
ABSTRACT

Title of thesis: Semantic Modeling and Control of

Urban Water Supply Networks

Zebo Peng, Master of Science, 2020

Thesis directed by: Associate Professor Mark Austin
Department of Civil and Environmental Engineering
and ISR

Water resources play a central role in the operation of urban systems. Present-day

challenges in the use of water resources include over reliance on human-centered

system management, and lack of formal approaches to decision-making support. In a

step toward mitigating these challenges, the goals of this project are two-fold: first,

we explore use of semantic modeling and rule-based reasoning a means to control

operations in the water network system operation. The second purpose of this project

is to explore opportunities for extending the logic of EPANET software simulation

operations to include reasoning that takes into account factors beyond the water

network. The case studies integrate time-history simulation and semantic modeling.

Last Modified: June 30, 2020

Semantic Modeling and Control of Urban Water Supply Networks

by

Zebo Peng

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2020

Advisory Committee:
Associate Professor Mark Austin, Chair/Advisor,
Assistant Professor Allison Reilly,
Assistant Professor Michelle Bensi.

c© Copyright by
Zebo Peng

2020

Acknowledgments

I would like to express the deepest appreciation to my committee chair, Dr.Mark

Austin, who has the attitude and the substance of a genius: he continually and

convincingly conveyed a spirit of adventure in regard to research and scholarship, and

an excitement in regard to teaching. During the two years’ master study, Dr.Mark

Austin is the professor I have been in contact with for the longest time. Although

sometimes I cannot keep up well with him, I can always feel his rigorous scholarship

toward academy and passion for the creative ideas. He can always pop up certain

bright opinions during our talking. At the same time, he is also a kind teacher, who

is pretty gentle and patient to me, a student with such not good performance. I

really cherish this learning experience and enjoy the process of getting along with my

advisor Dr.Mark Austin. Thank you!

I would like to thank my committee members, Dr.Allison Reilly and Dr.Michelle

Bensi, who provide suggestions and support to my thesis writing and defense, and

also my fellow graduate student Maria Coelho and Sachraa Borijigin who help me a

lot during my study.

Finally, I must express my very profound gratitude to my parents Junxia Zhang

and Dong Peng. They never push pressure on me and support me unconditionally.

Don’t need to say much. Thank you and love you forever.

ii

Table of Contents

List of Abbreviations vi

Glossary of Terms vii

List of Figures xi

1 Introduction 1
1.1 Problem Statement . 1
1.2 Project Objectives and Scope . 5
1.3 Contributions and Organization . 7

2 Related Work 9
2.1 Model-based Systems Engineering Perspective 9
2.2 Ontologies, Rules, and Reasoning Mechanisms 13

2.2.1 Rule-based Computations . 14
2.3 Data-Ontology-Rule Footprint Model 15

2.3.1 State-of-the-Art Semantic Modeling 15
2.3.2 Data-Ontology-Rule Footprint Model 16

2.4 System Data Model . 18
2.4.1 Motivation and Approach . 18
2.4.2 Open Street Map Primary Tags 18
2.4.3 System Data Model Tag Extensions 20

2.5 Software Design Patterns . 22
2.5.1 Accessing Data with the Visitor Software Design Pattern . . . 22

3 Semantic Foundations 24
3.1 Introduction to Semantic Web . 24

3.1.1 Semantic Web Vision . 24
3.1.2 Technical Infrastructure . 25

3.2 Working with RDF and OWL . 26
3.2.1 Resource Description Framework (RDF) 26
3.2.2 Web Ontology Language (OWL) 28

3.3 Working with Jena and Jena Rules 31

iii

3.3.1 Jena . 32
3.3.2 Jena Rules . 32

3.4 Case Study: Simplified Event-Driven Water Network Controls 33
3.4.1 Definition of the Water Network Ontology 33
3.4.2 Adding Rules . 34
3.4.3 Definition and Organization of Ontology Classes 35
3.4.4 Adding Individuals to the Water Network Model 36
3.4.5 Event-Driven Rule-Based Control (Jena Rules) 37

4 Water Network Simulation 39
4.1 State-of-the-Art Software for Water Network Simulation 39

4.1.1 EPA Water Network Simulation (EPANET) 39
4.1.2 Water Network Tool for Resilience (WNTR) 43

4.2 EPANET Software Architecture . 46
4.2.1 Network and Hydraulic Model Class Hierarchies 46
4.2.2 Software Architecture of EPANET in Whistle 48
4.2.3 Step-by-Step Procedure for Hydraulic Simulation 52
4.2.4 Representation and Evaluation of Rules 53

4.3 Jena Semantic Models and Rules . 56
4.3.1 Water Network Ontologies . 56
4.3.2 Populating Semantic Graphs with Individuals 57

5 Case Studies 59
5.1 Case Study 1: Evaluation of Water Tank and Water Pump Operations 59

5.1.1 Water Tank and Pump Ontology Models 61
5.1.2 Pump and Tank Jena Rules 63
5.1.3 Simulation Steps of Water Network Semantic Model 67

5.2 Case Study 2: Simple Water Network System (Simulation) 71
5.2.1 Problem Statement . 71
5.2.2 Water Network System Data Model 73
5.2.3 Specification of Nodal Demands 75
5.2.4 Specification of Water Network Rules 76
5.2.5 Assembly and Execution of Simulation Model in Whistle . . . 77
5.2.6 EPANET Simulation Results 81

5.3 Case Study 3: Simple Water Network System (Semantic Model) . . . 84
5.3.1 Manual Synthesis of Jena Semantic Model + Rules 84
5.3.2 Exercising the Jena Semantic Model + Rules 87
5.3.3 EPANET Ontology and Rules 90

6 Conclusions and Future Work 92
6.1 Summary and Conclusions . 92
6.2 Future Work . 94

iv

A Small Water Network System 97
A.1 System Data Model Representation (WaterNetwork.xml) 97
A.2 Water Network System Model in EPANET 107

B EPANET Ontologies and Rules 114
B.1 EPANET Water Network Ontology (umd-epanet.owl) 114
B.2 EPANET Water Network Jena Rules (umd-epanet.rules) 116

Bibliography 118

v

List of Abbreviations

ANSI American National Standards Institute
API Application Programming Interface
DL Description Logic
DOM Document Object Model
FOL First-Order Logic
GIS Geographic Information System
GML Geography Markup Language
GPM Gallons Per Minute
GUI Graphical User Interfaces
IRI Internationalized Resource Identifiers
ISO International Organization of Standardization
JAXB XML Binding for Java
JPL Jet Propulsion Laboratory
JTS Java Topology Suite
MBSE Model-Based Systems Engineering
OOD Object Oriented Design
OSM Open Street Map
OWL Web Ontology Language
RDF Resource Description Framework
RDFS Resource Description Framework Schema
SAX Simple API for XML Parsing
SPARQL Simple Protocol and RDF Query Language
SysML System Modeling Language
UMD University of Maryland
UML Unified Modeling Language
URI Uniform Resource Identifier
XML Extensible Mark-up Language
WNTR Water Network Tool for Resilience

vi

Glossary of Terms

This glossary provides definitions of key terms employed in this work:

Action: (Effect) is the response given to stimuli in a transition, and will normally

corresponds to an activity performed during the transition in the statechart.

API: (Application program interface) is a set of routines, protocols, and tools for

building software applications. An API specifies how software components

should interact.

Class Diagram: A UML diagram, which focuses on different classes of the software

systems and their connection with respect to each other.

Constraint: A design constraint refers to some limitation on the conditions under

which a system is developed.

Controller: (Mediator) A component of MVC design pattern, that acts as a com-

munication channel between the model and the view.

Description logic: (DL) is a family of logic-based knowledge representation lan-

guages that can be used to represent the terminological knowledge of an appli-

cation domain in a structured way.

EPANET: Public domain software package for water distribution system (hy-

draulic) modeling.

vii

Event: Stimuli that may cause a transition from one state to another state in

statechart. There are four main categories of events: Signal, time, change and

call events.

Extended Markup Language (XML): The extensible Markup Language pro-

vides the fundamental layer for representation and management of data on the

Web.

Individual: Is a semantic web terminology that represents an instance of a class in

the ontology.

JavaFX: A set of graphics and media packages for creating and delivering desktop

applications.

JAXB: XML binding for Java.

Jena: Apache Jena is an open source Java framework for building Semantic Web

and linked data applications.

Jena Rules: Jena Rules is an inference (reasoning) engine that plugs into Jena.

Listener: (Observer) A class that registers its interest to be notified for changes in

other classes (Observable) in observer design pattern.

Model-View-Controller (MVC): Is a system design pattern that separates the

representation of information from the user’s interaction with it.

Observer Pattern: The observer pattern is applicable to problems where a message

sender (observable) needs to broadcast a message to one or more receivers (or

viii

observers), but is not interested in a response or feedback from the observers.

Ontology: A model that describes what entities exist in a design domain, and how

such entities are related.

Ontology Class: A placeholder for an entity in the system design. An ontology

class may have some dataType or objectType properties.

Ontology Instance: An ontology instance is a specific realization of any ontology

class object. An object may be varied in a number of ways. Each realized

variation of that object is an instance. The creation of a realized instance is

called instantiation.

DataType Property: DataType Property defines the relation between instances

of classes and literal values, i.e., String using the Protégé tool.

ObjectType Property: ObjectType Property defines the relation between in-

stances (individuals) of two classes in semantic web terminology using protégé

tool.

Ontology Web Language: The Web Ontology Language (OWL) is a knowledge

representation languages for defining ontologies.

Reasoning: To infer new statements based on set of asserted facts in the ontology.

Resource Description Framework (RDF): a model for encoding semantic rela-

tionships between items of data so that these relationships can be interpreted

computationally.

ix

Rule Checking: A mechanism that ensures existing data in the ontology is con-

sistent with rules defined over the ontology. A rule engine often performs this

task.

Semantic Web: Refers to W3C’s vision of the Web of linked data.

Semantic Web Layer Cake: An informal term used to describe the stack of

technologies used in the implementation of the Semantic Web.

Semantic Web Technologies: Semantic Web technologies provide features to

build vocabularies, and develop rule repositories and ontologies.

Software Design Patterns: In software engineering a design pattern is a general

reusable solution description to a recurring problem.

SysML: The Systems Modeling Language (SysML) is a graphical modeling language

used to define models of systems structure and system behavior.

Transition: A transition is a set of actions to be executed when a condition is

fulfilled or when an event is received.

x

List of Figures

1.1 Key watersheds and water supply networks in California. 3

1.2 Proposed framework for semantic modeling and control of urban water

supply networks. The focus areas of investigation for this project are

highlighted in blue. 6

1.3 Framework for interaction of Jena semantic models and EPAnet simu-

lation packages with System Data Model. 8

2.1 Multi-level approach model-based systems engineering. 11

2.2 Framework for implementation of semantic models using ontologies,

rules, and reasoning mechanisms (Adapted from Austin, Delgoshaei

and Nguyen [4]). 12

2.3 Template for semantic modeling with data-ontology-rule footprint (Adapted

from Coelho et al. [10]). 17

2.4 Fragments of XML in Open Street Map and System Data Model. . . 19

2.5 Abstract representation of a component model. 21

2.6 Pathway of development for generation of semantic models. 23

xi

3.1 Technologies in Semantic Web Layer Cake [16]. 25

3.2 Example of RDF triple . 27

3.3 An RDF graph of relationships important to The Green Book. 28

3.4 An OWL graph of relationships important to The Film. 29

3.5 Formal definition of a “Awarded Film” in OWL. 30

3.6 Relationship between classes and properties in a water network ontology. 33

3.7 Time-based evolution of semantic graph. 35

4.1 EPANET Software architecture and Work Flow. 41

4.2 Software architecture of WNTR. 44

4.3 EPANET network model. Left: organization of classes. Right: class

hierarchies. 47

4.4 EPANET hydraulic model. Left: organization of classes for simulation

nodes and links. Right: rule and control classes. 47

4.5 Simplified software architecture for EPANET in Whistle. 49

4.6 Pseudocode for computing the duration of a time step in hydraulic

simulation. 50

4.7 Pseudocode for computing the minimum permissible time step in Sim-

ulationRule. 51

4.8 Simple Rule Statements Example. 54

4.9 Simplified water network ontology. 57

4.10 Software Architecture of Visitor Design Pattern. 58

5.1 One-to-one and many-to-one rules logic relationships. 60

xii

5.2 Tank ontology model. 62

5.3 Pump ontology model. 62

5.4 Generation of pump and tank semantic models. 64

5.5 Abbreviated list of Jena rules for transformation of the Pump Model. 65

5.6 Abbreviated list of Jena rules for transformation of the Tank Model. . 66

5.7 Abbreviated list of Jena rules for transformation of the water network

elements. 67

5.8 Fragment of Whistle for instantiating water network data and semantic

models, Jena visitors, and loading and executing domain-specific rules. 68

5.9 Fragment of Whistle code querying and printing the initial semantic

graph, loading and executing the pump rules, and then selecting and

printing statements in modified semantic graph. 69

5.10 Snapshot of semantic model for tank and pump status, before and after

execution of Jena rules. 70

5.11 Elevation view of simple water network system. 71

5.12 Abbreviated definition of pipeline segment connecting Junction 4 (node

008) to the water storage tank (component C03). 74

5.13 Plot of nodal demand (GPM) versus time (hours). 76

5.14 Side-by-side comparison of system data model and EPANET network

model views. 80

5.15 Plot of water depth in tank (ft) versus time (hours). 81

5.16 Plot of tank and reservoir demand (GPM) versus time (hours). 82

5.17 Plot of pipe and pump flow (GPM) versus time (hours). 82

xiii

5.18 Simple Water Network Graph. 85

5.19 Two perspectives of development for water network system ontologies

and rules. Left: systems data model view, Right: EPANET network

model and hydraulic simulation. 91

6.1 Plan view of urban water network system. 93

6.2 Water network management from a cyber-physical systems and digital

twin perspective. 95

xiv

Chapter 1: Introduction

1.1 Problem Statement

The modern way of life is enabled by remarkable advances in technology (e.g.,

the Internet, smart mobile devices, cloud computing) and the development of urban

systems (e.g., transportation, electric power, wastewater facilities and water supply

networks, among others) whose operations and interactions have superior levels of

performance, extended functionality and good economics [8, 9]. Because water re-

sources are necessary for sustainability of life (e.g., for consumption, bathing and

cooking), and social (e.g., recreation, landscaping) and industrial development, water

supply network systems play a central role in the operation of urban systems. From an

operations standpoint, we need to understand what strategies of day-to-day operation

lead to high levels of efficiency? We believe that high levels of situational awareness

are a prerequisite to improvement of day-to-day operations. From a long-term plan-

ning perspective, accurate estimation of the future demand and availability of water

resources is essential for achieving healthy and sustainable urban behavior [40]. As

such, water resource concerns are important both within and outside the boundaries

of an urban system. For example, the Public Policy Institute of California reports

1

that, statewide, average water usage in California is roughly 50% environmental (e.g.,

habitants, wetlands), 40% agricultural (e.g., for irrigation of farmland) and 10% ur-

ban [33]. Large urban areas such as Los Angeles and the San Francisco Bay Area

now rely heavily on water imported from other parts of the state, as illustrated in

Figure 1.1. The California scenario is typical of many highly populated regions of the

World.

Challenges associated with the demand side of the water usage problem include

unnecessary waste, improper management (regulations) of water as a limited resource,

and lack of formal decision making support for the real-time control of water sup-

ply network elements (e.g., tanks, reservoirs, pumps). In a step toward mitigation

of the latter concern, modern water supply network systems are designed from a

cyber-physical systems perspective [39], with sensing systems and software embedded

with the physical network system. Together, sensors and software need to transform

streams of sensed data into information to support decision making and implemen-

tation of control actions. The long-term appeal of this approach to system design is

that it enables management staff to deal with a wide variety of conditions precisely.

In practice, however, the overall problem is large and complicated – management

staff may have inadequate resources to focus on basic operations and simultaneously

deal with broader system-level problems when they arise. Looking forward, it is

evident that if human-centered system management could be partially replaced by

automation/rule-based control many of these concerns could be resolved. This op-

portunity leads to a number of new questions:

2

Figure 1.1: Watersheds and water supply networks in California (Source: Wikimedia
Commons, https://commons.wikimedia.org/w/index.php?title=File: Water in Cali-
fornianew.png&oldid=213297625, November 12, 2016).

3

• How to successfully recognize the operations of systems and elements within it?

• What basic rules should we have for the urban water supply networks?

• How to make the rules more generalized to be employed on more aspects?

• How to find an appropriate way to simulate the whole process of water supply

networks?

State-of-the-art water network simulation packages such as EPANET [41] and WNTR

(Water Network Tool for Resilience) [29] focus on the time-history simulation of water

network attributes (e.g., pressures and velocities). Water network models comprise

assemblies of nodes, pipes, valves, pumps, and tank/reservoir components for storage

of water. The logic for the control of time-stepping algorithms is deeply embedded

within the software and is primarily concerned with making sure hard constraints

(e.g., water tanks cannot store negative volumes of water or store more than the

maximum tank capacity) are not violated. No attempt is made to connect the logic of

the water network system operation to the broader context of decision making within

which the water system operate (e.g., details of regional geography and weather,

time histories of water demand, planning of future operations). Thus, by themselves,

state-of-the-art water network simulation packages provide an inadequate platform

for moving toward the resolution of these questions.

4

1.2 Project Objectives and Scope

The objectives of this research project are to take initial steps toward develop-

ment of a platform infrastructure where state-of-the-art simulation of water network

systems behavior works alongside semantic representations of water network system

knowledge and rules-based reasoning.

Figure 1.2 shows the proposed framework for time-history simulation of water

network behaviors coupled with a semantic representation for knowledge representa-

tion and processing of rules in response to events. The scope of investigation for this

project is highlighted in blue. For the semantic side of the problem, the project objec-

tives are to provide a means whereby decision making is supported by procedures that

are both deep and broad in their consideration of knowledge and rules. This project

employs a framework for knowledge-based development and event-driven execution

of multi-domain systems where the complementary rolls of data, ontologies, and rules

are highlighted and have equal importance. The semantic side of the problem is

represented by data-ontology-rule triplets.

On the simulation side of the problem, research is need to determine: (1) The

extent to which the logic for simulation control can be reconfigured to improve the

transparency of the simulator state (i.e., what is the simulator doing and why?), and

(2) Ways in which the simulator can send and receive data/information from ex-

ternal entities, such as multi-domain semantic models and software for event-driven

processing of semantic graphs. The integration of simulation and semantic modeling

5

T
ra

n
sf

o
rm

im
p
o
rt

R
ep

re
se

n
ta

ti
o
n
 o

f
W

at
er

 N
et

w
o
rk

 S
y
st

em
 i

n
 X

M
L

v
is

it

E
P

A
N

E
T

 H
y
d
ra

u
li

c
S

im
u
la

ti
o
n

E
P

A
N

E
T

 N
et

w
o
rk

 M
o
d
el

E
P

A
N

E
T

 S
em

an
ti

c
M

ed
ia

to
r

T
ra

n
sf

o
rm

lo
ad

R
ea

so
n
er

lo
ad

W
ea

th
er

 d
at

a
m

o
d
el

E
n
v
ir

o
n
m

en
t

E
n
v
ir

o
n
m

en
t

W
ea

th
er

.r
u
le

s

E
n
v
ir

o
n
m

en
t

F
ra

m
ew

o
rk

 f
o
r

E
x
ec

u
ta

b
le

 P
ro

ce
ss

in
g
 o

f
E

v
en

ts

g
ra

p
h
 t

ra
n
sf

o
rm

at
io

n

lo
ad

S
em

an
ti

c
G

ra
p
h
s

W
at

er
 N

et
w

o
rk

 A
u
to

m
at

io
n

F
ra

m
ew

o
rk

 f
o
r

C
o
n
cu

rr
en

t
D

at
a−

D
ri

v
en

 D
ev

el
o
p
m

en
t

o
f

D
o
m

ai
n
 M

o
d
el

s,
 O

n
to

lo
g
ie

s
an

d
 R

u
le

s

D
o
m

ai
n

R
u
le

s

d
es

ig
n
 f

lo
w

O
n
to

lo
g
y
 C

la
ss

es
an

d
 P

ro
p
er

ti
es

d
es

ig
n
 f

lo
w

D
o
m

ai
n
 D

at
a

M
o
d
el

s
an

d
S

o
u
rc

es
 o

f
D

at
a

(X
M

L
 d

at
a

fi
le

s)

W
at

er
 N

et
w

o
rk

 S
y
st

em

W
at

er
 N

et
w

o
rk

 A
u
to

m
at

io
n

W
at

er
 N

et
w

o
rk

 S
y
st

em

W
at

er
 N

et
w

o
rk

 A
u
to

m
at

io
n

W
at

er
 N

et
w

o
rk

 S
y
st

em

W
ea

th
er

.o
w

l

S
en

so
rN

et
w

o
rk

.o
w

l

C
o
n
tr

o
l.

o
w

l

R
es

er
v
o
ir

.o
w

l

V
al

v
e.

o
w

l

T
an

k
.o

w
l

P
u
m

p
.o

w
l

P
ip

e.
o
w

l

C
o
n
tr

o
l.

ru
le

s

S
en

so
rN

et
w

o
rk

.r
u
le

s

V
al

v
e.

ru
le

s

R
es

er
v
o
ir

.r
u
le

s

T
an

k
.r

u
le

s

P
u
m

p
.r

u
le

s

P
ip

e.
ru

le
s

S
en

so
r

N
et

w
o
rk

 D
at

a
M

o
d
el

C
o
n
tr

o
l

D
at

a
M

o
d
el

V
al

v
e

D
at

a
M

o
d
el

R
es

er
v
o
ir

 D
at

a
M

o
d
el

T
an

k
 D

at
a

M
o
d
el

P
u
m

p
 D

at
a

M
o
d
el

P
ip

e
D

at
a

M
o
d
el

M
u
lt

i−
D

o
m

ai
n
 S

em
an

ti
c

M
o
d
el

v
is

it

im
p
o
rt

P
u
m

p
R

es
er

v
o
ir

S
en

so
r

W
at

er
 T

an
k

C
o
n
tr

o
l

F
ig

u
re

1.
2:

P
ro

p
os

ed
fr

am
ew

or
k

fo
r

se
m

an
ti

c
m

o
d
el

in
g

an
d

co
n
tr

ol
of

u
rb

an
w

at
er

su
p
p
ly

n
et

w
or

k
s.

T
h
e

fo
cu

s
ar

ea
s

of
in

ve
st

ig
at

io
n

fo
r

th
is

p
ro

je
ct

ar
e

h
ig

h
li
gh

te
d

in
b
lu

e.

6

capabilities is handled by Whistle, a Java-enabled scripting language [13, 14, 47] for

the definition and assembly of semantic models of water networks, execution of the wa-

ter network simulations, and graphical display of the network setup and performance.

Mechanisms to extend the functionality of Whistle include import of Java classes, and

use of wrapper interfaces to external packages such as Jena (for semantic modeling),

the Java Topology Suite (for spatial modeling and reasoning), OpenStreetMap (for

modeling of urban domains), The Whistle back end software platform also links all

the system operation including EPANET simulation, developing the semantic model

and rule-based control mechanism as well as the real data retrieving by visitor design

pattern.

1.3 Contributions and Organization

This thesis takes a step toward realization of the project objectives and scope.

The contributions are as follows:

1. The thesis employs MBSE to create a pathway to the process of building models

of water supply networks that includes analysis of requirements and synthesis

of rules for rule-based control of system operations.

2. As a starting point, rules are needed for the control of water network elements

(e.g., pumps, reservoirs, tanks, valves), and for higher-level supervisory control

for planning of operations.

7

Figure 1.3: Framework for interaction of Jena semantic models and EPAnet simula-
tion packages with System Data Model.

3. A framework is developed for interaction of Jena semantic models and EPAnet

simulation models with a central systems data model (SDM). These interactions

employ software design patterns (see Figure 1.3).

The thesis is organized as follows: Chapter 2 describes work related to this project.

Chapter 3 provides a background on ontologies and rules, explains their relationship

to our related work in model-based systems engineering, and explains the concept of

Semantic Web. Chapter 4 describes the software architecture of EPAnet. Chapter

5 contains three case study problems: (1) Basic semantic interactions between a

pump and a water tank, (2) Simulation modeling and rule-based control of a simple

water network system in the Whistle implementation of EPANET, and (3) Semantic

modeling for the simple water network system introduced in Case Study 2. Chapter

6 provides a summary and conclusion of the work, and ideas for future work.

8

Chapter 2: Related Work

This project approaches the problem of semantic modeling and control, and sim-

ulation of water network behaviors from a model-based systems engineering (MBSE)

perspective. The proposed framework for semantic modeling and control is based

upon collections of ontologies and rules to define domain-specific knowledge and inter-

actions among domains. The work is preceded by studies at UMD covering semantic

modeling and analysis for cyber-physical systems [14, 13, 37, 38, 39], traceability of

requirements to component-level behaviors [12], component-based modeling, design

and trade-off analysis with RDF graphs [34], validation of connectivity relationships

in component-based systems [5], and behavior modeling of distributed urban systems

[4, 8, 9].

2.1 Model-based Systems Engineering Perspective

Model-based systems engineering (MBSE) is the formalized application of mod-

eling to support system requirements, design, analysis, verification and validation

activities beginning in the conceptual design phase and continuing throughout devel-

opment and later life cycle phases [26]. From this standpoint, a model is a simplified

9

version of a concept, phenomenon, relationship, structure or system. The use of

abstraction eliminates details not needed for decision making. As already noted,

state-of-the-art approaches to MBSE employ visual modeling abstractions such as

SysML [17] to frame the structure and behavior of the engineering problem under

consideration. Models of system behavior specify what the system will actually do.

Models of system structure specify how the system will accomplish its purpose. Al-

though the models of system structure and behavior are not the same as real items,

as least not the ideal representation of that, it can help the engineers to obtain the

knowledge which can guide the real system implementation.

State-of-the-art practice in model-based systems engineering (MBSE) is to deal

with design complexity through separation of concerns and development along disci-

plinary lines, followed by procedures for systems integration and validation and veri-

fication. While this approach eases work organization, design solutions tend to have

loosely coupled system architectures that are limited in levels of achievable perfor-

mance. Increases in system size and complexity drive the need for: (1) disciplined ap-

proaches to system design that involve the application of decomposition, composition,

abstraction and use of semi-formal and formal analysis [3, 27], and (2) modeling for-

malisms that capture cause-and-effect relationships between designer concerns (e.g.,

correctness of system functionality; adequacy of performance; assurance of safety)

and problem solutions.

In order to address these concerns, a multi-level approach to model-based system

design must be taken. Figure 2.1 describes the different levels of development to

10

System Analysis

B
ot

to
m

−
up

 c
om

po
si

tio
n

Transformation

Semi−formal

System Design

Analysis

Design

T
op

−
do

w
n

de
co

m
po

si
tio

n

Formal
Analysis

Detailed Simulation

Goals / Scenarios UML / SysML

Validation and VerificationDesign Space Exploration

Trade−off Analysis

Figure 2.1: Multi-level approach model-based systems engineering. Semi-formal mod-
els provide a high-level view of the complete system (efficiency). Formal models
provide a detailed view of the actual system (accuracy).

be used. The top level contains semi-formal models expressing ideas (i.e. goals and

scenarios) and preliminary designs. At the front end of system development, use of

semi-formal languages such as the System Modeling Language (SysML) [17] can help

engineers systematically consider scenarios for required system functionality, create

visual representations (diagrams) for fragments of behavior, develop requirements

(constraints) for system performance and economics, and generate design alternatives

that have the potential for delivering good design solutions. Lower level models

employ formal languages having precisely defined semantics, and are designed to

provide computational support for: (1) Detailed simulation of system behavior to

evaluate levels of performance, (2) Validation and verification of the accuracy of

functionality and control, (3) Systematic design space exploration, and (4) Trade-off

analysis of design features.

11

Component

Instances

Data
Requirement
Individual

verify

Textual Requirements
define

Classes

Ontologies and Models

Design Rules

Engineering Model

System Structure

System Behavior

a c d

b

Reasoner

Relationships

Properties

Rules and Reasoner

import import import

im
p
o
rt

Ontology

Rules

Ontology

RulesRulesRules

Ontology Ontology

import import import

RulesRulesRulesRules
Temporal Spatial Units Currency

OntologyOntologyOntologyOntology
Temporal Spatial Units Currency

Network

Network

Sensor

Sensor

Control

Control

Building−Block Ontologies and Rules

Meta−Domain Ontologies and Rules

Semantic Modeling and Reasoning for Urban Water Supply Network Operations

Component

Figure 2.2: Framework for implementation of semantic models using ontologies, rules,
and reasoning mechanisms (Adapted from Austin, Delgoshaei and Nguyen [4]).

12

2.2 Ontologies, Rules, and Reasoning Mechanisms

Figure 2.2 presents a framework for the implementation of semantic models using

ontologies, rules, and reasoning mechanisms [13]. An ontology is “a set of knowledge

terms, including the vocabulary, the semantic interconnections, and some simple rules

of inference and logic for some particular topic [23].” To provide a formal concep-

tualization within a particular domain, and thereby facilitate communication among

people and machines, ontologies need to accomplish three things: (1) Provide a se-

mantic representation of each entity and its relationships to other entities; (2) Provide

constraints and rules that permit reasoning within the ontology, and (3) Describe be-

havior associated with stated or inferred facts.

On the top left-hand side of Figure 2.2, textual requirements are defined in terms

of mathematical and logical rule expressions for design rule checking. Engineering

models of urban system structure will consist of networks and hierarchies of con-

nected components formally described in terms of geometry (e.g., position, size) and

connectivity (e.g., connected, touches, disjoint), possibly organized into layers (e.g.,

a hierarchy of networks). Engineering models of urban system behavior will be com-

binations of discrete (e.g., statecharts) and continuous (e.g., differential equations)

behaviors. The semantic counterpart of engineering models is ontologies (class hi-

erarchies), individuals (graphs), and rules [14, 13], Semantic graph models will be

populated with instances of urban data (i.e., individuals) collected from a wide range

of sources. Three examples are Open Street Map (OSM), the geography markup lan-

13

guage (GML) and CityGML for the population of urban network ontologies [15, 35],

online weather servers for the population of weather ontologies, and census data for

population demographics.

Rules can be developed for verification of semantic properties (e.g., to verify that

a specific data property has been initialized) and for reasoning with data sources

and incoming events, possibly from a multiplicity of domains. Implementation of the

latter leads to semantic graphs that can dynamically adapt to incoming events (e.g.,

a weather event).

2.2.1 Rule-based Computations

Computation with rules provides several advantages [32, 42]:

1. Rules that represent policies are easily communicated and understood,

2. Rules retain a higher level of independence than logic embedded in systems,

3. Rules separate knowledge from its implementation logic, and

4. Rules can be changed without changing source code or underlying model.

A rule-based approach to problem solving is particularly beneficial when the applica-

tion logic is dynamic, and where rules are imposed on the system by external entities.

Both of these conditions apply to the design and management of urban water supply

systems.

14

2.3 Data-Ontology-Rule Footprint Model

2.3.1 State-of-the-Art Semantic Modeling

State-of-the-art approaches [39, 46] to semantic modeling of engineering systems

focus on the capture and representation of knowledge within one or more domains. A

common objective is development of ontologies for the comprehensive representation

of knowledge within a domain (e.g., pumps, pipes, valves), with far less effort going

to the development of rules for the validation, use, and interaction of the ontology

with other ontologies. Two further problems include: (1) a lack of discipline in the

development of ontologies for system development, and (2) a lack of computational

support for evolution of semantic graphs in response to events. The first factor is

one of the reasons why formal representations of ontologies have a reputation of

being difficult to develop and use. As a case in point, the integrated model-centric

engineering ontologies (IMCE) developed at JPL (Jet Propulsion Laboratory) during

the 2000-2010 era [46], the electrical engineering ontology (i.e., electrical.owl) imports

the mechanical engineering ontology (i.e., mechanical.owl). Both the electrical and

mechanical engineering ontologies import a multitude of foundation ontologies (e.g.,

analysis.owl, mission.owl, base.owl, project.owl, time.owl) and make extensive use

of multiple inheritance mechanisms in the development of new classes. The result is

ontologies containing more than several hundred classes, with some classes containing

three or four dozen data and object properties. Notions of simplicity in system design

through modularity of semantic models (e.g., bundling of ontologies and rules) do not

15

seem to exist.

2.3.2 Data-Ontology-Rule Footprint Model

Figure 2.3 shows the architectural template for multi-domain semantic modeling

used in this project. Instead of creating a small number of all-encompassing ontologies

and associated rules, this project puts the development of data, ontologies and rules

on an equal footing, and create architectural templates for a specific domain or design

concern (a convenient name is the data-ontology-rule footing). Concretely, each row

of the first two-block domain items will contain the ontology and rule (e.g., Tank.rules,

Tank.owl), which are used for building the semantic graph and its reasoner. These

two parts establish the core of rule-based control mechanism that is the framework

for executable processing of events.

A key benefit of this approach to semantic modeling is that it forces developers

to think about the chain of dependency relationships between the data, ontologies

and rules, and provide data needed to support decision making – rules require data

and object properties from the ontologies, which in turn require data from the data

models shown along the right-hand side of Figure 2.3. Semantic graph models will be

populated with individuals (i.e., instances of real-world data) by visiting (a software

design pattern) the relevant data models and gathering the data and object properties

relevant to the application at hand. Rules can be developed for verification of semantic

properties (e.g., to verify that a specific data property has been initialized) and for

reasoning with data sources and incoming events, possibly from a multiplicity of

16

Executable Processing of Events

Data Source A

Data Source B

Ontology A

Ontology B

Rules A

Rules B

import

import visit

visit

Data Models / Sources

Domain−Specific

Rules

Domain
design flow

Ontology classes

and properties

design flow

Domain B

Domain A

Events !!!Semantic Graph
Attach

Rules Engine

Revisions to semantic graph

import
import

Multi−domain Semantic Modeling

Figure 2.3: Template for semantic modeling with data-ontology-rule footprint
(Adapted from Coelho et al. [10]).

domains. Implementation of the latter leads to semantic graphs that can dynamically

adapt to incoming events (e.g., a tank is full (or empty), a weather event). A second

key benefit of this approach to semantic modeling is that it reduces the complexity

of domain models contributing to the semantic graph. This, in turn, strengthens

the functionality of the rule-based control methodology. This framework is called

data-ontology-rule footprint model.

17

2.4 System Data Model

2.4.1 Motivation and Approach

As illustrated in Figures 1.2 and 2.3, semantic graphs are populated with individ-

uals (i.e., urban data) by visiting one or more data models. One potential downside of

the proposed approach is the burden it places on a developers to create data models

for the variety of sources from which data will be mined. The system data model is

an experimental software that aims to provide a single XML data format and parser

for reading and storing system structure data and system behavior data. The goals

are to:

1. Build upon Open Street Map [35] with sets of tags to describe components and

networks, their attributes and parameters, specifications and constraints, and

statechart behaviors.

2. Explore the use of JAXB (as opposed to SAX or DOM in OpenStreetMap) for

parsing and processing component and network data models into Whistle [47].

2.4.2 Open Street Map Primary Tags

Open Street Map (OSM) is remarkable. With only three primary tags (i.e.,

<node>, <way>, <relation>) and their attributes (i.e., <attribute>), OSM can

represent the structure of very large urban systems and logical relationships among

urban entities. To see how this works in practice, the upper half of Figure 2.4 shows

18

Fragment of XML in Open Street Map
1 <?xml version="1.0" encoding="UTF-8"?>

2 <osm>

3 <bounds minlat="39.1605000" minlon="-76.6814000"

4 maxlat="39.1898000" maxlon="-76.6503000"/>

5 <node id="33051350" lat="39.1623308" lon="-76.6726108"/>

6 <node id="33051337" lat="39.1590716" lon="-76.6893368"/>

7 <node id="33051331" lat="39.1584560" lon="-76.6958300"/>

8 <way id="01" >

9 <node id="33051350" >

10 <node id="33051337" >

11 <node id="33051331" >

12 </way>

13 </osm>

Fragment of XML in System Data Model
1 <component ID = "C03" x = "400.0" y = "200.0">

2 <description text="Elevated Water Tank" />

3 <attribute key = "type" value = "Tank" />

4 <attribute key = "elevation" value = "700.0" units ="ft" />

5 <attribute key = "area" value = "400.0" />

6 <attribute key = "initlevel" value = "2.0" />

7 <attribute key = "minlevel" value = "0.0" />

8 <attribute key = "maxlevel" value = "20.0" />

9

10 <!-- Visual description of water tank -->

11

12 <compoundshape ID = "Water-Tank-Shape01">

13 <shape type = "Polygon">

14 <attribute key = "level" value = "48.0"/>

15 <attribute key = "color" value = "blue"/>

16 <attribute key = "opacity" value = "1.0"/>

17 <node ID="n01" x = "0.0" y = "170.0" type="Point" />

18 <node ID="n02" x = "0.0" y = "120.0" type="Point" />

19 <node ID="n03" x = "20.0" y = "100.0" type="Point" />

20 <node ID="n04" x = "60.0" y = "100.0" type="Point" />

21 <node ID="n05" x = "80.0" y = "120.0" type="Point" />

22 </shape>

23

24 ... details of shapes removed ...

25

26 </compoundshape>

27 </component>

Figure 2.4: Fragments of XML in Open Street Map and System Data Model.

19

the definition of three nodes and one way in OSM. Nodes represent any kind of point

type feature (or named point of interest). Ways are an ordered lists of nodes; usually

they linear features such as boundaries, roadways or pipelines. A relation provides

a means to logically organize things into groups that naturally belong together. The

attributes of nodes, ways and relations are stored as key-value pairs in hash maps.

The downside of a relatively flat, but general data storage is that the corresponding

data files can be very large (tens of millions of lines of XML). OSM makes no attempt

to describe behaviors.

2.4.3 System Data Model Tag Extensions

The system data model borrows the <node>, <way>, <relation> and <attribute>

tags from OSM, and adds support for components (i.e., <component>), specifica-

tions and constraints (i.e., <specification> and <constraint>), system parameters

(i.e., <parameter>), and component-level behaviors (i.e., <behavior>).

Components are abstractions that simplify system modeling by bundling groups of

elements into cohesive units that have a well-defined boundary, and support input and

output flows through ports (see Figure 2.5). Within the component, attributes and

parameters are described with the <attribute> and <parameter> tags. The system

data model assumes that component-level behaviors (i.e., <behavior> tag) can be

adequately described by statecharts (see the upper part of Figure 2.2). Behaviors can

also include patterns of loading that will be applied to a component and/or systems.

Component performance can be evaluated with respect to mathematical constraints.

20

Specifications

Component

Statechart
has behavior

Inputs
Outputs

Figure 2.5: Abstract representation of a component model.

Specifications for attainable levels of component performance can include performance

curves (e.g., to describe head-flow relationships in a water pump).

We add the tags <compoundshape> and <shape> (e.g., see the lower half of

Figure 2.4) to control the way in which the visual aspects of data elements are orga-

nized and drawn. Shape attributes specify parameters for the sizing (e.g., width and

height) and displaying (e.g., opacity, color, depth level) an entity (e.g., circle, square,

linestring, polygon and multipolygon). A compound shape is simply a list of simple

shapes enclosed within a compound shape tag.

The system data model also supports representation and evaluation of mathe-

matical constraints. Equality, inequality and logical constraints are defined by sets of

parameters (i.e., name and value) and expressions stored in a character string format.

In this project, constraints are extended to include premise-action rules.

21

2.5 Software Design Patterns

A design pattern is a general repeatable solution to a commonly occurring prob-

lem. Design patterns initially became popular in the 1970s as a means for describing

solutions to problems in urban (or city) planning [1]. Then, as the goals of software de-

velopment increased in ambition and complexity, software design patterns provided

template solutions to the structure, behavior and integration of software solutions

[19]. These templates define domain agnostic arrangements of abstract methods and

logical relationships found in good software solutions.

2.5.1 Accessing Data with the Visitor Software Design Pattern

The purpose of the visitor software design pattern is to separate an algorithm (i.e.

system functionality) from an object structure on which it operates. The benefit of

this separation is the capabilities to add new functions to the class structure without

changing its original structure. In other words, based on the help of the visitor design

pattern, engineers can easily transfer the functional logic from one class to various

other classes.

The semantic and simulation aspects of this project employ the visitor software

design pattern to access data within the system data model. Generally, the visitor

design pattern comprises two methods: (1) A method called visit() which is imple-

mented by the visitor and is called for every element in the data structure, and (2)

Visitable classes providing accept() methods that accept a visitor.

22

Figure 2.6 shows the pathway of development for generation of semantic models,

consisting of ontologies, graphs of individuals (specific instances), and rules derived

from engineering models.

Figure 2.6: Pathway of development for generation of semantic models.

The process begins with the development of ontological descriptions of problem do-

mains in OWL (the Web Ontology Language). Each ontology consists of a creating

hierarchy of classes, and data and object properties. Next, we use the Jena Rules

formalism to describe rules and represent domain-specific constraints. The data nec-

essary to complete the model can be retrieved from an XML data file through a Data

Model. The Data Model reads the XML data file and imports the data. Ontology,

rules and data are all combined in the Jena Semantic Model. This semantic model

creates an instance of the OWL ontology. Note that the data in the data model may

or may not pertain to the ontology instance in its entirety. Through the implemen-

tation of a visitor design pattern, the data that does pertain to the ontology instance

is transferred to the Jena Semantic Model, where the ontology and rules are applied

to it.

23

Chapter 3: Semantic Foundations

3.1 Introduction to Semantic Web

This chapter introduces the Semantic Web vision, and the range of technologies

found in its implementation. Basic capabilities of the resource description framework

(RDF) and Web Ontology Language (OWL) are described. A simple case study prob-

lem involving behavior modeling of water supply network elements with ontologies

(Jena) and rules (Jena Rules) is presented. Once the water network model has been

manually assembled, the graph of family individuals and relationships will evolve in

response to events.

3.1.1 Semantic Web Vision

The World Wide Web was invented in 1989 by Tim Berners-Lee, with the

initial purpose to meet the demand for automatic information-sharing among mem-

bers of scientific communities [7]. The Semantic Web is an extension of the World

Wide Web that aims to produce a semantic data structure which allows machines

to access and share information, thus constituting a communication knowledge be-

tween machines, and automated discovery of new knowledge [21, 23, 44]. This goal

24

is accomplished through the use of markup languages that enable the introduction,

coordination, and sharing of the formal semantics of data, as well as an ability to rea-

son and draw conclusions (i.e., inference) from semantic data obtained by following

hyperlinks to definitions of problem domains (i.e., so-called ontologies).

3.1.2 Technical Infrastructure

Figure 3.1 illustrates the technical infrastructure that supports the Semantic

Web vision, and the foundation upon which we hope to build our system-behavior

models. Each layer exploits and uses capabilities of the layers below.

Figure 3.1: Technologies in Semantic Web Layer Cake [16].

Briefly, the bottom layer is constructed of Uniform Resource Identifier (URI) and

Unicode. URI and Unicode provide capability for identifying resources on the Web,

linking documents, and providing 16-bit representation for multi-lingual languages.

25

The extensible Markup Language (XML) is an open standard which describes how

to declare and use simple tree-based data structures within a plain text file (human

readable format). XML is a meta-language (or set of rules) for defining domain-

or industry-specific markup languages. XML can also be used to filter, sort and

re-purpose the data for different devices using the Extensible Stylesheet Language

Transformation (XSLT) [45, 48]. XML data is organized into tree hierarchies. As

already noted, Semantic Web applications can gather information from a variety of

sources, and in the context of our application, merge and organize these sources for

decision making. Unfortunately, there is no easy way for tree structures to be merged.

The resource description framework (RDF) solves this problem by allowing for the

representation of graphs of data on the web – graphs can always be merged. The web

ontology language (OWL) provides for semantic descriptions of the underlying data.

Together, XML, RDF and OWL allow for the implementation of reasoning that can

prove whether or not assertions are true or false.

3.2 Working with RDF and OWL

3.2.1 Resource Description Framework (RDF)

While XML provides support for the portable encoding of data, it is limited

to information that can be organized within hierarchical relationships. This can be

a problematic situation for XML as a synthesized object may or may not fit into a

hierarchical (tree) model. A graph, however, can, and thus we introduce the Resource

Description Framework (RDF).

26

RDF is a graph-based assertional data model for describing the relationships

between objects and classes (i.e., data and metadata) in a general but simple way,

and for designating at least one understanding of a schema that is sharable and

understandable. The graph-based nature of RDF means that it can resolve circular

references, an inherent problem of the hierarchical structure of XML. An assertion

is the smallest expression of useful information. RDF captures assertions made in

simple sentences by connecting a subject to an object and a verb, as shown in Figure

3.2.

Figure 3.2: Example of RDF triple where node A is a subject, ”predicate” is a verb,
and node B is an object.

In practical terms, English statements are transformed into RDF triples consisting of

a subject (this is the entity the statement is about), a predicate (this is the named at-

tribute, or property, of the subject) and an object (the value of the named attribute).

Subjects are denoted by a URI. Each property will have a specific meaning and may

define its permitted values, the types of resources it can describe, and its relationship

with other properties. Objects are denoted by a ”string” or URI. The latter can be

web resources such as requirements documents, other Web pages or, more generally,

any resource that can be referenced using a URI (e.g., an application program or

service program).

A set of related statements constitute an RDF graph. RDF graphs can be used

27

The Green Book

Peter Farrelly

2018

Jim Bruke

Comedy

Figure 3.3: An RDF graph of relationships important to The Green Book.

to model a wide variety of relationships, including those among friends, location data,

business data, and show information about a restaurant and a movie [44]. Figure 3.3

illustrates, for example, a graph model of relationships relevant to The Green Book.

Limitations of RDF. Unfortunately, RDF is unable to capture vital knowledge

attributes such as existence and cardinality or localized range and domain constraints

as well as richer properties such as transitivity, inverse or symmetrical properties [24].

This makes it weaker to describe resources in sufficient detail and difficult in use to

support reasoning. The Web Ontology Language (OWL) was developed to address

the weaknesses of RDF [25].

3.2.2 Web Ontology Language (OWL)

The Web Ontology Language (OWL) is a DL-based knowledge representation

language for constructing ontologies. OWL is based on the basic features of RDF

28

The Film

Person

Date

Company

String

Figure 3.4: An OWL graph of relationships important to The Film.

introduced above but it strengthens it by adding structure and vocabulary for de-

scribing properties and classes. They enable richer property definitions(e.g.: tran-

sitivity), class property restrictions(e.g.: allValuesFrom), and relationship between

classes(e.g.: subClassOf). The additional capabilities allow ontological systems to

use reasoning structures and infrastructure to infer new facts (triples) from existing

ones with FOL as baseline mathematical, formal foundation. Below is an example

of how The Green Book example presented above can be translated into OWL. See

Figure 3.4 and Figure 3.5.

In the example, the class Film, Person and Company are defined. OWL can

also define two types of properties: object properties and datatype properties. Object

properties specify relationships between pairs of resources. Datatype properties, on

the other hand, specify relation between a resource and a data type value; they

are equivalent to the notion of attributes in some formalisms. In the example above,

29

// Define Classes ...

<owl:Class rdf:about="http://example.org/monaLisa#Film">

</owl:Class>

<owl:Class rdf:about="http://example.org/monaLisa#Person">

</owl:Class>

<owl:Class rdf:about="http://example.org/monaLisa#Company">

</owl:Class>

// Define Datatype Properties ...

<owl:DatatypeProperty rdf:about="http://example.org/monaLisa#hasGenres">

<rdfs:domain rdf:resource="http://example.org/monaLisa#Film"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://example.org/monaLisa#hasReleasedDate">

<rdfs:domain rdf:resource="http://example.org/monaLisa#Film"/>

<rdfs:range rdf:resource="&xsd;date"/>

</owl:DatatypeProperty>

// Define Object Properties ...

<owl:ObjectProperty rdf:about="http://example.org/monaLisa#hasDirectorr">

<rdfs:domain rdf:resource="http://example.org/monaLisa#Film"/>

<rdfs:range rdf:resource="http://example.org/monaLisa#Person"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://example.org/monaLisa#hasProducer">

<rdfs:domain rdf:resource="http://example.org/monaLisa#Film"/>

<rdfs:range rdf:resource="http://example.org/monaLisa#Company"/>

</owl:ObjectProperty>

Figure 3.5: Formal definition of a “Awarded Film” in OWL.

30

hasGenres and hasReleasedDate are defined as datatype properties, while hasDirector

and hasProducer are defines as object properties. The rdfs:domain and rdfs:range

properties are used to specify the domain and range of a property. The rdfs:domain

of a property specifies that the subject of any statement using the property is a

member of the class it specifies. Similarly, the rdfs:range of a property specifies that

the object of any statement using the property is a member of the class or datatype

it specifies.

The family of OWL encompasses three languages distinguished by their in-

creasing expressiveness. OWL Lite allows the expression of simple syntax and con-

straints but inferencing is more tractable using this version. OWL DL has a human-

friendly syntax, inferencing is decidable and the language is computationally com-

plete. OWL Full ensures full compatibility with RDF and RDFS languages however,

the cost is that there is no guarantee in the validity of all computed statements[36].

3.3 Working with Jena and Jena Rules

Not all technologies on the semantic web are standardized. Some are emergent

ones that are used mostly for horizontal and vertical integration of multiple layers of

the stack. Generally speaking, there are Application Programming Interfaces (API)

used to complete integration tasks.

31

3.3.1 Jena

Apache Jena [2] is an open source Java framework for building Semantic Web

and linked data applications. Jena provides APIs (application programming inter-

faces) for developing code that handles RDF (resource description framework), RDFS,

OWL (web ontology language) and SPARQL (support for query of RDF graphs). Jena

uses a rule-based reasoning approach, which is the classic technique to logic-based

reasoning where the knowledge-based system is developed by deduction, induction,

abduction or choices from a starting set of data and rules. A unifying logic, such as

the DL, is needed for horizontal integration of top layers of stacks and provide the

rigorous, formal support needed by applications.

3.3.2 Jena Rules

The Jena inference subsystem is designed to allow a range of inference engines

or reasoners to be plugged into Jena. Jena Rules is one such engine. Reasoners

provide a means to derive additional RDF assertions which are entailed from some

base RDF together with any optional ontology information and the axioms and rules

associated with the reasoner. Jena Rules use facts and assertions described in OWL

to infer additional facts from instance data and class descriptions. Such inferences

result in structural transformations to the semantic graph model, as shown in Figure

3.7.

32

3.4 Case Study: Simplified Event-Driven Water Network Controls

In this small cast study, the simplified semantic model for water network with

ontologies and rules are built manually by Jena and Jena Rules. From the viewpoint

of ontology and rule-based control mechanisms, this case study will describe the event-

driven semantic modeling operation process. The semantic graph will show logical

relationships among the ontology classes, which can be used to further rule-based

control mechanism.

3.4.1 Definition of the Water Network Ontology

Figure 3.6 shows a simplified water network ontology, the relationship among

classes and properties.

WaterNetwork

Component

Pump Tank

hasComponent

hasIinitialLevel

hasMaxLevel

hasStatus

hasCurrentLevel

Figure 3.6: Relationship between classes and properties in a water network ontology.

33

This simplified semantic graph defines four ontology classes, three object properties

and a data property. The ontology class WaterNetwork contains ontology component

with two ontology subclasses tank and pump. Ontology component has properties:

hasStatus modeled as string data type which will be inherited by the two subclasses.

The tank ontology has its own specific properties: hasInitialLevel and hasMaxLevel

which are modeled as double data type.

3.4.2 Adding Rules

To better explain the ideas of rule-based control mechanism, the following are a

list of rules that can be used in a simplified water network semantic model:

The following rules can be declared:

Rule 1: Combining the system initial working time, current time, water flow rate,

getCurrentLevel() compute’s a tank’s current water level.

Rule 2:bhy Tank has the full status when its water level attain the max level.

Rule 3: The max level is a water level range between 8 to 10.

Rule 4: If tank is full, then pump is closed.

Figure 3.7 shows the evolution of a graph defining the properties of one pump and

tank as a function of time.

As time goes by, the elements’ data properties (e.g, tank’s current water level, status)

will change based on the water network rules.

34

Pump 01

Tank 01

hasStatus

hasStatus

Not Full

Opened

hasCurrentLevel

2

Pump 01

Tank 01

hasStatus

hasStatus

Not Full

Opened

hasCurrentLevel

5

Pump 01

Tank 01

hasStatus

hasStatus

Full

Closed

hasCurrentLevel

9

Level Rules

9 AM 12 AM 2 PM

Figure 3.7: Time-based evolution of semantic graph.

3.4.3 Definition and Organization of Ontology Classes

The abbreviated fragment of code below demonstrates the definition of the water

network ontology classes, their assembly into a hierarchy, and definition of data and

object properties for the class Component, the data properties for the class Tank.

// Define classes ...

waterNetwork = model.createClass(ns + "WaterNetwork");

component = model.createClass(ns + "Component");

pump = model.createClass(ns + "Pump");

tank = model.createClass(ns + "Tank");

// Define relationships among classes ...

waterNetwork.addSubClass (pump);

waterNetwork.addSubClass (tank);

// Create object properties for the class waterNetwork ...

hasComponent = model.createObjectProperty(ns + "hasComponent");

hasComponent.setDomain(waterNetwork);

35

hasComponent.setRange(component);

// Create data properties for the class component ...

hasStatus = model.createDatatypeProperty(ns + "hasStatus");

hasStatus.setDomain(component);

hasStatus.setRange(XSD.String);

// Create data properties for the class tank ...

hasInitialLelve = model.createDatatypeProperty(ns + "hasInitialLevel");

hasInitialLevel.setDomain(tank);

hasInitialLevel.setRange(XSD.Double);

hasMaxLevel = model.createDatatypeProperty(ns + "hasMaxLevel");

hasMaxLevel.setDomain(tank);

hasMaxLevel.setRange(XSD.Double);

The WaterNetwork contains Component depending on object property hasComponent.

Regarding to the subclass relationship, the Component has the string type property

hasStatus which hierarchy inherited by the Tank and Pump. The Tank also has its

own double type properties hasCurrentLevel and hasMaxLevel.

3.4.4 Adding Individuals to the Water Network Model

The next procedure will show a process of how to add a component individual

with the related data properties to a specific water network. The following section of

code below demonstrates the development process of defining name space, creating

graph model, adding specific individual for Tank01 to graph model and its statement

of having status.

// Namespace for the water network ontology ...

String ns = "http://www.ontologies.org/waterNetwork#";

36

// Create ontology model (a graph) ...

OntModel model = ModelFactory.createOntologyModel();

// Add "tank01" to the tank to the water network graph model ...

Individual c01 = boy.createIndividual(ns + "Pump01");

model.add (c01);

// Create statement: Pump01 has status

Literal status = model.createTypedLiteral("Not Full", XSDDatatype.XSDString);

Statement cbd = model.createStatement(c01, hasStatus, status);

model.add (cbd);

Jena provides very powerful facilities for querying the graph model, subject to a wide

range of search criteria.

3.4.5 Event-Driven Rule-Based Control (Jena Rules)

Considering the above four rules, the semantic graph transformation is enabled

by the rule-based control mechanism. Given the initial working time and the current

time with certain characteristic of tank, the function getCurrentLevel() compute

the current water level of tank which will be compared with the tank’s max water

level. Then, based on the rules related to tank state change, comparison result will

be presented in text as tank’s status which may change later. Figure 3.7 shows the

evolution of a graph transformation about the data properties of tank01 and pump01

in terms of time.

@prefix wn: <http://www.ontologies.org/waterNetwork#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Propagate class hierarchy relationships

37

[rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x,?y) ->

[(?a rdf:type ?y) <- (?a rdf:type ?x)]]

// Rule 02: Compute and update the status of tank and pump...

[UpdateCurrentLevel: (?t rdf:type wn:Tank) (?t wn: hasArea ?ar)

(?t wn: hasFlowRate ?f) (?t wn:hasCurrentLevel ?cl)

getCurrentLevel(?ar,?f,?cl,?d) notEqual(?cl, ?d) ->

remove(2) (?t wn:hasCurrentlevel ?d)]

[UpdateTankStatus: (?t rdf:type wn:Tank) (?t wn: hasCurrentLevel ?cl)

greaterThan(?cl, 9) -> (?t wn: hasStatus Full)]

[UpdatePumpStatus: (?t rdf:type wn:Tank) (?p rdf:type wn:Pump)

(?t wn: hasStatus ?st) equals(?st, ’FUll’)

-> (?p wn: hasStatus Closed)]

The first rule propagates class hierarchy relationships. The second list of rules up-

date the tank’s current water level, status and pump’s status. Note that elements’

interaction can be presented in last rule, which the pump’s status change based on

the tank’s state.

38

Chapter 4: Water Network Simulation

This chapter discusses water network simulation with the Java implementation

of EPANET, working as a simulation platform within Whistle. Many changes to the

code have been made: we modified some bugs in certain water network element’s

classes and also added toString() method in most of the structure-level classes. The

latter help us to check the API operations are correct. The work also includes de-

velopment of a wrapper class called EpanetMVC to walk an engineer through the

multi-step process of defining and simulating behavior for a water network system.

4.1 State-of-the-Art Software for Water Network Simulation

State-of-the-art software for water network simulation is defined by two packages,

EPANET and WNTR.

4.1.1 EPA Water Network Simulation (EPANET)

EPANET [41] is a computer program that performs extended period simulation

of hydraulic and water quality behavior within pressurized pipe networks. From

a physical standpoint, pressurized pipe networks are collections of interconnected

39

elements such as pipes, pumps, reservoirs and valves. Mathematically, pipe networks

are graphs consisting of sets of edges (e.g., pipes and pumps) and nodes (e.g., for

reservoirs, tanks, and junctions (i.e., intersections of pipe elements). By pre-setting

the water network parameters and initial water flow status, EPANET is able to

simulate the movement and the change of hydraulic parameters for a range of discrete

points in time. This provides end-users with insight into time behavior of hydraulic

networks and the adequacy of network designs.

Background. The development of EPANET dates back to the early 1990s. Lewis

Rossman started the development of EPANET in 1991 and released the first version

in 1993. At that time, the water network modeling software market was dominated

by commercial products. The EPANET software, in contrast, was open source and

quickly became the commonly used water network simulation software for researchers

or scientists. The earliest versions of EPANET were written in ANSI C [28], language

which gained wide acceptance in technology companies in the 1980s. The Java imple-

mentation (officially released in 2012) of EPANET provides water network simulation

capabilities in an object-oriented style.

The Java implementation of EPANET is a simulation engine which is full Java

rewrite of the EPANET software written in standard ANSI C. It makes available

a comprehensive water network modeling and simulation based on the .INP input

modeling files.

Software Architecture. Figure 4.1 is a high-level view of the EPANET software

architecture and flow of computations in a standard water network simulation.

40

execute

EPANET

Network Model Hydraulic Model

INP data files

Hydraulic Simulation

Simulation Results

load write

transform

Figure 4.1: EPANET Software architecture and Work Flow.

For the purposes of hydraulic simulation, EPANET is the composition of two

packages, a network model, and a hydraulic model. The network model supports

representation of standard entities found in a water network system (e.g., pipes,

pumps, valves, etc) and support for regulation of behaviors with controls and rules.

State-of-the-art simulations read data files having a .INP format).

Mathematical Model. EPANET assumes that fluid flows will be steady state and

incompressible. The steady state assumption implies zero acceleration of fluid flows.

Assuming that fluids are incompressible means that pressure can be expressed in

terms of equivalent hydraulic head. Together these assumptions allow for the overall

network state to be described by the head at each node and the flow in each element.

The behavior of a water network corresponds to a sequence of steady state flows. At

each time step, standard numerical procedures such as Newton-Raphson iteration are

used to solve the system level hydraulic equations. Validation procedures can check

for: (1) conservation of mass, and (2) conservation of energy [31].

Control and Rules. Controls are lists of actions to which a water network sys-

tems should respond. Rules are constraints that are designed to prevent undesirable

41

behavior. For example:

• Rules for Water Network Operation: (1) If tank status is full, then pump

status is closed, (2) If tank level less than max level, and time is operation,

then pump status is opened, and (3) If season is spring, then tank has lower

maximum level.

• Rules for Water Conservation: (1) Improve the frequency of survey for water

pipe leakage, (2) Timely maintenance or replacement of water network infras-

tructures, and (3) Promptly adjusting the amount of water supply based on the

change of water demands.

• Rules for Water Quality (Contamination Prevention): Rules to prevent

contamination of water supply networks: (1) Selecting construction materials

that do not promote microbial growth, (2) Constructions or pipelines with less

curvature, dead zones, and (3) Maintaining hot water temperatures above 50

degrees and a cold water temperature below 20 degrees.

Recent Research. Despite being almost 30 years old, EPANET is still actively

used in research studies. Recent research investigations have included development

of ontologies for support of collaboration in federated water-power simulations [22],

procedures for modeling network leakage [18], use of evolutionary algorithms in water

distribution network design [6], and scheduling of pumping stations [20]. An EPANET

Open Source Initiative was launched in 2018 [43], with on-going research focused on:

(1) extensions needed for solving equations for dispersion of chemical contamination,

42

and (2) development of graphical user interfaces that integrate water network systems

modeling with geographic information systems (GIS).

4.1.2 Water Network Tool for Resilience (WNTR)

The Water Network Tool for Resilience (WNTR, pronounced winter) is a Python

package designed to simulate and analyze resilience of water distribution networks.

In this context, a network refers to the collection of pipes, pumps, nodes, and valves

that make up a water distribution networks [29]. The most prominent feature of

WNTR is its support for great system resilience analysis, specifically: (1) It contains a

multi-functional software platform for modeling different types of hydraulic condition

especially the disruptive incidents, and (2) It inherits the original Python advantage

of scientific computation including the employment of Python scientific computation

packages like numpy and pandas. The choice of Python means WNTR can be easily

combined with procedures for simulation data processing and analysis (i.e., analysis

of data streams) and studies involving AI or machine learning.

WNTR Software Framework. The WNTR Python package consists of multiple

subpackages with object-oriented software design patterns. Every small package is

made up of several modules that are .py files containing various classes with fields and

methods. Figure 4.2 present the simplified software framework of WNTR. Table 4.1

demonstrates the sub-packages’s description of WNTR. The core contents of WNTR

is the employment of sub-packages network and sim. The network subpackage

comprises with classes defining the basic structure of water network with various

43

Figure 4.2: Software architecture of WNTR.

44

Table 4.1: WNTR subpackages.

Subpackage Description

epanet Contains EPANET 2 compatibility functions for WNTR.

metrics Contains methods to compute resilience,including hydraulic,water quality,
water security,and economic metrics. Methods to compute topographic metrics
are included in the wntr.network.graph module.

network Contains methods to define a water network model, network controls, and graph
representation of the network.

scenario Contains methods to define disaster scenarios and fragility/survival curves.

sim Contains methods to run hydraulic and water quality simulations using the
water network model.

graphics Contains methods to generate graphics.

utils Contains helper functions.

Table 4.2: Select classes in the network subpackage.

Class Description

WaterNetworkModel Contains methods to generate water network models,including methods to
read and write INP fields,and access/add/remove/modify network components.
This class links to additional model classes which define network
components,controls,and model options.

Tank Contains methods to define tanks.Tanks are nodes with storage capacity.

Pipe Contains methods to define pipes.Pipes are links that transport water.

Pump Contains methods to define pumps.Pumps are links that increase hydraulic head.

Table 4.3: Select classes in the sim Subpackage.

Class Description

EpanetSimulator The EpanetSimulator uses EPANET 2 Programmer’s Toolkit to run demand-driven
hydraulic simulations and water quality simulations. When using the EpanetSimulator,
the water network model is written to an EPANET INP file which is used to run an
EPANET simulation.

WNTRSimulator The WNTRSimulator uses custom Python solvers to run demand-driven and pressure dependent
demand hydraulic simulation and includes models to simulate pipe leaks.

45

elements and also the control operation of it. And just like EPANET, WNTR water

network models can be built from EPANET INP files. WNTR provides round-robin

support for generation of INP files directly from water network models. The sim

subpackage define the classes to run the hydraulic and water quality simulation by

two kinds of simulators: the EpanetSimulator and the WNTRSimulator. The details

of classes defined in the subpackages network and sim are listed Table 4.2 and Table

4.3.

4.2 EPANET Software Architecture

Software architecture is a term that refers to the fundamental structures of a

software system and the discipline of creating such structures and systems. Each

structure comprises software elements, relations among them, and properties of both

elements and relations. The architecture of a software system is a metaphor, analo-

gous to the architecture of a building. It functions as blueprint for the system and

the developing project, laying out the tasks necessary to be executed by the design

teams.

4.2.1 Network and Hydraulic Model Class Hierarchies

Figures 4.3 and 4.4 show the organization of classes in the EPANET network

and hydraulic models, respectively. The network model is primarily responsible for

the setup, validation, and storage of water network system models comprising com-

ponents (e.g., tanks, pumps, junctions and pipes), patterns for demands for water at

46

2 ... *

Network

EPANET Network Model Network Model Class Hierarchy

Node

Link

Pump Valve

Tank

Rules

Controls

Patterns

Curves

Valve

Pump

Tank

Links

Nodes

0 ... *

0 ... *

1 ... *

0 ... *

1 ... *

0 ... *

0 ... *

1 ... *

Figure 4.3: EPANET network model. Left: organization of classes. Right: class
hierarchies.

Rules and Controls

SimulationLink

SimulationPump SimulationValve

Hydraulic Simulation Model Class Hierarchies

SimulationControl

SimulationRule

SimulationTank

SimulationNode

Figure 4.4: EPANET hydraulic model. Left: organization of classes for simulation
nodes and links. Right: rule and control classes.

47

junctions, curves for head-flow relationships in pumps, and controls and rules. The

right-hand side of Figures 4.3 shows the organization of classes used in the water

network simulation. Networks are modeled as assemblies of nodes and links. Tanks

are a specialized form of node. Pumps and valves are a specialized forms of link.

As illustrated in Figure 4.1, network models are transformed into hydraulic mod-

els for the purposes of simulation. The latter contain additional methods for the

evaluation of: (1) numerical gradients that are part of the numerical simulation, and

(2) checks to see if a serious violation of physical behavior has occurred. To keep the

book keeping of the program structure tidy, the class Node in network model traces to

the class SimulationNode in the hydraulic model. Some of the classes in the hydraulic

model (e.g., SimulationLink) contain references to their counterparts in the network

model (e.g., Link).

4.2.2 Software Architecture of EPANET in Whistle

The Java implementation of EPANET has been installed in Whistle as an appli-

cation (i.e., under the pathway src.whistle.application.epanet)

Figure 4.5 shows the architecture of EPANET. The class EpanetMVC defines

various kinds of methods used for calling the functions of building, simulation, visu-

alization and control of the water network. Loading the .INP file by InputParse class,

The Network class create the basic framework of water network consisting of data

structure storing network elements including pump, curve, rule etc, and also some

corresponding query functions.

48

F
ig

u
re

4.
5:

S
im

p
li
fi
ed

so
ft

w
ar

e
ar

ch
it

ec
tu

re
fo

r
E

P
A

N
E

T
in

W
h
is

tl
e.

49

// ---

// Main routine for hydraulic simulation ...

// ---

simulate() {

for i = 0; i <= no of time steps; i = i + 1) {

runHyd(); <-- Solve network hydraulics in a single time period ...

timeStep(); <-- Compute duration of next time step ...

}

}

// ---

// Solve network hydraulics in a single time step ...

// ---

boolean runHyd() {

computeDemands(); <-- find new demands

computeControls(); <-- find control actions ...

NetSolveStep nss = netSolve(); <-- Solve network equations

}

// ---

// Compute timeStep to advance simulation

// ---

long timeStep() throws ENException {

// Set default time step ...

// Revise time step based on smallest time to fill or drain a tank

tstep = SimulationTank.minimumTimeStep(nTanks, tstep);

// Compute minimum timestep based on control ...

tstep = SimulationControl.minimumTimeStep(...);

// Compute minimum timestep based on rules ...

SimulationRule.Result res = SimulationRule.minimumTimeStep(...);

tstep = res.step;

return tstep;

}

Figure 4.6: Pseudocode for computing the duration of a time step in hydraulic sim-
ulation.

50

public static Result minimumTimeStep(...,

List<SimulationRule> rules, List<SimulationTank> tanks, ...) {

// Find interval of time for rule evaluation

tnow = Htime;

tmax = tnow + tstep;

// Step through time, updating tank levels, until either

// a rule fires or we reach the end of evaluation period.

do {

Htime += dt1; // Update simulation clock.

SimulationTank.stepWaterLevels(tanks,.. dt1); // Find new tank levels.

// Check rules ...

int checkInt = check(fMap,pMap,rules,log,Htime,dt1,dsystem);

// Stop iteration if rules fire

if (checkInt != 0) break;

// Update time increment and actual increment

dt = Math.min(dt, tmax - Htime); dt1 = dt;

} while (dt > 0);

}

// ---

// Check which rules should fire at current time.

// ---

private static int check(..., List<SimulationRule> rules,Logger log, ...) {

// Start of rule evaluation time interval

long Time1 = Htime - dt + 1;

List<ActItem> actionList = new ArrayList<ActItem>();

for(SimulationRule rule : rules) {

boolean ruleActive = rule.evalPremises(fMap,pMap,Time1,Htime,dsystem);

updateActionList(rule,actionList, ruleActive);

}

int actionResult = takeActions(fMap,pMap,log,actionList,Htime);

return actionResult;

}

Figure 4.7: Pseudocode for computing the minimum permissible time step in Simu-
lationRule.

51

4.2.3 Step-by-Step Procedure for Hydraulic Simulation

Figure 4.6 contains high-level pseudocode for the procedure and logic required

to advance the hydraulic simulation by a time step. The logic for running one time-

step is: (1) compute demands (loads), (2) find control actions (if relevant), and (3)

compute the duration of the next time step. The timeStep() computes the largest

time step that can be taken without a tank overflowing (or becoming empty), or

violation of a control or rule occurring.

Figure 4.7 shows pseudocode for the lower-level processing of logic within Simu-

lationRule. The method minimumTimeStep(...) in SimulationRule (see Figure

4.4) computes the minimum time step needed to march forward with the simulation

without firing any rules. It also updates tank levels. The lower-level details of deter-

mining which rules should fire at a specified (current) time are handled by the method

check(). The main loop of check() systematically examines each of the rules to see

which of the premises evaluates to true, and needs to be added to an action list.

Finally, takeActions(..) implements actions (e.g., opening and closing links) on

the action list, and returns the number of actions executed. A positive number of

actions means that checkInt is non zero, and we have the permissible time step.

The logic for the evaluation of rules is deeply embedded within the EPANET

software, opaque and, frankly, flawed. For example, when the tankStatus() compu-

tation determines that a tank is overflowing (or has inadvertently becomes completely

empty), the adjoining links to the tank are temporarily closed. This, in turn, can

52

completely affect the distribution of flows that are possible in the hydraulic network.

A better computational strategy would be to use rules to prevent undesirable tank

states in the first place.

4.2.4 Representation and Evaluation of Rules

Understanding the implementation of rule-based control mechanisms in EPANET

is a prerequisite to extension formal decision making strategies to include factors that

extend beyond hydraulic network simulation. As a first step in this process, this

section summarizes the general format for representation of rules, and strategies for

evaluation of actions.

Representation of Rules. The fragment of code:

IF SYSTEM CLOCKTIME GREATERTHAN 8AM

AND SYSTEM CLOCKTIME LESSTHAN 6PM

AND TANK 1 LEVEL BELOW 12

THEN PUMP 2 STATUS IS OPEN

illustrates the specification of a simple rule in EPANET. Rules begin with premises,

a sequence of simple logical expressions. Simple logical expressions can be combined

with the operators AND and OR. When the premises evaluate to true, one or more

actions will be taken.

The language for EPANET rules is limited in the sense that it only knows

about system- and component-level entities of concern to the hydraulic simulation.

Clock time is an example of a system level entity. The status of tanks and links are

component-level concerns.

53

Condition Clause Format. The key words of condition clause include IF, AND,

OR. The condition clause in a Rule-Based Control takes the form of:

Object id attributes relation value

Action Clause Format. The key words of action clause include THEN, ELSE,

AND. The action clause in a Rule-Based Control takes the form of:

Object id STATUS/SETTING IS value, where:

object= a category of network object

id= the object’s ID label

attribute= an attribute or property of the object

relation= a relational operator

value= an attribute value

Note that only the IF, THEN key words are required, other words are optional.

Simple Example. Figure 4.8 shows a simple example of rule-based control state-

ments with notations of its elements.

Figure 4.8: Simple Rule Statements Example.

A completed rule usually contains several lines that could be either a condition clause

or action clause, e.g.,

54

IF condition 1
AND condition 2
OR condition 3
AND condition 4
etc.
THEN action 1
AND action 2
etc.
ELSE action 3
AND action 4
etc.

Assessment of Evaluation of Rules in EPANET. Each rule is parsed and pro-

cessed into its premise - action components. In the procedure for evaluation of rules,

each rules is classified as having premises that either evaluate to true or false. Actions

are taken on rules having premises that have evaluated to true.

As a first-cut to implementation of rules for a simulation program, EPANET does

what you would expect – it simply walks through the list of items on the action list

and takes action. If the overall effect corresponds to forward chaining of actions, then

this is purely accidental. EPANET does not have any formal support for forward and

backward chaining of rules.

55

4.3 Jena Semantic Models and Rules

4.3.1 Water Network Ontologies

In our project, the research object and scopes are on the water network. In other

quarters, the basis for conducting research is the development of the knowledge-based

representation of water supply networks.

At first, it is obvious that we create the water network ontology class which

is a generalized research object. After that, we combine the knowledge both from

the software structure of EPANET (Figure 4.5) and system data model to create an

abstract component ontology class with several concrete network ontology subclasses

like: pump ontology class and tank ontology class which have the subclass relationship

with the component ontology class. In the light of requirements of whistle software

visualization and rule-based control mechanism, we also define the functional on-

tology classes like: shape ontology class and rule ontology class that describe the

shape information for visualizing the water network components and rule sentences

separately.

Secondly, with the similar working processes, the data properties are defined for

each ontology class to describe the feature or practical data of them, which are used

to water network simulation or visualization. As for the object properties for each

ontology class, it pictures the logical relationship among all kinds of ontology classes

later. Figure 4.9 shows a simplified example of water network ontology, the selected

56

ontology statements are as follows:

Water

Network

Node

Component

Tank

Pump

subclass of

subclass of

hasAuthor

hasDate

hasNode

hasComponent

hasType

hasID

hasStatus

Figure 4.9: Simplified water network ontology.

• Water Network has component.

• Pump has status.

• Tank has initial level.

• Pump is the subclass of component.

• Tank is the subclass of component.

4.3.2 Populating Semantic Graphs with Individuals

The visitor software design pattern is used for data retrieval (and transfer) in both

the development of semantic models, and by the Whistle backend software platform.

57

One such use is in the retrieval of data associated with the individuals of a semantic

model. Figure 4.10 shows an example of employment of the visitor design pattern in

our project. In this example, we have a total of three Java classes:

Figure 4.10: Software Architecture of Visitor Design Pattern.

• SystemDataModelElementVisitor.java – This is an interface used for declaring the

visit operation for all types of visitable classes.

• SystemDataModelEpanetVisitor.java – This is a concrete visitor for visiting the

data for EPANET simulation. It not only implements all the visit methods

declared in the visitor interface, but also create its specific visit methods.

• WaterNetworkDataModel.java – It implement the visitable interface and define the

accept operation. The visitor object is passed to this object using the accept

operation.

58

Chapter 5: Case Studies

To illustrate the capabilities of our experimental software architecture, this chap-

ter presents three case study problems. Case Study 1 describes basic semantic in-

teractions between a pump and a water tank. Case Study 2 describes simulation

modeling and rule-based control of a simple water network system in the Whistle

implementation of EPANET. Case Study 3 covers semantic modeling for the simple

water network system introduced in Case Study 2.

5.1 Case Study 1: Evaluation of Water Tank and Water Pump Oper-

ations

This case study explores the interaction among the elements in water network.

One of the most important problem presented in water network is the status or

operation change of one element based on the status of other elements. From this

perspective, the interaction relationship among the water network elements can be

divided into two categories: one-to-one and one-to-many relationships. The one-to-

one relationship refers to changes in one object’s feature that will only be affected

by another object. As a case in point, during the operation of pump, the stop of

59

pump can be uniquely determined by the factor that if the tank capacity is full. A

slightly more complicated relationship is the many-to-one relationship which stands

for one object’s feature can be influenced by multiple factors. For instance, the

operational status of pump depends not only on the tank’s capacity and also the

external environmental conditions, like: system time and weather. Figure 5.1 shows

these two relationships.

Figure 5.1: One-to-one and many-to-one rules logic relationships.

The above graph is the one-to-one relationship example for pump state we men-

tioned before. The bottom graph of one-to-many relationship demonstrates the

pump’s flow rate are affected by other three factors: the pump’s water pressure,

pump’s efficiency curve and pump connected pipe’s type. Within these three factors,

pump’s output water pressure directly decide the volume velocity of pump’s flow rate.

The pump’s efficiency curve can decide the flow rate when pump’s efficiency retain

60

the maximum. The pipe’s type limit the pump’s flow rate. Necessary conditions

for starting the pump are decided by the tank’s capacity and system is in working

hours. With the logical relationship among the water networks and the develop-

ment of semantic modeling, we can control the working status of specific elements

automatically.

5.1.1 Water Tank and Pump Ontology Models

Ontology data models are comprised of classes and their data and object proper-

ties, and the relationships among them. The data properties define the characteristics

of classes and the object properties help to describe the relationship or interaction

among the classes. In our project, we use the Web Ontology Language (OWL) to

define ontology data model. Complete water network ontology data model can be

found in Appendix C.

Figures 5.2 and 5.3 are detailed visualizations of the tank and pump ontology

models, respectively. Since the pump and tank are two components types in a water

network, they are also part of the same semantic model framework. The tank ontology

has water level related data properties and area. The max level and min level of decide

the volume capacity of tank. In the middle of that two levels, current level is used

for monitoring the water level of tank constantly so as to change the status of tank.

The pump ontology’s data properties mainly has an effect to adjust the operation

of pump itself. The output water pressure is directly linked to the flow rate. The

pump’s curve can well define its operation efficiency.

61

Figure 5.2: Tank ontology model.

Figure 5.3: Pump ontology model.

62

In these semantic ontology graphs, it totally presents seven ontology classes:

Weather, Component, Attribute, Valve, Pump, Tank and Pipe. Ontology compo-

nent’s two data properties describe its status and type, which inherited by subclass

ontology valve, pump, tank and pipe. The pipe ontology has type data property

based on its material. Within the water network system, the network components

also have to be interacted with other factors, for example the clock time of Attribute

ontology, the temperature, season and condition data properties of Weather ontology.

Instantiating the Tank and Pump Ontology Model

Figure 5.4 illustrates the process of generating pump and tank semantic models.

Instantiation of ontology model refers to create the ontology individuals with the same

properties but provided the real data from the data model which load the data from

XML files. Visitor design pattern are used here to retrieve only the specific needed

data from data model to create ontology individuals. At the same time, different

kinds of rules are imported to the Jena ontology semantic models.

5.1.2 Pump and Tank Jena Rules

The semantic ontology model provides the framework of knowledge representation

for specific system, but if can not directly achieve the function of evaluating the

properties of classes and the relationships among the classes. In order to realize

the rule-based control mechanism, importing the domain-specific rules into semantic

model which defining the logical relationships among classes with their properties.

63

Figure 5.4: Generation of pump and tank semantic models.

With the semantic model reasoner and imported rules, graph transformation can be

achieved. In this project, Jena rules are used to define the domain-specific rules.

Figure XXXX (??) shows the simplified description of rules.

Pump Rules. The pump rules here mainly focus on the pump’s status or charac-

teristics control based on the pump’s rest of features. In other words, it defines the

logical relationship among the pump’s data properties. Figure 5.5 demonstrates a list

of pump rules. Within them, the pump’s one property is controlled by others. For

instance, pump’s pressure and flow rate are mutual-decided by two built-in functions

getFlowRate() and getPressure() which based on the mathematical relationships be-

tween them. In rule 03, a built-in function getMEFlowRate() is created for computing

the maximum efficiency flow rate, which late used for updating the flow rate of pump.

64

@prefix wn: <http://www.ontologies.org/waterNetwork#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Identify a component which is a pump ...

[pump: (?co rdfs: type wn: Component) (?co wn: hasType ?t)

Equal(?t, ’Pump’) -> (?co rdfs: type wn: Pump)]

// Rule 02: Control Pump’s flow rate and pressure based on their relationship

[pressure: (?pu rdfs:type wn: Pump) (?pu wn: hasPressure ?pr)

getFlowRate(?pr,?fl) -> (?pu wn: hasFlowRate ?fl)]

[flow rate: (?pu rdfs: type wn: Pump) (?pu wn: hasFlowRate ?fl)

getPressure(?fl,?pr) -> (?pu wn: hasPressure >pr)]

// Rule 03: Control Pump’s flow rate based on efficiency curve ...

[curve: (?pu rdfs:type wn: Pump) (?pu wn: hasCurve ?cu)

getMEFlowRate(?cu, ?fl) -> (?pu wn: hasFlowRate ?fl)]

Figure 5.5: Abbreviated list of Jena rules for transformation of the Pump Model.

Tank Rules. The tank’s status commonly connected to its various kinds of water

levels. Figure 5.6 list a set of tank rules. Basically, the tank’s status consists of

”Full”, ”Not Full” and ”Lack”, which are corresponded to three current water level

conditions. In rule 02, the status ”Full” and ”Lack” are determined by comparison

with tank’s maximum and minimum water levels. Apart from that, in light of seasonal

change, maximum and minimum water levels are adjusted.

WaterNetwork Components Interaction Rules

In this part, rules related to elements interaction are described. In other words,

the basic elements that make up the water network are mutual-interacted with each

other. Figure 5.10 shows a list of water network elements interaction examples. As a

65

@prefix wn: <http://www.ontologies.org/waterNetwork#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Identify a component which is a tank ...

[tank: (?co rdfs: type wn: Component) (?co wn: hasType ?t)

Equal(?t, ’Tank’) -> (?co rdfs: type wn: Tank)]

// Rule 02: Update tank’s status based on current water level tank

[statusFull: (?tn rdfs:type wn: Tank) (?tn wn: hasCurrentLevel ?cl)

(?tn wn:hasMaxLevel ?ml) Equal(?cl,?ml) -> (?tn wn: hasStatus ’Full’)]

[statusLack: (?tn rdfs:type wn: Tank) (?tn wn: hasCurrentLevel ?cl)

(?tn wn:hasMinLevel ?mi) lessThan(??cl,?mi) -> (?tn wn: hasStatus ’Lack’)]

// Rule 03: Update tank’s maximum water level based on season ...

[maximumSpring: (?tn rdfs:type wn: Tank) (?we rdfs:type wn: Weather)

(?tn wn: hasSpringLevel ?sl) (?we wn: hasSeason ?se)

Equal(?se,’Spring’) -> (?tn wn: hasMaxLevel ?sl)]

...

Figure 5.6: Abbreviated list of Jena rules for transformation of the Tank Model.

66

case in point, pump’s status are decided by tank’s volume. At the same time, pump’s

operational status is controlled by valve. Additionally, the different pipe material

types correspond to various pump’s upper pressure limit, which is showed in rule 04.

@prefix wn: <http://www.ontologies.org/waterNetwork#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Propagate class hierarchy relationships ...

[rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x,?y)

(?a rdf:type ?x) -> (?a rdf:type ?y)]

// Rule 02: Control the pump status based on tank status ...

[pump01: (?tn rdf:type wn:Tank) (?pu rdf:type wn:Pump)

(?tn wn: hasStatus ?st) Equal(?st,’Full’) -> (?pu wn: hasStatus ’Closed’)]

[pump02: (?tn rdf:type wn:Tank) (?pu rdf:type wn:Pump)

(?tn wn: hasStatus ?st) notEqual(?st,’Full’) -> (?pu wn: hasStatus ’Opened’]

// Rule 03: Control valve status based on pump status ...

[valve02: (?pu rdf:type wn:Pump) (?va rdf:type wn:Valve)

(?pu wn: hasStatus ?st) Equal(?st,’Opened’) -> (?va wn: hasStatus ’Closed’)]

// Rule 04: Control the pump pressure based on pipe material type ...

[pressurelimit(pvc): (?pu rdf:type wn:Pump) (?pi rdf:type wn:Pipe)

(?pi wn: hasPipeType ?pt) Equal(?pt,’pvc’) -> (?pu wn: hasPressureLimit 100)]

Figure 5.7: Abbreviated list of Jena rules for transformation of the water network
elements.

5.1.3 Simulation Steps of Water Network Semantic Model

In this section, concrete procedures of modeling and simulation of semantic graph

are explained. Firstly, the empty water network semantic model framework are built

by employment of JenaWaterNetworkSemanticModel with the process of loading on-

67

tology data model (Water-Network.owl) in its constructor. Secondly, the created

w01Visitor by WaterNetworkDataModelJenaVisitor will visit and retrieve the data

from water network data model and then populate them into semantic graph. This is

the visitor design pattern in action. Thirdly, XML files are imported to created water

network data model. Next, the water network semantic graph are filled with individ-

uals which visited water network data model. Finally, various rules are imported to

semantic model and then execute it for rule-based control graph transformations.

// Step 01. Create the empty semantic graph model, then load ontoloies.

JenaWaterNetworkSemanticModel w01 = new JenaWaterNetworkSemanticModel();

// Step 02. Create visitor object model.

WaterNetworkDataModelJenaVisitor w01Visitor = new WaterNetworkDataModelJenaVisitor();

w01_visitor.addSemanticModel(w01);

// Step 03. Get data from XML files.

WaterNetworkDataModel wdm = new WaterNetworkDataModel();

wdm.getData("data/WaterNetwork04.xml")

// Step 04. Populate semantic models with individuals.

wdm.accept(w01_visitor); // Semeantic model visits the data model ...

// Step 05. Add rules. Then execute.

wdm.addRules("src/demo/rules/pump.rules",

src/demo/rules/tank.rules",

src/demo/rules/elementsInteraction.rules")

wdm.executeRules();

Figure 5.8: Fragment of Whistle for instantiating water network data and semantic
models, Jena visitors, and loading and executing domain-specific rules.

In order to clearly present the outcomes of execution for Jena reasoner with

68

rules. We create the selection object to query the semantic model and print the

corresponded statements. The followings are the query process for updating the

pump’s status based on the tank’s status and the statements printed results. We

query and print the tank and pump’s status before and after the rules execution.

// Step 01. Create the query selector s1, s2 and print the statement ...

Selector s1 = new SimpleSelector((Resource) wn.pump01,

(Property) wn.hasStatus, (RDFNode) null);

wn.printStatements("Pump 01 ...", s1);

Selector s2 = new SimpleSelector ((Resource) wn.tank01,

(Property) wn.hasStatus, (RDFNode) null);

wn.printStatements("Tank 01 ...", s2);

// Step 02. Add rules. Then execute ...

wn.addRules("src/demo/rules/pump.rules");

wn.executeRules();

// Step 03. Create the query selector s2 and print the statement ...

Selector s3 = new SimpleSelector ((Resource) wn.pump01,

(Property) wn.hasStatus, (RDFNode) null);

wn.printStatements("Pump 01 ...", s3);

Selector s4 = new SimpleSelector ((Resource) wn.tank01,

(Property) wn.hasStatus, (RDFNode) null);

wn.printStatements("Tank 01 ...", s4);

Figure 5.9: Fragment of Whistle code querying and printing the initial semantic graph,
loading and executing the pump rules, and then selecting and printing statements in
modified semantic graph.

Followings are the results of status’ updating outcomes. We can see the status

of pump is changed from Opened to Closed by the semantic graph transformation.

69

[java]

[java] Before execution of rules ...

[java]

[java] Statements: Pump 01 ...

[java] ===

[java] Statement[1]

[java] Subject : http://www.ontologies.org/waterNetwork#pump01

[java] Predicate: http://www.ontologies.org/waterNetwork#hasStatus

[java] Object : "Opened"

[java] ===

[java]

[java] Statements: Tank 01 ...

[java] ===

[java] Statement[2]

[java] Subject : http://www.ontologies.org/waterNetwork#tank01

[java] Predicate: http://www.ontologies.org/waterNetwork#hasStatus

[java] Object : "Full"

[java] ===

[java]

[java] After execution of rules ...

[java]

[java] ===

[java] Statements: Pump 01 ...

[java] ===

[java] Statement[1]

[java] Subject : http://www.ontologies.org/waterNetwork#pump01

[java] Predicate: http://www.ontologies.org/waterNetwork#hasStatus

[java] Object : "Closed"

[java] ===

[java]

[java] Statements: Tank 01 ...

[java] ===

[java] Statement[2]

[java] Subject : http://www.ontologies.org/waterNetwork#tank01

[java] Predicate: http://www.ontologies.org/waterNetwork#hasStatus

[java] Object : "Full"

[java] ===

Figure 5.10: Snapshot of semantic model for tank and pump status, before and after
execution of Jena rules.

70

5.2 Case Study 2: Simple Water Network System (Simulation)

This case study demonstrates how a water network data model is imported into

the Whistle implementation of EPANET, simulated for 24 hours, and evaluated with

respect to rules for controlling the minimum and maximum permissible water level in

a storage tank.

5.2.1 Problem Statement

Figure 5.11 is an elevation view of the simple water network system. The network

is simple in the sense that there is one reservoir, one storage tank, one pump, four

junctions (that place demands on water supply), and one control to regulate water

level in the storage tank.

Reservoir

Sensor

Pump

Water Tank

Control

Elevation: 700 ft.

Elevation: 720 ft.

Elevation: 600 ft.

Junction 4

Junction 1
Junction 2

Junction 3

Figure 5.11: Elevation view of simple water network system.

The model assumes that water level in the reservoir will remain constant (at head

600 ft). The base of the water storage tank is at elevation 700 ft. And the maximum

depth of water in the storage tank is 20 ft. A pipe with diameter four inches connects

71

the reservoir to the storage tank. The pump is modeled with a head-flow performance

curve that interpolates the data points:

Flow (GPM) Head (ft)

--

0.0 150.0

2000.0 100.0

4000.0 60.0

--

Notice that the 150 ft head-lift specification of the water pump is compatible with

the topography of the water network system.

During a 24 hr time cycle (i.e., 12 am to 12 pm), Junctions 1 through 4 have

behavior defined by profiles of water demand that vary between 6.0 GPM (off-peak

demand) and 30.0 GPM (peak demand).

In the public-domain release of EPANET, pump operations are temporarily closed

when either the water level in the tank falls below zero, or the water level exceeds the

maximum capacity of the tank. These two rules are hard coded into the EPANET

software. This case study employs to rules to regulate the water level of the tank,

while also satisfying profiles of customer demand. The logic of the control is very

simple:

Rule R01: If the water level in the storage tank falls below 3 ft, then the water

pump will be turned on.

Rule R02: If the water level in the storage tank exceeds 17 ft, then the water pump

will be turned off.

No attempt is made to optimize scheduling of the pump operations to minimize energy

72

consumption and/or the cost of pumping operations.

5.2.2 Water Network System Data Model

State-of-the-art approaches to water network simulation with EPANET employ

an INP (input) data model format, dedicated to the requirements of EPANET simu-

lation. Here, we need a data format that can support multiple purposes: (1) provide

data to EPANET for simulation, (2) provide data to Whistle for simulation and vi-

sualization (e.g., see Figure 5.11), and (3) provide data to Apache Jena for semantic

model and reasoning.

To this end, Appendix A contains a slightly abbreviated description of XML for

the network components and their properties and connectivity, prescribed demands on

water supply, and rules to limit minimum/maximum levels of water level in the storage

tank. The system data model is capable of serving these multiple purposes primarily

because of: (1) the attribute (<attribute>) tags embedded inside the node, way,

relation, component and behavior tags, and (2) the use of visitor design patterns to

retrieve problem-specific data. Figure 5.12 shows, for example, fragments of <node>

and <way> data for the section of pipeline connecting Junction 4 (Node 008) to the

Water Tank (Component C03). The <node> tags contain attribute data on elevation,

demand and pattern – these detail are employed by the EPANET hydraulic network

simulation. Similarly, the <way> tag contains references to sequences of nodes 008

through 011, and engineering parameters defining pipeline properties. The attribute

keys end1 and end2 are endpoints of link segments in EPANET.

73

<node ID = "008" x = "370.0" y = "345.0">

<description text="Network Junction 4" />

<attribute key = "type" value = "Junction" />

<attribute key = "elevation" value = "660" units ="ft" />

<attribute key = "demand" value = "30.0" />

<attribute key = "pattern" value = "P001" />

... details of junction (rectangle) shape removed ...

</node>

... details of nodes 009 and 010 removed ...

<node ID = "011" x = "420.0" y = "380.0">

<attribute key = "type" value = "Point"/>

<attribute key = "elevation" value = "660" units ="ft" />

</node>

<way ID="006">

<description text="Connect Junction 4 to Water Tank." />

<attribute key = "type" value = "Pipeline"/>

<!-- Connectivity of pipe ends -->

<attribute key = "end1" value = "008" />

<attribute key = "end2" value = "C03" />

<!-- Sequence of nodal coordinates -->

<node ID="008" />

<node ID="009" />

<node ID="010" />

<node ID="011" />

<!-- Engineering parameters -->

<attribute key = "diameter" value = "4" />

<attribute key = "roughness" value = "100" />

<attribute key = "minorloss" value = "0" />

<attribute key = "status" value = "Open" />

... details of pipeline (linestring) shape removed ...

</way>

Figure 5.12: Abbreviated definition of pipeline segment connecting Junction 4 (node
008) to the water storage tank (component C03).

74

5.2.3 Specification of Nodal Demands

The following fragment of Whistle code:

<!-- === -->

<!-- Load pattern for time-intervals of consumer demand (24 hrs) ... -->

<!-- === -->

<behavior ID = "P001" type = "Pattern">

<description text = "Consumer demand load pattern (24 hrs)" />

<attribute key = "multipliers" value = "0.20 0.20 0.20 0.30 0.40 0.50

0.70 0.80 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.80 0.70 0.50 0.20"/>

</behavior>

<!-- === -->

<!-- Load pattern for pump operations (that repeats) ... -->

<!-- === -->

<behavior ID = "P002" type = "Pattern">

<description text = "Pattern for pump operations" />

<attribute key = "multipliers" value = "1.0 1.0 1.0 1.0" />

</behavior>

defines patterns of behavior for: (1) consumer (nodal) demand over a 24 hr time

period, and (2) pump operations. As illustrated in Figure 5.13, we assume that

consumer nodal demands will peak during daylight/working hours. For demonstration

purposes, Junctions 1 through 4 are assumed to have a base demand of 30 GPM. The

actual demand at a particular time is the base demand (30 GPM) times the multiplier

value for pattern P001.

The pattern for pumping operations (P002) is specified for time intervals lasting

4 hrs; during a 24 simulation time frame, the pattern for pumping operations will

automatically repeat six times. A multiplier value of one indicates a desire for the

pump to operate. In practice, this pattern should be over-ruled by controls and rules.

75

Off−Peak Demand Peak Demand

Figure 5.13: Plot of nodal demand (GPM) versus time (hours).

5.2.4 Specification of Water Network Rules

The System Data Model (see Section 2.4.3) provides computational support for

the representation and evaluation of mathematical constraints. Three common types

of constraint are inequality, equality and logical expressions. Here, we make a minor

extension of the framework to include textual descriptions of rules that can be parsed

into the EPANET data model. To illustrate this capability, the fragment of Whistle

code:

<constraint ID = "R01" type="Rule">

<description text="Open pump (turn on) when tank water level is low" />

<attribute key = "expression" value = "IF TANK C03 LEVEL BELOW 3.0

THEN PUMP C04 STATUS IS OPEN"/>

</constraint>

<constraint ID = "R02" type="Rule">

<description text="Close pump (turn off) when tank water level is high" />

<attribute key = "expression" value = "IF TANK C03 LEVEL ABOVE 17.0

THEN PUMP C04 STATUS IS CLOSED"/>

76

</constraint>

defines rules for: (1) turning the pump on when the tank water level falls below 3 ft,

and (2) turning the pump off when the water level reaches below 17 ft.

5.2.5 Assembly and Execution of Simulation Model in Whistle

The step-by-step procedure for assembly and execution of the EPANET simula-

tion model in Whistle is as follows:

// ==

// Exercise EPANET model ...

// ==

import whistle.application.epanet.EpanetMVC;

import whistle.gui.chart.AreaChart;

import whistle.util.system.model.SystemDataModel;

import whistle.util.system.visitor.SystemDataModelEpanetVisitor;

import whistle.util.data.Curve;

import whistle.util.data.DataModel;

program ("Case Study 2: Simulate Small Water Network with EPANET") {

// Step 01: Create EpanetMVC and empty EPANET network model ...

epanet01 = EpanetMVC();

epanet01.createNetwork();

// Step 02: Import and print data model for small water network ...

sdm01 = SystemDataModel();

sdm01.getData ("data/umd-water-network03.xml");

print sdm01.toString();

// Step 03: Create epanet model visitor ...

epavisitor01 = SystemDataModelEpanetVisitor();

epavisitor01.add(epanet01);

// Step 04: Populate epanet model with system data model info

77

sdm01.accept (epavisitor01);

// Step 05: Compile and print EPANET network model ...

epanet01.compile();

print epanet01.toString();

// Step 06: Create hydraulic simulation model ...

epanet01.createSimulationModel();

// Step 07: Run hydraulic simulation model ...

epanet01.runHydraulicSimulation();

// Step 08: Build models of network performance ...

epanet01.networkPerformance();

epanet01.buildPerformanceCurves();

// Step 09: Transfer network performance to data models ...

dm01 = epanet01.getNodeDemands();

dm01.setTitle("Node Demand (GPM) versus Time (hours)");

dm01.setYLabel("Flow Rate Q (GPM)");

dm01.setXLabel("Time (hours)");

print dm01.toString();

... etc ...

// Step 10: Create area charts of network performance versus time ...

jfx01 = AreaChart();

jfx01.setTitle("Nodal Demand (GPM) versus Time (hours)");

jfx01.setSize(1000, 600);

jfx01.setXLabel("Time (hour)");

jfx01.setYLabel("Nodal Demand (GPM)");

jfx01.setXRange(0.0, 24.0);

jfx01.setYRange(0.0, 40.0);

// Transfer data models to plot component ...

jfx01.addCurve("Node04");

c01 = dm01.getCurve ("Junction(004)");

nsteps = c01.getNoPoints();

for (i = 0; i < nsteps-1; i = i + 1) {

x1 = c01.getX(i); y1 = c01.getY(i);

x2 = c01.getX(i + 1);

jfx01.addPoint(x1, y1);

jfx01.addPoint(x2, y1);

78

}

// Display area chart ...

jfx01.display();

... etc ...

print "--- ";

print "--- ==";

print "--- Finished !! ... ";

}

The step-by-step procedure begins with import of the appropriate Java classes into

Whistle. For example, the statement:

import whistle.application.epanet.EpanetMVC;

makes methods in the class whistle.application.epanet.EpanetMVC available to

the Whistle script. Steps 1 and 2 show the flow of computations needed to create an

empty EPANET network model, and load the contents of umd-water-network03.xml

into the System Data Model. An EPANET system data model visitor is created in

Step 3. In Step 4, the EPANET system data model visitor visits the system data

model and extracts the data needed to populate the EPANET network model. The

compilation procedure (Step 5) resolves references (i.e., connects) among the various

data model elements.

Figure 5.14 shows a side-by-side comparison of the system data model and

EPANET network models. In the system data model, pipeline profiles are mod-

eled as sequences of nodes within ways (<way>). EPANET simplifies the geometry

79

Pipe 3

Pipe 2

Pipe 6

EPANET Network Model View

Reservoir (C01)

System Data Model View

Junction 2

Junction 3

Junction 4

Pump (Component)

Junction 1

Water Tank (CO3)

Tank (Node)

Junction 1

Junction 2

Node 1

Node 1

Node 11

Node 8
Junction 3

Junction 4

Pipe 5

Pump (Link)

Reservoir (Node)
Pipe 4

Figure 5.14: Side-by-side comparison of system data model and EPANET network
model views.

by considering only the endpoints of link segments. Hence, while the former has

11 nodes, the EPANET network has only 8 nodes. The system data model models

pumps, reservoirs and tanks as components. EPANET models tanks and reservoirs

as tanks, which, in turn are extensions of the class node. EPANET models pumps as

an extension of the class link.

Steps 6 and 7 are dedicated to creation and execution of the hydraulic simulation

model. It is important to notice that at this point, the entire time-stepping pro-

cedure is embedded within epanet01.runHydraulicSimulation(). Future versions

will provide support for elaboration of time-stepping procedures from the Whistle

script. By default, EPANET exports results of the hydraulic simulation to a data

file. The methods networkPerformance() and buildPerformanceCurves() print

summaries of the hydraulic simulation and assemble data models of water network

system performance. In Steps 9 and 10, curves of network performance are transfered

data model curves, which, in turn, are transfered to JavaFX charts.

80

5.2.6 EPANET Simulation Results

Figure 5.15 shows the time-history of water depth in the tank (ft) versus time

(hours), along with intervals of time where the pump status is on and off.

Rule R02

Rule R01

Figure 5.15: Plot of water depth in tank (ft) versus time (hours).

When the simulation begins (12 am) the demand for water is off-peak, and the tank

water level is very low (2 ft). The pump takes approximately 4 hour to raise the

water level depth up to 17 ft, whence Rule R02 is activated and the pump is closed.

From 4 am to 11 am the water is removed from the tank (due demands at Junctions

1 through 4) and the pump is turned back on when Rule R01 is activated. the cycle

repeats during the latter half of the day.

Figures 5.16 and 5.17 show flows in/out of the reservoir and water storage tank,

and the corresponding flows along pipes. Notice that when the pump is on, water is

81

Pump Off Pump OffPump On Pump On

Figure 5.16: Plot of tank and reservoir demand (GPM) versus time (hours).

Figure 5.17: Plot of pipe and pump flow (GPM) versus time (hours).

82

drawn from the reservoir to satisfy both the demand for water at the junctions and

fill the storage tank. Turning the pump off closes the link connecting nodes 2 and 3

in the EPANET model. This forces water to be extracted from the tank to satisfy

demands by Junctions 1 through 4.

83

5.3 Case Study 3: Simple Water Network System (Semantic Model)

The purpose of Case Study 3 is to systematically assemble an Apache Jena

Semantic Model for the simple water network system (see Figure 5.11). Rule-based

control is applied for the two tank rules discussed in Case Study 2. The development

process includes the following steps: (1) process of building semantic model, (2) simple

query of existed statements, and (3) evaluation of Jena rule-based control mechanism.

5.3.1 Manual Synthesis of Jena Semantic Model + Rules

To simplify the development process, the semantic graph stores only ontology

classes and associated data/object properties directly related to the evaluation of

water network rules. Two steps are needed to manually create the classes and par-

ticipating data properties, and then populate the semantic graph with individuals.

Step 1: Create Ontology and Data Properties. The manual specification of

classes and data properties is encapsulated in the method buildOntology():

public void buildOntology() {

// Define Classes and data properties ...

waterNetwork = model.createClass(ns + "WaterNetwork");

component = model.createClass(ns + "Component");

pump = model.createClass(ns + "Pump");

tank = model.createClass(ns + "Tank");

elementsStatus = model.createClass(ns + "ElementsStatus");

// Define the relationship among classes ...

component.addSubClass (pump);

component.addSubClass (tank);

84

// Create data and object properties for the class WaterNetwork ...

hasComponent = model.createObjectProperty(ns + "hasComponent");

hasComponent.setDomain(waterNetwork);

hasComponent.setRange(component);

hasStatus = model.createDatatypeProperty(ns + "hasStatus");

hasStatus.setDomain(component);

hasStatus.setRange(XSD.xstring);

... source code removed ...

}

Figure 5.18 shows the hierarchy of classes and data properties:

Figure 5.18: Simple Water Network Graph.

Step 2: Add Individuals to Semantic Graph. In semantic modeling, individ-

uals are the counterpart of objects in object-oriented programming. The method

85

addIndividuals():

public void addIndividuals() {

// Add pump01, tank01, w01, e01 to the model ...

pump01 = pump.createIndividual(ns + "pump01");

tank01 = tank.createIndividual(ns + "tank01");

// Create statement "pump01 has status Opened" ...

Literal statusOpen = model.createTypedLiteral("Opened", XSDDatatype.XSDstring);

Statement pumpStatus = model.createStatement(pump01, hasStatus, statusOpen);

// Create statement "tank01 has max level 17.0" ...

Literal maxLevel = model.createTypedLiteral("17.0", XSDDatatype.XSDdouble);

Statement tankMaxLevel = model.createStatement(tank01, hasMaxLevel, maxLevel);

// Create statement "tank01 has min level 3.0" ...

Literal minLevel = model.createTypedLiteral("3.0", XSDDatatype.XSDdouble);

Statement tankMinLevel = model.createStatement(tank01, hasMinLevel, minLevel);

// Add statements to semantic model ...

model.add(pumpStatus);

model.add(tankMaxLevel);

model.add(tankMinLevel);

}

creates one pump (pump01) and one tank (tank01), sets the pump status to open

(which means the pump is operating), and two statements for permissible minimum

and maximum values of water level.

A simplified test program implementation will call these two methods as follows:

TestWaterNetwork wn = new TestWaterNetwork();

wn.buildOntology();

wn.addIndividuals();

86

Step 3: Add Rules. With the ontologies, data properties and individuals in place,

rules can be written to keep the water level in a tank within permissible bounds.

// Rule 01: Update the pump status based on the tank’s current water level ...

[tank01: (?p rdf:type wnw:Pump) (?t rdf:type wnw:Tank) (?t wnw:hasCurrentLevel ?c)

(?t wnw:hasMinLevel ?mi) (?p wnw:hasStatus ?ps) lessThan(?c, ?mi) ->

drop(4) (?p wnw:hasStatus "Open")]

[tank02: (?p rdf:type wnw:Pump) (?t rdf:type wnw:Tank) (?t wnw:hasCurrentLevel ?c)

(?t wnw:hasMaxLevel ?ma) (?p wnw:hasStatus ?ps) greaterThan(?c, ?ma) ->

drop(4) (?p wnw:hasStatus "Closed")]

Jena rules are evaluated left to right. Statements to the left of the arrow are premises;

those to the right of the arrow are actions. In English, rule tank01 says: If ?p and ?t

are of type Pump and Tank, respectively, and the current water level in the tank (?c)

is less than the permissible minimum value (?mi), then drop (remove) the statement

(?t wnw:hasMinLevel ?mi) from the model, and replace it with (?p wnw:hasStatus

”Open”). In other words, if the current water level in the tank is too low, then turn

the pump on. Rules tank01 and tank02 are the Jena Rules counterpart of rules R01

and R02 in Case Study 2.

5.3.2 Exercising the Jena Semantic Model + Rules

The section exercises the Jena Semantic Model and Rules in a four-step procedure:

(1) query the condition of the pump and tank, (2) dynamically update the current

water level of tank, (3) load rules into the model and execute, and (4) query the

87

modified semantic graph for condition of pump and tank and to check the execution

result. A user-defined function changeWaterLevel() simulates a time sequence of

changes to the water level.

Step 1: Query Condition of Tank and Pump. The fragment of code:

Selector s1 = new SimpleSelector((Resource) wn.tank01,

(Property) null, (RDFNode) null);

Selector s2 = new SimpleSelector((Resource) wn.pump01,

(Property) wn.hasStatus, (RDFNode) null);

wn.printStatements("Tank 01...", s1);

wn.printStatements("Pump 01...", s2);

queries the semantic graph for statements relating to tank (tank01) and pump (pump01)

resources. The printed output is as follows:

Statements: Tank 01...

===

Statement[1]

Subject : http://www.ontologies.org/waterNetwork#tank01

Predicate: http://www.ontologies.org/waterNetwork#hasCurrentLevel

Object : "2.0^^http://www.w3.org/2001/XMLSchema#double"

Statement[2]

Subject : http://www.ontologies.org/waterNetwork#tank01

Predicate: http://www.ontologies.org/waterNetwork#hasMinLevel

Object : "3.0^^http://www.w3.org/2001/XMLSchema#double"

Statement[3]

Subject : http://www.ontologies.org/waterNetwork#tank01

Predicate: http://www.ontologies.org/waterNetwork#hasMaxLevel

Object : "19.0^^http://www.w3.org/2001/XMLSchema#double"

Statement[4]

Subject : http://www.ontologies.org/waterNetwork#tank01

Predicate: http://www.ontologies.org/waterNetwork#hasInitialLevel

Object : "2.0^^http://www.w3.org/2001/XMLSchema#double"

Statement[5]

Subject : http://www.ontologies.org/waterNetwork#tank01

Predicate: http://www.ontologies.org/waterNetwork#hasStatus

Object : "NotFull"

Statements: Pump 01...

88

===

Statement[1]

Subject : http://www.ontologies.org/waterNetwork#pump01

Predicate: http://www.ontologies.org/waterNetwork#hasStatus

Object : "Opened"

===

Here we see that the initial water level in the tank is 2 ft and the pump status is

Opened (i.e., the pump is on).

Step 2: Dynamically Update Water Level in Tank. The fragment of code:

wn.changeCurrentLevel();

dynamically updates the water level in the tank.

Step 3: Load Rules into Semantic Model and Execute. The fragment of code:

wn.addRules();

wn.executeRules();

adds rules to the semantic model and then executes them.

Step 4: Query Modified Semantic Graph. The fragment of code:

Selector s3 = new SimpleSelector((Resource) wn.tank01,

(Property) wn.hasCurrentLevel, (RDFNode) null);

Selector s4 = new SimpleSelector((Resource) wn.pump01,

(Property) wn.hasStatus, (RDFNode) null);

wn.printStatements("Tank 01...", s1);

wn.printStatements("Pump 01...", s2);

89

queries the modified semantic graph for the tank water level and pump status. It

generates the output:

===

Statements: Tank 01...

===

Statement[1]

Subject : http://www.ontologies.org/waterNetwork#tank01

Predicate: http://www.ontologies.org/waterNetwork#hasCurrentLevel

Object : "21.0^^http://www.w3.org/2001/XMLSchema#double"

===

Statements: Pump 01...

===

Statement[1]

Subject : http://www.ontologies.org/waterNetwork#pump01

Predicate: http://www.ontologies.org/waterNetwork#hasStatus

Object : "Closed"

===

5.3.3 EPANET Ontology and Rules

Figure 5.19 builds on Figure 5.14 and drives the need for water network system

ontologies and rules, designed from system data model and EPANET perspectives.

Appendix B contains a draft of an ontology and Jena Rules specfication for

EPANET. The classes have names (e.g., Junction) familiar to users of EPANET, and

would be instantiated (see right-hand side of Figure 5.19) by visiting the EPANET

network model. The rules capture interactions between the water tank level and

status of the pump.

90

umd−epanet.rules

Pump (Link)

Pipe 4

Pipe 2

Pipe 6

Pipe 3

Reservoir (Node)

Node 11

Water Tank (CO3)

Reservoir (C01)

EPANET Network Model ViewSystem Data Model View

Water Network Ontology.owl

Water Network.rules

Jena Semantic Model
Jena Semantic Model

derive

derive

derive

derive

Pump (Component)

umd−epanet.owl

Junction 2

Junction 3

Junction 4

Junction 1

Tank (Node)

Junction 1

Junction 2

Node 1

Node 1

Node 8
Junction 3

Junction 4

Pipe 5

visit

load

load visitload

load

HostHost

Figure 5.19: Two perspectives of development for water network system ontologies
and rules. Left: systems data model view, Right: EPANET network model and
hydraulic simulation.

91

Chapter 6: Conclusions and Future Work

6.1 Summary and Conclusions

Water resources play a pivotal role in the operation of urban systems because

they are necessary for sustainability of life and economic development. From a day-

to-day operations standpoint, we need to understand what strategies of operation

lead to high levels of efficiency? And from a long-term planning perspective, accurate

estimation of the future demand and availability of water resources is essential for

achieving healthy and sustainable urban behavior. To this end, the long-term goals

of this project are to develop a platform infrastructure where decision making for

short- and long-term planning is supported by state-of-the-art simulation working

alongside semantic representations of water network system knowledge and rules-

based reasoning. Such approaches to decision making (see Figure 1.2) are expected

to be deep and broad in their consideration of knowledge and rules, and ideally, also

transparent.

This thesis has focused on simulation of hydraulic networks with the Java-based

implementation of EPANET. While the software is now almost twenty years old, it

remains a work in progress. During the course of this study, many enhancements to

92

Figure 6.1: Plan view of urban water network system.

the source code have been made. Some of them are very simple (e.g., a toString()

method for the network model) and some are more involved (e.g., development of

system data model visitors for EPANET and Jena). State-of-the-art practice with

EPANET is to define problems in a .INP format. For our purposes, however, we

needed a problem description that would provide data for multiple purposes: (1) to

seed the hydraulic simulation, (2) to provide visual representations of the network

layout and components, and (3) to provide a framework for creating semantic models

and evaluation of rules. In our approach, data is stored in a general purpose system

data model. We instantiate data for hydraulic simulations in EPANET by visiting

the system data model. Similarly, we instantiate individuals in semantic models of

EPANET by having Jena visit the system data model. Finally, visual representations

93

of the hydraulic network are created in Whistle by extracting composite hierarchies

from the system data model, and then displayed as domain-specific layers (e.g, pipe

layout, junctions, pumps, tanks, reservoirs). The framework is extensible to layers for

GIS (e.g., Open Street Map) These models can be loaded into Whistle as composite

hierarchies and spatial distributions of domain (e.g., residential homes).

The scope of this study has been limited to the small water network considered

in Case Studies 2 and 3. However, analysis of larger hydraulic network systems will

also work (see Figure 6.1). The strategies of rule based control have been simple.

For example, when the pump is turned off in Case Study 2, the pump link is also

closed. As illustrated in Figures 5.16 and 5.17, this forces water to be drawn from

the supply tank rather than the tank. A more realistic analysis [30] would provide

a bypass around the pump, and use multiple pumps operating in parallel to provide

redundancy of operations during periods of pump failure. Larger hydraulic network

systems also have multiple points of sensing – and since sensor operations are not

always 100% reliable, this raises the need for decision making under uncertainty and

detection of faulty equipment. A limitation of the present study is that these factors

were not taken into account.

6.2 Future Work

By modern-day standards, EPANET’s builtin mechanisms for control and rule-

based reasoning are very simple. Throughout a simulation, individual rules are classi-

fied as having premises that either evaluate to true or false. Actions are then taken on

94

sensor data

feedback

Supervisory Control
Low−level Control

sensor data control set−points

actions

observations

Physical System

Surrounding EnvironmentConsumers of Water

Cyber System

observations

Water Consumer and
Environment

Digital Twin

Scheduling

commands
operational

sensor data
constraints

forecasts
requirements

Reservoir

Pump

Water Tank

Node 1

Node 2

Node 3

Node 4

Figure 6.2: Water network management from a cyber-physical systems and digital
twin perspective.

rules having premises that have evaluated to true. As a first-cut to implementation

of rules for a simulation program, EPANET does what you would expect – it simply

walks through the list of items on the action list and takes action. If the overall effect

corresponds to forward chaining of actions, then this is purely accidental. EPANET

does not have any formal support for forward and backward chaining of rules. By re-

placing EPANET’s builtin mechanisms for rule evaluation with Jena Rules, the hope

is that this shortcoming will be erased. We note that in Chapters 4 and 5, changes to

state of the hydraulic network were temporally driven (e.g., the water level reaches

a required level; a pump is turned off). In the behavior modeling of complex urban

environments, however, notions of time and space – we need to know when and where

events occur – are both critical to decision making.

Future work needs to carefully consider how analysis and decision making for wa-

95

ter network simulations and operations management will scale, and take advantage of

modern computing and communications technology. This is particularly important

for replacement of aging infrastructure with new types of systems physical networks

connected to cyber components (data, information and software) for decision making.

These advances have led to a multitude of new design challenges that arise from net-

work structures that are spatial and interwoven, and dynamic behaviors and control

that are distributed and concurrent. One way of helping to keep these complexities

manageable is to structure system models in such a way that physical and cyber

representation are treated as first class citizens, and decision making procedures are

organized hierarchically. The right-hand side of Figure 6.2 shows, for example, cy-

ber representations organized into a digital twin – scheduling – low-level/supervisory

control hierarchy Low-level and supervisory control strategies are concerned with the

control of component-level devices, and coordination of device settings to achieve a

system purpose. Scheduling activities are concerned with the timing of activities,

often to minimize operational cost. A digital twin is a cyber (or digital) represen-

tation of a system that mirrors its implementation in the physical world through

real-time monitoring and synchronization of data associated with events. The associ-

ated algorithms work to provide superior levels of performance and devise strategies

for avoiding unnecessary down time. The use of digital twin ideas and technologies

for water network management is underway, but still in its infancy [11].

96

Chapter A: Small Water Network System

This appendix contains an abbreviated descriptions of the small water network

system as modeled in: (1) The System Data Model, and (2) EPANET.

A.1 System Data Model Representation (WaterNetwork.xml)

<?xml version="1.0" encoding = "UTF-8"?>

<SystemDataModel author = "Zebo Peng" date = "2019-09" source = "UMD">

<!-- == -->

<!-- EPANET modeling parameters ... -->

<!-- == -->

<attribute key = "Units" value = "GPM" />

<attribute key = "Headloss" value = "H-W" />

<!-- == -->

<!-- Time-based attributes ... -->

<!-- == -->

<attribute key = "Duration" value = "24:00" />

<attribute key = "Hstep" value = "1:00" />

<attribute key = "Tstart" value = "12 am" />

<attribute key = "Pstep" value = "1:00" />

<attribute key = "Pstart" value = "0:00" />

<attribute key = "Rstep" value = "1:00" />

<!-- == -->

<!-- Water network coordinates ... -->

<!-- == -->

<node ID = "001" x = "100.0" y = "70.0">

<attribute key = "type" value = "Point"/>

<attribute key = "elevation" value = "600" units ="ft" />

<attribute key = "source" value = "0.0" />

97

<attribute key = "demand" value = "0.0" />

</node>

<node ID = "002" x = "180.0" y = "70.0">

<attribute key = "type" value = "Junction"/>

<attribute key = "elevation" value = "600" units ="ft" />

<attribute key = "source" value = "0.0" />

<attribute key = "demand" value = "0.0" />

<attribute key = "pattern" value = "P001" />

</node>

<node ID = "003" x = "200.0" y = "70.0">

<attribute key = "type" value = "Junction"/>

<attribute key = "elevation" value = "600" units ="ft" />

<attribute key = "source" value = "0.0" />

<attribute key = "demand" value = "0.0" />

<attribute key = "pattern" value = "P001" />

</node>

<!-- ================================ -->

<!-- Junction 1 ... -->

<!-- ================================ -->

<node ID = "004" x = "295.0" y = "70.0">

<description text="Network Junction 1" />

<attribute key = "type" value = "Junction"/>

<attribute key = "elevation" value = "600" units ="ft" />

<attribute key = "source" value = "0.0" />

<attribute key = "demand" value = "30.0" />

<attribute key = "pattern" value = "P001" />

<shape type = "Rectangle">

<attribute key = "level" value = "48.0"/>

<attribute key = "width" value = "10.0"/>

<attribute key = "height" value = "10.0"/>

<attribute key = "opacity" value = "1.0"/>

<attribute key = "color" value = "maroon"/>

</shape>

</node>

<!-- ================================ -->

<!-- Junction 2 ... -->

<!-- ================================ -->

<node ID = "005" x = "370.0" y = "70.0">

<attribute key = "type" value = "Point"/>

<attribute key = "elevation" value = "600" units ="ft" />

</node>

<node ID = "006" x = "370.0" y = "105.0">

<description text="Network Junction 2" />

<attribute key = "type" value = "Junction" />

98

<attribute key = "elevation" value = "600" units ="ft" />

<attribute key = "source" value = "0.0" />

<attribute key = "demand" value = "30.0" />

<attribute key = "pattern" value = "P001" />

<shape type = "Rectangle">

<attribute key = "level" value = "48.0"/>

<attribute key = "width" value = "10.0"/>

<attribute key = "height" value = "10.0"/>

<attribute key = "opacity" value = "1.0"/>

<attribute key = "color" value = "maroon"/>

</shape>

</node>

<!-- ================================ -->

<!-- Junction 3 ... -->

<!-- ================================ -->

<node ID = "007" x = "370.0" y = "225.0">

<description text="Network Junction 3" />

<attribute key = "type" value = "Junction" />

<attribute key = "elevation" value = "650" units ="ft" />

<attribute key = "source" value = "0.0" />

<attribute key = "demand" value = "30.0" />

<attribute key = "pattern" value = "P001" />

<shape type = "Rectangle">

<attribute key = "level" value = "48.0"/>

<attribute key = "width" value = "10.0"/>

<attribute key = "height" value = "10.0"/>

<attribute key = "opacity" value = "1.0"/>

<attribute key = "color" value = "maroon"/>

</shape>

</node>

<!-- ================================ -->

<!-- Junction 4 ... -->

<!-- ================================ -->

<node ID = "008" x = "370.0" y = "345.0">

<description text="Network Junction 4" />

<attribute key = "type" value = "Junction" />

<attribute key = "elevation" value = "660" units ="ft" />

<attribute key = "source" value = "0.0" />

<attribute key = "demand" value = "30.0" />

<attribute key = "pattern" value = "P001" />

<shape type = "Rectangle">

<attribute key = "level" value = "48.0"/>

<attribute key = "width" value = "10.0"/>

<attribute key = "height" value = "10.0"/>

<attribute key = "opacity" value = "1.0"/>

99

<attribute key = "color" value = "maroon"/>

</shape>

</node>

<!-- ================================ -->

<!-- Nodes: Junction 4 to Tank ... -->

<!-- ================================ -->

<node ID = "009" x = "370.0" y = "400.0">

<attribute key = "type" value = "Point"/>

<attribute key = "elevation" value = "660" units ="ft" />

</node>

<node ID = "010" x = "420.0" y = "400.0">

<attribute key = "type" value = "Point"/>

<attribute key = "elevation" value = "660" units ="ft" />

</node>

<node ID = "011" x = "420.0" y = "380.0">

<attribute key = "type" value = "Point"/>

<attribute key = "elevation" value = "660" units ="ft" />

</node>

<!-- == -->

<!-- Control network coordinates -->

<!-- == -->

<node ID = "012" x = "575.0" y = "50.0" type="Point" />

<node ID = "013" x = "575.0" y = "300.0" type="Point" />

<node ID = "014" x = "460.0" y = "300.0" type="Point" />

<node ID = "015" x = "190.0" y = "65.0" type="Point" />

<node ID = "016" x = "190.0" y = "25.0" type="Point" />

<node ID = "017" x = "500.0" y = "25.0" type="Point" />

<!-- == -->

<!-- Water network ways ... -->

<!-- == -->

<way ID="001">

<description text="Reservoir to Pump." />

<attribute key = "type" value = "Pipeline"/>

<!-- Connectivity of pipe ends -->

<attribute key = "end1" value = "C01" />

<attribute key = "end2" value = "002" />

<!-- Sequence of nodal coordinates -->

<node ID="001" />

<node ID="002" />

<!-- Engineering parameters -->

100

<attribute key = "diameter" value = "4" />

<attribute key = "length" value = "80" />

<attribute key = "roughness" value = "100" />

<attribute key = "minorloss" value = "0" />

<attribute key = "status" value = "Open" />

<shape type = "LineString">

<attribute key = "level" value = "50.0"/>

<attribute key = "width" value = "6.0"/>

<attribute key = "color" value = "black"/>

</shape>

</way>

<way ID="002">

<description text="Connect Water Pump to Junction 1." />

<attribute key = "type" value = "Pipeline"/>

<!-- Connectivity of pipe ends -->

<attribute key = "end1" value = "003" />

<attribute key = "end2" value = "004" />

<!-- Sequence of nodal coordinates -->

<node ID="003" />

<node ID="004" />

<!-- Engineering parameters -->

<attribute key = "diameter" value = "4" />

<attribute key = "length" value = "95" />

<attribute key = "roughness" value = "100" />

<attribute key = "minorloss" value = "0" />

<attribute key = "status" value = "Open" />

... details of shape removed ...

</way>

<way ID="003">

<description text="Connect Junction 1 to Junction 2." />

<attribute key = "type" value = "Pipeline"/>

<!-- Connectivity of pipe ends -->

<attribute key = "end1" value = "004" />

<attribute key = "end2" value = "006" />

<!-- Sequence of nodal coordinates -->

<node ID="004" />

<node ID="005" />

<node ID="006" />

101

<!-- Engineering parameters -->

<attribute key = "diameter" value = "4" />

<attribute key = "roughness" value = "100" />

<attribute key = "minorloss" value = "0" />

<attribute key = "status" value = "Open" />

... details of shape removed ...

</way>

<way ID="004">

<description text="Connect Junction 2 to Junction 3." />

<attribute key = "type" value = "Pipeline"/>

<!-- Connectivity of pipe ends -->

<attribute key = "end1" value = "006" />

<attribute key = "end2" value = "007" />

<!-- Sequence of nodal coordinates -->

<node ID="006" />

<node ID="007" />

... details of parameters and shape removed ...

</way>

<way ID="005">

<description text="Connect Junction 3 to Junction 4." />

<attribute key = "type" value = "Pipeline"/>

<!-- Connectivity of pipe ends -->

<attribute key = "end1" value = "007" />

<attribute key = "end2" value = "008" />

<!-- Sequence of nodal coordinates -->

<node ID="007" />

<node ID="008" />

... details of parameters and shape removed ...

</way>

<way ID="006">

<description text="Connect Junction 4 to Water Tank." />

<attribute key = "type" value = "Pipeline"/>

<!-- Connectivity of pipe ends -->

102

<attribute key = "end1" value = "008" />

<attribute key = "end2" value = "C03" />

<!-- Sequence of nodal coordinates -->

<node ID="008" />

<node ID="009" />

<node ID="010" />

<node ID="011" />

... details of parameters and shape removed ...

</way>

<!-- == -->

<!-- Control network ways ... -->

<!-- == -->

<way ID="007">

<attribute key = "type" value = "Control"/>

<!-- Sequence of nodal coordinates -->

<node ID="012" />

<node ID="013" />

<node ID="014" />

... details of shape removed ...

</way>

<way ID="008">

<attribute key = "type" value = "Control"/>

<!-- Sequence of nodal coordinates -->

<node ID="015" />

<node ID="016" />

<node ID="017" />

... details of shape removed ...

</way>

<!-- === -->

<!-- Water Reservoir Component ... -->

<!-- === -->

<component ID = "C01" x = "0.0" y = "0.0">

<description text="Water Reservoir" />

<!-- Engineering parameters -->

<attribute key = "type" value = "Reservoir" />

103

<attribute key = "elevation" value = "600.0" units ="ft" />

<attribute key = "head" value = "600.0" />

<attribute key = "area" value = "0.0" />

<!-- Look-and-feel of component shape -->

<compoundshape ID = "Reservoir-Shape01">

<shape ID = "Reservoir" type = "Polygon">

<attribute key = "level" value = "48.0"/>

<attribute key = "opacity" value = "1.0"/>

<attribute key = "color" value = "blue"/>

<attribute key = "fill" value = "true"/>

<node ID="r01" x = "10.0" y = "10.0" type="Point" />

<node ID="r02" x = "100.0" y = "10.0" type="Point" />

<node ID="r03" x = "100.0" y = " 90.0" type="Point" />

<node ID="r04" x = " 90.0" y = "100.0" type="Point" />

<node ID="r05" x = "10.0" y = "100.0" type="Point" />

</shape>

</compoundshape>

</component>

<!-- === -->

<!-- Network Controller Component ... -->

<!-- === -->

<component ID = "C02" x = "500.0" y = "0.0">

<description text="Network Controller" />

<attribute key = "type" value = "Control" />

... details of shape removed ...

</component>

<!-- === -->

<!-- Water Tank Component ... -->

<!-- === -->

<component ID = "C03" x = "400.0" y = "200.0">

<description text="Elevated Water Tank" />

<!-- Engineering parameters -->

<attribute key = "type" value = "Tank" />

<attribute key = "elevation" value = "700.0" units ="ft" />

<attribute key = "area" value = "400.0" />

<attribute key = "minlevel" value = "0.0" />

<attribute key = "initlevel" value = "2.0" />

<attribute key = "maxlevel" value = "20.0" />

<attribute key = "flowin" value = "0.0" />

<attribute key = "flowout" value = "0.0" />

<!-- Look-and-feel of component shape -->

104

<compoundshape ID = "Water-Tank-Shape01">

<shape type = "Polygon">

<attribute key = "level" value = "48.0"/>

<attribute key = "color" value = "blue"/>

<attribute key = "opacity" value = "1.0"/>

<node ID="n01" x = "0.0" y = "170.0" type="Point" />

<node ID="n02" x = "0.0" y = "120.0" type="Point" />

<node ID="n03" x = "20.0" y = "100.0" type="Point" />

<node ID="n04" x = "60.0" y = "100.0" type="Point" />

<node ID="n05" x = "80.0" y = "120.0" type="Point" />

<node ID="n06" x = "80.0" y = "170.0" type="Point" />

</shape>

... details of shape removed ...

</compoundshape>

</component>

<!-- === -->

<!-- Load pattern for time-intervals of consumer demand (24 hrs) ... -->

<!-- === -->

<behavior ID = "P001" type = "Pattern">

<description text = "Consumer demand load pattern (24 hrs)" />

<attribute key = "multipliers" value = "0.20 0.20 0.20 0.30 0.40 0.50

0.70 0.80 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.80 0.70 0.50 0.20"/>

</behavior>

<!-- === -->

<!-- Load pattern for pump operations (that repeats) ... -->

<!-- === -->

<behavior ID = "P002" type = "Pattern">

<description text = "Pattern for pump operations" />

<attribute key = "multipliers" value = "1.0 1.0 1.0 1.0" />

</behavior>

<!-- === -->

<!-- Typical water pump performance curves ... -->

<!-- === -->

<behavior ID = "B001">

<description text = "Head-flow performance curve for Pump 1" />

<attribute key = "type" value = "Curve" />

<attribute key = "x" value = " 0.0 2000.0 4000.0" />

<attribute key = "y" value = "150.0 100.0 60.0" />

</behavior>

<!-- === -->

<!-- Water pump: simplified statechart model ... -->

<!-- === -->

105

<behavior ID="B002" type="FSM">

<description text="Simple model of pump behavior ..." />

... details of finite state machine behavior removed ...

</behavior>

<!-- === -->

<!-- Water pump component model ... -->

<!-- === -->

<component ID = "C04" x = "190.0" y = "70.0">

<description text="Water Pump" />

<!-- Connectivity of pump to nodes -->

<attribute key = "end1" value = "002" />

<attribute key = "end2" value = "003" />

<!-- Component-level attributes -->

<attribute key = "type" value = "Pump" />

<attribute key = "height" value = "20.0" />

<attribute key = "width" value = "20.0" />

<!-- Pattern for pump operations -->

<attribute key = "pattern" value = "P002" />

<!-- Pump attributes -->

<attribute key = "minhead" value = "0.0" />

<attribute key = "maxhead" value = "100.0" />

<attribute key = "power" value = "5000.0" />

<!-- Pump head-flow performance curve -->

<attribute key = "hcurve" value = "B001" />

<!-- Statechart behavior model -->

<behavior id="#B002"/>

... details of input and output ports removed ...

<compoundshape ID = "Shape01">

<shape ID = "sh01" x = "0.0" y = "0.0" type = "Rectangle">

<attribute key = "level" value = "50.0"/>

<attribute key = "width" value = "20.0"/>

<attribute key = "height" value = "20.0"/>

<attribute key = "opacity" value = "1.0"/>

<attribute key = "fill" value = "true"/>

<attribute key = "color" value = "blue"/>

</shape>

106

</compoundshape>

</component>

<!-- == -->

<!-- Water network rules: Pump water when tank water level is low -->

<!-- == -->

<constraint ID = "R01" type="Rule">

<description text="Open pump (turn on) when tank water level is low" />

<attribute key = "expression" value = "IF TANK C03 LEVEL BELOW 3.0

THEN PUMP C04 STATUS IS OPEN"/>

</constraint>

<constraint ID = "R02" type="Rule">

<description text="Close pump (turn off) when tank water level is high" />

<attribute key = "expression" value = "IF TANK C03 LEVEL ABOVE 17.0

THEN PUMP C04 STATUS IS CLOSED"/>

</constraint>

</SystemDataModel>

A.2 Water Network System Model in EPANET

Water Network ...

== ...

--- No junctions = 6 ...

--- No nodes = 8 ...

--- No links = 7 ...

--- No patterns = 3 ...

--- No curves = 1 ...

--- No controls = 0 ...

--- No rules = 2 ...

--- No tanks = 2 ...

--- No pumps = 1 ...

Network Nodes ...

== ...

Node(ID = 002, type = JUNCTION) ...

== ...

--- (x,y) = (180.000 ft, 70.000 ft) ...

--- elevation = (600.000 ft) ...

--- Ke (emitter coefficient) = 0.000 ...

--- Initial demand = 0.00 ...

107

--- demand pattern = P001 ...

--- base demand = 0.000000 GPM ...

--- source = null ...

== ...

Node(ID = 003, type = JUNCTION) ...

== ...

--- (x,y) = (200.000 ft, 70.000 ft) ...

--- elevation = (600.000 ft) ...

--- Ke (emitter coefficient) = 0.000 ...

--- Initial demand = 0.00 ...

--- demand pattern = P001 ...

--- base demand = 0.000000 GPM ...

--- source = null ...

== ...

Node(ID = 004, type = JUNCTION) ...

== ...

Description: Network Junction 1 ...

-- ...

--- (x,y) = (295.000 ft, 70.000 ft) ...

--- elevation = (600.000 ft) ...

--- Ke (emitter coefficient) = 0.000 ...

--- Initial demand = 0.00 ...

--- demand pattern = P001 ...

--- base demand = 30.000000 GPM ...

--- source = null ...

== ...

Node(ID = 006, type = JUNCTION) ...

== ...

Description: Network Junction 2 ...

-- ...

... details removed ...

Node(ID = 007, type = JUNCTION) ...

== ...

Description: Network Junction 3 ...

-- ...

... details removed ...

== ...

Node(ID = 008, type = JUNCTION) ...

== ...

Description: Network Junction 4 ...

-- ...

--- (x,y) = (370.000 ft, 345.000 ft) ...

--- elevation = (660.000 ft) ...

108

--- Ke (emitter coefficient) = 0.000 ...

--- Initial demand = 0.00 ...

--- demand pattern = P001 ...

--- base demand = 30.000000 GPM ...

--- source = null ...

== ...

Node(ID = C01, type = TANK) ...

=== ...

Description: Water Reservoir ...

-- ...

--- (x,y) = (0.000 ft, 0.000 ft) ...

--- elevation = (600.000 ft) ...

--- initial water elevation = 600.000 ft ...

--- minimum water elevation = 600.000 ft ...

--- maximum water elevation = 600.000 ft ...

--- tank area = (0.0 ft^2) ...

--- tank volume = (0.0 ft^3) ...

--- water elevation = 600.000 ft ...

=== ...

Node(ID = C03, type = TANK) ...

=== ...

Description: Elevated Water Tank ...

-- ...

--- (x,y) = (400.000 ft, 200.000 ft) ...

--- elevation = (700.000 ft) ...

--- initial water elevation = 702.000 ft ...

--- minimum water elevation = 700.000 ft ...

--- maximum water elevation = 720.000 ft ...

--- tank area = (400.0 ft^2) ...

--- tank volume = (8000.0 ft^3) ...

--- initial water volume = 800.000 ft^3 ...

=== ...

Network Links ...

== ...

Link(ID = 001, type = PIPE) ...

=== ...

Description: Reservoir to Pump. ...

--- ...

--- link type = PIPE ...

--- status = OPEN ...

--- diameter = 4.000000 in ...

--- length = 80.000000 ft ...

--- roughness = 100.000000 ...

--- resistance = 15.766425 ...

--- no vertices (for rendering) = 2 ...

--- first = Node(C01): elevation = 600.0 ft ...

--- second = Node(002): elevation = 600.0 ft ...

=== ...

109

Link(ID = 002, type = PIPE) ...

=== ...

Description: Connect Water Pump to Junction 1. ...

--- ...

--- link type = PIPE ...

--- status = OPEN ...

--- diameter = 4.000000 in ...

--- length = 95.000000 ft ...

--- roughness = 100.000000 ...

--- resistance = 18.722629 ...

--- no vertices (for rendering) = 2 ...

--- first = Node(003): elevation = 600.0 ft ...

--- second = Node(004): elevation = 600.0 ft ...

=== ...

Link(ID = 003, type = PIPE) ...

=== ...

Description: Connect Junction 1 to Junction 2. ...

--- ...

... details removed ...

=== ...

Link(ID = 004, type = PIPE) ...

=== ...

Description: Connect Junction 2 to Junction 3. ...

--- ...

... details removed ...

=== ...

Link(ID = 005, type = PIPE) ...

=== ...

Description: Connect Junction 3 to Junction 4. ...

--- ...

... details removed ...

=== ...

Link(ID = 006, type = PIPE) ...

=== ...

Description: Connect Junction 4 to Water Tank. ...

--- ...

--- link type = PIPE ...

--- status = OPEN ...

--- diameter = 4.000000 in ...

--- length = 125.000000 ft ...

--- roughness = 100.000000 ...

--- resistance = 24.635039 ...

--- no vertices (for rendering) = 4 ...

110

--- first = Node(008): elevation = 660.0 ft ...

--- second = Node(C03): elevation = 700.0 ft ...

=== ...

Link(ID = C04, type = PUMP) ...

== ...

--- status = OPEN ...

--- first = Node(002): elevation = 600.0 ft ...

--- second = Node(003): elevation = 600.0 ft ...

--- pump curve = CUSTOM ...

--- flow exponent = 0.00000 ...

--- shutoff head = 0.00 ft ...

--- maximum head = 150.00 ft ...

--- initial flow = 4.46 GPM ...

--- maximum flow = 8.91 GPM ...

--- head-flow curve: B001 ...

--- efficiency-flow curve = null ...

--- energy-cost pattern = null ...

== ...

Tanks ...

== ...

Node(ID = C01, type = TANK) ...

=== ...

Description: Water Reservoir ...

-- ...

--- (x,y) = (0.000 ft, 0.000 ft) ...

--- elevation = (600.000 ft) ...

--- initial water elevation = 600.000 ft ...

--- minimum water elevation = 600.000 ft ...

--- maximum water elevation = 600.000 ft ...

--- tank area = (0.0 ft^2) ...

--- tank volume = (0.0 ft^3) ...

--- water elevation = 600.000 ft ...

=== ...

Node(ID = C03, type = TANK) ...

=== ...

Description: Elevated Water Tank ...

-- ...

--- (x,y) = (400.000 ft, 200.000 ft) ...

--- elevation = (700.000 ft) ...

--- initial water elevation = 702.000 ft ...

--- minimum water elevation = 700.000 ft ...

--- maximum water elevation = 720.000 ft ...

--- tank area = (400.0 ft^2) ...

--- tank volume = (8000.0 ft^3) ...

--- initial water volume = 800.000 ft^3 ...

=== ...

111

Pumps ...

== ...

Link(ID = C04, type = PUMP) ...

== ...

--- status = OPEN ...

--- first = Node(002): elevation = 600.0 ft ...

--- second = Node(003): elevation = 600.0 ft ...

--- pump curve = CUSTOM ...

--- flow exponent = 0.00000 ...

--- shutoff head = 0.00 ft ...

--- maximum head = 150.00 ft ...

--- initial flow = 4.46 GPM ...

--- maximum flow = 8.91 GPM ...

--- head-flow curve: B001 ...

--- efficiency-flow curve = null ...

--- energy-cost pattern = null ...

== ...

Curves ...

== ...

Curve(ID = B001, type = H_CURVE) ...

=== ...

--- (x,y) = (0.00, 150.00) ...

--- (x,y) = (2000.00, 100.00) ...

--- (x,y) = (4000.00, 60.00) ...

=== ...

Patterns ...

== ...

Temporal Pattern(Default) ...

=== ...

Time 1 hr, value = 1.00 ...

=== ...

Temporal Pattern(P001) ...

=== ...

Time 1 hr, value = 0.20 ...

Time 2 hr, value = 0.20 ...

... details removed ...

Time 22 hr, value = 0.70 ...

Time 23 hr, value = 0.50 ...

Time 24 hr, value = 0.20 ...

=== ...

Temporal Pattern(P002) ...

=== ...

112

Time 1 hr, value = 1.00 ...

Time 2 hr, value = 1.00 ...

Time 3 hr, value = 1.00 ...

Time 4 hr, value = 1.00 ...

=== ...

Controls ...

== ...

Rules ...

== ...

Rule(R01) ...

== ...

Description: Open pump (turn on) when tank water level is low ...

-- ...

Expression: IF TANK C03 LEVEL BELOW 3.0

THEN PUMP C04 STATUS IS OPEN

== ...

Rule(R02) ...

== ...

Description: Close pump (turn off) when tank water level is high ...

-- ...

Expression: IF TANK C03 LEVEL ABOVE 17.0

THEN PUMP C04 STATUS IS CLOSED

== ...

113

Chapter B: EPANET Ontologies and Rules

B.1 EPANET Water Network Ontology (umd-epanet.owl)

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY swrl "http://www.w3.org/2003/11/swrl#" >

<!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.ontologies.org/epanet#"

xml:base="http://www.ontologies.org/epanet"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:swrl="http://www.w3.org/2003/11/swrl#"

xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:waterNetwork_ontology="http://www.ontologies.org/epanet#">

<owl:Ontology rdf:about="http://www.ontologies.org/eepanet"/>

<!--

///

//

// Classes

//

///

-->

<!-- http://www.ontologies.org/epanet#WaterNetwork -->

<owl:Class rdf:about="http://www.ontologies.org/epanet#WaterNetwork">

</owl:Class>

114

<!-- http://www.ontologies.org/epanet#Component -->

<owl:Class rdf:about="http://www.ontologies.org/epanet#Component">

</owl:Class>

<!-- http://www.ontologies.org/epanet#Pump -->

<owl:Class rdf:about="http://www.ontologies.org/epanet#Pump">

<rdfs:subClassOf rdf:resource="http://www.ontologies.org/epanet#Component"/>

</owl:Class>

<!-- http://www.ontologies.org/epanet#Tank -->

<owl:Class rdf:about="http://www.ontologies.org/epanet#Tank">

<rdfs:subClassOf rdf:resource="http://www.ontologies.org/epanet#Component"/>

</owl:Class>

<!-- http://www.ontologies.org/epanet#Reservoir -->

<owl:Class rdf:about="http://www.ontologies.org/epanet#Reservoir">

<rdfs:subClassOf rdf:resource="http://www.ontologies.org/epanet#Component"/>

</owl:Class>

<!-- http://www.ontologies.org/epanet#Pipe -->

<owl:Class rdf:about="http://www.ontologies.org/epanet#Pipe">

<rdfs:subClassOf rdf:resource="http://www.ontologies.org/epanet#Component"/>

</owl:Class>

<!-- http://www.ontologies.org/epanet#Node -->

<owl:Class rdf:about="http://www.ontologies.org/epanet#Node">

<rdfs:subClassOf rdf:resource="http://www.ontologies.org/epanet#Component"/>

</owl:Class>

<!--

///

//

// Object Properties for class WaterNetwork

//

///

-->

<!-- http://www.ontologies.org/epanet#hasComponent -->

<owl:ObjectProperty rdf:about="http://www.ontologies.org/epanet#hasComponent">

<rdfs:domain rdf:resource="http://www.ontologies.org/epanet#WaterNetwork"/>

<rdfs:range rdf:resource="http://www.ontologies.org/epanet#Component"/>

</owl:ObjectProperty>

<!--

///

//

115

// Data Properties for class Component

//

///

-->

<!-- http://www.ontologies.org/epanet#hasStatus -->

<owl:DatatypeProperty rdf:about="http://www.ontologies.org/epanet#hasStatus">

<rdfs:domain rdf:resource="http://www.ontologies.org/epanet#Component"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!--

///

//

// Data Properties for class Tank

//

///

-->

<!-- http://www.ontologies.org/epanet#hasCurrentLevel -->

<owl:DatatypeProperty rdf:about="http://www.ontologies.org/epanet#hasCurrentLevel">

<rdfs:domain rdf:resource="http://www.ontologies.org/epanet#Tank"/>

<rdfs:range rdf:resource="&xsd;double"/>

</owl:DatatypeProperty>

<!-- http://www.ontologies.org/epanet#hasMaxLevel -->

<owl:DatatypeProperty rdf:about="http://www.ontologies.org/epanet#hasMaxLevel">

<rdfs:domain rdf:resource="http://www.ontologies.org/epanet#Tank"/>

<rdfs:range rdf:resource="&xsd;double"/>

</owl:DatatypeProperty>

<!-- http://www.ontologies.org/epanet#hasMinLevel -->

<owl:DatatypeProperty rdf:about="http://www.ontologies.org/epanet#hasMinLevel">

<rdfs:domain rdf:resource="http://www.ontologies.org/epanet#Tank"/>

<rdfs:range rdf:resource="&xsd;double"/>

</owl:DatatypeProperty>

</rdf:RDF>

B.2 EPANET Water Network Jena Rules (umd-epanet.rules)

@prefix epa: <http://www.ontologies.org/epanet#>.

116

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Propagate class hierarchy relationships ...

[rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x,?y) ->

[(?a rdf:type ?y) <- (?a rdf:type ?x)]]

// Rule 02: Update the pump’s status based on the tank’s status ...

[UpdateStatus: (?p rdf:type epa:Pump) (?t rdf:type epa:Tank)

(?e rdf:type epa:ElementsStatus) (?e epa:hasTankFStatus ?tf)

(?t epa:hasStatus ?ts) (?p epa:hasStatus ?ps) equal(?ts, ?tf) ->

(?p epa:hasStatus "Closed")]

// Rule 03: Update the Pump’s status based on the tank’s currentLevel ...

[tank01: (?p rdf:type epa:Pump) (?t rdf:type epa:Tank) (?t epa:hasCurrentLevel ?c)

(?t epa:hasMaxLevel ?ma) (?p epa:hasStatus ?ps) greaterThan(?c, ?ma) ->

(?p epa:hasStatus "Closed")]

[tank02: (?p rdf:type epa:Pump) (?t rdf:type epa:Tank) (?t epa:hasCurrentLevel ?c)

(?t epa:hasMinLevel ?mi) (?p epa:hasStatus ?ps) lessThan(?c, ?mi) ->

(?p epa:hasStatus "Open")]

117

Bibliography

[1] Alexander C. A Pattern Language: Towns, Buildings and Construction. Oxford
Press, 1977.

[2] Apache Jena:. An Open Source Java Framework for building Semantic Web and
Linked Data Applications. For details, see https://jena.apache.org/ (Accessed,
May 10, 2020).

[3] Austin M.A., Baras J.S., and Kositsyna N.I. Combined Research and Curriculum
Development in Information-Centric Systems Engineering. In Twelth Annual
International Symposium of The International Council on Systems Engineering
(INCOSE 2002), Las Vegas 2002.

[4] Austin M.A., Delgoshaei P. and Nguyen, A. Distributed System Behavior Mod-
eling with Ontologies, Rules, and Message Passing Mechanisms, Conference on
Systems Engineering Research (CSER 2015), Hoboken, NJ, USA. Procedia Com-
puter Science, 44:373 – 382, 2015.

[5] Austin, M.A., Mayank, V. and Shmunis, N. Ontology-enabled Validation of
Connectivity Relationships in a Home Theater System. International Journal of
Intelligent Systems, 21(10):1111–1125, October 2006.

[6] Avila-Melgar E.Y., Cruz-Chavez M.A. and Martinez-Bahena B. General Method-
ology for using EPANET as an Optimization Element in Evolutionary Algo-
rithms in a Grid Computing Environment for Water Distribution Network De-
sign. Water Science and Technology: Water Supply, 17(1), 2017.

[7] Berners-Lee T., Hendler J., and Lassila O. The Semantic Web. Scientific Amer-
ican, pages 35–43, May 2001.

[8] Coelho M., Austin M.A., and Blackburn, M.R. Distributed System Behavior
Modeling of Urban Systems with Ontologies, Rules and Many-to-Many Associ-
ation Relationships. The Twelth International Conference on Systems (ICONS
2017), pages 10–15, April 23-27 2017.

118

[9] Coelho M., Austin M.A., and Blackburn, M.R. Semantic Behavior Modeling and
Event-Driven Reasoning for Urban System of Systems. International Journal on
Advances in Intelligent Systems, 10(3 and 4):365–382, December 2017.

[10] Coelho M., Austin M.A., and Blackburn M.R. The Data-Ontology-Rule Footing:
A Building Block for Knowledge-Based Development and Event-Driven Execu-
tion of Multi-Domain Systems, pages 255–266. Proceedings of the 16th Annual
Conference on Systems Engineering Research, Systems Engineering in Context,
Chapter 21, Springer, 2019.

[11] Conejos Fuertes P., Alzamora F.M., Carot M.H., and Campos J.C.A. Building
and Exploiting a Digital Twin for the Management of Drinking Water Distribu-
tion Networks. Urban Water Journal, pages 1–10, June 2020.

[12] Delgoshaei P., and Austin M.A. Software Patterns for Traceability of Require-
ments to Finite-State Machine Behavior: Application to Rail Transit Systems
Design and Management. In 22nd Annual International Symposium of The In-
ternational Council on Systems Engineering (INCOSE 2012), Rome, Italy, 2012.

[13] Delgoshaei P., Austin M.A., and Pertzborn, A. A Semantic Framework for Mod-
eling and Simulation of Cyber-Physical Systems. International Journal On Ad-
vances in Systems and Measurements, 7(3-4):223–238, December 2014.

[14] Delgoshaei P., Austin, M.A, and Veronica, D.A. A Semantic Platform Infras-
tructure for Requirements Traceability and System Assessment. The Ninth In-
ternational Conference on Systems (ICONS 2014), February 2014.

[15] Falquet G., Metral C., Teller J., and Tweed C. Ontologies in Urban Development
Projects. Springer, 2005.

[16] Feigenbaum L., 2006. Semantic Web Technologies in the Enterprise.

[17] Fridenthal S., Moore A., and Steiner R. A Practical Guide to SysML. MK-OMG,
2008.

[18] Gajbhiye A., Hari Prasad Reddy P. and Sargaonkar A.P. Modeling Leakage in
Water Distribution System Using EPANET. Journal of Civil Engineering and
Environmental Technology, 4(3):211–214, April-June 2017.

[19] Gamma E., Helm R., Johnson R., and Vlissides J. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series, 1995.

[20] Georgescu S.C., and Georgescu A.M. Pumping Station Scheduling for Water
Distribution Networks in EPANET. U.P.B.Sci. Bull., Series D, 77(2):235–246,
2015.

[21] Geroimenko V., and Chen C. (Eds). Visualizing the Semantic Web: XML-based
Internet and Information Visualization. Springer, 2003.

119

[22] Grolinger K., Capretz M.A.M., Shypanski A. and Gill G.S. Federated Critical
Infrastructure Simulators: Towards Ontologies for Support of Collaboration. In
24th Canadian Conference on Electrical and Computer Engineering(CCECE),
pages 1503–1506, Niagara Falls, ON, Canada, 2011.

[23] Hendler J. Agents and the Semantic Web. IEEE Intelligent Sys-
tems, pages 30–37, March/April 2001. Available on April 4, 2002 from
http://www.computer.org/intelligent.

[24] Horrocks I. Ontologies and the Semantic Web. Communications of the ACM,
51(12):58-67, December, 2008.

[25] Horrocks I., Patel-Schneider P.F., and Van Harmelen F. From SHIQ and RDF
to OWL: The Making of a Web Ontology Language.

[26] INCOSE Systems Engineering Vision 2025 (A World in Motion). International
Council on Systems Engineering, 2014.

[27] Jackson D. Dependable Software by Design. Scientific American, 294(6), June
2006.

[28] Kernighan B.W. and Ritchie D.M. The C Programming Language - Second
Edition. Prentice-Hall Software Series, Englewood Cliffs, NJ 07632, 1988. Based
on Draft-Proposed ANSI C.

[29] Klise, K., Hart D., Moriarty D., Bynum M., and Murray R. Water Network
Tool for Resilience (WNTR) User Manual. U.S. EPA Office of Research and
Development, Washington, DC, EPA/600/R-17/264, 2017.

[30] Larock B.E., Jeppson R.W., and Watters G.Z. Hydraulics of Pipeline Systems.
CRC Press, Boca Raton, Florida 33421, USA, 2000.

[31] Lee M.F. Pipeline Network Analysis. Technical Report Publication 77, Water
Resources Research Center, Department of Environmental Engineering Sciences,
University of Florida, 1983.

[32] Mahmoud Q.H. Getting Started With the Java Rule Engine API (JSR 94):
Toward Rule-Based Applications. Sun Microsystems, 2005. For more informa-
tion, see http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html
(Accessed, March 10, 2008).

[33] Mount J., and Hanak E. Water Use in California, Just the Facts. Public Policy
Institute of California, May 2019.

[34] Nassar N., and Austin M.A. Model-Based Systems Engineering Design and
Trade-Off Analysis with RDF Graphs. In 11th Annual Conference on Systems
Engineering Research (CSER 2013), Georgia Institute of Technology, Atlanta,
GA, March 19-22 2013.

120

[35] Open Street Map (OSM). https://www.openstreetmap.org (Accessed May 10,
2020). 2020.

[36] OWL:. The Web Ontology Language, See http://www.w3.org/TR/owl-features/
(Accessed, February 2017).

[37] Petnga L. and Austin M.A. Ontologies of Time and Time-based Reasoning for
MBSE of Cyber-Physical Systems. 11th Annual Conference on Systems Engi-
neering Research (CSER 2013), Georgia Institute of Technology, Atlanta, GA,
2013.

[38] Petnga L., and Austin M.A. Semantic Platforms for Cyber-Physical Systems.
24th Annual International Symposium of The International Council on Systems
Engineering (INCOSE), Las Vegas, NV, USA, June 30 - July 03, 2014.

[39] Petnga L., and Austin M.A. An Ontological Framework for Knowledge Mod-
eling and Decision Support in Cyber-Physical Systems. Advanced Engineering
Informatics, 30(1):77–94, January 2016.

[40] Ramaswami, A., et al. Sustainable Urban Systems: Articulating a Long-Term
Convergence Research Agenda. Advisory Committee for Environmental Research
and Education, National Science Foundation, Washington, D.C., USA, January
2018.

[41] Rossman L.A. EPANET 2: Users Manual. Technical Report EPA/600/R-00/057,
Water Supply and Water Resources Division National Risk Management Re-
search Laboratory Cincinnati, OH 45268, September 2000.

[42] Rudolf G. Some Guidelines For Deciding Whether To Use A Rules Engine. 2003.
Sandia National Labs.

[43] Salomons E., Hatchett S., and Eliades D.G. The EPANET Open Source Ini-
tiative. In 1st International WDSA/CCWI 2018 Joint Conference, Kingston,
Ontario, Canada, July 23-25 2018.

[44] Segaran T., Taylor J. and Evans C. Programming the Semantic Web. O’Reilly,
Beijing, 2009.

[45] Tidwell D. XSLT. O’Reilly and Associates, Sebastopol, California, 2001.

[46] Wagner D.A, Bennett M. B., Karban R., Rouquette N., Jenkins S. and Ingham
M. An Ontology for State Analysis: Formalizing the Mapping to SysML . IEEE
Aerospace Conference, Big Sky, MT, USA, 2012.

[47] Whistle: A Java-enabled Scripting Language for Assembly and Execution of
Multi-Domain Systems. See http://www.isr.umd.edu/∼austin/whistle.html (Ac-
cessed April 17, 2020).

[48] XML Stylesheet Transformation Language (XSLT). See
http://www.w3.org/Style/XSL. 2002.

121

