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Noise is unavoidable and/or present in a wide variety of engineering systems.

Although considered to be undesirable from certain viewpoints, it can play a useful

role in influencing the behavior of nonlinear mechanical and structural systems that

have multiple solutions in the form of equilibrium points, periodic solutions, and

aperiodic (including chaotic) solutions. The aim of this dissertation work is to

discover clues related to noise enabled steering or control for engendering desirable

changes in system behavior.

A combination of experimental, analytical, and numerical studies have been

undertaken on the following: i) shifting of jump-up and jump-down frequencies

leading to an eventual collapse of hysteresis observed in the response of a nonlinear

oscillator, ii) influence of noise on the chaotic response of a nonlinear system, and iii)

noise-induced escape route from a chaotic-attractor. Furthermore, a combination of

analytical and numerical studies have been undertaken to understand an extended

Jeffcott rotor-stator system and the influence of noise on the system dynamics.

Additionally, this dissertation includes work on partial control of chaotic sys-



tems under influence of noise, wherein the trajectories are confined inside a particular

region (chaotic attractor) despite the presence of white noise. Maintaining chaotic

behavior in systems in the presence of an external disturbance may be desirable and

important for the dynamics of certain systems. The proposed algorithm has been

shown to be effective for systems with different dimensions.

The dissertation outcomes provide answers to the following fundamental ques-

tions: i) how can noise influence the long-time responses of mechanical and structural

systems and ii) how can noise be used to steer a system response to avoid an un-

desirable dynamical state. These answers can serve as an important foundation for

many industrial applications (e.g., applications with rotor-stator systems) as well.
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Chapter 1: Introduction

1.1 Problem of Interest

A chief pursuit of this dissertation work is to find and study phenomena that

would enable the constructive use of noise and nonlinearity in dynamical systems

and determine approaches to use them and extend beyond the traditional stochastic

resonance based ones. In this work, in the analysis “noise” refers to white Gaussian

noise, which is a random process and generalized derivative of a Wiener process. In

the experiments, the considered noise is band-limited white noise.

Additionally, problem of interest to this work is the development of partial

control schemes for a nonlinear system under the influence of noise to escape or not

enter from regions of undesired dynamical states. As a part of this effort, a combi-

nation of analytical, numerical, and experimental studies have been undertaken to

understand the responses of nonlinear systems of different dimensions.

Noise can have a dramatic effect on the response of a nonlinear system by

making the determination of bifurcation points difficult or by shifting the bifurcation

points, tied to which are qualitative changes in the system response with respect

to variations in one or more parameter values. The focus of this dissertation work

is on the influence of noise on dynamics of several nonlinear systems (e.g., Duffing
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oscillator, Jeffcott rotor) and on the application of the partial control scheme to a

nonlinear system to avoid certain undesired behaviors without determining a specific

trajectory. The motivation of this work is to understand and exploit noise to improve

the performance of a mechanical system by changing long-term system behavior and

to develop a scheme for controlling the trajectory of a mechanical system inside a

particular desired region under the influence of noise.

1.2 Literature Review

1.2.1 Literature Review on Noise-Influenced Response of Duffing Os-

cillators

Noise occurs naturally in many systems. In general, noise is considered as

being undesirable for the performance of an engineering system. However, noise can

play a significant role in influencing system dynamics. In particular, the effects of

noise on the behavior of a nonlinear system exhibiting chaotic motions has received

considerable attention in recent years. Frey and Simiu (1993) explored the use of

Melnikov analysis to study the effect of additive noise. The effect of bounded noise on

the response of a Duffing oscillator subjected to parametric excitation has also been

examined (Liu et al., 2001). Gan (2006) studied noise-induced fractal boundaries in

a Duffing system. Yang et al. (2005) observed the effects of bounded noise on chaotic

motion of a triple-well potential system. The effects of bounded noise on a class of

double-well systems has also been examined by Liu et al. (2013). In the last few

years, effects of noise on the response of Duffing oscillator and coupled, nonlinear
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oscillators have received considerable attention (Perkins and Balachandran, 2012;

Perkins et al., 2016; Ramakrishnan and Balachandran, 2010a,b, 2011).

The Duffing equation, which was introduced in 1918 (Duffing, 1918), has been

subject of experimental and numerical investigations over a wide range of system

parameter values. A Duffing oscillator system has a linear stiffness term and a

nonlinear (cubic) stiffness term. In numerous nonlinear vibration text books (Nayfeh

and Mook, 2008; Hayashi, 2014; Kovacic and Brennan, 2011), various methods have

been deliberated to determine and understand the response of a forced nonlinear

oscillator with linear and nonlinear cubic stiffness terms. This oscillator system can

exhibit either a hardening or a softening characteristic, depending on the nature

of the physical system being studied. This system characteristic determines the

equilibrium states of the system. The response of Duffing oscillator with a hardening

spring has been the subject of experimental and numerical investigations (Mallik,

2008; Perkins, 2017).

Through extensive analytical, experimental, and numerical studies, it has been

discovered that the system response curves have a hysteresis characteristic when

the system is subjected to a quasi-static variation in the forcing frequency near

the system resonance (Nayfeh and Mook, 2008; Gottwald et al., 1992; Nayfeh and

Balachandran, 1995; Westra et al., 2010; Kalmár-Nagy et al., 2011). In the hys-

teresis region, for a particular value of the forcing frequency, the forced Duffing

oscillator response is multi-valued. Dual memory storage and logic devices are few

examples of practical use of two stable states of a forced Duffing oscillator (Yao

and Hikihara, 2013, 2012). A number of systems exhibit hysteresis behavior. For
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example, it is mentioned that magnetic hysteresis is a notable characteristic of fer-

romagnetic materials, and this behavior is associated with the irreversibility of the

magnetisation and demagnetisation when the magnetic field is relaxed. Different

mathematical models of magnetic hysteresis have been developed by a number of

researchers (Mayergoyz, 1991; Wen, 1976; Dimian and Andrei, 2014a). In several

studies (Dimian and Andrei, 2014b; Brown et al., 2016), the fundamental determin-

istic and stochastic aspects of hysteresis loops have been discussed in detail. Serpico

et al. (2015) studied superparamagnetic-like transitions in connection with the bi-

furcations of the effective potential with respect to variation in the temperature and

excitation conditions. Through analytical and numerical studies, noise driven re-

laxation phenomena in scalar and vector hysteretic systems have been examined in

the time domain (Dimian and Andrei, 2014b). Analysis of output spectral density

for hysteretic systems driven by noisy inputs has also been conducted Dimian and

Andrei (2014).

The dynamics of a nonlinear system depends on the parameters chosen in the

governing equation of motion. With a variation in the chosen control parameter, the

qualitative behavior of nonlinear system can be considerably changed. For certain

parameter ranges, a nonlinear system can exhibit chaotic behavior. There is a large

body of literature on chaotic attractors of a nonlinear system and their basins of

attraction. Bifurcation theory can be used to describe the way in which different

attractors are created or destroyed with the change in system parameters. There

are several routes to chaos and a positive Lyapunov exponent is indicative of chaos.

The behavior of a Duffing oscillator system can be chaotic for certain system pa-
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rameter values and external forcing parameters, as have been shown through several

experimental and numerical studies (Gottwald et al., 1992; Moon, 1980; Todd and

Virgin, 1997). After chaos is germinated, a further variation in system parameters

can lead to interesting results that can have potential applications in controlling

system dynamics. As a control parameter is varied, a sudden discontinuous change

in the chaotic attractor of a dissipative dynamical system is called “crisis,” a term

introduced in the work of Grebogi et al. (1982). A crisis occurs when a chaotic at-

tractor comes into contact with an unstable periodic orbit (see for example, Nayfeh

and Balachandran (1995); Alligood et al. (1996) for a detailed discussion). A crisis

can be identified as a boundary/exterior crisis, or interior crisis, or attractor merg-

ing crisis (Nayfeh and Balachandran, 1995; Grebogi et al., 1982, 1986; Sommerer

et al., 1991). A 1-D quadratic map can exhibit all three types of crises (Nayfeh and

Balachandran, 1995). The forced Duffing oscillator is one of the non-autonomous

systems, which can exhibit crisis Hong and Xu (1999). In the last decade, spe-

cial attention has been paid to the effect of noise on nonlinear systems exhibiting

chaotic behavior. Xu et al. (2005) have investigated stochastic bifurcation and crisis

through the global generalized cell mapping in a twin-well Duffing system subject

to a harmonic excitation in presence of noise.
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1.2.2 Literature Review on Partial Control of a Chaotic System in

the Presence of Noise

Generally speaking, one considers noise as being undesirable for the perfor-

mance of an engineering system. Chaotic motions of a system may also not be

preferrable and various means have been used to control these motions. The pro-

ceedings of an IUTAM meeting organized by Professors Rega and Vestroni serves

as a rich example (Rega and Vestroni, 2006). Aperiodic behavior can play a sig-

nificant role in influencing system dynamics, as observed in the context of several

systems; for example, avoidance of undesired resonances in mechanical systems and

enhancement of the efficiency of a thermal pulse combustor are some applications

where chaos can be beneficial (Georgiou and Schwartz, 1996; In et al., 1997). There

are also other non-mechanical systems such as biological systems, in which chaotic

behavior can play an important role. In living organisms, chaotic dynamics has been

stated to be important for some vital functions (Perc and Marhl, 2006). It has been

noted that preserving chaos is of potential relevance to biological disorders (Yang

et al., 1995).

There are certain situations in which a system’s trajectory has characteristics

of chaotic behavior for a finite duration of time, before the trajectory escapes to

another state that could correspond to a periodic attractor or another state. Some-

times, this end state could be undesirable. This type of behavior is often described

as transient chaos. An important example of this kind of behavior is undesired

tumor growth (López et al., 2014).
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Maintaining chaotic behavior in systems in the presence of an external distur-

bance can be desirable and important for the dynamics of the considered system.

This has motivated studies and efforts on different control techniques, such as, the

partial control method studied by Zambrano et al. (2008); Sabuco et al. (2012a,b).

These methods have been designed for application to deterministic systems with

bounded noise Zambrano and Sanjuán (2009). The presence of even a low level of

noise can radically change the dynamics of a chaotic system, as these perturbations

can experience exponential growth.

In the method proposed by Sabuco et al. (2012a), the property of transient

chaos is used. The goal is to keep the trajectory inside a particular region without

moving towards any attractor. The method has been shown to be effective, and one

can use this method to control the trajectory by using an upper bound on the control

u0 that is less than the upper bound on the disturbance ξ0. This control method

has been applied to several dynamical systems, including the Hénon map, Duffing

oscillator, and other systems in the context of ecology and cancer (López et al.,

2014; Capeáns et al., 2014). In all of the previous use of partial control methods, a

bounded representation of noise has been used.

1.2.3 Literature Review on Noise-Influenced Rotor Dynamics

The classical Jeffcott rotor system, a simplified, lumped-parameter model of

rotors used in practice, was introduced by Jecffott (1919). This system has been

subject of numerous studies in the literature. Despite being simple compared to
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other rotor models, one can capture the basic characteristics of rotor dynamics by

using the Jeffcott model.

Many efforts on studying the dynamics of rotor confined inside a fixed sta-

tor have been reported. For example, Black (1966, 1968) examined the forward

whirling and backward whirling solutions of a Jeffcott rotor contained within a sta-

tor subjected to dry-friction. The torsional vibrations and stability of a two degree-

of-freedom rotor model with nonlinear conditions have been explored by Jansen

(1991). This study has served as the basis for several other efforts with the intent

of modeling drill strings. A large number of research publications have focused on

numerical and experimental studies of the nonlinear response of torsional vibrations

of a rotor-stator system (Liao et al., 2011, 2012; Vlajic et al., 2014a). Analytical

and numerical investigation of the torsional vibrations of a rotor with continuous

stator contact during forward and backward whirling has been explored by Vlajic

et al. (2014b). Diangui (2000) studied the characteristics of torsional vibration of a

rotor with rotor-stator contact and confirmed that the measured natural torsional

frequency with contact is higher than the one without contact.

In addition, there is a large body of literature on controlling torsional vibra-

tions and stick-slip motions which can cause the rotor to store and release torsional

energy. Jansen and Van Den Steen (1995) described an active damping system and

used feedback control for vibration-free rotation. Robust µ synthesis controllers and

H∞ controller have been used for suppressing stick-slip induced vibrations in oil well

drill strings (Karkoub et al., 2010; Serrarens et al., 1998). Christoforou and Yigit

(2003) presented an active control strategy, which was based on optimal state feed-

8



back control designed to control drill-string rotational motions. Al-Hiddabi et al.

(2003) constructed a nonlinear dynamic inversion control scheme to suppress the

lateral and the torsional vibrations of a drill string. Recently, Kreuzer and Steidl

(2012) suggested a method for controlling the torsional vibrations of drill strings by

decomposing the drill-string dynamics into two traveling waves traveling in the di-

rection of the top drive and in the direction of the drill bit at the bottom. Alzibdeh

et al. (2016) considered effects of sinusoidal drive speed modulation on the rotor

with continuous stator contact.

As detailed in Chapter 4, the author has considered white Gaussian noise

modulation in the rotor driving speed, for implementing an open-loop non-collocated

control scheme, to mitigate the continuous rotor-stator contact. The current study

on the use of noise for response control of the system dynamics has been undertaken

to find alternative control schemes, in light of the difficulties and challenges in

installing and operating the sensors and actuators needed for closed-loop and/or

collocated control schemes.

1.3 Objectives

The overall goal of this work is to understand how low-intensity noise in com-

bination with an appropriate deterministic input can be used to push the system

into the basin of attraction of a desired system response or move the system away

from region of undesired response, and how the long-time responses of mechanical

and structural systems can be influenced by exercising partial control with noise

9



and steering the responses to sculpt regions of the state space called safe sets.

To realize the previously mentioned goal, the following objectives were pursued

as a part of this dissertation work.

1. Conduct a combined analytical, numerical and experimental study of a Duffing

oscillator system to examine the changes in dynamics under the influence of

noise in different settings, in particular, the chaotic dynamics of a soft Duffing

oscillator

2. Construct a partial control scheme for a Duffing oscillator in presence of white

noise to keep the trajectories inside a particular region of state-space

3. Study the deterministic and stochastic dynamics of torsional vibrations and

whirling motions for a Jeffcott rotor contained within a stator during forward

and backward whirling motions along with continuous rotor-stator contact.

One of the highlights of this work is the gathering of a first numerical-experimental

evidence for a noise-induced escape route from a chaotic attractor to a periodic at-

tractor. While in the current work, the author deals with specific systems with

specific parameters, it is believed that the observed phenomena are quite general

and extensions to a wide range of nonlinear systems are expected to be possible.

1.4 Organization of Dissertation

The rest of the dissertation is organized as follows. Several conference and

journal articles have followed during the course of this dissertation work. These

10



articles are cited in this section as well as in the different chapters. In Chapter

2, the effects of noise on a Duffing oscillator system are discussed (Agarwal and

Balachandran, 2015; Agarwal et al., 2018, 2019). Experimental efforts and results

along with analytical-numerical results are presented and discussed. The influence

of white Gaussian noise on the frequency responses of monostable and bistable, soft-

ening Duffing oscillators are studied. In Chapter 3, the author describes the concept

of a safe set, the Sculpting Algorithm for computing a safe set, and the partial con-

trol method for a system with white noise by using the Euler-Maruyama integration

method (Agarwal et al., 2017; Agarwal and Balachandran, 2019a). Subsequently,

an application of this method to the response of a Duffing oscillator is considered.

In particular, parameters for which this system experiences a transient chaotic be-

havior are considered and comparisons are made between the cases with white noise

and bounded noise. In Chapter 4, the torsion and whirling responses of a modified

Jeffcott rotor confined within a fixed stator are studied. Additionally, the influence

of noise on whirling responses are outlined (Agarwal and Balachandran, 2019b). In

Chapter 5, the dissertation contributions are highlighted and future directions are

discussed.
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Chapter 2: Noise-Influenced Responses of Duffing Oscillators

In this chapter, a treatment of the influence of white Gaussian noise on the

dynamics of a Duffing oscillator is presented based on the work of Agarwal and

Balachandran (2015); Agarwal et al. (2018, 2019). Here, the author reports on the

following: i) how an introduction of noise in a Duffing oscillator with softening

characteristic can influence the chosen system’s aperiodic behavior. ii) how an in-

troduction of noise in a Duffing oscillator can influence the frequency-response curve

and destroy it. Finally, the author subjects chaotic trajectories to white Gaussian

noise at low levels that are just sufficient to cause a trajectory to escape from the

basin. According to experimental and computational results, there is a specific es-

cape route that the trajectory always follows. Here, the boundary of the basin of the

chaotic attractor is the stable manifold of a periodic orbit. This manifold is captured

through a stroboscopic plotting of data. As the trajectory escapes, it is observed

that it is essentially on the basin boundary. The dynamics pulls the trajectory to the

fixed point on the boundary and the trajectory escapes along the unstable manifold.

This work provides a glimpse into the possibilities for noise-influenced responses.

The rest of this chapter is organized as follows. In Section 2.1, the author

describes the experimental arrangement. In Section 2.2, the modeling efforts un-

12



Table 2.1: Nomenclature describing the quantities governing the Duffing oscillator.

Nomenclature
x Nondimensional oscillator displacement
x1 Nondimensional oscillator position in state space
x2 Nondimensional oscillator velocity in state space
ωn Linear natural frequency
c Viscous damping
k1 Linear stiffness
k3 Nonlinear stiffness
η Nondimensional damping factor
α Nondimensional linear stiffness
β Nondimensional nonlinear stiffness

F̂0 Nondimensional forcing amplitude
Ω Nondimensional forcing frequency

Ẇ (t) White Gaussian noise
σN Amplitude of noise for numerical simulations
σE Amplitude of noise for experimental studies

dertaken for the nonlinear oscillator along with a nondimensionalization scheme for

parameter identification, and Euler-Maruyama simulations are presented. In Section

2.3, the numerical and experimental results for noise influenced chaotic Duffing os-

cillator are presented. A comprehensive treatment of the influence of white Gaussian

noise on the frequency-responses of both monostable and bistable Duffing oscillators

with softening characteristics is presented and discussed in Section 2.4. In Section

2.5, noise-induced chaotic-attractor escape route is described. According to the ex-

perimental and computational results, it is reported that there is specific escape

route that the trajectory always follow. Finally, conclusions are drawn together and

presented in Section 2.6. In addition, striking similarities and differences between

results obtained through experimental and numerical investigations are discussed in

Section 2.6.
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2.1 Experimental Arrangement

The experimental prototype of the Duffing oscillator and schematic of the

experimental setup are shown in Figure 2.1. The experimental arrangement consists

of a cantilever steel structure with an attached tip mass magnet at its free end.

The tip mass magnet is located in the magnetic field of another magnet that is

fixed in a position close to it. The inter-magnet separation can be varied and the

magnet orientations can be reversed to realize a nonlinear Duffing oscillator with

either a hardening or a softening (monostable or bistable) characteristic. The other

end of the cantilever structure is excited by an electromagnetic shaker that is used

to provide the deterministic input (harmonic excitation) and the additive Gaussian

noise input. The excitation provided by the shaker is along a direction normal to the

longitudinal axis of the beam oscillator allowing for excitation of bending motions

of the structure. Given the cantilever structure’s orientation, for the purpose of the

current experimental arrangement, the influence of gravity is neglected in modeling

the cantilever structure dynamics. Although the author does not take an explicit

model for the magnets into account but all the effects of the system identifications

are captured.

Several means are employed to gather experimental data. The free-end dis-

placement of the cantilever structure is measured by using a strain gauge, which is

secured on the cantilever structure, and the NI cDAQ-9178 with an NI 9235 mod-

ule. The harmonic excitation amplitude is measured by using a 3-axis accelerometer

(SparkFun ADXL337) that is attached to the shaker head at the base of the can-
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(a)

(b)

Figure 2.1: (a) Experimental arrangement. (b) Schematic of Duffing oscillator. The
separation between the magnets and their relative orientations are varied. An elec-
tromagnetic shaker is used to provide the deterministic harmonic excitation along
with a white Gaussian noise input.
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tilever structure. A LabVIEW R© program was developed to provide the deterministic

harmonic excitation and Gaussian noise input to the Brüel & Kjær electromagnetic

shaker through NI modules. In addition, the same LabVIEW R© program is used for

real time data acquisition of the strain gauge and the accelerometer signals. The

natural frequencies of the system depend on the inter-magnet separation and relative

orientations of the magnets.

Both hardening and softening characteristic of the nonlinear systems were re-

alized in the experiments, as noted earlier. The experimental setup was noted to be

quite sensitive to the relative spacing of the magnets. When both the magnets repel

each other, the system behaves as a bistable, softening nonlinear oscillator with two

stable potential wells, as the zero tip deflection position is unstable. On the other

hand, when the magnets attract each other, the system behaves as a monostable,

nonlinear oscillator with hardening or softening characteristic and the zero tip de-

flection position is stable. For all of the experimental studies, the author focused

both on monostable and bistable Duffing oscillators with softening characteristics.

2.2 Mathematical Modeling, Nondimensionalization, and Parameter

Identification

The equation of motion of a Duffing oscillator with a mass m, a viscous damp-

ing c, a linear stiffness k1, a nonlinear stiffness k3, a forcing amplitude F0, and a

forcing frequency ω can be written as
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Table 2.2: Stiffness parameters and different Duffing oscillator realizations

Linear stiffness Cubic stiffness Oscillator characteristic

k1 > 0 k3 > 0 monostable, hardening
k1 > 0 k3 < 0 monostable, softening
k1 < 0 k3 > 0 bistable, softening

mÿ + cẏ + k1y + k3y
3 = F0 cos(ωt). (2.1)

where m, c and F0 are all positive-valued quantities. Different values of stiffness

parameters k1 and k3 correspond to different Duffing oscillator characteristics, as

presented in Table 2.2. Without the damping and external force, the system also

represents a Hamiltonian system.

In the current work, the author has considered monostable and bistable, Duff-

ing oscillators with softening characteristics. The harmonic excitation or deter-

ministic input is represented by F0 cos(ωt). The Duffing oscillator represented by

equation (2.1) exhibits a hysteresis behavior when the excitation frequency ω is

used as a control parameter in a frequency range around the system resonance. As

an example of this behavior, the frequency-response curves obtained for a Duffing

oscillator with softening characteristic is displayed in Figure 2.14.

2.2.1 Monostable, Softening Duffing Oscillator

For a monostable, Duffing oscillator with softening characteristics, k1 > 0

and k3 < 0, the system oscillates about the equilibrium point at (0, 0). The linear
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natural frequency of the system is given by ωn =
√

k1
m

. Considering equation (2.1)

and dividing both sides by the massm, and introducing the nondimensional variables

τ = ωnt, Ω = ω/ωn; after some manipulations, equation (2.1) can be rewritten as

y′′ + ηy′ + αy + k̂3y
3 = F̃0 cos(Ωτ). (2.2)

where the prime symbol “′” represents the nondimensional time derivative d
dτ

, η =

c
mωn

, α = k1
mω2

n
, k̂3 = k3

mω2
n
, and F̃0 = F0

mω2
n
.

For weak forcing, weak damping, weak nonlinearity, and an excitation fre-

quency close to the system natural frequency, the frequency-response equation for

this system with cubic nonlinearity can be written as Nayfeh and Mook (2008)

η2

4
+
(

Ω− 1− 3

8

k̂3a
2

Ωn

)2

=
F̃ 2

0

4Ω2
na

2
(2.3)

where Ω = ω/ωn, Ωn = ωn/ωn = 1, and “a” represents the amplitude of oscillation

at the forcing frequency Ω. The details on the construction of this equation are

provided in Appendix A. From equation (2.3), one can define the largest amplitude

of the frequency-response curve as ap, which takes the form ap = F̃0

ηΩn
.

Furthermore, the displacement “y” in equation (2.2) is normalized with the

maximum amplitude ap by defining a nondimensional displacement x = y/ap and

the nondimensional amplitude A = a/ap. With this substitution, equation (2.2) can

be modified as

x′′ + ηx′ + αx+ βx3 = F̂0 cos(Ωτ). (2.4)
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where α = Ω2
n = 1, β = k̂3a

2
p and F̂0 = F̃0

ap
. Then, the frequency-response equation

given by equation (2.3) can be written as

η2

4
+
(

Ω− 1− 3

8

βA2

Ωn

)2

=
F̂ 2

0

4Ω2
nA

2
(2.5)

where the maximum nondimensional amplitude of the frequency-response curve is

Ap = 1. In equations (2.4) and (2.5), all of the parameters η, α, β, and F̂0, Ω, and

x are nondimensional.

The displacement data measured in the experiments are normalized with re-

spect to the largest amplitude measured during the deterministic frequency sweep

experiment. Then, the analytical frequency-response results obtained through equa-

tion (2.5) are curve fitted to the normalized, deterministic frequency-response data

from the experiments. The resulting parameter values are used to conduct numerical

simulations under the influence of noise as discussed in later sections.

2.2.2 Bistable, Softening Duffing Oscillator

For a bistable, Duffing oscillator with softening characteristic, k1 < 0 and

k3 > 0, considering equation (2.1) and dividing both sides by the mass m results in

ÿ + c̆ẏ − k̆1y + k̆3y
3 = F̆0 cos(ωt). (2.6)

where c̆ = c/m, k̆1 = −k1/m > 0, k̆3 = k3/m > 0 and F̆0 = F0/m. The above system

have two equilibrium points in state-space at (+
√
k̆1/k̆3, 0) and (−

√
k̆1/k̆3, 0). The

system can oscillate about these stable equilibrium points. Considering the system
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oscillations about the static equilibrium point at (+
√
k̆1/k̆3, 0) and substituting

y =

√
k̆1
k̆3

+ y̆ in equation (2.6), the author obtains

¨̆y + c̆ ˙̆y + 2k̆1y̆ + 3
√
k̆1k̆3y̆

2 + k̆3y̆
3 = F̆0 cos(ωt). (2.7)

The linear natural frequency of this system is given by ωn =
√

2k̆1 =
√
−2k1
m

.

Introducing the nondimensional variables τ = ωnt, Ω = ω/ωn, after some manipu-

lations, equation (2.1), is rewritten as

y̆′′ + c̃y̆′ + k̃1y̆ + k̃2y̆
2 + k̃3y̆

3 = F̃0 cos(Ωτ). (2.8)

where “′” represents nondimensional time derivative d
dτ

, c̃ = c̆
ωn

, k̃1 = 2k̆1
ω2
n

, k̃2 =

3
√
k̆1k̆3
ω2
n

, k̃3 = k̆3
ω2
n
, and F̃0 = F̆0

ω2
n
.

For weak damping, weak nonlinearity, and weak forcing close to the system

resonance, the frequency-response of the system represented given by equation (2.8)

can be written as Nayfeh and Mook (2008)

c̃2

4
+
(

Ω− 1− 9k̃3Ω2
n − 10k̃2

2

24Ω3
n

a2
)2

=
F̃ 2

0

4Ω2
na

2
(2.9)

where Ω = ω/ωn, Ωn = ωn/ωn = 1, and “a” represents the amplitude of oscillation

at forcing frequency Ω. The details on the construction of this equation are provided

in Appendix A.

Similar to the monostable case, the largest amplitude of the frequency-response

curve is defined as ap = F̃0

c̃Ωn
. Furthermore, the displacement y̆ in equation (2.8) is
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normalized with maximum amplitude ap by defining a nondimensional displacement

ŷ = y̆/ap and the nondimensional amplitude A = a/ap. With this substitution,

equation (2.8) can be rewritten as

ŷ′′ + ĉŷ′ + k̂1ŷ + k̂2ŷ
2 + k̂3ŷ

3 = F̂0 cos(Ωτ). (2.10)

where ĉ = c̃, k̂1 = k̃1, k̂2 = k̃2ap, k̂3 = k̃3a
2
p, and F̂0 = F̃0

ap
.

For weak damping, weak nonlinearity and weak forcing close to the system

resonance, the nondimensional frequency-response given by equation (2.9) can be

obtained as

ĉ2

4
+
(

Ω− 1− 9k̂3Ω2
n − 10k̂2

2

24Ω3
n

A2
)2

=
F̂ 2

0

4Ω2
nA

2
(2.11)

where A = a/ap represents the nondimensional amplitude of frequency-response

curve at a particular forcing frequency Ω. The maximum nondimensional amplitude

of the frequency-response curve is Ap = 1. By substituting the value of k̂2, the above

expression can be further simplified to

ĉ2

4
+
(

Ω− 1− 3

8

(−4k̂3)

Ωn

A2
)2

=
F̂ 2

0

4Ω2
nA

2
(2.12)

Alternatively, after substituting x = y/ap, τ = ωnt with ωn =
√
−2k1
m

, and

Ω = ω
ωn

, equation (2.1) can be rewritten as

x′′ + ηx′ + αx+ βx3 = F̂0 cos(Ωτ). (2.13)
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where the prime symbol “′” represents the nondimensional time derivative d
dτ

, Ωn =

1, η = c
mωn

α = k1
mω2

n
= −0.5, β =

k3a2p
mω2

n
, and F̂0 = F0

mω2
nap

.

Also, the nondimensional frequency-response given by (2.12) can be rewritten

as

η2

4
+
(

Ω− 1− 3

8

(−4β)A2

Ωn

)2

=
F̂ 2

0

4Ω2
nA

2
(2.14)

In equations (2.13) and (2.14), all of the given parameters η, α, β. and F̂0, Ω,

and x are nondimensional.

Similar to the monostable, Duffing oscillator case with softening characteristic,

the experimentally obtained displacement data are normalized with respect to the

largest amplitude measured in the deterministic frequency sweep experiment.

The analytical frequency-response results obtained through equation (2.14) are

curve fitted to the normalized, deterministic frequency-response data obtained from

the experiments. The resulting parameter values are used for numerical simulations

under the influence of noise that is discussed in later sections.

With the addition of white Gaussian noise, the Duffing oscillator equation

given by either equation (2.4) or (2.13) can be written as

x′′ + ηx′ + αx+ βx3 = F̂0 cos(Ωτ) + σNẆ (τ). (2.15)

where the harmonic excitation or deterministic input is represented by F̂0 cos(Ωτ)

and the noise input to the system is represented by σNẆ (τ), where σN represents

the noise amplitude used in the numerical simulation, W (t) represents the Wiener
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process, and Ẇ (τ) is a “mnemonic” derivative. The above equation can be rewritten

into the state-space form as


x′1 = x2

x′2 = −ηx2 − αx1 − βx3
1 + F̂0 cos(Ωτ) + σNẆ (τ)

(2.16)

To carry out numerical studies, the above equations are expressed in the

Langevin form as


dx1 = x2dτ

dx2 =
(
− ηx2 − αx1 − βx3

1 + F̂0 cos(Ωτ)
)
dτ + σNdW

(2.17)

It is mentioned that in this differential form, one no longer has the derivative

of the Brownian motion (which does not exist) but a differential white noise which

does exist. Now, the Euler-Maruyama method can be used to obtain numerical

solutions of equation (2.17). The quantity dW , is the incremental noise, which has

a mean that is equal to zero and a standard deviation that is equal to
√
dτ .
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2.3 Influence of Noise on Aperiodic Response of a Duffing Oscillator

In this section, the author primarily focuses on investigating the influence of

Gaussian white noise on the aperiodic behavior of softening Duffing system. In the

presence of harmonic excitations, the complex motions of this system are examined

through experimental and numerical means. The influence of noise on the system

response is studied, and it is shown that with an appropriate level of noise, the

aperiodic behavior of a harmonically forced oscillator can be significantly influenced.

2.3.1 Experimental Results

The author focused on the softening case for inputs with noise inclusion in

the experimental arrangement. The experimental system was observed to display

aperiodic behavior for a narrow range of parameters, during primary and secondary

resonance excitations. As a representative example, the system response around

the excitation frequency of 21.05 Hz and forcing level of 88 N has been studied.

The first natural frequency of the cantilever structure is around 50 Hz, and as

the deterministic excitation frequency was reduced in a quasi-static sweep, a jump

location was identified on the upper branch of the frequency-response curve. The

excitation frequency of 21.05 Hz is close to this jump location.

The experimental results obtained for the system responses are presented in

Figure 2.2 to Figure 2.6. In all cases, to construct the phase portrait projections, a

measure of the cantilever tip displacement is plotted versus the associated velocity.

This information is also used in the construction of the associated Poincaré sec-
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tions. The aperiodic behavior of the considered soft Duffing oscillator is shown in

Figure 2.2. The corresponding Poincaré section constructed by using the determin-

istic excitation frequency as a clock frequency suggests a fractal geometry, which

is characteristic of a chaotic motions. A positive Lyapunov exponent value of 0.11

determined from the response data confirms the chaotic nature of the motion.
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Figure 2.2: Experimental results: Softening Duffing oscillator response in the case
without noise and deterministic harmonic excitation, chaotic behavior at excitation
frequency f = 21.05 Hz.
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Figure 2.3: Experimental results: Softening Duffing oscillator response with (a)
noise amplitude = 0.1 and (b) noise amplitude = 0.5. The excitation frequency f =
21.05 Hz for the deterministic input, whose level is the same in the cases with noise
and without noise.
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Figure 2.4: Experimental results: Softening Duffing oscillator response with (a)
noise amplitude = 1 and (b) noise amplitude = 1.5. The excitation frequency f =
21.05 Hz for the deterministic input, whose level is the same in the cases with noise
and without noise.
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Figure 2.5: Experimental results: Softening Duffing oscillator response with (a)
noise amplitude = 2 and (b) noise amplitude = 2.5. The excitation frequency f =
21.05 Hz for the deterministic input, whose level is the same in the cases with noise
and without noise.
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Having confirmed the presence of aperiodic motions for the deterministic case,

the influence of noise on the system response has been considered. Different noise

amplitudes were considered and the results obtained are quite revealing. As the

white noise amplitude is increased from 0.1 units to 1 unit the response cloud slowly

grows as shown in Figure 2.3(a) to Figure 2.4(a). However, beyond a certain noise

level, a further increase in noise amplitude pushes the response towards a fixed point

of the unforced system as shown in Figure 2.4(b) and Figure 2.5(a). From the results

displayed in Figure 2.5(a), one can see the convergence of the motion towards one of

the fixed points of the unforced system. These results support the findings reported

in the earlier work of Perkins and Balachandran (2012), wherein it was shown that

noise can be used to move the response of a Rayleigh-Duffing system from a chaotic
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Figure 2.6: Experimental results: Softening Duffing oscillator response in the case
with noise, noise amplitude = 3.5 units. The excitation frequency f = 21.05 Hz for
the deterministic input, whose level is the same in the cases with noise and without
noise.
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Table 2.3: Parameter identification for hardening Duffing oscillator of experiments

Parameter Value Parameter Value

ωn 2π × 58.18 rad/sec
η 0.044 α 1

β 1 F̂0 0.0258

case to a non-chaotic case. As the author increases the noise amplitude further, the

response cloud around a fixed point grows as shown in the Poincaré section in Figure

2.5(b) for noise amplitude of 2.5 units. The noise-influenced responses observed at

higher noise levels are shown in Figure 2.5(b) and Figure 2.6.

2.3.2 Numerical Results

For one of the experimental configurations considered, which turned out to be a

hardening case, the analytical frequency-response results obtained through are curve

fitted to the normalized, deterministic frequency-response data from the experiments

as shown in Figure 2.8(a). The parameter identification was done by using nonlinear

curve-fitting in least-squares sense in MATLAB. The resulting parameter values are

given in Table 2.3.

As reported in prior literature (Mallik, 2008), this system can experience

chaotic behavior around one third of the system natural frequency at large am-

plitudes of excitation. The numerical results obtained at a low level forcing ampli-

tude are shown in Figure 2.7(a); the response is periodic. At a high amplitude of

excitation, the system behaves chaotically as shown in Figure 2.7(b).
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(a)

(b)

Figure 2.7: Numerical results: Hardening Duffing oscillator response in the case
without noise and excitation frequency close to one third of natural frequency of the
system. (a) The system shows periodic behavior at a low excitation level. (b) The
system shows aperiodic behavior at a high excitation level.
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(a)

(b)

Figure 2.8: (a)Frequency-response of hardening Duffing oscillator. Black points rep-
resent experimental data and blue and red points correspond to numerical results for
k1 = 2397.9 N/m, k3 = 35450.60 N/m3, η = 0.044, and F = 16.0 N. (b) Frequency-
response of soft Duffing oscillator. Black points represent experimental data and
blue and red points correspond to numerical results for η = 0.044 and F̂0 = 0.0231.
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Table 2.4: Parameter identification for bistable, softening Duffing oscillator of ex-
periments

Parameter Value Parameter Value

ωn 2π × 50 rad/sec
η 0.044 α -1

β 1 F̂0 0.0231

This level of excitation would be difficult to realize in the experimental system.

However, the numerical results should help extend the experimental findings to other

parameter regimes.

For the softening case, the experimental results obtained for the frequency-

response of the system is shown in Figure 2.8(b). The parameter identification was

carried out by using nonlinear curve-fitting in least-squares sense in MATLAB. The

resulting parameter values are given in Table 2.4.

Figure 2.9: Numerical results: Softening Duffing oscillator response in the case
without noise and deterministic harmonic excitation: chaotic behavior at excitation
frequency f = 21.05 Hz.
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(a)

(b)

Figure 2.10: Numerical results: Softening Duffing oscillator response in the case
with noise, (a) noise amplitude = 0.00001 units and (b) noise amplitude = 0.0001
units. The excitation frequency f = 21.05 Hz for the deterministic input, whose level
is the same in the cases with noise and without noise.
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(a)

(b)

Figure 2.11: Numerical results: Softening Duffing oscillator response in the case with
noise, (a) noise amplitude = 0.001 units and (b) noise amplitude = 0.005 units. The
excitation frequency f = 21.05 Hz for the deterministic input, whose level is the same
in the cases with noise and without noise.
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(a)

(b)

Figure 2.12: Numerical results: Softening Duffing oscillator response in the case
with noise, (a) noise amplitude = 0.01 units and (b) noise amplitude = 0.05 units.
The excitation frequency f = 21.05 Hz for the deterministic input, whose level is the
same in the cases with noise and without noise.
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(a)

(b)

Figure 2.13: Numerical results: Softening Duffing oscillator response in the case
with noise, (a) noise amplitude = 0.1 units and (b) noise amplitude = 0.5 units.
The excitation frequency f = 21.05 Hz for the deterministic input, whose level is the
same in the cases with noise and without noise.
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The numerical response of soft Duffing oscillator around excitation frequency

of 21.05 Hz for α = 1 and high forcing level (F̂0 = 0.118) is shown in Figure

2.9. Next, noise is included in the system input. The numerical results obtained

for the different noise levels are shown in Figure 2.10(a) to Figure 2.13(b). As

the nondimensional noise level is increased from 0.00001 units to 0.005 units, the

response gradually moves towards a fixed point of the unforced system as shown

in Figure 2.10(a) to Figure 2.11(b). From the results shown in Figure 2.11(b), one

can discern the convergence of the motion towards one of the fixed points of the

unforced system. As the noise amplitude has been increased further, the response

cloud around a fixed point was found to grow as illustrated in Figure 2.12(a) to

Figure 2.13(b). It is mentioned that all system parameters presented in Figure

2.8(a) to Figure 2.13(b) are nondimensional. The numerical results support the

findings of the experiments.

2.4 Influence of Noise on Frequency-Responses of Softening Duffing

Oscillators

In this section, the influence of noise on the responses of continuous-time dy-

namical systems are considered. In particular, the influence of white Gaussian noise

on the frequency-responses of monostable and bistable, softening Duffing oscillators

are studied. A combination of experimental, analytical, and numerical studies are

undertaken to understand the shifting of jump-up and jump-down frequencies and

an eventual collapse of upper and lower responses branches of into one response
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Table 2.5: Parameter identification for monostable, softening Duffing oscillator of
experiments

Parameter Value Parameter Value

ωn 2π × 61.28 rad/sec
η 0.035 α 1

β -0.4 F̂0 0.035

curve with no jump instabilities for the considered Duffing oscillator. It is noted

that with noise, the hysteresis observed in the response of the nonlinear oscillator

without noise can be destroyed.

2.4.1 Numerical Results

For monostable, softening Duffing oscillator, the analytical frequency-response

results obtained through equation (2.5) are curve fitted to the normalized, deter-

ministic frequency-response data from the experiments as shown in Figure 2.14(a).

The resulting parameter values are given in Table 2.5. On the other hand, for

bistable, softening Duffing oscillator, the analytical frequency-response results ob-

tained through equation (2.14) are curve fitted to the normalized, deterministic

frequency-response data obtained from the experiments as shown in Figure 2.14(b).

The resulting parameter values are given in Table 2.6. These parameters are used for

numerical simulations under the influence of noise that is discussed in this section.

The Euler–Maruyama method have been used to obtain numerical solutions

of equation (2.17) in order to study the changes in the frequency-response curve of

a Duffing oscillator with softening characteristics with variation of noise amplitude

σN .
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(a) Monostable Softening Duffing Oscillator

(b) Bistable Softening Duffing Oscillator

Figure 2.14: Plots of experimentally and numerically obtained frequency-response
curves for softening Duffing oscillators. The sweep-up points (increasing excita-
tion frequency) are shown by circles and sweep-down points (decreasing excitation
frequency) are shown by the symbol ” + ”. The analytically predicted frequency-
response is curve fitted to experimental data. In plot (a), the authors show the nor-
malized, deterministic frequency-response of a monostable, softening Duffing oscil-
lator along with the analytic frequency-response generated by using equation (2.5).
In plot (b), the normalized, deterministic frequency-response of a bistable, soften-
ing Duffing oscillator has been shown along with the analytic frequency-response
generated by using equation (2.14).
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Table 2.6: Parameter identification for bistable, softening Duffing oscillator of ex-
periments

Parameter Value Parameter Value

ωn 2π × 48.34 rad/sec
η 0.085 α -0.5

β 0.2 F̂0 0.085

The linear natural frequencies ωn for both the monostable and the bistable

softening Duffing oscillators are obtained from a low amplitude impulse response

test about their respective equilibrium positions. The rest of the parameters are ob-

tained from free oscillation data and from curve fitting of the experimental obtained

deterministic frequency-response curve to the analytical frequency-response curve,

which are given by equations (2.5) and (2.14). The values of the corresponding

parameters obtained for both the monostable and the bistable Duffing oscillator are

shown in Table 2.5 and Table 2.6, respectively.

For numerical simulations, the author chose the initial conditions correspond-

ing to different branches of the frequency-response curves obtained for the deter-

ministic case. Different initial conditions representing different branches are ob-

tained from the associated basins of attraction at a particular forcing frequency.

In the current work, for each of the monostable and bistable cases, two different

initial conditions have been chosen corresponding to sweep-up (lower branch as rep-

resented by circles in Figure 2.14) and sweep-down (upper branch as by symbol

“ + ” in Figure 2.14). Note that the same initial conditions for deterministic and

stochastic simulations were also assumed. For a monostable, Duffing oscillator with

softening characteristic, (0, 0) is one of the initial conditions corresponding to the
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sweep-up frequency-response branch, and (0, 1.03) is one of the initial conditions cor-

responding to the sweep-down frequency-response branch. Similarly, for a bistable,

Duffing oscillator with softening characteristics, (−1.4, 0) is one of the chosen initial

conditions, which corresponds to the the sweep-up frequency-response branch, and

(−1.814, 0.6914) is one of the chosen initial conditions, which corresponds to the

sweep-down frequency-response branch.

The numerical results are obtained by solving the state-space form given by

equations (2.17). The numerical simulation results are produced with the same ini-

tial conditions, same forcing vector and by averaging 100 Euler-Maruyama simula-

tions in the time domain over 300 time periods. At each particular forcing frequency,

each of these Euler-Maruyama simulations has the same noise amplitude σN , but

different noise vectors. The time domain averaging results in an average displace-

ment response at a particular forcing frequency and the amplitude of the average

displacement response has been chosen which represents one of the points on the

frequency-response curve. The resulting frequency-response curve is produced by

combining the results obtained for all the forcing frequencies. In Figure 2.17, the

numerical results obtained for the monostable case are shown, and in Figure 2.18,

the numerical results obtained for the bistable, Duffing oscillator are shown.

For both monostable and bistable cases, the frequency-response curves with

σN = 0 are shown in Figure 2.17(a) and Figure 2.18(a), respectively. These results

are obtained from Euler-Maruyama simulations in the time domain with the chosen

initial conditions. The outcomes can be compared with the frequency-response curve

obtained from deterministic experiment and analytical solution shown in Figures
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(b) Ω = 0.89
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(c) Ω = 0.93

Figure 2.15: Time series for monostable, softening Duffing oscillator responses for
three different driving frequencies with the initial conditions (0, 0) and (0, 1.03) cor-
responding to the bottom branch and top branch of the frequency-response curve,
respectively. In plot (a), the authors show the time series at the jump-up frequency;
there is a small response amplitude for the initial condition (0, 0) and a large re-
sponse amplitude for the initial condition (0, 1.03). In plot (b), the time series at
an intermediate frequency between jump-down frequency and jump-up frequency
has been shown. At this particular frequency, the initial condition (0, 0) results
in a small response amplitude and the initial condition (0, 1.03) results in a large
response amplitude. In plot (c), the time series at the jump-up frequency has been
shown. At this particular frequency, both the initial conditions result in the same
response amplitude.

2.14(a)-(b). For the monostable system, the jump phenomenon is observed at Ω =

0.85 and at Ω = 0.93, which can also be verified from the time series obtained for

these initial conditions at the forcing frequency 0.85 ≤ Ω ≤ 0.93, as shown in Figure
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(b) Ω = 0.80
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Figure 2.16: Time series for bistable, softening Duffing oscillator responses
for three different driving frequencies with the initial conditions (−1.4, 0) and
(−1.8140, 0.6914) corresponding to the bottom branch and top branch of the
frequency-response curve, respectively. In plot (a), the authors show the time series
at the jump-up frequency; there is a small response amplitude for the initial condi-
tion (−1.4, 0) and a large response amplitude for initial condition (−1.8140, 0.6914).
In plot (b), the time series at an intermediate frequency between jump-down fre-
quency and jump-up frequency has been shown. At this particular frequency, the
initial condition (−1.4, 0) results in a small response amplitude and the initial con-
dition (−1.8140, 0.6914) results in a large response amplitude. In plot (c), the time
series at the jump-up frequency has been shown. At this particular frequency, both
initial conditions result in the same response amplitude.
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2.15. The time series shown in Figures 2.15(a)-(b) correspond to two different

response outputs with different displacement amplitudes. On the other hand, in

Figure 2.15(c), there is one response curve for both initial conditions. Similarly, for

the bistable case, the time series obtained at three different forcing frequencies are

shown in Figures 2.16(a)-(c).

The region of the frequency-response curve having two stable solution or the

region between the two jump frequencies is called as the hysteresis region. The

addition of noise to the system affects the hysteresis region by shifting the “jump”

frequencies.

For a monostable, Duffing oscillator with softening characteristics, a small

increment in noise amplitude σN doesn’t affect the top branch of the frequency-

response curve but this noise addition pushes the lower branch near the jump-up

frequency towards the upper branch as shown in Figure 2.17(b). A further increase

in noise amplitude σN moves the jump-down and jump-up frequencies towards each

other, which results in reduction of the hysteresis region as shown in Figures 2.17(c)-

(h). A large noise amplitude destroys the hysteresis region by merging the jump-

up and jump-down frequencies and the resulting response has only one peak as

shown in Figure 2.17(h). The frequency-response curve looks almost linear with an

asymmetric amplitude peak. This system has one stable potential well (Kovacic

and Brennan, 2011). Furthermore, the increase in noise amplitude σN pushes the

system response out of the stable potential well towards the unstable region and

the numerical simulations do not help generate frequency-response data. As shown

in Figure 2.17(i), the frequency-response curve has no data at few of the forcing
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frequencies (missing symbols “ + ” for 0.85 ≤ Ω ≤ 0.92).

For a bistable, Duffing oscillator with softening characteristics, an increase in

noise amplitude σN moves the jump-down and jump-up frequencies towards each

other, which results in reduction of the hysteresis region as shown in Figures 2.18(b)-

(f). A large noise amplitude destroys the hysteresis region by merging the jump-up

and jump-down frequencies and the reponse has only one peak as shown in Fig-

ure 2.18(f). The frequency-response curve looks almost linear with an asymmetric

amplitude peak. With a further increase in noise amplitude σN , the result is a clus-

ter of points in the frequency-response curve as shown in Figures 2.18(g)-(h). The

bistable, Duffing oscillator system has two stable potential wells (Kovacic and Bren-

nan, 2011). With a further increase in noise amplitude σN , the system response

is pushed from one stable potential well to another potential well. The numeri-

cal results corresponding to the jump from one potential well to another have not

been presented here. The numerical path integration procedure (Yu and Lin, 2004;

Hanggi and Riseborough, 1983) based on the Gauss-Legendre integration rule was

used to compute the evolution of probability density subjected to a harmonic and a

white Gaussian excitation. The periodicity of probability density function implies

a steady state response. This procedure has been used to find out the noise ampli-

tude limit, for which there is no jump between the two potential wells. Here, with

a noise amplitude σN ≤ 0.05, there is no jump observed in the system response

from one potential well to another. For a noise amplitude σN ≥ 0.06, there is a

small probability that system response will jump from one potential well to another

potential well. The corresponding contour plots with two different noise amplitudes
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are shown in Figure 2.21.

A comparison of numerical results with experimental findings is made in the

next section.

2.4.2 Experimental Results

The experimental results are obtained by conducting quasi-static frequency

sweeps for increasing and decreasing excitation frequencies. In Figure 2.19 and

Figure 2.20, the frequency-response curves of a monostable and a bistable Duffing

oscillator are respectively shown. The experiments were conducted to cover the

hysteresis region. In the numerical studies, the noise is assumed to be a white

Gaussian noise. On the other hand, in the experiments, the noise is assumed to be

a band limited white noise. The spectrum of the experimental noise has a constant

power density in the operating frequency range of interest, and in this range, this

noise may be treated as being equivalent to a white noise. Qualitative comparisons

between experimental results and numerical results are made in this section.

For a monostable, softening Duffing oscillator, a small increment in the noise

amplitude σE doesn’t result in changes in the jump-down frequency and the upper

branch of the frequency-response curve. However, the lower branch of the frequency-

response curve near the jump-up frequency is slightly moved towards the upper

branch of the frequency-response curve and the jump-up frequency is shifted to

the left as shown in Figures 2.19(b)-(c). These results can be compared with the

numerical results shown in Figure 2.17(b). A further increase in noise amplitude
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(b) σN = 0.01
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(c) σN = 0.02
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(d) σN = 0.03
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(e) σN = 0.04
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(f) σN = 0.05
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(g) σN = 0.06
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(h) σN = 0.07
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(i) σN = 0.08

Figure 2.17: Frequency-response curves obtained through numerical simulation of
monostable, softening Duffing oscillator dynamics. Corresponding system parameter
values chosen are shown in Table 2.5. In plot (a), the circles correspond to the sweep-
up branch of frequency-response curve obtained from the initial condition (0, 0).
The points marked by the symbol ”+” correspond to the sweep-down branch of the
frequency-response curve obtained from the initial condition (0, 1.03). This plot may
be compared with Figure 2.14(a). The associated time series are shown in Figure
2.15. The plots (b)-(i) are obtained from the averaged dynamics for the same initial
conditions as those used for the deterministic case.
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(f) σN = 0.04
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(g) σN = 0.05

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

Frequency Ratio (  = /
n
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

n
d

im
e

n
s
io

n
a

l 
A

m
p

lit
u

d
e

 (
A

)

(h) σN = 0.1

Figure 2.18: Frequency-response curves obtained through numerical simulations of
bistable, softening Duffing oscillator dynamics. Corresponding system parameter
values chosen are shown in Table 2.6. In plot (a), the circles correspond to the sweep-
up branch of frequency-response curve obtained from the initial condition (−1.4, 0).
The points marked by the symbol ”+” correspond to the sweep-down branch of the
frequency-response curve obtained from the initial condition (−1.814, 0.6914). This
plot may be compared with Figure 2.14(b). The associated time series are shown
in Figure 2.16. The plots (b)-(h) are obtained from the averaged dynamics for the
same initial conditions as those used for the deterministic case.
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σE results in movement of the jump-down and jump-up frequencies towards each

other and a slight move of the upper and lowers branches towards each other; this

results in reduction of the hysteresis region as shown in Figures 2.19(d)-(f). These

experimental findings are in agreement with the numerical results shown in Figures

2.17(c)-(g). Similar to the numerical results shown in Figure 2.17(h), a large noise

amplitude leads to destruction of the hysteresis region through merger of the jump-

up and jump-down frequencies. The resulting response has only one peak as shown

in Figure 2.19(f), and the frequency-response curve looks almost linear with an

asymmetric amplitude peak. Noting that a monostable, Duffing oscillator system

with softening characteristic has one stable potential well, a further increase in noise

amplitude σN pushes the system response out of the stable potential well towards the

unstable region and the experiments could not be continued as the system response

is moved to an unstable region.

For a bistable, Duffing oscillator with softening characteristic, an increase

in the noise amplitude σN leads to a movement of the jump-down and jump-up

frequencies towards each other, resulting in a reduction of the hysteresis region as

shown in Figure 2.20(b). A similar pattern is also seen in the numerical results

with respect to increments in the noise amplitude σN , as seen in Figures 2.18(b)-

(e). Similar to what was observed with the numerical results of Figure 2.18(e), a

large noise amplitude level results in destruction of the hysteresis region through

merger of the jump-up and jump-down frequencies. The resulting response has only

one peak as shown in Figures 2.18(b)-(c), and the frequency-response curve looks

almost linear with an asymmetric amplitude peak. With a further increase in noise
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amplitude σE, the result is a cluster of points in the frequency-response curve as

shown in Figures 2.19(c)-(e). This is quite similar to what the author observed in

the numerical results shown in Figures 2.18(g)-(h). As a bistable, softening Duffing

oscillator has two stable potential wells, with a further increase in the level of noise

amplitude σE, the system response jumps from one stable potential well to another

potential well. For a large level of noise, the experimental findings reveal a jump

from one potential well to another.

In the case of the bistable Duffing oscillator arrangement, it should be noted

that the amplitude of noise σE needed to destroy the hysteresis region is much

lower than the noise amplitude level required for a monostable, softening Duffing

oscillator.
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(f) σE = 3.0
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(g) σE = 4.0

Figure 2.19: Frequency-response curves obtained in experimental study of monos-
table, softening Duffing oscillator under the influence of white Gaussian noise for dif-
ferent levels of noise amplitude σE. The experimental data are normalized with the
maximum amplitude of the corresponding, deterministic frequency-response curve.
These results can be compared with the results presented in Figure 2.17.
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(b) σE = 0.5
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(c) σE = 1.0
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(e) σE = 3.0

Figure 2.20: Frequency-response curves obtained in experimental study of bistable,
softening Duffing oscillator under the influence of white Gaussian noise for differ-
ent levels of noise amplitude σE. The experimental data are normalized with the
maximum amplitude of the corresponding, deterministic frequency-response curve.
These results are compared with the results presented in Figure 2.18.
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(b) σN = 0.06

Figure 2.21: Contour plots of probability density of a bistable, softening Duffing
oscillator (equation (2.15) and Table 2.6). The numerical path integration procedure
based on the Gauss-Legendre integration rule is used to compute the evolution of
probability density subjected to a harmonic and a white Gaussian excitation. The
periodicity of probability density function implies a steady state response. With
a noise amplitude σN ≤ 0.05, there is no jump in the system response from one
potential to the other. For a noise amplitude σN ≥ 0.06, there is a small probability
that the system response will jump from one potential well to the other potential
well.

54



2.5 Noise-Induced Chaotic-Attractor Escape Route

The influence of white Gaussian noise on the chaotic and periodic responses of

bistable, Duffing oscillators is the focus of this section. The noteworthy result of the

conducted studies concerns the presence of a pair of attractors, one being periodic

and the other being chaotic: the chaotic attractor response can be controlled and

terminated with an appropriate noise level. For trajectories in the basin of the

chaotic attractor, white Gaussian noise is added at a barely sufficient level to allow

trajectories to eventually leave (within some specified time). The author reports

that trajectories leave via a special escape route: the unstable manifold of a fixed

point saddle on the basin boundary between the two basins of attraction.

2.5.1 Numerical Results

Getting chaos for numerical studies. For the numerical simulations, the

parameters have been chosen so that the deterministic response of the system shows

the existence of a chaotic attractor as well as stable periodic attractor. To carry

this out, after parametric identification, the forcing amplitude F0 and forcing fre-

quency Ω have been varied over sufficient ranges to observe the chaotic response.

The numerically obtained bifurcation diagrams along with Lyapunov spectrum are

shown in Figure 2.22. It is clear that the system behaves chaotically for a range

of parameter values. For this section, the author has chosen the parameter values

as shown in Table 2.7 where the system dynamics is chaotic or periodic depending

on the initial condition chosen. For these parameter values, the basin of attraction
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Table 2.7: Parameter values for Duffing oscillator showing chaotic realizations

Parameter Value Oscillator characteristic

η 0.085 F0 0.204
α −0.5 Ω 0.71
β 0.2

along with time series is shown in Figure 2.23 and it confirms the existence of a

chaotic attractor as well as a stable period-1 attractor.

Numerical simulations were conducted to study any qualitative change in dy-

namics of the Duffing oscillator with variation of noise amplitude σN while inte-

grating equation 2.17. When the noise amplitude σN is varied, the rest of of the

parameters are kept constant as shown in Table 2.7. The basin of attraction with

these parameter values is shown in Figure 2.23. The steady state response of the

deterministic system (σN = 0) is chaotic or periodic depending on the initial point

chosen. For any initial condition in the purple region, the system response settles

down on a chaotic attractor whereas, for any initial condition in the yellow region,

the response settles down to a period-1 attractor. Both time series as well as the cor-

responding stroboscopic maps are shown in Figure 2.23. The numerical results are

obtained by integrating the stochastic differential equations, equations (2.17), with

the Euler–Maruyama scheme. The initial conditions and parameters used (Table

2.7) to produce the response shown in Figure 2.23, which is the deterministic case,

were also used for all of the stochastic simulations as well. The numerical results

are produced for more than 100 Euler-Maruyama simulations in the time domain

over 1000 time periods. Each of these Euler-Maruyama simulations has the same
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(a) Bifurcation Diagram for F0 = 0.204 (b) Lyapunov Spectrum for F0 = 0.204

(c) Bifurcation Diagram for Ω = 0.71

Figure 2.22: Plots of numerically obtained bifurcation diagram for softening Duffing
oscillators in equation (2.13). In plot (a), the authors show a bifurcation diagram for
a constant forcing amplitude (F0 = 0.204). Plot (b) has the corresponding Lyapunov
spectrum. A positive lyapunov exponent confirms a chaotic response. Plot (c) has
the bifurcation diagram for a constant forcing frequency (Ω = 0.71).
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Figure 2.23: Numerical simulations using Euler-Maruyama scheme for noise am-
plitude σN = 0. See Table 2.7 for system parameter values. For the model, a
chaotic attractor coexists with a periodic attractor. Plot (a) is for the stroboscopic
map. Purple color (B2) and yellow color (B1) are used to identify the basins of
attraction of the chaotic and periodic attractors, respectively. The black dots in
the purple region are the (stroboscopic) chaotic attractor while point “P” is a fixed
point attractor. In plots (b) and (c), the associated time series are shown.

noise amplitude σN , but a different noise vector.

Escaping chaos. Any qualitative change in the system dynamics depends

on the noise amplitude σN . From the numerical results, one can see that for a

noise amplitude 0 ≤ σN < σc, with any initial condition in the chaotic or periodic

basin, the steady-state response settles down on a noisy chaotic attractor or a noisy

periodic attractor respectively as shown in Figure 2.24. There are no qualitative

changes observed in the system behavior. Here, σc represents the critical value of

noise amplitude for which the chaotic attractor faces a crisis. At that critical noise

amplitude σc, the chaotic attractor comes into contact with the stable manifold

at the saddle point as shown in Figure 2.31(b) and the chaotic attractor vanishes.
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Figure 2.24: Numerical simulations using Euler-Maruyama scheme for noise ampli-
tude σN = 0.015. See Table 2.7 for system parameter values. Purple color (B2)
and yellow color (B1) are used to identify the basins of attraction of the chaotic
and periodic attractors, respectively. The black dots in the purple region are the
(stroboscopic) noisy chaotic attractor while black dots in the yellow region are the
(stroboscopic) noisy periodic attractor. The black dots in plot (a) are the (strobo-
scopic) noisy attractor for an initial condition in the yellow region and plot (c) has
the associated time series. The black dots in plot (b) are the (stroboscopic) noisy
attractor for an initial condition in the purple region and plot (d) has the associated
time series. The system dynamics exhibits no qualitative changes.
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(c) σN = 0.05

Figure 2.25: Contour plots of probability density of a bistable, softening Duffing os-
cillator (equation (2.15)). See Table 2.7 for system parameter values. The numerical
path integration procedure based on the Gauss-Legendre integration rule is used to
compute the evolution of probability density subjected to a harmonic and a white
Gaussian excitation. The periodicity of probability density function implies a steady
state response. With a noise amplitude σN < 0.02, there is no jump in the system
response from one attractor to another. With a noise amplitude 0.02 ≤ σN < 0.05,
there is probability of the system response jumping from the chaotic attractor to the
periodic attractor (fixed point) but there is no jump from the periodic attractor to
the chaotic attractor. For a noise amplitude σN ≥ 0.05, there are continuous jumps
from chaotic attractor to the periodic attractor.
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(a) Fixed point (periodic) attractor in yellow with noise

(b) Time series for an initial condition in yellow with noise

Figure 2.26: Numerical simulations using Euler-Maruyama scheme for noise ampli-
tude σN = 0.02. See Table 2.7 for system parameter values. Purple color (B2) and
yellow color (B1) are used to identify the basins of attraction of the chaotic and
periodic attractors, respectively. In plot (a), the black dots in the yellow region
are the (stroboscopic) periodic attractor with noise for an initial condition in the
yellow region and plot (b) shows the associated time series. The periodic attractor
(in yellow) exhibits no qualitative changes with the noise amplitude σN = 0.02.
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Figure 2.27: Numerical simulations using Euler-Maruyama scheme for noise ampli-
tude σN = 0.045. See Table 2.7 for system parameter values. Purple color (B2)
and yellow color (B1) are used to identify the basins of attraction of the chaotic
and periodic attractors, respectively. In plot (a), the black dots in the yellow region
are the (stroboscopic) periodic attractor with noise for an initial condition in the
yellow region and in plot (b), the black and green dots are the stroboscopic map
with noise for an initial condition in the purple region. The green dots represent
the stroboscopic map with noise for the last 200 time periods. In plot (c), a part
of the associated time series with noise for an initial condition in yellow region is
shown. In plot (d), a part of the associated time series with noise for an initial
condition in the purple region is shown. The chaotic attractor escapes to the fixed
point (periodic) attractor but, periodic attractor (in yellow) exhibits no qualitative
changes with the noise amplitude σN = 0.045.
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Figure 2.28: Numerical simulations using Euler-Maruyama scheme for large noise
amplitude (σN = 0.05). See Table 2.7 for system parameter values. Purple color
(B2) and yellow color (B1) are used to identify the basins of attraction of the chaotic
and periodic attractors, respectively. In plot (a), the black dots in the yellow region
are the (stroboscopic) periodic attractor with noise for an initial condition in the
yellow region and in plot (b), the black and green dots are the stroboscopic map
with noise for an initial condition in the purple region. The green dots in plot (a)
and (b) represent the stroboscopic map with noise for the last 200 time periods. In
plot (c), a part of the associated time series with noise for an initial condition in
yellow region is shown. In plot (d), a part of the associated time series with noise
for an initial condition in the purple region is shown. A continuous jump can be
seen from the chaotic attractor to the periodic attractor and periodic attractor to
chaotic attractor with the noise amplitude σN = 0.05.
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The features of this saddle point can be seen at the critical collapse of the chaotic

attractor at the critical event, the trajectory moves rapidly towards the saddle along

the stable manifold of the saddle and then escapes along its unstable manifold

towards the fixed point (periodic) attractor.

The numerical path integration procedure (Yu and Lin, 2004; Hanggi and

Riseborough, 1983) based on the Gauss-Legendre integration rule has been used to

find out the critical noise amplitude limit σc, for which there is a jump from chaotic

attractor to the periodic attractor occurs. This procedure is based on the evolution

of probability density subjected to a harmonic and a white Gaussian excitation where

the periodicity of the probability density function implies a steady state response.

For the given parameter values in Table 2.7, the critical noise amplitude is found to

be σc = 0.02. The corresponding contour plot is shown in Figure 2.25(a).

With an initial condition in the chaotic attractor basin, with noise amplitude

σN = 0.02, all Euler-Maruyama simulations show an escape from the chaotic at-

tractor to the periodic attractor. The steady-state trajectory stays on the noisy

periodic attractor thereafter. On the other hand, for all the initial conditions in

the periodic attractor basin (yellow), the trajectory remains on the noisy periodic

attractor without any qualitative changes or escape. The stroboscopic map along

with the time series are shown in Figure 2.26.

Large noise amplitude. Further, the noise amplitude is increased in the

simulation of equations (2.17). For an intermediate noise amplitude σc ≤ σN ≤ σ0,

the chaotic attractor is destroyed and the trajectory escapes to the fixed point

(periodic) attractor. On the other hand, the periodic attractor shows no qualitative
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changes. Here, the noise amplitude σ0 represents the noise limit where the jump from

the periodic attractor to the chaotic attractor occurs. Again, the numerical path

integration procedure has been used to find out the noise amplitude limit σ0. The

corresponding contour plot is shown in Figure 2.25(c), wherein the noise amplitude

limit is found to be σ0 = 0.05. The time series results along with stroboscopic

maps for the intermediate noise amplitude σN = 0.045 ≤ σ0 are shown in Figure

2.27. The associated contour plot is shown in Figure ??(b). Additionally, for a large

noise amplitude σN ≥ σ0, a continuous jump from a chaotic attractor to a periodic

attractor and a periodic attractor to a chaotic attractor occurs. The contour plot

for a noise amplitude σ = σ0 = 0.05 is shown in Figure 2.25(c). The time series

results and stroboscopic maps are shown in Figure 2.28 these results confirm the

continuous jumps.

A comparison of numerical results with experimental findings is made in Sec-

tion 2.6. It should be noted that there is no direct comparison between the noise

amplitude in the numerical simulations, σN , and the noise amplitude in the exper-

iments, σE. The noise in numerical simulations are assumed to be white Gaus-

sian noise, while the noise in the experiment is a complicated function of several

frequency-response relationships with almost a flat power density spectrum over the

range of frequencies that are relevant to the context.

2.5.2 Experimental Results

Getting chaos in experimental system. The experimental studies have
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(b) Time Series for σE = 0

Figure 2.29: Stroboscopic map along with the time series obtained through ex-
perimental study of a forced bistable, softening Duffing oscillator showing chaotic
attractor.
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(b) Time Series for Noise Amplitude σE = 2.0

Figure 2.30: Stroboscopic map along with the time series obtained through exper-
imental study of a forced bistable, softening Duffing oscillator for noise amplitude
σE = 2.0. In plot (a), the black dots are the stroboscopic map with noise and the red
dot is the fixed point attractor for the deterministic case. In plot (b), the associated
time series with noise is shown. The system dynamics shows continuous jumps from
chaotic attractor to periodic attractor and periodic attractor to chaotic attractor.
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(a) Deterministic System (b) Numerical Results: Noise-Induced Chaotic-
Attractor Escape Route

(c) Experimental Results: Noise-Induced
Chaotic-Attractor Escape Route

Figure 2.31: The chaotic attractor is destroyed by noise and the trajectory escapes.
In plot (a), the (stroboscopic) chaotic attractor (green color) along with stable
(Ws) and unstable (Wu) manifold of the fixed point saddle (point “S”) for the
deterministic system are shown and point “P” is a fixed point attractor. In plot
(b), the numerical results for the chaotic attractor escape route (through points p1

to p8) with noise σN = 0.02 are shown. The green dots represent the stroboscopic
map for the last 200 time periods. For plot (c), a stroboscopic map is obtained
through an experimental study of a forced bistable, softening Duffing oscillator with
noise amplitude σE = 1.8. The start of the strobe for the experiments is arbitrary
and is not synchronized with the clock used for plots (a) and (b). The chaotic
attractor is destroyed by noise and the trajectory escapes. The chaotic attractor
escape route (through points p1 to p12) with noise σE = 1.8 is shown. The black
circles represent the stroboscopic map for the last 200 time periods. In both plots
(b) and (c), the trajectory moves rapidly towards the saddle (point “S”) along the
stable manifold (basin boundary) of the saddle and then escapes along its unstable
manifold towards the fixed point (periodic) attractor. See Figure 2.32 for the time
series plot. See Section 2.6 for similarities and differences between numerical and
experimental system.
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(a) Numerical Time Series for Attractor Escape with Noise

(b) Experimental Time Series for Attractor Escape with Noise

Figure 2.32: The chaotic attractor is destroyed by noise and the trajectory escapes.
In plot (a), numerical time series plot is shown. In plot (b), the experimental
time series plot is shown. Red color is used in the time window when noise is
introduced. The time series shows that the chaotic attractor escape to the periodic
attractor (fixed point). See Figure 2.31 for the stroboscopic map. See Section 2.6
for similarities and differences between numerical and experimental results.
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been conducted with a forced bistable, Duffing oscillator prototype with softening

characteristic. The deterministic response shows chaotic behavior. After parametric

identification through curve fitting the experimentally obtained frequency-response

curve to analytically obtained response curve, the numerically obtained bifurcation

diagram helps to identify the forcing amplitude F0 and forcing frequency Ω in the

chaotic region. For this study, the author has chosen F0 = 0.204 and Ω = 0.71.

from the experimental studies for these parameter values (Table 2.7), one can note

chaotic dynamics. Both, the time series and the stroboscopic map are shown in

Figure 2.29.

The numerical results are obtained by assuming noise to be a white Gaussian

noise whereas, in the experimental studies, the noise is assumed to be a band-

limited white noise. Due to a constant power density spectrum in the operating

forcing frequency range of interest, the band limited white noise may be treated as

being equivalent to a white Gaussian noise. In this section, the experimental results

are qualitatively compared with numerical outcomes. For any noise amplitude σE,

the experiments are conducted for more than 15 runs and around 5000 time periods

in each run.

Escaping chaos. A small noise amplitude σE does not result in an observable

qualitative change and the response is a noisy chaos. However, a further increase in

the noise amplitude σE, results in an eventual but sudden change in the qualitative

behavior and the response escapes from the chaotic basin. Here, the noise level is

just sufficient to cause the chaotic trajectory to escape to the periodic attractor

within a mean time of 100 oscillation of the forced Duffing oscillator. Similar to the
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numerical results, the author observes that there is a specific escape route that the

trajectory always follows - the escape trajectory is essentially on the basin boundary.

The dynamics pulls the trajectory toward the fixed point on the basin boundary and

subsequently, the trajectory escapes along the unstable manifold of the saddle point;

that is, the branch of the unstable manifold outside the chaotic basin. The steady

state trajectory stays on the noisy periodic attractor thereafter.

Repetitions of this experiment show that when the trajectory escapes, it always

escapes the basin in the same way. One of the experimental results are shown in

Figure 2.31(c). The experimental findings are in agreement with the numerical

results shown in Figure 2.31(b).

Large noise amplitude. For large noise amplitude, it does not necessarily

follow the above route. Hence, it is essential to keep the noise level as low as possible

to observe the exit route. Similar to the numerical results shown in Figure 2.28, a

large noise amplitude quickly leads to continuous jumps from chaotic attractor to

periodic attractor and back to the chaotic attractor, repeatedly as shown in Figure

2.30. The stroboscopic map shows a cloud of points on the chaotic and periodic

attractor with continuous jumps. It should be noted that a particular range of

amplitude of noise σE is needed to control and terminate the chaotic response and

move the response towards a stable periodic attractor.
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2.6 Conclusions

In this chapter, the author has examined the effects of a white Gaussian noise

on the chaotic and periodic responses of a harmonically forced monostable and

bistable, Duffing oscillator with softening characteristics. Numerical simulation re-

sults have been obtained for more than 100 Euler-Maruyama simulations in the time

domain over 1000 time periods and the experimental results are obtained for more

than 15 experimental runs with 5000 time periods for each run.

Through the numerical and experimental studies, it is shown that with the

addition of white Gaussian noise, the jump-up and jump-down frequencies in the

frequency-response can be moved towards each other and the region of hysteresis

can be reduced. In particular, a low level of noise can reduce the hysteresis region.

With an appropriate increment in noise amplitude, it is found that the hysteresis

region can also be completely destroyed. These findings suggest that the effect

of nonlinearity on the frequency-response of a softening Duffing oscillator can be

countered through the addition of white Gaussian noise.

For a monostable, Duffing oscillator with softening characteristics, it is found

that there is a limitation on the level of maximum noise amplitude one can impose

on the system. Through both experiments and simulations, it is found that beyond a

certain noise level, the response of the system is moved into the unstable region. On

the other hand, for a bistable, Duffing oscillator with softening characteristics, for

a large level of noise amplitude, the frequency-response curve looks like a cluster of

points. In this case, through experiments and simulations, it is found that, beyond a
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certain noise level, the system response is moved from one potential well to another

potential well.

Similarities and differences between numerical and experimental sys-

tems. 1) The systems here are observed stroboscopically. The appearance of an

experimental plot depends strongly on the phase of the strobe that is upon the in-

stant the strobe is started. Hence, much of the difference between the numerical and

experimental chaotic attractor is due to the difference in the phase of observation.

2) The parameter range for observing chaos coexisting with a periodic attractor is

in a similar range for the two systems. 3) The boundary saddle S is shifted but

the basin boundary in both systems is dominated by a fixed point saddle and its

stable manifold. 4) There is no direct comparison between the noise amplitude in

the numerical simulations, σN , and the noise amplitude in the experiments, σE. The

noise in numerical simulations are assumed to be white Gaussian noise, while the

noise in the experiments is a complicated function of several frequency-response re-

lationships with almost a flat power density spectrum over the range of frequencies

that are relevant to the context. 5) For both studies, with the addition of noise, as

the amplitude reaches a critical value, there is a change. A typical attractor in the

chaotic regime quickly escapes to the periodic attractor. This departure is always

via a special escape route: the unstable manifold of a saddle point on the basin

boundary between the two basins of attraction.

While the author’s study here concerns a specific system with specific param-

eters, it is believed that the observed phenomena is quite general and the escape

route would be observed in a wide variety of nonlinear systems. These findings also
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suggest that a range of noise amplitude can be used to control the chaotic dynamics

without any change in system parameter values.
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Chapter 3: Safe Regions with Partial Control of a Chaotic System

in the Presence of Noise

Under the influence of noise, it has been shown that the response of many

discrete-time dynamical systems can be moved away from a particular region. In

this chapter, the partial control scheme constructed for a chaotic system is applied

for confining the trajectories inside a particular region despite the presence of white

noise as reported in the work of Agarwal et al. (2017) and Agarwal and Balachandran

(2019a). The proposed algorithm is independent of the dimension of the system. As

an illustration, the partial control method has been applied to restrict the response

of a Duffing oscillator to a certain state-space region. Different noise forms are

considered and numerical results are presented to illustrate the effectiveness of this

control method.

The rest of this chapter is organized as follows. In Section 3.1, the author

describes the concept of a safe set, the sculpting algorithm for computing a safe set,

and the partial control method for a system with white noise by using the Euler-

Maruyama integration method. In Section 3.2, an application of this method to the

response of a Duffing oscillator is considered. In particular, parameters for which

this system experiences a transient chaotic behavior are considered. In Section 3.3,
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comparisons are made between the cases with white noise and bounded noise. In this

chapter, ”bounded” noise or disturbance refers to a disturbance with finite upper

bound. Finally, conclusions are drawn together and presented in Section 3.4.

3.1 Partial Control in the Presence of White Noise

3.1.1 Escaping Trajectories

Let f be a continuous map of phase space; then, one can write as

qn+1 = f(qn), (3.1)

where the trajectory at the nth step is mapped to the (n + 1)th step. In nonlin-

ear systems, for a given choice of parameters, the trajectories may exhibit chaotic

behavior for a while before eventually leaving that particular region or reaching a

stable periodic state. As previously mentioned, this behavior is referred to as “tran-

sient chaotic” behavior, and the topological structure inside region Q associated

with transient chaotic behavior is a zero-measure set known as a chaotic saddle (Tél

and Gruiz, 2006; Alligood et al., 1997).

In various practical applications, due to external disturbances, trajectories

typically rapidly leave the region of the state space where transient chaos occurs.

To model this, the author considers that there is a white noise component σẆ (t)

that causes the trajectory qn to leave the region Q, where by leaving a region, the

author means that the trajectory is leaving that particular region Q, or it converges
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towards a fixed point or an attractor that one does not consider as being a part of

that particular region Q. In equation form, the relevant map can be written as

qn+1 = f(qn, ξn). (3.2)

Here, qn is the state at step n, f is a function with chaotic transient in Q, ξn is

the noise input. The noise input to the system is represented by σẆ (t), where σ

represents noise amplitude, W (t) represents the Wiener process and Ẇ (t) is the

associated derivative of Brownian motion. The goal is to choose a control un such

that for the partially controlled trajectories governed by

qn+1 = f(qn, ξn) + un(r), (3.3)

one can guarantee that the qn remain in region Q for an appropriate choice of control

un(r) with an upper bound of u0(r). The author refers to un(r) as feedback control

that can be chosen with the knowledge of white noise component ξn and f(qn),

or in particular f(qn, ξn). Therefore, the goal is to find an appropriate feedback

control un(r) which is a function of f(qn, ξn), and is bounded by u0(r). It is also

worth noting that the applied control un(r) is a discrete control input. To apply this

control method to a continuous dynamical system, one has to consider a discretized

state of the system. This is usually done by constructing a Poincaré section for

autonomous systems, or a stroboscopic map for non-autonomous systems such as

forced oscillators. For the current study, the author construct the stroboscopic map

with a clocking time rT , where r = 1, 2, 3, ... and T represents the time-period of the
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applied harmonic force. With this discretization, the control input required by the

partial control method un(r) is only applied discretely at regular intervals of time

(when stroboscopic maps are used) rT . At any other instant, the system is allowed

to evolve freely, without any kind of control.

In the present work, the following assumptions are made:

1. The region Q is a closed and bounded region in the phase space.

2. The applied feedback control un(r) in phase space has an upper bound u0(r),

which means that it satisfies |un(r)| ≤ u0(r). Such control un(r) is called

“admissible control”. Here, only admissible control is considered.

3. The bound on the control u0(r) depends on the noise amplitude σ and r.

Here, a safe set S is defined as the set of points in a bounded region, satisfying

the following:

1. A safe set S is a subset of Q; that is, S ⊂ Q.

2. For each point qn in phase space S (qn ∈ S), the distance of f(qn, ξn) from

S is at most u0(r). This implies that there exists an admissible control value

un(r) which has an upper bound u0(r), such that f(qn, ξn) + un(r) is in S, or

f(qn, ξn) + un(r) ∈ S. A safe set is decided by the white noise amplitude σ

and control bound u0(r).

By applying admissible control, it is possible to keep the entire trajectory qn of

equation (3.3) in S and hence in Q. Then, if q is in a safe set S ⊂ Q, the trajectories
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can be controlled to stay in S and consequently in Q by choosing the control un(r)

so that qn+1 is in S. For a bounded disturbance, wherein the disturbance ξn is

bounded by ξ0, the trajectories are allowed to be remain inside a region Q even

when the upper bound of the control u0 is smaller than the upper bound of the

disturbance ξ0 (Sabuco et al., 2012a). In prior work, safe sets have only been found

for one-dimensional and two-dimensional maps for bounded noise values of ξn ≤ ξ0

(Sabuco et al., 2012a) and the control has been applied at each time interval of T .

In the current study, while applying the partial control method, a grid of points

is used for the close bounded region Q that needs to be controlled, and the largest

safe set S is found. The control has been applied at the discrete (integer multiple)

time steps of rT .

3.1.2 Form of Safe Set

Over the last few years, researchers have considered cases with bounded noise

and found safe sets for these cases (Sabuco et al., 2012a). The algorithm for finding

a safe set for a bounded noise is available, and it is known that the shape of a safe

set can be geometrically more complicated than expected (Sabuco et al., 2012a).

In the present work, the author has followed the steps used by Sabuco et al.

(2012a). However, the author has had to change the numerical integration scheme,

since the white Gaussian noise has been considered instead of bounded noise.

In the prior section, the important properties of a point belonging to a safe

set has been mentioned. These properties will be used to develop the algorithm to
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compute safe sets by using a recursive algorithm. The algorithm is based on the

Euler-Maruyama integration scheme and it can be used to find a safe set whenever

there is a chaotic saddle in the region Q. The algorithm has been demonstrated with

a Duffing oscillator that exhibits the Wada property, which arises in the phase space

for all the basins of attraction. Due to this property, every point on the boundary

of any basin is also on the boundary of the other two basins. There also exist

fixed points and periodic attractors inside the region Q, and almost all trajectories

eventually are attracted to one of the fixed points or periodic attractors, as it is

expected for cases with transient chaos.

Figure 3.1: Partial Control of a system showing chaotic transient behavior under the
influence of white noise: The red arrow shows the mapping of a point q, under the
application of a harmonic force and white noise ξn = σẆ (t) with noise amplitude
σ. The blue arrow shows the mapping of point q, once the control un(r) is applied
to keep the the point in region Q0. The control parameter un(r) is bounded by an
upper bound value of u0(r). This method removes all the points which need a control
un(r) > u0(r). The removed points are called “unsafe” points. Once the “unsafe”
points are removed, a new region Q1 ⊂ Q0 is obtained. This process is iterated until
there is convergence to a safe set Q∞, which satisfies: Q∞ ⊂ · · · ⊂ Q1 ⊂ Q0.
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3.1.3 Sculpting Algorithm for Computing Largest Set

Consider a closed bounded region Q represented by a set of grid points that has

to be controlled. Again, the trajectory of any point q in Q without any disturbance

is given by

qn+1 = f(qn). (3.4)

The trajectories are associated with transient chaotic behavior. The application of

a white gaussian noise σẆ (t) is represented as

qn+1 = f(qn, ξn). (3.5)

Given the closed bounded set Q and upper bound of control u0(r), it is declared

that a point q in Q is “unsafe” (for Q) under the influence of white noise σẆ (t), if

the distance of f(qn, ξn) from region Q is more than the upper bound of the control

u0(r), and such f(qn, ξn) has no admissible control u for which f(qn, ξn) + u is in

Q. Then, the sculpting operation Υ that results in the removal of the unsafe points

from Q has been defined. This implies that Υ(Q) is the set of safe points in Q after

removal of the unsafe points.

The numerical simulation is started with consideration of a grid of points in

a close bounded region Q where one needs to find safe set. Then one lets Q0 = Q

and applies the sculpting operator Υ. After removal of the unsafe points from Q0,

one gets Q1 = Υ(Q0), wherein Q1 is the subset of Q0. Similarly, one computes

Q2 = Υ(Q1), which is a subset of Q1 after removal of the unsafe points from Q1.

81



In general, one iterates to compute a new set of points Qn+1 = Υ(Qn) by removing

the unsafe points from Qn for each n > 0. These sets are all compact sets as f is

continuous. The intermediate sets Qn, are the set of points that can be kept without

escapes in the region Q with the partial control method for at least n iterations. The

iteration is carried out, until there is convergence to a safe set Q∞, which satisfies

Q∞ ⊂ · · · ⊂ Q1 ⊂ Q0. The set Q∞, is the set of points that can be indefinitely

kept without escapes from the region Q through application of the partial control

method.

Now, for any point q (q ∈ Q∞), the distance of point f(q, ξn) from region Q∞

is less than the upper bound of the control u0. In other words, no unsafe point exists

within the region Q∞. After the application of the admissible control u, one gets

the point f(q, ξn) + u, which is inside Q∞. The author represents Q∞ as

Q∞ =
∞⋂
n=1

Qn. (3.6)

Also, it is noted that any safe set S in Q is a subset of Qn and consequently of

Q∞. Q∞ represents the largest safe set in Q. With this notation, the author writes

Υ(Qn+1) to be the set of points q ∈ Qn for which f(q) is in (Qn+u0(r))−ξn. Hence,

one needs to compute the sets (Qn + u0(r))− ξn to find the final safe set.

With the discussed construction of the algorithm, one might need an infinite

number of iterations to converge. This would be the general situation for a con-

tinuous state space, wherein the state space volume of the points removed at each

iteration is infinitesimally small. For this reason, from a practical point of view,
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the author recommends computation of the safe set by using a fine grid. With this

approach, one only checks the “safety” of the points of the grid, thereby helping the

algorithm converge to the safe set in a finite number of iterations. Following this

reasoning, the algorithm either converges to the safe set in a number of iterations

that is much smaller than the number of the grid points or it does not converge. In

the latter case, the author assumes that no safe set exits in the region. The draw-

back of using this approach (finite grid), is that the actual bound of control used

when controlling the real system is always going to be a little bit higher u0 + ∆u

than u0, due to the finite resolution. However the deviation of the bound of control

∆u from u0 can be made arbitrarily small by using grids with fine resolution. As a

rule of thumb, it is recommended that one uses grid resolutions 10 times smaller or

more than the bound of control required Capeáns et al. (2016).

By using the Sculpting Algorithm, it has been possible to compute safe sets for

a wide variety of systems. The necessary conditions to guarantee their existence is

the presence in the region of interest of a Smale horseshoe (Zambrano et al., 2008).

However, this is difficult to achieve in most practical cases. For this reason, the

author recommends for checking of the existence of safe sets in a particular region,

by directly applying the algorithm and checking whether there is convergence or

not.
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3.1.4 Algorithm Implementation for Duffing Oscillator

The equation of motion of a Duffing Oscillator with massm, viscous damping c,

linear stiffness k1, nonlinear stiffness k3, forcing amplitude F0, and forcing frequency

ω can be written as

mÿ + cẏ ± k1y + k3y
3 = F0 sin(ωt). (3.7)

where ‘+’ sign corresponds to a Duffing oscillator with a hardening stiffness charac-

teristic, ‘−’ sign corresponds to a Duffing oscillator with a softening characteristic,

and an overdot represents differentiation with respect to time. The harmonic excita-

tion or deterministic input is represented by F sinωt. After substituting x =
√

k3
k1
y

and τ = ωnt into equation (3.7), and simplifying, the resulting non-dimensional form

of the Duffing equation reads as follows:

ẍ+ 2ζẋ± αx+ αx3 = γ sin(Ωτ). (3.8)

Here, ωn represents the natural frequency of the system, ζ = c
2mωn

, α = k1
mω2

n
, and

γ = F0

mω2
n

√
k3
k1

.

In addition equation (3.8) can be written in the state-space form as


ẋ1 = x2

ẋ2 = −2ζx2 ∓ αx1 − αx3
1 + γ sin(Ωτ),

(3.9)

84



where x1 = x, and x2 = ẋ.

The author considers q = (x1, x2)T and for the (p+ 1)th step, has



x1(p+ 1) = x1(p) + x2(p)dt

x2(p+ 1) = x2(p) + [−2ζx2(p)∓ αx1(p)

−αx3
1(p) + γ sin(Ωτ)]dt.

(3.10)

The above equation takes the form of equation (3.4). Here, qp+1 = (x1, x2)Tp+1, and

the right hand side of the equation represents f(qp) or f(qn).

After the introduction of the white noise into the Duffing oscillator, equation

(3.8) is modified as

ẍ+ 2ζẋ± αx+ αx3 = γ sin(Ωτ) + σẆ (t). (3.11)

By following the steps used to arrive at equation (3.10) in state-space form,

the above equation can be written in the Langevin form of a differential equation;

that is, 

x1(p+ 1) = x1(p) + x2(p)dt

x2(p+ 1) = x2(p) + [−2ζx2(p)∓ αx1(p)

−αx3
1(p) + γ sin(Ωτ) + σẆ (t)]dt.

(3.12)

Here, σ represents the noise amplitude, and Ẇ (t) is a “mnemonic” derivative. The
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above equation can be simplified to



x1(p+ 1) = x1(p) + x2(p)dt

x2(p+ 1) = x2(p) + [−2ζx2(p)∓ αx1(p)

−αx3
1(p) + γ sin(Ωτ)]dt+ σdW.

(3.13)

It is mentioned that in this differential form, one no longer has the derivative of the

Brownian motion (which does not exist) but a differential white noise which does

exist. Now, the Euler-Maruyama method can be used to obtain numerical solutions

of equation (3.13). In this form, p is associated with the time step in the solver.

The quantity dW , is the incremental noise, which has a mean that is equal to zero

and a standard deviation that is equal to
√
dt.

The system represented by equation (3.13) can be written compactly as

qp+1 = f(qp, σdW ), (3.14)

where qp+1 is also dependent on the noise input. The author calls qp+1 as the the

image point of qp with noise after time step dt.

The author calls qn+1 the image point of qn after a time rT , as shown in Figure

3.2. Alternatively, the equation can be written as

qn+1 = f(qn, ξn), (3.15)

where ξn represents the input noise vector.
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Figure 3.2: Integration and control steps. The simulation has been done considering
a step size of dt, which maps qp to qp+1. qn+1 is the image point of qn after a time
which is an integer multiple of time period of harmonic force. ξn represents the
noise vector applied. The control un(r) is applied at each time step of rT . Here,
T = 2π/Ω and r = 1, 2, 3, ....

For the application of a bounded control, the above equation can be extended

as

qn+1 = f(qn, ξn) + un(r). (3.16)

Here, the control un(r) is a bounded control, which means |un(r)| ≤ u0(r).

In the presence of white noise, the steps involved in implementing the partial

control algorithm for a continuous time system, such as a Duffing oscillator, are as

follows:

1. Start by selecting a grid of points in region Q0 where the trajectories exhibit

a transient chaotic behavior. Introduce white noise as σẆ (t) and for each

point qn in region Q0 (q ∈ Q0), and estimate the image point qn+1 by using

the Euler-Maruyama Scheme.

2. Based on the value noise vector, for each grid point, compute the maximum

distance between the image point with noise and the image point without

noise. The maximum distance between them represents the upper bound of
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the disturbance to apply the Sculpting Algorithm. Based on values of qn, noise

vector, and the function f , choose the upper bound of the control u0. If one

chooses upper bound u0 to be too small, the resulting safe set would be an

empty set, and if the trajectory without control (equation (3.14)) is inside the

region Qn, un = 0; otherwise, one needs to apply a non-zero control un.

3. The goal is to maintain the trajectory inside a region Q0. To accomplish this,

verify whether the point is a safe point or not. Calculate qn+1 = f(qn, ξn) +un

under the application of noise and control, and keep qn+1 inside the safe set. If

all of the points after the application of a control un, which satisfies |un| ≤ u0,

are inside the region Qn, the set is a safe set. Otherwise, one needs to remove

the unsafe points which are points that need a control un > u0 from Qn.

4. After removal of all of the unsafe points from Qn which do not satisfy the

control criteria, iterate to get to the next set of region Qn+1, which is a subset

of Qn. Again, check the conditions on the iterated points, whether they are

safe or not as mentioned in step 3. Repeat this process until one gets the final

safe set, where Qn = Qn+1. Represent the safe set as Q∞.

The results obtained for the Duffing oscillator are presented in the next section.
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3.2 Results: Application of Partial Control Method to Duffing Os-

cillator

To demonstrate the algorithm, the author uses the Duffing oscillator parame-

ters used previously by Sabuco et al. (2012a); that is,

ẍ+ 0.15ẋ− x+ x3 = 0.245 sin(t). (3.17)

For this particular choice of parameters used in equation (3.17), the Duffing os-

cillator experiences a transient chaotic behavior; the trajectories exhibit chaotic

characteristics for a finite amount of time in a compact region Q, until they move

to a final state. Depending on the initial conditions, the final state can be a fixed

point, or a periodic attractor, or a region outside the bounded region Q. For the

particular parameters considered, depending on the stroboscopic map clocking time

(rT ), the system as given by equation (3.17) has either three attractors including

two fixed points and one period 3 orbit or five fixed points. The basin of attraction

for different stroboscopic maps are shown in Figure 3.3 and approximate locations

of the fixed points are shown in Table 3.1.

With these parameters values, the Duffing oscillator given by equation (3.17)

possesses a very interesting property called the Wada property (Aguirre and Sanjuán,

2002); that is, every point on the boundary of any basin shares the boundary of the

other two basins.
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(a) Clocking time: (3k + 1)T ; k = 0, 1, 2, ... (b) Clocking time: (3k + 2)T ; k = 0, 1, 2, ...

(c) Clocking time: 3(k + 1)T ; k = 0, 1, 2, ...

Figure 3.3: Basin of attraction with different clocking time for the Duffing oscillator
given in equation (3.17). In this system, in general there are three different clocking
time are present. T represents the forcing time period which is T = 2π/Ω = 1.
Different colors represents different attractors. P1 represents fixed points (period-
1 attractor) and P3 represents period-3 attractor. The approximate locations are
shown in Table 3.1.

90



Table 3.1: Attractors for the Duffing oscillator given in equation (3.17)

Attractor Clocking time: (3k + 1)T ; k = 0, 1, 2, ...

Period-1 Attractor (P1) (0.815, 0.242); (−0.933, 0.299)
Period-3 Attractor (P3) (−1.412,−0.137); (−0.354,−0.614); (0.645,−0.464)

Attractor Clocking time: (3k + 2)T ; k = 0, 1, 2, ...

Period-1 Attractor (P1) (0.815, 0.242); (−0.933, 0.299)
Period-3 Attractor (P3) (−1.412,−0.137); (−0.354,−0.614); (0.645,−0.464)

Attractor Clocking time: 3(k + 1)T ; k = 0, 1, 2, ...

Period-1 Attractor (P1) (0.815, 0.242); (−0.933, 0.299);
(−1.412,−0.137); (−0.354,−0.614); (0.645,−0.464)

Period-3 Attractor (P3) No period-3 attractor

As mentioned in the previous section, the application of the partial control al-

gorithm to the Duffing oscillator here differs from the previous applications (Sabuco

et al., 2012a), due to the form of the noise. For the present case, let q = (x, ẋ)T ,

and let f(q) be the stroboscopic time map of the nonautonomous oscillator given

by equation (3.17). Here, a square [−2, 2] × [−2, 2] has been chosen as the region

of interest Q, where the unperturbed and uncontrolled Duffing oscillator is given by

equation (3.17). This system exhibits a transient chaotic behavior and the goal is

to maintain the trajectory inside the region Q and away from the attracting fixed

points and attracting periodic orbit of period 3. Depending on the initial conditions,

the final state of the unperturbed and uncontrolled system (equation (3.17)) can be

a fixed point, a periodic attractor, or a region outside the bounded region Q. With

the goal of maintaining trajectories far away from these attractors, the partial con-

trol technique has been applied by taking into consideration the forcing amplitude

and disturbance ξn that depends on the noise value σẆ (t). Given the clocking time
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rT , the applied control un(r) is bounded by the maximum control value u0(r).

As an illustrative example, the author has used a grid of 3000×3000 points in

the square [−2, 2]× [−2, 2] and computed the safe set for the noise amplitude value

σ = 0.002 and the control is applied at discrete time intervals. The upper bound of

the control u0(r) depends on the clocking time. The author started with all of the

grid points and removed a circle of radius 0.2 units around each attractor orbit (P1

and P3) to prevent the periodic behavior. In order to compute the noise bound,

for each grid point, the distance between image point with noise and image point

without noise has been computed . The iterations have been done for 100 different

noise vectors and the maximum distance has been picked up as representing the

noise bound. The region with few points that have a large maximum disturbance

(more than 0.1) and also, need a large control; that is, u > 0.1, has been removed.

The remaining region has been considered as the initial set where the Sculpting

Algorithm has been applied. Then, the author has implemented the previously

described Sculpting Algorithm to remove the “unsafe” points and keep the “safe”

points after each iteration, until there is final convergence to a safe set. For this

specific choice of σ and u0, it took 9 iterations of Sculpting Algorithm Υ to obtain

the safe set. After each iteration, the number of grid points inside the region Qn

has been computed . Finally, when the number of points in sets Qn and Qn+1 are

the same (Qn+1 = Qn), the Sculpting Algorithm iteration process is stopped.
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Figure 3.4: Safe set sculpting algorithm: (a) Initial set to start the Sculpting Al-
gorithm. (b) Final Safe Set after 9 iterations. (c) Number of points per iteration.
The Sculpting Algorithm has been applied for white noise of amplitude σ = 0.002.
The control has been applied at discrete time interval of T with T = 2π and upper
bound of the control u0(1) = 0.06. Numerical integration has been done using the
Euler-Maruyama scheme. In each step, part of the region Q is removed. Blue col-
ored regions represent the part of the set that remains after each iteration. After
several iterations, there is convergence to a safe set, which is represented by Q∞ as
shown in (b).
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(a) Initial Set (b) Largest Safe Region

(c) Number of Grid Points after each Iteration

Figure 3.5: Safe set sculpting algorithm: (a) Initial set to start the Sculpting Al-
gorithm. (b) Final Safe Set after 7 iterations. (c) Number of points per iteration.
The Sculpting Algorithm has been applied for white noise of amplitude σ = 0.002.
The control has been applied at discrete time interval of 2T with T = 2π and up-
per bound of the control u0(2) = 0.04. Numerical integration has been done using
the Euler-Maruyama scheme. In each step, part of the region Q is removed. Blue
colored regions represent the part of the set that remains after each iteration. After
several iterations, there is convergence to a safe set, which is represented by Q∞ as
shown in (b).
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(a) Initial Set (b) Largest Safe Region

(c) Number of Grid Points after each Iteration

Figure 3.6: Safe set sculpting algorithm: (a) Initial set to start the Sculpting Al-
gorithm. (b) Final Safe Set after 7 iterations. (c) Number of points per iteration.
The Sculpting Algorithm has been applied for white noise of amplitude σ = 0.002.
The control has been applied at discrete time interval of 3T with T = 2π and upper
bound of the control u0(3) = 0.035. Numerical integration has been done using
the Euler-Maruyama scheme. In each step, part of the region Q is removed. Blue
colored regions represent the part of the set that remains after each iteration. After
several iterations, there is convergence to a safe set, which is represented by Q∞ as
shown in (b).
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(a) Initial Set (b) Largest Safe Region

(c) Number of Grid Points after each Iteration

Figure 3.7: Safe set sculpting algorithm: (a) Initial set to start the Sculpting Al-
gorithm. (b) Final Safe Set after 7 iterations. (c) Number of points per iteration.
The Sculpting Algorithm has been applied for white noise of amplitude σ = 0.002.
The control has been applied at discrete time interval of 5T with T = 2π and up-
per bound of the control u0(5) = 0.04. Numerical integration has been done using
the Euler-Maruyama scheme. In each step, part of the region Q is removed. Blue
colored regions represent the part of the set that remains after each iteration. After
several iterations, there is convergence to a safe set, which is represented by Q∞ as
shown in (b).
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(a) Initial Set (b) Largest Safe Region

(c) Number of Grid Points after each Iteration

Figure 3.8: Safe set sculpting algorithm: (a) Initial set to start the Sculpting Algo-
rithm. (b) Final Safe Set after 8 iterations. (c) Number of points per iteration. The
Sculpting Algorithm has been applied for white noise of amplitude σ = 0.002. The
control has been applied at discrete time interval of 10T with T = 2π and upper
bound of the control u0(10) = 0.07. Numerical integration has been done using
the Euler-Maruyama scheme. In each step, part of the region Q is removed. Blue
colored regions represent the part of the set that remains after each iteration. After
several iterations, there is convergence to a safe set, which is represented by Q∞ as
shown in (b).
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(a) Initial Set (b) Largest Safe Region

(c) Number of Grid Points after each Iteration

Figure 3.9: Safe set sculpting algorithm: (a) Initial set to start the Sculpting Algo-
rithm. (b) Final Safe Set after 6 iterations. (c) Number of points per iteration. The
Sculpting Algorithm has been applied for white noise of amplitude σ = 0.002. The
control has been applied at discrete time interval of 15T with T = 2π and upper
bound of the control u0(15) = 0.08. Numerical integration has been done using
the Euler-Maruyama scheme. In each step, part of the region Q is removed. Blue
colored regions represent the part of the set that remains after each iteration. After
several iterations, there is convergence to a safe set, which is represented by Q∞ as
shown in (b).
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The safe set Sculpting Algorithm has been applied to a map associated with

the Duffing oscillator. The results with different discrete time control are shown

in Figures 3.4 to 3.9. It is found that there is always a minimum value of control

u0(r) which corresponds to the smallest u0(r) for which there exists a safe set. For a

control bound less than u0(r), there were no safe sets for the Duffing oscillator given

by equation (3.17). The safe set disappears for values of the control bound smaller

than u0(r), because for all of the points in Q there is always an admissible noise

(within the disturbance bound) for which there is no admissible control (within the

control bound) able to put the trajectory again on any safe region. Therefore the

algorithm converges to the empty set. The control bound values u0(r) with different

clocking time are presented in Table 3.2.

3.3 Studies of Case with Bounded Noise

As a further study, for a particular value of bounded noise, the results obtained

by using the Euler-Maruyama scheme and the Runge-Kutta method are discussed.

In particular, the Duffing system given by equation (3.17) is studied. For the current

section, the Sculpting Algorithm is applied to the time-2π map (i.e., control at each

T ).
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Figure 3.10: Safe set sculpting algorithm: (a) Initial set to start the Sculpting
Algorithm. (b) Final Safe Set after 11 iterations. (c) Number of points per iteration.
The Sculpting Algorithm has been applied for a case with noise that is bounded by
ξ0 = 0.08, and upper bound of the control u0 = 0.0475. Numerical integration has
been carried by using the Runge-Kutta method. In each step, part of the region
Q is removed. Blue colored regions represent the part of the set that remains after
each iteration. After several iterations, there is convergence to a safe set, which is
represented by Q∞ as shown in (b).
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Figure 3.11: Safe set sculpting algorithm: (a) Initial set to start the Sculpting
Algorithm. (b) Final Safe Set after 13 iterations. (c) Number of points per iteration.
The Sculpting Algorithm has been applied for noise that is bounded by ξ0 = 0.08,
and upper bound of the control u0 = 0.0475. Numerical integration has been done
using the Euler-Maruyama scheme. In each step, part of the region Q is removed.
Blue colored regions represent the part of the set that remains after each iteration.
After several iterations, there is convergence to a safe set, which is represented by
Q∞ as shown in (b).
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Figure 3.12: Safe set sculpting algorithm: (a) Initial set to start the Sculpting
Algorithm (b) Final Safe Set after 12 iterations (c) Number of points per iteration.
The Sculpting Algorithm has been applied for noise that is bounded by ξ0 = 0.08,
and upper bound of the control u0 = 0.0470. Numerical integration has been done
using the Euler-Maruyama scheme. In each step, part of the region Q is removed.
Blue colored regions represent the part of the set that remains after each iteration.
After several iterations, there is convergence to a safe set, which is represented by
Q∞ as shown in (b).
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3.3.1 Implementation Based on Runge-Kutta Scheme

The author starts with an upper bound of noise ξ0 = 0.08, and an upper bound

of control u0 = 0.0475. For this case, the Runge-Kutta method is used to find the

image qn+1 of any point qn. Furthermore, the Sculpting Algorithm is applied to get

a safe set. The results are shown in Figure 3.10 (Sabuco et al., 2012a).

It has been found that it is possible to maintain a chaotic behavior indefinitely

with an upper bound of control u0 = 0.0475, which is smaller than the upper bound

of the disturbance ξ0 = 0.08. For any upper bound of control less than 0.0475 for

the same upper bound of noise ξ0 = 0.08, no safe set was found; that is the obtained

safe set is an empty set.

3.3.2 Implementation Based on Euler-Maruyama Scheme

Here, as in the previous section, the numerical simulation is started with an

upper bound of noise ξ0 = 0.08, and an upper bound of control u0 = 0.0475. The

Euler-Maruyama scheme has been used to find the image qn+1 of any point qn. Next,

the Sculpting Algorithm has been applied to get a safe set. The results are shown in

Figure 3.11. It is also shown clearly here, how the safe set obtained with the Euler-

Maruyama integration scheme (panel 13 in Figure 3.11), is substantially different

from the safe set obtained with the Runge-Kutta integration scheme (panel 11 in

Figure 3.10), for the same parameters bounds on control and noise.
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(a)

(b)

Figure 3.13: Controlled Trajectory: In plot (a), the trajectory obtained by con-
sidering as initial condition the point shown as green dot, which is inside the safe
sate (blue region) in the presence of white noise (σ = 0.002). The control has been
applied at discrete time intervals of T with T = 2π. (The associated safe set is
shown in Figure 3.4.) The red dots represent the controlled trajectory for 15000
iterations. In plot (b), the applied control input for each iteration is shown. The
control is bounded by the value u0(1) = 0.06 that is the upper bound of the control
for this particular safe set.
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(a)

(b)

Figure 3.14: Controlled Trajectory: In plot (a), the trajectory obtained by con-
sidering as initial condition the point shown as green dot, which is inside the safe
sate (blue region) in the presence of white noise (σ = 0.002). The control has been
applied at discrete time intervals of 2T with T = 2π. (The associated safe set is
shown in Figure 3.5.) The red dots represent the controlled trajectory for 15000
iterations. In plot (b), the applied control input for each iteration is shown. The
control is bounded by the value u0(2) = 0.04 that is the upper bound of the control
for this particular safe set.
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(a)

(b)

Figure 3.15: Controlled Trajectory: In plot (a), the trajectory obtained by con-
sidering as initial condition the point shown as green dot, which is inside the safe
sate (blue region) in the presence of white noise (σ = 0.002). The control has been
applied at discrete time intervals of 3T with T = 2π. (The associated safe set is
shown in Figure 3.6.) The red dots represent the controlled trajectory for 15000
iterations. In plot (b), the applied control input for each iteration is shown. The
control is bounded by the value u0(3) = 0.035 that is the upper bound of the control
for this particular safe set.
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(a)

(b)

Figure 3.16: Controlled Trajectory: In plot (a), the trajectory obtained by con-
sidering as initial condition the point shown as green dot, which is inside the safe
sate (blue region) in the presence of white noise (σ = 0.002). The control has been
applied at discrete time intervals of 5T with T = 2π. (The associated safe set is
shown in Figure 3.7.) The red dots represent the controlled trajectory for 15000
iterations. In plot (b), the applied control input for each iteration is shown. The
control is bounded by the value u0(5) = 0.04 that is the upper bound of the control
for this particular safe set.
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(a)

(b)

Figure 3.17: Controlled Trajectory: In plot (a), the trajectory obtained by con-
sidering as initial condition the point shown as green dot, which is inside the safe
sate (blue region) in the presence of white noise (σ = 0.002). The control has been
applied at discrete time intervals of 10T with T = 2π. (The associated safe set is
shown in Figure 3.8.) The red dots represent the controlled trajectory for 15000
iterations. In plot (b), the applied control input for each iteration is shown. The
control is bounded by the value u0(10) = 0.07 that is the upper bound of the control
for this particular safe set.

108



(a)

(b)

Figure 3.18: Controlled Trajectory: In plot (a), the trajectory obtained by consid-
ering as initial condition the point shown as green dot, which is inside the safe sate
(blue region) in the presence of white noise (σ = 0.002) . The control has been
applied at discrete time intervals of 15T with T = 2π. (The associated safe set is
shown in Figure 3.9.) The red dots represent the controlled trajectory for 15000
iterations. In plot (b), the applied control input for each iteration is shown. The
control is bounded by the value u0(15) = 0.08 that is the upper bound of the control
for this particular safe set.
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Table 3.2: Control bound and safe regions for the applied partial control

Control Time Interval Control Bound u0 Safe Region (% of Total Area)

T u0(1) = 0.06 62
2T u0(2) = 0.04 50.1
3T u0(3) = 0.035 37.9
5T u0(5) = 0.04 19.8
10T u0(10) = 0.07 2.9
15T u0(15) = 0.08 0.6

It has been found that it is possible to maintain chaotic behavior indefinitely

with an upper bound of control u0 = 0.0475. With the use of the Runge-Kutta

scheme for any upper bound of control less than 0.0475, no safe set exists. But,

with the use of the Euler-Maruyama scheme, it has been found that a minimum

upper bound for the existence of a safe set is u0 = 0.0470. This suggests that with

the use of the Euler-Maruyama scheme, one can have a safe set with a lower control

value than with that for the Runge-Kutta scheme. For example, the safe set for a

control u0 = 0.0470 is shown in Figure 3.12. With this numerical integration scheme,

for any upper bound of control smaller than 0.0470 for the same upper bound of

noise ξ0 = 0.08, no safe set was found. It other words, the obtained safe set is an

empty set.

The controlled trajectories of 15000 iterations in the presence of white noise

(σ = 0.002) have been shown in Figures 3.13 to 3.18 where the control is bounded

in value by u0(r) as represented in Table 3.2.
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3.4 Conclusions

In this chapter, the author has presented the partial control method based on

the Euler-Maruyama scheme for finding safe sets for continuous time systems with

white noise. A harmonically forced Duffing oscillator has been used as a represen-

tative prototype to illustrate the development as well as to make comparisons with

prior work, wherein a bounded noise has been used. As shown in this work, by using

the control method developed, one can keep trajectories confined inside a prescribed

region and maintain a transient chaotic behavior. For the control method presented

here, the value of the upper bound of control u0(r) has been chosen based on the

value of noise amplitude σ, clocking time rT , and harmonic forcing amplitude F .

This is the first demonstration of partial control applied at time interval other than

T . It has been observed that the system can be controlled with a relatively smaller

magnitude control bound (u0) when the control is applied at different discrete time

intervals (e.g., here, the minimum control bound u0(3) = 0.035, when the control is

applied at each time interval of 3T ) but, there is a limitation in further increasing

the applied control time interval if the response of the system escapes in between.
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Chapter 4: Noise-Influenced Rotor Dynamics

In this chapter, torsional vibrations and whirling motions of a Jeffcott rotor

confined within a fixed stator are analytically and numerically explored for both

forward and backward whirling motions. The work in this chapter is a part of the

study conducted by Agarwal and Balachandran (2019b). The governing equations

are constructed in a generalized polar coordinate system for describing non-constant

whirling speeds and impact motions. Torsional vibrations and whirling motions

are examined by using the derived reduced-order equations. It is found that both

forward and backward whirling motions with contact have different, but constant

steady state whirling speeds. Furthermore, the effects of introduction of noise in

driving speed have been explored. The trigonometric representation of non-Gaussian

excitation as a harmonic excitation with a random phase modulation is modified by

introducing a new state variable. The Euler-Maruyama simulation scheme is used

for numerical integration. It is observed that for a small value of friction coefficient,

a sufficient level of noise amplitude affects the system dynamics for the cases of

forward and backward whirling with contact.

The rest of this chapter is organized as follows. In Section 4.1, the model-

ing efforts undertaken to derive the governing equations with a generalized polar
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Table 4.1: Nomenclature describing the quantities governing the Jeffcott rotor.

Nomenclature
r Radial distance between geometric centers of rotor and stator
φ Whirl angle
θ Torsional angle

φ̇ Whirling speed (frequency)

Ω̇ Rotor driving speed (frequency)
M Rotor mass
m Unbalanced mass
R Rotor radius
e Eccentricity
δ static clearance between rotor and stator
kb Lateral stiffness
k Torsion stiffness
cb Lateral damping
cb Torsion damping
J Total rotary inertia of the rotor with mass imbalance
ωfor Forward whirling speed
ωback Backward whirling speed
µ Friction coefficient

Ẇ (t) White Gaussian noise
σ Amplitude of noise for numerical simulations
xi State space variables

coordinate system are presented. Further, reduced-order equations are derived for

continuous rotor-stator contact. Euler-Maruyama simulations are presented. In Sec-

tion 4.2, the numerical results for both deterministic and stochastic dynamics are

presented. Finally, conclusions are drawn and presented together in Section 4.3.

4.1 Mathematical Modeling

4.1.1 Governing Equations Without Noise: Full Model

A schematic diagram of an extended Jeffcott rotor is shown in Figure 4.1(a).

This system is capable of exhibiting torsional vibrations as well as whirling motions
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(a)

(b)

Figure 4.1: Extended Jeffcott Rotor-Stator Model: (a) Static configuration (rotor
within the stator). (b) Dynamic configuration (continuous rotor-stator contact).
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with or without stator contact. The author chose (r, φ, θ) as generalized coordinates

to understand the dynamics of the Jeffcott rotor. Here, r represents the distance

of the geometric center of the moving rotor (point ’C’) from the fixed center of

the stator (point ‘O’). φ and θ represent whirling angle and torsional deformation

respectively. It can also be said that r and φ account for lateral deformation and θ

accounts for torsional deformation. The center of rotor with radius R, mass M , and

an unbalanced mass m with eccentricity e coincides with the center of the stator.

The static clearance between the rotor and the stator is δ. The geometric center

of the rotor without the mass imbalance coincides with its center of mass. Due to

a choice of symmetric rotor, the equivalent lateral stiffness values is kx = ky = kb

and the lateral damping is assumed to be cx = cy = cb. The torsion stiffness is k

and the associated torsion damping is c. For a particular dynamic state, the rotor-

stator system configuration is displayed in Figure 4.1(b). The gyroscopic effects

are assumed to be negligible and it is assumed that the rotor experiences planar

motion. The gravity loading is normal to the rotor plane. There are three sets of

unit vectors, namely u1-u2, v1-v2, and w1-w2, which are placed at the geometric

center of the rotor. u1 and u2 are orthogonal unit vectors in an inertial frame. The

orthogonal unit vectors v1 and v2, which are fixed to the geometric center of the

rotor, rotate with the driving angular speed Ω with respect to u1-u2. The orthogonal

unit vectors w1 and w2, which also are fixed to the geometric center of the rotor,

are displaced by a radial amount of torsional deformation θ(t) with respect to the

set v1-v2. Furthermore, no gyroscopic effects due to rotations about the u1 and

u2 axes have been taken into account and the rotor is only able to undergo planar
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motions. A constraint as a result of planar motion is imposed as u3 = v3 = w3

for all time t, where u3 = u1 × u2, v3 = v1 × v2, and w3 = w1 × w2. In static

configuration, at time t = 0, u1 ≡ v1 ≡ w1, u2 ≡ v2 ≡ w2 and the mass imbalance

m is located along the u1-axis.

The governing equations of motion have been derived by using Lagrange’s

equations. To do this, the kinetic energy of the rotor system with mass imbalance

is constructed as

T =
1

2
M(ṙ2 +r2φ̇2)+

Joβ̇
2

2
+
m

2

[
ṙ2 +r2φ̇2 +e2β̇2 +2eβ̇

{
ṙ sin(φ−β)+rφ̇ cos(φ−β)

}]
(4.1)

where Jo is the mass moment of inertia of the rotor without mass imbalance about

the axis normal to the rotor plane and passing through its center. β(t) ≡ β =

θ(t) + Ωt includes the torsional deformation and rigid body rotation. The overdots

represent derivatives with respect to time. The above equation can be simplified as

T =
1

2
(M +m)(ṙ2 + r2φ̇2) +

Jβ̇2

2
+meβ̇

{
ṙ sin(φ− β) + rφ̇ cos(φ− β)

}
(4.2)

where J = J0 + me2 is the total rotary inertia of the rotor with mass imbalance.

The potential energy of the system can be expressed as

V =
1

2

[
kbr

2 + kθ2
]

(4.3)
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The Rayleigh’s dissipation function is given by

D =
1

2

[
cb(ṙ

2 + r2φ̇2) + cθ̇2
]

(4.4)

Then, the governing equations of motion are derived using Lagrange’s equations and

can be simplified as



(M +m)r̈ +me sin(φ− β)θ̈ + cbṙ + kbr

= (M +m)rφ̇2 +meβ̇2 cos(φ− β)− Fn

(M +m)rφ̈+me cos(φ− β)θ̈ + cbrφ̇

= −2(M +m)ṙφ̇−meβ̇2 sin(φ− β) + Ft

me sin(φ− β)r̈ +mer cos(φ− β)φ̈+ Jθ̈ + cθ̇ + kθ

= me
[
rφ̇2 sin(φ− β)− 2ṙφ̇ cos(φ− β)

]
+Mt

(4.5)

The contact forces Fn, Ft, and the moment Mt will be zero until the displace-

ment r of the center of the rotor, becomes equal to the clearance δ, or the rotor

comes into contact with the stator.

The contact normal force acting on the rotor can explicitly be written as

Fn =


0 for r ≤ δ

ks(r − δ) for r > δ

(4.6)
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Given the friction coefficient µ, the friction force is given by

Ft = −µFn (4.7)

The moment can be written as

Mt = FtR (4.8)

The friction model is adapted from Leine and Nijmeijer (2013), Thomsen

(2013), and Vlajic et al. (2014b), and it can be expressed as


µ(vrel) = µssgn(vrel)− 3

2
(µs − µm)

(
vrel
vm
− 1

3

(
vrel
vm

)3
)

= µssgn(vrel)− µ1vrel + µ3v
3
rel

(4.9)

where µs is the static friction coefficient, and µm is the minimum friction coefficient

at vrel = vm.

The signum function used in equation (4.9) does lead to difficulties when nu-

merically integrating the system. Therefore, as in Vlajic et al. (2014b), during

numerical integration, equation (4.9) is replaced with

µ(vrel) = µs
2

π
arctan(δfvrel)−

3

2
(µs − µm)

(
vrel
vm
− 1

3

(
vrel
vm

)3
)

(4.10)
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Table 4.2: Parameter values used in simulations

Parameter Value Units

cb 0.02 N · s/m
c 1.8 e−4 N ·m · s/rad
e 0.05 m
M 1 kg
m 0.05 kg
kb 1 N/m
ks 1e4 N/m
k 0.05 N ·m/rad
R 0.05 m
vm 0.15 m/s
δ 0.01 m
δf 1e6 -
µs 1.05 µm -
µm {0.005,0.05} -

where for δf � 1, normalized arctangent in equation (4.10) closely resembles the

signum function in equation (4.9).

The relative speed between the rotor and stator surface at the point of contact

is given by

vrel =
(
Ω + θ̇

)
R + rφ̇ (4.11)

where φ̇ and Ω represent the whirling speed and the driving speed respectively.

For the current study, the whirling speed is not assumed to be constant unless

mentioned.
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4.1.2 Governing Equations Without Noise: Continuous Rotor-Stator

Contact and Reduced-Order Model

In this section, the rotor is assumed to maintain contact with the stator while

the whirling speed is not assumed to be constant, with the corresponding radial

displacement r = δ. With the substitution of r = δ, ṙ = 0, and r̈ = 0, the system

of equations given by equations (4.5) can be reduced to



(M +m)δφ̈+me cos(φ− β)θ̈ + cbδφ̇ = −meβ̇2 sin(φ− β) + Ft

meδ cos(φ− β)φ̈+ Jθ̈ + cθ̇ + kθ = meδφ̇2 sin(φ− β) +Mt

(4.12)

Given that the eccentricity e is much smaller than the clearance δ and the

unbalanced mass m is much smaller than the rotor mass M , which is usually the

case in most rotor systems, as in the work of Vlajic et al. (2014b), the contact forces

can be approximated as



Fn = (M +m)δφ̇2 − kbδ

Ft = −µFn

Mt = FtR

(4.13)
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4.1.3 Governing Equations With Noise

In the current section, the rotor drive input includes a deterministic input and

white Gaussian noise. The addition of noise can be expressed as

β̇ = Ω + θ̇(t) + σẆ (t) (4.14)

where the deterministic drive speed component is represented by Ω, θ̇ represents the

torsional vibration, and the noise input to the system is represented by σẆ (t), where

σ represents the noise amplitude used in the numerical simulation, W (t) represents

the standard Wiener process, and Ẇ (t) is a “mnemonic” derivative.

For the convenience of numerical simulations, the noise amplitude is chosen to

be small in comparison to the deterministic drive speed Ω. It can be approximated

as

β̇2 ≈
(
Ω + θ̇(t)

)2
+ σ

(
Ω + θ̇(t)

)
Ẇ (t) (4.15)

It is mentioned that in this differential form, one no longer has the derivative of

the Brownian motion (which does not exist) but a differential white noise which does

exist. Therefore, equations (4.5) and (4.12) in presence of noise are extended in state-

space form. As given in equations (4.5), (4.12), and (4.14), the noise is in the phase

of a trigonometric function. This is called as trigonometric function representation

of non-Gaussian processes where the trigonometric functions represent harmonic
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excitation with random phase modulation (Dimentberg, 1988).

Full Model with Noise: The state variables are defined as



x1 = r; x4 = ṙ; x7 = sin(φ− β)

x2 = φ; x5 = φ̇; x8 = cos(φ− β)

x3 = θ; x6 = θ̇

(4.16)

Equation (4.5) can be rewritten in state-space form as
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

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

(M +m)ẋ4 +mex7ẋ6 =
[
− cbx4 − kbx1 + (M +m)x1x

2
5

+mex8(x6 + Ω)2 − Fn +mex8σ(x6 + Ω)Ẇ (t)
]

(M +m)x1ẋ5 +mex8ẋ6 =
[
− cbx1x5 − 2(M +m)x4x5

−mex7(x6 + Ω)2 + Ft −mex7σ(x6 + Ω)Ẇ (t)
]

mex7ẋ4 +mex1x8ẋ5 + Jẋ6 =
[
− cx6 − kx3

+mex1x
2
5x7 − 2mex4x5x8 +Mt

]

ẋ7 = x8

[
x5 − x6 − Ω− σẆ (t)

]
ẋ8 = −x7

[
x5 − x6 − Ω− σẆ (t)

]

(4.17)

In order to carry out numerical studies, the above equations are expressed in

the Langevin form as
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

dx1 = x4dt

dx2 = x5dt

dx3 = x6dt

(M +m)dx4 +mex7dx6 =
[
− cbx4 − kbx1 + (M +m)x1x

2
5

+mex8(x6 + Ω)2 − Fn
]
dt+mex8σ(x6 + Ω)dW

(M +m)x1dx5 +mex8dx6 =
[
− cbx1x5 − 2(M +m)x4x5

−mex7(x6 + Ω)2 + Ft

]
dt−mex7σ(x6 + Ω)dW

mex7dx4 +mex1x8dx5 + Jdx6 =
[
− cx6 − kx3

+mex1x
2
5x7 − 2mex4x5x8 +Mt

]
dt

dx7 = x8(x5 − x6 − Ω)dt− σx8dW

dx8 = −x7(x5 − x6 − Ω)dt+ σx7dW

(4.18)

The quantity dW , is the incremental noise, which has a mean value of zero and

standard deviation equal to
√
dt. Noting the constraint equation x2

7 + x2
8 = 1, the

Euler-Maruyama method is used to obtain numerical solutions of equations (4.18).

Reduced Model with Noise: For the reduced model, r = δ, ṙ = 0, and
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r̈ = 0. The rotor is in continuous contact with the stator and the state variables are

defined as


x1 = φ; x3 = φ̇; x5 = sin(φ− β)

x2 = θ; x4 = θ̇; x6 = cos(φ− β)

(4.19)

Equation (4.17) can be written in the state-space form as



ẋ1 = x3

ẋ2 = x4

(M +m)δẋ3 +mex6ẋ4 =
[
− cbδx3

−mex5(x4 + Ω)2 + Ft −mex5σ(x4 + Ω)Ẇ (t)
]

meδx6ẋ3 + Jẋ4 =
[
− cx4 − kx2

+meδx2
3x5 +Mt

]

ẋ5 = x6

[
x3 − x4 − Ω− σẆ (t)

]
ẋ6 = −x5

[
x3 − x4 − Ω− σẆ (t)

]

(4.20)

In order to carry out numerical studies, similar to the full model, the above
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equations are expressed in the Langevin form as



dx1 = x3dt

dx2 = x4dt

(M +m)δdx3 +mex6dx4 =
[
− cbδx3

−mex5(x4 + Ω)2 + Ft

]
dt−mex5σ(x4 + Ω)dW

meδx6dx3 + Jdx4 =
[
− cx4 − kx2

+meδx2
3x5 +Mt

]
dt

dx5 = x6(x3 − x4 − Ω)dt− σx6dW

dx6 = −x5(x3 − x4 − Ω)dt+ σx5dW

(4.21)

Here, similar to the full model, the quantity dW , is the incremental noise, which has

a mean value of zero and standard deviation value of
√
dt. Noting the constraint

equation x2
5 +x2

6 = 1, the Euler-Maruyama method can be used to obtain numerical

solutions of equations (4.21). For the current study, the author has considered the

full model to capture the impact between rotor and stator with the application of

noise.
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4.2 Results

Friction model. The analytical friction model along with friction model used

for numerical simulations are given in equations (4.9) and (4.10). The graphical

depictions of the same with two different values of minimum friction coefficient µm

are shown in Figure 4.2. In rest of the chapter, the friction coefficient µm = 0.005

is referred to as a small friction coefficient and µm = 0.05 is referred to as a large

friction coefficient. The author has studied the dynamics of the Jeffcott rotor with

these two different friction coefficients and keeping other system parameters constant

as shown in Table 4.2.

Deterministic system dynamics. For the parameters given in Table 4.2,

the deterministic system dynamics, given by equations (4.5) and (4.12), are numer-

ically solved by using the ODE solver in MATLAB. The system can have multiple

stable solutions; that is, forward whirling with or without rotor-stator contact, and

backward whirling with rotor-stator contact (Vlajic et al., 2014b). The initial con-

ditions determine which branch of the stable solution will eventually be reached by

the system. For the current study, the author has chosen initial conditions such that

the deterministic system dynamics is either in forward whirling with contact or in

backward whirling with continuous rotor-stator contact. The same initial conditions

are used when studying the influence of noise on system dynamics. The full model

is a three degree-of-freedom system with r, φ, and θ as generalized coordinates. As

noted earlier, ‘r’ represents the distance between the geometric center of the rotor

and geometric center of the stator. φ represents the whirl angle, and θ represents
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Figure 4.2: Friction coefficient model with two different values of minimum friction
coefficient µm. In plot (a), analytical friction coefficient model is shown considering
equation (4.9). In plot (b), friction coefficient model used for numerical simulations
is shown considering equation (4.10).

the torsional angle. For continuous rotor-stator contact, r = δ, where δ is the clear-

ance between rotor and the stator in the static position. This results in reduction

of one dimension and the governing equations for the reduced-order model can be
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expressed as given in equation (4.12). For the current study, the counter-clockwise

direction is assumed to be positive as shown in Figure 4.1.

For small value of the friction coefficient µm = 0.005, a similar pattern is

obtained with both the full and reduced-order models for forward whirling with

continuous rotor-stator contact, as shown in Figure 4.3. The full model dynamics

model is solved and results in r = δ = 0.01, which is the condition for continuous

rotor-stator contact. It is observed that the whirling frequency, denoted as ωfor = φ̇,

is found to be approximately equal to the prescribed angular speed Ω of the rotor

and the whirl motion is in the direction of the input rotation. Additionally, the

relative speed between the two surfaces at the point of contact is determined to be

vrel ≈ δφ̇ + ΩR = 0.24 m/s. For the chosen parameter values, the torsional angle

decays as shown in Figures 4.3(c)-(d). In this case, the forward whirling motion

with continuous rotor-stator contact corresponds to a stable solution branch.

With an increase in the value of friction coefficient to µm = 0.05, it is seen

that the system dynamics moves from the forward whirling with contact to backward

whirling with continuous rotor-stator contact via impact between rotor and stator.

During the impact motion, r < δ and the reduced-order model is not able to capture

the transient dynamics. The change in dynamics for full model is shown in Figure

4.4. The radial distance is shown in Figure 4.4(a), and r < 0.01 represents the

impact motion. In Figure 4.4(b), it is seen that the whirl angle φ undergoes a clear

transition from forward whirling to backward whirling. The torsion angle decay is

shown in Figure 4.4(c). The steady-state whirling motion is in the opposite direction

of the input rotation. This motion is called backward whirling and is associated with
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(a) Full Model: Whirling Speed
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(b) Reduced Model: Whirling Speed
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(c) Full Model: Torsional Angle
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(d) Reduced Model: Torsional Angle

Figure 4.3: Comparisons of the results from the full model (equation (4.5)) and the
reduced-order model (equation (4.12)) at Ω = 4.0 rad/s and µm = 0.005. Both
the full model and reduced-order model results converge to forward whirling with
continuous rotor-stator contact with a constant whirl speed of ωfor ≈ Ω = 4 rad/s,
and torsional perturbations that decay in both the full model and the reduced-order
model simulations.
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the negative sign. The steady state backward whirling frequency ωback = φ̇ is at a

faster rate than the input rotation speed and is found to be approximately equal

to ωback ≈ −ΩR
δ

= −20 rad/s. Additionally, the relative speed between the two

surfaces at the point of contact satisfies vrel ≈ δφ̇+ ΩR and is measured to be zero

valued.

Further, the rotor dynamics with backward whirling with continuous rotor-

stator contact is shown in Figure 4.5. The full model dynamics is in agreement with

that of the reduced-order model. The steady state whirling speed is measured to be

ωback ≈ −ΩR
δ

= −20 rad/s and the relative speed is found to be vrel ≈ δφ̇+ ΩR = 0

m/s.

It is noted that for a large friction coefficient µm = 0.05, and given parameter

values (see Table 4.2), the system dynamics with all the initial conditions reaches to

a backward whirling state with continuous rotor-stator contact. On the other hand,

for a small friction coefficient µm = 0.005, and given parameter values (see Table

4.2), two different system dynamics are presented as shown in Figures 4.3 and 4.5.

The steady state whirling speed can be expressed as

ωfor ≈ Ω, ωback ≈ −Ω
R

δ
(4.22)

Stochastic system dynamics. Numerical simulations have been conducted

to study the changes in the system dynamics with a white Gaussian noise modula-

tion in the driving speed. For numerical simulations with noise, the author chose the

initial conditions corresponding to different branch curves obtained for the determin-
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Figure 4.4: The system dynamics for the full model (equation (4.5)) at Ω = 4.0
rad/s and µm = 0.05. At this high value of the friction coefficient, with the same
initial conditions as for Figure 4.3, the forward whirling motion is not stable and the
system response moves from forward whirling with continuous rotor-stator contact
to backward whirling with continuous rotor-stator contact via impact between rotor
and stator. In plot (a), the radial distance between geometric center of rotor and
geometric center of the stator is plotted and r < 0.01 represents the impact motion.
In plot (b), the whirl angle φ is plotted and a clear transition from forward whirling
to backward whirling is shown. The torsional angle, which is shown in plot (c), is
seen to decay in time. In plot (d), the whirling speed is plotted and the steady state
backward whirling frequency is found to be approximately equal to ωback ≈ −ΩR

δ
=

−20 rad/s.
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(a) Full Model: Whirling Speed
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(b) Reduced Model: Whirling Speed

(c) Full Model: Torsional Angle
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(d) Reduced Model: Torsional Angle

Figure 4.5: Comparisons of the results from the full model (equation (4.5)) and the
reduced-order model (equation (4.12)) at Ω = 4.0 rad/s and µm = 0.005. Both
the full model and reduced-order model results converge to backward whirling with
continuous rotor-stator contact with a constant whirl speed of ωback ≈ −ΩR

δ
= −20

rad/s, and torsional perturbations that decay in both full model and reduced-order
model simulations.
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istic case. Here, the stochastic differential equation contains trigonometric functions

with white Gaussian noise in phase modulation as shown in equation (4.5). This

is called as trigonometric function representation of non-Gaussian processes where

the trigonometric functions represent harmonic excitation with random phase mod-

ulation (Dimentberg, 1988). The author has introduced an extra dimension for

the trigonometric function as defined in equation (4.16). The numerical results are

obtained by solving the state-space form given by equation (4.18). The numerical

simulation results are produced with the same initial conditions, the same rotor

driving speed Ω and by averaging 100 Euler-Maruyama simulations in the time do-

main, and the steady-state response is captured. For a given driving speed Ω, each

of these Euler-Maruyama simulations has the same noise amplitude σ, but different

noise vectors. Any qualitative change in the system dynamics depends on the noise

amplitude.

In Figure 4.6, the numerical results obtained for the small value of friction

coefficient µm = 0.005 and driving speed Ω = 4 rad/s are shown. The deterministic

dynamics shows a forward whirling motion with continuous rotor-stator contact as

shown in Figure 4.3. For a noise amplitude σ = 0.06, the numerical results pre-

sented in Figures 4.6(b), 4.6(e), and 4.6(h) reveal that the system response moves

from forward whirling with continuous rotor-stator contact to forward whirling with

impact between rotor and stator. The whirling speed is still in the same direction

as the driving speed. The noise inclusion is stopped after a while, but the system

dynamics response stays on the branch of forward whirling with impact. The cor-

responding results are shown in Figures 4.6(c), 4.6(f), and 4.6(i). With a sufficient
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level of noise modulation in the driving speed, it is noted that the system dynamics

is moved from forward whirling with rotor-stator contact to no contact without any

observable changes in the torsional angle.

Further, the effects of noise on the system dynamics of the backward whirling

with continuous rotor-stator contact has been reached. The deterministic system

response for µm = 0.005 and driving speed Ω = 4 rad/s is shown in Figure 4.5. The

steady state backward whirling frequency ωback is at a much faster rate than the

input rotation speed for δ < R, and is determined to be ωback ≈ −ΩR
δ

= −20 rad/s.

Such backward whirling dynamics are very robust to noise modulation in the driving

speed. The author has found a new way way to break the contact by decreasing

the driving speed and introducing the noise afterwards. The reduction in driving

speed results in reduction of whirling frequency. A proper combination of such

driving frequency and noise amplitude can play an important role in influencing the

system dynamics. In the current study, the author reduced the driving speed from 4

rad/s to 1 rad/s. The deterministic system dynamics is still in a backward whirling

state with contact but, with the reduced whirling speed ωback ≈ −ΩR
δ

= −5 rad/s.

The associated deterministic system dynamics results are shown in Figures 4.7(a),

4.7(d), 4.7(g), and 4.7(h). With the introduction of noise having a noise amplitude

of σ = 0.08 units, the system response moves from back whirling with continuous

rotor-stator contact to backward whirling with impact between rotor and stator. At

that stage, the noise addition is stopped and this moves the response from backward

whirling with impact to forward whirling with impact. The transition from backward

whirling to forward whirling is shown in Figure 4.7(h). In transition from backward
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Figure 4.6: The numerical results obtained for the small value friction coefficient
µm = 0.005 and driving speed Ω = 4 rad/s. See Table 4.2 for system parameter
values. The plots (a), (d), and (g) show the deterministic dynamics before the
introduction of noise. The plots (b), (e), and (h) show the stochastic dynamics with
a noise amplitude of σ = 0.06. The plots (c), (f), and (i) shows the deterministic
dynamics after the noise addition has been stopped. For a noise amplitude σ = 0.06
units, the system response moves from forward whirling with continuous rotor-stator
contact to forward whirling with impact between rotor and stator. The whirling
speed is still in the same direction as the driving speed. After a while the noise
addition has been stopped but the system dynamics response stays on the branch
of forward whirling with impact.
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Figure 4.7: The numerical results obtained for the small value friction coefficient
µm = 0.005 and driving speed Ω = 1 rad/s. See Table 4.2 for system parameter
values. The plots in the first column show the deterministic dynamics before the
introduction of noise. The column plots represent the stochastic dynamics with a
noise amplitude of σ = 0.08 units. The last column plots show the deterministic
dynamics after the noise has been stopped. The system response moves from back-
ward whirling with continuous rotor-stator contact to forward whirling with impact
between rotor and stator. The relative velocity between the two surfaces goes from a
zero value to a non-zero value as shown in plots (j)-(l). In plot (h), the author shows
the transition from backward whirling to forward whirling. There are no observable
changes in the torsional angle.
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Figure 4.8: The numerical results obtained for the large value friction coefficient
µm = 0.05 and driving speed Ω = 1 rad/s. See Table 4.2 for system parameter
values. The plots in the first column show the deterministic dynamics before the
introduction of noise. The column plots represent the stochastic dynamics with a
noise amplitude of σ = 0.08 units. The last column plots show the deterministic dy-
namics after the noise has been stopped. There are no qualitative changes observed
in the system dynamics.
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whirling to forward whirling, the relative velocity between the two surfaces goes

from a zero value to a non-zero value as shown in Figures 4.7(j)-(l). For a small

value of friction coefficient µm = 0.005, with a combination of driving rotor speed Ω,

and noise amplitude σ, the system dynamics can be moved from backward whirling

to forward whirling.

On the other hand, for a large value of friction coefficient µm = 0.05, there are

no qualitative changes observed in the system dynamics and the system dynamics

is still in backward whirling with continues rotor-stator contact. The corresponding

results are shown in Figure 4.8.

4.3 Conclusions

The deterministic and stochastic dynamics of torsional vibrations and whirling

motions for a Jeffcott rotor contained within a fixed stator during forward and back-

ward whirling motions along with continuous rotor-stator contact have been been

studied in this chapter. To capture motions with non-constant whirling speeds, the

governing equations are constructed by using generalized polar coordinate system.

In order to simplify the dynamics, reduced-order equations are constructed for a

continuous rotor-stator contact with the aim of capturing whirling and torsional

motions. The reduced-order model results are found to be in agreement with those

obtained with the full model. Further, the effects of introduction of noise in driving

speed have been explored. For a small value of the friction coefficient, it is noted

that with noise addition, the system dynamics can be moved from forward or back-
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ward whirling with contact to forward whirling with impact without any change in

system parameter values.
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Chapter 5: Summary of Contributions and Recommendations for Fu-

ture Work

5.1 Summary of Contributions

In this section, the different research findings reported in Chapters 2 through

4 are collected and discussed.

A combination of experimental and numerical studies have been undertaken

to comprehend the influence of white Gaussian noise on the responses of Duffing

oscillators with hardening and softening spring characteristics as reported in Chapter

2. In the presence of harmonic excitation, the complex motions of this system are

examined through experimental and numerical tools.

The key findings are as follows:

1. With an appropriate level of noise, the chaotic behavior of a harmonically

forced oscillator can be significantly influenced. An addition of white Gaussian

noise is found to push the aperiodic response of a softening Duffing oscillator

to a stable fixed point of the corresponding unforced system (Agarwal and

Balachandran, 2015).

2. Noise can be utilized to shift jump-up and jump-down frequencies and to get
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rid of hysteresis observed in the response of a nonlinear oscillator. This finding

suggests that the effect of nonlinearity on the frequency response of a softening

Duffing oscillator can be countered through addition of white Gaussian noise

(Agarwal et al., 2018).

3. For nonlinear systems with a pair of attractors, one being periodic and another

being chaotic, the chaotic attractor response can be controlled and terminated

with introduction of an appropriate noise level. For trajectories in the basin of

the chaotic attractor, white Gaussian noise can be added at a barely sufficient

level to allow trajectories to eventually leave via a special escape route; that is,

the unstable manifold of a fixed point saddle on the basin boundary between

the two basins of attraction (Agarwal et al., 2019). This work provides a

glimpse into the possibilities for noise-influenced response control.

A partial control scheme constructed for a chaotic system is applied for con-

fining the trajectories inside a particular region despite the presence of white noise

as reported in Chapter 3 (Agarwal et al., 2017; Agarwal and Balachandran, 2019a).

As an illustration, the partial control method has been applied to restrict the re-

sponse of a Duffing oscillator to a certain region of state-space. Numerical results

with various noise forms are used to demonstrate the effectiveness of this control

scheme. The proposed algorithm is shown to be effective for systems with different

dimensions.

In Chapter 4, the dynamics of a modified Jeffcott rotor confined within a fixed

stator is explored. The governing equations with a generalized polar coordinate
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system are derived for a non-constant whirling speed (Agarwal and Balachandran,

2019b). Reduced-order equations are derived for a continuous rotor-stator contact

with the aim of capturing whirling and torsional motions. The system dynamics is

examined by using the reduced-order equations . The results of the analysis reveal

a different but constant steady state whirling speed for both forward and backward

whirling under the condition of contact. The reduced-order model results are found

to be in agreement with those obtained with the full model. Further, the effects

of introduction of noise in driving speed have been explored. The trigonometric

representation of non-Gaussian excitation as a harmonic excitation with random

phase modulation is considered and Euler-Maruyama simulation scheme is used for

numerical integration.

5.2 Recommendations for Future Work

In Chapter 3 of this dissertation, the partial control scheme based on numerical

simulations for finding safe sets for continuous time systems with white noise has

been constructed. The viability of this approach with an experimental prototype

of the Duffing oscillator with an extension to other systems are still remains to be

completely addressed, for larger dimensions .

As the extension of the work presented in Chapter 2 and Chapter 4, studies

of the effects of noise on a drill-string system could be one potential avenue for

future research. Drill strings are long, tubular structures which are used for boring

holes in the ground. These systems undergo large torsion deformations as well as
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large lateral displacements. The effectiveness of noise in influencing backward and

forward whirling motions can further be examined through experimental studies.

Given the possibilities for noise-influenced dynamics reported here, understanding

and exploiting noise for nonlinear systems can be further explored.
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Appendix A: Use of the Method of Multiple Scales to Derive Frequency-

Response Equation for a Forced Duffing Oscillator Sys-

tem

In this section, the derivation for an analytical implicit equation for the ampli-

tude of response as a function of forcing frequency and the amplitude of harmonic

excitation is presented which is used in Chapter 2. The analytical expression is ob-

tained by using the method of multiple scales, see Nayfeh and Balachandran (1995).

Consider a forced Duffing oscillator system with weak forcing, weak damping,

and weak nonlinearity and the equation of motion can be written as

ü+ εηu̇+ Ω2
nu+ εk3u

3 = εF0 cos(Ωt). (A.1)

Introducing a detuning parameter σ describes the nearness of Ω to Ωn as Ω =

Ωn+εσ, where σ = O(1). The expression of the solution in different time scales is of

the form u(t, ε) = u0(T0, T1, T2, ...)+εu1(T0, T1, T2, ...)+ε2u2(T0, T1, T2, ...)+..., where

the different time scales are T0 = t, T1 = εt, and T2 = ε2t. The derivatives can be

expressed as d
dt

= D0 + εD1 + ε2D2..., and d2

dt2
= D2

0 +2εD0D1 + ε2(D2
1 +2D0D2)+ ....

Substituting these expansions back in Equation (A.1) and re-writing it again
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as

(D2
0 + 2εD0D1 + ε2D2

1 + 2ε2D0D2 + ...)(u0 + εu1 + ...)

+εη(D0 + εD1 + ...)(u0 + εu1 + ...) + Ω2
n(u0 + εu1 + ...)

+εk3(u0 + εu1 + ...)3 = εF0 cos(ΩnT0 + σT1)

(A.2)

Equating the coefficients of ε0, and ε1 both side of the above equation, leads

to the following set of equations:

O(ε0) : D2
0u0 + Ω2

nu0 = 0 (A.3)

O(ε1) : D2
0u1 + Ω2

nu1 + 2D0D1u0 + ηD0u0 + k3u
3
0 = F0 cos(ΩnT0 + σT1) (A.4)

The general solution of Equation (A.3) can be written as

u0 = A(T1) exp(iΩnT0) + Ā(T1) exp(−iΩnT0) (A.5)

where A(T1) is determined by eliminating the secular terms from u1. Substituting

u0 into Equation (A.4), expressing cos(ΩnT0 + σT1) in a complex form, collecting

the secular term and equating it to zero. The expression can be written as

2iΩn(A′ +
η

2
A) + 3k3A

2Ā− 1

2
F0 exp(iσT1) = 0 (A.6)

where prime denotes the derivative with respect to T1. To solve the above equation,
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A can be written in the polar form as

A =
1

2
a exp(ib) (A.7)

where a and b are real. Separating the expression into its real and imaginary parts

results in the following:


a′ = −η

2
a+ 1

2
F0

Ωn
sin(σT1 − b)

ab′ = 3
8
k3
Ωn
a3 − 1

2
F0

Ωn
cos(σT1 − b)

(A.8)

Considering σT1 − b = ψ, the above expression can be simplified as


a′ = −η

2
a+ 1

2
F0

Ωn
sin(ψ)

aψ′ = σa− 3
8
k3
Ωn
a3 + 1

2
F0

Ωn
cos(ψ)

(A.9)

For steady-state motions, a′ = ψ′ = 0, which simplifies the above equation as


η
2
a = 1

2
F0

Ωn
sin(ψ)

σa− 3
8
k3
Ωn
a3 = −1

2
F0

Ωn
cos(ψ)

(A.10)

Squaring and adding the above equation results in

[ (
η

2

)2

+

(
σ − 3

8

k3

Ωn

a2

)2 ]
a2 =

F 2
0

4Ω2
n

(A.11)

Equation (A.11) is called as the frequency-response equation.
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