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Background

• Naval Network and Space Operations Command is tracking

over 12,000 objects in orbit.

• These objects may collide with the ISS or other US assets.

• Analytic methods no longer meet accuracy requirements, so

numerical methods are used.

• Numerical methods require much more computation time.

• Planned sensor upgrades may increase the number of tracked

objects to over 100,000.

• Faster numerical integrators are needed.
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Integration Terminology

Integrators can be classified by several categories

• Single or Multi-Step - How many points are used to integrate

forward, multi-step integrators need backpoints

• Fixed or Variable Step

• Single or Double Integration - whether they handle first or

second order differential equations

• Summed or Non-Summed - Whether the integration is point to

point, or from epoch (multi-step integrators only)
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Integration Methods

Single / Fixed / Non-Summed / Single /

Method Multi Variable Summed Double

Runge-Kutta Single Fixed NA Single

Runge-Kutta-Fehlberg Single Variable NA Single

Adams (non-summed) Multi Fixed Non-Summed Single

Summed Adams Multi Fixed Summed Single

Shampine-Gordon Multi Variable Non-Summed Single

Stormer-Cowell Multi Fixed Non-Summed Double

Gauss-Jackson Multi Fixed Summed Double

Proposed Multi Variable Summed Double
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Variable-Step Integration

• Fixed-step integrators take more steps than needed at apogee.

• Variable-step integrators change the step size to control local

error.

• An alternative to variable-step integration is to change the

independent variable (s-integration)

– Still a fixed-step method - no local error control.

– Must integrate to find time - leads to in-track error.

• Test benefit of variable step by timing integrations of equivalent

accuracy.
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Single / Double Integration

• Compare Adams and Störmer-Cowell

• Both use 30 sec step, 2 evaluations per step.

• Test by defining an error ratio:

ρr =
1

rANorbits

√√√√ 1

n

n∑
i=1

(∆ri)2

where ∆r = |rcomputed − rref|.

• Comparisons are over 3 days.

• Reference is analytic solution (two-body).
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Double vs. Single (Two Body)

Height (km) Eccentricity Störmer-Cowell Adams

300 0.00 2.47×10−13 2.66×10−12

300 0.25 3.05×10−12 7.90×10−12

300 0.75 4.01×10−11 2.66×10−10

500 0.00 3.49×10−13 7.90×10−13

500 0.25 2.87×10−12 9.21×10−12

500 0.75 2.21×10−11 1.69×10−10

1000 0.00 9.63×10−14 4.78×10−12

1000 0.25 3.53×10−13 9.58×10−12

1000 0.75 9.70×10−12 7.03×10−11
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Double vs. Single

• Similar results with perturbations.

• Without second evaluation, Adams is unstable.

• Störmer-Cowell is stable with one evaluation per step.

• Variable-step double-integration only needs one evaluation per

step.

• Significant advantage over Shampine-Gordon.
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Shampine-Gordon

• Solve the differential equation

y′ = f(x, y)

by approximating f(x, y) with a polynomial P (x)

interpolating through the backpoints.

• P (x) is written in Divided Difference form so the backpoints

do not have to be equally spaced.
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Divided Differences

n xn f [xn] f [xn, xn−1] f [xn, xn−1, xn−2]

1 1 1

&&NNNNNNNNNNNNN

2 3 5

&&MMMMMMMMMMMMM // 2

))RRRRRRRRRRRRRRRRR

3 4 9 // 4 // 2/3

P (x) = 9 + (x − 4)(4) + (x − 4)(x − 3)(2/3)
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Shampine-Gordon Predictor

• Integrating the polynomial:

pn+1 = yn +

∫ xn+1

xn

P (x) dx

gives a predictor formula:

pn+1 = yn + hn+1

k∑
i=1

gi,1φ
∗
i (n)

• The gi,1 are integration coefficients.

• Coefficients must be calculated at each step.

• The φ∗
i (n) are modified divided differences.
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Shampine-Gordon

• After the predictor an evaluation is performed.

• The corrector is derived using a polynomial that integrates

through the backpoints plus the predicted value.

• A second evaluation follows the corrector.

• Step size is modified based on local error estimate:

r =

(
ε

Error

) 1
k+1

• r is bounded between 0.5 and 2, and not allowed to be

between 0.9 and 2.
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Double Integration - Predictor

• Solve the second order ODE

y′′ = f(x, y, y′)

• Replace f with P (x) and integrate both sides twice:

pn+1 = yn + hn+1y′
n +

∫ xn+1

xn

∫ x̃

xn

P (x) dx dx̃

• To get rid of y′ term, integrate backwards too:

pn+1 =
(
1 +

hn+1

hn

)
yn −

hn+1

hn

yn−1+∫ xn+1

xn

∫ x̃

xn

P (x) dx dx̃ +
hn+1

hn

∫ xn−1

xn

∫ x̃

xn

P (x) dx dx̃
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Double Integration

• The coefficients gi,2 from Shampine-Gordon can be used to
find ∫ xn+1

xn

∫ x̃

xn

P (x) dx dx̃

• New set of coefficents g′
i,2 needed for second integral.

• Predictor formula:

pn+1 =
(
1 +

hn+1

hn

)
yn −

hn+1

hn

yn−1

+ h2
n+1

k∑
i=1

(
gi,2 +

hn+1

hn

g′
i,2

)
φ∗

i (n)
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Double Integration - Implementation

• Predictor is followed by an evaluation, and then the corrector.

• A second evaluation is Not performed.

• The factor r to change the step is calculated:

r =

(
0.5ε

Error

) 1
k+2

and bounded between 0.5 and 2.
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Results

• Two implementations are tested, Matlab and Fortran.

• Implementations use 9 backpoints.

• Runge-Kutta used to start the integrator.

• Matlab test on y′′ = −y

Solution: y = sin(x)

• Fortran test on two-body orbit propagation.

– Implements single integration for velocity, double integration

for position.
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Fortran Results

Height (km) Eccentricity Error Ratio

300 0.00 6.41×10−10

300 0.25 7.49×10−11

300 0.75 1.98×10−11

500 0.00 6.23×10−10

500 0.25 5.99×10−11

500 0.75 2.04×10−11

1000 0.00 5.81×10−10

1000 0.25 5.97×10−11

1000 0.75 2.31×10−11
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Future Work

• Accuracy / Speed tests against other integrators.

• Start-up with variable-order implementation.

• Interpolation to get requested values.

• Choosing the best factor r from the two available: single and

double-integration step-size control algorithms.
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