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Abstract

Recent work on peer-to-peer systems has demonstrated ithy @bdeliver low latencies and good
load balance when demand for data items is relatively umfote describe a lightweight, adaptive, and
system-neutral replication protocdlAR, that delivers low latencies and good load balance even when
demand is heavily skewed.

Simulation ofLAR in combination with both the Chord and TerraDir systems shthatL AR quickly
adapts to non-uniformity in both the underlying system togg and in the input stream. Further, we
demonstrate better performance than functionally sind@laplication-layer protocols, using an order of
magnitude less network bandwidth.

. INTRODUCTION

Peer-to-peer (P2P) systems perform any number of difféuerations, but their most fundamental task
is that of locating data. Recent work [1], [2], [3], [4] hasosin the ability to deliver low latencies and
good load balance when demand for most items is relativalafegHowever, the distribution of demand
for real data items is often skewed, leading to poor loadrizétg and dropped messages. This paper de-
scribes and characterizes a lightweight, adaptive, systauiral replication protocoL@AR) that is efficient
at redistributing load in such circumstances, and whichrawgs query latency and reliability as well.

For purposes of this paper, we define a P2P system as a disttibystem where functionally identical
servers export data items to each other. The defining cleaistat of many such systems is that they are
completely decentralized. There is only one class of searat all decisions, from routing to replication,
are local.

While P2P systems provide basic services like data locaB@®applications provide high-level func-
tionality (such as file sharing [5], [6], multimedia streami event notification [7], etc.) using an underlying
P2P system. Much of the complexity of such systems ariseaulsecthe environment of P2P systems is
potentially much different than that of traditional dibuited systems, such as those hosted by server farms.
A single P2P system instance might simultaneously span mifieyent types of constituent elements, such
as dedicated servers, idle workstations, and even nomwiolikestations.

Regardless of the underlying system topology, P2P systeerr some form of caching and/or replication
to achieve good query latencies, load balance, and refiabilhe work described in this paper is primarily
designed to address the first two: query latency and loadhb&alaA query is merely an instance of data
location (a lookup) with a fully qualified name. It turns obtit average query latency is relatively easy to
minimize, and we do not consider it here furthdrowever, distributing load equitably is more difficult.

For example, many recent systems [1], [4], [2], [3] attenodbalance load by using cryptographic hashes
to randomize the mapping between data item names and Inosatimder an assumption of uniform demand

'Heavyweight caching mechanisms used by P2P applicationsazase problems. See Section V-E for details.

20ur results show comparable query latencies for both ChoddTeerraDir. Unsurprisingly, our adaptive replication gl
sometimes dramatically.
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for all data items, the number of items retrieved from eachesdreferred hereafter to as “destination load”)
will be balanced. Furtherputing load incurred by servers in hash-based schemes will be balascedlh

However, if demand for individual data items is non-unifomeither routing nor destination load will
be balanced, and indeed may be arbitrarily bad. The situéieven worse for hierarchical systems such
as TerraDir [8], as the system topology is inherently noifemm, resulting in uneven routing load across
servers.

So far, this problem has usually (e.g. PAST [5], CFS [6]) baddressed in an end-to-end manner by
caching at higher levels. However, the resulting protoapéting incurs the usual inefficiencies, and causes
functionality to be duplicated in multiple applications.oké importantly, our results show that while these
schemes can adapt well to hot spots, they perform poorlyruresery load because of their high overhead.

This paper describes a lightweight approach to adaptiviecegion that does not have these drawbacks.
The protocol described here is much more lightweight, cdaroa load at fine granularities, accommodates
servers with differing capacities, and is relatively indegent of the underlying P2P structure.

However, the main contribution of this paper is to show thatimimalist approach to replication design
is workable, and highly functional. We derived a completdgentralized protocol that relies only on local
information, is robust in the face of widely varying inputdannderlying system organization, adds very
little overhead to the underlying system, and can allowmiddial server loads to be finely tuned.

This latter point is important because of the potential esagenarios for P2P systems. While P2P systems
have been been proposed as the solution to a diverse setléms many P2P system will be used to
present services to end users. End users are often skeyftesices that consume local resources in order
to support anonymous outside users. User acceptance iispédicated on the extent to which end users
feel they have fine-grained control over the intrusivendskeoservice.

The rest of this paper is structured as follows. Section Hcdbes related work. Section Ill gives an
overview of our model and design goals. Section IV describegrotocol in more detail. Finally, Section V
describes our simulation results and Section VI summaggesindings and concludes the paper.

Il. BACKGROUND

This section briefly summarizes related work, and then dsessithe Chord [1] and TerraDir [8] proto-
cols in some detail. We use Chord and TerraDir as represenf@2P system protocols in the simulations
described in Section V.

A. Related work

Studies [9], [10] show that both spatial and temporal refeedocality are present in requests submitted
at web servers or proxies, and that such requests follow faliKedistribution. Distributed caching proto-
cols [11] have been motivated by the need to balance the lwhdetieve hot-spots on the World-Wide-Web.
These approaches target client-server communication Isyadiéch are different than ours.

Similar Zipf-like patterns were found in traces collectedni Gnutella [12], one of the most widely
deployed peer-to-peer systems. Caching the results oflgo@unutella queries for a short period of time
proves to be effective in this case [13]. Our path propagati@ generalization of this caching scheme.

Recent work [14], [15] considers static replication in canalbion with a variant of Gnutella searching us-
ing k£ random walkers. The authors show that replicating objectpgstionally to their popularity achieves
optimal load balance, while replicating them proportibn&d the square-root of their popularity minimizes
the average search latency. We addressed a static repliegtproach for TerraDir in previous work [8].
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Freenet [16] replicates objects both on insertion andenation the path from the initiator to the target
mainly for anonymity and availability purposes. It is not&t how a system like Freenet would react to
query locality and hot-spots.

Chord [1], CAN [2], Pastry [3] and Tapestry [4] are hash-lobpeer-to-peer systems. They use the same
approach of mapping the object space into a virtual namesphere assignment of objects to hosts is more
convenient because of the uniform spread of object mappmgsexpand on Chord in the second part of
this section.

CAN defines ai-dimensional Cartesian coordinate space @htarus. Assuming an evenly partitioned
space among tha’ servers, the path length between any two servef(i&V'/¢), with each server main-
taining information abou# neighbors. CAN allows for different redundancy schemesltipie coordinate
spaces can be in effect simultaneously, zones can be ogedday assigning each of them a set of peer
servers, while replication is achieved by using multiplsthtunctions on the same data item.

Pastry is the routing and object location layer used by PAST Given parameteb, Pastry maintains
routing tables of size approximatety(2°log,» N) and performs routing iD(log,, V) steps, assuming
accurate routing tables and no recent server failures. i¢diph is attained by storing an object on the
Pastry servers whose identifiers are closest to the objgdnkbhe namespace. Pastry’s locality properties
make it likely that among thi replicas of an object, the one that is closest to the requgestient, as given
by IP metrics, will be reached first. Tapestry is very simitaspirit to Pastry, both being inspired by the
routing scheme introduced by Plaxton et al. [17].

None of the hash-based schemes feature adaptive repticagohanisms similar to ours. Instead, caches
are used to spread popular objects in the network, and |eokagpconsidered resolved whenever cache hits
occur along the path. CFS [6] for instance use®plication similar to the above for data availability,dan
populates all the caches on the query path with the destindtita after the lookup completes.

A great deal of work addresses data replication in the comtiedistributed database systems. Adaptive
replication algorithms change the replication scheme dflgact to reflect the read-write patterns and are
shown to eventually converge towards the optimal schem @8ncurrency control mechanisms need to
be specified for data replication to guarantee replica steTsty.

A recent analysis [19] of two popular peer-to-peer file sthgusystems concludes that the most distin-
guishing feature of these systems is their heterogeneigbélfeve that the adaptive nature of our replication
model would make it a first-class candidate in exploitingesysheterogeneity.

B. Hash-based systems

We use Chord to represent the class of hash-based systetrtbefmiis a great deal of other work on
systems based on the same idea (e.g. Chord, Pastry, Taf@&hy. These systems differ from Chord in
important ways, but few of these differences should affeetapplicability of our replication approach.

Chord is essentially a fast lookup service based on themoficonsistent hashing [11], here implemented
via SHA-1. The names of data items exported by the servetsasteed to item keys; server ID’s are hashed
to server keys. With large numbers of servers, antit keys, the servers will map relatively evenly around
an identifier circle whose locations are specified by indites2™ — 1. Key k's home is the first server
whose identifier is equal to or larger than

The only bit of consistent state required by Chord is a s&ngrccessor. If each server reliably knows
its successor, routing is guaranteed to complete sucdigssfowever, using only successor pointers would
result inO(n) query latency, so the successor pointers are enhanced watlting table called the finger
table.
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A finger table has at most entries. The!”" entry at server, contains the identity of the first server that
succeeds: by at least2’~! on the identifier circle. Thus, succeeding finger table estreach further and
further around the circle and a server can efficiently royiacket by forwarding each message to the finger
table entry closest, but less than or equal to, the messagmateon’s key. If finger table information is
accurate, this approach will usually route packets sufagsi at mostO(log N) steps

Note that Chord servers both “export” and “serve” items. @igd items are hashed and inserted into the
name space. Served items are those that are mapped to alsetiverhash mechanism.

The hash-based approach helps load balance because elerf tha data items exported from one site
are in high demand, they will generally be served by differeachines. Similarly, routing load is distributed
because paths to items exported by the same site are usuidhydiferent.

Just as importantly, the virtualization of the namespaceiged by consistent hashing provides a clean,
elegant abstraction of routing, with provable bounds forting latency.

C. Hierarchical systems

The advantages of hash-based systems are clear, but teeatsarpotential disadvantages [20]. First,
hash-based virtualization destroys locality. By virtaglg keys, data items from a single site are not usually
co-located, meaning that opportunities for enhancing biogy prefetching, and efficient searching are lost.
However, we do not consider these functions in this paper.

Second, hash-based virtualization discards useful ajgitcspecific information. The data used by
many applications (file systems, auctions, resource desgpvs naturally described using hierarchies. A
hierarchy exposes relationships between items near to @heh in the hierarchy; virtualization of the
namespace discards this information.

We use TerraDir as a representative of non-hash-basedrs/sfessume a 1-to-1 mapping between data
items and servers for the moment. TerraDir assumes thamphe data is already organized hierarchically,
and routes packets over the resulting tree structure. Mmeifically, queries are routed from the source to
the greatest common prefix of the source and the destinati@hthen to the destination.

For example, assume that is the root of the tree. A query frorfu/b/c/d to /a/b/ f/g/h is routed “up”
to /a/b, and then “down” to the destinatidnlf the source is the ancestor (descendent) of the destinati
the greatest common prefix is merely the source (destination

This scheme generalizes to multiple items per server byrigmsthat the local item “closest” to the
destination is always picked when forwarding messagesrtisithe destination. Note that, unlike in hash-
based schemes, an item’s home in TerraDir is the serverxpatted it.

The basic scheme is enhanced by caching item-to-serveringapp

D. Summary

The focus of this paper is the replication protocol, not a parative evaluation of the two different
system-structuring philosophies. However, we here surze@ne main advantages and disadvantages of
each approach.

Hash-based systems like Chord usually routes messag&ddg V) steps, and can balance routing load
assuming uniform query distribution (items all serve asrgseurces and destinations with approximately
the same frequency).

Hierarchical systems like TerraDir also route messagepjmoaximatelyO(log V) steps. Further, pre-
serving the spatial locality inherent in the applicatiobdhhierarchy allows spatial locality in the query

30ur preferred orientation for visualizing the tree is witle root at the top.
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stream (browsing, prefetching, etc.) to be handled effiieHowever, performance will degrade if the
hierarchy is not approximately balanced, and servers igpsion-leaf items will receive disproportionate
amounts of traffic.

Caching and replication are crucial to balancing routiragllon hierarchical systems, whereas hash-based
systems implicitly balance routing load for uniform queigtdbutions.

I[1l. GOALS AND APPROACH
A. Goals

We have two primary goals. First, we will address overloadditions. We assume that each server has
a locally configured resource capacity, which indicatesnmaber of queries that can be routed or handled
per second, and a queue length, which specifies the numbeiedég that can be buffered until additional
capacity is available. Any arriving traffic that can not biher processed or queued by a server is dropped.
The first goal of the replication protocol is to distribut@adbover replicas such that messages are not lost.

Second, we will attempt to balance load. While P2P systemsieiver functionality similar to that of
generic server farms, they differ in that constituent maeiare not necessarily dedicated processors. A
system constructed from idle resources on user machinds mant to satisfy some abstraction of fairness
by ensuring that machines all perform nearly the same anafuwdrk. However, this notion can be difficult
to define exactly, and even more difficult to implement effidie

Instead, we take a slightly different tack. In addition tpaecity and queue lengths, each server defines
high-water and low-water thresholds. The intent is thathigg-water threshold represents a load beyond
which a server will shed load with prejudice, i.e. to any otkerver available. A server whose load is
between the high-water and low-water threshold attemptsata off load to lightly-loaded servers only.
Any server whose load is below the low-water threshold de¢shed load.

By default, the system sets high-water and low-water ttolgshfor each server based on fractions of
servers’ capacities. We assume that these fractions astarracross the system in the simulations here,
but the protocol will work unaltered with non-uniform framts.

We will use the term “load balance” in the rest of this papereter to this sense of distributing load.

B. Approach

Our approach is based on adaptivity and local decision-mgakhdaptive protocols are necessary to cope
efficiently with dynamic query streams, or even static streghat differ from expected input.

Making local decisions is key to scaling the system, as P2EB)ys can be quite large. For example, the
popular KaZaA file-sharing application routinely suppartsthe order of two million simultaneous users,
exporting more than 300 million files. Global decision-nmakimplies distilling information from at least
a significant subset of the system, and filtering decision& bathem. Further, there is the issue of consis-
tency. There is a clear tradeoff between the “freshness’laifay information summaries and the amount
of overhead needed to maintain a given level of freshnegsllfi systems using global information can
be too unwieldy to handle dynamic situations, as both infdrom-gathering and decision-making require
communication among a large subset of servers.

The choice of local decision-making has far-reaching iogtions. For one, local decisions might be poor
if locally available information is unrepresentative oétrest of the system.

Second, local decision-making makes it difficult or impbksto maintain the consistency of global struc-
tures, such as replica sets for individual data itemsephica set is just a possibly incomplete enumeration
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of replicas of a given data item, which are the default unieglication. Requiring that the “home” of a data
item be reliably informed of all new and deleted replicaslddae prohibitively costly in a large system.

This difficulty led us to use soft state whenever possibler éxample, instead of keeping summaries
of all replicas at a data item’s home, we allow some types plicas to be created and deleted remotely
without having any communication with other replicas or tioene.

Our conclusions are intended to be independent of P2P steucHence, we built our replication and
caching layer into the Chord simulator, and base our coimrigson simulations over a typical hash-based
P2P architecture (Chord), and over a very different tretiacheme (TerraDir).

IV. THE PROTOCOL

This section describes the details of the adaptive remicatchemel . AR. We first cast the description
in terms of the TerraDir protocol, and then conclude with bssation describing differences between the
Chord and TerraDir versions.

The routing protocol uses two forms of soft state: cachesaplitas. Both operate on the granularity of
a single data item. A cache entry consists of a data item,l#iltem’s home, the home’s physical address,
and a set of known replica locations. Cache entries areaeglasing a least recently used (LRU) policy
with an entry being touched whenever used in routing. Caahegopulated by loading the path “so far”
into the cache of each server encountered during the roptoaess. Both the source and destination cache
the entire path. This form of path propagation not only singmote items into the cache, it also brings in
nearby items and a cross-section of items from differergltenf the namespace tree. Our experience is that
this mixture of close and far items performs significantlyt&ethan caching only the query endpoints.

Replicas differ in that (i) they contain the item data, (fiey contain a great deal more state, and (iii) new
replicas are advertised (unreliably) throughout the sgsta addition to the item data, the state maintained
in a replica includes the physical addresses of the itentiséhdhe neighbors of the home, and any other
known replicas.

For purposes of this paper, replication is primarily a toghwvhich to balance load. Overloaded servers
attempt to shed load by creating replicas of their most popiems at other servers. This task can be
decomposed into a long list of subtasks:

1) How to adapt - What is the mechanism used to redistribute load? How manicaspare created

elsewhere? How many items hosted locally have new replieaged? Do the local replicas survive?

2) When to trigger - The system must redistribute load relatively quickly inerdo handle dynamic
query streams. However, reacting too quickly could leadsgistem to thrash.

3) Where to place replicas - The local server has only imprecise, and possibly staleynmétion about
other servers, and in general does not ever know the full reeship of the system.

4) How to choose replicas during routing - Assume a server has knowledge of a set of replicas for a
desired “next hop” in the routing process. Which of the g is chosen? Should the selection
process attempt to incorporate knowledge of load at repications?

5) How to merge replica sets - Our decision to allow remote sites to independently createdestroy
replicas means that the number of system replicas of a gigemis not bounded. Whether information
about replica sets is disseminated by new messages or aupenekisting messages, the total number
of replicas of a given item might be too large to include. Henibe set of replicas included in a
message might be a subset of the replicas known to the méssagece. How should this subset be
chosen? Further, how large of a set should an item’s hometam@m Assuming that the latter set is
bounded, the protocol must have a procedure for mergingmirgp replica set information into its
local set.
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Fig. 1. A CDF of load versus fraction of servers with a unifogoery distribution. The majority of servers have accegtddhd.
We concentrate mainly on alleviating the relative overingdf those in the long high tail, and to a lesser extent ontifigng
“free-loaders”, i.e. servers with little or no load.

6) How to disseminate replica information - New replicas are useless unless other servers know of their
existencé. Hence, information about new replicas must be dissemin&hould such information be
pushed eagerly by a separate dissemination sub-protocagbpended lazily to existing messages?

This set of questions is clearly too large too be answeredhitiedily, so our approach is as follows.
Figure 1 shows a cumulative distribution function (CDF) efver loads with a uniform query distribution.
The majority of servers are in an acceptable range, but d soizet of server have either very high or very
low load (the two tails of the distribution). We will conceatie on moving the relatively few servers in either
tail into the “balanced” portion of the load curve.

The system adapts to load irregularities by creating antt@esg replicas. Replicas in our system are
“soft” in the sense that they can be created and destroydtbutitany explicit coordination with other
replicas or item homes. Hence, idle replicas consume nersystsources except memory on the server that
hosts them. Therefore, identifying and evicting redundepticas is not urgent, and can be handled lazily
via an LRU replacement scheme. Replica destruction wildbrbe ignored in the remainder of the paper.

Replica creation, however, is in the critical path. Assumeers;'s most highly requested item is,.
Load is shed by replicating highly-requested local itemether sites. We do not destroy the local replica.
Hence, even if knowledge of the new replica is spread imntelgighroughout the system, the new load on
s;’s replica ofn, will only decrease by a factor % whereR, is the total number of replicas ef, in
the system prior to new replica creation.

It might seem that the above fraction could be used to cakebeactly how many new replicas are created.
However, our desire for local decision-making means #atis not known. Further, even completely
eliminating the load om, might not reduces;’s overall load to an acceptable level. Finally, we wish to
minimize the amount of communication added by the replicaharism to the system.

Our solution is to shed load by creating new replicas of fhgsnultiple items hosted by; at a single
other site. Recall that each server has a defined capacityhigh- and low-water thresholds. All of these
metrics are defined in terms of messages sent to (or routedgh) a server during a time unit.

Each time a packet is routed through servgrs; checks whether the current lodg, indicates that load
redistribution is necessary. If necessary, load is rebiged to the source of the messagg, The source is

4This is not precisely true because routing can be shortitid whenever a replica is encountered. However, thisésarsiary
effect.
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chosen because it is in some sense “fair” (the source addee tocal load), and because load information
about the source can easily be added to all queries, allostdngstream servers to have current information
about query sources.

Load is redistributed according to a per-node capakit§?, and high- and low-water threshold: and
Ilv as in Figure 2. If; > [, s; is overloaded. Assuming that> l;, s; attempts to create new replicas
ons; s.t. s;’s total local load on the replicated items is greater thaacdpral to the difference between the
loads of the two servers.

Specifically,s; askss; to create replicas of the most highly loaded items o$}, such that the sum of the
local loads due to theseitems is greater than or equal to the difference in loads &etvthe two servers.

If s;’s load is merely high, but not in an overload situatiéfi*{ < I; < 1), load is redistributed te;
only if I; < I{?. The amount redistributed is calculated as above.

In both cases, there may not be sufficient distinct repliEasther, replicas are only made if the local load
due to an item is non-negligible.

Finally, the protocol needs to disseminate informationuéleplica sets. Rather than introduce extra mes-
sage traffic, we piggyback replica sets on existing messag#aining cache entries. Servers maintain only
partial replica set information in order to bound the staguired to store and transmit the information. A
2/32 dissemination policy means that a maximum of two replicaations are appended to cache insertion
messages, while a maximum of 32 replica locations are stperdiata item, at a given server.

The selection policy determines which replica is used during routing. Werently choose randomly
among all known replicas at each step of the routing process.

The merge policy determines how incoming replica locations are merig¢o the local store of replica
locations, assuming both are fully populated. The locatimrbe retained are currently chosen randomly, as
experiments with different preferences did not reveal alyaatage.

The dissemination choice policy decides which of the locally known replica locatidnsappend to out-
going messages. Random choice works well here as well, bfiduviel a heuristic that slightly improves
results. If a server has a local replica and has createdso#tgewhere, it prefers the replicas it has created
elsewhere most recently. Otherwise, the choice is randdma.ifftuition behind this heuristic is that if the
existing load is high enough to cause the server to attengutdshg load, it is counter-productive to contin-
uing advertising the server's own replicas. On the othedhadvertising newly created replicas helps to
shed load.

Note that we have neglected consistency issues. Howewvierhighly unlikely that rapidly changing
objects will be disseminated with this type of system and aeehdesigned our protocol accordingly. We
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also do not address servers joining and leaving the systdmseTactions are handled by the underlying
system P2P system and should not affect the applicabilitiefeplication scheme.

To summarizel. ARtakes a minimalist approach to replication. Servers pexadig compare their load to
local maximum and desired loads. High load causes a seragtetmpt creating a new replica on one of the
servers that caused the load (usually the sender of the &sstage). Since servers append load information
to messages that they originate, “downstream” servers tegant information on which to base replication
decisions. Information about new replicas is then spreasuisequent messages that contain requests for
the same data item.

The replication process only requires a single RPC betwiseifoded server and a message originator.
Further, this RPC contains no data because the originatarrefjluest has already requested it. Even this
RPC can be optimized away if the loaded server is also thessémat responds to the request. However,
we retain it in order to allow the replication process to et asynchronously with respect to the lookup
protocol.

A. Adapting LARto Chord

The implementation oLAR for Chord differs mainly in that the unit of replication is amtire server,
rather than an individual data item. This makes all replicatlecisions much more heavyweight than in
TerraDir, but the procedure is essentially the same. At anytpvhere the local load is higher than even the
low threshold, a server replicates itself at the source ®fjrery that initiated the replication event.

V. SIMULATION RESULTS

Our performance results are based on a heavily modifiedorexsi the simulator used in the Chord
project, downloaded fronmt t p: / / www. pdos. | ¢cs. mit. edu/ chord/. The resulting simulator is
discrete time and accommodates per-server thresholdsagagtites. Each network “hop” takes a single
time unit, currently set to 25 milliseconds. Each messagéritwites identically to loads and congestion.

This section lists the defaults for our experiments. Theydastribution is uniform with Poisson arrivals.
The average query input rate is 500 queries per second dhmsstire system. The default “skewed” input
is 90- 1, where 90% of the input is skewed to one item, and the rengib@¥6 randomly distributed. This
is a somewhat pathological case for our protocol, and waseshto show the protocol under extreme stress.
Similarly, all query streams arrive as impulses. The systemld not lose any messages if input changed
slowly.

Simulations run with 1k servers, 32k data items, &’ = 10/sec. We ran many experiments with
higher capacities, but found no qualitative differenceshi results./” andi’* are set to 0.75 and 0.30
times{™*. The length of a server’'s queue is set to the number of oflpbalmed items, in this case 32. For
example, if an idle server with capaci§/** = 10 and queue length,,... = 32 receives 50 queries during
one time unit, 8 will be dropped. The default load window sizhich controls how quickly the system can
adapt, is set to two seconds. The dissemination policy ®©$e132.

TerraDir servers each have 20 cache slots, and can accortenegéicas of 64 remote data items (twice
as many as the number of items for which the server is home).

Chord has no regular cache slots. Chord servers can accoaen@gplicas of five other servers, which
gives them approximately the same amount of state as comisbyrtee combination of the TerraDir caching
and replication schemes.

Where results are similar, we only show results for the Tirrmmodel.
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Fig. 3. Average number of replicas created for items at angieeel of the TerraDir tree. Level 0 is the root.

A. Satic versus Adaptive Replication

This section contrasts the performance of static versugtizdaeplication for both Chord and TerraDir.
A static distribution for Chord is easily created by repliog all servers evenly.

For TerraDir, calculating the proper static distributiohreplicas is non-trivial. Without caches, and
assuming that the tree is balanced and that the query distribis uniform, the load on each item in the tree
can easily be calculated analytically. However, cacheaghadhe load distribution considerably. Figure 3
shows the number of times each item is replicated in our agaptheme, a measure highly correlated with
load. We use this result as the “static” replica distribatio the rest of this section.

The explanation for level three having the highest load ifolews. Assume that a cache is initially
populated uniformly. Items from high in the tree (level O.ptare quickly evicted, as cached elements
slightly lower in the tree are closer to destinations andigih the cache. Items from low in the tree are
also evicted. They are surely closer to some destinatiarisare only touched by a small proportion of the
gueries. Hence, the caches become populated with items idddenground where the whole level fits into
the cache, yet each item on the level is used frequently.

Caches populated in this way cause a great deal of load oa th&klle levels, as cache entries only
contain mappings from an item name to a server’s addressy di@ot contain the data and so can not
satisfy queries locally.

Given this distribution, Figures 4 and 5 show message logsesis time for all combinations of static
or adaptive replication, and uniform or skewed input. Thergg show that adaptivity is crucial in order
to handle skewed distributions. Both Chord and TerraDie los the order of 90% of messages with static
replication and skewed input, but stop losing messagesniitlo and one half minutes when using adaptive
replication.

Additionally, the graphs highlight the need of the hieracahsystem to populate the system with replicas
for items high in the graph. The adaptive experiments stdhowt any replicas in the system, so the “unif.
with adapt. rep” line in Figure 5 is showing the process ofyapng the system with the “best” static
distribution discussed above. By contrast, Chord does eetlrany replication to handle uniform query
distributions.

Figure 6 shows the number of message drops in a pathologisal @f input that changes increasingly
rapidly. Each time the focus changes, the system re-pasutarvers with replicas of the new focus.

B. Load Balancing
LAR has two primary goals: handling overloads and attemptirigeép server loads under the low-water
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threshold/'%, if possible. Figure 7 shows the average of the ten highes¢stads for a run with adaptive
replication and a skewed distribution on TerraDir. Eack liepresents a differett™ value; in all cases”
remains at 0.75. In all but the two extreme cases, the aveiggekly drop below the low-water threshold.
They do not drop further because servers whose loads arthisg°” do not attempt to shed load. The
slope of thel’*® = 0.15 andi’*® = 0.00 lines flattens considerably as they near 0.10, the mean ot
system.

The overall load in the system varies from 10% with’ at 0.75, to 5.5% with &°* value of 0. The
variation is due to increased queuing times when loads gidyhioaded.

C. Parameter Sensitivity Study

Load Window Sze - Figure 8 shows plots of message drops versus time for Tarveti adaptive replication
and different load window sizes. Smaller windows allow tiistem to react more quickly, adapting better
to swiftly changing conditions at the cost of more repliceations and evictions.

The cost of this adaptivity is shown in Figure 9. One possialeclusion is that the system is relatively
insensitive to the size of the load window within a broad e (ip-30 seconds). The use of smaller windows
can dramatically improve drop rates, but only at the coshofdéased protocol traffic.

Dissemination Constants - Table | shows the effect of the dissemination policy on drapd replica events
for TerraDir and skewed input. Recall thaty means that: replica locations are appended to outgoing
messages about a given item amére stored locally. Skewed input heavily overloads a sirsgleer
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| Policy | Drops | Replicas| Evictions.

0/1 162172 4803 0
11 19595 2634
1/8 19275 2582
2/8 16942 2493
2/32 17759 2462
16/32 17407 2493
32/32 17407 2503
64/128 | 17648 2447

TABLE |
DROPS AND REPLICA EVENTS VERSUS DISSEMINATION POLICY

[elieclleoliollolio]l o]

and places a premium on quickly spreading knowledge of n@licess. Nonetheless, the results show an
almost complete lack of sensitivity to these parameteraugh we us€/ 32 for the other experiments in
this paper, the results show that keeping and propagatilygaosingle other storage location is almost as
effective.

D. Scalability

Figure 10 shows that the adaptive replication scheme esilles through an order of magnitude differ-
ence in the size of the system. The input distributioB0s 1, and the input size is scaled with the size of
the system in all cases. The peak in message drops scaldiealyy with the size of the system. Message
drops are virtually eliminated in a single minute, regasdlef system size. This argues well for scaling to
larger systems.

E. Cachingin CFSand PAST

Neither Pastry nor Chord has any mechanism to deal with méfioron query distributions. Instead, both
PAST [5] and CFS [6], distributed file sharing applicatiohattrun on top of Pastry and Chord, respectively,
implement their own distributed caching scheme. We wilkkregd our generalization of the approach used
in these applications agp- cache in the following.
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app- cache creates a constant number of replicas “near” each file. Atthoother sites do not know
the precise location of the replicas, they have a construetigorithm for finding one, i.e. route to near the
primary and query the neighbors. However, the main purpbseese replicas is to achieve fault tolerance
rather than to improve performance, and they have littlectfbn load distribution under heavily skewed
loads.

app- cache deals with skewed loads through the use of caches. Copieseglasted file are placed in
the caches of all servers traversed as a query is routed freradurce to whichever server finally replies
with the file. In a virgin state, this responding server wal the file’s home. However, subsequent queries
for the file may hit cached copies because the neighborhoditediome becomes increasingly populated
with cached copies.

As a result, the system responds quickly to sudden changgsninpopularity. app- cache is very
pro-active in that it distributes — 1 cached copies of every single query target, wheisthe average hop
count. By contrast, AR is quite conservative. A server checks its local load aftec@ssing each message,
but only decides to redistribute load (create replicad)eflocal load is above a high threshold. Even then,
replicas are only created at one other server.

Figures 11 and 12 show dropped messages versus time foakdifegrent input stream distributions.
Forapp- cache, each server has 32 cache slots. Since each server alstse3pdrems, this means that
fully half of a server’s storage is devoted to cache space.distributions range frord0- 1) to uniform.

At the extreme end0- 1 is the best possible case fpp- cache. After a warm-up period, the one hot
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item is cached on almost all servers in the system. NevesbglAR s still within a factor of two for total
losses.

As the hot spot grows largeapp- cache’s document caches become less useful while still incurttieg
same overhead. Recall that the caching performed afterrst fugerved requires revisiting every server on
the path, effectively doubling the number of network messagat are sent.

On the other hand, AR distributes replicas only when an imbalance is detected tHeoextremed0- 1
case, replicas are not created quickly enough to avoid hkemses (although the total number of mes-
sages lost is only twice that @fpp- cache). The losses arise becaus@R servers cache item-to-server
mappings, meaning that later queries often jump straigtitdalestination. The destination is quickly over-
loaded and starts dropping messagapp- cache fares better because queries being routed towards the
destination are satisfied by copies cached by the destirmtieighbors. The original destination is quickly
shielded from further load. NevertheleE®\R stops dropping messages within three minutes. This adaptio
time could be improved by changing the load window size,emtly two seconds.

LAR's performance quickly improves as the size of the hot spoemses. By the time the hot spot grows
to encompass the entire data set (the uniform input), thera@longer any major load imbalances among
servers, and few replicas are created. The number of mesdemgped is very low for all but the degenerate
case.

The result is that, unddrAR, servers are operating at about 23% average capacity fomifem input.
The average query latency is 4.7. By contrast, the averagkftr app- cache is about 58% capacity.
The nominal average query latency is 5.7, but this latenajoisbled by the caching scheme. Random
fluctuations due to the Poisson input stream cause locdébetiks and a steady state where messages are
dropped.

The story forapp- cache is actually worse than these graphs indicate. For the unifoase, only
1/k of the messages carry data foAR, whereas half the messages carry dataafop- cache. The size
differential between data messages and control messagkbwary. For example, CFS serves file blocks
while PAST serves whole files. However, it is clear that daéssages can easily be an order of magnitude
or more larger than control messages, ap@- cache sends many more thdrAR. The difference in drop
rates between the two protocols could be much larger if the §nd size of messages is accounted for.

The results show the impact of the differing approaches eliéed by the two protocolsapp- cache
scatters cache entries, each containing the entire dataaitel requiring an RPC, to every server on the
routing path for every query served by the system. By conttahR creates replicas at a single site, and
only after many queries have been served. Despite thisritigsdaAR balances load more effectively.
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have described a new soft-state replicattbemel AR for peer-to-peer network$ AR
is a replication framewaork which can be used in conjunctid aimost any distributed data access scheme.
In this paper, we have appliedAR to a distributed hash-table algorithm (Chord), and to aan@vical data
access protocol (TerraDir).

Compared to previous work,AR has an order of magnitude lower overhead, and at least caivlpar
performance. More importantly,AR is adaptive: it can efficiently track changes in the quergastr and
autonomously organize system resources to best meet tdeerands.

We have demonstrated the efficacyldfR using a number of different experiments, all conducted over
a detailed packet-level simulation framework. In our expents, we show thdtAR can adapt to several
orders of magnitude changes in demand over a few minutescamtle configured to balance the load of
peer-servers within configurable bounds.
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