than one million people, indicates that our understanding of the 

occurrence of cholera and its links with the environment is still evolving. The current 

cholera pandemic is considered to be localized in South Asia, but cholera outbreaks are 

reported from other regions including Africa, Australia, Europe, and the Americas. 
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Cholera can cause significant mortality, as high as 60% if untreated, while mortality 

decreases to less than 1.0 % with adequate treatment and intervention, such as oral 

rehydration therapy supplemented with appropriate antibiotics (Mahalanabis et al., 1992). 

Vibrio cholerae, the causative agent of the disease, is associated with zooplankton (Huq 

et al., 1990, Huq et al., 2005) and copepods act as vectors for cholera bacteria in the 

aquatic environment (Rawlings et al., 2007). The bacterium is autochthonous in riverine, 

estuarine, and coastal ecosystems (Colwell et al., 1977, Huq et al., 1983 and Islam et al., 

1990b), hence cannot be eliminated. However, prediction of an impending cholera 

outbreak is possible by devising suitable mitigation and intervention strategies for 

endemic regions (defined as regions where cholera cases are reported throughout the year 

and have a characteristic seasonal pattern).  

Two observations motivated the exploration of possible connections among the 

large scale hydro-climatic processes and aquatic environment factors: 1) local 

environmental factors, such as biological activity in ponds from where the bulk of the 

population in endemic regions derives water for daily use are often neglected or 

oversimplified in disease outbreak dynamics (Emch et al., 2008); and 2) The proposed 

hypothesis (Akanda et al., 2009) that explains how large-scale geophysical processes 

play a major role in cholera outbreaks 

The Bengal Delta continues to be prone to endemic cholera. Many studies have 

postulated environmental links between large-scale hydroclimatic processes and cholera 

occurrence in the Bengal Delta, Specifically salinity (Miller et al., 1982), temperature 

(Lobitz et al., 2000; Constantin de Magny et al., 2008), precipitation (Pascual et al., 

2002; Hashizume et al., 2008), and chlorophyll (Lobitz et al., 2000; Jutla et al., 2010, 



15 

2011, 2012, 2013). Huq et al., 2005 showed water temperature, water depth, rainfall, 

conductivity, and copepod counts were associated with occurrence of cholera in the 

Bengal Delta region. Several investigators have hypothesized links between large-scale 

hydroclimatology and regional-scale environmental processes (defined as processes at a 

pond scale or bodies of water of approximately 500 m
2
) (de Magny et al., 2008; Emch et 

al., 2008), but none have been validated. Two hypotheses for occurrence of cholera 

existence in endemic regions of the world are dominant. The first is that when there are 

two seasonal peaks of cholera, the first peak is a result of contamination of inland water 

bodies by intrusion of bacteria laden coastal seawater, followed by a second peak related 

to massive flooding that disrupts the essential safe water infrastructure (Akanda et al., 

2009). The second of the dominant hypotheses is that when only a single seasonal 

outbreak occurs, it is during low river discharge with subsequent intrusion of coastal 

water, with the consequent transfer of bacteria to inland water bodies (Akanda et al., 

2009, 2011). A key question remains and that is whether a similar phenomenon can be 

observed on a local scale, such as where ponds serve as the household water source for 

the local inhabitants. The goal of this chapter is to develop a quantitative understanding 

of the role of local environmental factors in outbreaks of seasonal cholera, with the 

objective of determining whether local environmental factors and large-scale 

hydrodynamic factors associated with endemic cholera (Akanda et al., 2009) could be 

linked.  
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2.3 Materials and Methods: 

2.3.1 Study region  

In situ data from two rural sites, Bakergonj and Mathbaria in Bangladesh, covering a time 

period from March, 2004, to September, 2007, were used in the study. Environmental 

factors (pH, total dissolved oxygen (TDO), total dissolved solids (TDS), conductivity, 

salinity, water temperature, air temperature, chlorophyll-a chlorophyll-b  chlorophyll-c, 

phaeophytin, phosphate, silicate, nitrate, alkali, heterotrophic bacteria and coliform 

count) were analyzed from bimonthly water samples obtained at Mathbaria (six pond 

sites) and monthly water samples obtained from Bakergonj (eight pond sites).  

Bakergonj is an inland region located at the upper edge of the southern estuary of 

Bangladesh, a cholera-prone area in the district of Barisal and situated at the 

southwestern part of Bangladesh, near the Bay of Bengal. The eight sampling sites in 

Bakergonj are North Varpasha Helipad, Mukharjee Bari, Mid Varpasha Jam-E Mosque, 

Thana Health Complex, Tolatoli River, Harun Dakua, Bara-Aolia Mazar, and Bairam 

Kha Lake.  

Mathbaria is a coastal region situated at the southwestern part of Bangladesh. It is 

in Upazila Parishad (UZP), a sub-district located in the Pirojpur District. There are six 

different sampling sites (ponds) in Mathbaria, South Mithakhali Govt, Jotish Kant 

Common, Ishaq Akand's Common, Mathbaria Bazaar, BRAC Pond, and Arshed Bara 

Mia's Pond. 

http://en.wikipedia.org/wiki/Bangladesh
http://en.wikipedia.org/wiki/Pirojpur_District
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Figure 2.1 Map of the location of both Mathbaria and Bakergonj in Bangladesh (Google 

earth) 

 

2.3.2 Environmental specimen collection and source of clinical data: 

Details on specimen collection have been published earlier (Huq et al, 2005). Two 

plankton nets were double stacked by placing a 64μm mesh net inside a 20μm mesh net.  

Ca. 100 L of water sample was passed through the double stacked nets using a 15L 

bucket fixed onto a large stand. A total of seven buckets of water collected from seven 

distance points in a pond was used to obtain a heterogeneous mixture of bacterioplankton. 

Additional liters of water (105L) were used to adjust losses when a bucket of water was 

poured through the stacked net. Between the 2nd and 4th bucket flows, 500 mL of 

plankton-free water was collected by allowing the filtrate from the stacked nets to flow 

into a bottle (labeled MWA). All samples were collected aseptically in sterile dark 

Nalgene bottles (Nalgene Nunc International, USA), placed in an insulated plastic box, 

and transported at ambient air temperature from the site of collection to the central 

Mathbaria 

Bakergonj
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laboratory at the International Center for Diarrheal Research, Bangladesh (ICDDR, B) in 

Dhaka. All samples were processed the following morning, with approximately 20 hours 

elapsing between sample collections in the field and processing in the laboratory. Air and 

water temperature, water conductivity, total dissolved solids (TDS) and salinity were 

measured using a portable meter (HACH model sensION156 portable 

pH/conductivity/dissolved oxygen meter, Yellow Spring, Ohio, USA). Dissolved oxygen 

(DO) and pH were also measured using the same sensION156 portable meter connected 

to a platinum pH electrode and DO probe, respectively. All parameters were measured by 

inserting the probe directly into the pond water and, when it was raining, water from the 

pond was collected in a 5L plastic beaker and measured therein. The pH probe was 

calibrated by employing three points of calibration, using pH 4, 7, and 10. The DO probe 

was calibrated using saturated air and the conductivity probe using 1000 μS/cm 

conductivity standard. A graduated rope, with a heavy iron ring attached, was used to 

measure water depth at a fixed point in the center of each pond. Calibration frequency 

was a measurement made prior to each round. One Liter of unfiltered water was collected 

to measure chlorophyll-a (μg/L), chlorophyll-b (μg/L), and chlorophyll-c (μg/L). 

Phaeophytin (µg/L), silicate (mg/L), nitrate NO3 (µg/L), phosphate PO4 (µg/L), and 

alkalinity (meq/L) were also measured. For fecal coliforms, unfiltered water (UFWA) 

was used, with 10ml and 1ml samples filtered using a 47mm #?µm pore size nucleopore 

polycarbonate filter and 100 µl of filtered water was directly spread, or spot-plated 

(approximately 25-50 spots), onto m-FC agar plates. The plates were sealed with 

parafilm, placed into petri dish bags (double layer) incubated in a plastic container 

overnight at 44.5°C, and observed after incubation for 24 hrs. Results are reported as 
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CFU/100-ml. Rectal swabs were obtained every two weeks from patients admitted to the 

local sub-district Health Complex of Bakergonj and Mathbaria. (Personal 

communication, Sack et al, 2014, in preparation). The rectal swabs from suspected 

cholera patients, i.e., those with watery stool, were collected for three consecutive days 

and placed into Cary Blair medium (in grams per liter: sodium thioglycolate,
 
1.5 g; 

disodium phosphate, 1.1g; calcium chloride, 0.1 g; sodium
 
chloride, 5 g; agar, 5 g; pH 

8.4) immediately after swabbing, and transported at ambient temperature to the central 

laboratory
 
of the ICDDR, B in Dhaka, Bangladesh.  

2.4 Statistical analysis:  

Clinical cholera case and environmental data were collected from March, 2004 to 

September, 2007. Cholera cases were averaged creating two time series for Bakergonj 

and Mathbaria. A generalized linear model (GLIM) with Poisson distribution and log link 

was used to model the data and build a simulation model for cholera, following the 

method of Cameron and Trivedi (1998). Choice of model was based on the overall 

regression Chi-square statistic, significance of individual variable coefficient estimate at 

the 95% confidence level, and pseudo R
2
, as well as low error values.  

The multiple Poisson regression model (GLIM) for k predictors is as follows: 

Yi ~ Poisson (μi)  

ln (Yt) = β0 + β1 X1 + β2 X2 ……………….. + βk Xk + ei                              [1] 

 

Where k predictors are X1, X2, .…..., Xk and β are the corresponding model 

coefficients. The model choice was based on the best fit with the count data and because 

we were interested to explore the role of each environmental factor. The model fit was 
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conducted for the seasonal data set and was examined by comparing observed and 

predicted numbers of cases in each area. The entire dataset was divided into two 

seasons:1) Spring season inclusive of January through May; and 2) Fall season inclusive 

of observations averaged from August through December. The diagnostic experiments 

and data analysis were focused on identifying the significant variables correlated with in 

situ data (collected directly from the ponds) and large-scale data (obtained by satellite 

remote sensing) and cholera incidence and dynamics. Results from these analyses were 

expected to provide new knowledge about how local environmental conditions of two 

endemic regions, with distinct regional settings, can aid in development of a cholera 

simulation model.  

2.5 GBM (Ganges-Brahmaputra- Meghna) Basin Hydroclimatology   

The Ganges-Brahmaputra-Meghna (GBM) system is considered one of the largest 

river basins that have three rivers with distinct characteristics and flow through very 

different regions. This system runs through Tibet, Nepal, and Bangladesh and is 

composed of Himalayan Rivers, the Ganges and the Brahmaputra. The GBM is a very 

complex system not only because each one of its individual rivers are large, but also 

because each one of them has its tributaries, important in many ways including water 

availability and use. Part of the GBM complexity derives from the transboundary nature 

of many of its tributaries (Ahmad et al., 2001; Biswas and Uitto, 2001). 

The GBM rivers are joined by the Meghna in Bangladesh. The Ganges‐

Brahmaputra‐Meghna (GBM) basin has a highly seasonal hydroclimatic nature that is 

characterized by annual precipitation occurring during June–September (Chowdhury and 

Ward, 2004). Akanda et al., (2011), however, showed that during the prolonged dry 

http://en.wikipedia.org/wiki/Tibet
http://en.wikipedia.org/wiki/Nepal
http://en.wikipedia.org/wiki/Bangladesh
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season (December–May), only a fraction of the average flow reaches the Bay of Bengal 

(BOB). This leads to a salinity akin to those in estuarine regions in the inland freshwaters 

(Rahman et al., 2000), thus providing an optimum environment for V. cholerae growth 

(Louis et al., 2003). A large part of coastal Bangladesh will exhibit brackish water 

conditions in spring (Miller et al., 1982; Louis et al., 2003; Wahid et al., 2007; Islam and 

Gnauck, 2008). 

During the monsoon rain (June through September), the river rises rapidly, 

causing flooding in Bangladesh and large-scale contamination of the water system, 

including the autochthonous cholera bacteria that are in the water ecosystem (Schwartz et 

al., 2006; Akanda et al., 2009). Chowdhury and Ward, 2007 showed that in 1988 and 

1998, at 60 percent high flood nearly 20 percent of the land area of Bangladesh is 

inundated. Under flood conditions, all water system including reservoirs, and submerged 

areas, will contain Vibrio cholerae, with 2/3 of the samples collected over a three-year 

study testing positive for V. cholerae O1 (Huq et al., 1990). In addition, during the 2004 

floods about 62.5% of water samples were contaminated by cholera bacteria in the 

suburban reservoirs around Dhaka (Islam et al., 2006). Mirza et al., 2001 studied the 

submerged area December–January and found that it remained positive for Vibrio 

cholerae, and served as an ideal habitat for its growth and multiplication after the flood. 

This can be explained as the river levels falls from September through November in most 

of the parts of the river, the adjoining flood plain water level decreases slowly because of 

low gradients, congested drainage, and substantial depression areas.  
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2.6 Dynamics of cholera seasonality:  

Cholera is dynamic throughout different parts of the world. The disease varies in 

frequency, severity, duration, and endemicity. In South Asian countries line Bangladesh, 

cholera is endemic, that is, cholera occurs every year while cholera in other regions, such 

as parts of South America and Africa has sporadic epidemics. Although endemic cholera 

regions are known as areas of persistent cholera, i.e., cholera occurs there every year but 

the seasonal rate varies greatly from year-to-year. Since the early 19th century, the 

Bengal Delta estuary formed by the Ganges and the Brahmaputra rivers has been 

considered as the native homeland of cholera (Bouma and Pascual, 2001). The 

International Center for Diarrhoeal Disease Research (ICDDR) in Bangladesh has a 

cholera surveillance program that provides some of the longest and largest records 

available in the world. The cholera surveillance program serves as the main treatment 

center for the most concentrated population center in Bangladesh that carries out a 

systematic sub-sampling of all patients visiting the hospital. 

The seasonal cycle for cholera outbreaks in Bangladesh is described by several 

studies. These studies focused on describing the seasonal cycle for specific cholera 

strains such as classical (Samadi et al., 1983), El Tor (Khan et al., 1984), and O139 

(Heidelberg et al., 2002). Different cholera strains (classical, El Tor, and O139) show 

differences in their seasonal cycles although the symptoms of the cholera they cause are 

similar. V. cholerae El Tor has caused most cases in a seasonal cycle from September to 

November, just after the monsoon while the classical cholera strain has a dominant 

seasonal cycle after the peak of the newer strain (Merson et al., 1980; Glass et al., 1982; 

and Samadi et al., 1983). The El Tor cholera seasonal cycle is described further in several 
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additional studies as having two annual pattern peaks, namely an April peak before the 

monsoon (smaller spring outbreak) followed by a September to December peak after the 

monsoon (larger fall outbreak) (Lipp et al., 2002; Sack et al., 2003; Islam et al., 1993; 

Baqui et al., 1992; Huq and Colwell, 1996). When V. cholerae 0139 first appeared in 

Bangladesh in 1993, it showed a similar seasonal pattern (Emch and Ali, 2001). Cholera 

seasonal cycle patterns are evident in other parts of the world. Classical cholera in 

Pakistan typically has two peaks: fall peak (November to January) and spring peak from 

(April to May) (Martin et al., 1969 and McCormack et al., 1969). On the other hand, 

cholera in Kolkata, India, shows several seasonal cholera cases peaks, in April, May, and 

June (Gangarosa and Mosley 1974; Kaper et al., 1995).  

The seasonality information of cholera outside of the South Asia region is limited 

since there are a few surveillance systems that can collect detailed cholera incidence from 

these regions. Seasonal cholera peaks in South America occur in the summer months 

(Lipp et al., 2002; Cockburn et al., 1960; Kaper et al., 1995) with the rise in waters 

following the rainy season. In east African nations including Djibouti, Kenya, 

Mozambique, cholera outbreaks are reported in summer season following rainfall and/or 

floods (WHO, 1998). Cholera reports from 1979 to 1983 show two peaks in Dar es 

Salaam and Tanzania; one peak [from October to December] followed by a second peak 

[from March to May], both of which coincide with periods of increased rainfall (Mhalu et 

al., 1987). The seasonal peak of cholera epidemic in rural southern Tanzania is slightly 

later in June and July (Acosta et al., 2001). The high cholera season for the northern parts 

of southern Africa in 2002 occurred from the end of January to mid-March, while the 

cholera peak in Mozambique has a slightly longer period that occurs during the hot, rainy 
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months from December to May (Bateman et al., 2002; Folgosa et al., 2001; Aragón et al., 

1994). 

The cholera incidence climatology in our study is constructed by averaging V. 

cholerae O1 records across sites of the 2004-2007 time series in two distinct places in 

Bangladesh (Mathbaria and Bakergonj), that exhibits significant seasonal and inter-

annual variability (Figure 2.2). A closer look reveals that cholera in the Delta Bengal 

exhibits a distinct seasonal and spatial variation that is both complex and dynamic. 

Mathbaria and Bakergonj are located in two regions of Bangladesh, but they have 

different seasonal patterns. Cholera in Mathbaria has a single annual peak found in the 

spring season (April) while unique dual‐cholera peaks typically are observed during 

spring and fall seasons in Bakergonj.  We can see the highest number of cholera cases in 

October during the large peak in the fall, followed by a smaller peak in the spring (Figure 

2.2). Akanda et al., (2009) used data (1980-2000) to show that some regions of the 

Bengal Delta, such as Dhaka and Matlab, have a dual cholera incidence while other 

regions such as Mathbaria (spring peak) and Chhatak (fall peak) have a single annual 

peak. 
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Figure 2.2 Seasonality of cholera for Bakergonj and Mathbaria, Bangladesh (2004-2007) 
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2.7 Cholera and Coastal Regions: 

The modern history of cholera began in 1817, when explosive cholera epidemic 

spread out from the Ganges River delta to the entire world as the first of seven 

pandemics. The Seventh Pandemic first reached Africa, specifically Guinea, in August, 

1970 (Echenberg, 2011) and spread along the African coast. The seventh pandemic 

global pattern and magnitude started in 1961 in Indonesia and was reported in over 50 

countries, suggesting that coastal environments are the main origin of cholera outbreaks, 

spreading inland by secondary means (Colwell, 1996). Travel ease and the increasing 

number of travelers is considered to contribute to the spread of the pandemic. The main 

source of cholera transmission is along the African and Asian coasts, whether it is 

estuarine regions or not such as Accra and Cape Coast in Ghana (WHO, 2011), Dakha in 

Bangladesh (WHO, 2008), Luanda in Angola (WHO 2007and 2009; Grestl and Alberti, 

2006, and Quito in Ecuador). However, these regions are also characterized by densely 

populated urban settings. There are many studies that explain the emergence of cholera 

from coastal regions. However, Siddique et al. (1994) show a plausible cholera outbreak 

progression pathway from Bangladesh coastal regions to inland areas of the country 

during a major pandemic. Moreover, studies of Epstein (1993) and Colwell and Huq 

(2001) explained the cholera-coastal connection by Vibrio cholerae strains, the causative 

agent of cholera, being found mainly in marine plankton. Some evidence for historical 

coastal link to cholera mortality in the Bengal Delta formed by the joining of Ganges and 

the Brahmaputra rivers, were provided by Lobitz et al., (2000) and later by Bouma and 

Pascual (2001). Lobitz et al (2000) showed significant correlation between sea surface 

temperature (SST) and spring cholera deaths in the coastal districts (Lobitz et al., (2000); 
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Bouma and Pascual, 2001). Sack et al. (2003) used a detailed cholera epidemiological 

study from Bangladesh, including both Bakergonj and Matlab to show that inland regions 

have mostly fall outbreaks while coastal regions have spring peaks. In most regions, the 

initial outbreaks of cholera show a strong and significant correlation with the coastal 

areas, indicating the important role of the coastal marine environment in transporting 

cholera to other regions. Since the initial coastal cholera outbreak in Africa in 1970, the 

disease has spread along maritime, terrestrial, and aerial routes from coastal regions to 

other parts of the continent.  Hence, several inward and cross-border epidemics have been 

identified such as the spread of cholera from Comoros to Madagascar in 1999 (Duval et 

al., 1999) and from Guinea-Bissau to Senegal in 1995 (Aidara et al., 1998). On the other 

hand, the outbreak of cholera in 1991 in about 20 Latin American countries was first 

reported in coastal villages near Lima, Peru, with a total of 5000 deaths. Recent studies 

investigated genetic comparisons of cholera strains isolated in coastal African countries 

and showed that both new and atypical strains of V. cholerae El Tor which had emerged 

in the early 1990s in the Bay of Bengal could be isolated along the are coast of Africa 

(Olsen et al., 2009; Lam et al., 2010, 2012; Safa et al. 2010). Considering the importance 

of coastal cholera outbreaks, Jutla et al. (2010) provided a modeling framework that 

enhanced our understanding of cholera prediction dynamics, connecting the ‘‘macro’’ 

(hydrological, ecological, climatic, and coastal processes) and the‘‘micro’’ 

(microbiological, genetic, and human intestinal-scale processes) dimensions.  

2.8. Role of environmental factors in seasonality and modulating cholera outbreaks.  

 The life cycle of Vibrio cholerae is linked to two distinct environments, the 

microenvironment, and the macro-environment (Jutla, et al., 2010) and they are quite 
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different and affected by multiple factors. Vibrio cholerae occurs in a commensal 

relationship with zooplankton in brackish waters of the macro-environment (Huq et al., 

1984; Epstein, 1993; Alam et al., 2006). Zooplankton act as vectors for Vibrio cholerae 

by providing nutrients and also physically carry the bacterium, playing an important role 

in facilitating survival, multiplication, and transmission of Vibrio cholerae in the natural 

aquatic environment (Lipp et al., 2002). Vibrio cholerae growth, multiplication, and 

ability to cause disease is governed by many processes, including microbiological and 

genetic processes. The macro-environment is governed by many climatic, ecological, and 

hydrological processes. Numerous studies have focused on the microenvironment, 

development of new vaccines, antibiotics, and protocols for disease treatment while 

macro-environmental processes have focused on the ecology of Vibrio cholerae and 

developing prediction tools.  

In general, the continuous development of newer types of remote-sensing devices 

will allow more data to be available to study the emergence of water related diseases. 

Prediction of many water-related diseases has already been significantly enhanced, such 

as Rift Valley fever (Linthicum et al., 1999), malaria (Hay et al., 1998; Adim et al., 

2010), and schistosomiasis (Malone et al., 2001). Studying cholera dynamics by using 

remote sensing is a promising research area that will provide large and information dense 

datasets (Harvell et al., 2002). The first remote-sensing data were used by Lobitz et al., 

(2002) to investigate the connection between SST, phytoplankton, and cholera. Many 

studies have demonstrated an association between environmental and climate-derived 

satellite data with cholera, such as coastal salinity (Miller et al., 1982), fecal 

contamination (Islam et al., 2006), precipitation (Pascual et al., 2002; Hashizume et al., 
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2008), floods (Koelle et al., 2005), river discharge (Jutla et al., 2010; Akanda et al., 

2009), sea surface temperature (SST) (Lobitz et al., 2000; de Magny et al., 2008), 

chlorophyll and river discharge (Jutla et al., 2010). Table 2.1 shows some important 

examples of cholera relationships with climate and how they were analyzed. 

Table 2.1 Available environmental data and their relation to cholera 

Source.No Author Data 

analysis 

Type 

Variables Large/Regional 

Environmental 

variables 

Scale 

(spatial , 

temporal) 

1 Jutla et 

al., 

2010 

Analytical/ 

Statistical 

based 

Chlorophyll and 

river discharge 

Large-scale 

Environmental 

variables 

Monthly, 

three main 

rivers/coasts   

2 Emch et 

al., 

2008 

Statistical 

based 

Large Scale: 

chlorophyll, Sea 

surface 

temperature, Sea 

surface height 

Regional Scale: 

Rainfall, 

Temperature, River 

discharge/height 

Large and 

regional-scale 

Environmental 

variables 

Monthly 

(three cities) 

3 Magny 

et al., 

2008 

Statistical 

(regression) 

based 

Previous season 

cholera 

incidence, 

chlorophyll, 

precipitation, SST 

Large scale 

Environmental 

variables  

Monthly,  

(two cities) 

4 Akande 

et al., 

2009 

Analytical/ 

Statistical 

based 

Sea surface 

temperature, river 

discharge  

Large-scale 

Environmental 

variables 

Monthly, two 

main rivers 

 

Emch et al., (2008) used several environmental variables, including SST, river 

discharge, sea surface height, as well as chlorophyll measurements, from three coastal 

regions in South Asia and reported a two month lag between plankton blooms and 

cholera outbreaks in Bangladesh. Magny et al., (2008) used coastal plankton data derived 

from Bengal Delta to establish a prediction model between cholera epidemic and 
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plankton. Jutla et al., 2010 focused on large-scale hydroclimatic processes, such as 

coastal chlorophyll and how it can affect cholera outbreaks. However, none of these 

studies investigated successfully the role of local environmental processes and how they 

are correlated with large-scale environmental processes. Local environmental processes 

are identified as the biological activity in the ponds from where the bulk of the population 

in endemic regions derives water for daily household usage. The analysis reported here 

was designed to understand disease transmission dynamics affected by local 

environmental processes as well as how it connects the local environmental processes to 

large-scale environmental processes. 

The following questions were addressed: (i) What are the local environmental 

factors that will help understand disease transmission dynamics? (ii) Are there other 

kinds of chlorophyll that can be linked to cholera incidence other than chlorophyll A? 

(iii) What is the mechanism of cholera spreading among different regional settings? 

Preliminary construction of the correlation analysis for all available local 

environmental and physicochemical variables collected from the ponds in both Mathbaria 

and Bakergonj suggests that the major local environmental factors affecting cholera 

outbreak are water depth and chlorophyll-c (Figure 2.3 and 2.4; Table 2.2). This step is 

very important as it is done to determine: 1) What local environmental and 

physicochemical variables are significantly correlated with cholera incidence; 2) What 

variables with multi-collinearity should be excluded from the model to construct a good 

quality model. The second step in my analysis was construction of simulation models to 

describe how these major environmental variables affect a cholera outbreak. 

Each region (Mathbaria and Bakergonj) is described separately: 
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In the Mathbaria model, water depth and chlorophyll-c were the two major 

environmental parameters responsible for cholera outbreaks since they describe about 

64.17% of the model variance. A moderate negative correlation was observed between 

cholera cases and water depth (r
 
= - 0.47), while a positive association was found with 

chlorophyll-c (r
 
= 0.29) (Table 2.3). The increase in pH and dissolved O2 concentration 

provide a favorable environment for V. cholerae (Oppenheimer et al., 1978, Huq et al., 

1984a and Isalm et al., 1994). Interestingly, pH has a weak negative significant 

correlation (r = - 0.07) and a negative coefficient in the model. This can be explained by 

its confounded effects that arise from its low variability, since our data have pH values of 

7.5 and higher, and the optimum pH for Vibrio cholerae is 8.5 (Huq et al., 1984; 

Oppenheimer et al., 1978), thus, a one point increase above the optimum pH will be 

inversely proportional to cholera. 

 

Figure 2.3 Cross-correlation between cholera cases and different local environmental 

factors in both Mathbaria and Bakergonj, Bangladesh 

The pH values are included in the model because pH is a critical factor affecting 

Vibrio cholerae growth. Model performance without it is poor since it explains only 
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68.18% of the variance, compared with performance of the model which explains 77.7%. 

Air temperature showed a positive correlation with cholera cases (r = 0.41) as the 

temperature increased. Especially above 30°C since V. cholerae multiplication increases 

with temperature increase (Singleton et al., 1982; Paz, 2009). Cholera bacteria can 

survive and thrive in brackish waters, particularly in the presence of abundant 

zooplankton and phytoplankton, suggesting high correlation between plankton abundance 

and disease outbreaks (Huq et al., 1984; Epstein, 1993; Alam et al., 2006). Phytoplankton 

and zooplankton act as vectors for Vibrio cholerae by providing nutrients and also 

physically serve as a host for the bacterium, playing an important role in facilitating 

survival, multiplication, and transmission of Vibrio cholerae in the natural aquatic 

environment (Lipp et al., 2002). 

 
Figure 2.4 Seasonal correlations between Water Depth, Chlorophyll-c (CHLc) and 

cholera cases (black line) from 2004 to 2007, (A) Bakergonj, (B) Mathbaria 

 

In the Bakergonj model, conductivity explains almost double (22%) the variance 

explained by water depth, chlorophyll-c, phosphate, and nitrate, individually. A positive 

correlation was observed between water depth (r = 0.29) and cholera cases as well as 

positive association between chlorophyll-c (r
 
= 0.33) and cholera cases (Figures 2.3 and 



33 

2.4). In addition to water depth and chlorophyll-c, other environmental parameters, such 

as nitrate, phosphate and conductivity were found to be correlated with cholera outbreaks 

in Bakergonj. Both phosphate and nitrate showed a negative significant correlation with 

cholera cases r = - 0.28 and r = - 0.29, respectively.  

The pseudo R
2
 (appendix 1) value for the fitted model of Bakergonj is equal to 

48.5%, which is lower than the fitted model for Mathbaria. This can be explained by the 

fact that twice as many samples per month were collected from Mathbaria (bimonthly) as 

compared to those (sample number/frequency) for Bakergonj (monthly). Chlorophyll, an 

indicator of phytoplankton, and phytoplankton a surrogate for zooplankton, has received 

extensive attention among scientists in several related studies since the late 1990s (Olson, 

1996; Huq and Colwell, 1996). Lobitz et al., (2000) explored the potential role of 

chlorophyll measured by remote-sensing satellites to understand the phytoplankton-

zooplankton-cholera relationships. From Table 2.3, we can see that chlorophyll c after 

time delay calcination is significantly correlated with cholera incidence in both 

Bakergonj and Mathbaria (r
 
= 0.33 and r

 
= 0.29, respectively).  

Most of the recent cholera models, demonstrated in Table (2.5) are based either on 

regression or semi-mechanistic processes and developed using large-scale environmental 

variables (Magny et al., 2008; Pascual et al., 2008; Matsuda et al., 2008). A cholera 

simulation model (CSM) using in-situ data collected from several sites/ponds in two 

geographically distinct locations in Bangladesh is presented in Table 2.3.  

 

 

The proposed CSM for Mathbaria takes the following functional form: 
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Yi ~ Poisson (μi)  

 ln Yi = β0 - β1 XWDepth +  β2 XATemp  +  β3 XCHLc -  β4 XPH   (Equation 2) 

The proposed CSM for Bakergonj may take the following functional form: 

Yi ~ Poisson (μi)  

ln Yi = β0 + β1 XWDepth +  β2 XCond  +  β3 XCHLc  -  β4 XNitrate  -  β5 XPhosphate (Equation 3)
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Table 2.2 Correlation between 17 local environmental, physicochemical variables and cholera cases in both Mathbaria and 

Bakergonj, Bangladesh (2004-2007). 

 

Mathbaria correlation matrix is in the upper diagonal while Bakergonj correlation matrix is in the lower diagonal. The red color indicates strong 

correlation, -0.6 > r > 0.6, (multi-collinearly if exists between the independent variables), the green color indicates moderate correlation, -0.4 > r > 

0.4, the yellow color indicates weak correlation, -0.28 > r > 0.28, the white color indicates very weak correlation. 

 

O1 in Bakergonj PH DOT TDS Conductivity Salinity Water Temp Water Depth Air Temp CHLa CHLb CHLc Phaeophytin Phosphate Silicate Nitrate Alkal Coliform O1 in Mathbaria

PH 0.34 1 0.06 0.25 0.23 0.16 0.35 -0.07 0.36 0.24 0.14 0.14 0.25 -0.04 0.07 -0.16 0.03 0.13 -0.07

DOT 0.41 0.34 1 -0.0079 -0.07 0.02 -0.001 0.1 -0.001 -0.15 -0.12 0.08 -0.18 0.26 -0.15 -0.03 -0.09 -0.19 -0.06

TDS 0.48 0.55 0.33 1 0.98 0.94 0.37 -0.46 0.3 0.3 0.24 0.37 0.29 -0.05 0.41 -0.04 0.55 -0.33 0.14

Conductivity 0.49 0.54 0.38 0.98 1 0.93 0.36 -0.43 0.28 0.31 0.27 0.32 0.29 -0.06 0.39 -0.09 0.53 -0.34 0.11

Salinity 0.5173 0.53 0.323 0.97 0.94 1 0.32 -0.5 0.283 0.37 0.34 0.32 0.27 -0.04 0.45 -0.01 0.61 -0.32 0.24

Water Temp 0.05 0.08 0.082 0.1 0.18 -0.01 1 -0.18 0.89 0.2 0.07 0.31 0.36 0.11 0.3 -0.22 0.13 0.003 0.27

Water Depth 0.29 -0.11 0.072 -0.2 -0.17 -0.09 0.08 1 -0.35 -0.37 -0.45 -0.12 -0.32 0.15 -0.52 -0.11 -0.54 0.04 -0.47

Air Temp -0.21 -0.04 0.15 -0.09 -0.011 -0.25 0.8 -0.15 1 0.12 0.1 0.19 0.3 0.01 0.26 -0.17 0.15 0.12 0.41

CHLa 0.29 0.58 0.079 0.42 0.44 0.38 0.3 -0.32 0.1 1 0.68 0.25 0.73 0.01 0.17 -0.12 0.18 -0.009 0.05

CHLb 0.27 0.48 0.027 0.28 0.3 0.23 0.05 -0.25 0.04 0.65 1 -0.17 0.49 -0.18 0.12 -0.14 0.27 -0.08 0.17

CHLc 0.33 0.37 0.17 0.24 0.26 0.2 0.27 -0.21 0.16 0.7 0.2 1 0.22 0.21 0.14 -0.03 -0.008 -0.02 0.29

Phaeophytin 0.06 0.34 0.056 0.13 0.15 0.03 0.2 -0.5 0.36 0.6 0.48 0.59 1 -0.06 0.15 -0.16 0.06 0.001 0.14

Phosphate -0.281 -0.15 -0.13 -0.33 -0.31 -0.37 0.32 -0.05 0.41 0.09 -0.17 0.33 0.27 1 -0.13 -0.12 -0.16 -0.2 -0.1

Silicate 0.009 0.31 0.08 0.03 0.03 0.03 0.054 -0.27 0.02 0.39 0.19 0.31 0.31 0.02 1 0.16 0.52 -0.16 0.13

Nitrate -0.29 -0.27 -0.26 -0.31 -0.3 -0.28 -0.11 0.2 -0.09 -0.15 -0.35 -0.03 -0.2 0.13 -0.19 1 0.09 0.004 0.03

Alkal -0.18 0.37 0.13 0.46 0.44 0.38 -0.1 -0.76 0.01 0.23 0.27 0.08 0.28 -0.26 0.26 -0.17 1 -0.22 0.11

Coliform 0.32 0.2 0.033 0.32 0.26 0.35 -0.13 0.13 -0.17 0.13 0.25 0.002 -0.08 -0.09 -0.42 -0.11 -0.2 1 0.12

Independent variables for Multiple Poisson regression modeling 
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Table 2.3 Summary of models obtained for Mathbaria and Bakergonj in Bangladesh 

Model Parameters 

 Intercept Water 

Depth 

CHLc PH Air 

Temp 

Conductivity Nitrate Phosphate df 

Mathbaria         60 

Coefficient 14.388 - 7.7123 0.1125 -2.220 0.439     

P-value 0.001 0.000 0.000 0.000 0.000     

SE 4.3566 1.532094 0.02423 0.3583 0.10448     

95% 

CI 

Min 

Max 

5.849 

22.927 

-10.71524 

-4.7095 

0.065 

0.16 

-2.923 

-1.518 

0.2344 

0.6439 

    

Bakergonj         30 

Coefficient -2.554 1.9456 0.066   0.0024 - 0.003 - 0.1117  

P-value 0.009 0.000 0.000   0.047 0.001 0.002  

SE 0.97278 0.3461377 0.01351   0.0012361 0.00101 0.0036767  

95% 

CI 

Min 

Max 

-4.46 

0.06477 

1.267194 

2.624029 

0.03978 

0.0927 

  0.000029 

0.0048 

-0.0052 

-0.0012 

-0.0183 

-0.00396 

 

 

Table 2.4 Available cholera prediction models  

Author Model Type Variables 

Magny et al., (2008) 
Regression 

model 

chlorophyll, 

precipitation, SST 

Pascual et al.,  (2008) 
Semi-mechanistic 

model 

Population, biological variables 

(immunity levels, susceptibility 

rates), ENSO 

Matsuda et al.,  (2008) 
Regression  

model 
rainfall, air temperature 

2.9 Physical hypothesis for the role of local environmental factors in modulating 

cholera outbreak dynamics 

Cholera incidence in Bengal Delta has been linked to large-scale environmental 

and climate variables. Akanda et al. (2009) linked cholera outbreak peaks with the flow 

season of the GBM Rivers; the first small spring cholera peak in Mathbaria and 

Bakergonj occurs during the dry season while the second bigger fall peak in Bakergonj 

only occurs in the wet season. Typically cholera shows a single incidence peak in a year 

through other affected regions in the world, such as Southeast Asia, sub Saharan Africa, 

southern Africa and South America (Emch et al., 2008; Hashizume et al., 2008; Bertuzzo 
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et al., 2008; Gil et al., 2004). The main objective of this study was to investigate whether 

the biannual cholera peaks in the Bengal Delta region (Mathbaria and Bakergonj) are 

governed by two spatially distinct seasonal transmission mechanisms, influenced by local 

hydroclimatic processes that match the large scale ones. 

In this study, a working hypothesis was developed to explain how local 

environmental factors are related to outbreaks of cholera. During the spring seasons in 

this study period, cholera case values were found to be inversely related to water depth, 

i.e., spring cholera peaks in both Mathbaria and Bakergonj are seen in strong drought 

years. On the other hand, fall cholera outbreaks in Bakergonj are positively correlated 

with water depth, i.e., fall peaks occur in high flood years (Figure 2.5). The working 

hypothesis was that spring cholera outbreaks occur as a result of coastal plankton 

intrusion through low river discharge, whereas fall cholera outbreaks occur due to 

widespread flooding. If this hypothesis is valid, then a statistically significant negative 

correlation should be observed between the fall cholera outbreaks peak in Mathbaria with 

water depth (r
2
 = - 0.47;   P < 0.01) and statistically significant positive correlation 

between the spring cholera outbreaks peak in Bakergonj with water depth (r
2
 = 0.29; P < 

0.01). The question is whether local and large-scale drivers of cholera outbreaks are 

related to each other or not. This can be answered by the work of Akanda and his 

colleagues (2009) who originally suggested this hypothesis. They explained the role of 

large-scale river discharge in cholera outbreaks and stated that spring cholera in the 

Bengal Delta is hypothesized to be the result of coastal plankton intrusion through low 

river discharge, whereas fall cholera outbreaks occur due to widespread flooding in the 
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region. Thus the objective of this part of the study was to explore the role of local 

environmental water depth on cholera outbreaks. 

Figure 2.5 Water-depth (on regional scale) as an important factor in seasonality of 

cholera outbreaks. Lower water depth can be related to coastal intrusion and spring 

cholera outbreaks. High water and flooding are factors in fall cholera outbreaks (Akanda 

et al., 2009) based on large-scale environmental processes. 

 

We further validated our hypothesis by separating Mathbaria and Bakergonj data 

into two seasons (spring and fall) to build a simulation model that can assess the validity 

of the hypothesis for the role of water depth on transmission of cholera throughout 

different seasons. Table 2.5 shows results for the best simulation model performance 

obtained (equation 4) for the spring and fall peaks, after analyzing all variable 

combinations, using a forward and backward selection method.  

The model of a spring peak in Mathbaria had the highest pseudo R
2
 (70.9%). It 

was obtained using water depth, chlorophyll-c, heterotrophic bacteria, and air 

temperature. The coefficient for water depth yielded a negative sign for (
^

1= - 7.74; p 

Coastal 

Intrusion 

Fall  
Cholera Outbreak 

Water Depth 

Spring  
Cholera Outbreak 

Flooding 
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value < 0.005), table 1), indicating an inverse relationship with cholera cases. Overall 

water depth explained about 57.3% of the model variance. A positive coefficient was 

observed for chlorophyll-c (
^

2
 
= 0.0768; p value < 0.005). The model of spring peak in 

Bakergonj showed water depth, coliform counts, and heterotrophic bacteria were 

associated with spring cholera cases. The coefficient for water depth was negative (
^

1
 
= - 

13.5; p value < 0.005, Table 1) also for Mathbaria, indicating an inverse relationship with 

cholera cases. The coliform and heterotrophic bacteria counts showed different 

associations with cholera (
^

2
 
= - 0.29; p value < 0.005 and 

^
3

 
= 0.136; p value < 0.005 

respectively). Compared with the spring cholera model for Mathbaria (Pseudo R
2
 70.9%), 

the Bakergonj spring cholera model yielded a low Pseudo R
2
 equal to 47.1%. The 

difference between the model fitness for the two sites may reflect the difference in the 

frequency of sampling and analysis sampling frequency. Sampling was bimonthly in 

Mathbaria and monthly in Bakergonj. The spring and fall peaks of the cholera 

simulation model (CSM) were revealed from in-situ data collected from several 

sites/ponds in two geographically distinct locations in Bangladesh (Table 2.5).  

The proposed CSM for Mathbaria spring peak takes the following functional form: 

Yi ~ Poisson (μi)  

 

ln Yi = β0  - β1 XWDepth +  β2 XCHLc + β3 XATemp- β4 XHeteroplate                         [4]  

The proposed CSM for Bakergonj spring peak takes the following functional form: 

Yi ~ Poisson (μi)  

ln Yi = β0 + β1 XWDepth +  β2 XColiform  +  β3 XHeterotrphs                           [5] 
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On the other hand, the highest pseudo R
2
 (54.5%) was obtained for fall cholera 

peak in Bakergonj relative to water depth, chlorophyll-c, salinity, nitrate and phosphate. 

The coefficient for water depth was positive (
^

1 = 0.403; p value < 0.005, table 1), 

indicating a proportional relationship with cholera cases (Figure 2.6). Water depth 

explained approximately 20% of the model variance. A positive coefficient was observed 

for chlorophyll-c (
^

2 = 0.07; p value < 0.005, Table 1), since it is indicator of 

phytoplankton abundance, food for the zooplankton that carry vibrios as commensals, 

with concomitant increase in bacterial numbers. In addition, nitrate, phosphate and 

salinity were associated with cholera, with both phosphate and nitrate showing a 

significant negative coefficient with cholera, (
^

4 = - 0.00045; p value < 0.005 and 
^

5 = - 

0.021; p value < 0.005, respectively), confounding effects that difficult to explain.  

The proposed model for Bakerganj fall peak is expected to have the following functional 

form: 

 

Yi ~ Poisson (μi)  

ln Yi = β0 + β1 XWDepth +  β2 XSalinity  +  β3 XCHLc + β4 XNitrate + β5 XPhosphate           [6] 

The proxy validation and observed cholera cases shown in Figures 2.6 and 2.7 suggest 

that, in regions with a dual cholera peak, two models may need to be developed for the 

two peaks, and subsequent combining both to one modeling framework.  
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Table 2.5 Seasonal models for cholera cases in Mathbaria and Bakergonj, Bangladesh 

Model Parameters 

 Intercept Water Depth CHLc Hetero
trophic 

Air Temp Salinity Nitrate Phosphate Pseu
do-R2 

Mathbaria (spring peak)       70.9

% 

Coefficient 8.98 -7.74 0.0768 -0.105 0.2122     

P-value 0.011 0.000 0.009 0.006 0.002     

SE 3.53 1.39 0.0293 0.0388 0.07     

95

% 

CI 

Min 
Max 

2.06 
15.9 

-10.47 
-5.018 

0.019 
0.134 

-0.181 
-0.029 

0.074 
0.349 

    

Bakergonj  (fall peak)       54.4
% 

Coefficient 2.99 0.403 0.07   0.0005 -0.0045 -0.021  

P-value 0.211 0.003 0.000   0.731 0.001 0.001  

SE 2.39 0.926 0.014   0.0015 0.0012 0.0012  

95

% 

CI 

Min 

Max 

-1.702 

7.695 

-1.412 

2.219 

0.0428 

0.0987 

  -0.0025 

0.0036 

-0.0072 

-0.0018 

- 0.034 

-0.0089 

 

Bakergonj  (spring peak) Coliform      47.1

% 

Coefficient 20.34 -13.5 -0.29 0.136      

P-value 0.003 0.002 0.008 0.018      

SE 6.96 4.26 0.1107 0.069      

95

% 

CI 

Min 

Max 

6.698 

33.99 

-21.86 

-5.14 

-0.512 

-0.078 

0.0009 

0.2718 

     

 

 

Figure 2.6 Epidemiological data of cholera seasonal peaks showing the temporal 

dynamics of observed cholera cases and models including fitted and proxy validation 

shown in green, red and blue respectively, (A) Bakergonj and (B) Mathbaria 
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Figure 2.7  Epidemiological data of cholera seasonal peaks showing a scatterplot of observed cholera cases against simulated 

cholera cases by fitted model in red circles and cholera cases by proxy validation model in blue circles, Black line represents 

perfect agreement between simulated and observed cases. A & C: For Bakergonj and B & D: For Mathbaria  
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2.10 Discussion and Summary 

The goal of this study was to extend the hypotheses of Akanda et al., 2009 by 

determining environmental factors associated with endemic cholera. Two endemic 

regions in the Bengal Delta were selected for study with data available for analysis. 

Ponds, in this study, are connected to large tributaries of the Ganges River prone to tidal 

intrusion of coastal seawater during spring season since river discharge during the spring 

season is extremely low. Mathbaria, a coastal town, has a single cholera peak in the 

spring, whereas Bakergonj located near the coast but inland has two seasonal peaks, one 

in the spring and another in the fall. The negative association observed in this study 

between water depth and spring cholera in Mathbaria is interpreted as an effect of coastal 

water intrusion, with contamination of inland water bodies accelerating cholera 

transmission by increasing salinity and nutrient concentration (Rao, 1973; Valsaraj, Rao, 

1994). Akanda et al. (2009), using data for large-scale hydroclimatic processes, proposed 

that intrusion of coastal water during low river height creates conditions for cholera 

during the spring season in the inland regions of the Bengal Delta. This, followed by 

widespread flooding during high water level river periods, has the effect of cross 

contamination in effective water infrastructure, resulting in a fall peak of cholera cases. 

Our analysis for both Mathbaria and Bakergonj supports and strengthens this hypothesis. 

First, the Mathbaria modeling results are consistent with those of Akanda et al. (2009), 

namely that pond water depth is a major environmental factor associated with cholera, 

explaining 59% of the model variance, with a negative water depth coefficient. In 

Bakergonj, the spring peak is related to coastal intrusion, and the fall peak to widespread 

flooding and cross contamination rising from inadequate sanitation. Using seasonal proxy 
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models, a negative association was observed between spring cholera and water depth, but 

positive for fall cholera and water depth. To explain the microbiology of organisms in 

lacks; as the depth of water decreases, bacteria concentrate as well as the nutrients and 

alternate hosts such as algae and plankton. Then as the depth of water increases either due 

to high rainfall or increase in river discharge, the sediments, plankton and other 

organisms become resuspended along with the bacteria. Chlorophyll-c showed a positive 

relationship with cholera in both regions for all seasons. Higher values of chlorophyll-c 

with seasonal increase in number of cholera cases most likely reflects the role of plankton 

blooms and subsequent growth of zooplankton populations and related increasing V. 

cholerae population numbers (Colwell, 1996, Nalin et al., 1979, Rawlings et al., 2007). 

Two additional environmental variables, nitrate and phosphate appear to be related to fall 

cholera outbreaks in Bakergonj. The confounding effect of salinity will need to be 

investigated further. A key implication of this analysis is the potential for a cholera 

prediction model using information from large-scale hydroclimatic processes readily 

obtained by satellite remote sensing. The negative and positive relationships of water 

depth with cholera during the spring and fall cholera shown in Fig. 4 corroborate the 

finding of Akanda et al., (2009) and Jutla et al., (2013), who proposed intrusion of 

coastal seawater during the spring season initiates cholera, while a flood during the fall 

season accelerates cross-contamination of bacteria into the water where there is a faulty 

sanitation infrastructure.  

Regional differences between the two locations confirm the importance of the 

local environment relative to large-scale hydrologic and climatic drivers of seasonal 

cholera dynamics. The vast space-time coverage provided by satellite remote sensing of 
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coastal and terrestrial ecosystems where Vibrio cholerae populations exist offers the 

potential of achieving spatially distinct prediction of impending cholera outbreaks in 

other countries of South Asia and also in Sub-Saharan Africa (Jutla et al., 2013).  Stream 

flow from the major rivers of the Bengal Delta and remotely sensed plankton abundance 

in the coastal Bay of Bengal together explain over 75% of the variability of cholera in the 

Bengal Delta (Jutla et al., 2013). Thus, this predictive capability would allow deployment 

of an operational cholera warning system to identify vulnerable populations at the 

regional scale a few months in advance of a cholera epidemic. Key benefits could be 

achieved with minimal installation and operating cost, yet allowing timely 

implementation of preventive measures to contain the spread and magnitude of outbreaks. 

While results of this study are encouraging, future studies will benefit from biweekly 

sampling to validate and strengthen predictive capacity. In summary, timely prediction 

for cholera, coupled with access to clean water and adequate sanitary infrastructure, will 

benefit regions of the developing world with respect to public health. 

2.11 Future Prospects 

The most notable limitation in a local environmental study is the sampling process. Since 

sampling was biweekly in Mathbaria and monthly in Bakergonj, we have a better quality 

model for Mathbaria (Pseudo r
2
 = 77.7%) and more power to predict the outcome 

variable (a cholera outbreak) while Pseudo r
2
 = 48.5% for the Bakergonj model. Also we 

can see the validated model (Table 2.5) for the fall peak in Bakergonj does not show the 

effect of water depth, a major factor of our hypothesis. For future studies, a consistent 

biweekly sampling effort is strongly recommended. 
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Chapter 3 

Trigger and Transmission of Sporadic Cholera Outbreaks in Epidemic Regions 

3.1 Abstract: 

Cholera remains a major public health threat in developing countries. Since the 

causative agent is Vibrio cholerae, which is native to the aquatic environment, it is 

unlikely that the disease can be eradicated. Therefore, developing hydroclimatology 

enforced disease models may be useful to predict or determine trigger and transmission 

mechanisms of cholera in epidemic and endemic regions. Part of South Asia, particularly 

in the Indus River Basin, periodically experiences sudden and sporadic outbreaks of 

cholera. Using data for a period of fifty years from 1950 to 2012, the episodic variability 

of cholera was found to be linked to hydroclimatic factors. Our results show that warmer 

air temperatures, followed by high rainfall, leads to increased risk of cholera in the 

region. By developing a mechanistic understanding of the disease system using models 

forced with hydroclimatic processes, it was observed that environmental factors play a 

role in triggering the disease whereas the human to environment route can increase the 

risk of cholera transmission in highly populated regions.  
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3.2 Introduction: 

Cholera as a serious diarrheal deadly disease described in history books as 

pandemic in some countries, and continues to represent a serious public health threat for 

poorer countries around the world. There are few diseases in history that resemble the 

severity of cholera. The mortality rate of diarrheal diseases, including cholera, is about 

2.2 million per year according to the global disease burden article published by WHO in 

2008. There are about 3-5 million cholera cases and 100 000–120 000 deaths every year. 

Recently, cholera has re-emerged as a major infectious disease with a major 

increase in global incidence. Under International Health Regulations, cholera is one of 

the three diseases that require notification. WHO in 1995 recorded the highest numbers of 

cholera cases in 94 notified countries in 1994. Cholera is endemic throughout the African 

continent, particularly West Africa, where sanitation and waste disposal either poor or 

non-existent. About 85% of officially mortified cholera cases occur in Africa. This trend 

was continued in 2006, with 99% of the total number of cases were reported globally in 

Africa (Kindhauser, 2003). Zuckerman et al., (2007) reported that there is an under 

estimation of the actual cholera burden on the Indian subcontinent due to lack of 

surveillance and under-reporting. The main triggers of a cholera outbreak in most 

developing countries are unsafe water supply and inadequate sanitation (Lee 2004). The 

International Institute for Population Sciences and Macro International 2007 reported 

about 73% of the rural Indian population does not have proper water disinfection, and 

about 74% do not have sanitary toilets. Available freshwater in India is expected to 

decrease by 2025, according to the Intergovernmental Panel on Climate Change 2007, 
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which is from 1,820 m
3
 per capita to < 1,000 m

3
, in response to the combined effects of 

population growth and climate change. 

 

Figure 3.1 Estimated cholera incidences for entire populations in endemic countries (Ali 

et al., 2012 & WHO 2012 Bulletin) 

Spread of cholera occurs through the fecal-oral route, from an infected human 

reservoir. However, evidence also shows that V. cholerae inhabits seas, ponds, and other 

aquatic environments (Colwell et al, 1977; Colwell et al, 1990), where it is capable of 

introduction into vulnerable populations. Miller et al (1985) identified two general routes 

for cholera transmission based on these reservoirs. The Primary transmission route 

occurs via marine water bodies where V. cholerae exists, spreading from estuarine 

environments to humans when humans have some form of contact with contaminated 

water or, alternatively, when they consume contaminated shellfish or aquatic plants . The 

Secondary transmission route is defined as the spread of cholera from an infected 

individual to susceptible individuals in a population. Improving our understanding of 

cholera transmission, by both primary and secondary routes, is critical for prevention 

purposes. Primary transmission (figure 3.2) is determined by many processes including 
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hydrological, ecological, and climatic, while secondary transmission is determined by 

many other processes such as number of contacts between humans, population size, birth 

rate and other factors. We recognize the importance of secondary transmission on cholera 

diffusion through a given population. However, V. cholerae is autochthonous in riverine, 

estuarine and coastal waters, living in a wide range of natural conditions in association 

with zooplankton, and crustaceans, so it is unlikely that V. cholerae can be eradicated 

from its natural habitat. Consequently, cholera transmission should be assessed with 

macro-environmental factors, including ecological, hydrological, and climatic, which 

vary from region to region.  

 

Figure 3.2.  Major Transmission Routes of Cholera (modified from Mintz et al., 1994) 

Minimization and/or prevention of cholera spread require early detection, prediction, and 

early warning of outbreaks where it may occur. Such early warning systems are 

considered as a first and important step to allow an affected country or population to 
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adapt to climate change. Successful climate change adaptation must occur on several 

scales, including physiological, behavioral, social, institutional, and organizational. We 

must draw adaptation strategies in response to temporal and spatial scales of climate 

variability for each region (Ebi et al., 2006). In India, there are several potential 

adaptation strategies to control infectious diseases, including: 1) Removal of vector 

breeding sites; 2) Reducing contact between vectors and humans; 3) Improving sanitation 

and drinking water operations and infrastructure; and 4) Monitoring pathogens, as well as 

disease burden. An additional and important potential adaptation strategy includes 

monitoring floods and heat waves (Bush et al., 2011), which are addressed in this 

chapter. 

Cholera outbreaks in New Delhi, India show a single changing seasonal peak. The 

peak can occur at any time from April through September (Balakrish, 2007). Cholera 

outbreaks have been associated with a wide range of environmental variables, such as sea 

surface temperature (SST) (Lobitz et al., 2000; Cash et al., 2008), sea surface height 

(Lobitz et al., 2000), monsoon precipitation (Hashizume et al. 2008), coastal plankton 

(Magny et al. 2008; Emch et al. 2008; Lobitz et al., 2000; Tamplin et al., 1990), air and 

water temperature (Islam et al. 2009; Huq et al. 2005), and coastal salinity (Miller et al., 

1982). 

Existence of such processes for cholera and other complementary observations 

motivate us to explore the utility of satellite-derived macro-environmental variables to 

develop a cholera prediction model. Perspectives that prompt use of satellite-acquired 

data include the following: (i) Almost all cholera outbreaks originate near coastal areas, 

including the reemergence of cholera in Latin America in 1991 (Jutla et al., 2010, Magny 
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et al., 2008; Emch et al., 2008; Lobitz et al., 2000; Tamplin et al., 1990),  whereas New 

Delhi is a noncoastal region; (ii) Remote sensing provides unprecedented coverage of 

space-time measurements of many environmental factors around the world (Uz and 

Yoder, 2004; Jutla et al. 2011); and (iii) The sporadic seasonality of cholera outbreaks in 

New Delhi. Our main objective here was to develop a cholera prediction model using 

remote-sensing information with two months’ prediction lead time; and suggest a 

plausible pathway by which the variables used for development of the cholera prediction 

model may provide an explanation for an environment conducive to cholera outbreak and 

transmission. 

3.3 Materials and Methods: 

The current data set contains large-scale 

environmental variables for New Delhi 

(January, 1999, to December, 2007), in India 

(Figure 3.3); Two environmental variables were 

collected from New Delhi 1) rainfall data: from 

the Global Precipitation Climatology Centre 

and monthly mean at 0.5 degree Lat-Long 

spatial resolution on a global grid; and 2) land 

surface temperature: from NCEP global 

reanalysis, monthly mean at 2 degree Lat-Long spatial resolution.  

New Delhi is the capital of India. It has many government branches of the 

judicial, legislative and executive of India. New Delhi is one of the eleven districts of 

Figure 3.3 shows the location of both New 

Delhi and Chennai (Dr. de Magny) 

http://en.wikipedia.org/wiki/Capital_city
http://en.wikipedia.org/wiki/India
http://en.wikipedia.org/wiki/Government_of_India
http://en.wikipedia.org/wiki/List_of_districts_of_Delhi
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Delhi National Capital Territory and situated within the metropolis of Delhi. It has about 

1% of the population of Delhi metropolis. Delhi metropolitan is considered to be the 

largest city in India and the world's second most populous city with a population of about 

22 million in 2011. It is ranked as the second wealthiest city in India after Mumbai.  

3.4 Statistical analysis:  

Clinical cholera case and environmental data were collected from Jan, 1999, to 

December, 2007. Cholera cases were collected on a monthly pattern from New Delhi, 

India. A generalized linear model (GLIM) with logistic distribution and log link was used 

to model the data and build a prediction model for cholera, following the method of 

Cameron and Trivedi (1998). Choice of model was based on the overall regression Chi-

square statistic, Goodness-of-Fit Tests including Deviance, Pearson, Hosmer-Lemeshow 

and Measures of Association including Concordant, Discordant, Somers’ D, Goodman-

Kruskal Gamma and Kendall’s Tau-a as well as low error. We also examined the 

correlations between cholera cases and environmental factors and used stepwise 

regression to identify the impact of the significant factors. In a logistic regression, we 

retained the variables that were significant in the stepwise regression as well as their 

estimated effective direction that was consistent with our expectation. The log10 

occurrence of cholera cases in humans as the outcome variable, were regressed against 

the predictors at various months lags periods.  

  

http://en.wikipedia.org/wiki/List_of_districts_of_Delhi
http://en.wikipedia.org/wiki/National_Capital_Territory
http://en.wikipedia.org/wiki/Delhi
http://en.wikipedia.org/wiki/Mumbai
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The multiple Poisson regression model (GLIM) for k predictors is as follows: 

Yi ~ Bern (πi)  

𝑙𝑛 [
𝜋𝑖

1−𝜋𝑖
] = β0 + β1 X1, τ - т1 + β2 X2, τ – т2 …….. + βk Xk, τ - тk + e τ ,τ  ≥  max  {т1, т2, .. тk } 

Equation (1) 

Where k predictors are X1, X2, .…..., Xk and β are the corresponding model coefficients. 

The lags (months before the outbreak happen) for the k predictors are т1, т2, ….. тk. Yt 

was assumed to follow a binomial distribution. 𝑙𝑜𝑔 [
𝜋𝑖

1−𝜋𝑖
] is the natural log of the odds 

ratio of Yi=1 versus Yi = 0. i  is the probability of a 1 (the proportion of 1’s, the mean of 

Y): Vibrio cholerae being an infective agent. The model choice was based on: (i) the best 

fit with the data; (ii) prediction purpose; (iii) the difficulty to estimate the actual count of 

cholera cases; and (v) explore the relationship between the environmental factors. The 

model fit is conducted for the seasonal data set and is examined by comparing observed 

and predicted numbers of cases in each area. Results from these analyses will provide 

new knowledge of how macro-environmental factors of sporadic cholera outbreaks in 

non-endemic region can aid in the development of a cholera prediction model.  

3.5 Remote Sensing: 

Generally in modern studies, remote sensing refers to detection and classification 

of objects either on the surface of earth, or in the atmosphere or oceans by using aerial 

sensor technologies. In 1978, the first oceanic remote sensing device for the Coastal Zone 

Color Scanner was launched on Nimbus7, and this was followed by the SeaWiFS mission 

in 1997. SeaWiFS has been used extensively in several studies to measure chlorophyll, 

e.g., in oceanic processes (Tang et al., 2003; Yoder et al., 1987; Danling et al., 2002, 

http://en.wikipedia.org/wiki/Atmosphere
http://en.wikipedia.org/wiki/Oceans
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Yuras et al 2005), in land-ocean interactions (Lopez and Hidalgo, 2009; D’Sa and Miller, 

2003; Jutla et al., 2009a), and in assessment of coastal pollution (Chen et al., 2007). 

There are about eight channels of SeaWiFS at: 412, 443, 490, 510, 555, 670, 765, and 

865 nm (nanometers: 1μm = 1,000 nm), each with bandwidths of 20 or 40 nm (O’Reilly 

et al., 2000). 

Monitoring and quantifying large-scale environmental factors is done perfectly by 

satellite remote-sensing techniques. It is the preferred way when in-situ data is difficult 

and prohibitively expensive to obtain. In chapter 2 study, we observed a correlation 

between large scales; remote sensing-derived river discharge and in-situ water depth to 

draw an explanation of cholera outbreak in Bangladesh. Lobitz et al., (2000) suggested 

that cholera is influenced by climatic changes, which can be indirectly measured using 

satellite imagery. They illustrated that sea surface temperature (SST) and sea surface 

height (SSH) in the Bay of Bengal were associated with temporal fluctuations of cholera 

in Dhaka, Bangladesh from 1992 to 1995. 

Remote sensing measurements of many relevant environmental variables (e.g., 

sea surface temperature (SST); sea surface height; rainfall; chlorophyll) are used 

extensively to develop our understanding of the possible controls of a cholera outbreak in 

the coastal regions and its links to terrestrial hydrology. In various ocean basins across 

the globe, both satellite measured chlorophyll and SST show an inverse relationship 

(Smyth et al., 2001, Uz and Yoder, 2004, Legaard and Thomas, 2006). However, In Bay 

of Bengal, a positive relationship is observed between phytoplankton and SST (Lobitz et 

al., 2000; Chaturvedi, 2005; Emch et al., 2008; Magny et al., 2008). Our preliminary 
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analyses, using remote sensing data, suggest that land surface temperature is a major 

player for cholera outbreak in New Delhi, India.  

3.6 Shifts in Seasonality of Cholera in New Delhi, India: 

Over six decades cholera patterns have been studied extensively to show seasonal 

changes in India. The highest V. cholerae infection was in April and May, but recently it 

has been shifted to September and October with two peaks annually (Rogers 1926 and 

1928). In 1950s, Politzer (1959) described New Delhi as cholera free region for a 

considerable period of time. In about 56 years span, Delhi has transformed from free to 

rare to seasonal cholera occurrence region and finally to region that have cholera cases 

throughout the year. Recently, Sharma et al., (2007) had this striking observation about 

cholera outbreak in New Delhi. They stated that cholera has a changing seasonality. In 

New Delhi cholera spread is related to its ecosystem and other physical environmental 

factors that favors V. cholerae proliferation (Rogers 1928). However, cholera incidence 

has not been correlated well with many conducive environmental factors such as rainfall, 

temperature, and relative humidity.  

Our preliminary results from New Delhi data that go back to 1999 through 2008 

show the changing seasonality phenomenon described by other studies (Figure 3.4). The 

figure shows that New Delhi has a single cholera outbreak peak throughout the year but 

with changing seasonality. There was a peak in May for 1999 and 2000 while cholera 

peak was on July for 2001 and 2002. Sharma et al. (2007) show the changing seasonality 

trend in his study. They observed that during 2003, Delhi had cholera peak during April 

while 2004 and 2005 cholera pattern occurred throughout the year. They stated that 
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cholera pattern during 2004 and 2005 was completely different than Delhi cholera 

previous trends. 

 

Figure 3.4 Epidemiological data of cholera seasonal peaks showing the temporal 

dynamics of observed cholera cases from 1999 through 2008 in New Delhi, India. 

Our results show similar trend as those of Sharma et al. (2007) during 2004 and 

2005 that cholera occurs throughout the year. In 2006, cholera peaks occurred throughout 

the year, but with the highest peak occurring during March. Both 2007 and 2008, cholera 

has mostly a single peak during June and July respectively. We further calculated the 

average of cholera peaks through the studied years (1999-2008). Figure 3.5 shows that 

the highest cholera incidence occurs in July. However, cholera is present from the 

beginning of May.  
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Figure 3.5 The average of Seasonal cholera peaks on monthly scale from 1999 through 

2008 in New Delhi, India. 

Lastly, wavelet analysis is investigated and run for three times over each signal (figure 

3.8). The analysis has two main steps; the first step is investigating the larger frequency 

domain cycles in the time-series that is represented between 4 months (or 0.3-years) to 5 

years. The second step is splitting the larger frequency domain into two frequencies: 1) 

frequencies from 4 months (or 0.3-years) to 2-years to focus on annual cycle or cycle 

with higher frequency and 2) frequencies from 2-years to 5-years focusing on inter-

annual cycles to avoid possible effect of stronger cycles that may mask others.  
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Figure 3.6 Wavelet analyses for the New Delhi cholera cases time-series. The Left panel 

represents the time-series; the middle panel is the wavelet power spectrum. The spectrum 

has the period of the cycle unit is expressed in years on the Y-axis and the time on the X-

axis. The wavelet power, in other words the detection of a frequency in the time-series, is 

coded from dark blue, no frequency detected, to dark red frequency strongly detected. As 

the power expresses a correlation between a specific frequency and the time-series, the 

significance of the correlation is tested. When the correlations are continuously 

significant, they are delimited by the dashed line. (Analysis is done by Dr. Magny) 
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In the larger frequency domain step, a light blue to dark red significant band of 

frequencies is detected. This band of high correlations is centered and stationary on the 1 

year period (illustrated on the 1
st
 and 3

rd
 row of graphics, 2

nd
 column). This will indicate 

we have a single cholera outbreak peak every year. In the 2
nd

 row, the row that explore 

only if 2- to 5-years cycles may be present in the time-series, the analyses show a big 

patch of correlation centered on 3 years period. Interpreting that in addition to have an 

outbreak every year, cholera outbreaks are more intense every 3 years. However, we need 

to be cautious when making that inference since the length of the time-series is short. 

When we are tracking cycle that appears every 3 years over a period of time of only 10 

years, which means we are observing it 3 times. The significance of phenomenon 

observed only three times reaches the statistical limits. If it was observed over 30 years, it 

would to provide 9 observations that would offer robust statistics. 

3.7 The main Triggers of Delhi Cholera 

Cholera disease impact and spread is greatly influenced by the environmental 

factors especially with season and space. In any ecosystem, the environmental factors 

represent the biological, chemical and physical factors. Cholera spread in India was 

investigated in relation to its ecosystem, which favors V. cholerae (Banerjee B, Hazra J., 

1974). In addition to these environmental factors, there are other important factors such 

as: social customs, human behavior, drainage and economic status that were studied 

extensively in terms of diarrheal disease spread and persistence (Rajendran et al., 2008). 

In Bengal, climate is a very important factor for V. cholerae persistence and 

spread. The relationship of cholera incidence with SST remains a subject of interest. 

Several studies indicate that cholera outbreaks are related to coastal SST (Colwell, 1996; 
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Bouma and Pascual, 2001; Magny et al., 2008). The first indication of a statistically 

significant association of the SST cycle with annual bimodal peaks in cholera outbreaks 

were demonstrated qualitatively by Lobitz et al., (2000). However, Lobitz et al., (2000) 

did not cite the strength of the correlation (Table 3.1). Since the work of Lobitz et al., 

(2000), several studies have reported varying levels of association of cholera incidence 

with coastal Bay of Bengal SST. Bouma and Pascual (2001) reported that cholera in 

Bangladesh is moderately related with coastal SST, while Emch et al., (2008) and De 

Magny et al., (2008) suggested that there is no relationship between cholera and coastal 

SST but strong relationship with chlorophyll. Our current study represented in figures 3.6 

and 3.7 (both seasonal and time series graphs) shows that air temperature and cholera 

incidence are highly correlated (r = 0.73, P < 0.05).  On the other hand, rainfall shows 

moderate significant correlation with cholera incidence in New Delhi (r = 0.483, P < 

0.05). 

Table 3.1 SST- cholera analysis for Bangladesh 

Author Year Type of analysis Finding 

1. Lobitz et al., (2000) 1992-1995 Qualitative Strong relationship 

2. Bouma & Pascual 

(2001) 

1841-1940 0.3-0.5 

(Quantitative) 

Moderate 

relationship 

3. Emch et al., (2008) 1985-2003 0  (Quantitative) No relationship 

4. De Magny et al., (2008) 1997– 2006 0 (Quantitative) No relationship 
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Figure 3.7 A correlation matrix for Land Surface Temperature, Precipitation and New 

Delhi Cholera (The highest correlation variables are closest to the diagonal) 

 

Figure 3.8 Seasonal correlation between Land Surface Temperature, Rainfall and cholera 

cases from 1999 to 2008 in New Delhi, India 
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We collected land surface temperature over the past 60 years and observed 

elevation of Delhi temperature compared to the 1950s through 1990s (Figures 3.8 and 

3.9). The above studies show a marked difference of opinion in terms of understanding 

the relationship between SST and cholera outbreaks. The question remains; how does air 

temperature affect cholera outbreaks in South Asia? And more specifically, how does a 

non-infected region to become cholera endemic? 

Plankton serves as the ecological niche for cholera bacteria (Huq and Colwell, 

1996). Therefore, a possible role for zooplankton in causing cholera outbreaks has been 

emphasized in several studies (Colwell, 1996; Huq and Colwell, 1996; Emch et al., 2008; 

Constantine de Magny et al., 2008). With availability of chlorophyll data, a surrogate for 

zooplankton and measured by satellite, some of the recent studies have attempted to 

correlate chlorophyll values in the coastal Bay of Bengal with Bengal cholera incidence 

(Emch et al., 2008; Constantine de Magny et al., 2008), but did not elaborate which 

cholera outbreak peaks are related to zooplankton. Suggested physical roles of the coastal 

plankton processes remain largely unexplained in these studies. However, Lobitz et al 

(2000), Jutla et al., (2011) suggested a physical role for SST in cholera outbreaks through 

the zooplankton link. Their hypothesis is that the rise in SST may increase phytoplankton 

blooms and; followed by zooplankton blooms and bacteria are associated with 

zooplankton, therefore, cholera outbreaks. 
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Figure 3.9 Calculated Land surface temperature anomalies over the past 60 years from 

1950 till the present in New Delhi, India 

To improve our understanding of how sporadic cholera outbreaks transmission 

dynamics are affected by large environmental processes in New Delhi and quantitatively 

estimate the effect of each environmental driver, we conducted logistic regression 

analysis for both land surface temperature and rainfall at different lag periods (Table 3.3). 

After examining both Goodness-of-Fit Tests and Measures of Association (Table 3.3) for 

several models combinations including: 1) M1: LST; 2) M2: LST and Rainfall; 3) M3: 

LST at one month lag and Rainfall; 4) M4: LST at one month lag and Rainfall at one 

month lag; 5) M5: LST at two months lag and Rainfall; and 6) M6: LST at two months 

lag and Rainfall at one month lag (table 3.3 and figure 3.14), It was proposed Cholera 

Prediction Model (CPM) for New Delhi take the following functional form: 

Yi ~ Bern (πi)  
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In New Delhi model (M1), land surface temperature is the main major 

environmental signatures responsible for cholera outbreaks since it is perfectly associated 

with 87.5 % (concordant) of the model data. The concordant, one of the measures of 

association of the model, the percentage is increased to 88.7%, when rainfall is added to 

the model equation (equation 2). For prediction purpose, we have chosen model 3 that 

include land surface temperature at one month lag period and rainfall. This model is 

associated with about 74.6% of the data Figure (3.11) and Table (3.3). A significant 

positive coefficient is observed in equation 2 between cholera cases and land surface 

temperature (β̂1 = 0.317; P value < 0.005). Moreover, when we examined the cholera 

model (equation 3, Table 3.2), there is a significant positive coefficient ( β̂2 = 0.201; p 

value < 0.005). Both models M2 and M3 fit well with the observed data since the p value 

for all deviance, person and Hosmer-Lemeshow are greater than 0.05 (table 3.2). 
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Table 3.2 Summary of the best models obtained for New Delhi in India 

Model Parameters 

 Intercept LST Rainfall 
LST 

(t-1) 
Goodness-of-Fit Tests 

M2       

Coefficient -3.88 0.317 0.2 
 44.31       

1.000 

Deviance          P-

Value 

P-value 0.000 0.000 0.076 
 48.75       

1.000 

Pearson            P-

Value 

SE 1.78 0.1120 0.115 
 0.89         

0.999 

Hosmer-Lemeshow    

P-Value 

M3       

Coefficient -0.2  0.201 
0.0895 58.2       

1.000 

Deviance          P-

Value 

P-value 0.000  0.032 
0.086 76.67      

0.945 

Pearson            P-

Value 

SE 1.14  0.131 
0.0539 13.66      

0.091 

Hosmer-Lemeshow    

P-Value 

 

We further investigated the probability of expedience between precipitation and 

cholera incidence (Figure 3.9) without any lags to demonstrate that they are moderately 

correlated. Figure 3.12 shows how well all the models, including both M2 and M3, fit 

with the observed number of cholera cases. Models 1 and 2 probabilities perfectly match 

with cholera occurrence. Although model 3 is not perfectly matching, as 1 and 2, but it 

still can be used as a prediction model to describe the relationship between temperature 

and rainfall. 
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Figure 3.10 The relationship (Probability of Expedience) between cholera and 

precipitation in New Delhi, India from 1999 to 2007 

 

 

 

Figure 3.11 Model’s performance for New Delhi illustrating measures of association 

including both concordant and dis-concordant. 
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Figure 3.12 Epidemiological data of cholera seasonal peaks showing the temporal 

dynamics of observed cholera cases and fitted models for M1 through M6 shown in 

black, red, green dark blue, light blue, pink and grey respectively in New Delhi, India  
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Table 3.3 Measures of Association indicators and Goodness-of-Fit Tests for predicting cholera occurrence in New Delhi, India 

and the 9 other stations 

 
New Delhi, India (The 

main site) M1: T(t) M2: T(t), R(t) M3: T(t-1), R(t) 

M4: T(t-1), R(t-

1) M5: T(t-2), R(t) 

M6: T(t-2), R(t-

1) 

Deviance          P-value 47.46    1.000 44.31     1 58.2       1  55.89      1 56.71    1.000 60.94    0.999 

Pearson             P-value 58.39    1.000 48.75      1 76.67   0.945 67.97    0.991 76.98    0.943 84.80    0.827 

Homser-Lemeshow    P-

value 4.78    0.781 0.89     0.999 13.66    0.091 2.95     0.938 4.17    0.842 7.41    0.493 

Concordant 87.5 88.7 74.6 75.1 74.6 61.8 

Discordant 12.1 10.9 24.4 24.2 24.4 36.5 

Somers’ D 0.75 0.78 0.5 0.51 0.5 0.25 

Goodman-Kruskal Gamma 0.76 0.78 0.51 0.51 0.51 0.26 

Kendall’s Tau-a 0.14 0.14 0.09 0.09 0.09 0.05 

Central Delhi             

Deviance,        P-value 257.02    0.642 252.91      0.693 271.16      0.384 259.45      0.585 291.12    0.130 276.20    0.305 

Pearson,          P-value 293.27    0.120 302.03       0.058 267.22      0.450 267.76       0.441 264.47    0.498 266.81    0.457 

Homser-Lemeshow, P-value 12.55    0.128 6.29          0.615 6.75       0.564 5.01            0.756 5.83    0.666 8.11    0.422 

Concordant (%) 76.3 77.8 71.9 75.8 64.7 69.4 

Discordant (%) 23.3 21.8 27.7 23.8 34.7 29.9 

Somers’ D 0.53 0.56 0.44 0.52 0.3 0.39 

Goodman-Kruskal Gamma 0.53 0.56 0.44 0.52 0.3 0.4 

Kendall’s Tau-a 0.21 0.22 0.17 0.2 0.12 0.15 

Central Lahore             

Deviance,         P-value 345.12    0.061 342.78    0.067 371.19    0.006 374.11    0.004 390.94   0.001 395.10    0.000 

Pearson,      P-value 299.88    0.588 301.08    0.553 308.26    0.437 307.74    0.445 308.41    0.435 308.76    0.429 

Homser-Lemeshow, P-value 9.10    0.334 11.96    0.153 9.14    0.331 4.61    0.798 9.63    0.292 11.91    0.155 

Concordant (%) 74.3 75.5 70.1 68.5 61 55.6 

Discordant (%) 25.5 24.2 29.4 31.1 37.9 43.2 

Somers’ D 0.49 0.51 0.41 0.37 0.23 0.12 

Goodman-Kruskal Gamma 0.49 0.51 0.41 0.38 0.23 0.13 
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Kendall’s Tau-a 

 

0.23 0.24 0.19 0.17 0.11 0.06 

South Ludhiana             

Deviance,         P-value 245.54    0.992 239.93    0.995 245.25    0.991 246.89    0.989 257.37    0.964 258.67    0.959 

Pearson,            P-value 307.65    0.384 312.55    0.297 297.60    0.528 300.69    0.478 300.14    0.487 306.34    0.388 

Homser-Lemeshow, P-value 12.38    0.135 5.32    0.723 9.73    0.284 7.22    0.513 8.60    0.377 2.30    0.970 

Concordant (%) 71.7 73.5 73 70.9 66.9 64 

Discordant (%) 28 26.1 26.5 28.5 32 35.2 

Somers’ D 0.44 0.47 0.47 0.42 0.35 0.29 

Goodman-Kruskal Gamma 0.44 0.48 0.47 0.43 0.35 0.29 

Kendall’s Tau-a 0.12 0.13 0.13 0.12 0.1 0.08 

North Sialkot             

Deviance,              P-value 201.27    0.996 202.82    0.995 209.30    0.987 210.91    0.984 209.22    0.987 212.05    0.981 

Pearson,                P-value 255.09    0.522 258.97    0.454 260.60    0.426 258.68    0.459 259.63    0.442 259.39    0.447 

Homser-Lemeshow, P-value 7.16    0.519 7.55    0.479 7.67    0.467 18.41    0.018 5.16    0.741 8.40    0.395 

Concordant (%) 62.4 64.7 57.5 56.2 59.3 54.1 

Discordant (%) 37.3 34.8 41.5 43.1 39.7 45 

Somers’ D 0.25 0.3 0.16 0.13 0.2 0.09 

Goodman-Kruskal Gamma 0.25 0.3 0.16 0.13 0.2 0.09 

Kendall’s Tau-a 0.06 0.07 0.04 0.03 0.05 0.02 

North Rawalpind             

Deviance,              P-value 236.37    0.861 236.35    0.851 271.44    0.300 272.90    0.279 287.99    0.112 289.85    0.098 

Pearson,                P-value 230.30    0.915 230.83    0.903 262.74    0.441 260.92    0.472 263.67    0.425 264.08    0.418 

Homser-Lemeshow, P-value 6.87    0.551 7.55    0.479 4.41    0.81 5.73    0.678  4.32    0.828 16.61    0.034 

Concordant (%) 78.8 78.9 69.3 68 57.2 54 

Discordant (%) 20.8 20.8 30.2 31.5 41.8 45 

Somers’ D 0.58 0.58 0.39 0.37 0.15 0.09 

Goodman-Kruskal Gamma 0.58 0.58 0.39 0.37 0.16 0.09 

Kendall’s Tau-a 

 

 

0.22 0.22 0.15 0.14 0.06 0.03 
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West Peshawar             

Deviance,              P-value 235.14    0.983 234.78    0.981 255.81    0.867 256.30    0.862 263.56    0.778 263.37    0.781 

Pearson,                P-value 281.57    0.513 276.16    0.587 292.91    0.315 284.35    0.450 299.72    0.224 304.28    0.173 

Homser-Lemeshow, P-value 7.41    0.494 5.40    0.714 6.81    0.558 7.49    0.484 9.01    0.341 16.15    0.040 

Concordant (%) 73.3 73.3 63.8 62.6 59.6 61.5 

Discordant (%) 26.3 26.3 35.8 36.8 38.2 36.9 

Somers’ D 0.47 0.47 0.28 0.26 0.21 0.25 

Goodman-Kruskal Gamma 0.47 0.47 0.28 0.26 0.22 0.25 

Kendall’s Tau-a 0.14 0.14 0.08 0.07 0.06 0.07 

West Ismail Khan             

Deviance,              P-value 177.81    1.000 177.73    1.000 186.15    1.000 186.40    1.000 186.00    1.000 186.79    1.000 

Pearson,                P-value 267.63    0.460 269.12    0.418 269.07    0.419 268.52    0.428 270.76    0.391 268.41    0.430 

Homser-Lemeshow, P-value 3.62    0.890 3.75    0.879 11.29    0.186 9.75    0.283 11.71    0.165 5.69    0.682 

Concordant (%) 66.3 66.3 56.5 57.9 55.9 56 

Discordant (%) 33.2 33.1 42.6 41.4 43.3 42.9 

Somers’ D 0.33 0.33 0.14 0.16 0.13 0.13 

Goodman-Kruskal Gamma 0.33 0.33 0.14 0.17 0.13 0.13 

Kendall’s Tau-a 0.07 0.07 0.03 0.03 0.03 0.03 

West Multan             

Deviance,              P-value 150.94    1.000 150.55    1.000 164.60    1.000 164.73    1.000 168.29    1.000 168.07    1.000 

Pearson,                P-value 239.55    0.988 243.75    0.978 285.73    0.560 286.68    0.544 293.34    0.434 292.59    0.446 

Homser-Lemeshow,   P-

value 4.70    0.790 9.29    0.318 10.27    0.246 15.46    0.051 5.19    0.737 8.16    0.418 

Concordant (%) 73.8 73.9 64 63.6 55.5 55.5 

Discordant (%) 25.8 25.8 35.2 35.5 41.5 42 

Somers’ D 0.48 0.48 0.29 0.28 0.14 0.14 

Goodman-Kruskal Gamma 0.48 0.48 0.29 0.28 0.14 0.14 

Kendall’s Tau-a 0.08 0.08 0.05 0.04 0.02 0.02 

West Sirsa             

Deviance,              P-value 218.81    0.855 218.79    0.845 227.19    0.729 226.56    0.739 235.87    0.581 234.63    0.603 
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Pearson,                P-value 241.64    0.494 241.16    0.485 244.98    0.417 245.66    0.405 244.14    0.431 243.53    0.442 

Homser-Lemeshow,    P-

value 14.17    0.077 13.33    0.101 12.49    0.131 15.68    0.047 5.12    0.745 12.34    0.137 

Concordant (%) 69.8 69.6 65 65.8 57.7 60.8 

Discordant (%) 29.8 30 34.3 33.8 41.5 38.4 

Somers’ D 0.4 0.4 0.31 0.32 0.16 0.22 

Goodman-Kruskal Gamma 0.4 0.4 0.31 0.32 0.16 0.23 

Kendall’s Tau-a 0.13 0.12 0.1 0.1 0.05 0.07 
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3.8 Temperature/ rainfall theory validation 

Jutla et al. 2013 established that both temperature and rainfall are important 

factors for cholera outbreaks and the finding is evident this analysis. Therefore, to have a 

second look at the Jutla et al. 2013 hypothesis, we further investigated the role of 

temperature and rainfall on cholera outbreaks at nine stations. The nine stations show a 

single cholera peak each year (Figure 3.13). After fitting a logistic multiple regression 

model, we observed that land surface temperature is the main significant environmental 

factor that has positive coefficient across the nine stations (β̂1 = 0.1021, 0.0734, 0.0728, 

0.0383, 0.0916, 0.0638, 0.0457, 0.0830, 0.0610) P value < 0.005; for Central Delhi, 

Central Lahore, Submontane Ludhiana, North Sialkot, North Rawalpindi, West 

Peshawar, West Ismail Khan, West Multan, West Sirsa stations respectively). Across all 

nine stations, more than 60% of the data is concordant in model 1 that has land surface 

temperature as the only environmental factor. Figure (3.14) and Table (3.3) illustrate the 

concordant percentage for M1 are 87.5%, 76.3%, 74.3%, 71.7%, 62.4%, 78.8%, 73.3%, 

66.3%, 73.8%, 69.8 for Central Delhi, Central Lahore, Submontane Ludhiana, North 

Sialkot, North Rawalpindi, West Peshawar, West Ismail Khan, West Multan, West Sirsa 

stations respectively). When we added the rain to model 2, the concordance percentage 

increased at most of the stations to be 77.8, 75.5, 73.5, 64.7, 78.9, and 73.9 for Central 

Delhi, Central Lahore, South Ludhiana, North Sialkot, North Rawalpind, and West 

Multan, respectively, while it still the same percentage for West Peshawar (73.3%) and 

West Ismail Khan (66.3%). The above information indicates that both land surface 

temperature and rainfall are important environmental factors that drive cholera outbreaks. 
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In order to investigate the relationship between them, we conducted several experiments 

to build models 3, 4, 5 and 6. It was proposed that a Cholera Prediction Model (CPM) 

for all nine different stations in India and Pakistan that may take the following 

functional form: 

Yi ~ Bern (πi)  
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Figure 3.13 Seasonality of cholera in India including 8 different stations (1875-1900) 

 

Of all the stations studied, M2 and M3 fit, well with the data, since the p value for 

deviance, Pearson, and Homser-Lemeshow are greater than 0.05. Although M3 showed a 

slightly lower concordance percentage for all the 9 studied stations, but it can be used as 

a good predictive model for cholera outbreak and it can describe the relationship between 
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the two main environmental parameters (Table 3.3). Figure 3.14 through Figure 3.22 

show how well all the models, including both M2 and M3, fit with observed cholera 

cases. Models 1 and 2 probabilities match perfectly with cholera occurrence. Although, 

model 3 is not perfectly matching as 1 and 2, it can be used as a prediction model that can 

describe the relationship between temperature and rainfall. 
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Figure 3.14 The concordant and dis-concordant percentage across the nine stations for six 

different models. Figure A is arranged by station while figure B is arranged by model. 

The stations are; ND: New Delhi; CD: Central Delhi; SLudhiana: Submontane Ludhiana; 

NSialkot: North Sialkot; NRawalpind: North Rawalpind; WPeshawar: West Peshawar; 

WIsmail Khan: West Ismail Khan; WMultan: West Multan; WSirsa: West Sirsa. C: 

Concordant percentage; dis: Dis-Concordant percentage. The models are; M1: T(t); M2: 

T(t), R(t); M3: T(t-1), R(t); M4: T(t-1), R(t-1); M5: T(t-2), R(t); M6: T(t-2), R(t-1).   

0
10
20
30
40
50
60
70
80
90

100
P

re
ce

n
t 

(%
) 

M1 M2 M3 M4 M5 M6
A 

0

20

40

60

80

100

M1 M2 M3 M4 M5 M6

P
re

ce
n

t 
(%

) 

ND_C CD_C Sludhiana_C NSialkot_C

NRawalpind_C WPeshawar_C WIsmail Khan_C WMultan_C

WSirsa_C ND_Dis CD_Dis Sludhiana_Dis

NSialkot_Dis NRawalpind_Dis WPeshawar_Dis WIsmail Khan_Dis

WMultan_Dis WSirsa_Dis

B 



79 

Table 3.4 Summary of the best models obtained for nine stations in India and 

Pakistan (1875-1900) 
                                        Model Parameters 

 Intercept LST Rainfall Intercept LST (t-1) Rainfall 

S1: Central Delhi:  

M2 
  Central Delhi:  M3 

Coefficient -9.25 0.0986 0.0734 -6.9 0.0696 0.975 

P-value 0.000 0.000 0.043 0.000 0.000 0.006 

SE 1.52 0.180 0.0361 1.29 0.0155 0.036 

S2: Central Lahore: 

M2 
  Central Lahore : M3  

Coefficient -6.071 0.0692 0.0687 -4.001 0.04225 0.1047 

P-value 0.000 0.000 0.126 0.000 0.000 0.018 

SE 0.874 0.011 0.0457 0.76 0.00967 0.0454 

S3: Submontane Ludhiana: 

M2 
 

Submontane Ludhiana: 

M3 
 

Coefficient -7.13 0.0667 0.0801 -6.35 0.0565 0.984 

P-value 0.000 0.000 0.018 0.000 0.000 0.004 

SE 1.33 0.0162 0.0337 1.26 0.0154 0.0339 

S4: North Sialkot: 

M2 
  North Sialkot: M3  

Coefficient -4.95 0.0392 0.35 -3.00 0.0137 0.0531 

P-value 0.007 0.006 0.395 0.178 0.319 0.196 

SE 1.21 0.0151 0.0402 1.07 0.0139 0.0397 

S5: North 

Rawalpindi: M2 
  North Rawalpindi: M3  

Coefficient -7.94 0.0911 0.0056 -4.577 0.0451 0.0581 

P-value 0.000 0.000 0.894 0.000 0.000 0.157 

SE 1.18 0.0153 0.0425 0.869 0.0115 0.0409 

S6: West Peshawar: 

M2 
  West Peshawar: M3  

Coefficient -6.28 0.0632 0.0568 -3.616 0.0297 0.118 

P-value 0.000 0.000 0.547 0.012 0.005 0.254 

SE 1.08 0.0132 0.0995 0.852 0.011 0.114 

S7: West Ismail 

Khan: M2 
  West Ismail Khan: M3  

Coefficient -5.68 0.0451 0.039 -3.27 0.0148 0.074 

P-value 0.006 0.002 0.786 0.418 0.274 0.613 

SE 1.32 0.0159 0.141 1.08 0.0138 0.141 

S8: West Multan:   West Multan: M3  
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M2 

Coefficient -9.2 0.0811 0.074 -5.03 0.0317 0.14 

P-value 0.000 0.000 0.531 0.043 0.049 0.242 

SE 2.04 0.0232 0.114 1.4 0.0168 0.112 

S9: West Sirsa: M2   West Sirsa: M3  

Coefficient -6.4 0.0615 0.0127 -5.02 0.0442 0.0254 

P-value 0.000 0.000 0.875 0.003 0.001 0.749 

SE 1.3 0.0155 0.0815 1.18 0.0142 0.0786 

*LST: Land Surface Temperature  
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Figure 3.15 Epidemiological data of cholera seasonal peaks showing the temporal 

dynamics of observed cholera cases and fitted models for M1 through M6 shown in grey, 

red, green dark blue, light blue, pink and yellow respectively in Central Delhi, India  
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Figure 3.16 Epidemiological data of cholera seasonal peaks showing the temporal 

dynamics of observed cholera cases and fitted models for M1 through M6 shown in grey, 

red, green dark blue, light blue, pink and yellow respectively in Central Lahore. 
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Figure 3.17 Epidemiological data of cholera seasonal peaks showing the temporal 

dynamics of observed cholera cases and fitted models for M1 through M6 shown in grey, 

red, green dark blue, light blue, pink and yellow respectively in Submontane Ludhiana. 
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Figure 3.18 Epidemiological data of cholera seasonal peaks showing the temporal 

dynamics of observed cholera cases and fitted models for M1 through M6 shown in grey, 

red, green dark blue, light blue, pink and yellow respectively in North Sialkot. 

  



85 

 

 

 

Figure 3.19 Epidemiological data of cholera seasonal peaks showing the temporal 

dynamics of observed cholera cases and fitted models for M1 through M6 shown in grey, 

red, green dark blue, light blue, pink and yellow respectively in North Rawalpindi.  
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Figure 3.20 Epidemiological data of cholera seasonal peaks showing the temporal 

dynamics of observed cholera cases and fitted models for M1 through M6 shown in grey, 

red, green dark blue, light blue, pink and yellow respectively in West Peshwar.  
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Figure 3.21 Epidemiological data of cholera seasonal peaks showing the temporal 

dynamics of observed cholera cases and fitted models for M1 through M6 shown in grey, 

red, green dark blue, light blue, pink and yellow respectively in West Ismail Khan. 
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Figure 3.22 Epidemiological data of cholera seasonal peaks showing the temporal 

dynamics of observed cholera cases and fitted models for M1 through M6 shown in grey, 

red, green dark blue, light blue, pink and yellow respectively in West Multan. 
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Figure 3.23 Epidemiological data of cholera seasonal peaks showing the temporal 

dynamics of observed cholera cases and fitted models for M1 through M6 shown in grey, 

red, green dark blue, light blue, pink and yellow respectively in West Sirsa. 
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3.9 Cholera Transmission/Spread modeling  

3.9.1 SIR model background 

Modeling of infectious diseases has two important roles; prediction and 

understanding which will help us to improve disease control and finally to eradicate the 

infection from the population, if possible. Prediction and understanding are related to 

model properties including accuracy and transparency. The common use of the model is 

the prediction which requires the model to be as accurate as possible. In order to build a 

good predictive model, we need to include all the known complexities and population 

level heterogeneities. Accurate predictive models can have an additional use as a 

statistical tool. The failure to accurately predict epidemic behavior in certain regions may 

be a warning that the underlying parameters in the model are different from the 

observable data. Models also can be used to understand how an infectious disease spreads 

in the real world and how various complexities affect the dynamics. As a consequence, it 

will provide epidemiologists with an ideal world to examine individual factors in 

isolation and decide which factors are important and which can be neglected. Finally, the 

understanding gained from modeling can help us to develop more deep accurate 

predictive models and gather more relevant epidemiological data.  

“All models are wrong but some are useful” George E. P. Box (1919 – 2013). 

Models have their limitations. Because of infectious disease transmission dynamics, it is 

impossible to build a fully accurate model. There will always be some element of the host 

behavior or disease that is unknown. The best that we can do with modeling is to provide 
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confidence intervals on the epidemic behavior and determine the risk of infection for 

hosts.  

The SIR model, developed by Kermack and McKendrick in 1927, is a simple 

model meant to quantitatively explain the dynamics of an epidemic. The name is an 

acronym, with S standing for ‘susceptible individuals,’ I standing for ‘infected 

individuals,’ and R standing for ‘removed/recovered individuals,’ or individuals who are 

no longer at risk for infection. A fixed population does not allow for removal or death, so 

at any time a member of a fixed total population falls into one of three categories: at risk 

for infection, infected, or recovered and now immune.  

The Variables 

The first step in finding the model of how the populations in these categories interact 

is defining our variables. 

I. Independent variable: t (time) is measured in days. 

II. Dependent variables that have two related sets, which, while they give the same 

information about the epidemic (differentiated by a factor of 1/N), sometimes are 

convenient in different ways for different equations. 

a. First, the number of people in each category are given as follows: 

i. S=S(t), the number of susceptible individuals. Susceptible 

Individuals can be defined as those ones who never been infected 

and they are able to catch the disease. Once they have it, they 

move into the infected compartment. 

ii. I=I(t), the number of infected individuals. Disease infection can 

spread from infected individuals to susceptible individuals. The 
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time they spend in the infected status is the infectious period, after 

which they enter the recovered compartment. 

iii. R=R(t), the number of recovered individuals. Recovered 

Individuals are assumed to be immune for life. 

b. We also consider the fraction of the total population, N, that each category 

occupies: 

i. s(t)=S(t)/N, the susceptible fraction of the total population 

ii. i(t)=I(t)/N, the infected fraction of the total population 

iii. r(t)=R(t)/N, the recovered fraction of the total population 

Without further information, it can be predicted that s(t) will have the highest 

initial value out of the three variables and will decrease with time as susceptible 

individuals are infected, while r(t) will have the lowest initial value and will increase 

with time as infected individuals recover.  

Assumptions 

 There is no positive growth of S (closed population); in other words, there is no 

birth or immigration into the population. The model also assumes that the only 

way an individual can leave S is by coming into contact with a member of I and 

becoming a member of I itself. 

 Homogenous mixing of the population, where intricacies affecting the pattern of 

contacts are discarded, yielding β S I are the transmission term.  

 S + I + R = 1 

 An individual in I comes into contact with an average number, b, of people per 

day. However, not all of those people are susceptible, only a fraction of the total 
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population given by s(t). Therefore, the total number of newly infected people 

each day is β? s(t). 

 In terms of recovery, it is assumed that a fixed fraction, γ, of the infected 

population recovers every day, meaning that the total number of newly recovered 

people each day is γ? i(t). 

The rate of new infections can thus be defined as βSI, where β is a parameter for 

infectivity. Infected individuals are assumed to recover with a constant probability at any 

time, which translates into a constant per capita recovery rate that we denote with γ, and 

thus an overall rate of recovery γI. Based on these assumptions we can draw the scheme 

of the model: 

 

 

 

 

Equations: 

    
𝑑𝑆

𝑑𝑡
=  − 𝛽 𝑆 𝐼 

    
𝑑𝐼

𝑑𝑡
=  − 𝛽 𝑆 𝐼 − 𝛾 𝐼  

    
𝑑𝑅

𝑑𝑡
=  𝛾 𝐼  

Based on the first of the given assumptions, the only change that S can experience 

is negative, as susceptible individuals become infected individuals based on the fraction 

of the population that is infected and coming into contact with the susceptible fraction of 

the population and join population I. Similarly, the only way that R can change is to grow 

S I R 
β S I γ I 
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as individuals recover and leave population I at a rate of γ. I reflects the changes in the 

other two populations, with the signs reversed.  

3.9.2 SIR model and cholera transmission 

Miller et al., (1982) identified 

two routes of transmission for cholera 

disease: Primary transmission spread 

to the susceptible individual through 

some form of contact with water, local 

V. cholerae habitat, or consumption of 

shellfish or aquatic plants contaminated 

with V. Cholerae; and Secondary 

transmission, diffusion of cholera, 

spread to susceptible individuals in a 

population through the infected 

individual. 

However, cholera is as a water-borne indirectly transmitted infectious disease is 

poorly studied. By using the SIR model, we aim to answer these questions: How many 

index cases should there be to cause an outbreak? What is the transmission rate of 

cholera disease in endemic and epidemic regions? Based on the above information; there 

are two types of infected individuals that can be determined: 1) the primary infected 

individuals can be computed from a statistical model, and 2) the secondary infected 

individuals can be computed through the above differential equations. 

 

Figure 3.24 Two transmission routes for 

cholera 
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Strategies to cholera SIR model: 

We aim to combine both primary and secondary transmission routes in one model to 

investigate the spread of the disease.  

I. Model backbone: 

1. Calculating the primary infection through a statistical model from the New Delhi, 

India data.  

a. At each month of the year, there will be IP (primary infected individuals)  

b. Divide those numbers across the month days to estimate IP at each day to 

avoid the exponential increase in the infection. 

2. Use real data for the model instead of theoretical numbers. So we used N=10
6
. 

3. Use small transmission rate (β) since the disease is not that contagious 

4. Use I0 = 0 

5. Set the max time as the length of IP 

6. Feed IP with IS (Secondary infection) in order to calculate the total infection 

a. So, another term “IP(t)” was added to the actual model. Then, the same term 

is subtracted from the susceptible to preserve the consistency of the model.  

b. The new Equations will be: 

    
𝑑𝑆

𝑑𝑡
=  − 𝛽 𝑆 𝐼 − 𝐼𝑃(𝑡)  

    
𝑑𝐼

𝑑𝑡
=  − 𝛽 𝑆 𝐼 − 𝛾 𝐼 + 𝐼𝑃(𝑡)  

    
𝑑𝑅

𝑑𝑡
=  𝛾 𝐼  

7. Plotting the data 
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Figure 3.25 The total cholera infected individuals shown in red from a model that 

combines primary transmission route (a statistical model) and secondary transmission 

route (SIR model). Susceptible and recovered individuals are shown in green and black 

respectively. 

 

II. Optimization of the model: By using different population number, different 

beta (β) and gamma (γ). 

1. Future work: use different β during the year. 

III. Model Validation strategy:  

1. Taking the model output that has the total infective individuals (IS + 

IP) 

2. Conduct statistical analysis to build the best fit model with the original 

environmental data. 

3. Compare the model quality with the original model. 
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3.10 Discussion: 

Diarrhea is considered to be the second most leading cause of death in children 

below five years of age
 
(Wardlaw et al., 2010). About 9 million under 5 years old 

children died in 2008 and 40 percent of death cases were due to pneumonia and diarrhea 

diseases (You et al., 2010). The estimated diarrheal disease burden from water, 

sanitation, and hygiene at the global level has revealed 4.0 percent of all deaths and 5.7 

percent of the total diseases burden (Pruss et al., 2002). In Bengal, climate is a critical 

factor for V. cholerae survival, persistence, and spread. Russel studies in 1928 explained 

the decline in death rate by the decrease in the relative humidity in some districts of 

Burdwan and Malda. Hot and moist climate conditions in the Bengal basin have adverse 

effects on the general health of the people (Tromp, 1963). In the current study, the 

quantitative relationship between land surface temperatures and cholera incidence was 

established with statistical modelling approaches. In addition, results show that 

temperature with a one month lag period contributes to the emergence of a cholera 

outbreak. However, our main hypothesis is that air temperature is the main driver for the 

endemic cholera sporadic outbreaks in New Delhi, India. This hypothesis is further 

confirmed by: 1) Historical air temperature data for New Delhi, India from 1955 to the 

present. We can see that there is a gradual increase in air temperature to maximum in 

recent years, from 2000 to the present; and 2) Air temperature shows 87.5% concordance 

with the observed data. 

During early 1920s in India, No correlation was observed between rainfall and 

cholera incidence because rainfall alone was not a critical factor for cholera incidence 

(Rogers, 1926). Our current study proved a significant correlation between rainfall and 
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cholera incidence as well as quantitatively estimated this relationship. However, in 2011 

Goel and Jiang described how heavy rainfall can cause a rapid shift of V. cholerae 

genotype from one strain to another strain in one epidemic region in India. Other factors 

such as contamination of drinking water, defective drainage and surface outwash are 

important for cholera infection spread. Later in the 1920s, Russel and Sundararajan 

established that cholera incidence is greatly associated with high temperature and 

intermittent rainfall which act as ideal climatic conditions for V. cholerae multiplication. 

Our current scenario of cholera incidence in New Delhi, India revealed that ideal climatic 

condition for a cholera outbreak depends upon the connectivity between rainfall and 

temperature. The present study shows that both land surface temperature (LST) and 

rainfall had a greater concordance percentage (88.7%) than the model that has only LST. 

So both LST and rainfall are important factors for a cholera outbreak. The observed 

temperature and rainfall changes over a thirteen year period were not constant owing to 

either El Niño or La Niño. Interestingly, we established a relationship between LST and 

rainfall since a good quality predictive model was constructed with LST (one month lag 

period) and rainfall that has a 74.6% concordance. Our findings demonstrated that the 

climate and health relation in New Delhi and the relative land surface temperature plays a 

big role in increased Vibrio-mediated infections. By using this good predictive model, a 

model that combines both a statistical model as well as a SIR model was constructed and 

it has improved prediction ability for cholera outbreaks compared to a basic SIR model 

alone. 
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3.11 The expected pitfall and caveats? 

We were not able to collect satellite-derived chlorophyll data to investigate any 

combined effect with LST (Land surface temperature) for cholera incidence and 

endemism in New Delhi, India. 
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Chapter 4 

Summary, Research Contributions, and Future Research 

4.1 Summary of the Research 

The overall goal of the proposed research was to develop a quantitative framework 

for cholera outbreak high quality models either cholera simulated models (CSM) or 

Cholera prediction models (CPM) with two to three months lead time, using both in-situ 

and remote-sensing data. To achieve this goal, four closely-related research objectives 

were followed: (i) Determination of the role of environmental factors associated with 

seasonality and modulating the dynamics of a cholera outbreak, (ii) Identification and 

development of a physically plausible hypothesis of how local environmental factors 

modulate cholera outbreak dynamics, (iii) Identification of the major environmental 

controls triggers sporadic cholera outbreaks in epidemic regions, and (v) Constructing a 

new model that accounts for both primary and secondary transmission routes 

 

Seasonality of cholera outbreaks differs from region to region in endemic areas 

such as Mathbaria and Bakergonj in Bangladesh. Such temporal and spatial variation 

between cholera outbreaks in those two spatially different regions implies that there are 

different driver mechanisms which affect cholera outbreaks. Ponds in both regions 

(Mathbaria and Bakergonj) are connected to large tributaries of the Ganges River and are 

prone to tidal intrusion of coastal seawater during the spring season since river discharge 

during the spring season is extremely low. Using in-situ data collected from both regions, 

it was established that water depth, explaining 59% of the model variance, is the main 
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environmental factor that drives cholera outbreaks in both regions but by a different 

mechanism. The negative association observed in this study between water depth and 

spring cholera in both Mathbaria and Bakergonj is interpreted as an effect of coastal 

water intrusion. Cholera transmission is increased by inland water body contamination 

that will increase salinity and nutrient concentration (Rao, 1973; Valsaraj, Rao, 1994). In 

the inland regions of the Bengal delta, intrusion of coastal water role during low river 

height on cholera during the spring season was proposed by Akanda et al., (2009), using 

data for large scale hydroclimatic processes. Coastal water intrusion followed by flooding 

during high river height results in a fall peak of cholera cases. Our analysis for both 

Mathbaria and Bakergonj supports and strengthens this hypothesis. Modeling results for 

both Mathbaria and Bakergonj are consistent with those of Akanda et al., (2009), namely 

that water depth has a negative coefficient in spring models for both regions, which 

implies that the spring peak is related to coastal intrusion. While it has a positive 

coefficient in the fall peak models, which implies widespread flooding and cross 

contamination arising from inadequate sanitation. Coastal seawater intrusion and flooding 

theory which initiates cholera during the spring and fall seasons respectively is proposed 

by both Akanda et al., (2009) and Jutla et al., (2013) using large scale environmental 

factors. Higher values of chlorophyll-c with seasonal increase in number of cholera cases 

most likely reflects the role of plankton blooms and subsequent growth of zooplankton 

populations and related increasing V. cholerae population numbers (Colwell, 1996, Nalin 

et al., 1979, Rawlings et al., 2007). Stream flow from the major rivers of the Bengal 

Delta and remotely sensed plankton abundance in the coastal Bay of Bengal together 

explain over 75% of the variability of cholera in the Bengal Delta (Jutla et al., 2013). An 
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important aspect of this study is the potential for a cholera prediction model using 

information from in-situ hydroclimatic processes readily obtained the ponds and the link 

that exists between large scale and regional scale environmental  factors. The importance 

of the local environment relative to large scale hydrologic factors is evident when we 

study seasonal cholera dynamics in two locations with regional differences. 

This is one of the first few studies that quantitatively link available in-situ data 

with large scale hydroclimatic factors to build up models for cholera outbreaks. Key 

findings from the phenomenological modeling framework are: (1) Cholera outbreaks can 

be predicted using two-seasonal modeling strategies depending on the choice of in-situ 

regional environmental variables, (2) Implementation of preventive measures to contain 

spread of outbreaks with minimal installation and operating cost, yet allowing timely, (3) 

Establishment of the link between macro-environmental variables and local 

environmental variables. 

To achieve the third goal, cholera was evaluated in one of the epidemic regions 

(India, New Delhi). The aim was to determine the main triggers of cholera outbreaks and 

validate a transmission mechanism of cholera in epidemic regions. New Delhi is 

connected to large tributaries of the Indus and is recognized to have sporadic cholera 

outbreaks that can change from year to year.  Cholera outbreaks in New Delhi have 

sporadic peaks with changing seasonality throughout the years. A good quantitatively 

predictive model with relatively high Pseudo R-Square (64.64%) is constructed using 

land surface temperature, rainfall, and rainfall with three months lag period. Jutla et al., 

(2013), using data for large-scale hydroclimatic processes, proposed that cholera 

outbreaks are more likely to spread when rainfall is followed by high temperature. Our 
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primary and quantitative analysis for New Delhi, India strengthens this hypothesis. 

Moreover, this hypothesis is validated by collecting historical data back to 1875. We can 

see rising temperature nowadays as compared to 1950. On the other hand, rainfall and 

rising temperature hypothesis is confirmed by the quantitative estimation of cholera 

outbreaks at nine stations in India and Pakistan. We observed that both rainfall and 

temperature (one month lag) are significant factors in all the conducted models. A study 

carried out in Azerbaijan, covering a period of 28 years, also showed a strong correlation 

between air surface temperature and water temperature with the occurrence of V. 

cholerae O1 followed by cases of cholera (Gurbanov et al., 2012). 

4.2 Research Contributions 

The major contribution of the research is the quantitative evaluation of the both 

in-situ and satellite-based prediction modeling architecture for cholera outbreaks with a 

lead time of two to three months. Although statistical in nature, the prediction models 

have shown that satellites have tremendous potential to predict cholera outbreaks (~60% 

prediction in Bengal) in the ground-based data scarce regions. The research also filled the 

gab that exists between large-scale environmental factors and in-situ environmental 

factors.  

My research attempts to integrate findings from three related disciplines (hydrology, 

epidemiology, and microbiology), using the latest data in-situ local environmental 

conditions, as well as satellite remote-sensing measured variables. The importance and 

uniqueness of my research is in development of a comprehensive understanding of 

cholera dynamics using combined information from these three disciplines, from which 

development of an actionable prediction modeling framework for possible intervention 
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strategies is accomplished. The major contribution from my research will be development 

and validation of a prediction model for cholera incidence using both local and large-

scale geophysical variables. I expect the following outcomes from this research: (i) 

Provision of an estimate of local environmental conditions useful for a cholera model 

relative to the Bengal Delta region; (ii) Development of a physically consistent 

hypothesis to validate the observed relationship between spring and fall cholera peaks in 

two geographically distinct regions, based on local environmental conditions; (iii)  

Explanation of the role of Land Surface Temperature and rainfall in altering cholera 

incidence dynamics in South Asia; (iv) Development and validation of a cholera 

prediction model with the capability to forewarn seasonal outbreaks of cholera; and (v) 

Construction of a good quality model that accounts for both primary and secondary 

transmission routes.  

The research resulted in two publications, one research grant from National 

Institutes of Health, and 3 conference proceedings reports. To disseminate our 

understanding of the water-related diseases, we also organized a poster session at the 

American Society of Microbiology meeting (May 17-20, 2014) titled: A Mechanistic 

Model to Understand Trigger and Transmission of Cholera in Epidemic Regions  

4.3 Future Prospects: 

The model prediction and simulation results from the current research (more than 

65% accuracy) are promising; yet, we are cognizant of possible caveats and limitations 

that warrant further investigation. Our results are based on nine years of both in-situ and 

remote-sensing data; as more data become available, the proposed approach needs to be 

further validated and refined. Colwell et al., 1977 proposed the idea of environmental 



106 

cholera transmission and subsequently reported on the topic in greater detail in a series of 

subsequent publications (e.g., Tamplin et al., 1990; Colwell and Huq, 1994; Akanda et 

al., 2009; Jutla et al., 2013). The role of environment in cholera transmission continues to 

be refined as more observational data become available and as the roles of different 

abiotic, biotic, and hydroclimatological factors affecting cholera transmission are 

clarified. In-situ environmental factors such as water depth have a direct connection to V. 

cholerae outbreaks in endemic regions. Although we have a good quality model, it seems 

that the sampling/analysis process at the local level is a critical factor in order to build a 

better predictive model. On the other hand, both rainfall and land surface temperature 

estimates from satellite remote sensing provide a quantitative measure of space-time 

distribution of cholera outbreak. However, rainfall and LST alone cannot provide the 

whole explanation of why cholera outbreak happens. Our future research should address 

if there are other factors that are important and increase the outbreak. As well as it should 

have consistent sampling process to have better prediction models. Our results 

demonstrate that remot sensing data measured by satellite over a range of space and time 

scales can be very effective in developing a cholera prediction model with several 

months’ lead time. Such prediction lead time will have tangible 196 impacts to design 

and implement effective cholera intervention and mitigation strategies for various 

resource constrained and cholera affected regions of the world. 
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Appendix 1 

Parameter Formula and meaning 

Test of goodness 

of fit 

 It establishes whether or not an observed frequency distribution differs from a 

theoretical distribution. It includes deviance, Pearson's chi-squared test (χ2), 

and Hosmer–Lemeshow test. 

1. Deviance It is used for statistical hypothesis testing to measure the quality of fit statistic 

for a model. By using the sum of squares of residuals in ordinary least squares 

to cases the model-fitting is achieved by maximum likelihood. 

 

 : is the fitted values of the parameters in the model  

 : is the fitted parameters for the "full model"  

Both of them are functions of the observations y. 

2. Pearson's chi-

squared test 

(χ2) 

It is a statistical test that can be applied to categorical data to measure if there is 

any observed difference between those sets arose by chance. It is first 

investigated by Karl Pearson in 1900.   

 

= Pearson's cumulative test statistic, that has  distribution. 

= an observed frequency; 

= an expected (theoretical) frequency,  

= the number of cells in the table. 

3. Hosmer-

Lemeshow 

This statistical test is especially used to assess the goodness of fit for logistic 

regression mode. It is used to measure how the observed event rates match with 

the expected event rates in subgroups of the model population.  

The Hosmer–Lemeshow test statistic is given by: 

 

 

Og: is the observed event for the gth risk decile group. 

Eg: is the expected event for the gth risk decile group. 

Ng: is the number of observations for the gth risk decile group 

 πg: is the predicted risk for the gth risk decile group 

http://en.wikipedia.org/wiki/Frequency_distribution
http://en.wikipedia.org/wiki/Chi_%28letter%29
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
http://en.wikipedia.org/wiki/Ordinary_least_squares
http://en.wikipedia.org/wiki/Maximum_likelihood
http://en.wikipedia.org/wiki/Chi_%28letter%29
http://en.wikipedia.org/wiki/Categorical_data
http://en.wikipedia.org/wiki/Karl_Pearson
http://en.wikipedia.org/wiki/Chi-squared_distribution
http://en.wikipedia.org/wiki/Statistical_test
http://en.wikipedia.org/wiki/Goodness_of_fit
http://en.wikipedia.org/wiki/Logistic_regression
http://en.wikipedia.org/wiki/Logistic_regression
http://en.wikipedia.org/wiki/Chi-squared_distribution
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G is the number of groups.  

The test statistic asymptotically follows a distribution with G − 2 degrees of 

freedom. The number of risk groups may be adjusted depending on how many 

fitted risks are determined by the model. This helps to avoid singular decile 

groups. 

Measures of 

Association 

Two or more events are said to be associated with each other if the probability 

of occurrence of one depends on the occurrence of the others. For logistic 

regression, we will use: Concordant (%), Discordant (%), Somers’ D,  

Goodman and Kruskal's gamma, and Kendall’s Tau-a  

Concordant (%) 

and 

 Discordant (%) 

Concordant (%): is the percentage of the cases that are ranked in the same order 

on both variables. 

Discordant (%): is the percentage of cases ranked differently on the variables. 

For example if (x1, y1), (x2, y2), …, (xn, yn) for the random variables X and Y 

respectively. 

 Any pair of observations are concordant, if (xi, yi) and (xj, yj) agree in 

the ranking.  

 Any pair of observations are disconcordant, if both xi > xj and yi > yj or 

if both xi < xj and yi < yj. 

 Any pair of observations is neither concordant nor discordant. if xi > xj 

and yi < yj or if xi < xj and yi > yj. If xi = xj or yi = yj,  

Somers’ D It measures ordinal association or the relationship between two ordinal 

variables (for example, low, medium and high exposure levels of antibiotic) 

Kruskal and William (December 1958). 

Goodman and 

Kruskal's 

gamma 

It measures the rank correlation or how much orderings of the data is similar 

when it is ranked by each of the quantities. Values range from −1 (100% 

negative association, or perfect inversion) to +1 (100% positive association, or 

perfect agreement). A value of zero indicates the absence of association. 

 

Ns: is the number of concordant pairs that are ranked in the same order on both 

variables. 

Nd: is the number of discordant pairs that are ranked differently on the 

variables. 

Kendall’s Tau-a 

Or 

Kendall's tau 

(τ) coefficient 

It is a non-parametric hypothesis test to measure rank correlation between two 

quantities (Maurice Kendall, 1938)  

 
 

 

 

 

http://en.wikipedia.org/wiki/Chi-squared_distribution
http://en.wikipedia.org/wiki/Ordinal_variable
http://en.wikipedia.org/wiki/Ordinal_variable
http://en.wikipedia.org/wiki/Rank_correlation
http://en.wikipedia.org/wiki/Concordant_pair
http://en.wikipedia.org/wiki/Non-parametric_statistics
http://en.wikipedia.org/wiki/Hypothesis_test
http://en.wikipedia.org/wiki/Rank_correlation
http://en.wikipedia.org/wiki/Maurice_Kendall
http://en.wikipedia.org/wiki/Chi-squared_distribution
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McFadden's 

Pseudo R-

Square 

 
Mfull = Model with predictors 

Mintercept = Model without predictors 

The log likelihood of the intercept model will represent the total sum of squares 

while the log likelihood of the full model will represent the sum of squared 

errors.  

The ratio of both likelihoods will indicate the level of improvement over the 

intercept model offered by the full model.  

When we compare two models on the same data, McFadden's Pseudo R-Square 

would be higher for the model with the greater likelihood. 
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