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Abstract

Recent work on peer-to-peer systems has demonstrated the ability to deliver low latencies and good
load balance when demand for data items is relatively uniform. We describe a lightweight, adaptive, and
system-neutral replication protocol,LAR, that delivers low latencies and good load balance even when
demand is heavily skewed.

Simulation ofLAR in combination with both the Chord and TerraDir systems shows thatLAR quickly
adapts to non-uniformity in both the underlying system topology and in the input stream. Further, we
demonstrate better performance than functionally similarapplication-layer protocols, using an order of
magnitude less network bandwidth.

I. INTRODUCTION

Peer-to-peer (P2P) systems perform any number of differentfunctions, but their most fundamental task
is that of locating data. Recent work [1], [2], [3], [4] has shown the ability to deliver low latencies and
good load balance when demand for most items is relatively equal1. However, the distribution of demand
for real data items is often skewed, leading to poor load balancing and dropped messages. This paper de-
scribes and characterizes a lightweight, adaptive, system-neutral replication protocol (LAR) that is efficient
at redistributing load in such circumstances, and which improves query latency and reliability as well.

For purposes of this paper, we define a P2P system as a distributed system where functionally identical
servers export data items to each other. The defining characteristic of many such systems is that they are
completely decentralized. There is only one class of server, and all decisions, from routing to replication,
are local.

While P2P systems provide basic services like data location, P2Papplications provide high-level func-
tionality (such as file sharing [5], [6], multimedia streaming, event notification [7], etc.) using an underlying
P2P system. Much of the complexity of such systems arises because the environment of P2P systems is
potentially much different than that of traditional distributed systems, such as those hosted by server farms.
A single P2P system instance might simultaneously span manydifferent types of constituent elements, such
as dedicated servers, idle workstations, and even non-idleworkstations.

Regardless of the underlying system topology, P2P systems need some form of caching and/or replication
to achieve good query latencies, load balance, and reliability. The work described in this paper is primarily
designed to address the first two: query latency and load balance. A query is merely an instance of data
location (a lookup) with a fully qualified name. It turns out that average query latency is relatively easy to
minimize, and we do not consider it here further2. However, distributing load equitably is more difficult.

For example, many recent systems [1], [4], [2], [3] attempt to balance load by using cryptographic hashes
to randomize the mapping between data item names and locations. Under an assumption of uniform demand

1Heavyweight caching mechanisms used by P2P applications can cause problems. See Section V-E for details.
2Our results show comparable query latencies for both Chord and TerraDir. Unsurprisingly, our adaptive replication helps,

sometimes dramatically.
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for all data items, the number of items retrieved from each server (referred hereafter to as “destination load”)
will be balanced. Further,routing load incurred by servers in hash-based schemes will be balanced as well.

However, if demand for individual data items is non-uniform, neither routing nor destination load will
be balanced, and indeed may be arbitrarily bad. The situation is even worse for hierarchical systems such
as TerraDir [8], as the system topology is inherently non-uniform, resulting in uneven routing load across
servers.

So far, this problem has usually (e.g. PAST [5], CFS [6]) beenaddressed in an end-to-end manner by
caching at higher levels. However, the resulting protocol layering incurs the usual inefficiencies, and causes
functionality to be duplicated in multiple applications. More importantly, our results show that while these
schemes can adapt well to hot spots, they perform poorly under heavy load because of their high overhead.

This paper describes a lightweight approach to adaptive replication that does not have these drawbacks.
The protocol described here is much more lightweight, can balance load at fine granularities, accommodates
servers with differing capacities, and is relatively independent of the underlying P2P structure.

However, the main contribution of this paper is to show that aminimalist approach to replication design
is workable, and highly functional. We derived a completelydecentralized protocol that relies only on local
information, is robust in the face of widely varying input and underlying system organization, adds very
little overhead to the underlying system, and can allow individual server loads to be finely tuned.

This latter point is important because of the potential usage scenarios for P2P systems. While P2P systems
have been been proposed as the solution to a diverse set of problems, many P2P system will be used to
present services to end users. End users are often skepticalof services that consume local resources in order
to support anonymous outside users. User acceptance is often predicated on the extent to which end users
feel they have fine-grained control over the intrusiveness of the service.

The rest of this paper is structured as follows. Section II describes related work. Section III gives an
overview of our model and design goals. Section IV describesthe protocol in more detail. Finally, Section V
describes our simulation results and Section VI summarizesour findings and concludes the paper.

II. BACKGROUND

This section briefly summarizes related work, and then describes the Chord [1] and TerraDir [8] proto-
cols in some detail. We use Chord and TerraDir as representative P2P system protocols in the simulations
described in Section V.

A. Related work

Studies [9], [10] show that both spatial and temporal reference locality are present in requests submitted
at web servers or proxies, and that such requests follow a Zipf-like distribution. Distributed caching proto-
cols [11] have been motivated by the need to balance the load and relieve hot-spots on the World-Wide-Web.
These approaches target client-server communication models which are different than ours.

Similar Zipf-like patterns were found in traces collected from Gnutella [12], one of the most widely
deployed peer-to-peer systems. Caching the results of popular Gnutella queries for a short period of time
proves to be effective in this case [13]. Our path propagation is a generalization of this caching scheme.

Recent work [14], [15] considers static replication in combination with a variant of Gnutella searching us-
ing k random walkers. The authors show that replicating objects proportionally to their popularity achieves
optimal load balance, while replicating them proportionally to the square-root of their popularity minimizes
the average search latency. We addressed a static replication approach for TerraDir in previous work [8].
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Freenet [16] replicates objects both on insertion and retrieval on the path from the initiator to the target
mainly for anonymity and availability purposes. It is not clear how a system like Freenet would react to
query locality and hot-spots.

Chord [1], CAN [2], Pastry [3] and Tapestry [4] are hash-based peer-to-peer systems. They use the same
approach of mapping the object space into a virtual namespace where assignment of objects to hosts is more
convenient because of the uniform spread of object mappings. We expand on Chord in the second part of
this section.

CAN defines ad-dimensional Cartesian coordinate space on ad-torus. Assuming an evenly partitioned
space among theN servers, the path length between any two servers isO(dN1/d), with each server main-
taining information aboutd neighbors. CAN allows for different redundancy schemes: multiple coordinate
spaces can be in effect simultaneously, zones can be overloaded by assigning each of them a set of peer
servers, while replication is achieved by using multiple hash functions on the same data item.

Pastry is the routing and object location layer used by PAST [5]. Given parameterb, Pastry maintains
routing tables of size approximatelyO(2b log2b N) and performs routing inO(log2b N) steps, assuming
accurate routing tables and no recent server failures. Replication is attained by storing an object on thek

Pastry servers whose identifiers are closest to the object key in the namespace. Pastry’s locality properties
make it likely that among thek replicas of an object, the one that is closest to the requesting client, as given
by IP metrics, will be reached first. Tapestry is very similarin spirit to Pastry, both being inspired by the
routing scheme introduced by Plaxton et al. [17].

None of the hash-based schemes feature adaptive replication mechanisms similar to ours. Instead, caches
are used to spread popular objects in the network, and lookups are considered resolved whenever cache hits
occur along the path. CFS [6] for instance usesk-replication similar to the above for data availability, and
populates all the caches on the query path with the destination data after the lookup completes.

A great deal of work addresses data replication in the context of distributed database systems. Adaptive
replication algorithms change the replication scheme of anobject to reflect the read-write patterns and are
shown to eventually converge towards the optimal scheme [18]. Concurrency control mechanisms need to
be specified for data replication to guarantee replica consistency.

A recent analysis [19] of two popular peer-to-peer file sharing systems concludes that the most distin-
guishing feature of these systems is their heterogeneity. We believe that the adaptive nature of our replication
model would make it a first-class candidate in exploiting system heterogeneity.

B. Hash-based systems

We use Chord to represent the class of hash-based systems, but there is a great deal of other work on
systems based on the same idea (e.g. Chord, Pastry, Tapestry, CAN). These systems differ from Chord in
important ways, but few of these differences should affect the applicability of our replication approach.

Chord is essentially a fast lookup service based on the notion of consistent hashing [11], here implemented
via SHA-1. The names of data items exported by the servers arehashed to item keys; server ID’s are hashed
to server keys. With large numbers of servers, andm-bit keys, the servers will map relatively evenly around
an identifier circle whose locations are specified by indices0 .. 2m − 1. Key k’s home is the first server
whose identifier is equal to or larger thank.

The only bit of consistent state required by Chord is a server’s successor. If each server reliably knows
its successor, routing is guaranteed to complete successfully. However, using only successor pointers would
result inO(n) query latency, so the successor pointers are enhanced with arouting table called the finger
table.
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A finger table has at mostm entries. Theith entry at servern contains the identity of the first server that
succeedsn by at least2i−1 on the identifier circle. Thus, succeeding finger table entries reach further and
further around the circle and a server can efficiently route apacket by forwarding each message to the finger
table entry closest, but less than or equal to, the message destination’s key. If finger table information is
accurate, this approach will usually route packets successfully in at mostO(log N) steps

Note that Chord servers both “export” and “serve” items. Exported items are hashed and inserted into the
name space. Served items are those that are mapped to a serverby the hash mechanism.

The hash-based approach helps load balance because even if all of the data items exported from one site
are in high demand, they will generally be served by different machines. Similarly, routing load is distributed
because paths to items exported by the same site are usually quite different.

Just as importantly, the virtualization of the namespace provided by consistent hashing provides a clean,
elegant abstraction of routing, with provable bounds for routing latency.

C. Hierarchical systems

The advantages of hash-based systems are clear, but there are also potential disadvantages [20]. First,
hash-based virtualization destroys locality. By virtualizing keys, data items from a single site are not usually
co-located, meaning that opportunities for enhancing browsing, prefetching, and efficient searching are lost.
However, we do not consider these functions in this paper.

Second, hash-based virtualization discards useful application-specific information. The data used by
many applications (file systems, auctions, resource discovery) is naturally described using hierarchies. A
hierarchy exposes relationships between items near to eachother in the hierarchy; virtualization of the
namespace discards this information.

We use TerraDir as a representative of non-hash-based systems. Assume a 1-to-1 mapping between data
items and servers for the moment. TerraDir assumes that the input data is already organized hierarchically,
and routes packets over the resulting tree structure. More specifically, queries are routed from the source to
the greatest common prefix of the source and the destination,and then to the destination.

For example, assume that/a is the root of the tree. A query from/a/b/c/d to /a/b/f/g/h is routed “up”
to /a/b, and then “down” to the destination3. If the source is the ancestor (descendent) of the destination,
the greatest common prefix is merely the source (destination).

This scheme generalizes to multiple items per server by ensuring that the local item “closest” to the
destination is always picked when forwarding messages towards the destination. Note that, unlike in hash-
based schemes, an item’s home in TerraDir is the server that exported it.

The basic scheme is enhanced by caching item-to-server mapping.

D. Summary

The focus of this paper is the replication protocol, not a comparative evaluation of the two different
system-structuring philosophies. However, we here summarize the main advantages and disadvantages of
each approach.

Hash-based systems like Chord usually routes messages inO(log N) steps, and can balance routing load
assuming uniform query distribution (items all serve as query sources and destinations with approximately
the same frequency).

Hierarchical systems like TerraDir also route messages in approximatelyO(log N) steps. Further, pre-
serving the spatial locality inherent in the application label hierarchy allows spatial locality in the query

3Our preferred orientation for visualizing the tree is with the root at the top.
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stream (browsing, prefetching, etc.) to be handled efficiently. However, performance will degrade if the
hierarchy is not approximately balanced, and servers hosting non-leaf items will receive disproportionate
amounts of traffic.

Caching and replication are crucial to balancing routing load in hierarchical systems, whereas hash-based
systems implicitly balance routing load for uniform query distributions.

III. G OALS AND APPROACH

A. Goals

We have two primary goals. First, we will address overload conditions. We assume that each server has
a locally configured resource capacity, which indicates thenumber of queries that can be routed or handled
per second, and a queue length, which specifies the number of queries that can be buffered until additional
capacity is available. Any arriving traffic that can not be either processed or queued by a server is dropped.
The first goal of the replication protocol is to distribute load over replicas such that messages are not lost.

Second, we will attempt to balance load. While P2P systems can deliver functionality similar to that of
generic server farms, they differ in that constituent machines are not necessarily dedicated processors. A
system constructed from idle resources on user machines might want to satisfy some abstraction of fairness
by ensuring that machines all perform nearly the same amountof work. However, this notion can be difficult
to define exactly, and even more difficult to implement efficiently.

Instead, we take a slightly different tack. In addition to capacity and queue lengths, each server defines
high-water and low-water thresholds. The intent is that thehigh-water threshold represents a load beyond
which a server will shed load with prejudice, i.e. to any other server available. A server whose load is
between the high-water and low-water threshold attempts tohand off load to lightly-loaded servers only.
Any server whose load is below the low-water threshold does not shed load.

By default, the system sets high-water and low-water thresholds for each server based on fractions of
servers’ capacities. We assume that these fractions are constant across the system in the simulations here,
but the protocol will work unaltered with non-uniform fractions.

We will use the term “load balance” in the rest of this paper torefer to this sense of distributing load.

B. Approach

Our approach is based on adaptivity and local decision-making. Adaptive protocols are necessary to cope
efficiently with dynamic query streams, or even static streams that differ from expected input.

Making local decisions is key to scaling the system, as P2P systems can be quite large. For example, the
popular KaZaA file-sharing application routinely supportson the order of two million simultaneous users,
exporting more than 300 million files. Global decision-making implies distilling information from at least
a significant subset of the system, and filtering decisions back to them. Further, there is the issue of consis-
tency. There is a clear tradeoff between the “freshness” of global information summaries and the amount
of overhead needed to maintain a given level of freshness. Finally, systems using global information can
be too unwieldy to handle dynamic situations, as both information-gathering and decision-making require
communication among a large subset of servers.

The choice of local decision-making has far-reaching implications. For one, local decisions might be poor
if locally available information is unrepresentative of the rest of the system.

Second, local decision-making makes it difficult or impossible to maintain the consistency of global struc-
tures, such as replica sets for individual data items. Areplica set is just a possibly incomplete enumeration
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of replicas of a given data item, which are the default unit ofreplication. Requiring that the “home” of a data
item be reliably informed of all new and deleted replicas could be prohibitively costly in a large system.

This difficulty led us to use soft state whenever possible. For example, instead of keeping summaries
of all replicas at a data item’s home, we allow some types of replicas to be created and deleted remotely
without having any communication with other replicas or thehome.

Our conclusions are intended to be independent of P2P structure. Hence, we built our replication and
caching layer into the Chord simulator, and base our conclusions on simulations over a typical hash-based
P2P architecture (Chord), and over a very different tree-based scheme (TerraDir).

IV. T HE PROTOCOL

This section describes the details of the adaptive replication scheme,LAR. We first cast the description
in terms of the TerraDir protocol, and then conclude with a subsection describing differences between the
Chord and TerraDir versions.

The routing protocol uses two forms of soft state: caches andreplicas. Both operate on the granularity of
a single data item. A cache entry consists of a data item label, the item’s home, the home’s physical address,
and a set of known replica locations. Cache entries are replaced using a least recently used (LRU) policy
with an entry being touched whenever used in routing. Cachesare populated by loading the path “so far”
into the cache of each server encountered during the routingprocess. Both the source and destination cache
the entire path. This form of path propagation not only brings remote items into the cache, it also brings in
nearby items and a cross-section of items from different levels of the namespace tree. Our experience is that
this mixture of close and far items performs significantly better than caching only the query endpoints.

Replicas differ in that (i) they contain the item data, (ii) they contain a great deal more state, and (iii) new
replicas are advertised (unreliably) throughout the system. In addition to the item data, the state maintained
in a replica includes the physical addresses of the item’s home, the neighbors of the home, and any other
known replicas.

For purposes of this paper, replication is primarily a tool with which to balance load. Overloaded servers
attempt to shed load by creating replicas of their most popular items at other servers. This task can be
decomposed into a long list of subtasks:

1) How to adapt - What is the mechanism used to redistribute load? How many replicas are created
elsewhere? How many items hosted locally have new replicas created? Do the local replicas survive?

2) When to trigger - The system must redistribute load relatively quickly in order to handle dynamic
query streams. However, reacting too quickly could lead thesystem to thrash.

3) Where to place replicas - The local server has only imprecise, and possibly stale, information about
other servers, and in general does not ever know the full membership of the system.

4) How to choose replicas during routing - Assume a server has knowledge of a set of replicas for a
desired “next hop” in the routing process. Which of the replicas is chosen? Should the selection
process attempt to incorporate knowledge of load at replicalocations?

5) How to merge replica sets - Our decision to allow remote sites to independently create and destroy
replicas means that the number of system replicas of a given item is not bounded. Whether information
about replica sets is disseminated by new messages or appended to existing messages, the total number
of replicas of a given item might be too large to include. Hence, the set of replicas included in a
message might be a subset of the replicas known to the message’s source. How should this subset be
chosen? Further, how large of a set should an item’s home maintain? Assuming that the latter set is
bounded, the protocol must have a procedure for merging incoming replica set information into its
local set.
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Fig. 1. A CDF of load versus fraction of servers with a uniformquery distribution. The majority of servers have acceptable load.
We concentrate mainly on alleviating the relative overloading of those in the long high tail, and to a lesser extent on identifying
“free-loaders”, i.e. servers with little or no load.

6) How to disseminate replica information - New replicas are useless unless other servers know of their
existence4. Hence, information about new replicas must be disseminated. Should such information be
pushed eagerly by a separate dissemination sub-protocol, or appended lazily to existing messages?

This set of questions is clearly too large too be answered definitively, so our approach is as follows.
Figure 1 shows a cumulative distribution function (CDF) of server loads with a uniform query distribution.
The majority of servers are in an acceptable range, but a small subset of server have either very high or very
low load (the two tails of the distribution). We will concentrate on moving the relatively few servers in either
tail into the “balanced” portion of the load curve.

The system adapts to load irregularities by creating and destroying replicas. Replicas in our system are
“soft” in the sense that they can be created and destroyed without any explicit coordination with other
replicas or item homes. Hence, idle replicas consume no system resources except memory on the server that
hosts them. Therefore, identifying and evicting redundantreplicas is not urgent, and can be handled lazily
via an LRU replacement scheme. Replica destruction will largely be ignored in the remainder of the paper.

Replica creation, however, is in the critical path. Assume serversi’s most highly requested item isnx.
Load is shed by replicating highly-requested local items onother sites. We do not destroy the local replica.
Hence, even if knowledge of the new replica is spread immediately throughout the system, the new load on
si’s replica ofnx will only decrease by a factor of 1

Rx+1
, whereRx is the total number of replicas ofnx in

the system prior to new replica creation.
It might seem that the above fraction could be used to calculate exactly how many new replicas are created.

However, our desire for local decision-making means thatRx is not known. Further, even completely
eliminating the load onnx might not reducesi’s overall load to an acceptable level. Finally, we wish to
minimize the amount of communication added by the replica mechanism to the system.

Our solution is to shed load by creating new replicas of possibly multiple items hosted bysi at a single
other site. Recall that each server has a defined capacity, and high- and low-water thresholds. All of these
metrics are defined in terms of messages sent to (or routed through) a server during a time unit.

Each time a packet is routed through serversi, si checks whether the current load,li, indicates that load
redistribution is necessary. If necessary, load is redistributed to the source of the message,sj. The source is

4This is not precisely true because routing can be short-circuited whenever a replica is encountered. However, this is a secondary
effect.
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Fig. 2. The server capacity islmax. Load is sometimes re-balanced if greater thanl
low, and always if greater thanlhi.

chosen because it is in some sense “fair” (the source added tothe local load), and because load information
about the source can easily be added to all queries, allowingdownstream servers to have current information
about query sources.

Load is redistributed according to a per-node capacity,lmax
i , and high- and low-water thresholds,lhi

i and
llow
i , as in Figure 2. Ifli > lmax

i , si is overloaded. Assuming thatli > lj, si attempts to create new replicas
on sj s.t. si’s total local load on the replicated items is greater than orequal to the difference between the
loads of the two servers.

Specifically,si askssj to create replicas of then most highly loaded items onsi, such that the sum of the
local loads due to thesen items is greater than or equal to the difference in loads between the two servers.

If si’s load is merely high, but not in an overload situation (llow
i ≤ li ≤ lhi

i ), load is redistributed tosj

only if lj ≤ lloj . The amount redistributed is calculated as above.
In both cases, there may not be sufficient distinct replicas.Further, replicas are only made if the local load

due to an item is non-negligible.
Finally, the protocol needs to disseminate information about replica sets. Rather than introduce extra mes-

sage traffic, we piggyback replica sets on existing messagescontaining cache entries. Servers maintain only
partial replica set information in order to bound the state required to store and transmit the information. A
2/32 dissemination policy means that a maximum of two replicas locations are appended to cache insertion
messages, while a maximum of 32 replica locations are stored, per data item, at a given server.

The selection policy determines which replica is used during routing. We currently choose randomly
among all known replicas at each step of the routing process.

The merge policy determines how incoming replica locations are merged into the local store of replica
locations, assuming both are fully populated. The locations to be retained are currently chosen randomly, as
experiments with different preferences did not reveal any advantage.

Thedissemination choice policy decides which of the locally known replica locationsto append to out-
going messages. Random choice works well here as well, but wefound a heuristic that slightly improves
results. If a server has a local replica and has created others elsewhere, it prefers the replicas it has created
elsewhere most recently. Otherwise, the choice is random. The intuition behind this heuristic is that if the
existing load is high enough to cause the server to attempt shedding load, it is counter-productive to contin-
uing advertising the server’s own replicas. On the other hand, advertising newly created replicas helps to
shed load.

Note that we have neglected consistency issues. However, itis highly unlikely that rapidly changing
objects will be disseminated with this type of system and we have designed our protocol accordingly. We
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also do not address servers joining and leaving the system. These actions are handled by the underlying
system P2P system and should not affect the applicability ofthe replication scheme.

To summarize,LAR takes a minimalist approach to replication. Servers periodically compare their load to
local maximum and desired loads. High load causes a server toattempt creating a new replica on one of the
servers that caused the load (usually the sender of the last message). Since servers append load information
to messages that they originate, “downstream” servers haverecent information on which to base replication
decisions. Information about new replicas is then spread onsubsequent messages that contain requests for
the same data item.

The replication process only requires a single RPC between the loaded server and a message originator.
Further, this RPC contains no data because the originator ofa request has already requested it. Even this
RPC can be optimized away if the loaded server is also the server that responds to the request. However,
we retain it in order to allow the replication process to proceed asynchronously with respect to the lookup
protocol.

A. Adapting LAR to Chord

The implementation ofLAR for Chord differs mainly in that the unit of replication is anentire server,
rather than an individual data item. This makes all replication decisions much more heavyweight than in
TerraDir, but the procedure is essentially the same. At any point where the local load is higher than even the
low threshold, a server replicates itself at the source of the query that initiated the replication event.

V. SIMULATION RESULTS

Our performance results are based on a heavily modified version of the simulator used in the Chord
project, downloaded fromhttp://www.pdos.lcs.mit.edu/chord/. The resulting simulator is
discrete time and accommodates per-server thresholds and capacities. Each network “hop” takes a single
time unit, currently set to 25 milliseconds. Each message contributes identically to loads and congestion.

This section lists the defaults for our experiments. The query distribution is uniform with Poisson arrivals.
The average query input rate is 500 queries per second acrossthe entire system. The default “skewed” input
is 90-1, where 90% of the input is skewed to one item, and the remaining 10% randomly distributed. This
is a somewhat pathological case for our protocol, and was chosen to show the protocol under extreme stress.
Similarly, all query streams arrive as impulses. The systemwould not lose any messages if input changed
slowly.

Simulations run with 1k servers, 32k data items, andlmax = 10/sec. We ran many experiments with
higher capacities, but found no qualitative differences inthe results.lhi and llow are set to 0.75 and 0.30
timeslmax. The length of a server’s queue is set to the number of of locally homed items, in this case 32. For
example, if an idle server with capacitylmax = 10 and queue lengthqmax = 32 receives 50 queries during
one time unit, 8 will be dropped. The default load window size, which controls how quickly the system can
adapt, is set to two seconds. The dissemination policy is setto 2/32.

TerraDir servers each have 20 cache slots, and can accommodate replicas of 64 remote data items (twice
as many as the number of items for which the server is home).

Chord has no regular cache slots. Chord servers can accommodate replicas of five other servers, which
gives them approximately the same amount of state as consumed by the combination of the TerraDir caching
and replication schemes.

Where results are similar, we only show results for the TerraDir model.
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Fig. 3. Average number of replicas created for items at a given level of the TerraDir tree. Level 0 is the root.

A. Static versus Adaptive Replication

This section contrasts the performance of static versus adaptive replication for both Chord and TerraDir.
A static distribution for Chord is easily created by replicating all servers evenly.

For TerraDir, calculating the proper static distribution of replicas is non-trivial. Without caches, and
assuming that the tree is balanced and that the query distribution is uniform, the load on each item in the tree
can easily be calculated analytically. However, caches change the load distribution considerably. Figure 3
shows the number of times each item is replicated in our adaptive scheme, a measure highly correlated with
load. We use this result as the “static” replica distribution in the rest of this section.

The explanation for level three having the highest load is asfollows. Assume that a cache is initially
populated uniformly. Items from high in the tree (level 0 etc.) are quickly evicted, as cached elements
slightly lower in the tree are closer to destinations and allfit in the cache. Items from low in the tree are
also evicted. They are surely closer to some destinations, but are only touched by a small proportion of the
queries. Hence, the caches become populated with items in a middle ground where the whole level fits into
the cache, yet each item on the level is used frequently.

Caches populated in this way cause a great deal of load on these middle levels, as cache entries only
contain mappings from an item name to a server’s address. They do not contain the data and so can not
satisfy queries locally.

Given this distribution, Figures 4 and 5 show message lossesversus time for all combinations of static
or adaptive replication, and uniform or skewed input. The figures show that adaptivity is crucial in order
to handle skewed distributions. Both Chord and TerraDir lose on the order of 90% of messages with static
replication and skewed input, but stop losing messages within two and one half minutes when using adaptive
replication.

Additionally, the graphs highlight the need of the hierarchical system to populate the system with replicas
for items high in the graph. The adaptive experiments start without any replicas in the system, so the “unif.
with adapt. rep” line in Figure 5 is showing the process of populating the system with the “best” static
distribution discussed above. By contrast, Chord does not need any replication to handle uniform query
distributions.

Figure 6 shows the number of message drops in a pathological case of input that changes increasingly
rapidly. Each time the focus changes, the system re-populates servers with replicas of the new focus.

B. Load Balancing

LAR has two primary goals: handling overloads and attempting tokeep server loads under the low-water
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threshold,llow, if possible. Figure 7 shows the average of the ten highest server loads for a run with adaptive
replication and a skewed distribution on TerraDir. Each line represents a differentllow value; in all caseslhi

remains at 0.75. In all but the two extreme cases, the averages quickly drop below the low-water threshold.
They do not drop further because servers whose loads are lessthan llow do not attempt to shed load. The
slope of thellow = 0.15 andllow = 0.00 lines flattens considerably as they near 0.10, the mean load in the
system.

The overall load in the system varies from 10% withllow at 0.75, to 5.5% with allow value of 0. The
variation is due to increased queuing times when loads are highly loaded.

C. Parameter Sensitivity Study

Load Window Size - Figure 8 shows plots of message drops versus time for TerraDir with adaptive replication
and different load window sizes. Smaller windows allow the system to react more quickly, adapting better
to swiftly changing conditions at the cost of more replica creations and evictions.

The cost of this adaptivity is shown in Figure 9. One possibleconclusion is that the system is relatively
insensitive to the size of the load window within a broad range (10-30 seconds). The use of smaller windows
can dramatically improve drop rates, but only at the cost of increased protocol traffic.
Dissemination Constants - Table I shows the effect of the dissemination policy on dropsand replica events
for TerraDir and skewed input. Recall thatx/y means thatx replica locations are appended to outgoing
messages about a given item andy are stored locally. Skewed input heavily overloads a singleserver
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Policy Drops Replicas Evictions.

0/1 162172 4803 0
1/1 19595 2634 0
1/8 19275 2582 0
2/8 16942 2493 0
2/32 17759 2462 0
16/32 17407 2493 0
32/32 17407 2503 0
64/128 17648 2447 0

TABLE I

DROPS AND REPLICA EVENTS VERSUS DISSEMINATION POLICY.

and places a premium on quickly spreading knowledge of new replicas. Nonetheless, the results show an
almost complete lack of sensitivity to these parameters. Though we use2/32 for the other experiments in
this paper, the results show that keeping and propagating only a single other storage location is almost as
effective.

D. Scalability

Figure 10 shows that the adaptive replication scheme easilyscales through an order of magnitude differ-
ence in the size of the system. The input distribution is90-1, and the input size is scaled with the size of
the system in all cases. The peak in message drops scales onlylinearly with the size of the system. Message
drops are virtually eliminated in a single minute, regardless of system size. This argues well for scaling to
larger systems.

E. Caching in CFS and PAST

Neither Pastry nor Chord has any mechanism to deal with non-uniform query distributions. Instead, both
PAST [5] and CFS [6], distributed file sharing applications that run on top of Pastry and Chord, respectively,
implement their own distributed caching scheme. We will refer to our generalization of the approach used
in these applications asapp-cache in the following.
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Fig. 11. Drops versus time forapp-cache with different amounts of query skew.

app-cache creates a constant number of replicas “near” each file. Although other sites do not know
the precise location of the replicas, they have a constructive algorithm for finding one, i.e. route to near the
primary and query the neighbors. However, the main purpose of these replicas is to achieve fault tolerance
rather than to improve performance, and they have little effect on load distribution under heavily skewed
loads.
app-cache deals with skewed loads through the use of caches. Copies of arequested file are placed in

the caches of all servers traversed as a query is routed from the source to whichever server finally replies
with the file. In a virgin state, this responding server will be the file’s home. However, subsequent queries
for the file may hit cached copies because the neighborhood ofthe home becomes increasingly populated
with cached copies.

As a result, the system responds quickly to sudden changes initem popularity. app-cache is very
pro-active in that it distributesk − 1 cached copies of every single query target, wherek is the average hop
count. By contrast,LAR is quite conservative. A server checks its local load after processing each message,
but only decides to redistribute load (create replicas) if the local load is above a high threshold. Even then,
replicas are only created at one other server.

Figures 11 and 12 show dropped messages versus time for several different input stream distributions.
Forapp-cache, each server has 32 cache slots. Since each server also exports 32 items, this means that
fully half of a server’s storage is devoted to cache space. The distributions range from90-1) to uniform.

At the extreme end,90-1 is the best possible case forapp-cache. After a warm-up period, the one hot
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Fig. 12. Drops versus time forLAR with different amounts of query skew.

item is cached on almost all servers in the system. Nevertheless,LAR is still within a factor of two for total
losses.

As the hot spot grows larger,app-cache’s document caches become less useful while still incurringthe
same overhead. Recall that the caching performed after a query is served requires revisiting every server on
the path, effectively doubling the number of network messages that are sent.

On the other hand,LAR distributes replicas only when an imbalance is detected. For the extreme90-1
case, replicas are not created quickly enough to avoid heavylosses (although the total number of mes-
sages lost is only twice that ofapp-cache). The losses arise becauseLAR servers cache item-to-server
mappings, meaning that later queries often jump straight tothe destination. The destination is quickly over-
loaded and starts dropping messages.app-cache fares better because queries being routed towards the
destination are satisfied by copies cached by the destination’s neighbors. The original destination is quickly
shielded from further load. Nevertheless,LAR stops dropping messages within three minutes. This adaption
time could be improved by changing the load window size, currently two seconds.
LAR’s performance quickly improves as the size of the hot spot increases. By the time the hot spot grows

to encompass the entire data set (the uniform input), there are no longer any major load imbalances among
servers, and few replicas are created. The number of messages dropped is very low for all but the degenerate
case.

The result is that, underLAR, servers are operating at about 23% average capacity for theuniform input.
The average query latency is 4.7. By contrast, the average load forapp-cache is about 58% capacity.
The nominal average query latency is 5.7, but this latency isdoubled by the caching scheme. Random
fluctuations due to the Poisson input stream cause local bottlenecks and a steady state where messages are
dropped.

The story forapp-cache is actually worse than these graphs indicate. For the uniform case, only
1/k of the messages carry data forLAR, whereas half the messages carry data forapp-cache. The size
differential between data messages and control messages could vary. For example, CFS serves file blocks
while PAST serves whole files. However, it is clear that data messages can easily be an order of magnitude
or more larger than control messages, andapp-cache sends many more thanLAR. The difference in drop
rates between the two protocols could be much larger if the type and size of messages is accounted for.

The results show the impact of the differing approaches exemplified by the two protocols.app-cache
scatters cache entries, each containing the entire data item and requiring an RPC, to every server on the
routing path for every query served by the system. By contrast, LAR creates replicas at a single site, and
only after many queries have been served. Despite this disparity, LAR balances load more effectively.
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have described a new soft-state replication scheme,LAR for peer-to-peer networks.LAR
is a replication framework which can be used in conjunction with almost any distributed data access scheme.
In this paper, we have appliedLAR to a distributed hash-table algorithm (Chord), and to a hierarchical data
access protocol (TerraDir).

Compared to previous work,LAR has an order of magnitude lower overhead, and at least comparable
performance. More importantly,LAR is adaptive: it can efficiently track changes in the query stream and
autonomously organize system resources to best meet current demands.

We have demonstrated the efficacy ofLAR using a number of different experiments, all conducted over
a detailed packet-level simulation framework. In our experiments, we show thatLAR can adapt to several
orders of magnitude changes in demand over a few minutes, andcan be configured to balance the load of
peer-servers within configurable bounds.
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