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Abstract

Title of Dissertation: Modeling and Adaptive Control of

Magnetostrictive Actuators

Ramakrishnan Venkataraman, Doctor of Philosophy, 1999

Dissertation directed by: Professor P. S. Krishnaprasad

Department of Electrical Engineering

In this dissertation, we propose a model and formulate a control methodology

for a thin magnetostrictive rod actuator. The goal is to obtain a bulk, low

dimensional model that can be used for real-time control purposes. Previous and

concurrent research in the modeling of magnetostrictive actuators and the related

area of electrostrictive actuators have produced models that are of low order and

reproduce their quasi-static response reasonably well. But the main interest in

using these and other smart actuators is at a high frequency – for producing

large displacements with mechanical rectification, producing sonar signals etc.

The well known limitation of smart actuators that are based on electro-magneto-

thermo-elastic behaviors of smart materials is the complex, input-rate dependent,

hysteretic behavior of the latter.

The model proposed in this dissertation, is a bulk model and describes the

behaviour of a magnetostrictive actuator by a system with 4 states. We develop



this model using phenomenological arguments following the work done by Jiles

and Atherton for describing bulk ferromagnetic hysteresis. The model accounts

for magnetic hysteresis; eddy current effects; magneto-elastic effects; inertial

effects; and mechanical damping. We show rigorously that the system with the

intial state at the origin has a periodic orbit as its Ω limit set. For the bulk

ferromagnetic hysteresis model - a simplification of the magnetostrictive model,

we show that all trajectories starting within a certain set approach this limit set.

It is envisioned that the model will help application engineers to do simulation

studies of structures with magnetostrictive actuators. Towards this end, an

algorithm is proposed to identify the various parameters in the model.

In control applications, one may require the actuator to follow a certain

trajectory. The complex rate dependent behaviour of the actuator makes the

design of a suitable control law a challenging one. As our system of equations do

not model transient effects, they do not model the minor-loop closure property

common to ferromagnetic materials. Therefore, the design of control laws making

explicit use of the model (without modifications) is not possible. A major reason

to use model free approaches to control design is that magnetostrictive actuators

seem to have slight variations in their behavior with time. Therefore, we tried to

use a direct adaptive control methodology that uses features of our model. The

system is now looked at as a relative degree two linear system with set-valued

input nonlinearity. Extensions of Eugene Ryan’s work on universal tracking for

a relative degree one linear system and Morse’s work on stablization for relative

degree two linear systems were sought. Experimental verification of our method

confirmed our intuition about the model structure. Though the tracking results

were not very satisfactory due to the presence of sensor noise, the experimental



results, nevertheless validate our modeling effort.
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Chapter 1

Introduction

There is growing interest in the design and control of smart structures – systems

with embedded sensors and actuators that provide enhanced ability to program

a desired response from a system. Applications of interest include: (a) smart

helicopter rotors with actuated flaps that alter the aerodynamic and vibrational

properties of the rotor in conjunction with evolving flight conditions and aero-

dynamic loads; (b) smart fixed wings with actuators that alter airfoil shape

to accomodate changing drag/lift conditions; (c) smart machine tools with ac-

tuators to compensate for structural vibrations under varying loads. In these

and other examples, key technologies include actuators based on materials that

respond to changing electric, magnetic, and thermal fields via piezoelectric, mag-

netostrictive and thermo-elasto-plastic interactions.

Typically such materials exhibit complex nonlinear and hysteretic responses

(see Figure 1 for an example of a magnetostrictive material Terfenol-D used in

a commercial actuator). Controlling such materials is thus a challenge. The

present work is concerned with the development of a physics-based model for

magnetostrictive material that captures hysteretic phenomena and can be sub-
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ject to rigorous mathematical analysis towards control design.

In this dissertation, we propose a model for a thin magnetostrictive rod ac-

tuator that shows a hysteretic relationship between the current input and the

displacement output. We first clarify the term hysteresis in the relationship

between the input and output of a system or more generally two conjugate

quantities that describe the state of a system. That is the focus of our attention

for the rest of this section. In the next section, we study a theory explaining

the probable origin of hysteresis between conjugate variables in a system. We

also specialize this theory to the case of ferromagnetism and magnetostriction,

and study its usefulness when faced with practical questions of real-time con-

trol of magnetostrictive actuators. In Section 1.2, we study alternative ways of

modeling magnetostrictive actuators so that real-time control may be achievable.

Historically, Ewing first coined the term hysteresis (which means “to lag be-

hind” in Greek) in his study of ferromagnetism [1]. To describe the phenomenon

consider a system characterized by two scalar variables u and v. We assume u

to be continuously dependent on time.

u

v

αβ

+1

-1

γ δ
× × ×××

µ

Figure 1.1: Illustration of the hysteresis phenomenon.
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(a) Case 1.

u (t)

t

γ

β

δ
α

×

×

×

×

T
(0,0)

2

t

×

×

T
(0,0)

2
v (t)

-1

+1

T
1

T
1

(b) Case 2.

Figure 1.2: Output of the hysteretic system of Figure 1.1 for 2 different inputs.

Consider Figure 1.1. The relationship between u and v can be described by:

v = +1 if u > α, (1-a)

v = −1 if u < β, (1-b)

v remains unchanged if β ≤ u ≤ α (1-c)

(1-a - 1-c) represent the constitutive relationship between u and v. By a consti-

tutive relation between two variables u and v, we mean a mathematical relation

that describes the behaviour of one of the variables as a function of the other

variable and their history. This mathematical relation is not to be confused ex-

perimental data that show how one of the variables is influenced by the other.
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This is because experimental data are typically obtained by applying some spe-

cific inputs and measuring the outputs, whereas a mathematical relationship is

true for all inputs. Thus an experiment might suggest a certain constitutive

relationship but that might be proved false by further experiment.

Suppose two input signals ui(t), i = 1, 2; t ∈ [0, T ] as shown in Figure 1.2

are applied to the system with vi(t = 0) = −1, i = 1, 2. Then v1(t) = −1 ∀

t ∈ [0, T ]. On the other hand, v2(t) = −1 for t ∈ [0, T1] and v2(t) = 1 for

t ∈ (T1, T ]. This shows that the value of v(T ) depends on v(0) and the input

u(·) in the interval [0, T ]. Such a relationship can be expressed as:

v(t) = Rβ,α (v(t = 0), u(·))(t) t ∈ [0, T ] (2)

where Rβ,α is a map acting on u(·) defined on the interval [0, t] and dependent

on the initial condition v(t = 0). The subscripts denote that the output may

change value if the input reaches the threshold values α and β. Though the

output even for a linear system can be expressed by an equation similar to (2),

the difference is that the constitutive relationship between u and v given by

(1-a - 1-c) is independent of time t. In other words, v(T ) only depends on the

local maximum or minimum values achieved by u(·) in the interval [0, T ] and it

does not matter when the maximum and minimum values are achieved. Such

a dependence of the “output” variable on the history of the “input” variable is

termed hysteresis.

There are several important details that we can make note of from the simple

example above.

• The value of the output at time T depends only on the initial value of the

output v(0) and the local minimum and maximum values obtained by the

4



input u(t) in the interval t ∈ [0, T ].

• To obtain the constitutive relationship between the variables u and v from

experiment, one needs to apply all possible inputs u(·) and note the outputs

v(·). In the above example, the output was linear as a function of the input

u1(·) while it showed hysteresis in response to input u2(·).

More generally, the relation between the input and output variables (for

inputs that will described shortly) might be as shown in Figure 1.3. Assume

that u(·) monotonically increases from a value u(0) = β and to some value umax

and then decreases montonically to u(T ) = β. For umax = αi; i = 0, 1, 2 the

path followed by (u, v)(t) for t ∈ [0, T ] is shown in Figure 1.3. In this case

the paths followed by (u, v)(·) for increasing and decreasing values of u(·) are

different no matter what umax is.

>

>

>
>

<

<

<

<
<

α
u

v

β
× ×

1
α

2
α

0

××

Figure 1.3: Illustration of the hysteresis phenomenon.

Hysteresis between independent and dependent variables is observed in sev-
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eral physical and biological phenomena as well as in engineering, economics and

so on. In physics we encounter it in plasticity, friction, ferromagnetism, ferroelec-

tricity, superconductivity, magnetostriction, piezostriction and in shape memory

effects among others. Thermostats and mechanical systems with dry friction [2]

are examples in engineering where we see hysteresis. It is therefore natural to

try to understand the common thread underlying the various occurrences of the

hysteresis phenomenon. In the next section we present a well known theory that

tries to explain a probable origin of hysteresis. Later in the same section, we

specialize this theory to ferromagnetism. In the literature, this theory is known

as micromagnetics.

It will become apparent in the next section that though the origin of hystere-

sis in ferromagnetism is plausibly explained by the theory of micromagnetics, its

value is limited when our objective is to model the behaviour of a ferromagnet

using macroscopic experimental data. For such an application a phenomenolog-

ical approach is needed. This dissertation is concerned with the development of

such a phenomenological theory for magnetostrictive actuators.

1.1 Origin of hysteresis

A probable origin of hysteresis in the input-output relationship of a system is

• multiple metastable states of a thermodynamic free energy functional and,

• energy dissipation in a system.

This statement can be understood by considering a simple example by Brokate

and Sprekels [3]. Consider a system with an input variable φ̃ and output vari-

able e. Brokate and Sprekels refer to e as an order parameter perhaps because it

6



represents the state of the system at any instant along with the input variable φ̃.

It is a parameter as its value before the application of the input, influences the

state (e, φ̃) of the system after the input is applied. In the example considered

earlier (equations (1-a) and (1-b)), the order parameter is v.

In the absence of an input, let the Helmholtz free energy density F (·, ·) be

a function of an order parameter e and absolute temperature T . Then the

equilibrium states of an isothermal system are given by the minima of the free

energy density F with respect to e. Assuming F (e, ·) to be differentiable with

respect to e

φ(e, T ) ≡
∂F

∂e
(e, T ) = 0,

where the quantity φ describes the energetic response of the system with respect

to a change of the order parameter. At equilibrium, the order parameter adjusts

in such a way that φ vanishes. If the system is subjected to external influences,

then an external field φ̃ which is thermodynamically conjugate to the order

parameter contributes the term −φ̃ e to the free energy density. Then the total

free energy density takes the form

F
φ̃
(e, T ) = F (e, T )− φ̃ e.

The condition for equilibrium states is now
∂F

φ̃

∂e
(e, T ) = 0, that is,

φ(e, T ) = φ̃.

This implies the order parameter adjusts is such a way that the external field is

in balance with the internal response.

Suppose now that F (e, T ) = F0(T ) + α1 (T − Tc) e
2 + α2 e

4. The shape of

F (., T ) is depicted for different temperatures T in Figure 1.4. The response

function φ is given by

7



φ(e, T ) = 2α1 (T − Tc) e+ 4α2 e
3.

e

F(e,T)
T > T

c

T = T
c

T < T
c

Figure 1.4: Free energy as a function of e for different T .

Therefore for vanishing external fields, the equilibrium value e(T ) of the order

parameter associated with the temperature T , defined by the minima of F (., T ),

is given by

e(T ) =


0 for T ≥ Tc

±e0(T ) for T < Tc

where e0(T ) =
√

α1

2α2
(Tc − T ).

Now we consider (e, φ)-curves for different values of T . For T ≥ Tc, the func-

tion e 7→ φ(e, T ) is strictly increasing, while in the case T < Tc the graph of

this relation contains a downward sloping branch. A necessary condition for

thermodynamic stability of equilibrium is the requirement ∂2 F
∂ e2
≥ 0. Hence, the

downward sloping branches represent unstable states which implies that thermo-

dynamic processes following these branches cannot be realized by the system.

8



φ

e

φ

e

Figure 1.5: Response function for T < Tc (left) and T ≥ Tc (right).

In the presence of an external field φ̃, the first-order condition for minimum

energy yields

φ̃ = 2α1 (T − Tc) e+ 4α2 e
3.

We can obtain the optimal value of the parameter e by looking at the intersection

of the curves φ = φ̃ and φ = 2α1 (T−Tc) e+4α2 e
3. For T ≥ Tc, there is only one

point of intersection, which corresponds to the absolute minimum of the energy

function. For T < Tc, there can be two points of intersection if

|φ̃| < φc ≡
1
√
α2

(
2α1

3
(Tc − T )

)3
2

.

• For a fixed T (< Tc), if φ̃ < −φc, then there is only one point of intersection

on the left branch of the curve φ(e) which is the absolute minimum.

• If φ̃ = −φ then another point of intersection appears on the right branch

of φ(e) which corresponds to a local minimum (a metastable state). The

point of intersection with the left branch still corresponds to the absolute

minimum.
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• If φ̃ = 0 then both the points of intersection correspond to equal energies.

• If 0 < φ̃ < φc then the intersection with the right branch represents the

absolute minimum while the intersection with the left branch represents a

metastable state.

• For φ̃ > φc, there is only one intersection – that with the right branch.

e

F

e

F

e

F

e

F

Figure 1.6: Illustration of hysteresis between an external field and the order

parameter.

The points made above are illustrated in Figure 1.6. Suppose the system is

slowly acted upon by an external field so that it reaches its equilibrium for each

value of the external field. The system does this by dissipating energy, which is

also an important feature of hysteretic systems. But we postpone the discussion

of energy dissipation and only consider the relationship of the equilibrium states

10



with the external field at this time.

If the system is slowly acted upon by an external field φ̃, starting from a value

less than −φc, then the system is in left branch until φ̃ = φc. If φ̃ is reduced to

zero before it reaches the critical value φc, the system remains in the left branch

as illustrated. But if φ̃ is increased further beyond φc, then the system jumps

to the minimum on the right branch. Now if φ̃ is decreased from this value it

stays on the right branch until φ̃ = −φc. As φ̃ decreases further it jumps to the

left branch. If we look at the relationship between φ̃ and e we note that it is

hysteretic. Brokate and Sprekels refer to the change in the relationship between

the conjugate quantities with changing temperature as a phase transition.

In the theory discussed above called the Landau theory, non-local spatial

effects are completely ignored. By this we mean the following. Suppose the

abstract system with order parameter e and input φ̃ discussed above is a body

occupying a region of space Ω ⊂ IR3. Since the free energy density was assumed

to be in the form F = F (e, T ), its value at a spatial point x in the domain Ω

depends only on the values attained by e and T at that point. Then the order

parameter is a function e(·) : Ω −→ IR; x 7→ e(x). It can be thought of as

representing the phase inside the material body. It may also be a funtion of time

t. As the order parameter is a function of x, the total free energy must be a

functional acting on a function space to which e(·) belongs.

In cases where two different phases of the material meet across an inter-

face, the order parameter has a different value in the different phases. There

is variation of e(·) across the interface and the interfacial energy cannot be ne-

glected as the interface itself has a nonzero width. Suppose that a fixed constant

temperature is maintained in the domain Ω which is an open, connected and
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bounded subspace of IR3. Then a simple expression for the total free energy that

incorporates local spatial effects is the Ginsburg - Landau functional [3],

F [e] =
∫

Ω
(F (e(x), T ) +

1

2
γ(e(x), T ) |∇e(x)|2) dx, (3)

where γ is some positive function of e and T . The function F which may be

regarded as the free energy density of the respective pure phases, has the same

meaning as in the previous discussion and could have the same form considered

there. The gradient term accounts for the influences of the points neighbouring

the point x ∈ Ω.

For equilibrium, the functional F achieves a minimum value with respect to

the variations of e and therefore e satisfies the Euler-Lagrange equation

δF

δe
[e](x) = 0, ∀x ∈ Ω, (4)

where δF
δe

[e] denotes the variational derivative of F at e [3].

As mentioned before, the hysteresis is in the relationship between the order

parameter at the equilibrium point of the system and the external field. For a

system to reach the equilbrium point for a given external field it has to reach a

local minimum of the energy function by dissipating energy. Sometimes the dy-

namics of reaching the equilibrium is ignored as authors focus on the equilibrium

itself. Then in order to compute this equilibrium, they use gradient methods or

Newton’s method [4]. By this method, the system evolution in time can then be

written as [3]

∂e

∂t
= −β(e, T )

δF

δe

where β(., T ) is a positive function so that

12



dF

dt
[e(t)] ≤ 0

In order to consider the full dynamics of the system, we have to use Hamilton’s

principle [5, 6],

δ
∫ t2

t1

L dt+
∫ t2

t1

∂R

∂q̇
· δq dt = 0

where L is the Lagrangian function defined on the velocity phase space of the

sytem, and R is a dissipation function.

1.1.1 Ferromagnetic hysteresis

We noted in the previous discussion that a non-convex thermodynamic free en-

ergy function can cause hysteresis to appear in the relationship of conjugate

quantities. We classified these quantities in an abstract form as order param-

eters and external fields. The order parameters and external fields for a few

physical phase transitions are as in Table 1.1 [3]. At a particular temperature

T less than the Curie temperature, a ferromagnetic material is known to be

comprised of domains. Within each domain the magnetization vector M has

the same orientation. Thus the free energy functional has to take into account

non-local effects.

Consider a rigid, homogeneous body occupying a region of space Ω which

is open, bounded and a connected subset of IR3. The ferromagnetic body has a

magnetization field M defined on Ω. The magnetization field represents a volume

density of macroscopic magnetic moment and this implies that M induces a

magnetic field Hm at all points of space. If the magnetic field due to all external

13



Phase transition Order parameter External field

Ferromagnetic Magnetization Magnetic field

Ferroelectric Polarization Electric field

Martensitic Strain Stress

Table 1.1: Order parameters and external fields for experimentally observed

phase transitions.

sources in the region Ω is Hext(x) then the magnetic flux density in the region

Ω is given by

B(x) = µ0 (Hext(x) + Hm(x) + M(x)) (5)

B(·), Hext(·), Hm(·) in Ω have to obey Maxwell’s equations of electromagnetism:

∇ · B(x) = 0 (6-a)

∇ · Hext(x) = 0 (6-b)

∇ × (Hext(x) + Hm(x)) = 0 (6-c)

∇ × Hext(x) = 0 (6-d)

We are assuming zero body current density in the ferromagnetic material in

writing Equation (6-c). (6-b) and (6-d) are true because Hext(·) is due to all

external sources and is independent of the magnetic body. (6-a - 6-d) imply

∇ · Hm(x) = −∇ · M(x) (7)

We note that Hm(·) is non-local because it has to satisfy the conditions
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n · B(x)|+− = 0, (8-a)

n × Hm(x)|+− = 0 (8-b)

on the boundary ∂Ω of Ω. We asssume that the surface current densities are

zero. In (8-a - 8-b), n is the unit normal taken positive in the outward sense

with respect to a magnetized body; the symbol |+− means that the value on the

negative side of the surface is to be subtracted from the value on the positive

side.

Given a magnetic moment distribution M(·) within a body, the quantities

H(·) and B(·) can be calculated by using Maxwell’s equations as shown above.

The theory of Micromagnetics seeks to answer the inverse question of determining

the magnetic moment distribution at time t = T if it is known at time t = 0

and the external field Hext(·) is specified for t ∈ [0, T ]. The problem is set up

as in the Landau theory with M(·) as the order parameter function and Hext(·)

as the external input function. An important assumption that is made in the

theory of micromagnetics is that

|M(x)| = Ms > 0 in Ω. (9)

The free energy functional in this theory is given by [6]

EHext(M) =
∫

Ω

(
1

2
α2 |∇M|2 + ψ(M)−Hext ·M−

1

2
Hm ·M

)
dx. (10)

The summands are called the exchange energy, anisotropy energy, interaction

(Zeeman) energy and magnetostatic energy. The exchange energy term models
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the tendency of a specimen to exhibit large regions of uniform magnetization

separated by very thin transition layers (domain walls) by penalizing spatial

variations of M. The anisotropy energy in which ψ(·) is a non-negative even

function exhibiting cystallographic symmetry, models the existence of preferred

directions of magnetization (easy axes), along which ψ is assumed to vanish. The

interaction energy models the tendency of a specimen to have its magnetization

aligned with the external field Hext. Finally, the magnetostatic energy is the

energy associated with the magnetic field generated by M [6, 7, 8].

The anisotropy and the interaction energies are purely determined by the

magnetization at a point x in the body; the exchange energy is due to local

variations in the magnetization; and the magnetostatic energy has a non-local

character depending on the distribution of magnetization on the body as a whole.

The anisotropy and the interaction energy terms by themselves cause hysteresis

in the magnetization field of a body as shown by Stoner and Wohlfarth [9]. The

argument is very similar to the one we studied in the last section and is based

on the non-convexity of the anisotropy energy function.

The equilibrium configuration of the magnetization field is found by mini-

mizing EHext given by (10) subject to the constraint (9). This leads to

δEHext

δM
(M)(x) = λ(x)M(x) (11)

where λ(·) is a scalar valued function. The left hand side of the above equation

has the following meaning. Suppose M(x) = Ms · (α, β, γ)(x) where the vector

(α, β, γ) is a vector of direction cosines of M at point x. If δEHext(x) is the

variation in EHext(x) for a small variation δM(x) = Ms · δ(α, β, γ)(x) consis-

tent with the constraint (9) and we can write δEHext(x) = ψ(x) · δM(x) (only
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retaining terms in the first degree in δM(·)) then
δEHext

δM
(M)(x) = ψ(x).

Denoting

Htotal(x) =
δEHext

δM
(M)(x), (12)

we obtain from (11) and (12):

M(x)×Htotal(x) = 0. (13)

To study the dynamics of the magnetization change without dissipation, we

form the Lagrangian and use Hamilton’s principle. This procedure leads to the

equation [6]

dM

dt
(x) = λ1 M(x)×Htotal(x) (14)

at every point x in the body, where the net magnetic field Htotal is given by (12)

and λ1 is the gyroscopic constant.

Landau and Lifshitz (1935) in their original paper [10] argue that there is

also a relativistic interaction between the moments in crystal which acts like a

dissipative force. In other words, there is a dissipation of energy and magnetic

moments tend to align with the external magnetic field. Therefore we must add

another term to the right hand side of the above equation whose direction is

perpendicular to both M and M×Htotal.

dM

dt
= λ1 M×Htotal + λ2 M× (M×Htotal) (15)

where λ2 << λ1. This equation is called the Landau–Lifshitz equation. Gilbert

(1955) showed later [6] that the above equation can be obtained from a La-

grangian formulation and the use of a Rayleigh dissipation function
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R =
1

2

∫
Ω
η |
dM

dt
|2 dx (16)

where η is a constant for a given material (with no impurities).

The steady state equation relating Htotal and M is given by

Htotal(x) = λ(x)M(x) (17)

where λ(x) is a scalar valued function.

In the last section on general hysteresis, it was noted that some authors prefer

to study the equilibria by considering the process to be quasi-static and others

study the full dynamic case. The former assume that the evolution equation

to reach the equilibria to be of gradient type etc. However, it was shown by

T. Shepherd that if the geometry of the system is kept in mind, then there

is a natural algorithm to reach the equilibrium states for Hamiltonian systems

[11]. It is interesting to note that for ferromagnetism, this approach leads to the

Landau–Lifshitz equation. However there is still a difference in the sense that in

Shepherd’s method the constant λ2 is arbitrary, while for Landau and Lifshitz

it signified a constant for the material.

For studying magnetostriction, we need to take into account strain energies,

lattice structure and magnetoelastic energies in the free-energy formulation. As

the magnetic body is now assumed to be deformable, let p(x) denote the position

of the point x in the undeformed body after the body has undergone some

deformation. In what follows, we use the tensorial notation with x = xa, a =

1, 2, 3; p(·) = pi; M = Mi; H = Hi; i = 1, 2, 3. The derivatives are denoted

with two indices separated by a comma (for example – Hi,j = ∂Hi
∂pj

), while

second order tensors are denoted with two indices (for example – the stress
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tensor is denoted tij . Repeated indices in the same term mean a summation

(for example : tij,j =
∑3
k=1 tik,k). Denote pi,a = ∂pi

∂xa
. Thus by our notation

pi,a pi,b =
∑3
k=1 pk,a pk,b.

We now have two order parameters: the magnetization distribution M(x)

and the strain distribution C = Cab; a, b = 1, 2, 3 defined by

Cab =
1

2
(pi,a pi,b − δab) (18)

where δab = 1 if a = b and δab = 0 otherwise. The free energy functional for the

magnetostriction case must remain unchanged if we rotate the co-ordinates axes.

This implies that the energy functional must be a function of C [8]. Denote the

energy functional as EHext,T(M,C) to emphasize its dependence on the external

magnetic field and mechanical traction T acting on the surface of the body ∂Ω.

Then it is given by [8, 10]

EHext,T(M,C) = EHext(M) + µabcdCabCcd + γabcdCabMcMd a, b, c, d = 1, 2, 3,

(19)

where the first term on the right-hand-side is given by (10), the second term is

the elastic-strain energy and the last term is the magneto-elastic energy. The

constants µabcd, γabcd with a, b, c, d = 1, 2, 3 are non-negative.

Hamilton’s principle for the dynamic case now yields two equations – one

signifying magnetic equilibrium and the other mechanical equilibrium [8]. The

dynamic magnetic equilibrium equation is the same as the Landau-Lifshitz equa-

tion (15), while the mechanical equilibrium equations are:

tij,j +Mj Hi,j + ρ fi = ρ ai in Ω (20-a)
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t[ij] = MiHj −MjHi in Ω (20-b)

tijnj −
1

2
M2

n ni = Ti in ∂Ω (20-c)

where tij = ρ
∂EHext,T

∂pi,a
pi,a is the stress field in the body, fi is the ith component

of a body force, ai = p̈i is the ith component of the acceleration vector. n =

(n1, n2, n3) denotes the normal vector at a point the surface ∂Ω and Mn = M·n.

t[ij] = tij − tji.

The term Mn arises in (20-c) because H is discontinuous across the surface

[8]. The tensor tij is not symmetric as shown by (20-b) because of the invari-

ance of the free energy functional to rotation of the co-ordinate axes. The stress

tensor tij is not the Cauchy or the Piola-Kirchoff stress tensors encountered in

pure continuum mechanics (involving only strain energies). This is because the

postulate of the Cauchy or the Piola-Kirchoff stress tensors (coming from the

stress hypothesis) implies that they are purely short range effects – the stress

hypothesis postulates the existence of a stress vector τ that acts across a hypo-

thetical internal surface of a body and that completely quantifies the short-range

forces exerted by the parts of the body on either side of the surface on one an-

other across this surface. On the other hand, the stress tensor tij includes terms

involving Hi (Equation (20-b)) which involve long range effects.

The above development of the theory has several subtle points that were not

fully explored in this discussion because the main aim was to familiarize the

reader with the subject matter. For a fuller description, we refer to Brown’s

classic [8].
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1.2 Constitutive description of hysteresis

The problem of determining the magnetization and the strain for a body for a

given external field Hext and surface traction T amounts to solving the partial

differential equations (15 - 20-b) along with constitutive equations relating the

stress t and the strain C. Analytical solutions are impossible except for the

simplest of geometries with restrictive assumptions on the magnitudes of the

different energy quantities. Results on the qualitative analysis of the behaviour

of the solutions are few and that too with simplifying assumptions of zero magne-

tostriction. If our aim is to control the behaviour of magnetostrictive actuators

then we need to solve the PDE’s in real time and plan the control action. This

task is extremely difficult given the present technology. For example, even for a

simple two dimensional body, the computation of the magnetization can become

computationally expensive [12]. Thus we have to seek ways of simplifying the

problem. In this context, problems relating to model reduction or the conversion

of a set of partial differential equations (PDEs) to a set of ordinary differential

equaitons (ODEs) are of interest.

Summarizing, one way of solving a real-time control problem for a magne-

tostrictive body would be to:

• write down the continuum equations satisfied by the state variables (or

order parameters) and,

• reduce the number of equations to be solved by some means.

The former step implies that M, H, B have to satisfy Maxwell’s equations (5 -

6-d) and pi, t, C have to satisfy the Euler-Lagrange equations (20-a - 20-c) inside

the body. As we no longer start the discussion with a free energy functional,
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this step also requires the knowledge of constitutive relations between H, t and

the order parameters M, C. The latter step is less well-defined and may involve

only considering solutions that are near an operating point.

Alternatively, we could

• reduce the number of variables by only considering average or bulk vari-

ables,

• write down the equations satisfied by these quantities using physical prin-

ciples.

The first step now could be determined by the geometry of the body and the

operating point. By its very nature, it is not well-defined and requires some expe-

rience and expertize on the part of the researcher. In the second step, we now use

physical principles in the macroscopic form. For instance, we use Newton’s laws

of motions instead of Euler-Lagrange equations. Again to solve the equations, we

need constitutive equations between conjugate variables. These equations could

describe the hysteresis between conjugate variables as a functional relationship.

In we use the second approach and describe hysteresis between conjugate vari-

ables in a constitutive fashion, then it is to be expected that the model will

differ greatly depending on the phenomena where it is observed. Figure 1.7

shows sample curves that have been observed in experiments where one variable

is varied periodically and the other is observed [1, 13, 14], while Figure 1.8 shows

hysteresis due to backlash which is common in mechanisms with gears. We note

that the figures only show the relationship between conjugate variables for one

particular input. To obtain a mathematical equation (a constitutive relation)

representing this relationship we need to apply all possible inputs and observe
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the outputs.

H

M

(a) Ferromagnetism.

E

P

(b) Ferroelectricity.

H

Strain

(c) Magnetostriction.

Figure 1.7: Relationship between conjugate variables observed in various physical

phenomena.

Some of the features of hysteresis observed in physical phenomena are listed

below.

1. Major-Loops. Figures 1.7 and 1.8 show the path taken by the output (y–

axis), while the input (x–axis) is increased and decreased sufficiently (until

the output saturates). The forward and the backward paths constitute

the major loops. For general continuous inputs, the value of the output

is bounded by the corresponding major–loop output values. It must be
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(a) Hysteresis due to backlash.

U (t)
V (t)

l

0

a

(b) Schematic diagram for

backlash

Figure 1.8: Hysteresis in engineering.

noted that hysteresis in superconduction does not show this feature.

2. Causality. The output depends only on the past values of the input.

3. Monotonicity. If the input is nondecreasing or nonincreasing, then so is

the output.

4. Order Preservation. This implies that the forward paths are nonintersecting

and so are the backward paths.

5. Congruency. If the initial value of the outputs of two systems differ by a

constant, then for all input variations, the outputs of the two systems will

differ by the same value. This property is not observed in ferromagnetic

hysteresis. On the other hand hysteresis in superconduction shows this

property [15].

6. Minor-Loop Closure. This important feature observed in ferro-magnetism
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was known to 19th century researchers [1]. In Figure 1.9, the horizontal

axis is the magnitude of the average magnetic field H in a soft-iron ring

while the vertical axis is the magnitude of the average magnetic flux density

B. The units are not important in this discussion. We can see the major

loop in the (H,B)-plane that is obtained when H is increased from a large

negative value −Hmax to a large positive value Hmax and vice-versa. The

trajectories for other general inputs can be seen inside the major loops.

Suppose the input is decreased from Hmax to H1 and then increased to a

value H2 that is less than Hmax . If the input is decreased again to H1

then the corresponding value of the flux density is B1. In other words, the

minor-loop inside the major loop closes on itself. From (H1, B1), if the

input is reduced to H3; increased to H4 < Hmax; and then reduced to H3

again, we see the same phenomenon.

We now make some brief remarks about a general theory of constitutive

modeling of hysteresis. In this theory, no underlying physical phenomenon is

considered and is purely a mathematical description of the relationship between

two conjugate variables. The key aspect of this relationship is its hysteretic

nature, and potentially this theory (with some modifications) could be applied

to any of the phenomena in nature where hysteresis is observed. In practice,

one has to carry out several experiments to identify a certain measure and this

limits the great potential of this theory.

Krasnoselskii first introduced the concept of an hysteresis operator F [16, 17]

between the input and output variables. A natural procedure is to consider

F as a map from C0([0, T ]) to some Banach Space B. One can then easily

formulate the properties enumerated before, mathematically, as done in Vis-
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intin’s monograph[17]. The operator space F is then the set of all operators

F : C0([0, T ]) −→ B satisfying some ‘consistent’ subcollection of the proper-

ties enumerated above. By this we mean that none of the properties within the

subcollection contradict any of the others within the same subcollection. This

space F can be endowed with many kinds of operator topologies [18], making it

an infinite-dimensional space. One could require some cost functional to be min-

imised while identifying the operator F . Still, the problem is a very difficult one

to solve, though there is some existence theory for some special operators[19].

A hysteresis operator that is widely used in magnetics community is the

Preisach operator. Conceptually, it is an assemblage of elementary bi-stable

hysterons that switch between −1 and +1 when u becomes greater than α with

v = −1 or less than β when v = +1. Formally

v̄ =
∫ ∞

0

∫ ∞
0

ω(r, s) Rs−r,s+r[v](t) ds dr

ω(r, s) is a density function, and intial values of the relays Rs−r,s+r[v] are defined

by (2).

There has been considerable work done on the Preisach operator [15, 20],

and on PDE’s involving the Preisach operator [3]. However, the identification

problem of the density function is not easy and though the Preisach model shows

slightly better predictive capability than the phenomenological Jiles – Atherton

model [21], the computational cost is substantially higher [22].

1.3 Content of the dissertation

In this dissertation, we present a model for a thin rod magnetostrictive actuator.

We show rigorously that the solution for this model exists and is unique when the
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inputs are periodic in time and the initial states are at the origin. Furthermore,

we show that this solution has an Ω limit set that is a periodic orbit. We also

propose a method to obtain the parameters for this model. An application of this

method to a commercial actuator is presented. Finally, we study the problem

of trajectory tracking and propose a control law for this purpose. Experimental

verification of this control law is also done.

The object of study in this dissertation is a thin magnetostrictive rod actuator

that is available commercially. The cross-section of such an actuator is shown

Figure 1.10 [23]. It comprises of the TERFENOL-D rod; non-linear springs

to provide prestress; permanent magnets for biasing the actuator; a magnetic

path; a push-rod; and outer casing. The deformation of the actuator in response

to external stimulus (as a change in the applied magnetic field), results in the

motion of the push-rod with respect to the outer casing. This motion can be

utilized for actuation purposes.

If we are interested in control of this actuator, then not only do we have to

worry about modeling the actuator itself, but also the associated components of

the actuator correctly. This modeling procedure is fraught with uncertain knowl-

edge of the system (that might change with temperature, age etc.). Therefore, it

makes practical sense to use techniques in adaptive and robust control, that do

not require a precise knowledge of the uncertainties, but only a rough knowledge

of them in some sense. Hence, we treat the actuator itself along with the associ-

ated prestress, magnetic path, to be a mass-spring system with magneto-elastic

coupling.

In the last section we noted that there are alternative ways of going about

solving the real-time control problem. We also noted that the first method
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leads to coupled PDE’s that are extremely difficult to solve without detailed

knowledge of the system. This method could potentially be useful in the design

of new actuators or new magnetostrictive actuator materials themselves. But for

real-time control, the second method of using bulk quantities as state variables

is more practical, and is better suited to utilize techniques of modern control

theory. Therefore in this dissertation we adopt this approach.

Suppose M denotes the average magnetization per unit volume, H denotes

the average magnetic field per unit volume, and x denotes the displacement of

the tip of the actuator. Let Ḣ be the input variable.

In Chapter 2, we propose a model of ferromagnetic hysteresis using energy

balance and the postulates of Jiles and Atherton. This model is a set of two

differential equations describing the evolution of H(·) and M(·) as functions of

time:

Ḣ = u (21-a)

Ṁ = f(H,M, u) (21-b)

The input u is a function of time t. For inputs u(·) that change sign in an

interval of time [a, b], the function f is discontinous as a function of time and

hence careful analysis is necessary to show even existence and uniqueness of

solutions. It turns out that the model is only technically correct when the states

H and M are periodic signals in time. Thus it would be incorrect to expect the

model to give accurate predictions for general inputs u(·). For periodic inputs of

time however, we show that the solution (with initial state at the origin) has an

Ω limit set that is a periodic orbit.
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In Chapter 3, we extend the ferromagnetic hysteresis model to a model of

magnetostriction for a thin rod again using energy balance principles. The result

is a set of three differential equations:

Ḣ = u (22-a)

Ṁ = f(H,M, u, y) (22-b)

meff ÿ + cẏ + dy = F + kM2 (22-c)

The displacement and velocity of the edge of the magnetostrictive rod y and ẏ

are also state variables in addition to H and M . meff , c, d, k are constants.

The inputs are u and F .

Equations (22-a) and (22-b) describe the evolution of the magnetic variables

while (22-c) describes the evolution of the mechanical variables y and ẏ. As the

function f depends on y and M appears in (22-c), the magnetic and mechanical

evolution equations are coupled. Again by careful analysis we show that for

periodic inputs the solution of this coupled set of equations (with initial state at

the origin) has an Ω limit set that is a periodic orbit.

The finite resisitivity of the magnetostrictive rods available commercially im-

plies that eddy-currents circulate in the rod when the applied magnetic field is

changed. This means that there is an energy loss and this loss has to be ac-

counted for our energy balance equation. We go through this step and obtain

a bulk model for a thin magnetostrictive rod that incorporates ferromagnetic

hysteresis; elastic and magneto-elastic effects; inertial effects; losses due to me-

chanical motion; and eddy-current effects.

In Chapter 4, we address the problem of identification of the 12 parameters
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that make up the model. By carefully grouping them and undertaking the iden-

tification of each group separately we show that the identification problem is

reduced to solving three linear regression problems. We also go through an iden-

tification process for a commercial actuator and obtain the parameters particular

to that actuator.

In Chapter 5, we address the problem of real-time trajectory tracking for a

commercial actuator. The control law design is done by extending the work of

Eugene Ryan [24] who proposed a universal adaptive tracking law for relative

degree one systems with a set valued non-linearity (of a certain kind) at the

input. We propose a control law that combines Ryan’s work and that of Morse

[25] who proposed a universal stablizer for linear relative degree two systems. A

proof of this control law was not carried out during the course of this dissertation

because of time limitations. An implementation of the proposed controller was

done on a TMS320C31 based DSP-board. The results of this experiment was

not satisfactory due to the presence of rather large sensor noise. Nevertheless

the fact that the closed-loop-system remained stable even for input frequencies

of 500 Hz suggest that the model is correct in the frequency range of interest.

30



(H     , B     ) 
max max

(-H      , -B      ) 
max max

(H  , B )
1 1

(H  , B )
2 2

(H  , B )
33

(H  , B )
44

Figure 1.9: Experimental curves for a soft-iron ring [1].
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Figure 1.10: The ETREMA MP 50/6 TERFENOL-D magnetostrictive actuator

(Source: ETREMA Products Inc).
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Chapter 2

Bulk Ferromagnetic Hysteresis Model

We have seen in Chapter 1 that hysteresis between the external field and the

order parameter arises from two causes – metastability of the Helmholtz (free en-

ergy) functional and energy dissipation. In the case of ferromagnetism, metasta-

bility of the free energy functional arises due to the presence of easy axes for the

magnetic moment. The energy dissipation is due to quantum-mechanical effects

and is characterised by a constant in Equation (16). This constant is thus de-

pendent on the ferromagnetic material. So theoretically, it seems plausible that

it can be calculated from first principles. However, in practice, a ferromagnetic

body may contain several defects due to impurity atoms, ions, missing ions at

some lattice sites or lattice mismatch. The last reason is a result of the condi-

tions under which a particular ferromagnetic body is grown. To account for the

defects, one needs to add terms to both the Rayleigh dissipation function (anal-

ogous to kinetic friction) and to the energy functional to take note of pinning of

domain walls (analogous to static friction).

Engineers using magnetostrictive actuators in applications are faced with the

problem of determining the external magnetic field (using permanent magnets
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or electromagnets) that must be applied to obtain a desired response from the

actuator. From the previous discussion, we see that one needs to determine sev-

eral facts about the given actuator like the nature and position of the defects

in the actuator, the dissipation constants related to the interaction of the mag-

netic moments with themselves and with the defects, the easy directions for the

anisotropy energy etc. To resolve these questions for each and every actuator

and then the calculation of the magnetic moment distribution and the stresses in

the actuator is impractical. This leads us to a model reduction problem, where

we are faced with reducing the number of state variables in a given application.

For the case of magnetostrictive rod actuators with the length much larger

than the diameter we have chosen to use another approach to obtaining low-

order models for control purposes. This model is statistical in nature and based

on Langévin and Weiss theories of paramagnetism and ferromagnetism.

2.1 Bulk Ferromagnetic Hysteresis Theory

2.1.1 Langevin Theory of Paramagnetism

The classical derivation of Curie’s law was given by Langevin, using Boltzmann’s

statistics[26, 27]. In what follows, bold letters denote vectors like the magnetic

field H at a point in space, or the magnetization M at a point in a magnetized

body. The scalar quantities H, M etc. denote their magnitudes.

Consider a system of atomic magnetic moments m and suppose that they do

not interact with each other and are therefore free to point in any direction. If

a magnetic field H is applied to such a group of free moments, a couple acts

on each moment, tending to rotate it into the direction of H. This tendency
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is opposed by the thermal agitation if the temperature is finite. The potential

energy of a magnetic dipole in a magnetic field is given by

Wpara = −m.H = −mH cos θ, (1)

where θ is the angle between the directions of m and H. The energy of thermal

motion is of the magnitude of k T where k is Boltzmann’s constant and T is

the absolute temperature in Kelvins. Suppose cos θ = 1; H = 106A/m. The

smallest possible magnetic moment is the Bohr magneton MB = 1.17 × 10−29.

Therefore |Wpara| = 1.17 × 10−23. Now k T = 1.38 × 10−23 × 300 =

4.1 × 10−21J, at room temperature. So thermal agitation is sufficient to make

the angular distribution of the atomic moments almost random, resulting in only

a very small magnetization parallel to the magnetic field.

The number of molecules having an energy in the range Wpara to Wpara +

dWpara is given by Boltzmann’s statistics as

dn = n0 e
−
Wpara
k T dWpara, (2)

where n0 is a constant chosen in such a way that integration of Equation (2)

overall possible values of Wpara shall be equal to the total number of molecules

N . Using Equation (1) we get

dn = n0 e
mH cos θ

k T d(−mH cos θ)

= n0 e
mH cos θ

k T mH sin θ dθ. (3)

The total number N of molecules must then be equal to Equation (3) integrated

over all angles between 0 and π. The net magnetization of the sample is given
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by the resultant of all magnetic moments along the direction of H:

M =
∫ π

0
m cos θ dn

=
N
∫ π

0 m cos θ dn∫ π
0 dn

=
N
∫ π

0 m cos θ n0 e
mH cos θ

k T mH sin θ dθ∫ π
0 n0 e

mH cos θ
k T mH sin θ dθ

= N m (coth z −
1

z
)

= Ms L(z), (4)

where

z =
mH

k T
. (5)

L(z) is called the Langevin function. For a high enough value of the magnetic

field H, nearly all the atomic moments are aligned in the direction of H, and

the value of M ≈ N m = Ms – the saturation magnetization. For the sample

calculation done before, z = 2.8 × 10−3. For z � 1, the Langevin function can

be expanded as

L(z) =
z

3
−
z3

45
+ · · · .

Neglecting higher-order terms,

M =
N m2

3 k T
H. (6)

This is Curie’s law for paramagnetic materials.
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2.1.2 Weiss Theory of Ferromagnetism

The magnetic field necessary to reach saturation according to Equation (4) may

be estimated tentatively with z = 7. That is H = 7 k T
MB
≈ 2.5 × 109A/m. To

magnetise a ferromagnetic substance to saturation, we only need H ≈ 1A/m for

Supermalloy and 5 × 104A/m for Alnico[26]. Usually it is between these values.

Weiss reasoned that the atomic magnetic moments in a ferromagnetic substance

interact strongly with one another and tend to align themselves parallel to each

other. The interaction is such as to correspond to an applied field of the order

of magnitude of 109A/m for iron. The effect of an externally applied field is

merely to change the direction of the spontaneous magnetization. Weiss first

postulated this strong inner magnetic field and called it the “molecular field”.

The molecular field was postulated to be

Hm = αM. (7)

If a magnetic field H is applied parallel to the magnetization M of the system,

then the “effective” magnetic field at a point is given by equation.

He = H + Hm.

An individual atomic moment now has the potential energy,

Wferro = −m ·He = −m (H + αM) cos θ.

Repeating the calculations done in the previous section according to Equations

(2) - (4) we get

M(z) = Ms L(z) = Ms

(
coth z −

1

z

)
(8)
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where Ms is the saturation magnetization and L(z) is the Langevin function. z

in the above equation is given by

z =
m (H + αM)

k T
. (9)

Rewriting the above equation, we get

M =
z k T

mα
−
H

α
(10)

Then the magnetization M is given by the simultaneous solution of Equations

(8) and (10) for a given value of H. The ferromagnetic solid considered was

lossless, and hence the same curve in the (H,M)-plane is traced during both the

increasing and decreasing branches for a periodic H (Figure 2.1). This curve is

called the “anhysteretic” curve. In the following sections we consider lossy solids,

and the average magnetization is referred to as M while the magnetization given

by Equation (8) is called Man - the anhysteretic magnetization.

2.1.3 Bulk Ferromagnetic hysteresis model

In 1983, Jiles and Atherton[21] proposed a model for bulk ferromagnetic hys-

teresis. Their aim was to try and reproduce the bulk B −H curves observed in

ferromagnetic rods or toroids. The theory was based on the modification of the

Weiss molecular field model in which the changes in magnetization due to the

motion of domain walls under an applied field were accounted for. In effect, they

postulate an expression for the dissipation of energy during domain wall motion.

We have noted before that this quantity is a troublesome quantity to calculate

from first principles because of the diversity of phenomena that contribute to it

and from practical considerations having to do with estimating the number of
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Figure 2.1: M vs H relationship for an ideal and a lossy ferromagnet.

defects in a particular ferromagnet etc. The contribution of Jiles and Atherton

is to postulate a simple expression to account for the losses. This expression is

very similar to the energy losses due to kinetic friction in that it says that the

losses during the magnetization changes for a magnetic body is proportional to

the change rate of change of magnetization.

Consider a thin ferromagnetic rod whose average magnetization is denoted

by M . An external source (battery) produces a uniform magnetic field H in the

body. This field H is purely due to the external source and is not the effective

magnetic field in the body. A change in the field H brings about a corresponding

change in the magnetization of the body in accordance with Maxwell’s laws

of electromagnetism. The work done by the external source δWbat, is equal

to the change in the internal energy of the material δWmag and losses in the
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magnetization process δLmag:

δWbat = δWmag + δLmag . (11)

W.F. Brown [8] derives the work done by the battery in changing the magneti-

zation per unit volume, in one cycle, to be given by

δWbat =
∮
µ0H dM. (12)

The relationship between the above energy expression and the usual expres-

sion of hysteresis energy loss per unit volume can be derived easily. The average

magnetic flux density in the ferromagnetic body B is related to the magnetic

field H and average magnetization M as :

B = µ0 (H +M). (13)

As
∮
µ0H dH and

∮
µ0M dM are loop integrals of exact differentials and

hence equal to zero, we have

∮
H dB =

∮
µ0H dH +

∮
µ0H dM

=
∮
µ0H dM

= −
∮
µ0M dH

= −
∮
µ0M dH − α

∮
µ0M dM

= −
∮
µ0M d(H + αM)

= −
∮
M dBe, (14)

where the constant α can take any value and
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Be = µ0He = µ0 (H + αM). (15)

The Equation (14) is of interest because in Weiss’s molecular field theory for

ideal ferromagnetic rods (no losses), Man = M is a function of Be and α > 0

is the molecular field parameter. For an ideal ferromagnetic rod, Man is given

by the Langevin function [26, 27] – Man = Ms L(z) = Ms (coth z − 1
z
) where

Ms is the saturation magnetization. z = H +αM
a

and a is a parameter that

depends on the temperature of the specimen. Thus for an ideal ferromagnet,∮
H dB and

∮
H dM are equal to zero as we expect them to be. Hence if H is a

periodic function of time, then the same (anhysteretic) curve is traced for both

the increasing and decreasing branches in the (H,M)-plane (Figure 2.1).

Using Equation (14), we obtain the expression for δWmag from the ideal case:

δWmag = −
∮
Man dBe. (16)

For a lossy ferromagnet, the expression for the magnetic hysteresis losses δLmag

is due to Jiles and Atherton. The motivation for this term (see Equation (19)

below) is the observation that the hysteresis losses are due to irreversible domain

wall motions in a ferromagnetic solid. They arise from various defects in the

solids and are discussed in detail by Jiles and Atherton [28]. Here we provide

a gist of their results. They consider the average magnetic moment per unit

volume M to be comprised of an irreversible component Mirr and a reversible

component Mrev. Furthermore, they claim Mrev to be related to the anhysteretic

or ideal magnetization by,

M = Mrev + Mirr, (17)
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Mrev = c (Man −Mirr), (18)

where 0 < c < 1 is a parameter that depends on the material. The energy loss

due to the magnetization is only due to Mirr:

δLmag =
∮
k δ (1− c) dMirr. (19)

In the above equation, k is a nonnegative parameter, and δ is defined as,

δ = sign(Ḣ). (20)

Furthermore, Jiles and Atherton make the assumption that if the actual magne-

tization is less than the anhysteretic value and the magnetic field strength H is

lowered, then until the value of M becomes equal to the anhysteretic value Man,

the change in magnetization is reversible. That is,

dMirr

dH
= 0 if


Ḣ < 0 andMan(He)−M(H) > 0

Ḣ > 0 andMan(He)−M(H) < 0
(21)

At this point, we take stock of Equations (17 - 21). The reasoning behind

Equation (18) is provided by Jiles and Atherton [28]. They use phenomenology-

based arguments, the correctness of which is unclear. Basically, they explain the

process of magnetization of a ferromagnetic body, as occurring in two stages. In

one stage, the change in the magnetization is all reversible, whilst in the other

it is a combination of reversible and irreversible changes. A similar qualitative

explanation of the magnetization process can also be found in Bozorth [29] and

Chikazumi [27]. The contribution of Jiles and Atherton is to quantify the same.

As will be seen later in the chapter, Equations (17 - 21) result in a model

for magnetization that is numerically well-conditioned. Without Equation (21),
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the incremental susceptibility at the reversal points dM
dH

can become negative.

This can be checked by numerical simulations. Experimental observations sug-

gest that the quasi-static incremental susceptibility is a non-negative quantity.

Therefore we adopt the same assumptions as (a) they do not violate the laws

of thermodynamics, (b) they make the quasi-static incremental susceptibility

a non-negative quantity and (c) the extra structure makes the model numeri-

cally well conditioned. With these qualifying comments we proceed with the

derivation of the state equations.

By Equations (17) and (18) we get

M = (1− c)Mirr + cMan. (22)

Let

δM =


0 : Ḣ < 0 andMan(He)−M(H) > 0

0 : Ḣ > 0 andMan(He)−M(H) < 0

1 : otherwise.

(23)

Then by Equations (21) and (22),

dM

dH
= δM (1 − c)

dMirr

dH
+ c

dMan

dH
. (24)

From Equations (11), (12), (14) and (19) and the expression for Wmag we get

∮
(Man −M − k δ (1− c)

dMirr

dBe

) dBe = 0.

Note that the above equation is valid only if M(t) and H(t) are periodic in

the (H,M)-plane. In other words, the trajectory is a periodic orbit. We now

make the hypothesis that the following equation is valid when we go from any

point on this periodic orbit to another point on the periodic orbit:
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∫
(Man − M − k δ (1− c)

dMirr

dBe

) dBe = 0. (25)

The above equation holds only on the periodic orbit. Therefore on the periodic

orbit, the integrand must be equal to zero:

Man − M − k δ (1− c)
dMirr

dBe

= 0. (26)

Using Equations (24) and (26) we can show after some manipulations that

dM

dH
=

k δ
µ0
c dMan

dH
+ δM (Man −M)

k δ
µ0
− δM (Man −M)α

. (27)

Setting k = 0 gives us δM (Man − M) dM
dH

= −δM (Man−M)
α

. As mentioned

before, compatibility with the physical phenomenon demands that dM
dH
≥ 0. α

is a non–negative parameter and so for the above equation to make sense we

must have

Man −M = 0. (28)

Thus k = 0 represents the lossless case. On the other hand, if Man − M = 0,

then for (26) to be true for all c, k must be equal to 0. Hence for the ferromagnetic

hysteresis model,

k = 0 ⇐⇒ M = Man. (29)

Rewriting Equation (27) so that we have dMan

dHe
in the numerator on the right

hand side we get

dM

dH
=

k δ
µ0
c dMan

dHe
+ δM (Man −M)

k δ
µ0
− δM (Man −M)α − k δ

µ0
α c dMan

dHe

. (30)
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This equation is different from the one obtained by Jiles and Atherton [21, 28].

We henceforth refer to it as the bulk ferromagnetic hysteresis model so as not

to confuse it with the model in [28] that is popularly known as Jiles-Atherton

model. For the sake of completeness we write down the other equations satisfied

by the system:

Man(He) = Ms

(
coth

(
He
a

)
− a

He

)
, (31)

He = H + αM, (32)

δ = sign(Ḣ), (33)

δM =


0 : Ḣ < 0 andMan(z)−M(H) > 0

0 : Ḣ > 0 andMan(z)−M(H) < 0

1 : otherwise.

(34)

Equations (30 - 34) describe the bulk ferromagnetic hysteresis model. There

are 5 non–negative parameters in this model namely a, α, Ms, c, k. Also

0 < c < 1. Figure 2.1 shows the values taken by the discrete variables δ, δM at

different sections of the hysteresis curve in the (H,M)-plane.

2.2 Qualitative analysis of the model

The model equations are only valid when the variables M(t) and H(t) are pe-

riodic signals of time. Therefore the solution of the model equations represent

the physics of the system only when M(t) and H(t) form a periodic orbit in the

(H,M)-plane. In simulations, the initial state of the system has to be on this

orbit for the solution trajectory to represent the state of the system at any time

t. But in practice, we do not know apriori what state the system is in. Then
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can we use the above model? The answer in the affirmative is provided in this

section. We show analytically that if the initial state is at the origin in the

(H,M)-plane (which is usually not on the hysteresis loop), and apply a periodic

input Ḣ, then the solution tends asymptotically towards a periodic orbit in the

(H,M)-plane.

First we prove an important property. Define state variables, x1 = H, x2 =

M. Define

z =
x1 + α x2

a
. (35)

Denote L(z) = coth(z)− 1
z

and ∂L
∂z

(z) = −cosech2(z) + 1
z2 . Then the state

equations are:

ẋ1 = u, (36-a)

ẋ2 = g(x1, x2, x3, x4) u, (36-b)

where

x3 = sign(u), (37-a)

x4 =


0 : x3 < 0 and coth(z)− 1

z
− x2

Ms
> 0,

0 : x3 > 0 and coth(z)− 1
z
− x2

Ms
< 0,

1 : otherwise,

(37-b)

and

g(x1, x2, x3, x4) =

k x3

µ0

cMs

a
∂L
∂z

(z) + x4 Ms

(
L(z) − x2

Ms

)
k x3

µ0
− x4 Ms

(
L(z)− x2

Ms

)
α − k x3

µ0
α cMs

a
∂L
∂z

(z)
(38)

46



The system (36-a) - (38) has 2 continuous states: x1 and x2. u(·) is the input.

x3 and x4 are discrete variables that are functions of x1, x2 and u at any instant

of time t. Therefore x3 and x4 are not discrete states. As the function g on the

right hand side of Equation (36-b) depends on x3 and x4, it is not continuous as

a function of time. Therefore, the notion of solution to the system (36-a) - (72)

is in the sense of Carathéodory (please refer to Appendix B for a discussion on

this topic). A Carathéodory solution (x1, x2)(t) to (36-a) - (72) for t defined on

a real interval I, satisfies (36-a) - (72) for all t ∈ I except on a set of Lebesgue

measure zero. These points are those where g is discontinuous.

Theorem 2.2.1 Consider the system of equations (36-a - 37-b). Let the initial

condition (x1, x2)(t = 0) = (x10 , x20) be on the anhysteretic curve:

z0 =
x10 + αx20

a
,

x20 = Ms (coth(z0) −
1

z0

). (39)

Let the parameters satisfy

αMs

3 a
< 1, (40)

0 < c < 1, (41)

k > 0. (42)

Let u(·) be a continuous function of t, with u(t) > 0 for t ∈ [0, b) where b > 0

and (x1(t), x2(t)) denote the solution of (36-a) - (37-b). Then (Ms L(z(t)) −

x2(t)) > 0 ∀ t ∈ (0, b). Else if u(t) < 0 for t ∈ [0, b) where b > 0, then

(Ms L(z(t)) − x2(t)) < 0 ∀ t ∈ (0, b).
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Proof

We make a change of co-ordinates from (x1, x2) to (z, y), where

z =
x1 + αx2

a
,

y = MsL(z)− x2.

Denote w = (z, y) and x = (x1, x2). The domain of definition of the trans-

formation ψ : x 7→ w is IR2. The Jacobian of the transform is given by

∂ψ

∂x
=

 1
a

α
a

Ms

a
∂L
∂z

(z) Ms α
a

∂L
∂z

(z) − 1

 .
The determinant of ∂ψ

∂x
is

det(
∂ψ

∂x
) = −

1

a
∀x ∈ IR2.

Hence the results on existence, extension and uniqueness of solutions to the state

equations in the transformed space carry over to the equations in the original

state space.

Denote ẇ = f(t, w, x3, x4). The initial conditions in the transformed co-

ordinates are

w0 = (z0, y0) = (
x10 + α x20

a
,Ms L(z0)− x20).

The state equations in terms of w are:

ż = f1(t, w) (43-a)

4
=

1 + α ḡ(z, y, x3, x4)

a
u, (43-b)

=
1
a
kx3

µ0

kx3

µ0
− α

(
x4y + kx3

µ0

cMs

a
∂L
∂z

(z)
)u, (43-c)
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ẏ = f2(t, w) (44-a)

4
=

(
Ms

a
∂L
∂z

(z) +
(
αMs

a
∂L
∂z

(z) − 1
)
ḡ(z, y, x3, x4)

)
u, (44-b)

=
Ms

a

kx3(1−c)
µ0

∂L
∂z

(z)− x4y

kx3

µ0
− α

(
x4y + kx3

µ0

cMs

a
∂L
∂z

(z)
)u. (44-c)

where

x3 = sign(u), (45-a)

x4 =


0 : x3 < 0 and y > 0,

0 : x3 > 0 and y < 0,

1 : otherwise,

(45-b)

where

ḡ(z, y, x3, x4) =
k x3

µ0

cMs

a
∂L
∂z

(z) + x4 y
k x3

µ0
− x4 y α −

k x3

µ0
α cMs

a
∂L
∂z

(z)
. (46)

Let D = (−δ1, b)︸ ︷︷ ︸
t

× (−∞,∞)︸ ︷︷ ︸
z

× (−ε1,
k

µ0

Ms (1− c)

3 a
+ ε1)︸ ︷︷ ︸

y

, where δ1, ε1 are

sufficiently small positive numbers.

As u(t) is only defined for t ≥ 0, we need to extend the domain of u(·) to

(−δ1, 0). This can be easily accomplished by defining u(t) = 0 for t ∈ (−δ1, 0).

Then f1(t, w), f2(t, w) exist on D which can be seen as follows.

1. In the time interval (−δ1, 0), u(t) = 0 by definition. Therefore x3 = 0

by (45-a) and x4 = 1 by (45-b). This implies that ḡ(z, y, 0, 1) = −y
y
.

Defining ḡ(z, 0, 0, 1) = −1 makes ḡ(z, y, 0, 1) continuous as a function of

y. This also makes f1(t, w) and f2(t, w) well defined.
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2. In the time interval [0, b), u(t) > 0. Therefore x3 = 1. Hence

ḡ(z, y, 1, x4) =
k
µ0

cMs

a
∂L
∂z

(z) + x4y
k
µ0
− x4yα−

k
µ0
α cMs

a
∂L
∂z

(z)
.

We have to ensure that f is well defined ∀ (z, y) ∈ (−∞,∞)

× (−ε1,
k
µ0

Ms(1−c)
3a

+ ε1).

(a) x4 = 0 implies ḡ(z, y, 1, 0) =
k
µ0

cMs
a

∂L
∂z

(z)
k
µ0
− k
µ0

α cMs
a

∂L
∂z

(z)
. By (40) and (41),

the denominator of ḡ is always positive ∀ (z, y) ∈ (−∞,∞) ×

(−ε1,
k
µ0

Ms(1−c)
3a

+ ε1). Hence f1(t, w) and f2(t, w) are well-defined.

(b) x4 = 1 implies ḡ(z, y, 1, 1) =
k
µ0

cMs
a

∂L
∂z

(z)+y

k
µ0
−yα− k

µ0
α cMs

a

∂L
∂z

(z)
. By (40), the denom-

inator of ḡ is always positive ∀(z, y) ∈ (−∞,∞)×(−ε1,
k
µ0

Ms(1−c)
3a

+ε1)

if we choose ε1 small enough. Hence f1(t, w) and f2(t, w) are well-

defined.

• Existence of a solution

We first show existence of a solution at t = 0. To prove existence, we show

that f(·, ·) satisfies Carathéodory’s conditions.

1. We have already seen that f(·, ·) is well defined on D. We now check

whether f1(t, w) and f2(t, w) are continuous functions of w for all t ∈

(−δ1, b).

(a) For t ∈ (−δ1, 0), f1(t, w), f2(t, w) are both zero and hence trivially

continuous in w.

(b) At t ≥ 0, x3 = 1. To check whether f1(t, w), f2(t, w) are continuous

with respect to w, we only need to check whether ḡt(·) is continuous

as a function of w.
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ḡt(w) =
k
µ0

cMs

a
∂L
∂z

(z) + x4 y
k
µ0
− x4 y α −

k
µ0
α cMs

a
∂L
∂z

(z)
.

In the above expression, the only term that could possibly be discon-

tinuous as a function of w is

h(w)
4
= x4 y.

By (45-b), if y ≥ 0, x4 = 1 and if y < 0, x4 = 0 (because x3 = 1).

Therefore

lim
y→ 0+

h(w) = lim
y→ 0−

h(w) = 0.

Hence, f(·, ·) satisfies Carathéodory’s first condition for t ∈ (−δ1, b).

2. Next we need to check whether the function f(t, w) is measurable in t for

each w.

(a) For t ∈ (−δ1, 0), u(t) = 0. Therefore for each w, f(·, w) is a contin-

uous function of time t trivially.

(b) For t ≥ 0, u(t) > 0. This implies by (45-a) that x3 = 1. Hence for

each w, x4 is also fixed. Therefore for each w

f1(t, w) = K1(w) u(t),

f2(t, w) = K2(w) u(t),

where K1(·), K2(·) are functions of w, implying that f(t, w) is a con-

tinuous function of t.
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Hence, f(·, ·) satisfies Carathéodory’s second condition for t ∈ (−δ1, b).

3. For each t ∈ (−δ1, b), ḡ(·) is continuous as a function of w. The denomi-

nator of ḡ(·) is bounded both above and below. The lower bound on ḡ(·)

in D is

A =
k

µ0

(
1 −

αMs

3 a

)
− α ε1. (47)

For all (z, y) ∈ (−∞,∞) × (−ε1,
k
µ0

Ms (1−c)
3 a

+ ε1);
∂L
∂z

(z) ≤ 1
3

implying

|ḡ(t, w)| ≤
1

A

(
k

µ0

Ms

3 a
+ ε1

)
.

Thus g(·, ·) is uniformly bounded in D. By (43-b) and (44-b), f(·, ·) is

also uniformly bounded in D. Hence f(·, ·) satisfies Carathéodory’s third

condition for (t, w) ∈ D.

Hence by Theorem B.1.1, for (t0, w0) = (0, (0, 0)), there exists a solution

through (t0, w0).

• Extension of the solution (We now extend the solution through (t0, w0), so

that it is defined for all t ∈ [0, b).)

According to Theorem B.2.1, the solution can be extended until it reaches

the boundary of D. As f(t, z, y) is defined ∀ z, we only need to ensure that y(t)

does not reach the boundary of the set (−ε1,
kMs (1−c)

3µ0 a
+ ε1]. We show this by

proving that 0 ≤ y(t) ≤ kMs (1−c)
3µ0 a

∀ t ∈ [0, b). This implies that the solution

can be extended to the boundary of the time t interval.

1. We know that y(0) = 0. We will show that y(t) > 0 ∀ t ∈ (0, b). As

ẏ(0+) > 0, ∃ b1 > 0 3 y(t) > 0 ∀ t ∈ (0, b1). If this were not true then

we could form a sequence of time instants tk → 0 3 y(tk) ≤ 0. Then
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lim
tk→ 0

y(tk) − y(0)

tk − 0
= lim

tk→ 0

y(tk) − 0

tk
≤ 0

which contradicts ẏ(0) > 0.

Let b1 denote the largest such time instant such that y(t) > 0 ∀ t ∈ (0, b1).

Suppose b1 < b. Then y(b1) = 0 by continuity of y(·). At t = b1, x3 = 1

by (45-a) and x4 = 0 by (45-b). Therefore

ẏ(b1) =

Ms

a
∂L
∂z

(z) +

(
αMs

a
∂L
∂z

(z) − 1
)

k
µ0

cMs

a
∂L
∂z

(z)
k
µ0
− k

µ0
α cMs

a
∂L
∂z

(z)

 u(b1),

=

(
Ms

a
∂L
∂z

(z) −
1− αMs

a
∂L
∂z

(z)

(1− α cMs

a
∂L
∂z

(z))

cMs

a
∂L
∂z

(z)

)
u(b1).

By (40) and (41)

1 − αMs

a
∂L
∂z

(z)

1 − c αMs

a
∂L
∂z

(z)
< 1. (48)

By (42) and (48)

ẏ(b1) >
(
Ms

a
∂L
∂z

(z) −
cMs

a
∂L
∂z

(z)
)
u(b1),

=
Ms

a
∂L
∂z

(z) (1− c) u(b1),

> 0 by (41).

Therefore for some ε > 0 sufficiently small (with ε < b1),
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y(b1 − ε) = y(b1)− ε ẏ(b1) + o(ε2)

= 0− ε ẏ(b1) + o(ε2)

< 0,

which is a contradiction of the fact that y(t) > 0 ∀ t ∈ (0, b1).

Hence y(t) > 0 ∀ t ∈ (0, b).

2. We now verify that y(t) ≤ k
µ0

Ms (1−c)
3 a

.

As u(t) > 0 for t ∈ (0, b), x3(t) = 1 by (45-a). We proved that y(t) > 0

for t ∈ (0, b) implying that x4(t) = 1. By expanding the right-hand-sides

of (43-b) and (44-b) with x3 = 1 and x4 = 1, we get

ż(t) =
1
a

k
µ0

k
µ0
− α y − k

µ0
α cMs

a
∂L
∂z

(z)
u(t), (49)

ẏ(t) =
k
µ0

(1−c)Ms

a
∂L
∂z

(z) − y
k
µ0
− α y − k

µ0
α cMs

a
∂L
∂z

(z)
u(t). (50)

By substituting (49) into (50) we get

y ż +
1

a

k

µ0
ẏ =

k (1− c)Ms

µ0 a
∂L
∂z

(z) ż

y ż +
1

a

k

µ0

dy

dz
ż =

k (1− c)Ms

µ0 a
∂L
∂z

(z) ż. (51)

Now ḡ(z, y, 1, 1) > 0 ∀ (z, y) ∈ (−∞,∞) × (−ε1,
kMs (1−c)

3µ0 a
) implying that

ż > 0 ∀ (t, w) ∈ D. Therefore (51) can be simplified to
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y +
1

a

k

µ0

dy

dz
=
k (1− c)Ms

µ0 a
∂L
∂z

(z) (52)

The maximum value of y(·) ( = ymax) is when dy
dz

= 0. Denote the corre-

sponding value of z as zymax . Then (52) leads to

ymax =
k (1− c)

µ0

Ms

a

∂L

∂z
(zymax)

≤
k (1− c)

µ0

Ms

3 a
. (53)

Therefore the solution can be extended in time to the boundary of [0, b). In the

course of continuing the solutions, we also proved that (Ms L(z(t)) − x2(t)) > 0

∀ t ∈ (0, b).

• Uniqueness(We show the uniqueness of the solution.)

As u(t) > 0 for t ≥ 0, x3 = 1. As y > 0 for t > 0, x4 = 1 for t > 0. We

concentrate on this case below. At t = 0, x4 = 0 and the Lipschitz constants

obtained in the following analysis can again be used to show uniqueness.

A defined by (47) is a lower bound for the denominator of f1(t, w). With w1 =

(z1, y1) and w2 = (z2, y2), we have

|f1(t, w1)− f1(t, w2)| ≤
1
a
k
µ0

A2

(
k

µ0

αcMs

a
|
∂L

∂z
(z1)−

∂L

∂z
(z2)|+ α|y1 − y2|

)
u(t).

(54)

As ∂L
∂z

(z) is a smooth function of z, by Theorem B.3.1 ∃ a non-negative

constant K 3

|
∂L

∂z
(z1)−

∂L

∂z
(z2)| ≤ K|z1 − z2| ∀ z1, z2 ∈ (−∞,∞).
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Hence

|f1(t, w1)− f1(t, w2)| ≤
1
a
k
µ0

A2

(
k

µ0

αcMs

a
K|z1 − z2|+ α|y1 − y2|

)
u(t)

≤
1
a
k
µ0

A2

(
k

µ0

cαMs

a
K‖w1 − w2‖+ α‖w1 − w2‖

)

≤
1
a
k
µ0

A2

(
k

µ0

cαMs

a
K + α

)
‖w1 − w2‖u(t). (55)

Now

|f2(t, w1)− f2(t, w2)| ≤
u(t)

A2

( k

µ0

)2
(1− c)Ms

a
|
∂L

∂z
(z1)−

∂L

∂z
(z2)|

+
k

µ0

|y1 − y2|+
k

µ0

αMs

a
|y1
∂L

∂z
(z2)− y2

∂L

∂z
(z1)|

)
.

We can write

y1
∂L

∂z
(z2)− y2

∂L

∂z
(z1) = y1

∂L

∂z
(z2)− y1

∂L

∂z
(z1)− y1

∂L

∂z
(z1)− y2

∂L

∂z
(z1)

= y1

(
∂L

∂z
(z2)−

∂L

∂z
(z1)

)
+ (y1 − y2)

∂L

∂z
(z1)

As |y1| ≤
k(1−c)
µ0

Ms

3a
and ∂L

∂z
(z1) ≤

1
3

for all (t, z1, y1) ∈ D.

|f2(t, w1)− f2(t, w2)| ≤
u(t)

A2

k

µ0

(
k

µ0

(1− c)Ms

a
K|z1 − z2|+ |y1 − y2|

+
αMs

a

(
k(1− c)

µ0

Ms

3a
K|z1 − z2|+

1

3
|y1 − y2|

)
)

=

((
k

µ0

(1− c)Ms

a
K +

αMs

a

k(1− c)

µ0

Ms

3a
K

)
|z1 − z2|

+
(
1 +

αMs

3a

)
|y1 − y2|

)
u(t)

A2

k

µ0
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≤

((
k

µ0

(1− c)Ms

a
K +

αMs

a

k(1− c)

µ0

Ms

3a
K

)
‖w1 − w2‖

+
(
1 +

αMs

3a

)
‖w1 − w2‖

)
u(t)

A2

k

µ0

=

(
k

µ0

(1− c)Ms

a
K +

αMs

a

k(1− c)

µ0

Ms

3a
K

+ 1 +
αMs

3a

)
‖w1 − w2‖

u(t)

A2

k

µ0

By (54) and (56)

‖f(t, w1)− f(t, w2)‖ ≤ B‖w1 − w2‖u(t) (56)

where B is some positive constant. Hence by Theorem B.3.2, there exists atmost

one solution in D.

For inputs u(·) with u(t) < 0 for t ∈ (0, b), the same proof can be repeated

to arrive at the conclusion that (Ms L(z(t)) − x2(t)) < 0 ∀ t ∈ (0, b).

2

The following corollary continues the ideas contained in Theorem 2.2.1

Corollary 2.2.1 Suppose the parameters satisfy (40) - (42). If u(t) > ε >> 0

for t ∈ (0, b) then as b → ∞, x2(t) → Ms.

Proof

We again perform a change of co-ordinates (x1, x2) 7→ (z, y). By (43-b)

ż(t) =
1 + α ḡ(z, y, x3, x4)

a
u

>
1

a
u(t) (57)

>
ε

a
(58)
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where ḡ(z, y, x3, x4) is given by (46) and x3, x4 are defined by (45-a) and (45-b)

respectively. Inequality (58) shows that z(·) → ∞ as b → ∞. Hence it is

sufficient to study the behaviour of y as a function of z. It was shown in the

proof of Theorem 2.2.1 that the evolution of y as a function of z satisfies

y +
1

a

k

µ0

dy

dz
=
k (1 − c)Ms

µ0 a
∂L
∂z

(z) (59)

The initial condition for the above differential equation is y(z = 0) = 0. Define

v(z) =
k (1 − c)Ms

µ0 a
∂L
∂z

(z)

Clearly v(z) > 0 ∀ z. Employing Laplace transforms we have

Y (s) =
V (s)

k
µ0
s + 1

,

where the Laplace transform of v(z), y(z) are denoted as V (s) and Y (s) respec-

tively. V (s) exists because by definition of the Laplace transform

V (s) =
∫ ∞

0
v(z) exp(−z s) dz,

and v(z) is an integrable function of z (in fact,
∫∞
0 v(z) dz = Ms). By the

Final-value theorem for Laplace Transforms [30],

lim
z→∞

y(z) = lim
s→0

sY (s).

Therefore,

lim
z→∞

y(z) = lim
s→0

sV (s)
k
µ0
s + 1

Now (by another application of the Final value theorem for Laplace Transforms)

58



lim
s→0

sV (s) = lim
z→∞

v(z)

= lim
z→∞

k (1 − c)

µ0

dMan

dz

= 0. (60)

Hence,

lim
z→∞

y(z) = 0.

We conclude that x2(t) → Ms as t → ∞.

2

Suppose that an input u(t) > 0 for t ∈ [0, b) has been applied to the system

(36-a - 37-b). Let

x0 = (x10 , x20) = lim
t→ b

(x1, x2)(t). (61)

x0 is well-defined because of Theorem B.2.1. Define the set O1 as

O1 =
⋃

t∈ (0,b)

x(t). (62)

where w(·) is the solution of (36-a - 38). Define (Figure 2.2):

u(b) = lim
t→ b

u(t) (63)

u1(t) = −u(b − t) for t ∈ [0, b]. (64)

Let the initial condition be x0 as defined in (61). Then the next theorem claims

that there exists a time 0 < b1 < b such that x2(b1) = Ms L(x1(b1) +αx2(b1)
a

). In

other words, the solution trajectory intersects with the anhysteretic curve in the

(x1, x2)-plane at time b1 < b.
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t

t

(0,0)

(0,0)

u(t)

u (t) = - u(b - t)1

b

b

Figure 2.2: Sample signals u(·) and u1(·).

Theorem 2.2.2 Consider the system of equations (36-a - 37-b). Let the initial

condition (x1, x2)(t = 0) = (x10 , x20) where (x10 , x20) is defined by (61). Let

the parameters satisfy (40 - 42). Let u(t) be a continuous function of t with

u(t) > 0 for t ∈ [0, b), and u1(t) be defined by (63 - 64). If u1(t) is the input

to the system (36-a - 37-b) for t ∈ [0, b], then ∃ b1 > 0 such that b1 < b and

x2(b1) = Ms L(x1(b1) +αx2(b1)
a

).

Proof

As before, we make a change of co-ordinates from (x1, x2) to (z, y) where

z =
x1 + αx2

a
,

y = MsL(z)− x2.

The Jacobian of this transform is non-singular ∀ (x1, x2) ∈ IR2 and hence the
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results on existence, extension and uniqueness of solutions to the state equations

in the transformed space are applicable to the equations in the original state

space. The state equations ẇ = f(t, w) in terms of w = (z, y) are given by

(43-b - 45-b). The initial conditions in the transformed co-ordinates are

w0 = (z0, y0) = (
x10 + α x20

a
,Ms L(z0)− x20).

Let D = (−δ1, b+ δ1)︸ ︷︷ ︸
t

× (−∞,∞)︸ ︷︷ ︸
z

× (0,
k

µ0

Ms (1− c)

3 a
+ ε1)︸ ︷︷ ︸

y

, where δ1, ε1 are

sufficiently small positive numbers.

We have to re-define u1(·) so that it is well-defined over its domain (−δ1, b+ δ1).

This can be easily accomplished by defining u1(t) = 0 for t ∈ (−δ1, 0)∪ (b, b+δ1).

Then f1(t, w), f2(t, w) exist on D which can be seen as follows.

1. In the time interval (−δ1, 0) ∪ (b, b+δ1), u1(t) = 0 by definition. Therefore

x3 = 0 by (45-a) and x4 = 1 by (45-b). This implies that ḡ(z, y, 0, 1) =

−y
y
. Defining ḡ(z, 0, 0, 1) = −1 makes ḡ(z, y, 0, 1) continuous as a function

of y. This also makes f1(t, w) and f2(t, w) well defined.

2. In the time interval [0, b], u1(t) > 0. Therefore x3 = −1. Hence

ḡ(z, y, 1, x4) =
k
µ0

cMs

a
∂L
∂z

(z) − x4 y
k
µ0

+ x4 y α −
k
µ0
α cMs

a
∂L
∂z

(z)
.

We have to ensure that f is well defined ∀(z, y) ∈ (−∞,∞)×(0, k
µ0

Ms(1−c)
3a

+

ε1).

(a) x4 = 0 implies ḡ(z, y,−1, 0) =
k
µ0

cMs
a

∂L
∂z

(z)
k
µ0
− k
µ0
α cMs

a

∂L
∂z

(z)
. By (40) and (41), the

denominator of ḡ is always positive ∀(z, y) ∈ (−∞,∞)×(0, k
µ0

Ms(1−c)
3a

).

Hence f1(t, w) and f2(t, w) are well-defined.
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(b) x4 = 1 implies ḡ(z, y,−1, 1) =
k
µ0

cMs
a

∂L
∂z

(z)−y
k
µ0

+yα− k
µ0
α cMs

a

∂L
∂z

(z)
. By (40), the de-

nominator of ḡ is always positive ∀(z, y) ∈ (−∞,∞)× (0, k
µ0

Ms(1−c)
3a

+

ε1). Hence f1(t, w) and f2(t, w) are well-defined.

• Existence of a solution

We first show existence of a solution at t = 0. As in Theorem 2.2.1 to prove

existence, we show that f(·, ·) satisfies Carathéodory’s conditions.

1. We have already seen that f(·, ·) is well defined on D. We now check

whether f1(t, w) and f2(t, w) are continuous functions of w for all t ∈

(−δ1, b+ δ1).

(a) For t ∈ (−δ1, 0) ∪ (b, b + δ1), f1(t, w), f2(t, w) are both zero and

hence trivially continuous in w.

(b) At t ∈ [0, b], x3 = −1. To check whether f1(t, w), f2(t, w) are con-

tinuous with respect to w, we only need to check whether ḡ(t, ·) is

continuous as a function of w.

ḡt(w) =
k
µ0

cMs

a
∂L
∂z

(z) − x4 y
k
µ0

+ x4 y α −
k
µ0
α cMs

a
∂L
∂z

(z)
.

In the above expression, the only term that could possibly be discon-

tinuous as a function of w is

h(w)
4
= x4 y.

By (45-b), if y ≤ 0, x4 = 1 and if y > 0, x4 = 0 (because

x3 = −1). Therefore

lim
y→ 0+

h(w) = lim
y→ 0−

h(w) = 0.
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Hence, f(·, ·) satisfies Carathéodory’s first condition for t ∈ (−δ1, b+ δ1).

2. Next we need to check whether the function f(t, w) is measurable in t for

each w.

(a) For t ∈ (−δ1, 0) ∪ (b, b+δ1), u1(t) = 0. Therefore for each w, f(·, w)

is a continuous function of time t trivially.

(b) For t ∈ [0, b], u1(t) < 0. This implies by (45-a) that x3 = −1. Hence

for each w, x4 is also fixed. Therefore for each w

f1(t, w) = L1(w) u1(t),

f2(t, w) = L2(w) u1(t),

where L1(·), L2(·) are only functions of w. This implies that f(t, w)

is a continuous function of t.

Hence, f(·, ·) satisfies Carathéodory’s second condition for t ∈ (−δ1, b+

δ1).

3. For each t ∈ (−δ1, b + δ1), ḡ(·) is continuous as a function of w. The

denominator of ḡ(·) is bounded both above and below. The lower bound

on ḡ(·) in D is

A =
k

µ0

(
1 −

c αMs

3 a

)
.

For all (z, y) ∈ (−∞,∞) × (0, k
µ0

Ms (1−c)
3 a

+ ε1);
∂L
∂z

(z) ≤ 1
3

implying

|ḡ(t, w)| ≤
1

A

(
k

µ0

cMs

3 a

)
sup

t∈ (−δ1,b)
u1(t).
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Thus g(·, ·) is uniformly bounded in D. By (43-b) and (44-b), f(·, ·) is

also uniformly bounded in D. Hence f(·, ·) satisfies Carathéodory’s third

condition for (t, w) ∈ D.

Hence by Theorem B.1.1, for (t0, w0) = (0, (z0, y0), there exists a solution

through (t0, w0).

• Extension of the solution (We now extend the solution through (t0, w0), so

that it is defined for all t ∈ [0, b+ δ1).)

According to Theorem B.2.1, the solution can be extended until it reaches the

boundary of D. It obviously cannot reach the boundary of D in the z variable.

We show that the solution reaches the boundary of D in the y variable.

As y(0) > 0, ∃ τ > 0 3 y(t) > 0 ∀ t ∈ [0, τ). Suppose such a τ does

not exist. Then we can choose a sequence tk → 0 3 y(tk) ≤ 0 implying that

y(0) ≤ 0 (by continuity of (z, y)(·) at t = 0) which is a contradiction. Define

b1 = sup {τ | y(τ) > 0andτ ≤ b}. (65)

Now one of two cases is possible:

• b1 < b. This implies that at t = b1, y(b1) = 0. If this is not true and y(b1) >

0, then we can choose ε > 0 sufficiently small such that y(b1 + ε) > 0

contradicting (65).

• b1 = b. We show that this is not possible.

If b1 = b then clearly the solution can be extended to [0, b). As the map

ψ : (x1, x2) 7→ (z, y) is a diffeomorphism, we consider the behaviour of the

solution in terms of the variables x = (x1, x2) for simplicity of analysis.

Define the set O2 as
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O2 =
⋃

t∈ (0,b)

x(t).

Then we can make the following observations.

1. At time t = b

x1(t = b) = 0. (66)

2. The slope of the curves O1 and O2 in the (x1, x2)-plane is always

positive (refer to Figure 2.3). The proof is as follows.By (36-a - 38)

dx2

dx1
(x) =

k x3

µ0

cMs

a
∂L
∂z

(z) + x4Ms

(
L(z)− x2

Ms

)
k x3

µ0
− x4Ms

(
L(z)− x2

Ms

)
α − k x3

µ0
α cMs

a
∂L
∂z

(z)
. (67)

where L(z) = coth(z)− 1
z

and ∂L
∂z

(z) = −cosech2(z) + 1
z2 . We have

the following cases to consider:

(a) x3 = 1 and x4 = 0.

By (40) the denominator is positive (proved in Theorem 2.2.1 and

by (65)). The first part of the numerator of the right hand side

of (67), is non-negative ∀ z. Thus dx2

dx1
(x) > 0 for this case.

(b) x3 = 1 and x4 = 1.

The observations of the previous case hold in this case also. The

second term is also non-negative by 37-b. Thus dx2

dx1
(x) > 0 for

this case also.

(c) x3 = −1. For this case, we can take a common factor of −1

in both the numerator and the denominator and reach the same

conclusion as the previous two items.
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Hence

dx2

dx1

(x) > 0

for x belonging to the solution sets O1 and O2.

3. For all x ∈ O1,

0 <
cMs

a
∂L
∂z

(z)

1 − α cMs

a
∂L
∂z

(z)
<

k
µ0

cMs

a
∂L
∂z

(z) + Ms

(
L(z) − x2

Ms

)
k
µ0
− Ms

(
L(z)− x2

Ms

)
α − k

µ0
α cMs

a
∂L
∂z

(z)
.

The first inequality is due to the assertion of the previous item.

4. The point (x10 , x20) belongs to both O1 and O2.

5. The projection of both the sets O1 and O2 on the x1 axis is the set

[0, x10 ]. This is a consequence of (36-a) and the definition of the input

u1.

t = 0

t = b
2

×
× ×

t = b O
2

O
1>

>

x
1

x
2

y = 0

x    ,  x     
1
0

 2
 0

( )

Figure 2.3: Figure for the proof of Theorem 2.2.2

Items 2−5 imply that the curve O2 lies above the curve O1 in the (x1, x2)-

plane except at the point (x10 , x20) (see Figure 2.3). Item 1 then implies
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that the curve O2 intersects with the anhysteretic curve y = 0 in the first

quadrant of the (x1, x2)-plane. This means that there exists a time b2 < b

such that y(t = b2) = 0 and y(t) < 0 for t ∈ (b2, b]. Hence the hypothesis

that b1 = b is not possible.

Thus we have shown that ∃ 0 < b1 < b such that y(b1) = 0.

• Uniqueness(We show the uniqueness of the solution.)

The state equations for the time interval [0, b1] are:

ż(t) =
1
a
k
µ0

k
µ0
− α k

µ0

cMs

a
∂L
∂z

(z)
u1(t), (68-a)

ẏ(t) =
Ms

a

k(1−c)
µ0

∂L
∂z

(z)
k
µ0
− αkx3

µ0

cMs

a
∂L
∂z

(z)
u1(t). (68-b)

We now show that the solution of (68-a) and (68-b) for t ∈ [0, b1]) is unique.

Denote ż = f1(t, w) and ẏ = f2(t, w) where f1(t, w) and f2(t, w) are defined by

the right-hand-sides of (68-a) and (68-b) respectively. As u(t) < 0 for t ≥ 0,

x3 = −1. As y > 0 for t ∈ [0, b1], x4 = 0. With w1 = (z1, y1) and w2 = (z2, y2),

we have

|f1(t, w1)− f1(t, w2)| ≤
1

a

k
µ0

A2

(
k

µ0

αcMs

a
|
∂L

∂z
(z1)−

∂L

∂z
(z2)|+ α|y1 − y2|

)
u(t).

(69)

As ∂L
∂z

(z) is a smooth function of z, by Theorem B.3.1 ∃ a non-negative

constant K 3

|f1(t, w1)− f1(t, w2)| ≤
k
µ0

A2

k

µ0

αcMs

a
K|z1 − z2|u(t)

67



≤
k
µ0

A2

k

µ0

cαMs

a
K‖w1 − w2‖u(t)

(70)

Now

|f2(t, w1)− f2(t, w2)| ≤
u(t)

A2

(
k

µ0

)2
(1− c)Ms

a
|
∂L

∂z
(z1)−

∂L

∂z
(z2)|.

Therefore

|f2(t, w1)− f2(t, w2)| ≤
u(t)

A2

(
k

µ0

)2
(1− c)Ms

a
K |z1 − z2|

≤
u(t)

A2

(
k

µ0

)2
(1− c)Ms

a
K ‖w1 − w2‖

By (70) and (71)

‖f(t, w1) − f(t, w2)‖ ≤ B ‖w1 − w2‖ u(t) (71)

where B is some positive constant. Hence by Theorem B.3.2, there exists atmost

one solution in D.

2

We now study the system described by Equations (36-a - 37-b), together with

the input given by

u(t) = U cos(ω t). (72)

The periodic nature of the Ω limit set of the solution to the system of Equations

(36-a - 37-b) and (72) is proved in 4 steps. Using Theorems 2.2.1 and 2.2.2 we

show that:
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1. Starting from (x1, x2) = (0, 0), x2(t) increases for t ∈ [0, π
2ω

], but lies

below the anhysteretic magnetization curve.

2. For t ∈ [ π
2ω
, 3π

2ω
], x2(t) first intersects the anhysteretic curve, then lies

above it.

3. For t ∈ [ 3π
2ω
, 5π

2ω
], x2(t) first intersects the anhysteretic curve, then lies

below it.

By repeating the analysis in Steps 2, 3, we can conclude that the solution

trajectory of the system lies within the compact set [− b
ω
, b
ω
] × [−Ms,Ms].

4. We then look at {x2

(
2nπ
ω

)
}; n = 0, 1, 2, . . .. This sequence of points lie on

the x2 axis (x1 = 0 line). We then show that the sequence has a unique

accumulation point. This shows that the Ω limit set is a periodic orbit in

the (x1, x2)-plane. Since x3 and x4 depend on x1, x2, we conclude that the

system of Equations (36-a - 72) with the origin as initial condition, have

asymptotic periodic solutions.

2.2.1 Analysis of the Model for t ∈ [0, 5 π
2ω ]

Lemma 2.2.1 Consider the system described by Equations (36-a - 37-b) with

the input given by (72), and (x1(0), x2(0)) = (0, 0). Suppose the parameters

satisfy conditions (40) - (42). In the time interval [0, π
2ω

], there exists a unique

solution and it satisfies the condition |x2(t)| < Ms.

Proof

Choosing b = π
2ω

, we apply Theorem 2.2.1 as the initial condition is on the

anhysteretic curve and u(·) > 0 in the time interval (0, π
2ω

). The conclusion of

Theorem 2.2.1 and 2.2.1 implies that x2(t) < Ms ∀ t ∈ [0, π
2ω

].
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2

By Theorem B.2.1 the trajectory reaches the boundary of the rectangle D in

time. Hence

x(
π

2ω
) = (x1, x2)(

π

2ω
) (73)

= lim
t→ π

2ω

(x1, x2)(t). (74)

is well-defined.

Lemma 2.2.2 Consider the system described by Equations (36-a - 37-b) with

the input given by (72), and (x1(0), x2(0)) = (0, 0). Suppose the parameters

satisfy conditions (40 - 42). In the time interval [ π
2ω
, 3π

2ω
], there exists a unique

solution and it satisfies the condition |x2(t)| < Ms.

Proof

Let τ = t − π
2ω

and ε = t. Define u1(τ) = U cos(ω t) for t ∈ [ π
2ω
, π
ω
], and

u(ε) = U cos(ω t) for t ∈ [0, π
2ω

]. If the input u1(τ) is applied to the system

(36-a - 37-b) with initial condition x(τ = 0) = x(t = π
2ω

) where x(t = π
2ω

is given by (74), then the conditions of Theorem 2.2.2 are satisfied (with u(ε)

taking the place of u(t)). This implies that there exists 0 < t∗1 < π
2ω

such that

x2(τ = t∗1) = MsL(
x1(τ=t∗1)+αx2(τ=t∗1)

a
).

Let µ = t − π
2ω
− t∗1. Now define u(µ) = U cos(ω (t), for t ∈ [ π

2ω
+ t∗1,

3π
ω

].

Then with initial condition at x(µ = 0) = x(τ = t∗1), the conditions of Theorem

2.2.1 is satisfied. Then the conclusions of Theorem 2.2.1 and its corollary 2.2.1

imply that x2(t) < Ms ∀ t ∈ [ π
2ω
, 3π

2ω
].

2
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Again by Theorem B.2.1,

x(t =
3 π

2ω
) = (x1, x2)(

3 π

2ω
) (75)

= lim
µ→ π

ω
−t∗1

(x1, x2)(µ). (76)

is well-defined.

Lemma 2.2.3 Consider the system described by Equations (36-a - 37-b) with

input given by (72), and (x1(0), x2(0)) = (0, 0). Suppose the parameters satisfy

Equations (40 - 40). the time interval [ 3π
2ω
, 5π

2ω
], there exists a unique solution

and it satisfies the condition |x2(t)| < Ms.

Proof Let τ = t − 3π
2ω

and ε = t− π
2ω
− t∗. Define u1(τ) = U cos(ω t) for t ∈

[ 3π
2ω
, 3π
ω

+ π
ω
− t∗1], and u(ε) = U cos(ω t) for t ∈ [ π

2ω
+ t∗, π

ω
]. If the input u1(τ) is

applied to the system (36-a - 37-b) with initial condition x(τ = 0) = x(t = 3 π
2ω

)

where x(t = 3π
2ω

is given by (76), then the conditions of Theorem 2.2.2 are

satisfied (with u(ε) taking the place of u(t)). This implies that there exists

0 < t∗2 <
π
ω
− t∗1 such that x2(τ = t∗2) = Ms L(

x1(τ=t∗2)+αx2(τ=t∗2)

a
).

Let µ = t− 3 π
2ω
− t∗2. Now define u(µ) = U cos(ω (t), for t ∈ [3 π

2ω
+ t∗2,

5π
ω

].

Then with initial condition at x(µ = 0) = x(τ = t∗2), the conditions of Theorem

2.2.1 is satisfied. Then the conclusions of Theorem 2.2.1 and its corollary 2.2.1

imply that x2(t) < Ms ∀ t ∈ [ 3π
2ω
, 5π

2ω
].

2
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2.2.2 Proof of Periodic behaviour of the Model for Sinu-

soidal Inputs

Let us first collect together some important properties of the bulk ferromagnetic

hysteresis model.

Property 2.2.1 Consider the system described by Equations (36-a - 37-b) with

input given by (72). If the conditions (40 - 42) are satisfied and x = (x1, x2) =

(0, 0), then there exists a unique solution to the system.

Proof

We have already shown that the solution exists and is unique for t ∈ [0, 5π
2ω

].

By repeating the proofs in Lemmas 2.2.2 and 2.2.3 we can extend the existence

and uniqueness of the solution ∀ t ≥ 0.

2

Property 2.2.2 Consider the system described by Equations (36-a - 37-b) with

input given by 72). Suppose (40 - 42) are satisfied and x = (x1, x2) = (0, 0).

Then along the solution trajectory x(t) = (x1, x2)(t),

dx2

dx1
(x) > 0 (77)

Proof

By (36-a - 38),

dx2

dx1

(x) =
k x3

µ0

cMs

a
∂L
∂z

(z) + x4 Ms

(
L(z)− x2

Ms

)
k x3

µ0
− x4 Ms

(
L(z)− x2

Ms

)
α − k x3

µ0
α cMs

a
∂L
∂z

(z)
. (78)
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where L(z) = coth(z)− 1
z

and ∂L
∂z

(z) = −cosech2(z) + 1
z2 . We have the following

cases to consider:

1. x3 = 1 and x4 = 0.

By (40) the denominator is positive (proved in Theorems 2.2.1 and 2.2.2).

The first part of the numerator of the right hand side of (78), is non-

negative ∀ z. Thus dx2

dx1
(x) > 0 for this case.

2. x3 = 1 and x4 = 1.

The observations of the previous case hold in this case also. The second

term is also non-negative by 37-b. Thus dx2

dx1
(x) > 0 for this case also.

3. x3 = −1. For this case, we can take a common factor of −1 in both

the numerator and the denominator and reach the same conclusion as the

previous two items.

Hence

dx2

dx1
(x) > 0

for x belonging to the solution trajectory of (36-a - 38) for periodic inputs if the

initial state is at the origin.

along the solution trajectory x(t) = (x1, x2)(t).

2

Property 2.2.3 (Anti-symmetry) Consider Equations (36-a - 37-b), with

u(t) ≥ 0 ∀ t ≥ 0 . Suppose that (40 - 42) are satisfied. Let yu(t) = (y1, y2)(t, u)

and xu(t) = (x1, x2)(t, u), denote two solutions with initial conditions x(0), y(0)

on the anhysteretic curve. If y(0) = −x(0), then yu(t) = −x−u(t).
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Proof

Though Theorem 2.2.1 only proved existence and uniqueness of a solution

to (36-a - 37-b) for initial state at the origin, the same analysis can be done if

the initial state is at any point on the anhysteretic curve. If x(0), y(0) lie on the

anhysteretic curve and y(0) = −x(0), then the state equations satisfied by −y

and x is the same, and they have the same initial condition.

2

Property 2.2.4 Consider the system (36-a - 37-b), with input given by (72).

Suppose that (40- 42) are satisfied. Let O be the set of all points on the (x1, x2)-

plane forming the solution x(t) with initial state at (0, 0). In other words,

O =
⋃
t≥ 0

x(t)

If u(t) does not change its sign ∀t ∈ [a, b] and if x̃(a), x̆(a) ∈ O are two

initial states of the system with x̃2(a) ≥ x̆2(a), then x̃2(t) ≥ x̆2(t) ∀t ∈ [a, b].

Proof

Suppose for some t ∈ [a, b], x̃2(t) < x̆2(t). Then by continuity of the

solution trajectories, ∃t∗ ∈ (a, t),3 x̃2(t
∗) = x̆2(t

∗). Now dx̃2

dx1
(t∗) = dx̆2

dx1
(t∗)

from Equation (78). Hence ∀t ≥ t∗, x̃2(t) = x̆2(t). This contradicts our initial

assumption.

2

Property 2.2.5 Consider the system given by Equations (36-a - 37-b), with in-

put given by Equation (72). Suppose that (40 - 42) are satisfied. If (x1, x2)(0) =

(0, 0), then |x2(t)| ≤ Ms ∀t ≥ 0. Thus the trajectory lies in the compact region

[−U
ω
, U
ω
] × [−Ms,Ms] in the (x1, x2)- plane.
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Proof

By Lemmas 2.2.1 - 2.2.3, we have shown that

|x2(t)| ≤ Ms ∀ t ∈ [0,
5 π

2ω
].

By repeating the proofs of Lemmas 2.2.2, 2.2.3 for the time periods [ (2n+ 1)π
2ω

,

(2n+ 3)π
2ω

], [ (2n+ 3) π
2ω

, (2n+ 5)π
2ω

] respectively for n = 0, 1, 2, · · · , we can conclude

that

|x2(t)| ≤ Ms ∀ t ≥ 0.

Trivially,

|x1(t)| ≤
U

ω
∀ t ≥ 0.

2

Theorem 2.2.3 Consider the system given by Equations (36-a - 37-b), with

input given by Equation (72). Suppose that the parameters satisfy (40 - 42).

If (x1, x2)(0) = (0, 0), then the Ω-limit set of the system is a periodic orbit of

period 2π
ω
.

Proof

Let θ = ω t, with θ + 2π identified with θ. Then the non-autonomous system

given by Equations (36-a - 37-b) with input given by (72), can be transformed

into an autonomous one with the auxiliary equation, θ̇ = ω. By Equation (36-a),

the trajectory in the (x1, x2)- plane intersects transversally with the anhysteretic

curve. This is because dx2

dx1
is well-defined and bounded at the points of intersec-

tion of the solution trajectory and the anhysteretic curve (this was seen in the

proof of Theorem 2.2.2).
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Thus there exists a sequence of intersections Π1 = pk (Figure 2.2). This

sequence has a convergent subsequence Γ1 = pnk because by Property( 2.2.5),

it lies in the compact set [−Ms,Ms] on the x2 axis. Let, pnk → p∗. Let

Π2 = pk \ pnk . If this sequence is finite, then we have nothing to prove. If however,

this sequence is infinite, then it has a convergent subsequence, Γ2 = pmk . If the

limit point of this subsequence is also p∗, then again we have nothing to prove.

In this case, we proceed further by extracting subsequences until we find one

with the limit point q∗ 6= p∗. Both the points (0, q∗), (0, p∗) on the (x1, x2)-

plane belong to the Ω limit set. Consider the trajectories with x̃2(0) = q∗, and

x̆2(0) = p∗, and q∗ > p∗.By Property 2.2.4, for 0 ≤ t ≤ π
2ω
, x̃2(t) ≥ x̆2(t). Also

for π
2ω
≤ t ≤ 3π

2ω
, x̃2(t) ≥ x̆2(t). and for 3π

2ω
≤ t ≤ 2π

ω
, x̃2(t) ≥ x̆2(t). Hence

for one period of the input sinusoid x̃2(t) ≥ x̆2(t). This is true for any period

of the sinusoid and so we conclude that atleast one of the following statements

must be true:

p∗ 6∈ x̃2(t) ∀t ≥ 0;

q∗ 6∈ x̆2(t) ∀t ≥ 0.

That is, atleast one of the points q∗, p∗ do not belong to the Ω limit set. Hence

it is not possible that p∗ 6= q∗. Thus the Ω-limit set of the system is a periodic

orbit.

That the periods of the variables x1 and θ on the Ω-limit set are 2π
ω

is obvious.

The period of x2 on the Ω-limit set is also 2π
ω

because sign(ẋ2) = sign(ẋ1) or in

other words dx2

dx1
> 0 ∀ (x1, x2) on the Ω-limit set by Property 2.2.2.

2
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Theorems 2.2.1 and 2.2.2 were the two main theorems used in proving the

above theorem. As it is not necessary for the input u(·) to be co-sinusoidal for

Theorems 2.2.1 and 2.2.2 to be valid, we can considerably strengthen the above

theorem without any significant change in the proof. The main observation is

that instead of (63 - 64) we could have

u(b) = lim
t→ b

u(t), (79-a)

u1(t) = −u(b − φ(t)) for t ∈ [0, b]. (79-b)

where φ(·) : [0, b] −→ [0, b] is any continuous function.

Theorem 2.2.4 Consider the system given by Equations (36-a - 37-b). Let the

input u(·) : IR → IR be a periodic and continuous function of time t with period

T. Suppose that the parameters satisfy (40 - 42).

If (x1, x2)(0) = (0, 0), then the Ω-limit set of the system is a periodic orbit of

period T.

Proof The proof is essentially same as that of Theorem 2.2.3.

2

Remarks:

1. If Theorem 2.2.1 is reproved for their set of equations, then by using the

same method, we can show that the Ω limit set is a periodic orbit for the

Jiles – Atherton model.

2. The important difference between the bulk ferromagnetic hysteresis model

and the Jiles – Atherton model is that k = 0 does not represent the lossless

case for the latter.
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These remarks are explained further in the next subsection.

2.2.3 The Jiles-Atherton model

We now look at Jiles - Atherton model of ferromagnetic hysteresis and its variant

as proposed by Deane [31, 32] and study their properties.

Jiles, Thoelke and Devine derive the equation for dM
dH

as shown below[33]. They

use the following “molecular–field” expression instead of Equation (32):

He = H + αMirr. (80)

Then Equations (26) and (22) give

Man −Mirr =
δ k

µ0

dMirr

dHe

ie.

(Man −Mirr) (dH + αdMirr) =
δ k

µ0
dMirr ie.(

δ k

µ0

− α (Man −Mirr)

)
dMirr = (Man −Mirr) dH ie.

dMirr

dH
=

Man −Mirr

δ k
µ0
− α (Man −Mirr)

(81)

Equation (81) can be found as Equation 6 in [33]. Now using Equation (18)

dM

dH
=

dMrev

dH
+
dMirr

dH

= c
dMan

dH
+ (1 − c)

dMirr

dH

= c
dMan

dH
+ (1 − c)

Man −Mirr

δ k
µ0
− α (Man −Mirr)

.

The above equation can be found as Equation (9) in [33]. Expressing the right

hand side in terms of M using Equation (22) and using the condition on dMirr

dH

as given by Equation (21) we obtain,
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dM

dH
= c

dMan

dH
+ δM

(1− c) (Man −M)
k δ (1−c)

µ0
− α (Man −M)

= c
dMan

dHe

+ (1− c)
δM (Man −M)

(
1 + δM α c

1−c
dMan

dHe

)
k δ (1−c)

µ0
− α (Man −M)

(82)

where δM is as defined before in Equation (23). The existence and uniqueness

of the solution for the system

Ṁ =
dM

dH
u,

where u(t) = U cos(ω t), is similar to the previously shown result for the bulk

ferromagnetic hysteresis model.

J. Deane([31, 32]) writes another equation for dM
dH
.

dM

dH
= c

dMan

dHe

+ δM
(1− c) (Man −M)

k δ (1−c)
µ0

− α (Man −M)
. (83)

Even with the above equation we can still show that the Ω limit set for sinusoidal

inputs u(t) = U cos(ω t), is periodic.

2.3 Extensions of the Main Result

In this section, we prove a result that looks like an asmptotic stability with

phase result. Specifically, we show that the solution trajectory starting at any

point on the H = 0 axis and |M | < Mremnant where Mremnant is the remnant

magnetization converges to a periodic trajectory.

But first we study the effects of initial states that are not (0, 0). We prove

next that the Ω limit set is still a periodic orbit when the intial state lies on the

anhysteretic curve.
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Theorem 2.3.1 Consider the system given by Equations (36-a - 37-b), with

a periodic input that is symmetric about x1 = 0. Suppose that (40 - 42) are

satisfied. If (x1, x2)(0) satisfies

x2(0) = Man(x1(0) + α x2(0)).

then the Ω-limit set of the system is a periodic orbit.

Proof

As the initial state lies on the anhysteretic curve, the solution trajectory lies

in a compact set in the (x1, x2)- plane. The proof of this statement is exactly

similar to the proof of Property 2.2.5.

By Property 2.2.4, the increasing trajectories are either identical or do not

intersect. The same is true for the decreasing trajectories. These two facts imply

the statement of the theorem as shown by the proof of Theorem 2.2.3.

2

We now consider cases where the initial state does not belong to the an-

hysteretic curve. The most important cases are those when x1(0) = 0 but

x2(0) 6= 0. Here it is possible that x2(t) > Ms for some time t. But we can still

prove that the solution converges to a periodic orbit provided the parameters

satisfy (40 - 42). This is because the solution trajectory still lies inside a com-

pact set, though it is not the same as the set in Property 2.2.5. But we will only

consider cases for which Property 2.2.5 still holds.

Lemma 2.3.1 1. Consider the system given by Equations (36-a - 37-b), with

a periodic input given by u(t) = U cos(ω t). Suppose that (40 - 42) are

satisfied. Let x1(0) = 0; p∗ ≥ x2(0) ≥ 0, where p∗ is the limit point
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obtained in the proof of Theorem 2.2.3. Then the Ω-limit set of the system

is a periodic orbit.

2. Similarly, for x1(0) = 0; −p∗ ≤ x2(0) ≤ 0, and u(t) = −U cos(ω t), the

Ω-limit set of the system is a periodic orbit.

Proof

1. We again show that the trajectory is bounded in the (x1, x2)-plane. (0, p∗)

belongs to the periodic orbit that is the Ω-limit set Ω0 obtained in the

proof of Theorem 2.2.3. Let (x̂1, x̂2) be the intersection of the anhysteretic

curve and the set Ω0 for x3 < 0. Then the trajectory with initial condition

(x1, x2)(0, 0) such that x1(0) = 0; p∗ ≥ x2(0) ≥ 0, for t ∈ [0, π
2ω

]

intersects the anhysteretic curve for some t∗ 3 0 ≤ t∗ < π
2ω
. It is

obvious that the trajectory is bounded for the time period [0, π
2ω

]. We

apply Theorem 2.3.1, to the trajectory with initial condition (x1, x2)(t
∗),

we obtain the first assertion.

2. The second assertion is proved by repeating the above proof or by invoking

anti-symmetry (Property 2.2.3).

2

Lemma 2.3.2 1. Consider the system given by Equations (36-a - 37-b), with

a periodic input given by u(t) = U cos(ω t). Suppose that (40 - 42) are

satisfied. Let x1(0) = 0; −p∗ ≤ x2(0) ≤ 0, where p∗ is the limit point

obtained in the proof of Theorem 2.2.3. Then the Ω-limit set of the system

is a periodic orbit.
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2. Similarly, for x1(0) = 0; p∗ ≥ x2(0) ≥ 0, and input u(t) = −U cos(ω t),

the Ω-limit set of the system is a periodic orbit.

Proof

1. (0,−p∗) lies on the Ω-limit set Ω0 obtained in the proof of Theorem 2.2.3.

Now the trajectory with initial condition (x1, x2)(0, 0) such that x1(0) =

0; −p∗ ≤ x2(0) ≤ 0, for t ∈ [0, π
2ω

] is bounded below by the trajectory

of the system with (0,−p∗) as the initial state (Property 2.2.4). It is

bounded above by the anhysteretic curve, as it is bounded above by the

trajectory of the system with (0, 0) as the initial state (Property 2.2.4).

Thus it is bounded for t ∈ [0, π
2ω

]. For t > π
2ω

the trajectory is bounded

above by the anhysteretic curve, and below by Ω0. Hence there exists a

time t∗ ∈ [ π
2ω
, 3π

2ω
], such that (x1, x2)(t

∗) lies on the anhysteretic curve.

If we now apply Theorem 2.3.1 to the trajectory with initial condition

(x1, x2)(t
∗), we have proved the first assertion.

2. The second assertion is proved by repeating the above proof or by invoking

anti-symmetry (Property 2.2.3).

2

The above two lemmas leads us to the following theorem.

Theorem 2.3.2 Consider the system with a periodic input given by u(t) =

±U cos(ω t),. Suppose that (40 - 42) are satisfied. Let x1(0) = 0; −p∗ ≤

x2(0) ≤ p∗, where p∗ is the limit point obtained in the proof of Theorem 2.2.3.

Then the Ω-limit set of the system is a periodic orbit.
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Proof

This theorem is a consequence of the Lemmas 2.3.1 and 2.3.2.

2

The next theorem is the main result of this section.

Theorem 2.3.3 Suppose the parameters satisfy (40 - 42) are satisfied.

1. Consider the system with a periodic input given by u(t) = U cos(ω t),. Let

x1(0) = 0; −p∗ ≤ x2(0) ≤ p∗, where p∗ is the limit point obtained in

the proof of Theorem 2.2.3. Let (x1, x2)(t) be the solution at any time t.

Let (p1, p2)(t) be the solution at any time t of the system with initial state

(0,−p∗). Then |x2(t) − p2(t)| → 0, as t → ∞.

2. Consider the system with a periodic input given by u(t) = −U cos(ω t),.

Let x1(0) = 0; −p∗ ≤ x2(0) ≤ p∗, where p∗ is the limit point obtained in

the proof of Theorem 2.2.3. Let (x1, x2)(t) be the solution at any time t.

Let (p1, p2)(t) be the solution at any time t of the system with initial state

(0, p∗). Then |x2(t) − p2(t)| → 0, as t → ∞.

Proof

1. We have proved in Theorem 2.3.2 that the solution trajectory with ini-

tial state (x1, x2)(0), where x1(0) = 0; −p∗ ≤ x2(0) ≤ p∗, has an Ω-

limit set Ω1. We had already obtained an Ω-limit set Ω0 in the proof

of Theorem 2.2.3. That they must be identical is obvious by the proof

of Theorem 2.2.3 (otherwise Property 2.2.4 is violated). We know that

x1(t) = p1(t) ∀ t ≥ 0. From the previous two statements it is obvious

that the claim must be true.
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2. The proof of the second part can be easily proved by simply modifying the

proof of the first part or by invoking anti-symmetry (Property 2.2.3).

2
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Chapter 3

Bulk Magnetostrictive Hysteresis

Model

A change in the magnetization of a body in a magnetic field causes a deformation

in it; this phenomenon is called magnetostriction. The deformation of a magnetic

body in response to a change in its magnetization implies that the magnetic and

elastic properties of the material are coupled. This phenomenon can be taken

into account in the theory of micromagnetics by adding a magnetoelastic energy

density term to the free energy as discussed in Chapter 1 (see (19).

Motivated by this approach, we add similar terms to the energy balance

equation (11) to account for the elastic nature of the actuator and the magneto-

elastic coupling. We then analyze the resulting coupled equations represent-

ing magnetic and mechanical dynamic equilibrium for existence and uniqueness

properties. We further prove that if the input signal is periodic in time and the

initial state of the model is at the origin, then the Ω-limit set of the solution is

a periodic orbit.

Eddy current losses and losses arising due to the resistance of the winding

are also accounted for in our final model. Later in the chapter, we study the
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behaviour of the magnetostrictive actuator as part of an electrical circuit with

periodic forcing.

3.1 Thin magnetostrictive actuator model

We are interesed in developing a low dimensional model for a magnetostric-

tive rod actuator. Hence the actuator along with the associated prestress and

magnetic path to be a mass-spring system with magneto-elastic coupling. The

magnetic hysteresis phenomenon is modeled as in Chapter 2. Ignoring eddy-

current effects and lead resistance losses, the energy balance approach leads to

coupled equations representing magnetic and mechanical dynamic equilibrium.

As we show later, this model is only technically valid when the input signal is

periodic. However, this is the case in many applications where one obtains rec-

tified linear or rotary motion by applying a periodic input at a high frequency

to these actuators. For instance, the hybrid motor [34, 35] developed during the

author’s Masters thesis produced a rotary motion using both piezoelectric and

magnetostrictive actuators in a mechanical clamp and push arrangement.

Consider a thin magnetoelastic/magnetostrictive rod whose average magne-

tization is denoted by M . An external source (battery) produces a uniform

magnetic field H in the body. This field H is purely due to the external source

and is not the effective magnetic field in the body. A change in the field H

brings about a corresponding change in the magnetization of the body in accor-

dance with Maxwell’s laws of electromagnetism. Because of its magnetostrictive

nature, the change in H also produces an elastic effect.

We equate the work done by external sources (both magnetic and mechani-
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cal), with the change in the free energy of the rod, change in kinetic energy, and

losses in the magnetization process and the mechanical deformation:

δWbat + δWmech = δWmag + δWmagel + δWel︸ ︷︷ ︸
Change in internal energy

+ δLmag + δLel︸ ︷︷ ︸
losses

+ δK︸︷︷︸
Change in kinetic energy

(1)

In Equation 1, δK is the work done in changing the kinetic energy of the system

consisting of the magnetoelastic rod actuator, δWmag is the change in the mag-

netic potential energy, δWmagel is the change in the magnetoelastic energy, δWel

is the change in the elastic energy, δLmag are the losses due to the change in the

magnetization, and δLel are the losses due to the elastic deformation of the rod.

The elastic energy is given by Wel = 1
2
d x2, where x is the total strain multi-

plied the length of the actuator. As mentioned before, the magnetoelastic energy

density in the continuum theory of micromagnetics is of the form strain multi-

plied by the square of the direction cosines of the magnetization vector. For our

bulk magnetostriction investigation, we can similarly write down the following

expression for the magnetoelastic energy Wmagel :

Wmagel = bM2 xV

where b is the magneto-elastic coupling constant and V is the volume of the

magnetostrictive rod. M is the average magnetic moment of the rod in the

direction of the applied magnetic field which is along the axis of the rod. The

expression for the magnetic hysteresis losses δLmag is due to Jiles and Atherton as

discussed in the previous chapter. The change in the magnetization dM is again

assumed to be composed of a reversible component dMrev and an irreversible
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component dMirr. The losses in the magnetization process is only due to the

irreversible change in the magnetization:

δLmag =
∮
V k sign(Ḣ) (1− c) dMirr

where the integral is over one cycle of the input voltage/current which is assumed

to be periodic. The losses due to mechanical damping are assumed to be δLel =∮
c1 ẋ dx. The change in the kinetic energy δK =

∮
meff ẍ dx. Therefore,

δWbat + δWmech = δWmag +
∮
meff ẍ dx︸ ︷︷ ︸

δK

. . .

+V
∮
bM2 dx+ V

∮
2 bM x dM︸ ︷︷ ︸

δWmagel

+
∮
d x dx︸ ︷︷ ︸
δWel

+V
∮
k sign(Ḣ) (1− c) dMirr︸ ︷︷ ︸

δLmag

+
∮
c1 ẋ dx︸ ︷︷ ︸
δLel

(2)

Now we obtain expressions for the left hand side of the above equation. For

a thin cylindrical magnetostrictive actuator, with an average magnetic moment

M , and an uniform magnetic field in the x direction H, the work done by the

battery in changing the magnetization in one cycle, is given by [8]

δWbat = V
∮
µ0H dM.

Let an external force F in the x (axial) direction produce a uniform compressive

stress σ within the actuator. Let the axial displacement of the edge of the

actuator rod be x. Thus the mechanical work done by the external force in a

cycle of magnetization is given by [8]

δWmech =
∮
F dx.
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The total work done by the battery and the external force is

δWbat + δWmech = V
∮
µ0H dM +

∮
F dx.

We see that adding the integral of any perfect differential over a cycle does not

change the value on the left hand side. Therefore

δWbat + δWmech = V
(∮

µ0H dM +
∮
αM dM

)
+
∮
F dx. (3)

Equations 2 and 3 give

∮
(F − d x− c1 ẋ−meff ẍ− VbM2) dx+ V µ0

∮
(H + αM − 2 bM x

µ0
) dM

= δWmag + V
∮
k sign(Ḣ) (1− c) dMirr.

(4)

Define the effective field to be

He = H + αM −
2 bM x

µ0
.

As the integration is over one cycle of magnetization

∮
He dM = −

∮
M dHe.

It was observed in Chapter 2, that if M is a function of He then there are no

losses in one cycle. This is the situation for a paramagnetic material where

M = Man is given by Langévin’s expression as a function of He. Hence for the

lossless case, the magnetic potential energy is given by

δWmag = −V
∮
Man dHe.

Thus Equation 4 can be rewritten as
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V µ0

∮
(Man −M −

k sign(Ḣ) (1− c)

µ0

dMirr

dHe

) dHe +∮
(F − d x− c1 ẋ−meff ẍ− bM

2 V) dx = 0

Note that the above equation is valid only if H, M, x, ẋ are periodic functions of

time. In other words, the trajectory of (H,M, x, ẋ)(t) in IR4 is a periodic orbit.

We now make the hypothesis that the following equation is valid when we go

from one point to another point on this periodic orbit:

V µ0

∫
(Man −M −

k sign(Ḣ) (1− c)

µ0

dMirr

dHe

) dHe +∫
(F − d x− c1 ẋ−meff ẍ− bM

2 V) dx = 0. (5)

The above equation is assumed to hold only for the periodic orbit. Since dx and

dHe are independent variations arising from independent control of the external

prestress and applied magnetic field respectively, the integrands must be equal

to zero:

Man −M −
k sign(Ḣ) (1− c)

µ0

dMirr

dHe

= 0, (6)

meff ẍ+ c1 ẋ+ d x+ bM2 V = F. (7)

Jiles and Atherton relate the irreversible and the reversible magnetizations as

follows [28] (refer to the discussion on the subject in Chapter 2):

M = Mrev + Mirr, (8)

Mrev = c (Man −Mirr), (9)

dM

dH
= δM (1 − c)

dMirr

dH
+ c

dMan

dH
, (10)
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where δM is defined by

δM =


0 : Ḣ < 0 and Man(He)−M(H) > 0,

0 : Ḣ > 0 and Man(He)−M(H) < 0,

1 : otherwise.

(11)

Using the relations (8) - (11), the Equations (6) and (7) for the magnetostriction

model can be written as:

dM
dt

=
k δ
µ0

c dMan
dHe

+ δM (Man−M)

k δ
µ0
−

(
δM (Man−M) + k δ

µ0
c dMan
dHe

)(
α− 2 b x

µ0

) dH
dt
, (12)

meff ẍ+ c1 ẋ+ d x+ bM2 V = F. (13)

A magnetostrictive material has finite resistivity, and therefore there are eddy

currents circulating within the rod. Using Maxwell’s equations, we can derive

the following simple expression for the power losses due to eddy currents [34]

(Appendix F).

Peddy =
V 2 lm

N2 8πρ

B2 +A2

B2 − A2

where A, B are the inner and the outer radii of the rod, lm is its length, Nm is

the number of turns of coil on the rod, and V is the voltage across the coil of

the inductor. Hence the eddy current losses can be represented equivalently as

a resistor in parallel with the hysteretic inductor. This idea is quite well known

and a discussion can be found in [27] or [34]. From the above expression for the

power lost, the value of the resistor is,

Reddy =
N2 8πρ

lm

B2 − A2

B2 +A2
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Figure 3.1: Schematic diagram of a thin magnetostrictive actuator in a resistive

circuit.

The actual work done by the battery in changing the magnetization and to

replenish the losses due to the eddy currents in one cycle is now given by

δW̄bat = δWbat +
∮
Peddy dt+

∮
I2Rlead dt (14)

= −V
∮
µ0M dHe +

∮
Peddy dt+

∮
I2Rlead dt (15)

where Rlead accounts for the resistance of the winding and leads which contribute

to the total energy loss. I is the total current input from the power source to

the magnetostrictive actuator. Figure 3.1 shows a schematic of the full model.

The hysteretic inductor stands for the magnetostrictive actuator model.

3.2 Qualitative analysis of the magnetostrictive

actuator model

In this section, we study the magnetostriction model given by Equations (13)

and (12). That is we do not take eddy current losses into consideration.

Equation (13) can be cast in the standard form of a ODE (refer to Appendix
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B), if we identify x and ẋ as state variables. Equation (12) is already in the

standard form and we can identify H and M as state variables also. Thus in

an abstract notation with w = (H,M, x, ẋ) we can write the magnetostrictive

model equations as

ẇ = f(w,F, Ḣ), (16)

where F is the external mechanical force acting on the rod. Both F and Ḣ are

viewed as inputs to the system. It is very important to note that the model

equations (12) - (13) are only valid when all the state variables are periodic in

time. What we mean is that the solution trajectory of the equations represent

the physics of the system when it forms a periodic orbit in IR4 space. This implies

that for correct simulations, the initial state has to be chosen on this periodic

orbit. But, usually in practice we do not know apriori what state the system is

in. It is shown analytically that even if the initial state is at the origin in the

M −H plane (which is usually not on the hysteresis loop), and a periodic input

Ḣ is applied, the solution trajectory tends asymptotically towards a periodic

solution. The problem statement is as follows. For simplicity, we consider F

to be a constant (and hence trivially periodic) function of time. For periodic F

that are not constant the same methods developed in this section can be used.

The input Ḣ is assumed to be periodic in time. Then we wish to prove that the

Ω limit set of the solution trajectory w(t) for the magnetostrictive model (12) -

(13) is a periodic function of time. The proof proceeds in the following steps:

1. We study the effect of the coupling by replacing x in Equation (12) and

M in Equation (13) by periodic functions g(·) and h(·) respectively. Their

period is the same as the input Ḣ. We show that the solution trajectories
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tend to periodic orbits for both the magnetic (x̄(·)) and mechanical (ȳ(·))

equations under these conditions.

2. As both the forcing functions and their response are periodic functions of

time, we can restrict our attention to one period. Define the sets B = {φ ∈

C([0, T ], IR) : |φ| ≤ β1; |φ(t)− φ(t̄)| ≤ M1 |t − t̄| ∀ t, t̄ ∈ [0, T ]}, D =

{ψ ∈ C([0, T ], IR) : |ψ| ≤ β2; |ψ(t)− ψ(t̄)| ≤ M2 |t− t̄| ∀ t, t̄ ∈ [0, T ]},

where β1, β2,M1,M2 are positive constants. Let P1, P2, : C([0, T ], IR2) →

C([0, T ], IR) denote the projection operators defined by P1(f, g) = f and

P2(f, g) = g.

We then consider the mappings G : B → C([0, T ], IR2); g(·) 7→ x̄(·) and

H : D→ C([0, T ], IR2); h(·) 7→ ȳ(·), and show them to be continuous.

3. We show that there exist positive constants β1, β2,M1,M2 such that P2◦G :

B → D and P1 ◦ H : D→ B.

4. Define the mapping Ψ as follows. Ψ : B × D → B × D; Ψ (φ, ψ) =

(P1 ◦ H(ψ),P2 ◦ G(φ)).

We show that the set B × D is a compact and convex set. By item 2,

Ψ is a continuous map. Then by the Schauder fixed point theorem (see

Appendix) there exists a fixed point for the mapping Ψ. This fixed point

is the periodic orbit of the coupled system.

Before we analyze the magnetostriction model, we first prove a lemma which

will be used in the analysis. First define

C1 = sup
z
|
∂2L

∂z2
|. (17)
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C1 is bounded as L(z) is a smooth function of z. The value of C1 is approximately

0.106 (which we obtained numerically using the software Mathematica).

Lemma 3.2.1 Suppose the parameters satisfy

αMs

3 a
< 1. (18)

Then there exists G > 0 such that ∀λ with |λ| ≤ G

(α+λ)Ms
3 a

+C1
2λMs
a

(α+λ)Ms
a

1− 2λMs
3a

+ (α+λ)Ms
k
µ0

2λMs

3 a
< 1, (19)

2λMs

3a
< 1 (20)

Proof

Let

ν(x) =
Ms(α+ x)

3a

1 + 6C1xMs

a

1− 2xMs

3a

+
2xMs

k
µ0

 .
with x ∈ D = {x : 2xMs

3a
< 1}. Then f(0) = αMs

3 a
< 1. As f(·) is continuous as

a function of x for x ∈ D, ∃ G > 0 such that ∀x ∈ D with |x| ≤ G

f(x) < 1.

2

3.2.1 The uncoupled model with periodic perturbation

Define state variables
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x1 = H,

x2 = M,

y1 = x,

y2 = ẋ.

Let

z =
x1 + (α− 2 b g(t)

µ0
) x2

a
.

Then the state equations are:

ẋ1 = u, (21)

ẋ2 =

 k x3

µ0

cMs

a
∂L
∂z

(z) + x4Ms

(
L(z)− x2

Ms

)
k x3

µ0
− x4Ms

(
L(z)− x2

Ms

)
α̃ − k x3

µ0
α̃ cMs

a
∂L
∂z

(z)

 u, (22)

x3 = sign(u), (23)

x4 =


0 : x3 < 0 and L(z) > 0,

0 : x3 > 0 and L(z) < 0,

1 : otherwise,

(24)

ẏ = Ay −
bV

meff

h2(t), (25)

where L(z) = coth(z)− 1
z
; ∂L
∂z

(z) = −cosech2(z) + 1
z2 ; α̃ = α − 2 b g(t)

µ0
; y =

[
y1 y2

]T
; A =

 0 1

− d
meff

− c1
meff

 and g(·), h(·) are 2π
ω

periodic functions of

time. F is assumed to be zero for this discussion. The input is given by,
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u(t) = U cos(ω t). (26)

The initial state is (x1, x2, y1, y2)(t = 0) = (0, 0, 0, 0). x3, x4 are functions of

x1, x2 and u and therefore are not state variables.

Analysis of the uncoupled magnetic system

The proof of existence and uniqueness of trajectories for the system (21 - 24) is

very similar to what was done in Chapter 2.

Theorem 3.2.1 Consider the system of equations (21 - 24). Suppose g(·) be a

known continuously differentiable function of t, with

|
2 b g(·)

µ0

| ≤ G (27)

where G > 0 is sufficiently small. Let the initial condition (x1, x2)(t = 0) =

(x10 , x20) satisfy

ζ0 =
x10 + (α+G) x20

a
,

x20 = Ms (coth(ζ0) −
1

ζ0
). (28)

Let the parameters satisfy

2GMs

3a
< 1 (29)

(α+G)Ms
3 a

+C1
2GMs
a

(α+G)Ms
a

1− 2GMs
3a

+ (α+G)Ms
k
µ0

2GMs

3 a
< 1, (30)

0 < c < 1, (31)

k > 0. (32)
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Let u(·) be a continuous function of t, with u(t) > 0 for t ∈ [0, T ) where T > 0

and (x1(t), x2(t)) denote the solution of (21) - (24). Let ζ(t) = x1(t)+(α+G) x2(t)
a

.

Then (Ms L(ζ(t)) − x2(t)) > 0 ∀ t ∈ (0, T ). Else if u(t) < 0 for t ∈ [0, T )

where T > 0, then (MsL(ζ(t)) − x2(t)) < 0 ∀ t ∈ (0, T ).

Remarks :

It will be seen during the course of the proof that (29 - 30) are sufficient

conditions on G for the proof to hold. It will also be seen that a necessary

condition on G is that

c (α+G)Ms

3 a
< 1 (33)

which is obviously true if (29 - 31) are true.

Proof

We make a change of co-ordinates from (x1, x2) to (ζ, y), where

ζ =
x1 + (α+G) x2

a
,

y = MsL(ζ)− x2.

Denote w = (ζ, y) and x = (x1, x2). The domain of definition of the trans-

formation ψ : x 7→ w is IR2. The Jacobian of the transform is given by

∂ψ

∂x
=

 1
a

α+G
a

Ms

a
∂L
∂z

(ζ) Ms (α+G)
a

∂L
∂z

(ζ) − 1

 .
The determinant of ∂ψ

∂x
is

det(
∂ψ

∂x
) = −

1

a
∀x ∈ IR2.
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Hence the results on existence, extension and uniqueness of solutions to the state

equations in the transformed space carry over to the equations in the original

state space.

Denote ẇ = f(t, w, x3, x4).The initial conditions in the transformed co-ordinates

are

w0 = (ζ0, y0) = (
x10 + (α+G) x20

a
,MsL(ζ0)− x20).

Denote ᾱ = α+G. The state equations in terms of w are:

ζ̇ = f1(t, w) (34)

=
1 + (α + G) ḡ(t, ζ, y, x3, x4)

a
u, (35)

ẏ = f2(t, w) (36)

=

(
Ms

a
∂L
∂z

(ζ) +

(
(α+G)Ms

a
∂L
∂z

(ζ) − 1

)
ḡ(ζ, y, x3, x4)

)
u, (37)

x3 = sign(u), (38)

x4 =


0 : x3 < 0 and y1 > 0,

0 : x3 > 0 and y1 < 0,

1 : otherwise,

(39)

where

z(t) =
x1(t) + α̃(t) x2(t)

a
, (40)

y1(t) = Ms L(z(t)) − x2(t), (41)

and

ḡ(t, ζ, y, x3, x4) =
k x3

µ0

cMs

a
∂L
∂z

(z) + x4 y1

k x3

µ0
− x4 y1 α̃(t) − k x3

µ0
α̃(t) cMs

a
∂L
∂z

(z)
. (42)
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Note that if ζ(t), y(t) and g(t) are known at any instant of time t, then both

z(t) and y1(t) are known. Explicitly, at each time t the inverse transforms are:

x2(t) = Ms L(ζ(t)) − y(t) (43)

x1(t) = a ζ(t) − (α+G)MsL(ζ(t)) + (G+ g(t)) y(t) (44)

z(t) = ζ(t) − (G+ g(t))MsL(ζ(t)) + (G+ g(t)) y(t) (45)

y1(t) = Ms (L(z(t)) − L(ζ(t))) + y(t) (46)

As g(t) is continuously differentiable function of time, z(t, ζ, y) and y1(t, ζ, y) are

continuously differentiable functions of (t, ζ, y). A very important point is that

at any instant of time t ≥ 0

y(t) ≥ y1(t). (47)

By (35) and (25), we have

ζ̇ =
kx3

µ0
+ (ᾱ− α̃)

(
x4y1 + kx3

µ0

cMs

a
∂L
∂z

(z)
)

kx3

µ0
− α̃

(
x4y1 + kx3

µ0

cMs

a
∂L
∂z

(z)
) u,

ẏ =
Ms

a
kx3

µ0

(
∂L
∂z

(ζ)− c∂L
∂z

(z)
)

+ (ᾱ− α̃)Ms

a
∂L
∂z

(ζ)
(
x4y1 + kx3

µ0

cMs

a
∂L
∂z

(z)
)
− x4y1

kx3

µ0
− α̃

(
x4y1 + kx3

µ0

cMs

a
∂L
∂z

(z)
) u.

Let

D = (−δ1, T )︸ ︷︷ ︸
t

× (−∞,∞)︸ ︷︷ ︸
ζ

× (−ε1,
k
µ0

Ms(1−c)
3a

+ k
µ0

Ms

3a
2GMs

3a
(c+ 9C1)

1− 2GMs

3a

+
2GM2

s

3a
+ ε1)︸ ︷︷ ︸

y

,

where δ1, ε1 are sufficiently small positive numbers.

As u(t) is only defined for t ≥ 0, we need to extend the domain of u(·) to

(−δ1, 0). This can be easily accomplished by defining u(t) = 0 for t ∈ (−δ1, 0).

Then f1(t, w), f2(t, w) exist on D which can be seen as follows.
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1. Note that z is well-defined given a point (t, w) in D. In the time interval

(−δ1, 0), u(t) = 0 by definition. Therefore x3 = 0 by (38) and x4 = 1 by

(39). This implies that ḡ(t, ζ, y, 0, 1) = −y1

y1
. Defining ḡ(t, ζ, 0, 0, 1) = −1

makes ḡ(t, ζ, y, 0, 1) continuous as a function of y1 (which is a continous

function of (t, ζ, y)). This also makes f1(t, w) and f2(t, w) well defined.

2. In the time interval [0, T ), u(t) > 0. Therefore x3 = 1. Hence

ḡ(ζ, y, 1, x4) =
k
µ0

cMs

a
∂L
∂z

(z) + x4 y1

k
µ0
− x4 y1 α̃ −

k
µ0
α̃ cMs

a
∂L
∂z

(z)
.

We have to ensure that f is well defined ∀ (t, w) ∈ D. This can be estab-

lished by examining ḡ.

(a) x4 = 0 implies ḡ(ζ, y, 1, 0) =
k
µ0

cMs
a

∂L
∂z

(z)
k
µ0
− k
µ0

α̃ cMs
a

∂L
∂z

(z)
. By (40) and (41),

the denominator of ḡ is always positive ∀ (t, w) ∈ D. This is because

Den. of ḡ ≥
k

µ0

(
1 − α̃

cMs

3 a

)
≥

k

µ0

(
1 − (α + G)

cMs

3 a

)
>

k

µ0

(
1 − (α + G)

Ms

3 a

)
> 0.

by (30) because

1 >
(α+G)Ms

3 a
+ C1

2GMs

a

(α+G)Ms

a

1 − 2GMs

a

+
(α+G)Ms

k
µ0

2GMs

3 a

>
(α+G)Ms

3 a
. (48)

Hence f1(t, w) and f2(t, w) are well-defined.
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(b) x4 = 1 implies ḡ(ζ, y, 1, 1) =
k
µ0

cMs
a

∂L
∂z

(z)+ y1

k
µ0
− y1 α̃−

k
µ0

α̃ cMs
a

∂L
∂z

(z)
. As y(t) ≥ y1

we replace the y1 in the denominator by y and then show it to be

positive.

Den. of ḡ ≥
k

µ0

(
1 − (α + G)

cMs

3 a

)
− (α + G) ymax − (α + G) ε1

where

ymax =
k
µ0

Ms (1−c)
3 a

+ k
µ0

Ms

3 a
2GMs

3 a
(c+ 9C1)

1 − 2GMs

3 a

+
2GM2

s

3 a
. (49)

As ymax + ε1 is the maximum value taken by y in the domain D

Den. of ḡ ≥ k
µ0

(
1−

(α+G)Ms
3a

+C1
2GMs
a

(α+G)Ms
a

1− 2GMs
3a

+ (α+G)Ms
k
µ0

2GMs

3a

)
−(α +G)ε1,

which is positive by (30) if we choose ε1 small enough.

Hence f1(t, w) and f2(t, w) are well-defined ∀ (t, w) ∈ D.

• Existence of a solution

We first show existence of a solution at t = 0. To prove existence, we show

that f(·, ·) satisfies Carathéodory’s conditions.

1. We have already seen that f(·, ·) is well defined on D. We now check

whether f1(t, w) and f2(t, w) are continuous functions of w for all t ∈

(−δ1, b).

(a) For t ∈ (−δ1, 0), f1(t, w), f2(t, w) are both zero and hence trivially

continuous in w.
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(b) At t ≥ 0, x3 = 1. To check whether f1(t, w), f2(t, w) are continuous

with respect to w, we only need to check whether ḡt(·) is continuous

as a function of w.

ḡt(w) =
k
µ0

cMs

a
∂L
∂z

(z) + x4 y1

k
µ0
− x4 y1 α̃(t) − k

µ0
α̃(t) cMs

a
∂L
∂z

(z)
.

z is well defined given (t, w) and is a continuous function of (t, w).

Hence we can restrict our attention to ḡt(w) above as a function of z.

In the above expression, the only term that could possibly be discon-

tinuous as a function of w is

h(w)
4
= x4 y1.

As y1(·, ·) is a continous function of (t, w) in D we only need to check

the behaviour of h(w) as y1 varies. By (39), if y1 ≥ 0, x4 = 1 and

if y1 < 0, x4 = 0 (because x3 = 1). Therefore

lim
y1→ 0+

h(w) = lim
y1→ 0−

h(w) = 0.

Hence, f(·, ·) satisfies Carathéodory’s first condition for t ∈ (−δ1, T ).

2. Next we need to check whether the function f(t, w) is measurable in t for

each w.

(a) For t ∈ (−δ1, 0), u(t) = 0. Therefore for each w, f(·, w) is a contin-

uous function of time t trivially.

(b) For t ≥ 0, u(t) > 0. This implies by (38) that x3 = 1. Hence for

each (t, w), z and hence x4 is fixed.
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The numerators and denominators of f1(t, ·) and f2(t, ·) are both con-

tinuous functions of t and are well-defined ∀ (t, w) ∈ D which we saw

before. Hence f(t, ·) is a measurable function of t for each w.

Hence, f(·, ·) satisfies Carathéodory’s second condition for t ∈ (−δ1, T ).

3. For each t ∈ (−δ1, T ), ḡ(·) is continuous as a function of w. The denomi-

nator of ḡ(·, ·) is bounded both above and below. The lower bound on the

denominator of ḡ(·, ·) in D is

A =
k

µ0

(
1 −

(α+G)Ms

3 a
− (α+G) ymax

)
− (α + G) ε1. (50)

Therefore

|ḡ(t, w)| ≤
1

A

(
k

µ0

cMs

3 a
+ ymax + ε1

)
4
= B.

Thus g(·, ·) is uniformly bounded in D. As u(·) is continuous as a function

of t, f(·, ·) is also uniformly bounded in D because by (35) and (25)

|f1(t, w)| ≤
1 + (α + G)B

a
sup

t∈ [0,T )
u(t) (51)

|f2(t, w)| ≤

(
Ms

3 a
+

(
(α + G)Ms

3 a
− 1

)
B

)
sup

t∈ [0,T )
u(t) (52)

By taking the upper-bound on ‖f(·, ·)‖ to be the larger of the values on the

right hand sides of (51) and (52), we see that f(·, ·) satisfies Carathéodory’s

third condition for (t, w) ∈ D.

Hence by Theorem B.1.1, for (t0, w0) = (0, (0, 0)), there exists a solution

through (t0, w0).
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• Extension of the solution (We now extend the solution through (t0, w0), so

that it is defined for all t ∈ [0, T ).)

According to Theorem B.2.1, the solution can be extended until it reaches

the boundary of D. As f(t, ζ, y) is defined ∀ ζ , we only need to ensure that

y(t) does not reach the boundary of the set (−ε1, ymax + ε1]. We show this by

proving that 0 ≤ y(t) ≤ ymax ∀ t ∈ [0, T ). This implies that the solution can

be extended to the boundary of the time t interval.

1. We know that y(t = 0) = 0. We will show that y(t) > 0 ∀ t ∈ (0, T ). As

y1(t = 0) ≤ y(t = 0) = 0 and x3(t = 0) = 1, we must have x4(t = 0) =

0. Therefore,

ẏ(t = 0) =
Ms

a
k
µ0

(∂L
∂z

(ζ)− c∂L
∂z

(z)) + (ᾱ− α̃(0))Ms

a
∂L
∂z

(ζ) k
µ0

cMs

a
∂L
∂z

(z)
k
µ0
− α̃(0) k

µ0

cMs

a
∂L
∂z

(z)
u(t = 0)

(53)

Before showing ẏ(0) > 0 we prove a fact that is very important. We

know that ∂L
∂z

(z)(1 − c) > 0 ∀z. We show that if G is small enough then

(∂L
∂z

(ζ)− c∂L
∂z

(z)) > 0 also (∀t) :

∂L
∂z

(ζ)− c∂L
∂z

(z) = ∂L
∂z

(ζ)− ∂L
∂z

(z) + ∂L
∂z

(z)(1− c)

= ∂2L
∂z2 (ζ)

(ᾱ− α̃(t))x2

a
+ o((ᾱ− α̃(t))2) + ∂L

∂z
(z)(1− c)

= ∂2L
∂z2 (ζ)

(G+ g(t))x2

a
+ o((ᾱ− α̃(t))2) + ∂L

∂z
(z)(1− c),

where o(ε2) includes terms of order higher than ε and satisfies limε→ 0
o(ε2)
ε

=

0. As y is bounded in D, x2 is also bounded because the inverse transform
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(ζ, y) 7→ x2 is given by (43). As ∂L
∂z

(z) (1 − c) > 0 ∀ z, ∃ G small enough

so that

∂L
∂z

(ζ)− c∂L
∂z

(z) > 0 ∀ (t, ζ, y) ∈ D. (54)

With the above inequality in hand, we can easily show ẏ(t = 0) > 0.

The denominator of ẏ(t = 0) is positive (which was seen before when we

checked whether ḡ was well-defined), and the terms in the numerator are

also positive by (54). Therefore ẏ(t = 0) > 0.

As ẏ(0) > 0, ∃ T1 > 0 3 y(t) > 0 ∀ t ∈ (0, T1). If this were not true

then we could form a sequence of time instants tk → 0 3 y(tk) ≤ 0. Then

lim
tk→0

y(tk)− y(0)

tk − 0
= lim

tk→0

y(tk)− 0

tk
≤ 0

which contradicts ẏ(0) > 0.

Let T1 denote the largest such time instant such that y(t) > 0 ∀ t ∈

(0, T1). Suppose T1 < T . Then y(T1) = 0 by continuity of y(·). As

y(t) ≥ y1(t) ∀ t, y1(T1) ≤ 0. At t = T1, x3 = 1 by (38) and hence

x4(T1) = 0 by (39). Therefore

ẏ(T1) =
Ms

a
k
µ0

(
∂L
∂z

(ζ)− c∂L
∂z

(z)
)

+ (ᾱ− α̃(T1))
Ms

a
∂L
∂z

(ζ)
(
k
µ0

cMs

a
∂L
∂z

(z)
)

k
µ0
− α̃(T1)

(
k
µ0

cMs

a
∂L
∂z

(z)
) u(T1).

Arguing exactly as in the case of t = 0 before, we show using (54) that

ẏ(T1) > 0.

Therefore for some ε > 0 sufficiently small (with ε < T1),
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y(T1 − ε) = y(T1)− ε ẏ(T1) + o(ε2)

= 0− ε ẏ(T1) + o(ε2)

< 0,

which is a contradiction of the fact that y(t) > 0 ∀ t ∈ (0, T1).

Hence y(t) > 0 ∀ t ∈ (0, T ).

2. We now verify that y(t) ≤
k
µ0

Ms (1−c)
3 a

+ k
µ0

Ms
3 a

2GMs
3 a

(c+9C1)

1− 2GMs
3 a

+ 2GM2
s

3 a

4
= ymax.

As u(t) > 0 for t ∈ (0, T ), x3(t) = 1 by (38). We proved that y(t) > 0

for t ∈ (0, T ) implying that x4(t) = 1. The maximum value of y is achieved

when ẏ(t∗) = 0 for some t∗ ≥ 0. The numerator of ẏ(t∗) must be zero.

Solving for y1(t
∗) we get

y1(t
∗) =

k
µ0

Ms

a

(
∂L
∂z

(ζ) − c ∂L
∂z

(z)
)

+ (ᾱ− α̃(t∗)) Ms

a
∂L
∂z

(ζ) k
µ0

cMs

a
∂L
∂z

(z)

1 − (ᾱ− α̃(t∗)) Ms

a
∂L
∂z

(ζ)

As ∂L
∂z

(ζ) is smooth, by Theorem B.3.1 we have

|∂L
∂z

(ζ)− ∂L
∂z

(z)| ≤ C1 |ζ − z|

= C1 |ζ − z|

= C1 2G sup
(t,ζ,y)∈D

|
x2

a
|, (55)

≤ C1
2GMs

a
. (56)

(56) is obtained by noticing that x2 ≤ Ms because y ≥ 0. Hence
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y1(t
∗) ≤

k
µ0

Ms

a

(
C1

2GMs

a
+ (1−c)

3

)
+ 2GMs

3 a
k
µ0

cMs

3 a

1 − 2GMs

3 a

where we have made use of the following inequalities: |ᾱ − α̃| ≤ 2G;

|∂L
∂z

(z)| ≤ 1
3
; and |∂L

∂z
(ζ)| ≤ 1

3
. By (46),

y(t∗) ≤ y1(t
∗) + Ms sup

(t,ζ,y)∈D
|L(ζ) − L(z)|.

As L(ζ) is smooth, by Theorem B.3.1 we have

|∂L
∂z

(ζ)− ∂L
∂z

(z)| ≤ (sup
ζ
|∂L
∂z

(ζ)|)|ζ − z|

=
1

3
|ζ − z|

=
1

3
2G sup

(t,ζ,y)∈D
|
x2

a
|, (57)

≤
1

3

2GMs

a
. (58)

Therefore,

y(t∗) ≤ y1(t
∗) +

2GM2
s

3a

=
k
µ0

Ms(1−c)
3a

+ k
µ0

Ms

3a
2GMs

3a
(c+ 9C1)

1− 2GMs

3a

+
2GM2

s

3a

= ymax

Therefore the solution can be extended in time to the boundary of [0, T ). In

the course of continuing the solutions, we also proved that (MsL(ζ(t))−x2(t)) >

0 ∀ t ∈ (0, T ).
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• Uniqueness(We show the uniqueness of the solution.)

At each t ≥ 0, u(t) > 0 implying x3 = 1. As y > 0 for t > 0, x4 = 1 for t > 0.

We concentrate on this case below. At t = 0, x4 = 0 and the Lipschitz constants

obtained in the following analysis can again be used to show uniqueness.

A defined by (50) is a lower bound for the denominator of f1(t, w). Let wa =

(ζa, ya) and wb = (zb, yb), be any two points. As y1 and z are functions of (t, ζ, y),

denote y1(t, ζi, yi) = y1i and z(t, ζi, yi) = zi i = a, b.

f1(t, w1)− f1(t, w2) =
u(t) k

µ0

Den(f2(t,w1))Den(f2(t,w2))
(ᾱ(y1a − y1b)

+ k
µ0

ᾱcMs

a

(
∂L
∂z

(za)−
∂L
∂z

(zb)
))

Now we use the fact that y1 and z are continuously differentiable functions of

(t, ζ, w) to assert the existence of constants K1(t), K2(t) (by Theorem B.3.1)

such that

|y1a − y1b | ≤ K1(t)‖wa − wb‖, (59)

|za − zb| ≤ K2(t)‖wa − wb‖. (60)

As ∂L
∂z

(z) is a smooth function of z and |∂L
∂z

(z)| ≤ 1
3

we have

|f1(t, w1)− f1(t, w2)| ≤
u(t) k

µ0

A2
(ᾱK1(t)‖wa − wb‖ (61)

+
k

µ0

ᾱcMs

3a
K2(t)‖wa − wb‖

)
= K̄1(t)‖wa − wb‖ (62)

where K̄1(t) is only a function of time. For the vectorfield f2 we have (after some

simplification)
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f2(t, w1)− f2(t, w2) = u(t)

D(f2(t,w1))D(f2(t,w2))

k
µ0

(
Ms

a

(
k
µ0

+ α̃(ᾱ− α̃)y1ay1b − α̃y1a

+(ᾱ− α̃)y1b −
α̃(ᾱ−α̃)cMs

a

(
k
µ0

∂L
∂z

(za)
∂L
∂z

(zb) + y1a
∂L
∂z

(zb) + y1b
∂L
∂z

(za)
)

+kcMs

µ0a

(
(ᾱ− α̃)∂L

∂z
(za)− α̃

∂L
∂z

(zb)
))

(∂L
∂z

(ζa)−
∂L
∂z

(ζb))

− k
µ0

cMs

a

(
1− ᾱMs

a
∂L
∂z

(ζb)
)

(∂L
∂z

(za)−
∂L
∂z

(zb))−
(
1− ᾱMs

a
∂L
∂z

(ζa)
)

(y1a − y1b)
)

where D(f2(·, ·)) is the denominator of f2(·, ·). We make use of the following

bounds on some of the terms in the above equation

∂L
∂z

(ζ) ≤
1

3
, (63-a)

∂L
∂z

(z) ≤
1

3
, (63-b)

y1i ≤ ymax i = a, b. (63-c)

As ∂L
∂z

(ζ) is a smooth function of ζ , there exists a positive number C1 (by Theorem

B.3.1) such that

|∂L
∂z

(ζa)−
∂L
∂z

(ζb)| ≤ C1|ζa − ζb| (64)

As ∂L
∂z

(z) is a smooth function of (·, ζ, w) for each t, there exists a function C2(t)

(by Theorem B.3.1) such that

|∂L
∂z

(za)−
∂L
∂z

(zb)| ≤ C2(t)‖wa − wb‖ (65)

Using the bounds (63-a - 63-c) and the Lipschitz inequalities (59), (60), (64) and

(65), we get
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|f2(t, w1)− f2(t, w2)| ≤
u(t)
A2

(((
k
µ0

)2
Ms

a
+ (α+G)2GMs

a
y2
max + k

µ0

(α+3G)Ms

a
ymax

+ (α+G)2Gck
µ0

(
Ms

a

)2 (
k
µ0

1
9

+ 2ymax
3

)
+
(
k
µ0

)2 (
Ms

a

)2
c
(
α+3G

3

))
C1|ζa − ζb|

+
(
k
µ0

)2
cMs

a

(
1 + (α+G)Ms

3a

)
C2(t)‖wa − wb‖+ k

µ0

(
1 + (α+G)Ms

3a

)
K1(t)‖wa − wb‖

)
(66)

As |ζa − ζb| ≤ |wa − wb‖ we have

|f2(t, w1)− f2(t, w2)| ≤
u(t)

A2
D(t)‖wa − wb‖. (67)

where the function of time D(t) is defined using (66. Hence by Theorem B.3.2,

there exists atmost one solution in D.

For inputs u(·) with u(t) < 0 for t ∈ (0, T ), the same proof can be repeated

to arrive at the conclusion that (MsL(ζ(t))− x2(t)) < 0 ∀ t ∈ (0, T ).

2

Suppose that an input u(t) > 0 for t ∈ [0, T ) has been applied to the system

(21 - 24). Let

x0 = (x10 , x20) = lim
t→T

(x1, x2)(t). (68)

x0 is well-defined because of Theorem B.2.1. Define (Figure 3.2).

u(T ) = lim
t→T

u(t) (69)

u1(T ) = −u(T − t) for t ∈ [0, T ]. (70)

Let the initial condition be x0 as defined in (68). Then the next theorem claims

that there exists a time 0 < T1 < T such that x2(T1) = MsL(x1(T1)+(α+G)x2(T1)
a

).

111



t

t

(0,0)

(0,0)

u(t)

u (t) = - u(b - t)1

b

b

Figure 3.2: Sample signals u(·) and u1(·).

In other words, the solution trajectory intersects with the anhysteretic curve in

the (x1, x2)-plane at time T1 < T.

Theorem 3.2.2 Consider the system of equations (21 - 24). Let the initial

condition (x1, x2)(t = 0) = (x10 , x20) where (x10 , x20) is defined by (68). Let the

parameters satisfy (31 - 32) and the continuously differentiable function of time

g(·) : [0, T ) → IR satisfy (27 - 30). Let u(t) be a continuous function of t with

u(t) > 0 for t ∈ [0, T ), and u1(t) be defined by (69 - 70). If u1(t) is the input

to the system (21 - 24) for t ∈ [0, T ], then ∃ T1 > 0 such that T1 < T and

x2(T1) = MsL(x1(T1)+(α+G)x2(T1)
a

).

The proof of this theorem utilizes the same ideas as Theorem 2.2.2 that was

proved in Chapter 2. It will be more complicated because of presence of the

perturbation g(·) but as the proof of Theorem 3.2.1 showed, the ideas of the

proofs in the unperturbed case essentially carry over to the perturbed case. The
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only difference between Theorem 2.2.2 and Theorem 3.2.2 is that the parameters

now have to satisfy the condition (30).

From this point until the end of this subsection, it is assumed that the parameters

and g(·) satisfy conditions (27-32).

Claim 3.2.1 If u(t) does not change its sign ∀t ∈ [l,m] and if x̃(l), x̆(l) are two

initial states of the system with x̃2(l) ≥ x̆2(l), then x̃2(t) ≥ x̆2(t) ∀t ∈ [l,m].

Proof

Suppose for some t ∈ [l,m], x̃2(t) < x̆2(t). Then by continuity of the

solution trajectories, ∃t∗ ∈ (l, t),3 x̃2(t
∗) = x̆2(t

∗). Now ˙̃x(t∗) = ˙̆x(t∗) by

Equation (22). Hence ∀t ≥ t∗, x̃2(t) = x̆2(t). This contradicts our initial

assumption.

2

Theorems 3.2.1 - 3.2.2 and Claim 3.2.1 lead to the following theorem.

Theorem 3.2.3 Consider the system given by Equations (21–24), with input

given by Equation (26) and b 6= 0. Suppose the 2π
ω

-periodic continuously differ-

entiable function of time g(·) : IR → IR and the parameters satisfy conditions

(27-32).

If (x1, x2)(0) = (0, 0), then the Ω-limit set of the system is a periodic orbit

with period 2π
ω
.

Proof

The proof is identical to the one with b = 0 (Theorem 2.2.3 in Chapter 2).

2

The conclusion of the above theorem can be strengthened without changing

the proof much by noticing that Theorems 3.2.1 - 3.2.2 and Claim 3.2.1 do not
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need the input u(·) to be co-sinusoidal. In fact, any periodic input will do. Thus

we have

Theorem 3.2.4 Consider the system given by Equations (21–24) with b 6= 0.

Suppose the T -periodic continuously differentiable function of time g(·) : IR→ IR

and the parameters satisfy conditions (27 - 32). Let the input u(·) : IR → IR be

a continuous, T periodic function of time.

If (x1, x2)(0) = (0, 0), then the Ω-limit set of the system is a periodic orbit

with period T.

Proof

The proof is identical to that of Theorem 3.2.3.

2

Denote the periodic solution of the perturbed magnetic system (21 - 24)

with perturbation g(·) and input u(·) as x̄(·). It is a two dimensional vector

and a T = 2π
ω

periodic function. As in the method of proof outlined in the

introduction define the sets B = {φ ∈ C([0, T ], IR) : |φ| ≤ β1; |φ(t) − φ(t̄)| ≤

M1|t − t̄| ∀ t, t̄ ∈ [0, T ]}, D = {ψ ∈ C([0, T ], IR) : |ψ| ≤ β2; |ψ(t) − ψ(t̄)| ≤

M2|t − t̄| ∀ t, t̄ ∈ [0, T ]}, where β1, β2,M1,M2 are positive constants. Let

P1,P2 : C([0, T ], IR2) → C([0, T ], IR) denote the projection operators defined by

P1(f, g) = f and P2(f, g) = g.

Consider the mappings G : B → C([0, T ], IR2); g(·) 7→ x̄(·) and H : D →

C([0, T ], IR2); h(·) 7→ ȳ(·). We first show G to be continuous.

Theorem 3.2.5 G is a continuous map.

Proof Let the system (21 - 24) be represented by
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ẋ = f(t, x, α̃) ; (t, x) ∈ D ⊂ IR3

where α̃ = α− 2bg(t)
µ0

, and D is an open set. The state x is 2-dimensional because

the discrete states x3 and x4 are functions of x1, x2 and u = U cos(ωt). Let the

initial condition be (x1, x2)(0) = (0, 0).

If gn → g in the uniform norm over [0, T ] where T is the period of f, then

α̃n → α̃. Consider the sequence of systems ẋ = fn(t, x) = f(t, x, α̃n). As f is

continuous in α̃, fn → f(t, x, α̃) in the uniform norm if α̃n → α̃ (Theorem B.4.1).

The solutions of each of the systems {fn} and f exist and is unique for t ∈ [0, T ].

Then by Theorem B.4.2, the solutions φn(t) of ẋ = fn(t, x) converge uniformly

to φ(t) the solution of ẋ = f(t, x, α̃) for t ∈ [0, T ].

Consider the time interval [T, 2T ]. We have shown that φn(T ) → φ(T ). Then

again by Theorem B.4.2, φn(t) → φ(t) for t ∈ [T, 2T ]. Thus we can keep ex-

tending the solutions φn(t) and φ(t) and obtain uniform convergence over any

interval [mT, (m + 1)T ] where m > 0. Therefore, for each m and ε > 0, there

exists N(m) > 0 such that |φn − φ| <
ε
3
∀ n ≥ N(m).

By Theorem 3.2.4 there exist Ω limit sets that are periodic orbits x̄n of the

systems ẋ = fn(t, x) and x̄ of the system ẋ = f(t, x, α̃). Hence for each n and

ε > 0, there exists M ≥ 0 such that |x̄n − φn| <
ε
3

and |x̄− φ| < ε
3
∀ m ≥ M

and t ∈ [mT, (m+ 1)T ].

Hence for all n ≥ N(M) and t ∈ [mT, (m + 1)T ] where m ≥ M, we have

|x̄n − x̄| ≤ |x̄n − φn|+ |φn − φ|+ |x̄− φ| < ε. Hence G is a continuous map.

2
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Analysis of the uncoupled mechanical system

In this subsection, we consider the mechanical system with periodic perturbation

given by Equation (25). We assume the homogenous system (that is, (25) with

h(t) = 0) to be asymptotically stable. The relevant results are collected in the

appendix.

Theorem 3.2.6 Consider the system (25). If the eigenvalues of A have negative

real parts, the initial state is at the origin and h(·) is an T periodic function,

then (25) has an T periodic solution that is asymptotically orbitally stable.

Proof This follows from Lemma D.0.1 and Theorem D.0.3 in the appendix.

2

Theorem 3.2.7 If the eigenvalues of A have negative real parts, then H is a

continuous map.

Proof This again follows from Lemma D.0.1 and Theorem D.0.3.

2

3.2.2 Analysis of the magnetostriction model

We now prove the existence of an Ω-limit set that is a periodic orbit for the

magnetostriction model.

Let D1 denote the range of P2 ◦ G and B1 denote the range of P1 ◦ H. Thus

P2 ◦ G : B 7→ D1 and P1 ◦ H : D 7→ B1.

Lemma 3.2.2 Suppose the parameters of the magnetic system satisfy

116



αMs

3a
< 1, (71)

0 < c < 1, (72)

k > 0. (73)

There exists a b̄ > 0 such that if |b| ≤ b̄ then P2 ◦ G : B1 7→ D1 and

P1 ◦ H : D1 7→ B1.

Proof First we show that the sets B1 and D1 have the same structure as that

of B and D respectively. Then we choose b̄ so that the domains and ranges of G

and H are suitably adjusted. Choose β1 = Ms and M1 = Ms

3a
U in the definition

of the set D.

By Claim 3.2.1, the elements of D1 are uniformly bounded by Ms. Let x̄ = Gg.

Therefore P2 ◦Gg = x̄2. Now x̄2(t2)− x̄2(t1) =
∫ 1
0

˙̄x2(t1 +s(t2− t1))(t2− t1) ds by

the Mean Value Theorem. As the parameters of the system (21 - 24) satisfy the

conditions (27 - 31), the vector field f(t, x)u(t) is uniformly bounded. Therefore

|x̄2(t1)− x̄2(t2)| ≤M1|t2 − t1|. Thus D1 has the same structure of D.

Let ȳ = Hh. Therefore ȳ1 = P1 ◦Hh. The elements of B1 are uniformly bounded

because H is linear in h2 and the functions h ∈ D are uniformly bounded.

|ȳ1| ≤ |ȳ| ≤ |P1 ◦ H|M2
s = β2. We need to choose b̄ so that G = α − 2b̄gmax

µ0

(with gmax = supt |g(t)|) defined in Theorem 3.2.1 satisfies (29) and (30). This

is possible by Lemma 3.2.1.

Now ȳ1(t2) − ȳ1(t1) =
∫ 1
0

˙̄y1(t1 + s(t2 − t1))(t2 − t1) ds by the Mean Value

Theorem. | ˙̄y| ≤ |A|β2 + bVβ2
1 = M2. Therefore |ȳ1(t2)− ȳ1(t1)| ≤M2|t2 − t1|.

Thus B1 has the same structure of B.
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Our choice of b̄ > 0 ensures that if b ≤ b̄ then P2 ◦ G : B1 7→ D1 and P1 ◦ H :

D1 7→ B1.

2

We now prove the main theorem of this Section. The system rewritten in

terms of the state variable form is

ẋ1 = u, (74)

ẋ2 =

 kx3

µ0

cMs

a
∂L
∂z

(z) + x4Ms

(
L(z)− x2

Ms

)
kx3

µ0
− x4Ms

(
L(z)− x2

Ms

)
α̃(t)− kx3

µ0
α̃(t) cMs

a
∂L
∂z

(z)

u, (75)

z =
x1 + α̃x2

a
, (76)

x3 = sign(u), (77)

x4 =


0 : x3 < 0 and coth(z)− 1

z
− x2

Ms
> 0,

0 : x3 > 0 and coth(z)− 1
z
− x2

Ms
< 0,

1 : otherwise,

(78)

ẏ = Ay −
bV

meff

x2
2, (79)

where α̃ = α− 2by1

µ0
; y =

[
y1 y2

]T
; A =

 0 1

−d −c1

 .
Theorem 3.2.8 Consider the model for magnetostriction given by Equations

(74 - 79). Suppose the input u(·) : IR → IR is a continuous and T periodic

function of time. Suppose the matrix A has eigenvalues with negative real parts
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and the parameters satisfy conditions (71-73). If the initial condition is at the

origin, then there exists b̄ > 0 such that ∀b with |b| ≤ b̄, the Ω limit set of the

solution trajectory is a periodic orbit with period T .

Proof We choose b̄ as in Lemma 3.2.2. The sets B1 and D1 are compact and

convex by Lemma A.0.1. Then B1×D1 is compact in the uniform product norm

by Theorem A.0.3. Obviously it is also convex.

Let Ψ be defined as, Ψ : B1 ×D1 → B1 ×D1; Ψ (x2, y1) = (P1 ◦ H(x2),P2 ◦

G(y1)). Then Ψ is continuous because P2 ◦ G and P1 ◦ H are continuous by

Theorems 3.2.5 and 3.2.7, and the continuity of the projection operator.

Then by the Schauder Fixed Point Theorem A.0.8, there exists a limit point

of the mapping Ψ in the set B1 ×D1. Since the elements of the sets B1, D1 are

projections of Ω-limit sets of trajectories starting at the origin, it follows that

the limit point of the mapping Ψ in the set B1 ×D1, is the projection of the Ω

limit set of the trajectory starting at the origin.

Thus the Ω-limit sets of the state variables x2 and y1 are periodic with period

T . But (y1, y2) = Gx2 and hence by Theorem 3.2.6, the Ω-limit set of (y1, y2) is

a periodic orbit with period T . Also (x1, x2) = Hy1 and by Theorem 3.2.4, he

Ω-limit set of (x1, x2) is a periodic orbit with period T .

2

3.3 The magnetostrictive actuator in an elec-

trical network

In the previous section, we proved that the solution trajectory of the magne-

tostriction model has a periodic orbit with period T as its Ω limit set when the
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input Ḣ(·) is periodic in time with period T . In a practical situation, usually

a voltage source is used to provide the energy input. We now show that the

conclusions of the last section hold with voltage input.

By Maxwell’s laws of electromagnetism, the induced electro-motive force in a

coil wound on the magnetostrictive rod is given by

Eemf =
∮

E(x) · dl =
∫
S
−
dB

dt
(y) · ds,

where E(x) is the electric field at any point x, dl is a length element, and S

is the total surface area of the magnetostrictive rod bounded by the coil. B(y)

is the magnetic flux density at any point y in the magnetostrictive rod. As we

have assumed the magnetic flux density to be uniform in the rod (equal to B)

and directed along the axis of the rod, we have

Eemf = −
dB

dt
NA

where N is the number of turns of the coil, and A is the area of cross-section

of the magnetostrictive rod. If V (t) is the voltage applied to the coil at time t,

then we have

V (t) =
dB

dt
(t)NA

The other Maxwell’s laws do not yield anything interesting mainly because of

our simplifying assumptions. We have assumed the magnetic field at any point

x in the rod – H(x) to be uniform (= H) and directed along the axis which

implies

∇×H(x) = 0.

There are no true charges in the rod implying
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Figure 3.3: Schematic diagram of a thin magnetostrictive actuator in a resistive

circuit.

∇ ·D(x) = 0,

where D(x) is the electric displacement vector at a point x in the rod. As eddy

currents are assumed to be present in the rod due to its finite resistivity, then we

have to incorporate a resistor Reddy in parallel with the magnetostrictive element

as seen in Section 3.1. If Rlead is the resistance of the coil winding, then the full

circuit will be as shown in Figure 3.3.

Though physically it is impossible to separate the resistor representing the

eddy current losses from the magnetostrictive element and the coil resistance in

Figure 3.3, lets first assume that they are not present for ease of analysis. Thus

we set Reddy =∞ and Rlead = 0. Let the state variables be defined as in the last

section. In addition, define r = B. Hence

r =
x1 + x2

µ0
. (80)

We can now rewrite the state equations with the state variables (r, x2, y, ẏ as
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ṙ =
V

NA
, (81)

ẋ2 =

 kx3

µ0

cMs

a
∂L
∂z

(z) + x4Ms

(
L(z)− x2

Ms

)
kx3

µ0
− x4Ms

(
L(z)− x2

Ms

)
α̃(t)− kx3

µ0
α̃(t) cMs

a
∂L
∂z

(z)

u, (82)

z =
r
µ0

+ (α̃− 1)x2

a
, (83)

x3 = sign(
ṙ

µ0

− ẋ2), (84)

x4 =


0 : x3 < 0 and coth(z)− 1

z
− x2

Ms
> 0,

0 : x3 > 0 and coth(z)− 1
z
− x2

Ms
< 0,

1 : otherwise,

(85)

ẏ = Ay −
bV

meff

x2
2, (86)

where α̃ = α− 2by1

µ0
; y =

[
y1 y2

]T
; A =

 0 1

−d −c1

 .
Theorem 3.2.8 can now be written as:

Theorem 3.3.1 Consider the model for magnetostriction given by Equations

(74 - 79). Suppose the input V (·) : IR → IR is a continuous and T periodic

function of time. Suppose the matrix A has eigenvalues with negative real parts

and the parameters satisfy conditions (71-73). If the intial state is at the origin

then there exists b̄ > 0 such that ∀b with |b| ≤ b̄, the Ω limit set of the solution

trajectory is a periodic orbit with period T .
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Proof

The mapping ψ : IR2 → IR2 defined by

ψ(r, x2) = (x1, x2)

is a diffeomorphism because

∂ψ

∂(r, x2)
(r, x2) =

 1
µ0
−1

0 1


and hence Determinant

(
∂ψ

∂(r,x2)
(r, x2)

)
= 1

µ0
. As (r, x2)(t = 0) = (0, 0), we have

x1(t = 0) = 0. Thus in the transformed co-ordinates, the intial state is at

the origin which is on the anhysteretic curve. The existence, extension and

uniqueness of trajectories is shown exactly as in Theorem 3.2.1 and 3.2.2. We

choose the setD as in Theorem 3.2.1 and 3.2.2 to prove the existence of a solution

at the origin. As the denominator of ẋ2 is positive for all points in D, we have

sign(ẋ2) = sign(ẋ1). This implies sign(ṙ) = sign(ẋ1). Thus we can replace the

condition (84) with

x3 = sign(V ). (87)

With this modification, the proof of the Ω-limit set of the solution trajectory

being a periodic orbit with period T is exactly the same as that of Theorem

3.2.8.

2
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3.3.1 The magnetostrictive actuator in an electrical net-

work

In this subsection, we consider the magnetostrictive actuator to be part of an

R-L-C network as shown in Figure 3.4. The eddy current and lead resistors

in Figure 3.3 can be thought of as part of this network. Our aim is to show

that if a periodic input voltage signal is applied to the whole system, then the

solution trajectory of the system with the initial state at the origin tends towards

a periodic orbit. The methodology of the proof follows the same scheme as in

the previous section.

1. We consider the output of the network to be a voltage signal which is ap-

plied to the magnetostrictive actuator. First consider the voltage signal to

be T -periodic in time. Then the solution of the magnetostrictive actuator

model has an Ω limit that is a T -periodic signal as was shown in Theorem

3.3.1. The output of the magnetostrictive actuator model is the current

through the actuator (which we can assume to be a state variable in the

actuator model).

2. Next we consider the network as being applied an external periodic voltage

input and the output of the magnetostrictive actuator system which is the

current through the actuator as mentioned before. If the output of the

magnetostrictive actuator model is a T -periodic signal in time, then the

network (with some conditions on the parameters defining it) has an Ω-

limit set that is a T -periodic orbit by Theorem D.0.3.

3. Finally, we consider the combined actuator plus network system with volt-

age input. We show via the Schauder fixed point theorem, that there is a
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Figure 3.4: Schematic diagram of an magnetostrictive element as a part of a

R-L-C network.

periodic solution for the interconnected system.

Consider the magnetostriction model to be described by the equation

ẋ = f(t, x, w1). (88)

where x = (x1, x2, y1, y2). w1 denotes the voltage across the magnetostrictive

element. Assume x(t = 0) = (0, 0, 0, 0). The external R-L-C circuit can be

described by the following linear equation

ẇ = Cw + Eu+ Fx1 w(0) = 0. (89)

where, w ∈ IRm, u ∈ IR, w1 is the voltage across the magnetostrictive element.

As the current thorough the magnetostrictive element I1 is related to the mag-

netic field x1 via a constant, that is

x1 = KI1,

where K is called the coil factor, we consider x1 as an input to the network. The

input voltage to the network is assumed to be
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u(t) = Ucos(ωt). (90)

As mentioned earlier, we consider the uncoupled circuits with periodic per-

turbation, g(·), h(·) with period 2π
ω
. The uncoupled systems are

ẋ = f(t, x, g); x(t = 0) = (0, 0, 0, 0) (91)

ẇ = Cw + Eu+ Fh w(t = 0) = (0, · · · , 0) (92)

Denote the Ω limit set of the uncoupled magnetostrictive system (91) as x̄(·).

Theorem 3.2.4 shows that it exists and is a T = 2π
ω

-periodic function of time.

For the network we have the following theorem.

Theorem 3.3.2 Suppose the matrix E has eigenvalues with negative real parts.

If u(·), h(·) : IR → IR are continuous and T -periodic functions of time, then the

solution of (92) has a periodic orbit of period T as its Ω limit set.

Proof The proof follows from Theorem D.0.3.

2

Define the sets B = {φ ∈ C([0, T ], IR) : |φ| ≤ β1; |φ(t) − φ(t̄)| ≤ M1|t −

t̄| ∀ t, t̄ ∈ [0, T ]}, D = {ψ ∈ C([0, T ], IR) : |ψ| ≤ β2; |ψ(t) − ψ(t̄)| ≤

M2|t − t̄| ∀ t, t̄ ∈ [0, T ]}, where β1, β2,M1,M2 are positive constants. Let

P1 : C([0, T ], IR4) → C([0, T ], IR) and P2 : C([0, T ], IRm) → C([0, T ], IR) denote

the projection operators defined by P1(f) = f1 and P2(g) = g1.

Consider the mappings G : B → C([0, T ], IR4); g(·) 7→ x̄(·) and H : D →

C([0, T ], IRm); h(·) 7→ ȳ(·). We first show G and H to be continuous.
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Theorem 3.3.3 Suppose the parameters of the magnetic system satisfy condi-

tions (71 - 73). If ymax = supt |y(t)|, and G = 2bymax
µ0

, then assume that G

satisfies (29) and (30). Further assume that E has eigenvalues with negative

real parts. Then G and H are continuous.

Proof Consider the magnetostrictive system given by Equation (91).

Suppose gn → g in the uniform norm over [0, T ] where T is the period of u.

Consider the sequence of systems ẋ = fn(t, x) = f(t, x, gn). As f is continuous

in g, fn → f in the uniform norm if gn → g (Theorem B.4.1). The solutions

of each of the systems {fn} and f exist and is unique for t ∈ [0, T ]. Then by

Theorem B.4.2, the solutions φn(t) of ẋ = fn(t, x) converge uniformly to φ(t)

the solution of ẋ = f(t, x, g) for t ∈ [0, T ].

Consider the time interval [T, 2T ]. We have shown that φn(T ) → φ(T ). Then

again by Theorem B.4.2, φn(t) → φ(t) for t ∈ [T, 2T ]. Thus we can keep ex-

tending the solutions φn(t) and φ(t) and obtain uniform convergence over any

interval [mT, (m + 1)T ] where m > 0. Therefore, for each m and ε > 0, there

exists N(m) > 0 such that |φn − φ| <
ε
3
∀ n ≥ N(m).

By Theorem 3.3.1 there exist asymptotically orbitally stable periodic orbits x̄n

of the systems ẋ = fn(t, x) and x̄ of the system ẋ = f(t, x, g). Hence for each

ε > 0, there exists M ≥ 0 such that |x̄n − φn| <
ε
3

and |x̄− φ| < ε
3
∀ m ≥ M

and t ∈ [mT, (m+ 1)T ].

Therefore for all n ≥ N(M) and t ∈ [mT, (m + 1)T ] where m ≥ M, we have

|x̄n − x̄| ≤ |x̄n − φn|+ |φn − φ|+ |x̄− φ| < ε. Hence G is a continuous map.

As E has eigenvalues with negative real parts, the fact that H is continuous

follows from Lemma D.0.1 and Theorem D.0.3.

2
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Let D1 denote the range of P1 ◦ G and B1 denote the range of P2 ◦ H. Thus

P1 ◦ G : B 7→ D1 and P2 ◦ H : D 7→ B1.

Lemma 3.3.1 P1 ◦ G : B1 7→ D1 and P2 ◦ H : D1 7→ B1.

Proof The proof is similar to that of Lemma 3.2.2.

2

Theorem 3.3.4 Consider the systems (88) and (89) with input given by Equa-

tion (90). Suppose the matrix E has no eigenvalues that are purely imaginary

with value 2π
ω
i. Suppose the parameters satisfy conditions (71-73) with the mag-

netostriction constant b ≤ b̄ chosen so that G = 2bymax
µ0

(where ymax = supt y(t))

satisfies (29) and (30). Then the solution trajectory has an Ω limit set that is a

periodic orbit.

Proof The sets B1 and D1 are compact and convex by Lemma A.0.1. Then

B1×D1 is compact in the uniform product norm by Theorem A.0.3. Obviously

it is also convex.

Let Ψ be defined as, Ψ : B1×D1 → B1×D1; Ψ (x1, w1) = (P2 ◦H(x1),P1 ◦

G(w1)). Then Ψ is continuous because P1 ◦ G and P2 ◦ H are continuous by

Theorem 3.3.3 and the continuity of the projection operator.

Then by the Schauder Fixed Point Theorem A.0.8, there exists a limit point

of the mapping Ψ in the set B1 × D1. This gives us the periodicity of the two

state variables x1 and w1. Now since w = Hx1 and x = Gw1, by Theorem 3.3.1

(x, w) is a periodic orbit. Thus the solution trajectory of the system has an Ω

limit set that is a periodic orbit.

2
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Chapter 4

Parameter Estimation

The magnetostrictive actuator model developed in the last Chapter has several

parameters that need to be identified before the model can be used for simulation

purposes. A schematic of the circuit used for the identification purpose is shown

in Figure (4.1). Essentially, it is the magnetostrictive actuator connected to a

power source. The parameters to be found are:

• Rlead – lead resistance parameter.

• Reddy – eddy current parameter.

• α, b, a,Ms – non-hysteretic magnetic parameters.

• c, k – hysteretic magnetic parameters.

• c1 – mechanical dynamic losses parameter.

• meff – inertia parameter.

• d – elasticity parameter.

• F – prestress parameter.
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Figure 4.1: Schematic diagram of the circuit used for the identification of pa-

rameters.

As each of the parameters have different origin, we can systematically identify

each of them by doing specific experiments. First, Rlead can be measured using

an ohmmeter. The value of the saturation magnetization Ms can be obtained

from the manufacturer. To estimate the rest of the parameters, the two proposed

experiments are as follows.

1) We apply a sinusoidal current input of a very low frequency (say 0.5 Hz) to the

actuator, and measure the voltage, displacement of the actuator as a function of

time. With the same set up, we repeat the same experiment, keeping the maxi-

mum amplitude of the input current constant for atleast two different frequencies.

We also repeat the 0.5 Hz experiment with a known mechanical load applied to

the actuator. This experiment leads to the evaluation of c, k, meff , c1, Reddy as

explained in the next section.

2) In this experiment, we would like to obtain the anhysteretic displacement vs

current curve for the actuator. To obtain the anhysteretic displacement for a

particular current I, we apply a decaying alternating current with a D.C bias of

I to the actuator. Further processing of the experimental data as described in

the next section leads to the evaluation of F, d, b, a, α.
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4.1 Algorithm for parameter estimation from

experimental data

First, we measure Rlead that accounts for the lead resistance using an ohm-meter.

Another quantity that needs to be evaluated separately by another experiment is

the saturation magnetization Ms for the rod actuator. The manufacturer usually

publishes this data or it could also be determined using Graham’s method [36].

Once this has been accomplished, then the procedure for evaluating the rest of

the parameters is as follows.

Step 1: Reddy needs to be found first as it is critical to the rest of the identifi-

cation scheme. In one cycle, the energy supplied by the source is given by

E =
∮
u(t) I(t) dt. (1)

The losses in the resistor Rlead are

E1 =
∮
I2Rlead dt. (2)

The losses due to mechanical damping is given by

E2 =
∮
c1 ẋ

2 dt. (3)

The eddy current losses are given by

E3 =
∮ (u(t)− I(t)Rlead)

2

Reddy

dt. (4)

Let H be the loss due to magnetic hysteresis in one cycle. Then by (14)

E = E1 + E2 + E3 +H. (5)
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In the above equation, the unknowns are Reddy, c1 and H. A straight forward

approach to estimating the constants would be to take several measurements and

then use a least squares approach. By a measurement, we mean the determination

of the quantities u(t), I(t), and ẋ(t) for one cycle.

Obviously, we need to keep H a constant in each measurement because it

is not known apriori how it varies with the input current/voltage. Now H is

determined by the maximum and minimum values of the (applied) magnetic

field H. As H is directly proportional to I1, we need to maintain I1 a constant

for each measurement. It can be seen by a simple calculation that even if the

inductor in Figure 3.1) is linear, it is impossible to maintain I1 between the same

limits if the measurements are done at different frequencies. Thus we can obtain

c1 and Reddy for each frequency by the calculations described below.

If a large number of measurements is made then we can determine the un-

known quantities as follows. After the nthmeasurement, compute the quantities:

x1(n) =
∮
ẋ2 dt and x2(n) =

∮
(u(t)− I(t)Rlead)

2 dt. Let

κ =


c1

1
Reddy

H

 ,
Z(n) = E(n)− E1(n),

XT (n) = [x1(n), x2(n), 1].

Define

Z =


Z(1)

...

Z(k)

 ; X =


XT (1)

...

XT (k)

 .
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Therefore

Z = X κ. (6)

If XT X is non-singular, then by the least-squares theorem E.0.4 the best esti-

mate for the parameter vector κ is given by

κ̂ = (XT X)−1XT Z. (7)

If it is too difficult to maintain u−I R between the same maximum and minimum

values for each measurement, then another way of determining Reddy is from

theory. It is shown in Appendix F that if the resistivity of the material is ρ,

then we can calculate the theoretical value of the eddy current resistance using

the following formula:

Reddy =
N2 8πρ

lm

b2 − a2

b2 + a2
, (8)

where a, b are the inner and the outer radii of the rod, lm is its length, N is the

number of turns of coil on the rod. Once Reddy has been calcuated, then we use

same method outlined above to calculate c1.

Step 2: The next step is the identification of the anhysteretic parameters

α, b, a,Ms, c2, F . We can obtain the anhysteretic displacement curve for the

magnetostrictive actuator (Figure 4.2) by a method as described in Chikazumi

[27]. Essentially to obtain the anhysteretic strain/displacement for a certain

value of input current I, an decaying alternating current with the D.C. bias of I

is applied to the actuator. By repeating the experiment for differing values of I,

we obtain the anhysteretic displacement/strain curve. In Figure 4.2, we can see
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that the strains obtained for both the increasing and decreasing currents almost

coincide showing no hysteresis.

Coming back to the identification scheme, we can write the equations satisfied by

the magnetostrictive actuator following the anhysteretic curve in a quasi-static

manner as follows:

d x+ bM2 V = F, (9)

Man(He) = MsL(
He

a
)

= Ms (coth(
He

a
) −

a

He

), (10)

He = H + αM −
2 bM x

µ0

. (11)

The parameters relating to dynamics do not appear in Equation 9 because the

anhysteretic displacement x is measured after the actuator has reached steady

state (after the decaying alternating current has sufficiently died down).

Step 2a: We note in Equation 9 that the minimum value of the anhysteretic

displacement corresponds to M = 0. Thus

xmin =
F

d
. (12)

In the above equation, F is a prestress load that is already present in the actu-

ator. For the ETREMA MP50/6 magnetostrictive actuator it is not possible to

know the value of this parameter. But by repeating the experiment - specifically

finding the minimum value of the anhysteretic displacement at a known load F1,

we can find the values of F and d. The equation would be

xmin2 =
F + F1

d
. (13)
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Equation 9 further says that

xsat = −bM2
s V + xmin. (14)

Step 2b: At this point we make the assumption that we know the value of Ms

thorough some other measurements. Then by Equation (14) we can calculate the

parameter b. We can now determine the rest of the magnetic parameters that

do not pertain to hysteresis, using Equations 9 - 11. The relation between the

inductor current I1 which is a known quantity and the magnetic field intensity

H is as follows:

H = K I1 +Hbias. (15)

where K is a constant called the coil factor and Hbias is the permanent magnetic

biasing field. If we assume no leakage flux and then the theoretical value of K

is given by

K =
Nm

lm
.

In the above equation, Nm is the number of turns of the coil which is known,

and lm is the average length of the magnetic path in the actuator which is also

a known quantity. For the Terfenol-D actuator MP50/6, ETREMA Inc. (the

manufacturer) has empirically determined the constant K to be 194 Oe/Amp .

We can now rewrite Equations 9 - 11 as follows:

I1 =
1

K

(
He −Hbias − (α−

2 b x

µ0

)M

)

=
1

K

(
He −Hbias − αMs L(

He

a
) +

2 bM

µ0

(
−bM2 V

d
+
F

d

))
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=
1

K

(
He −Hbias +

(
−αMs +

2bFMs

µ0d

)
L(
He

a
)−

2b2M3
sV

µ0d
L3(

He

a
)

)
.

Define new parameters η, ν and β by

η =
1

K
a, (16)

ν =
1

K

(
−αMs +

2 b F Ms

µ0 d

)
, (17)

β = −
1

K

2 b2M3
sV

µ0 d
. (18)

β < 0 is known, while η > 0 and ν < 0 are unknown. Define a new variable

Ĥe by

Ĥe =
He

a
. (19)

Then

I1 +
Hbias

K
= η Ĥe + ν L(Ĥe) + β L3(Ĥe). (20)

Thus I1 + Hbias
K

is linear in the new parameters. The identification algorithm for

the parameters η and ν is simple.

• Step a: Compute the value of Ĥe from the anhysteretic displacement using

Equations (9) and (10). For example, M =
√

F −d x
bV . The square root

is well defined because the actuator has a permanent magnet bias. Note

that at some data points M should manually made negative. These points

can be identified by looking at a plot of I1 versus M . By Equation (10)

Ĥe = L−1(Ĥe). The inverse of the monotonous function L(Ĥe) may be

computed by a bisection algorithm.
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• Step b: If n denotes the nth data point, then let y(n) = I1(n)−β L3(Ĥe)(n),

θ = [η ν]T and w(n) = [Ĥe(n) L(Ĥe)(n)]T . We now form the vectors of

data points, W = [w(1)w(2) · · · ]T ; Y = [y(1) y(2) · · ·]T so that Y = W θ.

The problem is to find the vector θ̂ that is the “best fit” for the data points.

If W T W is nonsingular then by Theorem E.0.4

θ̂ = (W T W )−1W T Y.

Step 3: At this point, the only unknown parameters are the magnetic ones re-

lated to hysteresis c, k, and effective mass meff . We first focus on the magnetic

hysteretic parameters. One approach that works for sufficiently low frequency

of cycling, so that the dynamic effects are negligible is as follows. As the system

satisfies Equation 9 we can evaluate M(t) from x(t). Now, to a first approxima-

tion

M(t+ t0) = M(t0) +
dM

dH
(t0) + (H(t+ t0)−H(t0)). (21)

The above equation gives us the value of dM
dH

(t0). We now know the values of x,

H, M , dM
dH

at every time step. δ is known at every time step t0 by comparing

H(t+ t0) with H(t0). As we also know Ĥe at every time step, we can compute

δM by comparing M and L(Ĥe). We can now use Equation 12, to obtain the

values of k and c as all the other values are known. The details are discussed

next.

Rewriting Equation (12) we get

k δ

µ0

−

(
δM (Man −M) +

k δ

µ0

c
dMan

dHe

) (
α−

2 bM x

µ0

)
dM

dH
=

k δ

µ0

c
dMan

dHe

+ δM (Man −M).
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That is

k δ

µ0

dM

dH
−
k δ

µ0
c
dMan

dHe

(
ᾱ(M,x)

dM

dH
+ 1

)
= δM (Man−M)

(
ᾱ(M,x)

dM

dH
+ 1

)
,

where ᾱ(M,x) = α− 2 bM x
µ0

.

Define λ = [k kc]T , ȳ(n) = δM (Man −M)
(
ᾱ(M,x) dM

dH
+ 1

)
(n), and

w̄(n) = [k δ
µ0

(n) dM
dH
− δ
µ0

dMan

dHe

(
ᾱ(M,x) dM

dH
+ 1

)
(n)]T . n denotes the time-step.

Define

W̄ = [w̄(1), w̄(2), · · · , w̄(t)]T ; and Ȳ = [ȳ(1), ȳ(2), · · · , ȳ(t)]T . Then

Ȳ = W̄ λ.

If W̄ T W̄ is non-singular, then by the Least-squares theorem E.0.4, the best

estimate for the parameter vector λ is given by

λ̂ = (W̄ T W̄ )−1 W̄ T Ȳ .

Thus k and c can be identified.

Step 4: Finally, we can perform one last experiment to obtain the unknown pa-

rameter meff . This parameter is one of the most crucial in the model. We apply

sinusoidal current signals of constant magnitude to the actuator and measure

the maximum displacement obtained at each frequency. The lowest frequency

corresponding to a peak in the response can then be used to find meff . Suppose

ω0is this frequency in rad/sec, then

meff =
ω2

0

d
.

gives the effective mass.
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Am
4
= Area of the magnetostrictive rod face = 2.8274 × 10−1 sq.cm

lm
4
= Length of the magnetostrictive rod = 5.13 cm

Nm
4
= Number of turns of wire on the magnetostrictive rod = 1300,

Rlead
4
= Lead resistance = 6.0 Ω

Table 4.1: Factory specifications for the magnetostrictive actuator

4.2 Experimental validation

The above algorithm was used to find the parameters of a test Terfenol-D mag-

netostrictive actuator manufactured by ETREMA Products, Inc. Figure 1.10

represents a cut away section of this actuator. The basic parameters of the actu-

ator are presented in Table 4.1. The magnetostrictive rod itself is made by the

free stand zone melt (FSZM) technique. The factory identification number for

the type of rod in the actuator is FSZM 96-11B. The quasi-static strain in parts

per million vs. applied magnetic field for such a rod is shown in Figure 4.3.

Factory measurements of the saturation magnetization for the above rod

yielded Ms to be approximately 9000Oe. The application handbook published

by ETREMA [23] mentions that the Young’s modulus of the material to be in

the range 25 - 35GPa. The factory set prestress on the rod actuator was set to

be 6.9MPa. As the experimental apparatus used to the measure the strain (the

LVDT strain sensor plus the signal conditioner unit) had some drift associated

with the measurement, it was extremely difficult to measure the strains from

one experiment to the next with respect to some fixed reference. Of course, the

hysteresis and after-effect of the rod contributed to the drift. Therefore it was

extremely difficult to calculate the elastic constant d as outlined in Step 2 in the

previous section. To overcome this difficulty, we used the Young’s modulus of
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Figure 4.3: Quasi-static strain vs applied magnetic field for an ETREMA FSZM

96-11B Terfenol-D rod (Courtesy ETREMA Products, Inc.).

the rod to calculate d approximately as

d =
γH Am
lm

= 1.9288 × 1010dynes/cm.

Please note that all the parameters are expressed in their C.G.S. units. This

is because these units are usually employed by workers in the magnetism area,

and also because the numbers are then not too big or too small. This helps in

avoiding bad conditioning in the numerical method. The lead resistance in the

circuit was measured to be 7.5 Ohms. This value needs to be multiplied by 107

in the simulation because otherwise I2R will give us power in Joules/sec when

I is in Amperes. Table 4.2 lists the factors for converting the S.I units to the

C.G.S equivalents used in the simulation.

In addition, the permeability µ0 in the SI units = 4 π × 10−7H/m while it

dimensionless and equal to 1.0 in the CGS units. Note that true CGS units
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Quantity S.I unit multiply to get CGS unit

Current Amperes (A) 1.0 A (CGS)

Voltage V olts (V ) 107 V (CGS)

Resistance Ohms (Ω) 107 Ω (CGS)

Energy Joules (J) 107 Ergs

Force Newtons (N) 105 Dynes

Pressure N/m2 or Pascals 10 Dynes/cm2

Mass Kilograms (Kg) 103 gm

Distance Meters (m) 103 cm

Magnetic field A/m 4π × 10−3 Oersteds (Oe)

Magnetization A/m 4π × 10−3 G or Oe

Magnetic Flux Weber/m2 or Tesla 10−4 Gauss (G)

Density

Table 4.2: Physical quantities in SI and CGS units
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Frequency (Hz) c1 Reddy H

50 5.09 × 103 26.35 −4.29 × 103

100 −825 24.9 −2.17 × 103

240 4.76 × 105 40.1 −1.0 × 103

480 2.62 × 105 41.48 −443.38

Table 4.3: Results of Step 1

of Voltage and Current have two different units called stat-Volts; ab-Volts and

stat-Amps; ab-Amps respectively. Instead of defining Voltge and Current in the

true CGS units, we simply multiply them by 107 and 1.0 respectively as a matter

of convenience.

Step 1:

The first step of the identification process was carried out as mentioned in

the last section. Signals of frequency 50, 100, 200, 500 Hz were applied and

the displacement, coil current and voltage at the power supply output were

measured. The current versus displacement curves are shown in Figure 4.4.

One can see a drift in the curves which could be ascribed to the LVDT signal

conditioning unit. Having measured the resistance of the coil and the leads

(7.5Ohms), the least squares method was then employed as described in the

last subsection and the constants found are described in the Table 4.3. The

tolerance for the least squares method was 10−3.

The reason for the negative coefficients was that unconstrained least-squares

minimization was sought. Matlab analysis of the data showed that the hysteresis

loss per cycle H was less than 1 % of the total energy input. Most of the energy

loss happened due to the lead resistance at low frequencies and at 480Hz the
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a = 1.9 × 102

α = 1.9 × 10−4

b = −2.1

d = 1.9 × 1010

Table 4.4: Results of Step 2

losses due to the lead and the eddy current resistances became equal. This per-

haps explains why the parameters due to the insignificant energy contributions

came out to be negative. The value of Reddy obtained at high frequency was the

value used in the simulation.

Step 2: The determination of F and d were described before due to the diffi-

culties in the eliminating drifts in the LVDT sensor. The saturation stain was

determined using the ETREMA Terfenol-D application handbook [23] (Table 7),

to be 3000ppm. That is

xsat = 3× 10−3 × 5.13 cm

= 1.54× 10−2.

The rest of the identification process was exactly as described in the last

subsection and results are captured in Table 4.4. The anhysteretic strain curves

obtained for an applied load of 340 grams are shown in Figure 4.5. The current

applied to obtained this result has a shape as shown in Figure 4.2.

Step 3:

The method of Step 3 could not be followed as described in the last subsec-

tion. The main reason is that the least squares method did not yield plausible

coefficients. This could be due to a number of reasons - the main one being the
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k = 48.19

c = 0.3

Table 4.5: Results of Step 3

many differentiation of the data signals required to be done. The result of this

step would have been the identification of the parameters c and k related to the

magnetic hysteresis. As such they were found approximately by inputting some

values into a simulation and comparing the result with the experimental curves.

As the rest of the identification had been done (Step 4 was completed before

Step3 due to this difficulty), the finding of the last two parameters was not very

difficult. The result was

Step 4:

As mentioned before, this step was performed before Step 3, mainly so that all

the known parameters are collected together before estimating the two unknown

ones by heuristics. The resonance frequency ω0 was approximately determined

to be 432Hz. This facilitated the determination of meff according to (22):

meff =
ω2

0

d
. (22)

The simulation of magnetostrictive actuator using the above constants are shown

in Figure 4.6 and 4.7. The trend in the peak current inputs and peak displace-

ment outputs are shown in Table 4.6. It can be compared with experimental

results on the Terfenol-D actuator shown in Figures 4.4 (experiment performed

on 11/29/98) and in Figures 4.8, 4.9 (experiements performed on 6/17/98). The

peak curent and peak displacement output for the latter experiment are collected

in Table 4.7.
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Frequency Peak - Peak Current input Peak - Peak Displacement

Hz Amps Microns

1 2.13 71

10 2.26 71

50 2.17 63

100 2.22 54

150 2.19 50

200 2.28 42

350 2.11 54

500 2.39 45

Table 4.6: Simulation results

Frequency Peak - Peak Current input Peak - Peak Displacement

Hz Amps Microns

0.25 2.5 53

1 2.5 53

10 2.5 54

50 2.5 54

100 2.5 51

200 2.5 58

350 2.5 66

500 2.3 44

Table 4.7: Experimental results
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Discussion of results

The goal of this chapter, was to provide a method to an application engineer to

perform identification experiments on a magnetostrictive rod actuator, and then

evaluate its performance in a smart structure via simulation studies. The major

problem that we encountered in implementing the algorithm proposed in this

Chapter was that the measured characteristics varied each time an experiment

was performed. The results of the experiments performed on 10/21/1996 on

the same actuator is shown in Figure 5.8. Figures 4.8 and 4.9 show the results

of experiments performed on 6/17/98, while Figure 4.4 shows the results of

experiments performed on 11/29/98). It is actually difficult to compare them

because Figure 4.4 has many more cycles than the previous ones.

Some of these variations could be the result of a drift in the LVDT sensor

apparatus. Whether this is the case or there is an inherent drift in the material

characteristics depending on the method of storage, loading etc. needs to be

examined more closely in the future. In this connection, it might be mentioned

here that there was a statistical study done on 50 different rods at the same time

with respect to variations of low-signal parameters based on a linear model of

the rod and a linear model of the magneto-elastic transduction effect [37]. But

we have not come across a study of the properties of the same actuator done at

different points in time.

Lets verify whether these parameters satisfy the conditions that were obtained

in Chapter 3. As G is the bound on the perturbation of the parameter α, its

value is ( by (27))
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G = |
2 b xsat
µ0
|

= 6.46× 10−2.

Then it can be seen that the sufficient conditions (29 - 30) are not satisfied,

but the necessary condition (33) is satisfied by the parameters.

148



−1.5 −1 −0.5 0 0.5 1 1.5
−50

−40

−30

−20

−10

0

10

20

30

Amps

M
ic

ro
ns

(a) 50 Hz.

−1.5 −1 −0.5 0 0.5 1 1.5
−60

−40

−20

0

20

40

60

Amps

M
ic

ro
ns

(b) 100 Hz.

−1.5 −1 −0.5 0 0.5 1 1.5
−50

−40

−30

−20

−10

0

10

20

30

40

50

Amps

M
ic

ro
ns

(c) 240 Hz.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−25

−20

−15

−10

−5

0

5

10

15

20

Amps

M
ic

ro
ns

(d) 480 Hz.

Figure 4.4: Displacement versus current data obtained from experiment.
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Figure 4.5: Experimental results.
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Figure 4.6: Simulation results for sinusoidal voltage inputs of frequencies 1 - 100

Hz.
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Figure 4.7: Simulation results for sinusoidal voltage inputs of frequencies 200 -

500 Hz.
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Figure 4.8: Experimental results.
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Chapter 5

Trajectory tracking controller design

In this chapter, we design a non-identifier based adaptive controller for trajectory

tracking. We consider the magnetostrictive actuator as a single input, single

output system with voltage input and displacement output. It is desired that

the output track a reference trajectory which belongs to a certain class of signals.

The reason for using non-identifier based adaptive controller design instead of

a model based controller design is that the model described in the previous

chapter yields the correct output response only if the input is sinusoidal. The

reason for this was discussed in the last chapter. Besides, it is known that the

performance of Terfenol-D actuators is strongly temperature dependent [38]. We

could incorporate temperature effects into the model in a straightforward way,

but we will have one more parameter to estimate.

In the approach taken in this chapter, we do away with the estimation of

parameters and design a direct adaptive controller. There are obvious advan-

tages to this approach, but there are some disadvantages as well that are not so

obvious. We will go into this topic later in the chapter. In the following section,

the basic idea of a high gain adaptive controller for relative degree one linear
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systems is presented. The extension of this idea for controlling relative degree

one linear systems with a set valued input nonlinearity is also presented in this

section. The second section deals with adaptive controller design for the relative

degree two systems with set valued input nonlinearity. The last section of this

chapter deals with results of experiments where a controller of the type discussed

in Section 5.3 is used to control a magnetostrictive actuator.

5.1 Universal adaptive stabilization and track-

ing for relative degree one linear systems

A wide range of control theory deals with the design of a feedback controller for a

known plant so that certain control objectives are achieved [39]. The fundamental

difference between this approach and that of adaptive control is that in adaptive

control the plant is not known exactly, only structural information is available.

This structural information may be minimality, minimum phase, known relative

degree etc. The aim is therefore to design a single controller which achieves

prespecified control objectives for every member of a given class. The controller

has to learn from the output data and, based on this information, to adjust its

parameters.

The area of non-identifier based adaptive control was initiated by Nussbaum

(1983), Morse (1983), Willems and Byrnes (1984) etc. In their approach, the

adaptive feedback strategy is not based on any identification or estimation of the

process to be controlled. The class of systems under consideration were either

minimum phase or more generally, only stabilizable and detectable [40]. Their

seminal work was later extended by Achim Ilchmann, Eugene Ryan and others
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to linear systems with relative degree two and set-valued input nonlinearities.

The problem definition is as follows. Suppose Σ denotes a certain class of

linear, finite dimensional, time invariant systems of the form

ẋ(t) = Ax(t) + B u(t), x(0) = x0 ∈ IRn,

y(t) = C x(t) + Du(t).

 (1)

where (A,B,C,D) ∈ IRn×n×IRn×m×IRm×n×IRm×m, are unknown, m is usually

fixed, the state dimension n is an arbitrary and unknown number. The aim is to

design a single adaptive output feedback mechanism u(t) = F(y(·)|[0, t]) which

is a universal stabilizer for the class Σ, that is, if u(t) = F(y(·)|[0, t]) is applied

to any system (1) belonging to Σ, then the output y(t) of the closed loop system

tends to zero as t tends to infinity and the internal variables are bounded.

Most of the adaptive stablizers found in the literature [39, 40] are of the

following simple form: A tuning parameter k(t) generated by an adaptation law

k̇(t) = g(y(t)), k(0) = k0, (2)

where g : IRm → IR is continuous and locally lipschitz, is implemented into the

feedback law via

u(t) = F (k(t), y(t), ẏ(t), · · · , yp(t)), (3)

where F : IRp+1 → IRm is piecewise continuous and locally Lipschitz where p is

the relative degree (to be defined later) of the system.

Definition 5.1.1 [39] A controller, consisting of the adaptation law (2) and the

feedback rule (3), is called a universal adaptive stabilizer for the class of systems
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Σ, if for arbitrary initial condition x0 ∈ IRn and any system (1) belonging to Σ

, the closed loop system (1)-(3) has a solution with the properties

1. there exists a unique solution (x(·), y(·)) : [0,∞)→ IRn+1,

2. x(·), y(·), u(·), k(·) are bounded,

3. limt→∞ y(t) = 0,

4. limt→∞ k(t) = k∞ ∈ IR exists.

The concept of adaptive tracking is similar. Suppose a class Yref of reference

signals is given. It is desired that the error between the output y(t) of (1) and

the reference signal yref(t)

e(t)
4
= y(t)− yref(t)

is forced, via a simple adaptive feedback mechanism, either to zero or towards a

ball around zero of arbitrary small prespecified radius λ > 0. The latter is called

λ-tracking. λ-tracking does not involve an internal model – usually referred

to as universal adaptive tracking with internal model. In this dissertation, λ

tracking is used for achieving trajectory tracking in magnetostrictive actuators

and hence adaptive tracking with an internal model is not discussed further. A

good description on this subject can be found in Ilchmann [39].

Definition 5.1.2 [39] For prespecified λ > 0, a controller consisting of an

adaptation law (2) and a feedback law (3) is called a universal adaptive λ-tracking

controller for the class of systems Σ and reference signals Yref , if for every

yref(·) ∈ Yref , x0 ∈ IRn and every system (1) belonging to Σ, the closed loop

system (1)-(3) satisfies
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1. there exists a unique solution x(·), y(·)) : [0,∞)→ IRn+1,

2. the variables x(t), y(t), u(t) diverge to ∞ or −∞ no faster than yref(t),

3. e(t) = (y(t)− yref(t)) → B̄λ(0) as t → ∞,

4. limt→∞ k(t) = k∞ ∈ IR exists.

Many results found in the literature fit into the framework described above.

Results can also be found for linear systems subjected to nonlinear perturbations

in the state, input and output, corrupted input and output noise [39, 24]. In this

dissertation, we are particularly interested in systems with input nonlinearity and

hence the discussion is developed in this direction.

5.1.1 Basic Idea

The basic idea of universal adaptive stabilization can be explained by considering

a scalar system. Consider the system to be stablilized to belong to the class of

scalar systems described by

ẋ = a x+ b u(t); x(0) = x0, (4-a)

y(t) = c x(t), (4-b)

where a, b, c, x0 ∈ IR are unknown and the only structural assumption is cb > 0.

If we apply the feedback law u(t) = −ky(t) to the above system, then the closed

loop system has the form

ẋ(t) = (a− kcb)x(t); x(0) = x0. (5)
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Clearly, if a
|cb| < |k| and sign(k) = sign(cb), then Equation 5 is exponentially

stable. However a, b, c are not known and thus the problem is to find adaptively

an appropriate k so that the motion of the feedback system tends to zero. Now

a time varying feedback is built into the feedback law

u(t) = −k(t) y(t),

where k(t) has to be adjusted so that it gets large enough to ensure stability but

also remains bounded. This can be achieved by the adaptation rule,

k̇(t) = y2(t), k(0) ∈ IR.

The nonlinear closed loop system is therefore

ẋ(t) = (a− kcb)x(t),

where

k(t) =
∫ t

0
x(s)2 ds+ k(0); (k(0), x(0)) ∈ IR2

has at least a solution on a small interval [0, ω), and the non-trivial solution

x(t) = exp
∫ t

0
(a− k(s) c b) ds x(0)

is monotonically increasing as long as a− k(t) c b > 0. Hence k(t) ≥ t(c x(0))2 +

k(0) increases as well. Therefore, there exists a t∗ ≥ 0 such that a − k∗cb = 0

and a − k(t) c b < 0 for all t > t∗. Hence the solution x(t) decays exponentially

and limt→∞ k(t) = k∞ ∈ IR exists.

2

The above analysis can be done in a more instructive way if we rewrite the

system given by (4-a - 4-b) in the following form [25]:
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ẏ = ā y + g u, (6)

where ā = c a and g = c b with g 6= 0. If σg = sign(g) is known, stabilization can

be achieved with the adaptive controller u = −σgk y with the evolution of k in

time given by k̇ = y2. To prove this fact, choose the indicator function

V (t) =
y2(t)

2
. (7)

The time derivative of V (y, k) is given by

V̇ (t) = (ā− |g| k) k̇.

This equation can be integrated to yield

V (t) = āk(t)− |g|
k2(t)

2
+ C, (8)

where C is a constant. Examination of the above equation reveals that k ∈ L∞,

the space of essentially bounded functions on (0,∞). This is so because, if it

were not true, then for |k| sufficiently large, V would become negative which

by Equation (7) would be impossible. Hence by Equation (8), V ∈ L∞, and by

Equation (7) y ∈ L∞ as well.

The closed loop system is given by

ẏ = (ā− |g| k) y, (9-a)

k̇ = y2. (9-b)

Equation (9-a) implies that ẏ ∈ L∞ while Equation (9-b) implies that y ∈ L2,

the space of square integrable functions on (0,∞); it follows that y(t) → 0 as

t→∞.
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The above non-classical analysis approach is very useful in the theory of

universal adaptive stablization. Consider the adaptive stablization of (6), but

now with σg unknown. In this situation, consider the control law

u = N(k)ky, (10)

where N(·) is a Nussbaum function defined as below.

Definition 5.1.3 Let k′ ∈ IR. A piecewise right continuous and locally Lipschitz

function N(·) : [k′,∞) → IR is called a Nussbaum function if it satisfies

sup
k>k0

1

k − k0

∫ k

k0

N(µ)µ dµ = ∞,

inf
k>k0

1

k − k0

∫ k

k0

N(µ)µ dµ = −∞, (11)

for some k0 ∈ (k′,∞). A Nussbaum function is called scaling-invariant if, for

arbitrary α, β > 0,

Ñ(t)
4
=


αN(t) if N(t) ≥ 0

β N(t) if N(t) < 0
(12)

is a Nussbaum function as well.

To prove that the resulting closed loop system

ẏ = (ā+ g N(k) k) y, (13-a)

k̇ = y2, (13-b)
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is stable, we proceed just as before by evaluating the rate of change of the

indicator function V = y2

2
along solutions to (13-a - 13-b). Thus V̇ = (ā +

gN(k)k)y2 = (ā+ gN(k)k)k̇. Therefore by integrating V̇ we get:

V (t) = ak(t) + g
∫ k(t)

0
N(µ)µ dµ+ C. (14)

The definition of N(·) clearly implies that for some number k∗ ≥ k(0),

āk∗ + g
∫ k(t)

0
N(µ)µ dµ+ C < 0.

Since by definition V ≥ 0, k(t) cannot attain this value. It follows that k(0) ≤

k(t) < k∗ or that k ∈ L∞. The definition of V together with Equation (14) thus

imply that y ∈ L∞ as well. With (y, k) ∈ L∞, we prove y → 0 by using (13-a -

13-b) just as before.

2

Before we conclude this subsection, we present some examples of Nussbaum

functions.

Example 5.1.1 [39]

The following functions are Nussbaum:

N1(k) = k2 cos(k), k ∈ IR,

N2(k) = k cos(
√
|k|), k ∈ IR,

N3(k) = ln(k) cos(
√

ln(k)), k, >, 1,

N4(k) =


k if n2 ≤ |k| < (n+ 1)2, n even,

−k if n2 ≤ |k| < (n+ 1)2, n odd,
k ∈ IR,
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N5(k) =



k if 0 ≤ |k| < τ0,

k if τn ≤ |k| < τn+1, n even,

−k if τn ≤ |k| < τn+1, n odd,

withτ0 > 1, τn+1
4
= τ2

n,

k ∈ IR,

N6(k) = cos(
π

2
k) exp k2, k ∈ IR.

5.1.2 Extension to relative degree one, minimum phase,

linear systems

The analysis in the previous subsection can be generalized to relative degree

one systems of higher order. It will be seen that they also have to be minimum

phase. The definition of the above terms are presented next.

Definition 5.1.4 (Zeros, Poles and Relative degree) Let G(·) ∈ IR(s)m×m

be a rational matrix with Smith-McMillan form

diag

{
ε1(s)

ψ1(s)
, · · · ,

ε1(s)

ψ1(s)
, 0, · · · , 0

}
= U(s)−1G(s)V (s)−1,

where U(·), V (·) ∈ IR(s)m×m are unimodular, rankG(·) = r, εi(·), ψI(·) ∈ IR(s)

are monic and coprime and satisfy εi(·)|εi+1(·), ψi(·)|ψi+1(·) for I = 1, · · · , r. Set

ε(s) =
r∏
i=1

εi(s), ψ(s) =
r∏
i=1

ψi(s).

s0 is a (transmission) zero of G(·), if ε(s0) = 0, and a pole of G(·), if ψ(s0) =

0. If G(·) = g(·) ∈ IR(s), then degψ(·) − degε(·) is called the relative degree of

g(·).

Definition 5.1.5 (Proper, Strictly proper) G(·) is proper resp. strictly

proper if degψ(·) ≥ degε(·) resp. if degψ(·) > degε(·).
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Definition 5.1.6 (Minimum realization, Minimum phase) The system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

with (A,B,C,D) ∈ IRn×n × IRn×m × IRm×n × IRm×m, is called a minimum real-

ization of G(·) ∈ IRm×m, if (A,B) is controllable and (A,C) is observable and

G(s) = C (sIn −A)−1B +D.

G(·) is said to be minimum phase, if

ε(s) 6= 0 ∀ s ∈ ĪC+.

A state space system (A,B,C,D) ∈ IRn×n × IRn×m × IRm×n × IRm×m, is called

minimum phase, if it is stablizable and detectable and G(s) has no zeros in ĪC+.

A characterization of the minimum phase condition for the state space system

is given in the following propostion [39]:

Proposition 5.1.1 (A,B,C,D) ∈ IRn×n × IRn×m × IRm×n × IRm×m, satisfies

det

 sIn −A −B

−c −D

 6= 0 ∀ s ∈ ĪC+

if and only if, the following three conditions are satisfied

• rank[sIn − A,B] = n for all s ∈ ĪC+, i.e. (A,B) is stabilizable by state

feedback,

• rank

 sIn − A

C

 = n for all s ∈ ĪC+, i.e. (A,C) is detectable,
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Figure 5.1: Equivalent realization for a linear system.

• G(s) has no zeros in s ∈ ĪC+.

The key lemma that enables us to apply the analysis presented in the last

subsection to higher order linear systems is presented next. It enables us separate

the inputs and the outputs from the rest of the system states as shown in Figure

5.1. The main point that is brought out in the equivalent realization is that the

system Σ2 shown in figure is Hurwitz because of the minimum phase property

of Σ.

Lemma 5.1.1 (Equivalent Realization) [39] Consider the system

ẋ(t) = Ax(t) + B u(t), x(0) = x0 ∈ IRn,

y(t) = C x(t),

 (15)

with det(CB) 6= 0. Then there exists an invertible state space transformation S

that converts (15) into

ẏ(t) = A1 y(t) + A2 z(t) + C B u(t),

ż(t) = A3 y(t) + A4 z(t),

 y(0)

z(0)

 = S−1 x0.

 (16)
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If (A,B,C) is minimum phase, then A4 in (16) is asymptotically stable.

The following theorem is the main result of this subsection and is presented

as in Ilchmann[39].

Theorem 5.1.1 Suppose the system (15) is minimum phase. Let p ≥ 1, and

N(·) : IR → IR be a Nussbaum function, scaling-invariant if m > 1 or p 6= 2. If

the adaptation law

k̇ = ‖y(t)‖p , k(0) = k0, (17)

together with one of the feedback laws

u(t) = −k(t) y(t), if σ(CB) ⊂ IC+, (18-a)

u(t) = −N(k(t)) y(t), if σ(CB) ⊂ IC+, or IC− (18-b)

(18-c)

and arbitrary k0 ∈ IR, x0 ∈ IRn, is applied to (15), then the closed loop system

has the properties

• the unique solution (x(·), k(·)) : [0,∞)→ IRn+1 exists,

• limt→∞ k(t) = k∞ exists and is finite,

• x(·) ∈ Lp(0,∞)
⋂
L∞(0,∞) and limt→∞ x(t) = 0.

5.2 λ tracking

In this section, the results of the previous section on universal adaptive stabliza-

tion is extended to solve the λ-tracking problem for various classes of linear,
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minimum phase systems of the form

ẋ(t) = Ax(t) + b u(t), x(0) = x0 ∈ IRn,

y(t) = c x(t),

 (19)

with (A, b, c) ∈ IRn×n × IRn × IR1×n and minimum phase. The class of reference

signals is the Sobolev space

Yref =W1,∞(IR, IR). (20)

The following theorem solves the λ-tracking problem for the class of single-input,

single-output(SISO), minimum phase systems with high-frequency gain c b > 0

or c b 6= 0. The statement of the theorem follows Ilchmann. Though Ilchmann

extends the result to multi-input, multi-output (SMIMO) systems, only the SISO

case is presented here.

Theorem 5.2.1 [39] Let λ > 0, N(·) : IR → IR a Nussbaum function and

yref(·) ∈ Yref . If the adaptation law

k̇ =


(|e(t)| − λ)|e(t)|, if |e(t)| ≥ λ;

0, if |e(t)| < λ;
, k(0) = k0, (21)

together with one of the feedback laws

u(t) = −k(t) e(t); if c b > 0, (22-a)

u(t) = −N(k(t)) e(t); if c b 6= 0, (22-b)

where e(t) = y(t) − yref(t), is applied to (19), for arbitrary x0 ∈ IRn, k0 ∈ IR,

then the closed-loop system has the properties
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1. there exists a unique solution (x(·), k(·)) : [0,∞)→ IRn+1,

2. limt→∞ k(t) = k∞ exists and is finite,

3. x(·), k(·) ∈ L∞(0,∞),

4. the error e(t) approaches the interval [−λ, λ] as t→∞.

Ilchmann proves that the above theorem with slight modifications in the gain

update and control law is also true for linear systems with nonlinear perturba-

tions of the state equation and presence of noise at the output. This is a very

nice result, but as it is not used in this dissertation, it is not presented.

5.2.1 Extensions to systems with input non-linearity

In this subsection, we present a theorem that shows that we can still have λ-

tracking even in the presence of input and output nonlinearties. We consider

classes of systems of the form

ẋ(t) = Ax(t) + b ξ(t, u(t)); x(0) = x0 ∈ IRn,

y(t) = c x(t) + n(t),

 (23)

with (A, b, c) ∈ IRn×n × IRn × IR1×n and minimum phase (see Figure 5.2).

ξ(t, u(t)) represents a time-varying actuator nonlinearity and the output may

also be not directly available but via η(t, y(t)), a time varying sensor nonlinearity.

The noise input is also assumed to belong to Yref . We assume that ξ(·, ·) and

η(·, ·) are Carathéodory functions and they are sector bounded with bounds given

by
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Figure 5.2: Adaptive λ-tracking for linear systems with input, output nonlinear-

ity in the presence of noise.

ξ(·, ·) : IR × IR → IR , ξ1 u
2 ≤ ξ(t, u) u ξ2 u

2

η(·, ·) : IR × IR → IR , η1 y
2 ≤ η(t, y) y η2 y

2

 . (24)

The inequalities in (24) are assumed to hold for some (unknown) 0 < ξ1 < ξ2,

0 < η1 < η2, for almost all t ∈ IR and for all u, y ∈ IR.

Theorem 5.2.2 Consider system (23) with sector bounded input and output

nonlinearities ξ(·, ·) and η(·, ·) given by (24). Suppose c b > 0. If λ > 0, and

the adaptive feedback mechanism

e(t) = y(t)− yref(t),

u(t) = −k(t) η(t, e(t)),

k̇(t) = dλ(η(t, e(t))) |η(t, e(t))|; k(0) = k0,


(25)

is applied to (23), for arbitrary x0 ∈ IRn, k0 ∈ IR, n(·), yref(·) ∈ Yref , then

there exists a solution x(·), k(·)) : [0, ω) → IRn+1 of the closed-loop system for
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some ω > 0 and every solution has on its maximal interval of existence [0, ω)

the properties

• ω = ∞,

• limt→∞ k(t) = k∞ exists and is finite,

• x(·), k(·) ∈ L∞(0,∞),

• the error e(t) approaches the interval [−λ, λ] as t → ∞.

Ilchmann in his book [39], also presents a variant of the above theorem where

at the expense of allowing only sector bounded inputnonlinearities, a nonlinear

perturbation of the state equation is tolerated and the sign of the high-frequency

gain c b is not necessary to be known. The next theorem due to Eugene Ryan

shows that the λ-tracking problem is solvable even for systems with certain set-

valued input nonlinearities [24].

Ryan considers a class of nonlinearly perturbed, SISO linear systems Σ =

(A, b, c, d, f, g) with nonlinear actuator characteristics:

ẋ(t) = Ax(t) + b (f(t, x(t) + v(t)) + d(t, x(t)),

x(t0) = x0,

v(t) = g(t, u(t), ut(·)),

y(t) = c x(t).


(26)

x(·) ∈ IRn and the output y(t) is available for feedback. The control signal

drives an actuator modeled by g. The actuator may be a device with memory,

that is, it may depend on the history ut(·) : s 7→ u(s), s ≤ t, of the control signal,

as is the case with hysteresis. The class of reference signals is Yref =W1,∞(IR).

The assumptions on the class Σ is as follows.
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1. c b 6= 0.

2. The linear system (A, b, c) has the minimum phase property.

3. d : IR × IRn → IRn is a Carathéodory function and has the property that,

for some scalar δ, ‖d(t, x)‖ ≤ δ (1 + |c x|) for almost all t and all x.

4. f : IR × IRn → IRn is a Carathéodory function and has the property that,

for some scalar α and known continuous function φ : IR → [0,∞)

|f(t, x)| ≤ α (‖x‖ + φ(c x)),

for almost all t and x.

5. There exists a non-empty set valued map G : IR → 2IR, u 7→ G(u) ⊂ IR

such that every actuator characteristic is contained in the graph of G in

the following sense: for all (t, ξ) ∈ IR2 and every u(·) : IR → IR with

u(t) = ξ, g(t, ξ, ut(·)) ∈ G(ξ). Furthermore, G is an upper semicontinuous

map from IR to the compact intervals of IR with the property that, for

some scalars Γ > 0 and γ2 ≥ γ1 > 0

sign(ξ)G(ξ) ⊂ [γ1 |ξ|, γ2 |ξ|] ⊂ IR ∀ ξ ∈ IR [−Γ, Γ].

For example, Figure 5.3 shows an illustration of the set valued input non-

linearity [24].

For some λ > 0,, define sλ : IR → IR be any continuous function with the

property

|ξ| ≥ λ ⇒ sλ(ξ) = sign(ξ).
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Figure 5.3: Set valued input nonlinearity allowed by Ryan

An example of sλ could be (following the suggestion of Ryan)

sλ : ξ 7→


sign(ξ), |ξ| ≥ λ

λ−1 ξ, |ξ| < λ
(27)

Define dλ : IR → [0,∞) by

dλ
4
=


|ξ| − λ, |ξ| ≥ λ

0 |ξ| < λ
(28)

Ryan’s also defines a particular kind of scaling invariant Nussbaum function as

follows. Let N(·) : IR → IR be any continuous function with the property that,

for all γ = (γ0, γa, γb) ∈ IR3 with γ0 ≥ 0, γa, γb > 0, the associated function

Nγ : IR → IR, ξ 7→


γaN(ξ), N(ξ) ≥ γ0

0, N(ξ) ∈ (−γ0, γ0)

γbN(ξ), −N(ξ) ≤ γ0

has the property
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lim sup
κ→∞

1

κ

∫ κ

0
Nγ = ∞

lim inf
κ→∞

1

κ

∫ κ

0
Nγ = −∞.

The control strategy proposed by Ryan is

u(t) = N(k) (y − yref + φ(y) sλ(y − yref)), (29-a)

k̇ = dλ(y − yref) (|y − yref |+ φ(y)). (29-b)

Theorem 5.2.3 [24] Consider the system (26) belonging to class Σ, and the

control strategy given by (29-a) - (29-b). If (x(·), k(·)) : [t0, ω) → IRn+1 is the

solution of the closed loop system then

1. ω = ∞,

2. (x(·), k(·)) is bounded,

3. limt→∞ k(t) = k∞ exists and is finite,

4. dλ(e(t)) → 0 as t → ∞, that is, e(·) = y(·) − yref(·) approaches the

compact interval [−λ, λ] ⊂ IR.

5.3 Relative degree two systems

It is well known from root-locus considerations that minimum phase, relative

degree one systems can always be stabilized (in a non-adaptive context) with

high gain control laws of the form u = ky provided gain k is of the appropriate

sign and sufficiently large in magnitude. Root locus arguments can also be used
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to identify those relative degree two, minimum phase systems which can be

similarly stablized. In particular, if β(s) = s2 + a s + b is the denominator of

the transfer function of the quotient system of Σ, then Σ can be stabilized with

a high gain feedback u = k y provided the damping coefficient a > 0.

Morse has shown that when the sign of the high frequency gain σg is known,

an adaptive strategy u = σg k y with gain update law k̇ = y2 stabilizes the

system [25]. But, for systems with input nonlinearity this law does not stablize

(this fact can be checked with a simple simulation example). Therefore, we

consider controllers of a different type. Morse has shown that the following

controller stablizes any second order system.

Theorem 5.3.1 [25] The controller given by

u = −k2 θ − k1 k2 y,

θ̇ = −λ θ + u,

where λ is a positive constant, stablizes any second order system for sufficiently

large k1, k2 ∈ IR.

Proof Suppose the above controller is applies to a relative degree two, minimum

phase system Σ with transfer function g α
β
,with α(s) and β(s) monic polynomials,

then for sufficiently large values of parameter constants k1 and k2 stability will

result, because the closed loop system characteristic polynomial

π(s) = (s+ λ) β(s) + k2 (β(s) + k1 g α(s) (s + λ)),

has roots in the left half plane of IC(s). This is so because, α(s) (s+λ)
β(s)

is a min-

imum phase, relative degree one transfer function. Hence, for k1 g sufficiently
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large, β(s) + k1 g α(s) (s + λ) will be stable. With k1 fixed at such a value,

β(s)+k1 g α(s) (s+λ)
(s+λ)β(s)

is also a minimum phase, relative degree one transfer function.

So for k2 sufficiently large π(s) will be a stable polynomial.

2

And adaptive version of the above result for unknown g can be found in [41].

The tuning formulas for this controller are

k2 = −N((k2
θ + k2

y)
1
2 ) kθ,

k1 = −N((k2
θ + k2

y)
1
2 ) ky,

kθ = θ y + zθ,

ky =
1

2
y2 + zy,

żθ = (λ+ λ1) θ y − u y,

ży = λ1 y
2,

where λ1 is a positive constant, and N9·) is a Nussbaum gain. In particular, if

we assume sign(g) to be known then, setting k1 = sign(g) k and k2 = k and

adjust k according to the rule k̇ = y2. The resulting controller is thus described

by the equations

u = −k θ − sign(g) k2 y, (30)

θ̇ = −λ θ + u, (31)

k̇ = y2. (32)

The proof that the above controller indeed stablizes a relative degree two, min-

imum phase, linear system can be found in Morse [25]. Similar results for even
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higher relative degree systems can be found in Ilchmann [40].

Remarks : The results of adaptive stabilization for systems with relative degree

three or more, using high gain type adaptive tuning appears to be a result of

theoretical importance only. Even for stable, minimum phase, high order ( ≥ 3)

relative degree systems, the closed loop system can become unstable before it

gets stabilized. This can be checked by writing a simple program in Matlab

or some other software to plot the closed loop system poles for each value of

the parameter k. Such a plot for a stable system show the poles move into the

right half plane of IC(s) before moving back into the left half plane of IC(s) as k

continues to increase.

When such a controller is implemented in practice, the system will diverge

and then never recover because of limitations like actuator saturation which then

come into play.

5.3.1 Linear systems with input nonlinearity

For a relative degree two, minimum phase linear system with set-valued input

nonlinearity and known high frequency gain, we sought to find a tracking con-

troller by combining the ideas of Morse and Ryan. In particular, the scheme as

shown in Figure 5.4 was tried.

The idea behind the scheme is that for k large compared to |s|, k (s+λ)
(s+λ+ k)

is

approximately (s+ λ). Thus the system

Σ1(s) = g
α(s)

β(s)

k (s + λ)

(s + λ + k)

is approximately of relative degree one. Therefore, Σ1(s) with a set valued input

nonlinearity can be stabilized by Ryan’s method.
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Figure 5.5: Set valued input nonlinearity for example 1.

Example

The plant Σ was chosen to be the linear system 4×104

s2+400 s+4×104 , with a set valued

input map F : u 7→ v as shown in Figure 5.5.

If y(t) is the output of Σ and yref(t) is the desired output, then applying the

following Morse - Ryan λ tracking controller

ε1(t) = y(t)− yref(t), (33-a)

θ̇(t) = −α θ (t) + ε(t), (33-b)

ε(t) = −k θ + k ε1(t), (33-c)

u(t) = −k (ε(t) + sλ(ε)(t)), (33-d)

with the adpatation law given by

k̇(t) = dλ(ε(t)) (|ε(t)|), (33-e)
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we find the output trajectory to be as in Figure 5.6(a), if the desired trajectory

is a sine wave of frequency 25Hz and λ = 0.05. The initial states for the plant

were x1(0) = 1 and x2(0) = −20, and the initial state for the controllers were

chosen to be θ(0) = 0 and k(0) = 1. The gain evolution for this system is shown

in Figure 5.6(b).

2

Similar results were obtained for other set valued nonlinearities satisfying as-

sumption 5, and other bounded and differentiable reference trajectories.

5.3.2 Experimental results

The ETREMA Terfenol-D MP series actuators come with a permanent magnet

bias, so that we can get both positive and negative motion by applying positive

and negative current respectively. Thus for zero external current, the strain is

not zero but has some residual value depending on the biasing field. This fact

is very desirable from the control perspective, because if there was no biasing

field, then the same positive strain can be obtained by applying a positive or a

negative current. With the biasing field applied, the current - strain relationship

is as shown in Figure 5.7. If the desired trajectory is of bounded amplitude

so that any increase in the trajectory corresponds to an increase in the current,

then the mapping F : I1 7→ x is a set valued mapping with a graph that satisfies

assumption 5.

The simulation results of the last subsection encouraged us to try out the

controller (33-a - 33-e) on a magnetostrictive actuator. We did not pursue a

theoretical result in the form of a theorem proving that the controller proposed

above achieves λ tracking for a relative degree 2, minimum phase, linear sys-
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tem with set valued input nonlinearity satisfying assumption 5, because of time

constraints.

The magnetostictive actuator on which the experiment was performed was

an MP 50/6 actuator manufactured by ETREMA Products, Inc. We had earlier

performed experiements to see its behaviour at different frequencies [14]. The re-

sults are shown in Figure 5.8. The control law was implemented on a TMS320C31

digital signal processor card manufactured by DSP Tools, Inc. Figure 5.9 shows

the schematic diagram of the experimental set up.

λ was chosen to be 0.07 Volts. The reference trajectory was a sinusoidal voltage

signal, whose amplitude and frequency could be adjusted.

The control law implemented on the DSP board also took into account the

effective eddy current resistance and the lead resistance. Suppose u(t) = I1(t) is

the output of the direct adaptive controller. Then the actual current that needs

to be applied is given by (refer to Figure 3.1)

I(t) =
V (t)− I1(t)Red

R
, (34)

where Red is the eddy current resistance, R is the resistance of the actuator coil,

and V is the voltage measured across the amplifier terminals. It must be noted

that if this compensation is not done and u(t) is applied to the actuator directly,

then the output trajectory diverges even for rerence trajectory frequencies as low

as 10 Hz.

Figure 5.10(a) shows the position output of the magnetostrictive actuator

with the frequency of the reference trajectory approximately 1Hz. The initial

state for the controller was chosen to be θ(0) = 0, and the initial gain was chosen

to be k(0) = 0.3. For higher initial gains, unstable behaviour was observed. The
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parameters for the controller were λ = 0.07V olts, and α = 1. As can be seen

from the figure, the system is affected by a considerable amount of noise. The

output trajectory follows the sum of the reference and the disturbance signal

and hence, λ must be chosen to be greater than the size of the disturbance.

When λ was chosen to be smaller than 0.07V , again unstable behaviour was

observed. The noise affecting the displacementoutput trajectory was found to

be approximately 60Hz. It was very difficult to get rid of, because the signals

were approximately of the same frequency.

The current waveform (Figure 5.10(a)) which is the input to the actuator can

be seen to be a 1Hz signal with some disturbance component.

Figures 5.11(a), 5.12(a), 5.13(a), 5.14(a), 5.15(a) show the position output

of the magnetostrictive actuator with the frequency of the reference trajectory

approximately 10, , 50, 200, 500, and 750Hz respectively. The initial states and

the parameters for the controller were identical to the last case. Again, because

of the noise, we were unable to reduce the parameter λ.

As the frequency increases it is harder to tell the correspondence between the

reference and the output trajectories. This is because the output trajectory tries

to follow the reference signal plus the noise. However, Figures 5.11(b), 5.12(b),

5.13(b), 5.14(b), 5.15(b) show that the current signal to the actuator in each

case has the frequency component of the reference trajectory plus some noise

components.

Discusssion of the experimental results

Negative :

The experiments show that the proposed Morse-Ryan controller does not
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work very well in the experiments that were performed. This is mainly due

to the fact that disturbances are not rejected very well by the controller. Low

pass filters to get rid of the offending frequencies could not be added because

of the strict relative degree condition on the plant. This brings us to the major

disadvantage of the universal adaptive stabilizaition scheme that is not obvious

when one is carrying out a theoretical study. It is that for relative degrees greater

than two, the controllers may initially destablize even a stable plant and as the

gain continues to grow, eventually stablize it. This fact can be checked using

root locus plots.

For example, Figure 5.16 shows the schematic of a closed loop system where

the plant output is being filtered by a second order butterworth filter and the

universal adaptive stabilizer takes account of the relative degree (4) of the open

loop system. The plant transfer function is given by P (s) = ω2
n

s2 + 0.75ωn s+ω2
n
,

where ωn = 1000 π rad/s. The filter has a cutoff frequency of 5000 Hz. The

universal stabilizer is given by the transfer function, C(s) = k (s+α)3

(s+k+α)3 with

α = 0.1. Figure 5.17 shows how the poles of the closed loop system vary if k is

increased from 0 to 2 × 105. It can be seen that the closed loop system would

be initially destabilized if we used an adaptive strategy like k̇ = ε2, though later

it is stablized again.

The above discussion shows that if the adaptive universal controller is used

in a practical situation, then the performance is likely to be extremely poor.

Thus the two main limitations of the universal stabilizer/controller that makes

it a poor candidate for control design are :

• The relative degree of the system must be not greater than 2.

• Very poor noise rejection. The system output follows the noise + the
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reference trajectory.

Positive :

Inspite of the negative results of the tracking experiment, some positive re-

sults can be gain from the experiments. The Morse - Ryan controller has a very

strict relative degree requirement, and this implies that if the relative degree

of the system is greater two, then the closed loop system will be unstable. An

experiment with the Ryan controller (which is designed for relative degree one

systems with input nonlinearity) showed the closed loop system to be unstable.

Therefore, we can deduce that our system has relative degree two. This exper-

imentally established fact corroborates our modeling effort. Thus it is correct

to look at the magnetostrictive actuator system as shown in Figure 5.7 is cor-

rect for low frequencies. The reason for this is that at high frequencies, we may

have to add zeros to the transfer function to reproduce the actuator trajectories,

keeping the relative degree of the system two. This is a very significant insight

into the actuator dynamics. Even though the actuator trajectories for sinusoidal

inputs of various frequencies look like those in Figure 5.8, we can separate out

the contributions due to eddy current effects, and the view the rest of the model

as shown in Figure 5.7. The main simplification is that in Figure 5.7, the input

nonlinearity can be found by doing quasi-static experiments only.

Elaborating on the comment about the need to add zeros at high frequencies,

please consider Figure 5.18. The force Fmag in the figure, is equal to |bM2 V| as

in Chapter 3. The transfer function x(s)
Fmag(s)

in each of the cases in the figure can

be verified to have relative degree two. In Figure 5.18(a), x(s)
Fmag(s)

has no zeros

and has two poles; in case (b), x(s)
Fmag(s)

has two zeros and four poles; while in case

(c), x(s)
Fmag(s)

has 2n − 2 zeros and 2n poles. Case (a) corresponds to the model
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derived in Chapter 3, where only one mass, spring, and dashpot were considered.

If we wish to model higher frequencies, the model becomes more complex but

still retains the relative degree two property. Interestingly, Marcelo Dapino et

al. [42] have a similar idea in their paper where they model the rod to be a

continuum and then discretize it. But, they were only interested in quasi-static

matching of the model and the actuator trajectories, while according to our

arguments, such model is appropriate for modeling high frequency behaviour.
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Figure 5.8: ETREMA MP 50/6 Actuator characteristic at different driving fre-

quencies.
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Figure 5.9: Schematic diagram of the experimental setup.
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Figure 5.13: Reference trajectory frequency approximately 200 Hz
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Figure 5.15: Reference trajectory frequency approximately 750 Hz
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Chapter 6

Conclusions and Future Work

The main contribution of this dissertation is a model for bulk magnetostriction

for a thin rod actuator. This model is phenomenology based and covers magneto-

elastic effects; eddy current effects; ferromagnetic hysteresis; inertial effects; and

losses due to mechanical motion. The model has 12 parameters and tries to

explain the magnetostrictive by means of coupled differential equations that

represent the evolution of the mechanical and magnetic subsystems. We also

showed rigorously that the model is well-posed inspite of its strong nonlinearity,

by proving that trajectories starting at the origin have a periodic orbit as its Ω

limit set.

It is envisaged that this model will be of use to a SMART structures applica-

tion design engineer and enable her/him to conduct simulation studies of systems

with magnetostrictive actuators. For this purpose, we have also developed an

algorithm for parameter identification that is simple and intuitive.

As our system of equations do not model transient effects, they do not model

the minor-loop closure property. This implies that a controller to achieve tra-

jectory tracking cannot use our model for prediction. Another reason to use
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model free approaches to control design is that magnetostrictive actuators seem

to have slight variations in their behaviour with time. The strong non-linearity

of the model makes these changes very difficult to handle for a design engineer.

Therefore, we tried to use a direct adaptive control methodology that uses fea-

tures of the model. The system is now looked at as a relative degree two linear

system with set-valued input nonlinearity. Extensions of Eugene Ryan’s work

on universal tracking for a relative degree one linear system and Morse’s work

on stablization for relative degree two linear systems were sought. Experimental

verification of our method confirmed our intuition about the model structure.

Though the tracking results were not very satisfactory due to the presence of

sensor noise, the experimental results nevertheless validate our modeling effort

in a sense.

Refining the experimental methodology to improve tracking and the develop-

ment of controllers perhaps based on linear H∞ control theory could be possible

future work for researchers.
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Appendix A

Banach Spaces

Much of the material in this section is a reproduction from Hale [43].

Definition A.0.1 (Vector Space) An abstract vector space (or linear space)

X over the field R is a collection elements {x, y, · · ·} such that for each x, y in

X , the sum x+y is defined; for a, b ∈ IR, scalar multiplication a x is defined and

1. x+ y ∈ X ;

2. x+ y = y + x;

3. there is an element 0 in X such that x+ 0 = x for all x ∈ X ;

4. a x ∈ X and 1 x = x;

5. (a b) x = a (b x) = b (a x);

6. (a+ b) x = a x+ b x;

Definition A.0.2 (Normed Linear Space) A linear space X is called a normed

linear space if to each x ∈ X , there corresponds a real number |x| called the norm

of x which satisfies
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1. |x| > 0 for x 6= 0, |0| = 0;

2. |x+ y| ≤ |x|+ |y| (triangle inequality);

3. |ax| = |a|.|x| for all a in R and x in X .

Definition A.0.3 The mapping f of a normed linear space X into itself is said

to be continuous at a point x0 in X if for any ε > 0 there is a δ > 0 such that

|x− x0| < δ implies |f(x)− f(x0)| < ε.

A sequence xn of points in a normed linear space X converges to x in X if

limn→∞ |xn−x| = 0. We then write limn→∞ xn = x. A sequence xn of points in a

normed linear space X is called a Cauchy sequence if for every ε > 0 there exists

an N(ε) > 0 such that |xn − xm| < ε if n,m ≥ N(ε). A normed linear space X

is called complete if every Cauchy sequence converges to an element in X . A

complete normed linear space is called a Banach space. The ε-neighbourhood of

an element x of a normed linear space X is {y ∈ X : |y − x| < ε}. A set S in

X is open if for every x ∈ S, an ε-neighbourhood of x is also contained in X .

An element x is a limit point of a set S if each ε-neighbourhood of x contains

points of S. A set S is closed if it contains its limit points. The closure of a set

S is the union of S and its limit points. If S is a subset of X , A is a subset of

R and Va; a ∈ A is a collection of open sets of X such that s ⊂
⋃
a∈A Va, then

the collection Va is called an open covering of S. A set S in X is compact if

every open covering of S contains a finite number of open sets which also cover

S. A set S is sequentially compact if every sequence {xn}, xn ∈ S , contains a

subsequence which converges to an element of S. For Banach spaces a set S is

compact if and only if it is sequential compact. A set S in X is bounded if there

exists an r > 0 such that S ⊂ {x ∈ X : |x| < r}.
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The definition of continuity of a function given before in terms of norms, is

equivalent to the topological definition given in terms of open sets. The latter

definition is as follows. The mapping f of a normed linear space X into itself is

said to be continuous at a point x0 in X if for any neighbourhood V of f(x0),

there exists a neighbourhood U of x0 such that f(U) ⊂ V.

A mapping A of a vector space X into a vector space Y is called a linear

mapping, if A(α1x1 + α2x2) = α1Ax1 + α2Ax2 for all x1, x2 in X and all real

α1, α2. If X and Y are normed vector spaces, we call a linear operator A bounded

if there is a constant M such that for all x we have |Ax| ≤ M |x|. We call the

least such M the norm of A and denote it by |A|.

Theorem A.0.2 [44] A bounded linear operator is uniformly continuous. If a

linear operator is continuous at one point, it is bounded.

Let (X, | · |1) and (Y, | · |2) be normed linear spaces. Then two standard norms

for the product space X × Y are

||(x, y), (x́, ý)||1 = |x− x́|1 + |y − ý|2

||(x, y), (x́, ý)||2 = max(|x− x́|1, |y − ý|2)

Theorem A.0.3 [45] Let A, B be compact subsets of X, | · |1) and (Y, | · |2)

respectively. Then A × B is compact (under either of the standard metrics).

Let D be a compact subset of IRm and C(D, IRn) be the linear space of

continuous functions which take D into IRn. A sequence of functions {φn, n =

1, 2, . . .} in C(D, IRn) is said to converge uniformly on D if there exists a function

φ taking D into IRn such that for every ε > 0 there is an N(ε) (independent of
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n) such that |φn(x)− φ(x)| < ε for all n ≥ N(ε) and x ∈ D. A sequence {φn}is

said to be uniformly bounded if there exists an M > 0 such that |φn(x)| < M

for all x ∈ D and all n = 1, 2, . . . . A sequence {φn} is said to be equicontinuous

if for every ε > 0, there is a δ > 0 such that

|φn(x)− φn(y)| < ε, n = 1, 2, . . . .

if |x−y| < δ, x, y ∈ D. A function f in C(D, IRn) is said to be Lipschitzian in

D if there is a constantK such that |f(x)−f(y)| ≤ K |x−y| for all x, y ∈ D. The

most frequently encountered equicontinuous sequences in C(D, IRn) are sequences

{φn} which are Lipschitzian with a Lipschitz constant independent of n.

Theorem A.0.4 (Arzelà-Ascoli) [43] Any uniformly bounded equicontinuous

sequence of functions in C(D, IRn) has a subsequence which converges uniformly

on D.

Theorem A.0.5 [43] If a sequence in C(D, IRn) converges uniformly on D, then

the limit function is in C(D, IRn).

It is easy to verify that C(D, IRn) is a vector space. If we define

|φ| = max
x∈D
|φ(x)|, (1)

then we can verify that | · | is a norm on C(D, IRn). The next theorem shows

that C(D, IRn) is complete and hence a Banach space.

Theorem A.0.6 C(D, IRn) is a Banach space

Proof We have already seen that C(D, IRn) is a normed linear space with

the norm defined as in Equation (1). Suppose {φn} is a Cauchy sequence in

C(D, IRn). Then given ε > 0, there exists an N > 0 such that
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|φm(x)− φn(x)| <
ε

3
. (2)

uniformly in x if m,n ≥ N. By completeness of R, for each x there exists a

limit φ(x). It remains to be shown that φ(x) ∈ C(D, IRn). Holding n fixed in

Equation (2) and taking the limit as m→∞ we get,

|φ(x)− φn(x)| <
ε

3
.

uniformly in x if m,n ≥ N. By completeness of R, for each x there exists a

limit φ(x). It remains to be shown that φ(x) ∈ C(D, IRn). Holding n fixed in

Equation (2) and taking the limit as m→∞ we get,

|φ(x)− φn(x)| <
ε

3
.

if n ≥ N and uniformly in x. Thus we have a uniform convergence of a sequence

of continuous functions {φn} to a function φ(x). By continuity of each φn, given

ε > 0, there exists an delta > 0 such that if |x− y| < δ then,

|φn(x)− φn(y)| <
ε

3

Hence if |x− y| < δ and by choosing n ≥ N we have,

|φ(x)− φ(y)| ≤ |φ(x)− φn(x)|+ |φn(x)− φn(y)|+ |φn(y)− φ(y)| (3)

<
ε

3
+
ε

3
+
ε

3
(4)

= ε (5)

Therefore φ(x) ∈ C(D, IRn) and C(D, IRn) is a Banach space with the norm | · |.

2
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Theorem A.0.7 (Brouwer fixed point theorem) [43] Any continuous map-

ping of the closed unit ball in IRn into itself must have a fixed point.

The Brouwer fixed point theorem has been generalized to Banach spaces by

Schauder and to locally convex linear topological spaces by Tychonov. The result

for Banach spaces is formulated below. A subset A of a Banach space is convex

if for x, y ∈ A it follows that tx+ (1− t)y ∈ A for 0 ≤ t ≤ 1.

Theorem A.0.8 (Schauder fixed point theorem) [43] If A is a convex, com-

pact subset of a Banach space X and f : A → A is continuous, then f has a

fixed point in A.

Lemma A.0.1 Suppose D is a compact subset of IRm; M,β are positive con-

stants and A is the subset of C(D, IRn) such that φ ∈ A implies |φ| ≤ β; |φ(t)−

φ(t̄)| ≤ M |t− t̄| for t, t̄ ∈ D. Then the set A is convex and compact.

Proof [43] The set A is obviously convex and closed. Furthermore, any sequence

{φn} in A is uniformly bounded and equicontinuous. By the Arzela-Ascoli The-

orem, imply the existence of a φ in C(D, IRn) such that limn→∞ φn = φ. But A

is closed so that φ belongs to A. For Banach spaces sequential compactness is

equivalent to compactness and hence A is compact.

2

Theorem A.0.9 Suppose F(IR, IRn) = {f | f(t + T ); |f | ≤ M |f(t) − f(t̄)| ≤

K |t− t̄|} where T, M and K are positive real numbers. Then F is compact.

Proof The functions in F can be restricted to one period, say [0, T ] and then

we can define, C([0, T ], IRn) = F . Then by the previous theorem, F is compact.

2
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Appendix B

Solutions of Ordinary Differential

Equations

In this section, we discuss the notion of a solution to an ordinary differential

equation and present theorems for the existence and uniqueness of solutions.

The material of this section can be found in greater detail in Chapter 1 of Hale

[43].

B.1 Existence of solutions

Let t be a real scalar; let D be an open set in IRn+1 with an element of D written

as (t, x); let f : D → IRn, be continuous and let ẋ = dx
dt
. A differential equation

is a relation of the form

ẋ(t) = f(t, x(t)). (1)

A solution of Equation (1) on an interval I ⊂ IR if x(·) is a continuously dif-

ferentiable function defined on I, (t, x(t)) ∈ D, t ∈ I and x(·) satisfies (1) on

I. Suppose (t0, x0) ∈ D is given. An initial value problem for Equation (1)
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consists of finding an interval I containing t0 and a solution of x of (1) satisfying

x(t0) = x0. Symbolically the problem is stated as

ẋ(t) = f(t, x(t)), x(t0) = x0, t ∈ I. (2)

If there exists an interval I containing t0 and an x satisfying (2, we refer to this

as a solution of (1) passing through (t0, x0).

Lemma B.1.1 [43] Problem (2) is equivalent to

x(t) = x0 +
∫ t

t0
f(τ, x(τ)) dτ (3)

provided f(t, x) is continuous.

If f(t, x) is continuous, any solution of (3) automatically possesses a continuous

first derivative. On the other hand, (3) will be meaningful for a more general

class of functions f if it is not required that x have a continuous first derivative.

We now make these notions precise for a class of functions f .

Suppose D is an open set in IRn+1 and f : D → IRn, is not necessarily

continuous. The problem is to find an absolutely continuous function x(·) defined

on a real interval I such that (t, x(t)) ∈ D for t ∈ I and

ẋ(t) = f(t, x(t)) (4)

for all t ∈ I except on a set of Lebesgue measure zero. If such a function x(·)

and interval I exist, we say x(·) is a Carathéodory solution of (4). A solution

of (4) through (t0, x0) is a Carathéodory solution x(·) of (4) with x(t0) = x0.

Having made precise the notion of solution for a more general class of functions

f not necessarily continuous, we now make precise the class of functions next.
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Carathéodory Conditions:

Suppose D is an open set in IRn+1. Let f : D→ IRn, and let

1. the function f(t, x) be defined and continuous in x for almost all t;

2. the function f(t, x) be measurable in t for each x;

3. on each compact set U of D, |f(t, x)| ≤ mU (t), where the function mU(t)

is integrable .

The equation ẋ = f(t, x), where x is a scalar or a vector and the function f

satisfies the above conditions is called the Carathéodory equation[46].

Theorem B.1.1 [43] (Existence of solutions) If D is an open set in IRn+1 and

f satisfies the Carathéodory conditions on D, then, for any (t0, x0) in D, there

is a solution of ẋ = f(t, x), through (t0, x0).

B.2 Extension of solutions

If φ(·) is a solution of a differential equation on an interval I , we say φ̂(·) is a

continuation or extension of φ(·) if φ̂(·) is defined on an interval Î which properly

contains I, φ̂(·) coincides with φ(·) on I and φ̂(·) satisfies the differential equation

on Î . A solution φ(·) is noncontinuable if no such continuation exists; that is,

the interval I is the maximal interval of existence of the solution φ(·).

Before we can discuss extending a solution to a maximal interval of existence,

we first need to discuss the existence of a solution on an interval of existence.

Theorem B.1.1 asserts the existence of a solution through each point (t0, x0) in

D. The following lemma is a corollary of Theorem B.1.1, and shows the existence

of a solution on a interval of time containing t0.
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Lemma B.2.1 If U is a compact set of D, U ⊂ V , an open set in D with the

closure V̄ of V in D, then there is an α > 0 such that, for any initial value

(t0, x0) ∈ U , there is a solution of ẋ = f(t, x), through (t0, x0) which exists at

least on the interval t0 − α ≤ t0 ≤ t0 + α.

Theorem B.2.1 [43](Extension of solutions to a maximal set) If D is an open

set in IRn+1, f satisfies the Carathéodory conditions on D, and φ is a solution

of ẋ = f(t, x) on some interval, then there is a continuation of φ to a maximal

interval of existence. Furthermore, if (a, b) is a maximal interval of existence of

ẋ = f(t, x), then x(t) tends to the boundary of D as t→ a and t→ b.

The above continuation theorem can be used (utilizing a technique in Hale

[43]) in specific examples to verify that a solution is defined on a large time

interval. For example, if it is desired to show that a solution is defined on an

interval [0,∞) , it is sufficient to proceed as follows. If the function f(t, x) is

continuous for t in (t1,∞), t1 < t0, |x| < α, and one can by some means

ascertain that a certain solution x(t) must always satisfy |x(t)| ≤ β < α for

all values of t ≥ 0 for which x(t) is defined, then necessarily x(t) is defined on

[t0,∞). To show this, choose any T ≥ t0 and γ such that β < γ < α and

define the rectangle D1 as D1 = {(t, x) : t0 ≤ t ≤ T, |x| ≤ γ}. Then f(t, x) is

bounded on D1 and the continuation theorem implies that the solution x(t) can

be continued to the boundary of D1. But γ > β implies that x(t) must reach

this boundary by reaching the face of the rectangle defined by t = T. Therefore

x(t) exists for t0 ≤ t ≤ T. Since T is arbitrary, this proves the assertion.
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B.3 Uniqueness of solutions

The discussion in the Sections B.1 and B.2 was about the existence and extension

of solutions through a point (t0, x0) in an open set D ⊂ IRn. In this section, we

discuss conditions on f(·, ·) so that there is only one solution through (t0, x0).

A function f(t, x) defined on a domain D in IRn+1 is said to be locally lips-

chitzian in x if for any closed bounded set U in D there is a k = kU such that

|f(t, x) − f(t, y)| ≤ k |x − y| for (t, x),(t, y) in U . If f(t, x) has continuous first

partial derivatives with respect to x in D, then f(t, x) is locally lipschitzian in

x.

Theorem B.3.1 [47] (Sufficient condition for local Lipschitzness) Let f(t, x) be

continuous on [a, b] × O, for some domain O ⊂ IRn. If [∂f/∂x] exists and is

continuous on [a, b] × O, then f is locally Lipschitz in x on [a, b] × O.

The basic existence and uniqueness theorem under the hypothesis that f(t, x)

is locally lipschiztian in x is usually referred to as the Picard-Lindelöf theorem.

Theorem B.3.2 [43](Uniqueness of solutions) If D is an open set in IRn+1, f

satisfies the Carathéodory conditions on D, and for each compact set U in D,

there is an integrable function kU(t) such that

‖f(t, x) − f(t, y)‖ ≤ kU(t) ‖x − y‖, (t, x) ∈ U, (t, y) ∈ U.

Then for any (t0, x0) in U, there exists a unique solution x(t, t0, x0) of the problem

ẋ = f(t, x), x(t0) = x0.

The domain E in IRn+2 of definition of the function x(t, t0, x0) is open and

x(t, t0, x0) is continuous in E.
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B.4 Continuous dependence on parameters

The following theorem characterizes the notion of continuity of a function in

terms of convergence of sequences for normed linear spaces. It is also true for

metric spaces and false for general topological spaces [48].

Theorem B.4.1 If X and Y are normed linear spaces and f is a mapping from

X to Y , then f is continuous at x if and only if for each sequence {xn} in X

converging to x we have {f(xn)} converging to f(x) in Y .

Proof (if) Suppose {xn} is a sequence in X and xn → x0. Then f(xn)→ f(x0).

Hence, given ε > 0 we can choose N > 0 such that |f(xn) − f(x)| < ε. Then

choosing δ = |xN − x0| we can see that f is continuous.

(only if) Suppose f is continuous, {xn} is a sequence in X and xn → x0. Suppose

f(xn) does not converge to f(x0). Then there exists ε > 0 such that |f(xn) −

f(x)| > ε ∀n. Let V = {y : |y − f(x0)| <
ε
2
}. Then by continuity of f , there

exists a neighbourhood U of x0, such that f(U) ⊂ V. Since xn → x0, there

exists N > 0 such that xn ∈ U ∀n ≥ N. This is a contradiction because then

f(xn) ∈ V ∀ n ≥ N.

2

The following theorem can be used to prove the continuity of solutions with

respect to parameters. The assumption of an uniform bound on the sequence

of functions allows to relax the condition of continuity that is used in Hale [43].

Further, the functions of the sequence are assumed to satisfy the Carathéodory

conditions so that the solution exists for each of them. Going over to the integral

formulation of a solution,

Tx(t) = x0 +
∫ t

t0

f(s, x(s)) ds
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and applying the Lebesgue Convergence Theorem [44] for integrals we get the

required continuity of solutions.

Theorem B.4.2 Suppose {fn}, n = 1, 2, · · · , is a sequence of uniformly bounded

functions defined and satisfying the Carathéodory conditions on an open set D in

IRn+1 with limn→∞ fn = f0 uniformly on compact subsets of D. Suppose (tn, xn)

is a sequence of points in D converging to (t0, x0) in D as n → ∞ and let

φn(t), n = 1, 2, · · ·, be a solution of the equation ẋ = fn(t, x) passing through

the point (tn, xn). If φ0(t) is defined on [a, b] and is unique, then there is an

integer n0 such that each φn(t), n ≥0, can be defined on [a, b] and converges

uniformly to φ0(t) uniformly on [a, b].

Proof The proof is identical to that of Lemma I.3.1 in Hale [43].

2
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Appendix C

Stability of Periodic Solutions

Consider the autonomous system of differential equations [47, 43, 49]

ẋ = f(x) (1)

where f : D → IRn is a Lipschitz continuous map and D ⊂ IRn is an open and

connected subset. Let ψ : IR+ → D be a solution of Equation (1) and denote its

path by

γ = {x ∈ D : x = ψ(t), t ∈ IR+}. (2)

Definition C.0.1 (Orbital Stability) The solution ψ : IR+ → D of Equation

(1) is said to be orbitally stable if for every ε > 0 there exists a δ > 0 such that

if dist(x(0), γ) < δ, then dist(φ(t, x(0)), γ) < ε.

Definition C.0.2 (Asymptotic Orbital Stability) The solution ψ : IR+ →

D of Equation (1) is said to be asymptotically orbitally stable if it is orbitally sta-

ble and there exists a δ > 0 such that if dist(x(0), γ) < δ, then dist(φ(t, x(0)), γ)→

0, as t→∞.
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Definition C.0.3 (Asymptotic Phase Property) The solution ψ : IR+ →

D of Equation (1) is said to have the asymptotic phase property if a δ > 0 exists

such that to each initial value x(0) satisfying dist(x(0), γ) < δ there corresponds

an α(x(0)) ∈ IR with the property

lim
t→∞
|φ(t+ α(x(0))), x(0))− ψ(t)| = 0. (3)

The requirement in Equation (3) is equivalent to

lim
t→∞
|φ(t, x(0))− ψ(t− α(x(0)))| = 0. (4)

C.1 Poincaré Map

The following discussion on the Poincaré map closely follows the presentation in

Khalil [47]. Let γ be a periodic orbit of the nth order system given by Equation

(1). Let p be a point on γ andH be an (n−1) dimensional at p that is transversal

to γ at p. That is H is a surface aT (x− p) = 0 for some a ∈ IRn and aTf(p) 6= 0.

Let S ⊂ H be a local section such that p ∈ S and aTf(x) 6= 0 for all x ∈ S.

The trajectory starting from p will hit p in T seconds, where T is the period of

the periodic orbit. Due to continuity of solutions with respect to initial states,

the trajectories starting on S in a sufficiently small neighbourhood of p will in

approximately T seconds, intersect S in the vicinity of p. The Poincaré map

g : U → S is defined for a point x ∈ U by

g(x) = φ(τ, x) (5)

where φ(t, x) is the solution of Equation (1) that starts at x at time t = 0, and
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τ = τ(x) is the time taken for the trajectory starting at x to first return to S.

Note that τ depends on x and need not be equal to T , the period of γ. The

Poincaré map is defined on locally; that is, it need not be defined for all x ∈ S.

Suppose that U in the foregoing definition is chosen such that the map is defined

for all x ∈ U . Starting with x0 ∈ U , let x1 = g(x0). If x1 ∈ U, the Poincaré map

will be defined at x1; then set x2 = g(x1). As long as xk ∈ U , xk+1 = g(xk) will

be defined. The sequence {xk} is the solution of the discrete-time system

xk+1 = g(xk) (6)

It is clear that p is an equilibrium point of Equation (6) since p = g(p). Although

the vector x is n-dimensional, the solution generated by Equation (6) is restricted

to the (n− 1)-dimensional hyperplane H. Hence it is equivalent to the solution

of an (n− 1)-dimensional system,

yk+1 = h(yk) (7)

There is an intimate relationship between the stability properties fo the peri-

odic orbit γ and stability properties of q as an equilibrium point for the discrete-

time system given by Equation (7).

Theorem C.1.1 Let γ be a periodic orbit of Equation (1). Define the Poincaré

map and the discrete-time system given by Equation (7) as explained above. If

q is an asymptotically stable equilibrium point of Equation (7), then γ is asymp-

totically stable.
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Appendix D

Perturbations of Linear Systems

We first present the major results of the Floquet theory for linear periodic sys-

tems. Then we consider periodic perturbations of non-critical linear systems.

The material closely follows the presentation in Hale [43].

Consider the homogenous linear periodic system

ẋ = A(t)x (1)

where A(t+ T ) = A(t), T > 0 and A(t) is a continuous n× n real or complex

matrix function of t.

Theorem D.0.2 [43] (Floquet) Every fundamental matrix solution X(t) of Equa-

tion (1) has the form

X(t) = P (t) expB t

where P (t), B are n × n matrices, P (t + T ) = P (t) for all t, and B is a

constant.

Therefore every homogenous system given by Equation (1) can be transformed
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to a system with constant coefficients by defining the transformation x = P (t) y.

Then the equation for y is given by

ẏ = By (2)

A monodromy matrix of system (1) is a nonsingular matrix C associated with a

fundamental matrix solutionX(t) of (1) through the relationX(t+T ) = X(t)C.

The eigenvalues ρ of a monodromy matrix are called the characteristic multipliers

of (1) and any λ such that ρ = exp λT is called a characteristic exponent of (1).

Note that the characteristic exponents are not uniquely defined by characteristic

multipliers are.

Definition D.0.1 If A(t) is an n× n continuous matrix function on (−∞,∞)

and D is a given class of functions which contains the zero function, the ho-

mogenous system ẋ = A(t)x is said to be noncritical with respect to D if the only

solution of Equation (1) which belongs to D is the solution x = 0. Otherwise,

system (1) is said to be critical with respect to D.

The set PT denoting the set of T -periodic continuous functions is a Banach space

with the sup-norm. That is, |f | = sup−∞<t<∞ |f(t)|; f ∈ PT . Let B denote

the set of continuous bounded functions from R to IRn.

Lemma D.0.1 [43] (a) System (1) with A(t) ∈ PT is noncritical with respect

to B if and only if the characteristic exponents of (1) have nonzero real parts.

(b) System (1) with A ∈ PT is noncritical with respect to PT if and only if

I−X(T ) is nonsingular, when X(t), X(0) = I, is a fundamental matrix solution

of (1).
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Remark If A in equation (1) is a constant, then (1) is noncritical with respect

to PT if and only if all eigenvalues λ of A satisfy λT 6= 0(mod 2πi).

Lemma D.0.2 (Fredholm’s alternative) If A is in PT and f is a given element

of PT , then the equation

ẋ = A(t)x+ f(t) (3)

has a solution in PT if and only if

∫ T

0
y(t)f(t) dt = 0 (4)

for all solutions y of the adjoint equation

ẏ = −yA(t)

such that y′ is in PT (’ denotes the transpose of a matrix). If Equation (4)

is satisfied, then system (3) has an r-parameter family of solutions in PT , where

r is the number of linearly independent solutions of (1) in PT .

Theorem D.0.3 Suppose A is in PT . Then the nonhomogenous equation (3)

has a solution Kf in PT , if and only if system (1) is noncritical with respect to

PT . Furthermore, if system (1) is noncritical with respect to PT , then Kf is the

only solution of (3) in PT and is linear and continuous in f .
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Appendix E

Principle of Least Squares

The material in this section is a selection from Astrom’s book on adaptive control

[50].

Least squares is a basic technique for parameter estimation problems in sys-

tem identification. The method is particularly simple if the mathematical model

can be written in the form

y(t) = w1(t) θ1 + · · ·+ wn(t) θn = w(t)T θ (1)

where y is the observed variable, θ1, θ2, · · · , θn are unknown parameters, and

w1, w2, · · · , wn are known functions that may depend on other known variables.

The model is indexed by t which often denotes time. We assume t to be a

discrete set which could be the result of sampling in an experiment. The pairs

(y(i), w(i)), i = 1, 2, · · · , t are obtained from such an experiment. The problem

is to determine the parameters in such a way that the outputs computed from the

model in Equation (1) agree as closely as possible with the measured variables

y(i) in the sense of least squares. Let

Y (t) = [y(1) y(2) · · · , y(t)]T
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W (t) = [w(1)w(2) · · · , w(t)]T

E(t) = [ε(1) ε(2) · · · , ε(t)]T

where the residuals ε(i) are defined by

ε(i) = y(i)− ŷ(i) = y(i)− w(t)T θ

The least square error is defined by

V (θ, t) =
1

2

t∑
i=1

(y(i)− w(t)T θ)2

=
1

2
ET E

=
1

2
||E||2 (2)

where

E = Y − Ŷ = Y −W θ

the solution to the least-squares problem is given by the following theorem [50].

Theorem E.0.4 The function of Equation (2) is minimal for parameters θ̂ such

that

W T W θ̂ = W T Y (3)

If the matrix W T W is nonsingular, the minimum is unique and given by

θ̂ = (W T W )−1W T Y (4)
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Appendix F

Eddy Current Losses in a

Magnetostrictive Actuator

The high frequency limitation of the magnetostrictive rod actuator is generally

due to eddy current losses. In this section, we obtain an expression for the power

lost due to eddy currents using Maxwell’s equations. The shape of the actuator

is a thin rod with a coil tightly wound around it (Please see Figure 1.10 in

Chapter 1 for a cross-section of an ETREMA MP 50/6 actuator). We simplify

the problem by assuming the magnetic flux density B to be uniform across the

face of the rod. This is the case for a thin magnetostrictive rod actuator. We

show that the expression for power loss due to eddy currents enable us to model

the effect of the eddy currents by a resistor in parallel with the coil in an electrical

circuit (See Figure F.2).

Let the resistivity of the magnetostrictive material be ρ, and the resistance

of the coil be R. The flux density B is along the x-direction (figure F.1) and the

electric field E in the material lies in the y-z plane with no radial component.

Then,
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E
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Figure F.1: Derivation of V-I-x relationship for the thin magnetostrictive rod.

|Eφ| =
|Ḃ| r

2

|J | =
|E|

ρ
=
|Ḃ| r

2 ρ

Therefore the current in an element of thickness dr and length lm is

di =
|Ḃ| r lm dr

2 ρ

The voltage at a point on the element can be found from a contour integral

around the element, and it is

V (r) = |Eφ| 2 π r = |Ḃ| π r2

The Power lost due to the eddy currents in the element is

dP (r) = V (r) di =
|Ḃ|2 π lm r3 dr

2 ρ

The total instantaneous power lost due to the eddy currents,
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Figure F.2: Representation of eddy current effects as a resistor in parallel with

the primary coil.

P =
∫ b

a
dP (r) =

(Vm − I R)2 lm

N2 8πρ

b2 + a2

b2 − a2

Therefore the resistance seen by the eddy current (Figure F.2) is,

Red =
N2 8πρ

lm

b2 − a2

b2 + a2

The above equation may be seem a bit puzzling at first sight. For example, if

a = 0, then it says that the eddy current resistance does not depend on the outer

diameter of the rod! If a increases and approaches b, then Red decreases, and

consequently P increases! This apparent inconsistencies can be understood if we

realize that Red is the effective resistance of the core reflected to the primary side

of the transformer. The primary coil of the transformer is the coil winding, and

the secondary of the transformer is the core which carries a current. Essentially,

the view point is that the applied electomotive force (emf) to the primary coil

induces an emf that leads to the current in the core.

Let us obtain an expression for the power lost P in terms of the eddy current

Ieddy.
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Ieddy =
∫ b

a
di

=
|Ḃ| lm (b2 − a2)

4 ρ

Then,

P =
∫ b

a
dP (r)

=
|Ḃ|2 π lm

2 ρ

b4 − a4

4

= I2
eddy

2 ρ π

lm

b2 + a2

b2 − a2
(1)

The above equation expresses P as I2
eddy Reffective. According to Equation 1, if

a = 0, then P is proportional to the square of Ieddy which in turn is proportional

to b2. Thus the eddy current losses increase with b even if a = 0. Also P is

proportional to b2 − a2 after substitutions, and hence decreases as a approaches

b.
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